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A diffusion model analysis 
of age and individual differences 
in the retro‑cue benefit
Alessandra S. Souza 1,2* & Gidon T. Frischkorn 2

The limited capacity of working memory (WM) constrains how well we can think and act. WM capacity 
is reduced in old age, with one explanation for this decline being a deficit in using attention to control 
WM contents. The retro‑cue paradigm has been used to examine the ability to focus attention in WM. 
So far, there are conflicting findings regarding an aging deficit in the retro‑cue effect. The present 
study evaluated age‑related changes and individual differences in the retro‑cue effect through a 
well‑established computational model that combines speed and accuracy to extract underlying 
psychological parameters. We applied the drift–diffusion model to the data from a large sample of 
younger and older adults (total N = 346) that completed four retro‑cue tasks. Retro‑cues increased the 
quality of the evidence entering the decision process, reduced the time taken for memory retrieval, 
and changed response conservativeness for younger and older adults. An age‑related decline was 
observed only in the retro‑cue boost for evidence quality, and this was the only parameter capturing 
individual differences in focusing efficiency. Our results suggest that people differ in how well they can 
strengthen and protect a focused representation to boost evidence‑quality accumulation, and this 
ability declines with aging.

Working memory provides a limited workspace to represent the information guiding our thoughts and actions. 
Its capacity decreases during healthy aging, but the causes of this decline are still unclear. One candidate expla-
nation relates to deficits in the use of attention to control working memory contents. Attention can be used 
to flexibly prioritize and update working memory contents to reflect only the most relevant ones for adaptive 
action. This process has been studied using the retro-cue  paradigm1,2. In this paradigm, a cue is presented dur-
ing the retention interval indicating which working memory content will be relevant for the memory test. Take, 
for example, the task illustrated in Fig. 1A. Participants are asked to memorize the colors of a set of disks. In the 
standard no-cue condition, the retention interval is followed directly by the test. In retro-cue trials, in contrast, 
the retention interval is followed by the presentation of a cue highlighting one memory location. The cue draws 
attention to one working memory content, indicating it as the relevant representation for the memory test. The 
validity of the retro-cue in predicting the tested item can be varied, but it is usually set at 100% [for a review see 
3]. Typically, responses to the memory test are faster and more accurate in valid retro-cue trials than in no-cue 
trials, yielding the so-called retro-cue benefit. The retro-cue benefit has been observed in several paradigms: for 
example, change detection (see Fig. 1A,B)1, change-localization4, as well as delayed estimation (see Fig. 1C,D)5,6.

Does aging hinder focusing efficiency in working memory?
The retro-cue effect has been considered one indicator of the efficiency of focusing attention within working 
memory. Studies have shown that the ability to use the retro-cue increases in  childhood7–9, yet it is still unclear 
if it decreases during healthy aging. Some initial studies observed age deficits in the ability to use retro-cues10,11, 
whereas subsequent studies found preserved  ability12–17. Hence the evidence for an aging deficit in the control of 
attention in working memory is still mixed. So far, studies have only included relatively small samples (N ≈ 30), 
and they have only assessed older adults in single tasks. Additionally, tasks across studies varied with regards to 
their emphasis on response speed or accuracy, which may produce differences on how younger and older adults 
approach the task. For example, studies finding evidence for an aging deficit in the retro-cue effect used change 
detection tasks with a response  deadline10,11, whereas most studies not finding a deficit employed reproduction 
tasks with an unlimited response  window15,16. To get a better understanding on how aging affects the ability to 
focus attention in working memory, it is therefore necessary to include multiple tasks and to combine informa-
tion from speed and accuracy measures to unravel how people use memory representations to reach a decision. 

OPEN

1Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen S/N, 
4200-135 Porto, Portugal. 2University of Zurich, Zürich, Switzerland. *email: alessandra@fpce.up.pt



2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17356  | https://doi.org/10.1038/s41598-023-44080-z

www.nature.com/scientificreports/

Closing this gap was the main goal of the present study. To achieve this aim, we modeled the data of several 
retro-cue tasks performed by a large sample of younger and older adults. Next, we explain the rationale of our 
modeling framework.

Modeling of the retro‑cue effect
One way to gain better insight regarding the operation of focused attention is by examining how it affects param-
eters of well-established cognitive models. Model parameters have a theory-driven and empirically validated psy-
chological  meaning18, therefore parameter changes induced by a manipulation can be directly tied to a theoretical 
interpretation. A well-established class of models in cognitive psychology is of evidence accumulation models. 
In the present paper, we focus on the diffusion decision  model19–21 and its recent extension to circular  tasks22–24.

These models assume that a decision is made through the gradual and continuous accumulation of evidence 
towards one out of several response options. This process is illustrated in Fig. 2A in a change-detection paradigm: 

Figure 1.  Illustration of key features of retro-cue tasks used in the present study. These tasks varied the nature 
of the memory test (change detection, CD vs. delayed estimation, DE), the memoranda (orientation vs. color), 
and the type of retro-cue (central arrow vs. peripheral circle).
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participants must judge whether a memory probe matches or mismatches a memory item. Its most simplified 
version—known as the EZ-Diffusion model, which is the model used  here25,26—describes this process with three 
parameters. The drift rate is the speed of the noisy accumulation of evidence towards a response boundary (i.e., 
a “match” or “mismatch”), thereby reflecting the quality of the information entering the decision process. The 
boundary separation reflects the evidential distance between the two response options, thereby quantifying how 
conservatively the participant approaches the task. A larger boundary separation implies that more information 
needs to be accumulated before a decision is made. Finally, the nondecision time parameter captures the time 
taken by the nondecision processes occurring before (e.g., encoding, memory retrieval) and after the decision 
is made (e.g., response execution).

This diffusion process has recently been extended to paradigms requiring the precise reconstruction of a 
feature value in a circular  space23. The original model is based on the same premises as the two-choice diffusion 
model described above, and its main parameters are identical as illustrated in Fig. 2B. Recently, a EZ-Continuous 
Diffusion  model27 has been proposed that—akin to the EZ-Diffusion model for two-choices—can be applied to 
summary statistics of the data, requiring only the application of mathematical formulas with no fitting routine. 

Figure 2.  Diffusion model account of the responses in the change detection paradigm (A) and the delayed 
estimation paradigm (B). Both model versions have three main parameters: drift rate (ν), boundary separation 
(a), and nondecision time  (Ter).
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Another advantage of using the EZ versions of these models is that they can be applied to tasks with a relatively 
low number of trials per condition, and they perform well in recovering individual  differences28 and simple 
experimental  effects29.

To the best of our knowledge, only two previous studies examined the retro-cue effect through the lens of 
the two-choice diffusion decision model. Shepherdson et al.30 modeled the data of four change-detection tasks 
with visual (colored squares) and verbal (letters and German words) materials, and  Shepherdson31 analyzed 
the data of two visual experiments with a two-alternative forced choice test. The presentation of the retro-cue 
increased drift rate compared to the no-cue condition, particularly in the visual tasks. This result is in line with 
the assumption that retro-cues strengthens and protects the representation of the cued item from subsequent 
visual  interference32–34. Retro-cues also reduced nondecision time, and this effect was larger the more items had 
to be remembered. This finding was interpreted as indicative that retro-cues allowed a head start in the retrieval 
of the relevant representation before the decision process could take  place34. Finally, retro-cues also had some 
unsystematic effects on boundary separation: in some experiments, boundary separation was reduced in retro-
cue trials. This is suggestive that participants were sometimes less conservative in the presence of a retro-cue. So 
far, we are not aware of diffusion modeling attempts of the retro-cue effect in the delayed estimation paradigm. 
Accordingly, one aim of the current study was to assess if retro-cues exhibit consistent effects on diffusion model 
parameters for both change detection and delayed estimation paradigms using visual materials.

So far, studies have not examined age-related changes in focusing efficiency through the lens of the drift 
diffusion model. This can help us overcome issues related to age and individual differences in task approach, 
such as preferences to respond fast while sacrificing accuracy or to respond slowly but accurately (i.e., speed-
accuracy tradeoffs).

Individual differences in speed‑accuracy tradeoffs and in focusing efficiency
Individuals can set different criteria to decide, with some favoring speed over accuracy whereas others favor 
accuracy over speed. Traditionally, speed and accuracy are treated separately when analyzing task performance 
which is not ideal for rank-ordering individuals in terms of their abilities. Diffusion modeling overcomes this 
issue by creating a single metric to compare individuals with regards to theoretically meaningful processing 
 stages35. Accordingly, its parameters were shown to have separate relations to working memory capacity and 
 reasoning36–38.

So far, studies have not evaluated whether the diffusion model can help reveal individual differences in 
focusing efficiency in working memory. In general, the literature is still incipient regarding individual differ-
ences in the retro-cue benefit. Robison and  Unsworth39 observed a small but significant correlation between 
the retro-cue benefit obtained in a single task with working memory capacity measured with a battery of three 
tasks. Ye et al.40 observed a small correlation between the retro-cue benefit in two separate tasks, yet these did 
not correlate with performance in another independent working memory task. The use of a single task or a small 
sample size, however, precludes firm conclusions to be taken from these studies. Therefore, addressing individual 
differences in the retro-cue effect through diffusion modeling parameters was the final goal of the present study.

The present study
The main goal of the present study was to model the data of retro-cue tasks to assess age differences in focusing 
efficiency in working memory while accounting for possible individual differences in speed-accuracy tradeoffs. 
We analyzed data of a large sample of younger (n = 172, mean age = 23.7 years) and older adults (n = 174, mean 
age = 71.5 years) in four retro-cue tasks (see Fig. 1) varying the type of retrieval paradigm (change-detection vs. 
delayed estimation), the material to be remembered (color vs. orientations), and the type of spatial cue (central 
arrows vs. peripheral circles). This is the largest dataset to date allowing both the assessment of age as well as 
individual differences in the retro-cue effect. We modeled the data using the EZ versions of the diffusion model 
for two-choice response  tasks25 and for circular  tasks27. This is the first time that the retro-effect in delayed 
estimation tasks is evaluated through this cognitive model, offering the opportunity to examine if retro-cues 
have similar effects in model parameters across different retrieval paradigms. Finally, this is also the first time 
that age and individual differences in the retro-cue effect are evaluated with the diffusion model, permitting an 
examination of which components of focused attention are more sensitive to age-related decline and the suit-
ability of this effect as a valid psychometric indicator of focusing ability.

Results
Table 1 presents descriptive statistics for the behavioral performance in each of the four retro-cue tasks and Bayes 
Factors  (BF10) indicating the strength of evidence for or against the presence of a retro-cue effect (i.e., perfor-
mance difference between No-Cue and Retro-Cue trials) in each age group, as well as for age differences in each 
condition separately. A  BF10 > 1 indicates evidence in favor of the presence of an effect, and a  BF10 < 1 indicate 
evidence against differences. We considered  BF10 values between 0.3 and 3 as ambiguous, and values larger than 
10 or smaller than 0.1 as showing strong support for or against an effect, respectively. Note that, for the delayed 
estimation paradigm, the measure of memory accuracy is circular variance since this reflects the average error 
in reporting the correct feature in the circular space. Accordingly, better performance in this paradigm implies 
lower values. Table 1 shows that retro-cue improved memory accuracy (i.e., increased proportion correct in 
change detection and reduced circular variance in delayed estimation tasks) and reduced reaction times (RTs) 
for all tasks and both age groups. In sum, retro-cues improved both response speed and accuracy for both age 
groups. The diffusion model analysis integrates over these two performance indicators. We will describe the 
modeling results next.
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Retro cue effects on diffusion model parameters
We calculated diffusion model parameters using the EZ-diffusion  model25 for change detection paradigms and 
the EZ-Circular Diffusion  model27 for the delayed estimation paradigms. To verify that both the models captured 
the observed data adequately, we generated synthetic data from the computed parameters for all participants in 
each task and correlated the observed data with the generated data (see Table 2 for a summary of these correla-
tions). These correlations ranged from 0.73 to 0.98, indicating that the calculated parameters fit the observed data 
acceptably. Generally, model fit was better for the change detection than for the delayed estimation tasks. Yet, 
model fit was similar for both age groups as well as between conditions. Thus, both age and condition differences 
cannot be explained by differences in model fit. Plots illustrating the model fit and a more elaborate discussion 
of model fit are presented in the Online Supplementary Materials.

Next, we separately submitted drift rate, nondecision time, and boundary separation to a Bayesian linear 
mixed effects model estimating the parameter values for the no-cue condition and parameter changes yielded by 

Table 1.  Descriptive statistics for the two dependent variables in the four retro-cue tasks, and evidence  (BF10) 
for condition effects (no-cue vs. retro-cue) and age effects (younger vs. older) in the baseline condition and 
condition effects. Note. CD = change-detection. DE = delayed estimation. N = number of participants with data 
to be included. Bayes Factors in bold indicate strong evidence in favor of an effect  (BF10 > 10), Bayes Factors in 
italic strong evidence against an effect  (BF10 < 0.1).

Task DV Condition

Older Younger Age effect

Mean SD Mean SD BF10

Color CD

Proportion Correct

No-Cue 0.76 0.10 0.78 0.10 0.21

Retro-Cue 0.84 0.10 0.86 0.10 0.05

BF10 3.81 × 1017 6.93 × 1015

Reaction Time (s)

No-Cue 1.57 0.33 1.00 0.22 2.34 × 1015

Retro-Cue 1.14 0.28 0.65 0.18 2.75

BF10 4.14 × 1017 2.34 × 1018

Orientation CD

Proportion Correct

No-Cue 0.68 0.10 0.76 0.09 1.80 × 1018

Retro-Cue 0.71 0.12 0.84 0.10 9.35 × 1016

BF10 4.76 9.86 × 1014

Reaction Time (s)

No-Cue 1.85 0.44 1.28 0.28 6.77 × 1016

Retro-Cue 1.36 0.38 0.86 0.21 0.04

BF10 7.06 × 1015 1.38 × 1016

Color DE

Circular Variance

No-Cue 28.24 13.61 22.74 11.53 1.01 × 1038

Retro-Cue 14.20 11.97 9.07 8.47 0.13

BF10 2.05 × 1019 1.88 × 1017

Reaction Time (s)

No-Cue 3.98 1.28 3.03 1.02 1–08 × 1026

Retro-Cue 2.99 1.14 2.40 0.88 4.15 × 1017

BF10 3.26 × 1014 7.53 × 1015

Orientation DE

Circular Variance

No-Cue 25.29 12.39 24.19 12.35 0.26

Retro-Cue 17.34 13.38 16.21 12.45 0.12

BF10 4.97 × 1033 3.62 × 1027

Reaction Time (s)

No-Cue 2.76 0.77 2.09 0.59 3.26 × 1014

Retro-Cue 2.30 0.74 1.49 0.49 4.03 × 105

BF10 2.05 × 1016 9.39 × 1014

Table 2.  Correlation between observed and model generated summary statistics to evaluate model fit of the 
EZ-DM and EZ-CDM. PC = Proportion correct; RT = Reaction time; Q = Quantile; CD = Change detection; 
DE = delayed estimation.

Task Domain

PC RT Q25 RT Q50 RT Q75

Older Younger Older Younger Older Younger Older Younger

CD Color .86 .87 .96 .98 .96 .98 .94 .95

Orientation .84 .86 .92 .96 .95 .97 .93 .96

Circular variance RT Q25 RT Q50 RT Q75

Older Younger Older Younger Older Younger Older Younger

DE Color .95 .95 .87 .78 .86 .78 .83 .76

Orientation .92 .89 .82 .87 .81 .85 .73 .81
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the retro-cue for each age group and task. Figure 3 illustrates the posterior estimates of the retro-cue effect (i.e., 
difference between the no-cue and retro-cue condition) in each task and age group with regards to the drift rate 
(panel A), nondecision time (panel B), and boundary separation (panel C). In Table 3, we report the parameter 
mean and the interval covering 95% of its posterior distribution (aka. its highest density interval, HDI). We also 
calculated Bayes Factors in support of the presence of an effect  (BF10) using the Savage-Dickey density method 
(see details in the Methods section). Additionally, Table 3 summarizes the results of mixed effect models for each 

Figure 3.  Posterior estimates (mean, 95% HDI, and full distribution) for the retro cue effect on drift rate (A), 
nondecision time (B), and boundary separation (C) for younger (black triangles) and older (grey circles) adults. 
CD = Change-detection; DE = Delayed estimation.
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age group, task, and diffusion model parameter, as well as the evidence  (BF10) for retro-cue and age effects. Below, 
we will first report an analysis of the retro-cue effect averaged across age groups and focus on age differences later.

Drift rate
Consistent with previous  findings30,31, retro-cues increased drift rate, Δ = 0.54, HDI = [0.52, 0.57],  BF10 = 1.96 ×  1015 
(Fig. 3A). There was moderate evidence for the benefit on drift rate being similar for the change detection and 
delayed estimation paradigms, Δ = − 0.02 [− 0.08, 0.03],  BF10 = 0.11. However, drift rate benefits were larger for 
tasks using color than orientation as memoranda, Δ = 0.16 [0.11, 0.22],  BF10 = 2.94 ×  1017.

Table 3.  Posterior Means and 95% Highest Density Intervals of the Diffusion Model Parameters for the 
No-Cue Condition and the Retro-Cue Effect in Each Task. Additionally, the Evidence (Bayes Factor,  BF10) for 
Age Differences in the No-Cue Condition, and the Retro-Cue Effect for each Age Group are Displayed. Bayes 
Factors in bold indicate strong evidence in favor of an effect  (BF10 > 10), Bayes Factors in italic strong evidence 
against an effect  (BF10 < 0.1).

Task Age group

No-Cue Retro-cue effect BF10
Retro cue effectMean [95% HDI] Mean [95% HDI]

Drift (ν)

Color CD

Younger 1.25 [1.15, 1.35] 0.75 [0.68, 0.83] 1.56 × 1018

Older 0.86 [0.78, 0.93] 0.51 [0.43, 0.58] 6.16 × 1015

BF10 age effect 4.03 × 1018 4.39 × 103

Orientation CD

Younger 0.91 [0.83, 0.99] 0.66 [0.58, 0.73] 1.17 × 1016

Older 0.51 [0.45, 0.57] 0.21 [0.14, 0.29] 3.16 × 1015

BF10 age effect 7.22 × 1015 1.46 × 1015

Color DE

Younger 0.87 [0.81, 0.94] 0.67 [0.59, 0.74] 2.49 × 1015

Older 0.62 [0.55, 0.69] 0.58 [0.50, 0.65] 8.01 × 1017

BF10 age effect 1.77 × 1016 0.31

Orientation
DE

Younger 1.03 [0.95, 1.12] 0.58 [0.50, 0.66] 5.15 × 1020

Older 0.81 [0.74, 0.88] 0.40 [0.33, 0.48] 1.53 × 1020

BF10 age effect 227.11 8.49

Nondecision time (Ter)

Color CD

Younger 0.64 [0.59, 0.68] − 0.27 [− 0.33, − 0.20] 1.69 × 1054

Older 0.96 [0.91, 1.01] − 0.26 [− 0.33, − 0.20] 3.44 × 1020

BF10 age effect 1.15 × 10164 0.06

Orientation CD

Younger 0.75 [0.70, 0.79] − 0.24 [− 0.31, − 0.18] 2.03 × 1022

Older 1.00 [0.95, 1.04] − 0.22 [− 0.29, − 0.16] 2.96 × 1018

BF10 age effect 3.20 × 1021 0.08

Color DE

Younger 1.29 [1.21, 1.37] − 0.93 [− 0.99, − 0.86] 3.27 × 1016

Older 1.67 [1.58, 1.76] − 0.93 [− 0.99, − 0.86] 5.83 × 1016

BF10 age effect 9.84 × 1016 0.06

Orientation
DE

Younger 0.91 [0.84, 0.97] − 0.44 [− 0.51, − 0.38] 3.11 × 1023

Older 1.04 [0.96, 1.12] − 0.34 [− 0.41, − 0.28] 6.41 × 1052

BF10 age effect 1.78 0.63

Boundary separation (a)

Color CD

Younger 1.13 [1.05, 1.20] − 0.04 [− 0.14, 0.07] 0.14

Older 1.48 [1.40, 1.55] − 0.13 [− 0.23, − 0.02] 1.53

BF10 age effect 2.75 × 1017 0.21

Orientation CD

Younger 1.38 [1.31, 1.46] − 0.16 [− 0.27, − 0.05] 8.33

Older 1.67 [1.59, 1.74] − 0.25 [− 0.35, − 0.14] 2.17 × 105

BF10 age effect 4.51 × 1017 0.19

Color DE

Younger 1.92 [1.77, 2.06] 1.11 [1.00, 1.21] 4.23 × 1017

Older 2.11 [1.98, 2.24] 0.54 [0.44, 0.65] 8.32 × 1015

BF10 age effect 0.91 5.12 × 1015

Orientation
DE

Younger 1.52 [1.39, 1.65] 0.28 [0.18, 0.39] 2.28 × 1015

Older 1.86 [1.77, 1.96] 0.22 [0.12, 0.33] 4.27 × 104

BF10 age effect 3.83 × 103 0.15
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Nondecision time
In agreement with previous  findings30,31, retro-cues reduced nondecision time, Δ = − 0.45 [− .48, − 0.43], 
 BF10 = 3.54 ×  1016 (Fig. 3B). Retro-cue benefits for nondecision time were larger in the delayed estimation than 
in the change detection paradigms, Δ = 0.41 [0.37, 0.46],  BF10 = 7.55 ×  1019, and they were larger for the tasks 
using color than orientation as memoranda, Δ = 0.28, [0.24, 0.33],  BF10 = 6.07 ×  1022. As evident from Fig. 3B and 
Table 3, these differences were mainly driven by the very large retro-cue effect in the color delayed estimation 
task.

Boundary separation
For boundary separation, retro cue benefits were less consistent across the four tasks (Fig. 3C). In the change 
detection paradigm, there was evidence for a decrease in boundary separation in retro cues trials, Δ = − 0.14 
[− 0.20, − 0.09],  BF10 = 2.25 ×  1018. The effect was small and ambiguous in the color task, Δ = − 0.08 [− 0.16, − 0.01], 
 BF10 = 1.10, but stronger and well-supported in the orientation task, Δ = − 0.20 [− 0.28, − 0.13],  BF10 = 2.35 ×  1025. 
This varied pattern has also been observed previously in the  literature30. In the delayed estimation paradigm, 
boundary separation increased consistently in retro-cue trials, Δ = 0.54 [0.49, 0.59],  BF10 = 1.23 ×  1017. This was 
the case both for the color, Δ = 0.83, [0.75, 0.90],  BF10 = 1.15 ×  1026, and orientation versions, Δ = 0.25 [0.18, 0.33], 
 BF10 = 9.40 ×  1015.

Age differences in the no‑cue condition and in the retro‑cue benefit
Our second aim was to assess age differences in the size of the retro-cue effects across the diffusion model param-
eters. However, because age groups also differed in baseline performance (i.e., in the no-cue condition), we will 
briefly present the source of these differences first, followed by the assessment of the retro-cue effect. Figure 4 
shows the posterior estimates of the three diffusion model parameters in the no-cue condition for younger and 
older adults in each task. Table 3 provides the BF for the age comparisons.

Drift rate
No-cue condition Consistent with prior  results41,42, younger adults showed higher drift rates in the no-cue condi-
tion than older adults, Δ = 0.32 [0.26, 0.37],  BF10 = 1.45 ×  1023 (Fig. 4A). There was moderate evidence for this age 
difference being larger in change detection than delayed estimation, Δ = 0.16 [0.05, 0.27],  BF10 = 5.09; but evidence 
against an effect of material (i.e., color vs. orientation), Δ = 0.01 [− 0.09, 0.12],  BF10 = 0.007.

Retro-cue benefit Younger adults showed larger retro-cue benefits on drift rates than older adults, Δ = 0.24 
[0.19, 0.29],  BF10 = 6.60 ×  1015 (Fig. 3A). There was strong evidence for this age difference being larger in the 
change detection than delayed estimation paradigms, Δ = 0.21 [0.11, 0.32],  BF10 = 120. Age differences were 
descriptively larger in the color than orientation task versions, Δ = − 0.14 [− 0.25, − 0.03], but the evidence for 
this effect was ambiguous,  BF10 = 2.36.

Nondecision time
No-cue condition In line with previous  results41, nondecision time in the no-cue condition was lower for younger 
than for older adults, Δ = − 0.27 [− 0.32, − 0.23],  BF10 = 1.55 ×  1020 (Fig. 4B). There was no effect of paradigm, 
Δ = − 0.03 [− 0.12, 0.06],  BF10 = 0.008, but age differences were larger for the color than orientation material, 
Δ = − 0.16 [− 0.25, − 0.07],  BF10 = 19.80.

Retro-cue effect There was moderate evidence against age differences in the retro-cue effect on nondecision 
time, Δ = − 0.03 [− 0.08, 0.01],  BF10 = 0.10. As displayed in Table 3, there was strong evidence against age differ-
ences in nondecision time for all tasks, all  BFs10 < 0.10, except the orientation delayed estimation task,  BF10 = 0.63. 
All in all, these results indicate that there are no or only negligible age differences in the retro-cue effect on this 
parameter.

Boundary separation
No-cue condition In agreement with prior  results41, boundary separation was lower for younger than older adults 
in the no-cue condition, Δ = − 0.29 [− 0.36, − 0.22],  BF10 = 2.49 ×  10141 (Fig. 4C). There was moderate evidence 
against an effect of paradigm, Δ = − 0.05 [− 0.20, 0.10],  BF10 = 0.12, and material (color vs. orientation), Δ = 0.05 
[− 0.10, 0.19],  BF10 = 0.12.

Retro-cue effect As retro-cue effects differed considerably between the change detection and delayed esti-
mation paradigms, we did not calculate age differences across all tasks. In the change detection paradigm, 
retro-cue effects were descriptively larger for older than for younger adults, Δ = 0.09 [− 0.02, 0.19], however 
this difference was not supported statistically,  BF10 = 0.39. In the delayed estimation paradigm, there was strong 
evidence for a larger retro-cue effect on boundary separation in younger than for older adults, Δ = 0.31 [0.21, 
0.42],  BF10 = 1.03 ×  1017. Yet, as shown in Fig. 3C and Table 3, this effect was mainly driven by the color delayed 
estimation task.

In sum, our results indicate a single source of age-related decline on retro-cue benefits, namely on the drift 
rate parameter. Effects were absent or negligible in nondecision time, and inconsistent on boundary separation.

Are there consistent individual differences in the retro‑cue benefit?
Our third research question focused on individual differences in the retro-cue effect. Our goal was to deter-
mine whether we can estimate a paradigm- and material-general retro-cue factor. To address this question, we 
estimated Bayesian structural equation models (BSEM, for details see the Methods section) separating general 
variance shared between the no-cue and the retro-cue conditions from general variance driven only by the 
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retro-cue. Additionally, we accounted for retrieval paradigm- and material-specific variance using a hierarchical 
factor model. Figure 5 presents the path diagrams of the BSEM for drift rate, non-decision time, and boundary 
separation, and Table 4 presents the posterior estimates for the proportion of variance explained by the different 
latent variables for each indicator.

Figure 4.  Posterior estimates (mean, 95% HDI, and full distribution) of the drift rate (A), nondecision time 
(B), and boundary separation (C) in the no-cue condition for younger (black triangles) and older (grey circles) 
adults in each task. Note. CD = Change-detection; DE = Delayed estimation.
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Drift rate
The BSEM modeling individual differences in drift rates fit well to the data, PPP = 0.256, BCFI = 0.985 [0.965; 
1.000], BRMSEA = 0.041 [0.000, 0.070]. There were consistent retro-cue general individual differences in drift 
rates (νg retro-cue)—on average, this factor explained 7% of total variance in indicators for both older and 
younger adults. However, the general factor (i.e., νg) capturing variance shared across conditions contributed 
more strongly to individual differences in drift rate—15% and 24% for younger and older adults, respectively. 
Additionally, the factors isolating paradigm-specific variance (i.e., change detection and delayed estimation) 
captured, on average, 8 to 14% of variance in indicators for younger and 4 to 9% of variance for older adults. 
Task specific factors explained, on average, 22% of variance for both age groups.

Figure 5.  Simplified path diagrams for the bayesian structural equation models isolating condition general 
variance from variance specific to the ability to focus attention (i.e., benefitting from retro-cues) for drift rate 
(A), nondecision time (B), and boundary separation (C). We report posterior means of standardized path 
coefficients for younger (black font) and older (grey font) adults. Additionally, posterior means of the error 
variances for each indicator are displayed in italics. Note v = drift rate, Ter = nondecision time, a = boundary 
separation. Col = color, Ori = orientation, CD = change detection, DE = delayed estimation, g = general.
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In sum, retro-cue general individual differences were observed in drift rate. Yet, most of the individual dif-
ferences in this parameter were condition general and therefore not driven specifically by focused attention 
efficiency.

Nondecision time
For nondecision time, the SEM model fitted the data well, BCFI = 0.976 [0.940; 1.000] and BRMSEA = 0.035 
[0.000, 0.063]. Unlike drift rates, there were less consistent individual differences in the retro-cue benefit for 
nondecision time. In fact, we omitted a general factor of retro-cue benefits (i.e., there is no  Terg retro-cue factor 
in Fig. 5B) without compromising model fit, indicating that there were only paradigm-specific contributions to 
the retro-cue benefit (see Table 4). For change detection, 5% and 2% of variance was explained by the change-
detection retro-cue factor  (TerCD retro-cue) for younger and older adults, respectively. For delayed estimation 
 (TerDE retro-cue), these values were 2% and 5% for younger and older adults, respectively. Thus, mainly condi-
tion general factors captured individual differences. For example, the paradigm- and material-general factors 
for individual differences in non-decision time (i.e.,  Terg) captured on average 20% of variance in indicators for 
younger and 11% of indicator variance for older adults.

Boundary separation
The SEM model for boundary separation had an acceptable fit to the data, BCFI = 0.930 [0.891; 0.967], BRM-
SEA = 0.073 [0.052, 0.093]. Including a general factor retro-cue factor for boundary did not improve model 
fit and indicated negligible shared variance between retro cue benefits in the change detection and delayed 
estimation tasks. So, like for nondecision time, there were only paradigm specific individual differences in the 
retro-cue benefit. The change detection retro-cue factor (i.e.,  aCD retro-cue) captured, on average, 6% of variance 
in indicators for younger and 5% for older adults. The delayed estimation retro-cue factor (i.e.,  aDE retro-cue) 
explained, on average, 9% of variance in indicators for younger and 13% for older adults. For boundary separa-
tion, most individual differences were captured by task-specific factors: on average, 29% of indicator variance 
for younger and 29% for older adults. In contrast, the general factor shared across all tasks and conditions (i.e., 

Table 4.  Posterior means of the proportion of variance in indicators explained by the different latent factors 
(i.e., determination coefficients) for younger (black) and older (bold, grey) adults. G = general; CD = Change 
detection; DE = delayed estimation; Task Spec. = task specific.

Drift Rate
Change Detection Delayed Estimation

Color Orientation Color Orientation
No Retro No Retro No Retro No Retro Average

Co
nd

itio
n 

Ge
ne

ra
l g .11 .21 .05 .11 .18 .41 .08 .18 .37 .45 .14 .13 .23 .32 .08 .14 .15 .24

CD .14 .04 .07 .02 .24 .08 .10 .03 .14 .04
DE .14 .17 .05 .05 .08 .12 .03 .04 .08 .09
Task Spec .41 .41 .19 .20 .22 .12 .10 .05 .06 .28 .02 .08 .60 .43 .20 .19 .22 .22

Re
tro

-
Cu

e General .04 .05 .06 .08 .11 .06 .06 .07 .07 .07
CD .05 .04 .07 .07 .06 .05
DE .06 .05 .03 .06 .05 .05

Nondecision
Time No Retro No Retro No Retro No Retro Average

Co
nd

itio
n 

Ge
ne

ra
l g .35 .24 .52 .27 .26 .12 .33 .16 .04 .03 .03 .03 .07 .04 .04 .03 .20 .11

CD .04 .15 .06 .16 .03 .07 .04 .10 .04 .12
DE .14 .05 .10 .04 .26 .06 .17 .06 .17 .05
Task Spec. .04 .08 .06 .09 .26 .07 .33 .09 .16 .28 .11 .27 .11 .50 .07 .48 .14 .23

Re
tro

-
Cu

e CD .07 .02 .04 .01 .05 .02
DE .02 .04 .03 .05 .02 .05

Boundary Separation No Retro No Retro No Retro No Retro Average

Co
nd

itio
n 

Ge
ne

ra
l g .15 .16 .15 .20 .13 .12 .18 .12 .04 .06 .01 .01 .07 .09 .01 .03 .09 .10

CD .14 .17 .14 .22 .12 .12 .17 .13 .14 .16
DE .14 .18 .03 .05 .26 .30 .03 .03 .11 .14
Task Spec. .30 .07 .28 .09 .08 .15 .11 .15 .76 .73 .13 .19 .58 .49 .06 .16 .29 .25

Re
tro

-
Cu

e CD .05 .06 .06 .04 .06 .05
DE .08 .09 .09 .18 .09 .13
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 ag) only captured 9% of variance in indicators for younger and 10% for older adults. This indicates that there is 
primarily task specific variance in boundary separation.

Discussion
Our main aim was to assess for an age-related attention deficit in working  memory43 using the retro-cue para-
digm as a testbed. So far, there were mixed findings regarding age-related impairments in the retro-cue effect. 
Here, we reasoned whether these discrepant findings were related to the diversity of task paradigms used across 
studies (i.e., change-detection vs. delayed estimation) or to task-specific strategies (e.g., setting of speed-accuracy 
tradeoffs). To address these issues, we submitted to a drift diffusion model a large dataset of younger and older 
adults that completed four retro-cue tasks. This allowed us to examine the retro-cue effect through changes 
in model parameters that integrate speed and accuracy measures. Younger and older adults benefited from 
retro-cues and these benefits accrued in similar model parameters for both age groups across different memory 
paradigms. We observed only one source of age-related decline: older adults had a smaller attentional boost on 
evidence accumulation (aka. drift rate). Next, we will discuss first the meaning of the retro-cue effects on the dif-
ferent diffusion parameters, followed by a discussion of the meaning of age-related changes in these parameters.

Retro‑cue effects in diffusion model parameters
Replicating prior  literature30,31, retro-cues reliably increased drift rate and reduced nondecision time. To the 
best of our knowledge, this is the first time the retro-cue effect in the delayed estimation paradigm is examined 
through the diffusion model. Our results suggest that both modeling frameworks (for two choices and for circular 
choices) are similarly sensitive to the experimental effects of retro-cues.

The retro-cue benefit in drift rate has been explained as reflecting the strengthening and protection of the 
cued item from subsequent visual  interference30,31: this protection is irrelevant in verbal tasks (for which no 
drift rate benefit was observed in previous studies) and it does not undo the damage imposed by high levels of 
memory load. Conversely, the retro-cue effect in the nondecision time parameter was interpreted as indicative 
that participants use it for the advanced retrieval of the target representation into the focus of attention ahead 
of the  test34. This allows a well retrieved representation to enter the decision, reducing inter-item competition 
in memory, and consequently the impact of memory load.

The effects of retro-cues on boundary separation were less consistent. In the change-detection paradigm, 
a credible effect was observed in the orientation but not the color version. This mixed pattern is similar to the 
inconsistent effects of retro-cues on boundary observed by Shepherdson and  collaborators30,31. If present, the 
reduction in boundary separation in change detection indicates that participants were sometimes less conserva-
tive in retro-cue than in no-cue trials. For the delayed estimation paradigm, conversely, retro-cues increased 
boundary separation, indicating higher response conservativeness. This divide could be explained as follows. 
In delayed estimation, it takes time to adjust the probe feature to closely match the remembered information, 
whereas in change detection memory precision and motor control requirements are low. Accordingly, RTs are 
much slower in delayed estimation than change detection. Although retro-cues also reduced RTs in delayed 
estimation, this benefit was not proportional to the accuracy benefit. Accuracy improvements in delayed estima-
tion were observed with a reward manipulation, and this effect was accompanied by the slowing of  RTs44. This 
was interpreted as evidence that retrieval is costly, and motivation is needed to engage with retrieving a more 
precise representation. Hence retro-cues might have two effects in delayed estimation. On one hand, they protect 
memory representations from interference, increasing drift rate which reduces RTs. On the other hand, as the 
mental representation is more precise, participants are motivated to give a precise response, so they increase 
response criterion which slows RTs.

How age impacted the retro‑cue effect in diffusion model parameters?
Our older adults showed, in general, lower drift rates, higher nondecision time, and a higher boundary separation 
than younger adults in the no-cue (baseline) condition. These findings replicate prior results indicating lower 
working memory capacity in  aging41. Here we focused on how attention improved these parameters. For non-
decision time and boundary separation, younger and older adults benefited similarly from retro-cues. For non-
decision time, this indicates preserved efficiency in using the cue for a head start on the retrieval of the relevant 
representation, whereas for boundary separation, it suggests similar motivation changes yielded by the retro-cue.

The only parameter that showed age-related decline in focused attention was the drift-rate. Older adults had 
credibly smaller benefits in three of the four tasks. This novel result puts into perspective the findings from prior 
studies reporting preserved focusing ability in  aging13–17. These prior findings were mainly based on memory 
accuracy measures. In fact, when analyzing only this indicator, we have also mostly observed evidence for 
preserved  ability45. By integrating between accuracy and RTs, the diffusion modeling revealed that older adults 
do not gain as much from retro-cues as younger adults in terms of the quality of the information entering the 
decision process. This suggests an aging deficit in using focused attention to effectively strengthen and protect 
mental representations from interference. This is consistent with results by Loaiza and  Souza46. In their study, 
younger adults (but not the older ones) maintained the retro-cued item protected from a subsequent distractor 
task. This suggests that older adults have difficulties managing interference. One may wonder whether these 
results could be explained by older adults being more prone to time-based forgetting given that the retro-cue 
trials took overall longer to complete. However, prior studies have not observed more time-based forgetting in 
older  adults14,47. Future studies should therefore target age-related changes in the strengthening and protection of 
memory representations against interference and consider both accuracy and speed measures to get a complete 
picture of how older adults approach the task, and how they use information to make decisions.
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Sources of individual differences in focusing efficiency
Our findings also have implications for the assessment of individual differences in focusing efficiency. Our 
results indicate that only drift rate captured individual differences in retro-cue benefits that are shared between 
paradigms and materials, whereas nondecision time and boundary separation showed only paradigm-specific 
sources of variance. Additionally, individual differences in the retro-cue benefit were much smaller than indi-
vidual differences shared across experimental conditions, corroborating previous reports of small and unreliable 
individual differences in experimental  effects48,49. They also underscore the importance of using several tasks 
and paradigms to extract general individual  differences36,51,52.

The robust age and individual differences in focusing efficiency on drift rates is consistent with prior findings 
relating this parameter to other higher cognitive functions such as working memory capacity and reasoning 
 ability36,37,50. Hence, our findings corroborate drift rate as the most psychometrically relevant diffusion parameter.

Conclusion
Overall, using diffusion modeling to examine the effects of retro-cues seems as a promising venue to identify 
sources of age and individual differences. Our findings indicate that, although small, the retro-cue effect in drift 
rate could be taken as valid psychometric indicator of focusing efficiency: people reliably differ in their ability to 
use focused attention to strengthen and protect a memory representation in working memory, and this ability 
is prone to age-related decline.

Method
Participants
Participation criteria were: (a) age between 18 and 35 years old (younger sample) or between 65 and 80 (older 
sample), (b) fluent in German, and (c) physically and mentally healthy as evaluated by self-report, and for the 
older adults, a score higher than 25 in the Mini-Mental State  Examination53. We advertised the study in a high 
circulation magazine in the German-speaking part of Switzerland. Most of the older participants were recruited 
this way. Younger adults were students from the Zurich area. Participants were offered 15 Swiss francs (ca. 16 dol-
lars) per hour of participation, or in the case of students, they could also opt for receiving partial course credits. 
Participants signed an informed consent form at the beginning of the study and were debriefed at the end. The 
study protocol was conducted in accordance with the Declaration of Helsinki (excepting study registration) and 
all relevant ethical regulations, and it was approved by the Institutional Review Board of the Psychology Institute 
of the University of Zurich (approval number 16.12.12),.

We aimed to achieve a sample size of at least 150 participants in each age group. Our final sample size con-
sisted of 172 younger adults (M = 23.7 years old, SD = 3.81; 133 women) and 174 older adults (M = 71.5 years 
old, SD = 4.3; 97 women).

The data reported in this paper is part of a large battery of cognitive tasks. Part of the data was reported in 
Souza et al.45. The study consisted of two laboratory sessions, each lasting between 2.5 and 4.5 h. Older adults 
took in general longer to complete the tasks since they were not time-limited. In total, participants completed 20 
tasks that were evenly distributed across sessions. The tasks measured working memory capacity (n = 2), reason-
ing (n = 3), perceptual ability (n = 3), multiple object tracking (n = 1), and attentional selection with regard to 
space (n = 3), features (n = 4), and working memory contents (n = 4). Only the four working memory attentional 
selection tasks (aka retro-cue tasks) will be reported here. Sessions occurred in a group lab in which up to five 
people could be tested simultaneously. The computer stations were arranged in a row with dividers between 
them. Two large 10-min breaks were scheduled per session. Participants were offered drinks (tea, coffee, water, 
juice) and snacks (cake, cookies, chocolate, fruit, nuts) during the large breaks.

Stimuli and procedure
Difficulty calibration
Capacity limitation in working memory affects both how information is stored (its precision) as well as how 
evidence is processed to reach a decision. Guest et al.42 showed that age differences in evidence accumulation and 
asymptotic performance vary as a function of memory load. Younger adults showed a higher asymptotic per-
formance than older adults when maintaining one or two items in working memory indicating that they stored 
information with higher precision. Yet, evidence accumulation only showed age-related decline when memory 
load was larger than one, indicating that older adults have difficulty in deciding when multiple memory elements 
are available. This suggests that it is important to control for memory load across age groups, such that we can 
separate difficulties in maintaining memory representations from memory selection afforded by the retro-cue. 
Here we attempted to maintain task difficulty at similar levels across age groups by calibrating memory load.

We ran a pilot study to determine the memory load of the working memory for each age group. In the pilot 
study, younger (n = 30) and older (n = 30) adults completed a version of the retro-cue tasks in which the memory 
load was individually adjusted using a staircase procedure (QUEST) to yield 75% accuracy in the no-cue condi-
tion in the change-detection tasks and a 40° recall error in the delayed estimation tasks. We used the average value 
of the memory load obtained in this pilot to determine the parameter value for each age group in the final study.

Feedback
For the change detection tasks, feedback was provided by presenting the German words for “correct” (Richtig) 
and “incorrect” (Falsch) in green and red, respectively, in the middle of the screen. For the delayed estimation 
tasks, feedback was presented by indicating the match between the response and the true target value. Trials 
were computer-paced, but small self-paced pauses were allowed every ten trials.
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Retro-cue tasks
In all tasks, participants were not given specific instructions regarding how to set their speed or accuracy priori-
ties. They were simply told how to respond on the task (e.g., indicate whether the probe match or mismatches; 
select the feature value using the continuous scale).

Color change-detection The task procedure is illustrated in Fig. 1A. In the beginning of a trial, a white fixation 
cross was shown against a grey background for 1000 ms. Next, a set of colored dots was presented simultaneously 
for 1000 ms. The memory items (radius = 32 pixels) were presented equally spaced around an imaginary circle 
centered in the middle of the screen (radius of the circle = 150 pixels). The number of items in the memory array 
(i.e., memory load) was defined for each age group separately (younger = 6 items; older = 5 items). Colors were 
sampled without replacement from twelve values: black [RGB: 0, 0, 0], brown [127, 45, 0], dark green [0, 63, 0], 
green [0, 255, 0], turquoise [90, 160, 255], blue [0,0,255], lilac [138, 20, 236], pink [255, 50, 255], red [255, 0, 0], 
orange [255, 127, 0], yellow [205, 205, 0], and beige [165, 141, 99]. In 50% of the trials, after a retention interval 
of 1000 ms, a retro-cue (central arrow) indicated the location of the to-be-tested item for 250 ms. After another 
1000 ms blank post-cue interval, the test display appeared. In no-cue trials (50% of the trials), the test display 
appeared directly at the end of the 1000-ms retention interval.

At test, a single colored circle (probe) appeared in one of the locations previously occupied by a memory 
item. Participants had to indicate whether the probe color matched (50%, right-arrow keypress) or mismatched 
(50%, left-arrow keypress) the color of the item presented at that location. A non-matching color had either not 
been presented in the memory array (new probe; 25%) or it was presented in another location (intrusion probe; 
25%). The probe was shown until a response was registered. Next, response feedback appeared for 1000 ms, and 
the subsequent trial started after a 500 ms blank interval. Participants completed four practice trials and 80 test 
trials. No-cue and retro-cue trials were randomly intermixed. To obtain parameters of the diffusion model we 
calculated the average proportion of correct responses, and the median and variance of correct RTs.

Orientation change-detection The task procedure is illustrated in Fig. 1B. This task was modelled after the one 
reported by Fougnie et al.54. The structure, timing, testing, dependent variable, feedback and number of trials in 
this task was as described for the color change-detection task. The orientation and color versions differed only 
in terms of the memoranda and the type of retro-cue. Regarding the memoranda: participants had to encode the 
orientation of a set of white isosceles triangles (radius = 100 pixels) presented equally spaced around an imaginary 
circle (radius = 200 pixels) centered in the middle of the screen. The memory load was set to each age group sepa-
rately (younger = 5.4 items; older = 4.6 items; the non-integer values reflect the mixing of two values: for example, 
5.4 items indicate that 60% of the trials had 5 items and 40%, 6 items). The orientation of the memory items was 
sampled from 8 values (45°, 90°, 135°, 180°, 225°, 270°, 315, or 360°). Regarding the retro-cue, it consisted of a 
white circle (radius = 60 pixels) that appeared at the position of the to-be-tested item for 250 ms. We opted for 
a peripheral cue to avoid the presentation of an arrow which also contains orientation information and hence 
could interfere with the memoranda. Like for the color change detection task, we used the average proportion 
correct, the median and variance of correct RTs to obtain parameters of the diffusion model.

Color delayed estimation The task procedure is illustrated in Fig. 1C. This task was identical to the color 
change-detection task, with five exceptions: (a) the memoranda consisted of continuously varying colors given by 
the 360 angular degrees in a color circle defined in the CIELAB space with L = 70, a = 20, b = 38, and radius =  6055, 
(b) memory load was adjusted to this specific task having as criterion a recall error of 40° (younger = 5.8 items; 
older = 4.5 items), (c) the memory test required the reproduction of the color of one memory item using a con-
tinuous color wheel, (d) there was visual feedback regarding the distance of the response to the correct color, 
and (e) the number of test trials was 100.

Memory colors were sampled in each trial without replacement from the 360 values. At test, a color wheel 
appeared surrounding all locations previously occupied by the memory items. Participants moved the mouse 
around the wheel to adjust the color of the probe item, and they confirmed their selection with a left-mouse click. 
Then visual feedback was displayed for 2000 ms: the color selected by the participant was marked with a small 
white circle on the wheel, and the correct color was marked with the green outline of a circle. A new trial started 
500 ms thereafter. To estimate parameters of the circular diffusion model we calculated the average circular 
deviation, the circular variance, and the median and variance of RTs using the normalized interquartile range.

Orientation delayed estimation This task differed from the Orientation Change-Detection regarding five 
aspects: (a) the orientation of the memory items was sampled from any value from 1–360°, (b) memory load was 
adjusted separately for each age group (younger = 6 items; older = 4 items) having a criterion of 40° of recall error, 
(c) the memory test required the continuous reproduction of the remembered orientation, (d) response feedback 
included the presentation of the correct tested feature, and (e) the number of test trials was 100 (instead of 80).

During the memory test in this task, a randomly rotated white triangle (probe) appeared in one of the loca-
tions previously occupied by a memory item. Participants adjusted the probe orientation by rotating it using the 
mouse and confirmed their response with a left-mouse click. Next, visual response feedback was provided for 
2000 ms: The participant’s response was displayed as a white filled triangle, and the correct orientation of the 
memory item was displayed as a superimposed green triangle outline. The subsequent trial started after a 500 
ms blank interval. Akin to the color delayed estimation task, we used the average circular deviation, the circular 
variance, and the median and variance of RTs using the normalized interquartile range to calculate parameters 
of the circular diffusion model.

Open resources availability
The anonymized data for all tasks reported here are available at the Open Science Framework at https:// osf. io/ 
sfycz. The analyses were implemented in R and the analysis scripts are also available on the OSF page.
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Data analysis
Preprocessing
The dependent variables of interest were the mean and variance of the RTs and the memory accuracy in each 
experimental condition (no-cue vs. retro-cue) of each task. For the change-detection tasks, we only considered 
the RTs for correctly answered responses. As indicators of memory accuracy, we computed the proportion of 
correct responses in the change-detection tasks, and the average deviance and circular variance of response angle 
and true target’s angle for the delayed estimation tasks.

To reduce the impact of RT outliers, we trimmed RTs as follows. For the change detection tasks, we used only 
RTs from correct responses and removed RTs faster than 100 ms and longer than 7.5 s. For the delayed estimation 
task, we removed RTs faster than 250 ms and longer than 15 s. Additionally, for both types of tasks, we removed 
intra-individual outlier RTs three standard deviations above or below the individual condition mean.

EZ-diffusion model fitting
For the change-detection paradigms, we calculated the EZ-Diffusion parameters for each participant in each 
condition (i.e., no-cue and retro-cue) for each task separately using the equations for robust estimation given 
in Wagenmakers et al.26. Fitting of the EZ-Diffusion model requires the mean and variance of RTs on correctly 
answered trials and the proportion of correct responses. Accuracies with values of 0 or 0.5 were corrected by 
adding to the proportion correct the value given by 1/(2*n), with n representing the number of trials. Accuracy 
values equal to 1 were reduced by removing 1/(2*n) from the proportion correct.

For fitting the EZ-Circular Diffusion model, we used the equations given by Qarehdaghi and  Rad27. Akin to 
the change-detection tasks, we fitted the data of each participant in each condition of the two delayed estima-
tion tasks separately. Fitting this model requires the mean and variance of all RTs (given that in this task, the 
segregation of correct and incorrect responses is not straightforward) and mean deviation as well as the circular 
variance of the response feature with regards to the true target feature. All analyses were implemented in R, and 
the scripts for fitting the models are available in our OSF page.

Assessing retro-cue effects and age-related changes
For assessing retro-cue effects and age effects therein, we implemented a Bayesian hierarchical generalized mixed 
effects regression model (BGLM) on each parameter of the diffusion model separately. We included age group, 
task paradigm, memory feature, and cue condition as predictors in the model, and we included random slopes 
for the effects of task and memory feature. The models were fitted using the brms  package56 implemented in  R57. 
For all models we used a normal prior with mean = 0, and SD = 0.5. Parameters were estimated with four MCMC 
chains, each containing 2000 warmup and 10,000 post-warmup samples. To evaluate convergence of the chains, 
we checked that the R-hat values were below 1.05.

We calculated Bayes Factors to quantify the support for the presence of an effect or age differences  (BF10) 
using the Savage-Dickey density  method58. For this, we obtained the full posterior of the estimate of the relevant 
experimental effect or age difference and compared it to the prior density. Specifically, the BF reflects the ratio 
of prior to posterior likelihood for the effect at a given constraint, usually zero for testing the evidence for or 
against an effect. Thus, a  BF10 > 1 indicates evidence in favor of the presence of an effect, and a  BF10 < 1 indicate 
evidence against differences. Following recommendations  by59, we considered  BF10 values between 0.3 and 3 
as ambiguous, and values larger than 10 or smaller than 0.1 as showing strong support for or against an effect, 
respectively. Despite the large number of posterior samples that were used for the estimation of the Bayes Factor, 
the reported BFs are not perfectly stable, especially for very large values. Thus, BF reproduced when re-running 
the scripts shared online can slightly diverge from the ones reported in the manuscript.

Assessing individual differences
To assess individual differences in the retro-cue benefit we estimated Bayesian Structural Equation Models 
(BSEM) separating individual differences shared across experimental conditions from individual differences 
specific to the retro-cue conditions for each of the three diffusion model parameters—drift rate, nondecision 
time, and boundary separation. The BSEM were fit using the blavaan  package60 implemented in R. Parameters 
were estimated using a multigroup specification without constraints across the two age groups. We used the 
default sampling procedure using STAN implemented in blavaan with six MCMC chains, each containing 2000 
warmup and 5000 post-warmup samples. We ensured that parameter estimates converged by assessing that all 
R-hat values were below 1.05. We evaluated model fit using Bayesian versions of the comparative fit index and 
the root-mean square error of  approximation61. For these we also report the 95% highest density interval based 
on the full posterior of the model estimation.

To assess the contribution of different latent factors to the total variation in indicators we computed deter-
mination coefficients as the ratio of variance of exogeneous factors or residual variance for endogenous factors 
to the total indicator variance. These determination coefficients can be interpreted in terms of proportion of 
variance of an indicator that is explained by one of the latent factors.

Data availability
Materials, Data, and Analysis Scripts are available at: https:// osf. io/ sfycz.
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