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Abstract

In the ever-evolving world of automotive technology, the presence of electronics in a modern vehi-
cle keeps rising with every new feature the automotive industry needs to develop and implement.
As a result of this constant innovation, Electronic Control Units (ECUs) are becoming increasingly
complex and expensive to produce. The difficulty resides in integrating hardware and software to
create ECUs that are dependable, efficient and capable of managing many interconnected systems.
Any malfunction in these complex devices can cause significant financial loss and, more impor-
tantly, imperil human lives. As the automotive industry evolves, ECUs must remain sophisticated
enough to accommodate future features and functionalities emerging in the coming years. This
forward-thinking strategy ensures that vehicles stay at the vanguard of technological advance-
ments while maintaining the highest levels of safety. Extensive research, development, and testing
are necessary to maintain the utmost performance, efficiency, and security levels to meet these
stringent modern automotive ECU software requirements.

The primary objective of this thesis is to investigate the feasibility and practicality of im-
plementing an open-source hypervisor-based solution for future Electronic Control Units in the
automotive industry. With the constant evolution of automotive technology, the presence of elec-
tronics in vehicles is continuously increasing, necessitating more sophisticated and interconnected
systems. As ECUs become increasingly complex and expensive to manufacture, exploring open-
source hypervisor technology presents a promising avenue for addressing these challenges. By
adopting a hypervisor-based approach, this research aims to develop a transversal solution that
can efficiently and reliably manage multiple virtualized systems within a single ECU based on
embedded systems. The study will also examine the potential benefits of selecting hypervisor
features that hold significant potential for enhancing automotive Electronic Control Units. These
features, when applied appropriately, can bring about various benefits to the automotive industry,
including improved flexibility, scalability, and cost-effectiveness. Additionally, this dissertation
will assess the implications of implementing this open-source approach on safety, security, and
overall system performance. Ultimately, this research endeavors to contribute valuable insights to
the automotive industry, potentially paving the way for the adoption of open-source hypervisor-
based solutions in future ECUs.
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Resumo

No mundo em constante evolução da tecnologia automóvel, a presença da eletrónica num veículo
moderno continua a aumentar com cada nova funcionalidade que a indústria automóvel precisa
de desenvolver e implementar. Como resultado desta inovação constante, as unidades de controlo
eletrónico (ECU) estão a tornar-se cada vez mais complexas e dispendiosas de produzir. A difi-
culdade reside na integração de hardware e software para produzir ECUs que sejam não só fiáveis
e eficientes, mas também capazes de gerir uma multiplicidade de sistemas interligados. Qualquer
mau funcionamento destes dispositivos complexos pode causar perdas financeiras significativas e,
mais importante ainda, pôr em perigo vidas humanas. As UEC devem manter-se suficientemente
sofisticadas para acomodar futuras características e funcionalidades que possam surgir nos próx-
imos anos, à medida que a indústria automóvel evolui. Esta estratégia de visão de futuro garante
que os veículos permaneçam na vanguarda dos avanços tecnológicos, mantendo os mais eleva-
dos níveis de segurança. São necessários investigação, desenvolvimento e ensaios exaustivos para
manter os níveis máximos de desempenho, eficiência e segurança, a fim de satisfazer os rigorosos
requisitos modernos de software das UEC para automóveis.

O principal objetivo desta tese é investigar a viabilidade e a praticidade da implementação de
uma solução baseada em hipervisor de código aberto para futuras unidades de controlo eletrónico
na indústria automóvel. Com a constante evolução da tecnologia automóvel, a presença de eletrónica
nos veículos está em constante aumento, exigindo sistemas mais sofisticados e interligados. Á
medida que as ECUs se tornam cada vez mais complexas e dispendiosas de fabricar, a explo-
ração da tecnologia de hipervisor apresenta uma via promissora para enfrentar estes desafios. Ao
adotar uma abordagem baseada em hipervisor, esta investigação visa desenvolver uma solução
transversal que possa gerir de forma eficiente e fiável vários sistemas virtualizados numa única
ECU baseada em sistemas embarcados. O estudo examinará também os benefícios potenciais de
uma seleção de características do hipervisor que têm um potencial significativo para melhorar as
unidades de controlo eletrónico dos automóveis. Estas características, quando aplicadas adequada-
mente, podem trazer vários benefícios para a indústria automóvel, incluindo maior flexibilidade,
escalabilidade e relação custo-eficácia. Além disso, esta dissertação avaliará as implicações da
aplicação desta abordagem de código aberto na segurança e no desempenho global do sistema.
Em última análise, esta investigação procura contribuir com conhecimentos valiosos para a in-
dústria automóvel, abrindo potencialmente o caminho para a adoção de soluções baseadas em
hipervisor de código aberto em futuras ECU.

Palavras-chave: Hypervisor, ECU, Virtualização, Sistemas embarcados
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Chapter 1

Introduction

1.1 Context

In a modern vehicle, every component is designed to achieve the best performance and reliability

while keeping production, development and maintenance costs in mind. The Electronic Computer

Unit (ECU) is a component that, with the latest technology advancements, has taken a crucial

role in the automotive industry. These components are responsible for monitoring and controlling

nearly every function in a vehicle, from the In-Vehicle Infotainment (IVI) to the most straightfor-

ward system as a window controller. As a result, these components have proprietary software that

is focused on optimizing the hardware performance and providing fail safes to face any error that

occurs while in operation.

ECU software (ECU SW) typically consists of several subsystems with varying degrees of

complexity and criticality. Most of these subsystems are shared despite the functional differences

between each ECU, which naturally emphasizes the ideas of modularity, reusability, and isolation.

These characteristics result in a SW that can be transversely applied to every modern vehicle

system. ECU SW also has the task of handling the virtualization of the available hardware, a

technique that consists of virtually separating the physical resources of a system between multiple

users and has been widely used since the 1960s from gaming console software to data centers. As

such, virtualization is arguably one of the best and most used options to implement these ECUs,

so much so that most manufacturers are currently deploying it in the automotive industry [1].

Currently, BMW utilizes virtualization in their ECUs in the form of containers, which will be

explained later in this document. As the demand for higher safety, isolation, performance and

modularity requirements keeps rising, this thesis will explore a solution based in hypervisors for

modern modular SW architectures that can accomplish those goals.

That being said, it is not that simple to implement a hypervisor solution in this context because,

on the one hand, many hypervisor solutions are available, all with their own proprietary features.

On the other hand, there may be constraints with hardware and software compatibility.

1
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1.2 Motivation

This dissertation was proposed by Critical TechWorks, a joint venture created by BMW and Crit-

ical Software, aiming to explore innovative SW architectures for upcoming ECUs. With the evo-

lution of autonomous driving and comfort features for the user, BMW realized that their current

container-based virtualization utilized in their ECUs would not respond to the demands of security

and re-utilization. As such, BMW opted to research a new SW architecture using hypervisors as

a foundational technology for modern modular SW designs for the next ECU generations. This

is the main focus of this dissertation, investigating the possible advantages and drawbacks of the

hypervisor implementation, researching a solution based on open-source software and trying to

implement a basic system in order to show the potential of hypervisor virtualization.

1.3 Objective

This dissertation aims to analyze current virtualization techniques used in the automotive industry

and assess a possible solution that can implement a system using hypervisor-based technology,

serving as a proof of concept to the next generations of ECU SW. Also, the feasibility of using

hypervisors in situations of reusability and modularity will be discussed. In the end, a possible

hypervisor solution will be proposed in order to showcase hypervisor features that may be useful

in an automotive ECU scenario.

Additionally, it will explore the practicality of using hypervisors to enhance reusability and

modularity. The study will culminate in proposing a concrete hypervisor solution, exemplifying

its advantageous features within an automotive ECU context. Through this comprehensive in-

vestigation, the research endeavors to contribute valuable insights into the optimal virtualization

approach for future automotive systems.

1.4 Dissertation structure

This dissertation is composed of an additional six chapters. In Chapter 2, there is a brief ex-

planation of the theoretical concepts in this engineering field. Chapter 3 displays some projects

investigating similar topics to this dissertation. In Chapters 4 and 5, the proposed solution for

this dissertation gets presented (as well as the various demonstrations) and then implemented.

Finally, in Chapters 6 and 7, the results from the demonstrations and a summary of the work exe-

cuted are presented. The results and features of the evaluated hypervisor suggest that they can be

an excellent alternative for implementation in automotive ECUs. Their robust performance, reli-

able virtualization capabilities, efficient resource utilization, and inherent security measures make

them well-suited for automotive systems. Integrating hypervisors can lead to improved flexibil-

ity, scalability, and the ability to run multiple applications simultaneously, enhancing automotive

computing and safety-critical systems.



Chapter 2

Background

This section presents the essential theoretical foundations required to understand the various topics

discussed throughout this dissertation.

2.1 Virtualization

Virtualization is a technique that enables the creation of meaningful information technology ser-

vices employing traditionally hardware-bound resources. It allows the developer to utilize the full

potential of a physical computer by distributing its capabilities among several users or settings [2].

Two forms of operating system virtualization exist: container-based virtualization and hyper-

visors, from now on referenced as containers and hypervisors. These topics will be explained

further in this document.

Virtualization offers several advantages, like:

• Hardware consolidation: In many practical cases, applications cannot be run in the same

environment or on the same operating system. Without virtualization, the only solution

would be to use separate machines to deploy each application. With the use of virtualization,

there is a clear advantage in saving on hardware and energy costs and decreasing the need

for physical space [3]. These advantages can benefit the automotive industry by reducing

the wiring complexity and the number of ECUs scattered around the car, concentrating them

into a single ECU (the optimal solution) [2].

• Application Isolation: Like the previous point, if strict isolation is needed between two

applications, it cannot be achieved with only one machine. However, using virtualization,

the emulation of two different environments can be possible, achieving the desired isolation.

This is very important in the security of every application, guaranteeing that if a single

application malfunctions or gets compromised in the case of a malicious attack, the whole

system is not affected [2].

3
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• Mixed criticality: This topic is a vital subject in many industry applications and will be ad-

dressed later in this document. Mixed criticality is the ability of a system to manage various

workloads with different response times for hard real-time and soft real-time applications

(this terms will be explained further on) [2].

In order to understand the next virtualization topic, it is important to introduce the topic of protec-

tion rings [3].

These protection rings are the procedures that safeguard data or errors depending on the secu-

rity imposed while accessing computer system resources [3].

Protection rings have been attributed numbers from the most privileged to the least privileged.

Starting at 0, this protection ring is the most privileged, interacting directly with the machines

hardware. This ring also houses the system’s kernel. By consequence, ring 3, usually called user

mode, is the least privileged one and is where most applications are run [3].

In the case of virtualization, there is a hypervisor/virtual machine monitor (VMM) running in

ring 0 since it needs access to the hardware. This causes a problem regarding the guest operating

systems kernel because it also needs to reside in ring 0 and is unaware that the VMM exists. But

with only one kernel per ring, an alternative was created [3].

There are some methods of virtualization to solve this problem based on the way the software

communicates with the system hardware:

• Full virtualization: As seen in figure 2.1, full virtualization relies on techniques such as

binary translation of instructions and input/outputs (I/O) requests to emulate the commu-

nication between the software and the hardware. This way, the applications or operating

systems running are not aware of the virtualization layer and, therefore do not need to be

modified [3].

Figure 2.1: Full virtualization architecture(source: [3])

• Para-virtualization: In para-virtualizatíon, the guest OS needs to be modified to commu-

nicate with the VMM through hypercalls. As explained in figure 2.2, the guest OS is aware

that it is being virtualized and uses an Application Programming Interface (API) provided

by the VMM to exchange privileged instruction calls [3].
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Figure 2.2: Para-virtualization architecture (source: [3])

2.2 Containers

Container-based virtualization is a method for packaging a program and its dependencies and

libraries into a single entity that can run anywhere the container engine is. In other words, a

container engine abstracts the operating system so that the containers perceive that the whole OS is

available to them. Therefore, one of the disadvantages is that the software running on the container

needs to be compatible with the OS that it is running on. On the other hand, it doesn’t have to boot

a whole new OS when launching said container, which enables it to start in a few milliseconds.

Another advantage of containers is their distribution, since it only needs the container image to

run the processes, all a developer needs to do is build the image and send it to the desired machine

running the same OS [4].

From now on, the method in which container function in a Linux machine works will be

explained. These methods are relevant to this dissertation because of the current BMW ECU

software that utilizes Linux as an OS.

Containers provide an isolated user space while sharing a common kernel. It uses two Linux

tools called control groups (Cgroups) and kernel namespaces to allocate resources and isolation

between containers [4].

Cgroups allow the user to allocate the desired resources to a group of processes and, compa-

rable to Linux processes, a child Cgroup inherits his parent attributes. In this way, a user can limit

CPU cores or memory amount a group of processes can use [4].

Kernel namespaces is a feature that allows a container to be isolated from other containers.

The kernel passes global resources and group/user/process IDs into a namespace, allowing its

separation. It can be possible to create namespaces with the identical process IDs as the host OS

or other containers since they are only exclusive in the same namespace. In other words, there

cannot be two equal process IDs inside the same namespace because all process IDs are relative

to the namespace. In this way, one can achieve the desired isolation [4].

There are two types of containers: OS containers and application containers. OS containers

run whole systems. For example, Sun introduced Solaris containers primarily as a mechanism

to virtualize additional Solaris systems on top of a Solaris host. On the contrary, application
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containers run a single application, making application containers a clear choice when there are

reduced resources [5].

The following sub-sections present two container engines that BMW uses in its current ECU

software.

2.2.1 LXC

Linux-based containers (LXC) is a toolkit used to create OS containers in Linux. This toolkit

was designed essentially to fulfill the configuration and deployment phase of the container tech-

nologies. In other words, the user does not need to read every documentation about containers to

deploy it. This significantly reduces the learning curve of setting up containers [4].

2.2.2 Docker

The Docker engine first appeared in 2013, building on top of the objective of LXC to simplify

the configuration and deployment of containers. Contrary to LXC, Docker creates, manages and

deploys application containers through a command line tool, taking the burden of knowing how

a toolkit works from the user. It also improves by developing a repository called Docker Hub, in

which every user can download a container image and contribute to its development [4].

2.3 Hypervisors

Hypervisor-based virtualization is a technology that implements a VMM/hypervisor layer between

the hardware and the desired guest operating systems. This way, the hypervisor is responsible for

various tasks such as hardware virtualization, VM life cycle management, migrating of VMs,

allocating resources in real-time, defining policies for virtual machine management. This layer

also needs to control all the memory translation and I/O mapping.

This technology allows the user to have different operating systems running in the same ma-

chine which is a great advantage when deploying various applications that cannot all run on the

same OS. The VMM is also responsible for allocating memory, CPU cores and every resource to

every guest so it’s a critical part of the system [3].

There are two types of hypervisors:

• Type 1: In figure 2.3, the type 1 hypervisor works directly on top of the hardware (they

can also be called Bare Metal or Native hypervisors) and does not need an OS in between

to access the hardware. This way, they offer many advantages, such as easier installation,

smaller sizes, and less overhead [3].
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Figure 2.3: Type 1 hypervisor(source: [3])

• Type 2:In figure 2.4, the type 2 hypervisor needs to be installed on top of a host OS that

allows numerous customizations and it is the host OS that is responsible for the hardware

access. Some sources have stated that a type 2 hypervisor performs worse than a type 1

because of the performance overhead of having an extra OS layer [3].

Figure 2.4: Type 2 hypervisor(source: [3])

There are numerous hypervisors on the market, ranging from open-source to closed-source or

licensed hypervisors. The following subsection will explain the two open-source hypervisors cho-

sen by Critical Techworks, SA (CTW).

2.3.1 KVM

KVM is an open-source hypervisor created in 2007 for the x86 architecture and later ported to

ARM in 2012 [5]. As KVM was merged into Linux kernel many sources say that it is a Type 2

hypervisor [4] [2] while others say that in a scenario of stripping Linux of most of its components,

only maintaining the bare essentials for the hypervisor, it can be considered Type 1 [6]. This fact is

important because type 2 hypervisor usually have a more significant overhead than type 1. which

can influence developers when choosing this hypervisor for their applications.

2.3.2 Xen

Xen is a Type 1 hypervisor created in 2003 as a research project by a team at the University of

Cambridge [3]. Xen has the ability to support fully virtualized and para-virtualized guests in the

x86 version, but on ARM only supports para-virtualization and ARM extensions [5].
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2.4 Hypervisors and ARM architectures

As some BMW ECUs and, most importantly, the hardware on which the proposed solution will be

implemented is ARM-based, it is essential to present a basic knowledge of how these hypervisors

work with this architecture.

2.4.1 KVM on ARM processors

As KVM was first developed for x86, as previously mentioned in Section 2.3.1, and then ported to

ARM, there were some compromises made in this adaptation [5]. The protection rings discussed in

Section 2.1 are a feature of x86 architectures. ARM utilizes an identical feature named Exception

levels (EL). Because of the architectural differences between these two platforms, KVM could

not entirely reside in the kernel layer and therefore had to be split into two instances, Highvisor

and Lowvisor. The Highvisor resides in the Linux Host Kernel and is responsible for most of the

hypervisor functionalities. The Lowvisor resides on ARMs Hyp mode (a lower layer in relation to

the host kernel layer as shown in figure 2.5) and handles isolation and hypervisor traps.

As previously referenced, this software works through the distinction of the hypervisor and the

Virtual Machine, naming respectively Host and Guest. Host, as the name suggests, can be defined

by the machine on which a virtual machine runs and guest is all the software related to the virtual

machine.

This implementation has its advantage when it comes to portability because, provided that

the ARM system is running a version of Linux higher than 3.9, the portability to other ARM

machines does not require additional configurations. This is a good feature in the application case

of the development and updates of ECUs [5].

On top of this, KVM requires userspace tools such as Quick Emulator (QEMU), Virtio and

KVM tools residing in the host’s user space to emulate guest hardware devices and instantiate

virtual machines, taking advantage of the hardware virtualization extensions. This way, the system

does not need to use a para-virtualization layer (Section 2.1) that would considerably increase its

overhead [5].

Figure 2.5: KVM in ARM [5]
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2.4.2 XEN on ARM processors

Contrary to the KVM hypervisor, Xen does not use tools in the Host userspace layer, only residing

in the hyp mode layer (the lowest software layer of the whole system) [5]. Xen’s architecture

is based on "domains", a system of partitions in which the guests get allocated, first creating a

domain called Dom0 and the first guest gets allocated there. This domain is the more privileged

one and its guest is responsible for managing other VMs placed in the lower privileged domain

named DomU. This way, every communication between the VMs in DomU and the hardware

needs to be handled by the Dom0, which can be a disadvantage. On the other hand, by residing

in the hyp mode, Xen can utilize the virtualization extensions that ARM provides. So, Xen can

perform better than KVM but, on the contrary, requires more configurations and fine-tuning in the

migration to another ARM machine [5].

Figure 2.6: Xen in ARM [5]

2.5 Mixed Criticality

In industries with stringent safety requirements, such as aviation and automotive, mixed-criticality

is an essential topic that needs to be addressed. Essentially, mixed-criticality can be defined as

the seamless use/integration of applications/software with different levels of criticality in the same

system. Criticality is evaluated based on the effect of function or component failure on the sys-

tem’s capacity to accomplish its tasks. As such, there must be a way to implement related require-

ments [7].

When discussing mixed-criticality, one of the most essential aspects for creating products that

will be available to the public is its certification. There exists a wide range of certifications in

the automotive industry [8] but, in the case of this dissertation, Automotive Safety Integrity Level

(ASIL), defined by ISO26262, the standard that targets the safety of the electronic systems in a

vehicle, is the certification that is most concerned to this topic [9]. ASIL has four levels regarding

safety and how accident-prone a product is, with ASIL D being the level that designates the lowest

failure rate (less than 1%). In the automotive case, the ASIL D level is usually required for the

power train, telemetry, advanced driving assisted systems (ADAS), etc [9].

As BMW ECUs are essentially ARM-based, it is helpful to understand about a relevant ARM

architecture feature regarding mixed criticality called ARM TrustZone.
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2.5.1 ARM Trustzone

ARM TrustZone is a feature that provides two running modes: a Secure World that has higher

privileges and is supposed to host the more safety-critical tasks in a Real-Time Operating System

(RTOS) and a non-secure world that houses the general purpose operating system (GPOS). An ex-

ample of a software that resides in the monitor mode of ARM TrustZone is VOSYSMonitor [10].

This low-level closed-source software acts as a lower-layer hypervisor that can run two hypervi-

sors, one in the secure world and the other in the Normal world. It also has many advantages,

such as its compliance with ASIL C standard. VOSYSMonitor achieves its mixed criticality goal

through an interrupt managed by it, only letting the non-critical guest execute when the critical

one is not in use [10].

Alternatively, there exists another software that utilizes the ARM trustzone feature. LTZVi-

sor is a lightweight TrustZone-assisted hypervisor that allows the combination of two operating

systems, one in the secure world (usually an RTOS) and another in the non-secure world (usually

a general purpose operating system) [10]. One of the main differences between VOSYSMonitor

and LTZVisor is that one is closed-source and open-source [10], respectively. This is an advantage

to LTZVisor, considering the open-source preference in this dissertation.

One way of achieving mixed criticality maybe by implementing an RTOS. Therefore, it is

appropriate to elaborate on the Real-Time Computing concept.

2.5.2 Real-Time Computing

A system can be classified by the time required to deliver the desired response. This way, Real-

Time Computing is characterized by not only the logically correct response but also considering

the moment it arrives, i.e., if it meets its deadline or not [11].

Real-time systems (RTS) can be defined by the impact of missing the deadlines:

• Hard Real-Time systems: These systems are characterized by the catastrophic conse-

quence of missing their timing requirements. Such systems are more difficult to imple-

ment and certify. Example: Flight control systems, automotive telemetry systems, robotics

etc [12].

• Soft Real-Time systems: In these systems, the response time is still important but not

critical and missing its timing constraints can lead to performance degradation. Example:

Banking system, multimedia, etc [12].

• Firm Real-Time systems: To these systems, the failure to comply to the deadlines is not

critical, leading to the results being discarded [12].

Several RTOS exist, from which FREERTOS, SAFERRTOS and Zephyr RTOS are high-

lighted.
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2.5.2.1 FREERTOS

This RTOS kernel was developed by Richard Barry around 2003 and then passed to the Amazon

Web Services project (AWS) in 2017. It can support over 35 architectures, such as X86, MSP430,

and most importantly, ARM. It has many features and advantages such as its low overhead, small

size, use of C programming language, embedded scheduler and being open-source as the name

suggests [13].

2.5.2.2 SAFERRTOS

SAFERRTOS is a project developed by the WITTENSTEIN group from FREERTOS, focusing

on a hard real-time system. Therefore, it has ASIL D (the highest) certification by TÜV SÜD

(German certification agency). Since its base is FREERTOS, it inherited all the functionalities and

advantages of FREERTOS but, being a safety critical focused RTOS, it can be used for the most

important aspects of the automotive industry such as throttle-by-wire, brake-by-wire etc [14].

2.5.2.3 Zephyr RTOS

Zephyr is an RTOS designed for embedded devices, from microcontrollers to servers. It is an open-

source project supported by the Linux Foundation. Zephyr is lauded for its versatility in supporting

multiple architectures and providing features such as preemptive multitasking, support for various

communication protocols, and real-time scheduling. Zephyr is a real-time operating system that

offers predictable and deterministic behavior, making it suitable for applications where timing is

crucial. It is designed to be portable and supports a variety of processor architectures, such as ARM

(Cortex-M, Cortex-R, and Cortex-A), ARC, MIPS, Nios II, RISC-V, Xtensa, SPARC, x86, and

x86-64. This RTOS includes a comprehensive set of device drivers, protocol stacks, and libraries,

which facilitate the development process for a variety of peripherals and functionalities[15].

As a general-purpose OS, Linux is the most widely available OS used in embedded systems

and data centers. Yocto project is an open-source project that facilitates the creation of custom

Linux distributions for embedded systems.

2.5.2.4 Yocto project

The Yocto project is a powerful and flexible open-source initiative that enables developers to create

customized Linux distributions tailored for embedded systems. The Yocto project enables engi-

neers to develop effective and streamlined Linux images tailored for specific hardware platforms

or use cases by utilizing tools, recipes, and layers. The BitBake build tool, which orchestrates the

intricate build process and analyzes metadata and recipes to produce the intended target picture,

is at the heart of the project. This cross-compilation-capable project enables developers to work

productively on their host PCs while targeting diverse architectures.

Custom Linux distribution development is further streamlined by the availability of numerous

layers and detailed documentation, which decreases time-to-market and improves overall product
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quality. Its scalability and agility make it a top choice for various applications, from consumer

electronics and automotive systems to industrial automation and IoT devices. The Yocto Project,

which offers a strong foundation for creating compelling, dependable, and scalable Linux-based

solutions, continues to be a crucial tool in the toolbox of embedded systems developers even as

technology advances[16].



Chapter 3

State-of-the-art

This chapter describes and analyses use cases extracted from the existing literature applied to

multiple contexts that employ technologies relevant to the current work. This research aimed to

discover the technologies used in the proposed solutions and their performance analysis. With this

knowledge, the proposed solution in this dissertation can be fully justified by the previous attempts

described in this chapter.

3.1 Automotive Grade Linux

Nowadays, more and more industries are adopting virtualization as the primary way of software

design for its versatility and resource abstraction. In the case of the automotive industry, Automo-

tive Grade Linux (AGL) is an exciting project developed by The Linux Foundation that focuses

on the applications of software standardization in this field.[2]

AGL was launched in 2012 by The Linux Foundation, with its original application in In-

Vehicle Infotainment (IVI). However, it was later adapted to all sorts of other components like

instrument clusters, telemetry, Human Machine Interfaces (HMI), etc. Since 2018, the Automotive

Grade Linux Virtualization Expert Group (EG-VIRT) was created with the task of implementing

virtualization into this project. [2]

AGL sets three main goals for its virtualization architecture solution: modularity, openness

and mixed-criticality. [2]

In [2], the researchers propose an interesting architecture based on separating the applications

into different execution environments and classifying those environments into Non Critical Execu-

tion Environments and Critical Execution Environments. Furthermore, this division also enables

the implementation of different communication buses, one critical and another non-critical. This

way, the mixed-criticality currently being demanded for ECUs can be achieved.

13
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Figure 3.1: AGL proposed architecture [2]

The team finally concluded that the next step in this research is the development of a commu-

nication bus solution between Execution Environments.

There have been several other studies and projects that have tried to tackle the issue of com-

bining virtualization and mixed-criticality.

3.2 Virtualization solutions integrating modularity, mixed-criticality
and re-usability

This section will present solutions that introduce hypervisor virtualization mixed with modularity,

mixed-criticality and re-usability demands into an automotive context.

3.2.1 DriveOS

DriveOS is a system created not only as a possible solution to an automotive ECU software but also

as a proof of concept in this field. This system basically acts like the VOSYSMonitor mentioned

above, although it can also work on X86 hardware. In summary, DriveOS acts like a separation

kernel, separating a Real-Time OS from a hypervisor partitioning system. This way, the system can

handle time-critical tasks and tasks that require a complex OS and graphical capability. Another

topic that is also assured by DriveOS is the strict isolation between the RTOS and the other services

implemented in Yocto , only communicating with well-defined channels set up by the developer.

The project provides an adaptable collection of tools and a venue where embedded developers

from across the world can discuss technologies, software stacks, settings, and best practices that

may be used to produce Linux images for embedded devices. This feature is essential in the case

of an outside attack that can compromise not only the system itself but also the safety of the users.

This isolation also provides the advantage of designing channels of communication with different

levels of importance, allowing the system to comply with the goal of mixed-criticality[1]

In [1], the researchers implemented this system and compared it against a Linux system and

a barebones Linux system in a series of time-critical and non-time-critical tasks. The researchers
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concluded that DriveOS performed much better than any Linux version, being that the end-to-

end delay of, for example, a USB-CAN-dependent controller loop amounted to 12 times more

in Linux than in DriveOS. As a result, it can be said that, as a proof of concept, DriveOS is an

exciting solution to keep in mind when designing ECU SW solutions. [1]

3.2.2 ARAMiS II Project:

When researching mixed-criticality, ARAMiS II is one of the most well-funded and supported

by the automotive industry. This project is the continuation of the ARAMiS Project[17] that was

developed between 2011 and 2015 with the objective of researching the application of multi-core

architectures in safely-critical applications. Due to the success of the first project, on 01.10.2016,

ARAMiS II was started, focusing on the development and refinement of development tools and

platforms to facilitate the creation and use of safety-critical software on multi-core embedded

platforms. This project also works closely with different manufacturers in the automotive industry,

such as AUDI, DENSO, FAG, in the development of control units for chassis systems over power-

train, new control systems for drive systems in electric vehicles and much more.[17]

3.2.3 MultiPARTES FP7 project

MultiPARTES is a Spanish project coordinated by IKERLAN S. COOP and several European

universities, supported by the European Commission.[18] This project objective is achieving the

integration of mixed-criticality into virtualized embedded systems. As a result, MultiPARTES

clearly defines some of the main features that need to be accomplished, such as spatial isolation,

temporal isolation, predictability, security, static resource allocation, fault isolation, and manage-

ment and confidentiality. To achieve these goals, the team proposes using a modified version of

XtratuM hypervisor, an open-source, bare-metal hypervisor developed for embedded real-time

systems.[7]

3.2.4 Hypervisor for consolidating real-time automotive control units

Developing a new architecture and structure of virtualization and applying it to a state-of-the-art

hardware platform is the optimal way of implementing this kind of technology. However, this is

not a common practice in the automotive industry. Most times, developers need to implement new

features in hardware not designed to support it and are required to support legacy software in new

architectures.

In [9], the researchers focused on not only bringing virtualization to a system that did not sup-

port it but also supporting legacy software such as AUTOSAR. Due to its ASIL-D certification,

the Infineon AURIX family TC29x tri-core controller was chosen [1]. To implement two hetero-

geneous applications, an engine ECU (E-ECU) and a vehicle control unit (VCU), the researchers

chose a prototype version of the hypervisor developed by ETAS GmbH named RTA-HVR. This

hypervisor is tailored to handle hard real-time requirements and hardware that does not have vir-

tualization support. After allocating two CPU cores to the E-ECU and one CPU core to the VCU,
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the team developed a startup sequence of the hypervisor. Subsequently, each VM developed a

mechanism for handling traps and interrupts, Input/Output access, etc.

Figure 3.2: Software distribution between Hardware[9]

In this topic, [1] can be very useful when developing the proposed solution, as it describes with

great detail every feature designed to achieve the best-case scenario of mixed-criticality. During

the testing phase, the team focused on the hypervisor overhead and its influence on hardware

interruptions. It was concluded that even though the hypervisor layer caused an overhead, the

real-time demands of the system were fulfilled.

3.3 Comparison of current technologies

After researching the use cases in this engineering field, the current technologies stated above

can be beneficial in elaborating a solution in this dissertation. In most of these use cases, the

solutions presented are mostly closed-source; the software solutions cannot be used in this thesis.

However, it can consider all the concerns and features of these solutions and implement them

with open-source software. With that, the DriveOS project proposes an innovative architecture

separating the general-purpose tasks and real-time tasks. This separation may be the best way

of achieving mixed criticality. Another method described was the use of hypervisors that handle

directly real-time tasks. This is a different philosophy from the kernel separation, but it can be

easier to establish communications between general-purpose guests and real-time guests. In the

end, the one goal these projects all strive to achieve is the integration of mixed-criticality in each

solution.



Chapter 4

Problem Statement and Proposed
Solution

This chapter will focus on exploring the problem at hand and envisioning a solution to address it.

4.1 Problem Statement

In summary, a hypervisor, also referred to as a virtual machine monitor, is software that creates and

operates virtual machines. It enables multiple operating systems to operate in their own virtualized

environments on a single hardware host.

As stated in the previous chapters, they have many advantages regarding security, costs and

efficiency, software consolidation and future-proofing.

However, it is essential to note that using hypervisors presents obstacles. These include the po-

tential performance impact of virtualization, the need for real-time performance in safety-critical

systems, and the difficulty of testing and validating such systems.

After studying the topics described in Sections 2 and 3 and researching similar use cases, it

can be said that the use of hypervisors in the automotive industry is not a new topic, with a lot of

researchers trying to adapt it and create functional solutions to the problem at hand.

That being said, many of these researchers never fully commit to an agreement on a hypervisor

solution. This dissertation aims to contribute to this field of engineering by taking into account all

the previous attempts and developing a well-founded study on the viability and feasibility of using

hypervisors in modern applications. Likewise, a solution that can serve as a proof of concept for

future ECU software will also be proposed.

This dissertation will also focus on demonstrating the capability of hypervisor that can be

useful in an automotive environment and also test the system capabilities in terms of overhead,

comparing it in some cases to a native system.

17
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4.2 Proposed solution

In this way, the proposed solution needs to attend to the various requirements previously men-

tioned in the previous chapters with the intent of demonstrating the hypervisor’s ability to replace

the current ECU software deployment method that is containers. With that, a solution was devel-

oped, in cooperation with CTW, to tackle the problem at hand. The chosen hardware was a Xilinx

Zynq Ultrascale+ MPSoC ZCU106[19] that can accurately represent ECU hardware as embedded

systems become more and more powerful and capable of handling big data loads. On the hyper-

visor front, Xen was chosen for its type 1 open-source characteristic and because it is the official

hypervisor supported by Xilinx, the board manufacturer. Four demonstrations were devised to test

and demonstrate some of the hypervisor capabilities[20].

The primary objective of the first demonstration is to showcase the network capabilities of

the hypervisor. This involves engineering a solution that simulates communication between dif-

ferent components and assesses its performance. As a first test, the network card of the board

was allocated to a separate domain, distinct from Dom0. This allocation illustrates the hyper-

visor’s capability to manage device allocation effectively, highlighting its potential for efficient

resource utilization and system management. Next, to demonstrate inter-domain communication

within Xen, a virtual network interface was allocated in each Domain, connected to a virtual

network bridge functioning as the local network switch. This setup was further linked to the

physical network interface, establishing a seamless communication link between the virtual and

physical realms. The experiment primarily focused on Xen’s networking configuration, where a

multi-domain environment was found with intricate networking connections. This allowed for a

comprehensive exploration of Xen’s networking capabilities and its potential to facilitate complex

communication scenarios between domains.

More concretely, as seen in Figure 4.1, Xen was setup running on the ZCU106 with a Dom0

control domain and a Dom1 and Dom2 as DomUs. An internal network was created named xenbr0

that connects the three domains and the network card (eth0) attached to the Dom0.

Figure 4.1: Diagram of the Xen network setup
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There was a desire to compare it to a native system, so a Linux system was also implemented

on the board to simulate a normal device. For the testing of these setups, five measurements were

taken:

• Remote PC to Linux: This test was taken for baseline purposes.

• Remote PC to Xen Dom0: In this test, the performance degradation can be measured

because of the xen overhead.

• Xen Dom0 to Xen Dom1: This test was made to check the routing performance of the

xenbr0 device.

• Xen Dom1 to Xen Dom2: This test was made to access a performance comparison with

Xen Dom0 to Xen Dom1.

• Xen Dom1 to Remote PC: This test was made not only to demonstrate the capability of

routing data from Dom0 to Dom1 but also to measure its performance, as it is theoretically

the worst performer.

The second demonstration is intended to demonstrate a communication method between do-

mains called Event Channels and shows that domains can be configured with specific shared mem-

ory addresses that only the configured domains can access.

A compelling demonstration of the functionality of event channels and shared memory be-

tween domains in Xen can be very interesting when condensing two or more ECUs into one

system. Event channels are crucial for inter-domain communication, serving as a signaling mech-

anism for Xen’s virtual machines. They play a crucial role in the notification system, notifying

domains of events such as data availability and shared memory updates. Shared memory, on the

other hand, is an effective method for data exchange between distinct domains. It enhances effi-

cacy by avoiding the resource-intensive necessity of constant data copying between the sender and

receiver domains. In the experiment, multiple domains were constructed, and a complex commu-

nication system was established using shared memory and event channels.

In Figure 4.2, it can be seen the concrete design of this implementation.

Figure 4.2: Diagram of the Xen event channel setup
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For the testing, several tests were made comparing various times the domain2 notified the

domain1. The measurements were taken for a period of 20 seconds, testing a 1, 0.1, 0.01, and

0.001 seconds periodicity. There were also three different tests made with this time setup. In

the first test, There was only a simple notification from one Domain to another. The second test

involves a data write by domain2 to the shared memory and the notification to Domain1, which

reads the shared memory address. The last test is more CPU-intensive, in which Domain2 writes to

matrices on the shared memory and the notification to Domain1, which reads the shared memory

address and computes the data by multiplying it.

Another variable introduced into the tests was the setups with Yoctolinux and Zephyr to verify

the performance difference in running a full OS or an RTOS.

Finally, a concluding test was conducted to determine the minimum period between event

channels. This test aimed to assess the system’s responsiveness and efficiency of event handling.

By analyzing the minimum period, valuable insights were gained into the system’s ability to handle

events swiftly and accurately, providing essential information for optimizing performance and

real-time responsiveness.

The third demonstration focused on testing Xen’s capability to launch Dom0less domains,

meaning the ability to start domains in parallel with Dom0 without requiring Dom0 to be fully

loaded first. This feature holds significant importance for the automotive industry, particularly

in critical systems that demand rapid boot times when the user starts the car. The experiment

involved measuring the time it takes to launch Dom0less domains as well as creating a domain

through Dom0. By comparing these launch times, the study aimed to assess the efficiency of

Dom0less domain deployment and its potential to enhance automotive systems’ boot time perfor-

mance significantly.

Figure 4.3 shows a diagram of the proposed system.

Figure 4.3: Diagram of the Xen dom0less setup

For the fourth and final demonstration, Open Asymmetric Multi-Processing (OpenAMP) was

integrated with Xen to exploit the capabilities of a Remote Processing Unit (RPU). OpenAMP,

a framework that enables operating systems and application software to take full advantage of

multi-processor systems, was viewed as a game-changer when combined with Xen’s hypervisor

capabilities. An RPU, which is typically found in heterogeneous system-on-chips (SoCs), adds

another layer of complexity and processing capability to this system. The experiment focused on
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implementing Xen and OpenAMP in a multi-core, multi-OS environment where high-performance

computation was required, with the RPU playing a crucial role.

In this dissertation, the OpenAMP framework will be implemented in conjunction with the Xen

hypervisor with the Remoteproc (Remote Processor Framework) and RPMsg (Remote Processor

Messaging) available on the Dom0. Doing this will again prove the versatility of hypervisor

software, as they can be combined with other addons such as this. Then, a matrix multiplication

demonstration will be tested. Its operations will be explained later. In Figure 4.4, a high-level

diagram was created to explain this setup better.

Figure 4.4: Diagram of the Xen OpenAMP setup
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Implementation

This chapter will dive into the setup of the four demonstrations. Firstly there will be a section

explaining some of the peculiarities of Xen and details that need to be explained for the demon-

strations, then four sections that will demonstrate the work behind all the system configurations

but also mentioning the technologies and software used to achieve said configurations.

5.1 General setup

In section 2.4.2 an introduction of the Xen hypervisor was made, however, a more practical in-

depth explanation is in order. Xen is a type 1 hypervisor, meaning that it boots directly on top of

the hardware. Also, from now on the term domain will be used to reference a virtual machine as

this is the term used by this specific hypervisor.

As seen in Figure 5.1, Xen classifies domains into two categories: Domain 0 (Dom0) and

Domain U (DomU). Dom0 is the first domain started by the Xen hypervisor on boot and has

special privileges like direct hardware access and the ability to manage DomU instances. DomUs

are the unprivileged domains that are created and managed by Dom0, and do not have direct access

to the physical hardware.

Figure 5.1: High level Xen diagram. [21]

To build the hypervisor, dom0 kernel and root files, the software Petalinux was used. PetaL-

inux tools is a software development kit (SDK) made by Xilinx, a prominent manufacturer of

programmable logic devices to simplify the workflow for hardware and software developers of

22
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Xilinx Field Programmable Gate Array (FPGA) and System on Chip (SoC). The framework also

facilitates integration with third-party applications and libraries and supports application develop-

ment with SDKs for C/C++. The compatibility with the Yocto Project enables PetaLinux to take

advantage of a larger ecosystem of tools and layers. Using PetaLinux, custom Linux distributions,

kernel configuration, boot-loader setup, generation of root filesystems were made to accommo-

date every setup requirement [22]. As seen in Figure 5.2 and in Annex A.2, the SDK needs a file

that contains the hardware information generaed by another Xilinx program called Vivado. In this

project the file used was the one provided in the board support package (BSP) available in the

Xilinx download repository. The standard build for Xen and dom0 can be found in Annex A.

Figure 5.2: Petalinux compilation process. [23]

In order to allocate the right hardware for the system, Device Tree Blob files were used for the

different configurations. Device Tree Blob (DTB) is a compact binary representation of a device

tree, a data structure that describes the hardware configuration of a particular computer system.

Device trees are frequently used in systems running the Linux kernel, particularly in the context

of embedded systems and systems-on-a-chip (SoCs), where the hardware configuration can vary

widely and is not always automatically detected by the operating system. The device tree depicts

the hardware components (such as CPUs, memory, and peripherals) in a system, as well as their

configuration details, such as memory addresses and interrupt lines. This information is crucial to

the operation of the kernel, which must know how the hardware is organized and where to locate

each component.The Device Tree Source (DTS) is a Device Tree source file that is legible by

humans. This source file is transformed by the Device Tree Compiler into the binary Device Tree

Blob. During launch, the bootloader passes the DTB to the kernel. The kernel can then interpret

the system’s hardware configuration using the device tree structure [24].

In order to boot Xen, the bootloader needs the “.scr” file to load the desired kernel, dtb, etc.

to the the correct memory addresses. A tool called ImageBuilder was used to generate that file.

ImageBuilder is a tool that generates a U-Boot script that can be used to automatically install all
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binaries and launch the entire system quickly. Given a collection of binaries including Xen, Dom0,

and a number of Dom0-less DomUs, ImageBuilder and calculates all loading addresses [25]. A

standard configuration file to boot Xen is shown in Listing 5.1 .

1 MEMORY_START="0x0"

2 MEMORY_END="0x80000000"

3

4 DEVICE_TREE="xen.dtb"

5 XEN="xen"

6 DOM0_KERNEL="Image"

7 DOM0_CMD="console=hvc0 earlycon=xen earlyprintk=xen clk_ignore_unused root=/dev/

mmcblk0p2 rw rootwait"

8 DOM0_MEM=1024

9

10 UBOOT_SOURCE="boot.source"

11 UBOOT_SCRIPT="boot.scr"

Listing 5.1: Config for ImageBuilder

Another configuration that needs to be made for convenience is the boot arguments. If the

bootloader arguments are not changed the procedure to start Xen is present in Annex A.4 and

needs to be inserted at every boot of the board. By doing the procedure described at the end

of Annex A.4, we configure the boot sequence to execute the commands automatically in the

mmc_boot parameter.

After booting Xen and Dom0, the Dom0 console can be accessed by conecting a USB cable to

the UART port on the board. In order to boot a new domain, the xl toolstack compiled by Petalinux

tools into the root filesystem of dom0 was used. The xl toolstack provides a comprehensive set of

commands to control virtually every aspect of Xen’s operation. The xl toolstack can create and

destroy domains, list current domains, configure domain settings, and monitor the performance of

domains. It can also manage virtual machine migration, both live and non-live [26]. The basic

command use of the xl toolstack to boot a new domain is shown in Listing 5.2.

1 #Comand to create a new domain.

2 #The -c flag means that will automaticaly bind to its console

3 $ xl create domain.cfg -c

Listing 5.2: Creating a new domain

The file shown in Listing 5.3 is the “ .cfg” file for the new domain. It is a configuration file used

to designate domain parameters. When creating a new domain, these files are typically written in

a Python-based syntax and are interpreted by the xl command-line tools.

There are a couple of standard parameters to create a new domain. This is a ”.cfg´´ file used

to boot a Linux domain with one virtual CPU, 1024 MiB of RAM and a virtual disk with the

rootfs.ext4 file system mounted [27]:
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1 name = "dom1"

2 vcpus = 1

3 memory = 1024

4 kernel = "/home/root/domains/Image"

5 disk = [’file:/home/root/domains/rootfs.ext4,xvda,w’]

6 extra = "root=/dev/xvda rw console=hvc0

Listing 5.3: The domain.cfg file

With this setup and explanations done, the next sub-chapters will be explained some of the

specific setups and test methods needed for the four demonstrations.

5.2 Xen networking demonstration

As previously said on section 4.1, this demonstration will show the network capabilities of Xen

and test the overhead/performance degradation that entitles. To better explain the setup of the

demo, Figure 5.3 demonstrates the connections made in Xen.

Figure 5.3: Diagram of the Xen device assignment setup

Firstly, to achieve the result in Figure 5.3, the dtb files needs an alteration to signal the Xen

hypervisor not to attach the network card eth0 to the dom0 on boot. This way, the dtb file needs to

be processed by the dtc package to convert into a dts file that can be human read as in Listing 5.4 .

1 #Comand to create a dts file of a dtb file

2 $ dtc -I dtb -O dts xen.dtb > xen.dts

Listing 5.4: Creating a dts file from a dtb file.

Then, accessing the dts file, the change to allow the network card not to be assigned can be

written as can be seen in Listing 5.5.

1 ethernet@ff0e0000 {

2 compatible = "xlnx,zynqmp-gem\0cdns,zynqmp-gem\0cdns,gem";

3 status = "okay";

4 interrupt-parent = <0x04>;

5 interrupts = <0x00 0x3f 0x04 0x00 0x3f 0x04>;

6 reg = <0x00 0xff0e0000 0x00 0x1000>;

7 clock-names = "pclk\0hclk\0tx_clk\0rx_clk\0tsu_clk";

8 #address-cells = <0x01>;
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9 #size-cells = <0x00>;

10 iommus = <0x0e 0x877>;

11 power-domains = <0x0c 0x20>;

12 resets = <0x0f 0x20>;

13 clocks = <0x03 0x1f 0x03 0x6b 0x03 0x30 0x03 0x34 0x03 0x2c>;

14 phy-handle = <0x10>;

15 pinctrl-names = "default";

16 pinctrl-0 = <0x11>;

17 phy-mode = "rgmii-id";

18 xlnx,ptp-enet-clock = <0x00>;

19 local-mac-address = [ff ff ff ff ff ff];

20 phandle = <0x79>;

21 + xen,passthrough;

22

23 ethernet-phy@c {

24 reg = <0x0c>;

25 ti,rx-internal-delay = <0x08>;

26 ti,tx-internal-delay = <0x0a>;

27 ti,fifo-depth = <0x01>;

28 ti,dp83867-rxctrl-strap-quirk;

29 phandle = <0x10>;

30 };

31 };

Listing 5.5: Change made to the dts file

After this, the reverse transformation of the file needs to be made.

1 #Comand to create a dtb file of a dts file

2 $ dtc -I dts -O dtb xen.dts > xen.dtb

Listing 5.6: Creating a dtb file from a dts file

Following this, when the system is initiated it is clear that the network card does not appear in

dom0 as can be seen in Figure 5.4.

Figure 5.4: Networking devices of dom0 [28].

Then, to setup correctly the network card in the new domain, some parameters need to be added

to the .cfg file as seen in Listing 5.7. To give some context to these new parameters, the "dtdev"

variable specifies the host device tree nodes to pass-through to this guest. The "device_tree"

corresponds to the dtb file that needs to be passed to the domain. In Annex B, there is the full dts
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file corresponding to the "passthrough_eth.dtb" file [29]. Also, the new .cfg file must contain the

interrupt request (IRQ) from the new device that needs to be added to the domain. It’s a hardware

signal sent to the processor that temporarily halts a running program and allows a special program,

an interrupt handler, to run instead. It’s a way for a device to get the attention of the processor.

In this case, the IRQ number is determined by consulting the dts file presented in Annex B ,

"interrupts = <0x0 0x3f 0x4 0x0 0x3f 0x4>" is the line that contains the address for the interrupts

and the desired address is 0x3f which is equal to 63. After that, it needs to be added 32 for the base

address of the interrupt handler so the final number comes to 95. In the end, "iomem" represents

the specific hardware I/O memory pages.

1 name = "dom1"

2 vcpus = 1

3 memory = 1024

4 kernel = "/home/root/domains/Image"

5 disk = [’file:/home/root/domains/rootfs.ext4,xvda,w’]

6 extra = "root=/dev/xvda rw console=hvc0"

7 +dtdev = [ "/axi/ethernet@ff0e0000" ]

8 +device_tree = "/etc/xen/passthrough_eth.dtb"

9 +irqs = [ 95 ]

10 +iomem = [ "0xff0e0,1" ]

Listing 5.7: Creating a dtb file from a dts file.

After creating the domain, it is possible to see in Figure 5.5 that the new domain is connected

to the desired network card. This way, it was demonstrated one of the many features that can be

useful when developing an ECU because, in some situation, it is best to isolate a domain from a

connection to an external source.

Figure 5.5: Networking devices of dom1.

Another important feature that a hypervisor needs to have to be used in the automotive industry

is support for the connection between domains. One way is by creating a virtual network. In

Figure 5.6, there is example of a detailed view of the setup with the backend domain being dom0.
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Figure 5.6: Detailed Xen network diagram [30]

To execute this configuration, the network bridge must first be created in dom0 with the script

created for this purpose listed in Listing 5.8 . Also, the script contains some commands to enable

the forwarding of packets to the other domains that connect to this network bridge. In this way,

the other domains will also be available to communicate using the network port.

1 #!/bin/sh

2 brctl addbr xenbr0

3 ifconfig xenbr0 192.168.0.1 up

4 sudo sysctl -w net.ipv4.ip_forward=1

5 sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

6 sudo iptables -A FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

7 sudo iptables -A FORWARD -i xenbr0 -o eth0 -j ACCEPT

Listing 5.8: Script to create a new bridge with name xenbr0.

Then, the .cfg file of the domains that need to be attached to that bridge need to have the

parameter in Listing 5.9 .

1 vif=[’bridge=xenbr0’]

Listing 5.9: Script to create a new bridge with name xenbr0.

This allows the domain to boot with a virtualized network attached, as shown in Figure 5.7.
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Figure 5.7: Dom1 shared network device.

When the domains are fully boot up, it is necessary to configure their IP addresses with the

commands present in Listing 5.10.

1 #Command executed in Dom1

2 ifconfig enX0 192.168.0.2 up

3 #Command executed in Dom2

4 ifconfig enX0 192.168.0.3 up

Listing 5.10: Script to create a new bridge with name xenbr0

Finally, after this setup has been made, it was necessary to measure the performance of this

configuration in order later to establish if the overhead created by the hypervisor can negatively

affect the decision of converting the automotive ECUs into a hypervisor based solution.

To measure the performance several tests were made using different tools:

• Ping: The Ping command transmits an echo request, and if the remote host detects the

target system, it responds with an echo reply. From the response, both the distance (number

of steps) to the remote system and the conditions in-between can be determined (packet loss

and time to respond) [31].

• Scp: The scp (secure copy) command is a powerful tool used in Unix-based operating sys-

tems to securely transfer files and directories between a local host and a remote host. It

functions over SSH (Secure Shell) protocol, ensuring encrypted and secure data transmis-

sion. With the scp command, users can easily copy files from one system to another, either

within the same network or across different networks. The basic syntax of the command

includes the source and destination, denoting the file or directory to be copied and the target

location where it should be placed. This straightforward and efficient utility has become

an essential part of system administrators and developers toolkits, facilitating seamless and

secure file transfers in various scenarios [32].

• Neper: Neper is a Linux networking performance utility that supports multithreading and

multi-flows by default. This tool can generate workloads using epoll and accurately capture

statistics. Currently, Neper supports six distinct workloads, including tcp rr, tcp stream,

udp rr, udp stream, psp stream, and psp rr, which simulate various varieties of network

traffic. Neper establishes T threads (workers) for each test, generates F flows (e.g., TCP
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connections), and distributes the F flows uniformly across the T threads. Each thread is

equipped with an epoll to manage multiple flows [33].

• iPerf3: iPerf3 is a network performance measurement and optimization tool that actively

measures the utmost bandwidth achievable on IP networks. It has the ability to tune numer-

ous timing, buffer, and protocol parameters (TCP, UDP, SCTP with IPv4 and IPv6). This

tool is especially useful for determining whether the bandwidth between any two networked

computers is sufficient to support the transmission of an application [34].

Next, the setup and test method of the second demonstration will be described.

5.3 Xen event channel and shared memory demonstration

This demonstration has the purpose of showing the ability of the Xen hypervisor the setup a shared

memory zone in the systems memory that can be accessed on by the domain that have it configured.

Another feature that will be displayed is the event channels in Xen.

Xen provides event channels as a fundamental primitive for delivering asynchronous notifi-

cations. They facilitate efficient message passing mechanisms, particularly for communication

between domains, drivers and function fundamentally as hardware interrupts.

In the Xen context, an event is indicated by the transition of a single bit from 0 to 1. When an

event occurs, the hypervisor layer calls the notified domain to inform them of its arrival (setting

the bit). Thereafter, subsequent notifications are masked until this portion is again deleted. Guests

must verify the bit’s value after re-enabling event delivery to prevent missing notifications. No-

tably, event notifications can be masked by setting a flag, which is equivalent to disabling interrupts

and can be used to guarantee the atomicity of specific visitor kernel operations [35].

In Linux, there are three types of events that can be mapped to event channels:

VIRQs: Per-processor events typically used for timers.

IPIs: Inter-processor interrupts.

PIRQs: Physical hardware interrupts.

Event channels are also essential for inter-Xen domain communication as can be seen in the next

chapters.

In terms of the structure and operation of event channels, the Xen public API provides sev-

eral structures and macros. One of this structures is the Xen hypercalls. Similar to a syscall in

an operating system context, a hypercall in Xen represents a software trap from a domain to the

hypervisor. A hypercall, like a system call, is synchronous. When a domain makes a hypercall, it

requests that the hypervisor execute privileged operations, such as pagetable updates. In contrast to

a system call, the return path from the hypervisor to the domain utilizes event channels, which are

collections of asynchronous notifications. In this context of event channels, the hypercall used is
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HYPERVISOR_event_channel_op. The first parameters of this hypercal is the event channel oper-

ations the domain pretends to do. This includes operations like EVTCHNOP_bind_interdomain,

EVTCHNOP_bind_virq, EVTCHNOP_bind_pirq, EVTCHNOP_close, EVTCHNOP_send, and

EVTCHNOP_status among others [35].

With this short explanation concluded, there needs to be some configuration before access to

shared memory in domains.

First, there needs to be an addition in the boot dtb file. In the memory field, there needs to be

a parameters that reserves some addresses to be used as shared memory. Listing 5.11 shows an

example of adding 4096 bytes of memory starting from address 0x70000000.

1 memory {

2 device_type = "memory";

3 reg = <0x00 0x00 0x00 0x7ff00000 0x08 0x00 0x00 0x80000000>;

4 };

5 + reserved-memory {

6 + #address-cells = <0x02>;

7 + #size-cells = <0x02>;

8 + ranges;

9 + xen-shmem@70000000 {

10 + compatible = "xen,shared-memory-v1";

11 + reg = <0x00 0x70000000 0x00 0x1000>;

12 + };

13 + }

Listing 5.11: Changes to dts file to add a shared memory reserved zone.

Then, in the .cfg file of each domain, the address written on the dtb file also needs to be there

like in Listing 5.12. There also needs to be a dtb file (Annex C) passthrough that needs to be

included.

1 name = "dom1"

2 vcpus = 1

3 memory = 1024

4 kernel = "/home/root/domains/Image"

5 disk = [’file:/home/root/domains/rootfs.ext4,xvda,w’]

6 extra = "root=/dev/xvda rw console=hvc0"

7 + device_tree = "/home/root/domains/passthrough1.dtb"

8 + iomem = [ "0x70000,1@0x70000,memory" ]

Listing 5.12: Changes to .cfg file to add a shared memory zone

Having explained the configurations needed to enable the shared memory, it will now be ex-

plained the testing method of the event channel notification method.

Firstly, the plan was to build a simple C file that used the Xen library available in the root

filesystem of the domains that needed to communicate. After using the gcc compiler available on

the board to compile the file for the right architecture the file was launched. Unfortunately, after

a lot of experimenting, the only results obtained every time the program tried to create an event

channel were the ones displayed in Listing 5.13 .
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1 (XEN) d1v0 Rn should not be equal to Rt except for r31

2 (XEN) d1v0 unhandled Arm instruction 0x3d800000

3 (XEN) d1v0 Unable to decode instruction

4 (XEN) traps.c:2059:d1v0 HSR=0x00000092000046 pc=0x00000040001acc gva=0 gpa

=0000000000000000

Listing 5.13: Log from executing the userpace program.

It was later concluded that the userspace of Linux executes in the exception layer 3 (EL3) and

the hypercalls can only be executed in the EL1, because the hypervisor is at EL2 so the hypercalls

need to be executed on the EL with lower privilege that the hypervisor. Baremetal applications

also run in the EL1 as can be seen later on. With this, another strategy was devised. As the kernel

space of Linux is executed in El1, using kernel modules was the only solution for this problem.

Modules for the Linux kernel are sections of code that can be imported and unloaded on demand.

These modules augment the functionality of the kernel without requiring a system restart. They

provide the flexibility to add or remove features or drivers as necessary.

The majority of device drivers are implemented as kernel modules. They can be configured

as either loadable or built-in. Loadable modules are compiled as distinct object files that can

be dynamically imported or unloaded from the kernel at runtime, whereas built-in modules are

included in the kernel [36].

The Linux operating system stores kernel modules in the /usr/lib/modules/kernel release di-

rectory. The “uname -r” command provides information about the current kernel release version.

To observe which kernel modules are presently installed, use the “lsmod” command. In addi-

tion, the “modinfo” module name command can be used to display information about a specific

module [36].

To create and build a kernel module the commands in Listing 5.14 were used. The petalinux-

create command creates the recipe for that module. The main.c file is the one that needs to be

edited. After that, using the “petalinux-build” command it will compile and mount the module

into the root filesystem [22].

1 # Command to create the new module

2 petalinux-create -t modules --name dom1module --enable

3 # Command to compile the module and to insert it into the root fylesystem

4 petalinux-build -c rootfs

Listing 5.14: Creating a new kernel module using Petalinux tools

With this explanation, it was possible to elaborate the files in Annex D.

The kernel module for dom1 starts by getting the node where the shared memory is. Next,

it allocates the event channels made for the three tests and binds them with their respective func-

tion.The fourth event channel is just to print the resulting information in the end of each test. Then,

it copies the local ports into the shared memory for the other domain to know where to bind and

copies the string "go" so that the second domain knows that the event channels have been created

and can bind them.
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In the kernel module for dom2 it starts the same way by getting the node where the shared

memory is but then hangs until it can read the "go" string from the shared memory. After that, it

binds the event channels to the corect port and starts the tests.

The first test is a basic notification during 20 seconds. This test was executed with the period-

icity of 1 second, 0.1 seconds, 0.01 seconds and 0.001 seconds.

The second test involves a copy of a integer to the shared memory and the receiving domain

to read it during 20 seconds. This test was executed with the periodicity of 1 second, 0.1 seconds,

0.01 seconds and 0.001 seconds.

The third test involves a bigger interaction with the shared memory as it copies two matrices of

2x2 to the shared memory and the receiving domain reads the memory and multiplies the matrices

during 20 seconds. This test was executed with the periodicity of 1 second, 0.1 seconds, 0.01

seconds and 0.001 seconds.

After observing the results of these tests, it was decided that it would be good to also add the

ability of using a another type of OS to compare its performance. For that, the Zephyr RTOS [15]

was chosen.

After executing the setup procedure in Annex E, the 2 domains were created but now using

the Xen library of Zephyr. The “.cfg” file of the Zephyr domains, presented in Listing 5.15, also

need to change slightly as Zephyr only has a binary kernel and does not need a root filesystem .

1 name="zephyr1"

2 kernel="/home/root/zephyr/zephyr.bin"

3 vcpus=1

4 memory=16

5 gic_version="v2"

6 on_crash="preserve"

7 device_tree = "/home/root/domains/passthrough1.dtb"

8 iomem = [ "0x70000,1@0x70000,memory" ]

Listing 5.15: Zephyr domain “.cfg” file.

Several combinations of tests were made to test if there was any impact in using a full OS.

These were the combinations made:

• Dom1 using Linux and Dom2 using Linux

• Dom1 using Linux and Dom2 using Zephyr

• Dom1 using Zephyr and Dom2 using Linux

• Dom1 using Zephyr and Dom2 using Zephyr

When using Linux it was also tested if a load on the system had any impact in the performance

of the event channels. This way, the program in Annex F was developed. In summary, the program

executes a while function to pin the CPU to 100 % during a percentage of a second. This way, if the

purpose was to pin the CPU on 25 % utilization, the program executes the while function during

0.25 seconds and then sleeps for 0.75 seconds. This averages in a load of 25 % every second. The
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number can be change to accommodate the needs of the test. The event channels were tested with

a load of 25 %, 50 %, 75 % and 100 % on the dom1 and the dom2.

In order to know how fast these event channels could be, the system was tested to its limit. To

do that, a file was created that decreased the time between notifications by multiplying it by 0.1,

essentially giving 10 % of the previously tested time. The setup tested was the Zephyr in Dom1

and Zephyr in Dom2, as that would theoretically give the best performance. That file is available

in Annex H.

Another test was made to see what would be the reaction of the system to a normal configura-

tion without the previous change in Listing 5.14.

5.4 Xen Dom0less demonstration

This demonstration, aims to show the Xen capability of executing a parallel boot of domains at

the boot time of dom0 using the Xen’s dom0less feature.

Xen Dom0-less is a feature of the Xen hypervisor that offers a novel approach to virtualization-

based static partitioning for the development of mixed-criticality solutions. This feature enables

numerous domains to commence at launch time directly from the Xen hypervisor without the need

for a privileged Dom0, which is typically required in Xen systems for domain management.

Non-dominant functionality reduces launch times significantly as Xen user-space utilities such

as xl and libvirt become optional. It accomplishes this by extending the existing device tree-based

Xen launch protocol to include additional domain-specific information. The binaries, such as

kernels and ramdisks, are installed by the bootloader (u-boot) and advertised to Xen by means of

new device tree bindings. To achieve the dom0less boot, the Imagebuilder config file needs to be

changed as shown in Listing 5.16.

1 MEMORY_START="0x0"

2 MEMORY_END="0x80000000"

3

4 DEVICE_TREE="xen-openamp.dtb"

5 XEN="xen"

6 DOM0_KERNEL="Image"

7 DOM0_CMD="console=hvc0 earlycon=xen earlyprintk=xen clk_ignore_unused root=/dev/

mmcblk0p2 rw rootwait"

8 DOM0_MEM=1024

9

10 +NUM_DOMUS=1

11 +DOMU_KERNEL[0]="domu/dom0less.bin"

12

13 UBOOT_SOURCE="boot.source"

14 UBOOT_SCRIPT="boot.scr"

Listing 5.16: Imagebuilder config file.

The file used for this new domain was made in Vitis IDE, a software tool developed by Xilinx.

Vitis IDE is designed to facilitate the development of high-performance applications on Xilinx
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platforms. As a proof of concept, a small application was created just to compare the boot time of

the dom0less domain and the boot time of a domain using the xl framework. The application code

can be seen in Annex G .

The application code basically invokes a hypercall that signals the Xen console to print the

string inside the brackets.

In order to boot the third domain as soon as the xl framework is available,the script in List-

ing 5.17 was made to execute the command at boot time.

1 #!/bin/bash

2 xl create -c dom2.cfg

3 chmod +x run_example.sh #Command to make the script executable

Listing 5.17: Script to create the new domain.

Then, the script path was written in a systemd service file to run the script at boot time. Listing 5.18

contains the contents of the systemd service file.

1 [Unit]

2 Description=Run script at boot

3

4 [Service]

5 ExecStart=<path to script>

6

7 [Install]

8 WantedBy=multi-user.target

Listing 5.18: Service file to execute the script

Then the service was configured to execute at boot time with te command "systemctl enable

<service name>.service"

The boot time was recorded using the minicom timestamp console on the remote PC connected

through the UART0 port on the board. This way, the time between turning on the physical board

and the domain output could be measured.

5.5 OpenAMP integration with Xen

For the last demonstration, the OpenAMP framework [37] was configured to work with the Xen

hypervisor. OpenAMP (Open Asymmetric Multi-Processing) is a communication framework de-

signed to facilitate efficient communication and collaboration between various processing ele-

ments in a heterogeneous system, such as multiple cores or processors. It enables these processing

elements to share information and coordinate duties, facilitating their interaction. One CPU is

designated as the master and is responsible for administering and orchestrating communication,

while the other cores function as slaves. Between processing elements, the framework employs a

combination of shared memory and messaging protocols to exchange data. This design improves

system performance and resource utilization because each core can focus on its specialized duties

while also utilizing the capabilities of other cores when necessary. OpenAMP has applications
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in a variety of disciplines, including embedded systems, IoT devices, and high-performance com-

puting, where optimizing processing capabilities and inter-core communication is essential for

attaining optimal system performance [37].

OpenAMP uses two tools to achieve its goal, Remoteproc and RPMsg. Remote Processor

(Remoteproc) and Remote Processor Messaging (RPMsg) are closely related. In a heterogeneous

system, they collaborate to facilitate communication and administration between multiple proces-

sors.

Remote Processor (Remoteproc) is a feature of the Linux kernel that permits the administra-

tion and control of remote processors in a heterogeneous computing environment. It provides a

standard interface for booting, loading, and managing the lifecycle of remote processors from the

principal (host) processor, which is typically Linux. The principal processor acts as the master,

while the remote processors function as slaves. Remoteproc simplifies the management of multi-

ple remote processors by providing a unified interface for their control and interaction. It allows

the primary processor to initiate firmware installation, start and halt remote processors, and ef-

fectively manage their resources. This makes it simpler for developers to leverage the potential

of heterogeneous multi-processing, in which processors with varying capabilities can seamlessly

collaborate for enhanced performance and resource efficiency [38].

Complementing Remoteproc, RPMsg (Remote Processor Messaging) is a lightweight, high-

performance interprocessor communication protocol. It functions as the communications layer

between the primary and remote processors, facilitating the efficient exchange and transmission

of data. RPMsg enables processors to send and receive messages, enabling applications running

on one processor to communicate transparently with applications running on another processor.

This communication is conducted via shared memory buffers, minimizing overhead and enabling

interactions with low-latency and high-throughput. RPMsg enables a variety of communication

patterns, ranging from simple message transmission to more complex shared memory and remote

procedure calls, thereby providing a flexible method of inter-processor communication [39].

With this explanation done, to use OpenAMP in the previous Xen setups it needs to be added

to the root filesystem. To do this, the Petalinux tools were used once again. The commands in

Listing 5.19 were executed to add OpenAMP to the Xen setup.

1 #In the project folder

2 petalinux-config -c rootfs

3

4 Filesystem Packages --->

5 -> Petalinux Package Groups

6 -> packagegroup-petalinux-openamp

Listing 5.19: Adding OpenAMP framework to root filesystem

The device tree also needs to be changed to accommodate the shared memory and the kernel

remoteproc.
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For that, the first line in Listing 5.20 was appended to the file “project-spec/meta-user/recipes-

bsp/device-tree/files/system-user.dtsi” and the second line was appended to the file “project-spec/meta-

user/recipes-bsp/device-tree/device-tree.bbappend”.

1 /include/ "zynqmp-openamp.dtsi"

2

3 SRC_URI:append = "file://openamp.dtsi"

Listing 5.20: Changes to the device tree

After this, the “petalinux-build” command was executed so that the Petalinux tools cross-compiled

all the previous changes.

For the matrix calculation demonstration, two files were used, one for the master in the APU

and another for the slave firmware to be deployed in the RPU. These two files are included in

Annex I. To cross-compile the RPU slave firmware, the Vitis IDE was used. To cross-compile the

master application, the Petalinux tools were once again used with the commands in Listing 5.21.

1 petalinux-create -t apps --template install -n <app_name> --enable

2

3 petalinux-build

Listing 5.21: Creating a new application using Petalinux tools

This demonstration starts by setting the firmware file as the remoteproc firmware and then

starting the remote RPU, which can be seen in Listing 5.22 .

1 #Set the file that the remoteproc will search for in folder /lib/firmware

2 root@textexen:~# echo image_matrix_multiply > /sys/class/remoteproc/remoteproc0/

3 #Command to start the firmware

4 root@textexen:~# echo start > /sys/class/remoteproc/remoteproc0/state

5 main():128 Starting application...

6 0 L7 registered generic bus

7 1 L7 init_system():160 c_buf,c_len = 0x3ed201bc,4096

8 2 L6 platform_ioot@textexen:~# rm_create_proc()

9 3 L6 platform_create_proc():103 rsc_table, rsc_size = 0x3ed20000, 0x100

10 4 L7 zynqmp_r5_a53_proc_init():73 metal_device_open(generic, poll_dev, 0x25f8)

11 5 L7 platform_create_proc():113 poll{name,bus,chn_mask} = poll_dev,generic,0

x1000000

12 6 L7 zynqmp_r5_a53_proc_mmap():138 lpa,lda= 0x3ed20000,0xffffffff

13 7 L7 zynqmp_r5_a53_proc_mmap():150 mem= 0x3898

14 8 L7 zynqmp_r5_a53_proc_mmap():154 tmpio= 0x38d8

15 9 L7 zynqmp_r5_a53_proc_mmap():138 lpa,lda= 0x3ed40000,0xffffffff

16 10 L7 zynqmp_r5_a53_proc_mmap():150 mem= 0x3920

17 11 L7 zynqmp_r5_a53_proc_mmap():154 tmpio= 0x3960

18 12 L6 platform_create_proc():142 Initialize remoteproc successfully.

19 13 L6 platform_create_rpmsg_vdev():202 creating remoteproc virtio rproc 0x3ed20178

20 14 L6 platform_create_rpmsg_vdev():210 initializing rpmsg shared buffer pool

21 15 L6 platform_create_rpmsg_vdev():215 initializing rpmsg vdev

22 16 L6 app():106 Waiting for events...

Listing 5.22: Loading the firmware on the RPU console output.
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As the firmware starts, it initiates the remoteproc framework and maps the shared memory

previously added to the device tree. Then, it creates the devices needed to use for the RPMsg

communication between the processors. Finally, it waits for the remote processor to notify the

RPU so it execute the callback function.

To execute the rest of the application, the matrix-multiplication.bin file needs to be executed

in Linux, which will be shown in the next chapter.



Chapter 6

Results and performance analysis

This chapter describes the results obtained by the setups previously mentioned in chapter 5 for the

four demonstrations.

6.1 Xen networking demonstration

For the first demonstration, the first step was to test the connection between the domains and the

external PC needed to be tested to validate the systems connection. In order to do that, the ping

command was between all the connection . Furthermore, as the ping framework can also measure

the round trip time of packets, the test was executed for 100 packets for all connection like in

Listing 6.1.

1 ping -c 100 <ip address of the destination>

Listing 6.1: Ping command executed

Table 6.1 displays the results.

Table 6.1: Ping results in milliseconds

Native Linux Domain0
Min Avg Max Min Avg Max

remote pc 0.108 0.132 0.207 0.114 0.139 0.243
dom1 X X X 0.146 0.207 0.400
dom2 X X X 0.135 0.202 0.366

Domain1 Domain2
Min Avg Max Min Avg Max

remote pc 0.352 0.692 0.916 X X X
dom2 0.231 0.301 0.704 X X X

Evaluating the results, it can be said that, switching from a native Linux setup to a Dom0

in Xen when pinging a remote PC, there is a small increase of 5 % in the average result, not

representing a significant change. On the contrary, the Dom1 to the remote PC resulted in an

increase of 424 % and 398 % in the average value compared to the native Linux and Dom0 setup

39
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respectively. Regarding the virtual network, it is acceptable to affirm that the system behaved as

expected as the values of the connection between Dom1 and Dom2 are higher than the values

between the dom0 to dom1 connection and the dom0 to dom2 connection do to the fact that the

xenbr0 is created by dom0.

Next, a test was made using the scp framework. This test was made as a real life emulation of

a secure transfer of files between machines. To generate the file the command in Listing 6.2 .

1 dd if=/dev/urandom of=testfile bs=1M count=1000

Listing 6.2: Test file generation

The scp results are summarized in Table 6.2.

Table 6.2: Results of scp test in megabits per second

Connections Speed
Remote PC to native Linux 29.3

Remote PC to Dom0 14.5
Dom0 to Dom1 18.5
Dom1 to Dom2 10.6

With these results it can be said that the overhead of Xen took a 50 % hit on the performance

comparing it to native Linux. The same thing happened on the Dom0 to Dom1 and Dom1 to

Dom2.

Even though the scp test already gave transfer speed results, the problem is that it has a lot of

overlays attached to it as password encryption and handshakes. For that, other tools were used to

understand the behavior of the system regarding TCP and UDP packets as will probably happen

in the real world.

After that, the Neper tool was used to measure how the various connections handled more

advanced payloads like TCP and UDP packets. With that, the Neper tool was initiated as a server

in the Remote PC with the command “tcp_rr”. Next, the client was initiated in the Native Linux,

Dom0 and Dom1 with the command “tcp_rr -c -H <Server ip>”. These procedures were repeated

for every connection. Furthermore, the testing modes used were:

• TCP_rr: generates request/response workload (similar to HTTP or RPC) over TCP

• TCP stream: generates bulk data transfer workload (similar to FTP or scp) over TCP

• UCP_rr: generates request/response workload (similar to HTTP or RPC) over UDP

• UCP stream: generates bulk data transfer workload (similar to FTP or scp) over UDP

Tables 6.3 and 6.4 were elaborated to easily present the important result that is the throughput.

The throughput of the rr tests are meant to be interpreted as transactions per second. The stream

test results are in megabit per second.
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Table 6.3: Neper tool rr results

Native Linux Dom0 to PC Dom1 to Dom0
TCP_rr test 9088.75 8530.42 5275.31
UDP_rr test 9098.23 8992.83 8334.66

Dom1 to PC Dom2 to Dom1
TCP_rr test 4908.95 4169
UDP_rr test 6127.58 5698

Like the ping test already pointed, the best performer is clearly the native Linux due to the

non existence of a hypervisor layer causing overhead. Another interesting result is the good per-

formance of the inter domain connections posing as a viable way of communication and fast file

transfer between domains. The worst performer, the Dom2 to Dom1 connection, is due to being a

connection dependent on Dom0 so, it has to make the redirection from Dom2 to Dom0 and then

from Dom0 to Dom1.

As a last test, the “iperf3” tool was used to also measure the Transmission Control Protocol

and User Datagram Protocol (TCP and UDP) transfer speeds. The tests were executed in a 10

second frame. The results of this test can be seen in Annex J. As the previous tests also confirmed,

there is a small overhead when transferring TCP packets using Dom0 instead of native Linux, with

a bigger overhead when transferring using Dom1 to the remote PC. A result to note is the good

performance obtained in the inter-domain test of Dom0 to Dom1 transfer, with a worst result in the

Dom1 to Dom2 as expected. In the UDP test the results are pretty uniform because of the lower

payload this standard has.

6.2 Xen event channel and shared memory demonstration

This demonstration has the objective of validating the event channels method of communication

between two domains and then test their performance. In order to do that, the programs already

described in Chapter 5 were deployed used to achieve the results.

Firstly, the combination of a Linux domain as a receiver and a Linux domain as a sender

were tested. After installing the kernel on the receiving domain, the allocated event channels can

be seen by switching to the Xen console by pressing Ctrl+A three times. Then, with the Xen

console available, by pressing E the event channels of the system get presented, as can be seen

in Listing 6.3 . Normally, a new Linux domain creates five event channels when it boots, all

connected to Dom0. Those event channels are used for management such as sending a shutdown

command from Dom0. In the Dom1 field it can be seen that the port 6,7,8,9 have been created and

available to be connected by other domains. Every event channel has some flags:

• "s": This flag represents the status of the event channel. The meaning of different status

values can vary depending on the hypervisor’s specific implementation and configuration.
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Table 6.4: Neper tool stream results

Native Linux Dom0 to PC Dom1 to Dom0
Server Client Server Client Server Client

tcp stream 927.27 929.84 444.56 446 808.13 447.11
udp stream 954.91 X 582.44 X 310.98 X

Dom1 to PC Dom2 to Dom1
Server Client Server Client

tcp stream 425.24 225.63 666.77 268.06
udp stream 239.11 X 306.92 X

• "n": This flag indicates the number of notifications that have occurred on the event channel.

It represents the count of notifications since the last time the event channel was checked or

processed.

• "x": This flag indicates the number of times the event channel was unmasked (enabled)

without receiving a notification. It represents the count of "spurious" wake-ups or attempts

to process the event channel without actual events occurring.

• "d": This flag denotes the domain ID or domain number associated with the event channel.

In Xen, each virtual machine is assigned a unique domain ID, and this flag identifies the

domain to which the event channel is connected.

• "p": This flag represents the port number associated with the event channel. The port

number is an identifier for the specific event channel and is used to distinguish different

event channels within a domain.

1 (XEN) *** Serial input to Xen (type ’CTRL-a’ three times to switch input)

2 (XEN) ’e’ pressed -> dumping event-channel info

3 (XEN) Event channel information for domain 0:

4 (XEN) Polling vCPUs: {}

5 (XEN) port [p/m/s]

6 (XEN) 1 [0/0/ - ]: s=3 n=0 x=0 d=0 p=4

7 (XEN) 2 [0/0/ - ]: s=5 n=0 x=0 v=2

8 (XEN) 3 [0/0/ - ]: s=5 n=0 x=0 v=3

9 (XEN) 4 [0/0/ - ]: s=3 n=0 x=0 d=0 p=1

10 (XEN) 5 [0/0/ - ]: s=3 n=0 x=0 d=1 p=1

11 (XEN) 6 [0/0/ - ]: s=3 n=0 x=0 d=1 p=2

12 (XEN) 7 [0/0/ - ]: s=3 n=0 x=0 d=2 p=1

13 (XEN) 8 [0/0/ - ]: s=3 n=0 x=0 d=2 p=2

14 (XEN) 9 [0/0/ - ]: s=3 n=0 x=0 d=1 p=3

15 (XEN) 10 [0/0/ - ]: s=3 n=0 x=0 d=1 p=4

16 (XEN) 11 [0/0/ - ]: s=3 n=0 x=0 d=1 p=5

17 (XEN) 12 [0/0/ - ]: s=3 n=0 x=0 d=2 p=3

18 (XEN) 13 [0/0/ - ]: s=3 n=0 x=0 d=2 p=4

19 (XEN) 14 [0/0/ - ]: s=3 n=0 x=0 d=2 p=5
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20 (XEN) Event channel information for domain 1:

21 (XEN) Polling vCPUs: {}

22 (XEN) port [p/m/s]

23 (XEN) 1 [0/0/ - ]: s=3 n=0 x=0 d=0 p=5

24 (XEN) 2 [0/0/ - ]: s=3 n=0 x=0 d=0 p=6

25 (XEN) 3 [0/0/ - ]: s=3 n=0 x=0 d=0 p=9

26 (XEN) 4 [0/0/ - ]: s=3 n=0 x=0 d=0 p=10

27 (XEN) 5 [0/0/ - ]: s=3 n=0 x=0 d=0 p=11

28 (XEN) 6 [0/0/ - ]: s=2 n=0 x=0 d=2

29 (XEN) 7 [0/0/ - ]: s=2 n=0 x=0 d=2

30 (XEN) 8 [0/0/ - ]: s=2 n=0 x=0 d=2

31 (XEN) 9 [0/0/ - ]: s=2 n=0 x=0 d=2

32 (XEN) Event channel information for domain 2:

33 (XEN) Polling vCPUs: {}

34 (XEN) port [p/m/s]

35 (XEN) 1 [0/0/ - ]: s=3 n=0 x=0 d=0 p=7

36 (XEN) 2 [0/0/ - ]: s=3 n=0 x=0 d=0 p=8

37 (XEN) 3 [0/0/ - ]: s=3 n=0 x=0 d=0 p=12

38 (XEN) 4 [0/0/ - ]: s=3 n=0 x=0 d=0 p=13

39 (XEN) 5 [0/0/ - ]: s=3 n=0 x=0 d=0 p=14

Listing 6.3: Event channels of the system

When installing the kernel module in the sender domain, the event channels get connected and

the sender starts the tests. In Listing 6.4 , the connected event channels can be seen.

1 (XEN) *** Serial input to Xen (type ’CTRL-a’ three times to switch input)

2 (XEN) ’e’ pressed -> dumping event-channel info

3 (XEN) Event channel information for domain 0:

4 (XEN) Polling vCPUs: {}

5 (XEN) port [p/m/s]

6 (XEN) 1 [0/0/ - ]: s=3 n=0 x=0 d=0 p=4

7 (XEN) 2 [0/0/ - ]: s=5 n=0 x=0 v=2

8 (XEN) 3 [0/0/ - ]: s=5 n=0 x=0 v=3

9 (XEN) 4 [0/0/ - ]: s=3 n=0 x=0 d=0 p=1

10 (XEN) 5 [0/0/ - ]: s=3 n=0 x=0 d=1 p=1

11 (XEN) 6 [0/0/ - ]: s=3 n=0 x=0 d=1 p=2

12 (XEN) 7 [0/0/ - ]: s=3 n=0 x=0 d=2 p=1

13 (XEN) 8 [0/0/ - ]: s=3 n=0 x=0 d=2 p=2

14 (XEN) 9 [0/0/ - ]: s=3 n=0 x=0 d=1 p=3

15 (XEN) 10 [0/0/ - ]: s=3 n=0 x=0 d=1 p=4

16 (XEN) 11 [0/0/ - ]: s=3 n=0 x=0 d=1 p=5

17 (XEN) 12 [0/0/ - ]: s=3 n=0 x=0 d=2 p=3

18 (XEN) 13 [0/0/ - ]: s=3 n=0 x=0 d=2 p=4

19 (XEN) 14 [0/0/ - ]: s=3 n=0 x=0 d=2 p=5

20 (XEN) Event channel information for domain 1:

21 (XEN) Polling vCPUs: {}

22 (XEN) port [p/m/s]

23 (XEN) 1 [0/0/ - ]: s=3 n=0 x=0 d=0 p=5

24 (XEN) 2 [0/0/ - ]: s=3 n=0 x=0 d=0 p=6
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25 (XEN) 3 [0/0/ - ]: s=3 n=0 x=0 d=0 p=9

26 (XEN) 4 [0/0/ - ]: s=3 n=0 x=0 d=0 p=10

27 (XEN) 5 [0/0/ - ]: s=3 n=0 x=0 d=0 p=11

28 (XEN) 6 [0/0/ - ]: s=3 n=0 x=0 d=2 p=6

29 (XEN) 7 [0/0/ - ]: s=3 n=0 x=0 d=2 p=7

30 (XEN) 8 [0/0/ - ]: s=3 n=0 x=0 d=2 p=8

31 (XEN) 9 [0/0/ - ]: s=3 n=0 x=0 d=2 p=9

32 (XEN) Event channel information for domain 2:

33 (XEN) Polling vCPUs: {}

34 (XEN) port [p/m/s]

35 (XEN) 1 [0/0/ - ]: s=3 n=0 x=0 d=0 p=7

36 (XEN) 2 [0/0/ - ]: s=3 n=0 x=0 d=0 p=8

37 (XEN) 3 [0/0/ - ]: s=3 n=0 x=0 d=0 p=12

38 (XEN) 4 [0/0/ - ]: s=3 n=0 x=0 d=0 p=13

39 (XEN) 5 [0/0/ - ]: s=3 n=0 x=0 d=0 p=14

40 (XEN) 6 [1/1/ - ]: s=3 n=0 x=0 d=1 p=6

41 (XEN) 7 [1/1/ - ]: s=3 n=0 x=0 d=1 p=7

42 (XEN) 8 [1/1/ - ]: s=3 n=0 x=0 d=1 p=8

43 (XEN) 9 [1/1/ - ]: s=3 n=0 x=0 d=1 p=9

Listing 6.4: Event channels of the system

With this, the three tests were executed for this first Linux-Linux setup. The time between

each event channel activation was measured by the receiver. In the Figures 6.1, 6.2, 6.3 and 6.4,

a bar graphic was elaborated to compare the average timestamps of this setup but with various

workloads. This way, it was able to infer that independently of the load placed on both the Linux

domains, the resulting timestamps never oscillated enough to conclude that the workload of the

domains has an effect on the performance of the event channels.

Figure 6.1: Event channel results with 1 sec period.
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Figure 6.2: Event channel results with 0.1 sec period

Figure 6.3: Event channel results with 0.001 sec period
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Figure 6.4: Event channel results with 0.0001 sec period

These findings also raised another question, of knowing which domain was the bottleneck in

this operation, the sender or the receiver. For that, the tests were run again but with an alteration

to the main program. Now, every time the sender ended a test it notified the fourth event channel

so that the receiver domain printed the statistics of the received notification amount. With these

results, Table 6.5 was elaborated. The horizontal axis corresponds to the Dom2 and the vertical

axis corresponds to the Dom1.

Table 6.5: Results of counting the notifications of each domain

Zephyr Linux
Sent Received Sent Received

Test 1 22220 22220 2873 2873
Zephyr Test 2 22220 22220 2873 2873

Test 3 22220 22220 2873 2873
Test 1 22220 22220 2873 2873

Linux Test 2 20383 20383 2873 2873
Test 3 20383 20383 2873 2873

Through this results it can be concluded that the real bottleneck in these tests was clearly the

sender domain as every time the sender was able to send a notification the receiver was able to

execute the callback function. Also, when the sender domain was setup with Linux, the results

were clearly the worse, only notifying about 13 % of the theoretical 22220 notifications. Another

fact that corroborates this conclusion is that the sender achieved the theoretical number of sent

notifications even when switching from test1 (only notifying the other domain) to test2 (copying

a integer to the shared memory and then notifying) when using zephyr as a sender.



6.2 Xen event channel and shared memory demonstration 47

This clearly indicates that calling the hypercall and notifying the event channel poses a bigger

overhead than only having only the callback function connected to a interrupt managed by the

vcpu in the Linux environment.

Having this knowledge, it was also important to know the limits of these event channels. The

log in Listing 6.5 describes the results of the test.

1 ....EXECUTING THE FIRST TEST....

2 Testing 1000 micro

3 ....Notified 10000 times....

4 Testing 100 micro

5 ....Notified 100000 times....

6 Testing 10 micro

7 ....Notified 100001 times....

8 Maximum in test1 is 100 micro

9 ....ENDING THE FIRST TEST....

10 ....EXECUTING THE SECOND TEST....

11 Testing 1000 micro

12 ....Notified 10000 times....

13 Testing 100 micro

14 ....Notified 100000 times....

15 Testing 10 micro

16 ....Notified 100001 times....

17 Maximum in test1 is 100 micro

18 ....ENDING THE SECOND TEST....

19 ....EXECUTING THE THIRD TEST....

20 Testing 1000 micro

21 ....Notified 10000 times....

22 Testing 100 micro

23 ....Notified 100000 times....

24 Testing 10 micro

25 ....Notified 100001 times....

26 Maximum in test1 is 100 micro

27 ....ENDING THE THIRD TEST....

Listing 6.5: Log from the limit test

As seen in Listing 6.5 the maximum period that event channels can be used is limited to 100

microseconds even with the shared memory operations of test2 and test3.

Finally, the system reaction of not having the memory configured in the “.cfg” file was also

tested. This simulates some other domain trying to access a memory region that it should not.

1 root@textexen:~# xl create -c zephyr/zepyr_conf.cfg

2 Parsing config from zephyr/zepyr_conf.cfg

3 (XEN) null.c:353: 3 <-- d3v0

4 (XEN) d3v0: vGICD: unhandled word write 0x000000ffffffff to ICACTIVER4

5 (XEN) d3v0: vGICD: unhandled word write 0x000000ffffffff to ICACTIVER8

6 (XEN) d3v0: vGICD: unhandled word write 0x000000ffffffff to ICACTIVER12

7 (XEN) d3v0: vGICD: unhandled word write 0x000000ffffffff to ICACTIVER16

8 (XEN) d3v0: vGICD: unhandled word write 0x000000ffffffff to ICACTIVER20
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9 (XEN) d3v0: vGICD: unhandled word write 0x000000ffffffff to ICACTIVER0

10 (XEN) traps.c:2059:d3v0 HSR=0x00000093040046 pc=0x00000040007114 gva=0x70000004 gpa

=0x00000070000004

11 *** Booting Zephyr OS build zephyr-v3.4.0-1127-gea2aac6e5131 ***

12 Successfully allocated event channel with port: 3

13 --- 2 messages dropped ---

14 Successfully bound callback function to event channel

15 [00:00:00.008,000] <err> os: ELR_ELn: 0x0000000040007114

16 [00:00:00.008,000] <err> os: ESR_ELn: 0x0000000096000000

17 [00:00:00.008,000] <err> os: EC: 0x25 (Data Abort taken without a change in

Exception level)

18 [00:00:00.008,000] <err> os: IL: 0x1

19 [00:00:00.008,000] <err> os: ISS: 0x0

20 [00:00:00.008,000] <err> os: FAR_ELn: 0x0000000070000004

21 [00:00:00.008,000] <err> os: TPIDRRO: 0x010000004002b6b0

22 [00:00:00.008,000] <err> os: x0: 0x0000000070000004 x1: 0x000000004003988c

23 [00:00:00.008,000] <err> os: x2: 0x0000000000000004 x3: 0x0000000000000000

24 [00:00:00.008,000] <err> os: x4: 0x0000000000000003 x5: 0x00000000ffffffc8

25 [00:00:00.008,000] <err> os: x6: 0x0000000000000000 x7: 0x0000000000000040

26 [00:00:00.008,000] <err> os: x8: 0x0000000000000001 x9: 0xffffffffffffffff

27 [00:00:00.008,000] <err> os: x10: 0x000000004000c557 x11: 0x0000000040039860

28 [00:00:00.008,000] <err> os: x12: 0x000000004000c318 x13: 0x0000000040039820

29 [00:00:00.008,000] <err> os: x14: 0x0000000200007fed x15: 0x0000000000000000

30 [00:00:00.008,000] <err> os: x16: 0x0000000000000001 x17: 0x0000000000000005

31 [00:00:00.008,000] <err> os: x18: 0xffffffffffffffff lr: 0x000000004000138c

32 [00:00:00.008,000] <err> os: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0

33 [00:00:00.008,000] <err> os: Current thread: 0x4001a660 (main)

34 [00:00:00.012,000] <err> os: Halting system

Listing 6.6: Log from wrong memory access test

As seen in Listing 6.6, the Xen hypervisor gives a trap print in the console. That happens be-

cause the zephyr app has the shared memory 0x70000000 address configured in the boot procedure

and, as it tries to access it as the system boots, the hypervisors traps that communication. After

that, when the system tries to access the memory address it crashes because it was not correctly

setup at boot.

6.3 Xen Dom0less demonstration

In this demonstration, the system was initiated with the configuration made in Chapter 4. The log

file was written in Listing 6.7 with some omissions do to its size.

1 [2023-07-28 11:10:21]Xilinx Zynq MP First Stage Boot Loader

2 <.....>

3 [2023-07-28 11:10:27] (XEN) Xen version 4.16.1-pre

4 <.....>

5 [2023-07-28 11:10:27] (XEN) *** LOADING DOMAIN 0 ***

6 <.....>
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7 [2023-07-28 11:10:27] (XEN) *** LOADING DOMU cpus=1 memory=80000KB

8 <.....>

9 [2023-07-28 11:10:28] (XEN) *** Serial input to DOM0 (type ’CTRL-a’ three times to

switch input)

10 [2023-07-28 11:10:28] (XEN) null.c:353: 0 <-- d0v0

11 [2023-07-28 11:10:28] (XEN) null.c:353: 2 <-- d1v0

12 [2023-07-28 11:10:28] (XEN) Freed 344kB init memory.

13 [2023-07-28 11:10:28] (d1) Hello World

14 <.....>

15 [2023-07-28 11:10:34] Welcome to PetaLinux 2022.2_release_S10071807 (honister)!

16 <.....>

17 [2023-07-28 11:10:46] (d2) Hello World

18 <.....>

19 [2023-07-28 11:10:47]

20 [2023-07-28 11:10:47] PetaLinux 2022.2_release_S10071807 textexen hvc0

21 [2023-07-28 11:10:47]

22 [2023-07-28 11:10:47] textexen login: root (automatic login)

23 [2023-07-28 11:10:47]

24 [2023-07-28 11:10:53] root@textexen:~#

Listing 6.7: Dom0less boot log

From the log file there is three important values to analyze for this demonstration:

• Dom1 boot message timestamp

• Dom2 boot message timestamp

• Dom0 console timestamp

Analysing the timestamps, the first log will be the reference for turning on the switch on the

board. Next, it can be seen that the Dom1 message appears only 7 seconds after turning the board

on. The Dom2 message only appears 18 seconds after the Dom1 message and 25 seconds after

turning the board on. Finally, the Dom0 console becomes available only 32 seconds after the

boards boot. The time for Dom2 message and the Dom0 console can also change depending on

the Dom0 root filesystem size and amount of services it needs to boot so, these times can be even

worse.

So, if this system gets deployed in a consumer product of the automotive industry, as the

consumer unlocks the car the system would turn on and without the dom0less feature, even the

most critical systems would take a minimum of 25 seconds to boot wich is not possible in today’s

world. With dom0less, the boot time can be shortened by 72 %, which makes these systems much

more viable.

6.4 OpenAMP integration with Xen

In this last demonstration, the purpose is to show the OpenAMP framework functioning in con-

junction with the Xen hypervisor. After executing the setup mentioned in the Chapter 4, the master
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binary application needs to be executed in the Linux OS running on the APU. Listing 6.8 is the

result of running the binary app.

1

2 root@textexen:~# matrix-test

3

4 Matrix multiplication demo start

5

6 Master>probe rpmsg_char

7 + lsmod

8 Module Size Used by

9 rpmsg_char 16384 0

10 mali 229376 0

11 uio_pdrv_genirq 16384 0

12 xen_netback 53248 0

13 xen_blkback 36864 0

14 xen_gntalloc 16384 0

15 xen_gntdev 28672 2

16 dmaproxy 16384 0

17 + modprobe rpmsg_char

18 lookup_channel():265 using dev file: virtio0.rpmsg-openamp-demo-channel.-1.1024

19 bind_rpmsg_chrdev():161 open /sys/bus/rpmsg/devices/virtio0.rpmsg-openamp-demo-

channel.-1.1024/driver_override

20 bind_rpmsg_chrdev():184 write virtio0.rpmsg-openamp-demo-channel.-1.1024 to /sys/

bus/rpmsg/drivers/rpmsg_chrdev/bind

21 get_rpmsg_chrdev_fd():204 opendir /sys/bus/rpmsg/devices/virtio0.rpmsg-openamp-demo

-channel.-1.1024/rpmsg

22 get_rpmsg_chrdev_fd():214 open /dev/rpmsg_ctrl1

23 main():332 rpmsg_create_ept: rpmsg-openamp-demo-channel[src=0,dst=0x400]

24 checking /sys/class/rpmsg/rpmsg_ctrl1/rpmsg0/name

25 svc_name: rpmsg-openamp-demo-channel

26 .

27 open /dev/rpmsg0

28 main():352 matrix_mult(1)

29

30 Master : Linux : Input matrix 0

31

32 6 4 3 7 0 0

33 6 6 7 1 6 8

34 8 0 1 8 5 7

35 7 1 5 7 7 1

36 9 5 1 9 5 6

37 3 2 0 6 9 3

38

39 Master : Linux : Input matrix 1

40

41 6 6 9 5 9 7

42 6 9 7 7 8 4

43 6 7 7 3 4 5

44 6 6 2 0 5 7
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45 6 0 9 8 7 1

46 1 5 9 2 3 0

47 0: write rpmsg: 296 bytes

48 read results

49

50 Master : Linux : Printing results

51 120 135 117 67 133 122

52 164 185 273 157 201 114

53 139 138 203 97 172 122

54 163 133 191 115 178 134

55 180 190 240 135 223 156

56 123 87 161 107 145 80

57 End of Matrix multiplication demo Round 0

Listing 6.8: Log from APU console after executing the application

As can be seen in Listing 6.8, the application starts by loading the RPMsg kernel module

necessary. Then, it configures the device previously created by the RPU firmware and binds a

device driver to it. After that, it opens the device to send the information it needs to send to the

RPU firmware, generates the two matrices and writes them to the inter-processor device. It then

waits until the full resulting matrix has been written by the RPU and prints the result.

In conclusion, it was proven that the OpenAMP framework can be integrated with the Xen

hypervisor. The integration of the OpenAMP framework with the Xen hypervisor provides sig-

nificant resource management, isolation, and communication benefits for multiprocessor systems.

By integrating OpenAMP with Xen, there is not only the possibility of creating other domains in

the same CPUs but also the ability of offloading real-time applications to other CPUs (in the case

of the hardware used in this dissertation a real-time CPU) thereby improving system scalability

and workload distribution. In addition, the isolation capabilities of Xen assure robust partitioning

and fault tolerance between domains, thereby enhancing system dependability and security. This

combination enables a flexible and dynamic system architecture, permitting efficient hardware re-

source utilization, seamless processor-to-processor communication, and the coexistence of diverse

operating systems, making it ideal for complex embedded systems and heterogeneous multi-core

platforms as are automotive ECUs.



Chapter 7

Conclusion and Future work

This chapter will summarize the contents of the previous chapters and provide the concluding

verdict regarding the value of developing this solution. In the Future Work section, new ideas and

considerations for the application of the work produced in this dissertation will be made.

7.1 Conclusion

This dissertation started with a view of the existing technologies used for this line of work: hyper-

visors. The main objective stated was to develop a study into hypervisors, devise a solution and

test said solution in some aspects that would be relevant to the automotive industry. In chapter 4,

the proposed solution using a Xen hypervisor and some demonstrations that showed the capabili-

ties of this hypervisor were presented. These demonstrations proved that the Xen hypervisor has

the capability of being a great alternative to the current architecture for automotive ECUs. In the

networking demonstration, several features were displayed, such as the capability of Xen to attach

hardware devices to domains and isolate them from other domains. This security characteristic is

fundamental in the automotive industry. Another discovery made were the performance numbers

of the various networking connections made using Xen, which not only proved the flexibility of

this software but also that the performance overhead that a hypervisor causes is not that serious in

the domain with a network card directly attached. In the event channel and shared memory demon-

stration, the security characteristics were again reinforced as the results of the last test in which a

domain tried to access memory that was not meant to give the best outcome in terms of security.

It was also shown that event channels can be a very fast communication process for inter-domain

communication. In the Dom0less demonstration, another helpful feature for the automotive in-

dustry was displayed as the domain configured to boot in parallel with the Dom0 booted much

faster than waiting for the whole xl framework to initiate. The last demonstration proved that the

OpenAMP framework could work in conjunction with the Xen hypervisor, opening the door for

several interesting setups regarding real-time computing and resource management.

This solution paves the way for the development of a complex system and shows that a hypervi-

sor solution has the capabilities for successful development for the automotive industry. Therefore,
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it justifies the endeavor to develop a more complex system.

7.2 Future work

This dissertation investigated the viability of hypervisor technology for automotive ECUs. Nev-

ertheless, several promising topics for future research can contribute to practical advances and

real-world applications in automotive computing.

7.2.1 Testing Real-time Capability with OpenAMP and Expanded Hardware

To validate the practicality of hypervisor-based ECUs in real-time systems, future work should

consist of extensive experimentation with OpenAMP on more hardware platforms. Incorporating

real-time scenarios, such as safety-critical applications, will aid in evaluating the hypervisor’s

ability to adhere to stringent timing constraints.

7.2.2 Optimizing Xen Configuration for Enhanced Performance

Additional research can be conducted by modifying Xen’s configuration parameters, such as vC-

PUs (virtual Central Processing Units), memory allocation, and CPU schedulers. Experimenting

with various configurations can shed light on maximizing resource utilization, minimizing over-

head, and attaining optimum performance for automotive ECUs.

7.2.3 Practical Implementation of ECU Software

Implementing a prototype of an actual ECU software system should be the following step for

validating the efficacy of the hypervisor approach in real-world scenarios. This implementation

may include automotive-specific applications and features. The practicality and dependability

of the hypervisor-based ECU must be determined by measuring the system’s performance under

various conditions, such as dynamic workloads and real-time constraints.
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Appendix A

Xen hypervisor build process and
hardware deployment

This procedure was executed in the following environment:

• Host PC with Linux OS • Petalinux version 2022.2 already installed

The first step is initializing the Petalinux tools:

1 source /<path to petalinux tools folder>/settings.sh

A.1 Create a Petalinux Project

Next, the project needs to be created in the desired directory. The template used in this case is

zynqMP as it is the model of the fpga used:

1 petalinux-create -t project --template zynqMP -n xen

The project needs the .xsa file. The file used in this dissertation was the one provided in the

board support package available in Xilinx’s website.

A.2 Hardware and Rootfs configuration

1 cd <project directory>/xen

2 petalinux-config --get-hw-description <PATH-TO-XSA-FILE>

Then, Xen needs to be enabled in the root filesystem:

1 petalinux-config -c rootfs

2

3 Petalinux Package Groups ---> packagegroup-petalinux-xen ---> [*] packagegroup-

petalinux-xen

4 Filesystem Packages ---> console ---> tools ---> xen ---> [*] xen-tools
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A.3 Device tree changes

After this, the device tree needs to be edited in order to add extra Xen related configurations. The

file is:

1 cd project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi

It needs to look like this:

1 /include/ "system-conf.dtsi"

2 /include/ "zynqmp-xen.dtsi"

3 / { };

Another file also needs to be edited:

1 project-spec/meta-user/recipes-bsp/device-tree/device-tree.bbappend

The first lines should look like this:

1 FILESEXTRAPATHS:prepend := "${THISDIR}/files:${SYSCONFIG_PATH}:"

2

3 SRC_URI:append = " file://config file://system-user.dtsi"

4 SRC_URI:append = " file://zynqmp-xen.dtsi"

A.4 Build and hardware deployment

In the end, execute the build command:

1 petalinux-build

After the Petalinux tools compile the build, the generated files need to be transferred to an

SD card that has two patitions, one for the boot files and another one for the root files. The boot

partition needs to be approximately 5GB to accommodate all the boot files and domains that may

need to be booted in dom0less mode.

In the projects directory, these files need to be copied to the boot partition:

1 cp linux/xen/xen.dtb /<path to media devices>/boot/

2 cp linux/xen/Image /<path to media devices>/boot/

3 cp linux/xen/xen_boot_sd.scr /<path to media devices>/boot/

4 cp linux/xen/xen /<path to media devices>/boot/

Then the root filesystem needs to be copied to the root partition:

1 sudo tar xvf images/linux/rootfs.tar.gz -C /<path to media devices>/root

After inserting the memory card in the board and powering it on the bootloader will come up:

1 Xilinx Zynq MP First Stage Boot Loader

2 Release 2022.2 Oct 7 2022 - 04:56:16

3 NOTICE: BL31: v2.6(release):xlnx_rebase_v2.6_2022.1_update3-18-g0897efd45

4 NOTICE: BL31: Built : 03:55:03, Sep 9 2022



A.4 Build and hardware deployment 59

5 U-Boot 2022.01 (Sep 20 2022 - 06:35:33 +0000)

6 CPU: ZynqMP

7 Silicon: v3

8 Board: Xilinx ZynqMP

9 DRAM: 4 GiB

10 PMUFW: v1.1

11 PMUFW no permission to change config object

12 EL Level: EL2

13 Chip ID: zu7e

14 NAND: 0 MiB

15 MMC: mmc@ff170000: 0

16 Loading Environment from FAT... *** Warning - some problems detected reading

environment; recovered successfully

17 OK

18 In: serial

19 Out: serial

20 Err: serial

21 Net: FEC: can’t find phy-handle

22 No ethernet found.

23 scanning bus for devices...

24 SATA link 0 timeout.

25 SATA link 1 timeout.

26 AHCI 0001.0301 32 slots 2 ports 6 Gbps 0x3 impl SATA mode

27 flags: 64bit ncq pm clo only pmp fbss pio slum part ccc apst

28 starting USB...

29 No working controllers found

30 Hit any key to stop autoboot: 0

Hit any key to stop the autoboot. Then insert this into the console:

1 load mmc 0:1 0xC00000 xen_boot_sd.scr; source 0xC00000

This will load the xen_boot _sd.scr file into the correct memory address.

To do this automatically just insert this command in the bootloader:

1 setenv mmc_load="load mmc 0:1 0xC00000 xen_boot_sd.scr; source 0xC00000"



Appendix B

Dts file with Ethernet passthrough

File for the ethernet pasthrough dtb. This file is composed by the ethernet device of the system to

enable it in the new domain:

1 /dts-v1/;

2

3 / {

4 #address-cells = <0x2>;

5 #size-cells = <0x2>;

6 passthrough {

7 compatible = "simple-bus";

8 ranges;

9 #address-cells = <0x2>;

10 #size-cells = <0x2>;

11 misc_clk {

12 #clock-cells = <0x0>;

13 clock-frequency = <0x7735940>;

14 compatible = "fixed-clock";

15 phandle = <0x1>;

16 };

17 ethernet@ff0e0000 {

18 compatible = "cdns,zynqmp-gem";

19 status = "okay";

20 interrupt-parent = <0xfde8>;

21 interrupts = <0x0 0x3f 0x4 0x0 0x3f 0x4>;

22 reg = <0x0 0xff0e0000 0x0 0x1000>;

23 clock-names = "pclk", "hclk", "tx_clk", "rx_clk";

24 #address-cells = <0x1>;

25 #size-cells = <0x0>;

26 clocks = <0x1 0x1 0x1 0x1>;

27 phy-mode = "rgmii-id";

28 xlnx,ptp-enet-clock = <0x0>;

29 local-mac-address = [00 0a 35 00 22 01];

30 phy-handle = <0x2>;

31 xen,reg = <0x0 0xff0e0000 0x0 0x1000 0x0 0xff0e0000>;

32 xen,path = "/axi/ethernet@ff0e0000";
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33 phy@c {

34 reg = <0xc>;

35 ti,rx-internal-delay = <0x8>;

36 ti,tx-internal-delay = <0xa>;

37 ti,fifo-depth = <0x1>;

38 ti,rxctrl-strap-worka;

39 phandle = <0x2>;

40 };

41 };

42 };

43 };



Appendix C

Dts file with shared memory

File for the shared memory passthrough dtb. This file is composed by the reserved memory range

that the new domain should be access:

1 /dts-v1/;

2

3 / {

4 #address-cells = <0x02>;

5 #size-cells = <0x02>;

6 passthrough {

7 #address-cells = <0x02>;

8 #size-cells = <0x02>;

9 ranges;

10 reserved-memory {

11 #address-cells = <0x02>;

12 #size-cells = <0x02>;

13 ranges;

14

15 xen-shmem@70000000 {

16 compatible = "xen,shared-memory-v1";

17 reg = <0x0 0x70000000 0x0 0x1000>;

18 };

19 };

20 memory {

21 device_type = "memory";

22 reg = <0x0 0x70000000 0x0 0x1000>;

23 };

24 };

25 };
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Kernel module files

File used for the Dom1 (receiver) kernel module.

This file is composed by:

• The libraries used:

1 #include <linux/kernel.h>

2 #include <linux/module.h>

3 #include <linux/of_address.h>

4 #include <linux/of_irq.h>

5 #include <xen/events.h>

6 #include <xen/xenbus.h>

7 #include <xen/xen.h>

8 #include <linux/init.h>

9 #include <linux/module.h>

10 #include <linux/debugfs.h>

11 #include <linux/fs.h>

12 #include <linux/uaccess.h>

13 #include <linux/slab.h>

14 #include <xen/events.h>

15 #include <xen/xen.h>

16

• Module information:

1 MODULE_LICENSE("GPL");

2 MODULE_AUTHOR

3 ("Xilinx Inc.");

4 MODULE_DESCRIPTION

5 ("testmodule - loadable module template generated by petalinux-create -t

modules");

6

• The callback functions and other structures:

1 static char *shared_mem;

63
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2 static int irq1,irq2,irq3,irq4;

3 static int count=0;

4 static int random_numbers[4];

5 static int count1=0;

6 static int count2=0;

7 static int count3=0;

8 int count_total1=0;

9 int count_total2=0;

10 int count_total3=0;

11

12 struct timespec64 current_time_new, last_interrupt_time, delta_time_new;

13

14

15 void multiply_and_print_matrix(int *numbers) {

16

17 int matrix[2][2]; // Define a 2x2 matrix

18 int result[2][2] = {0}; // Define a 2x2 result matrix

19 int i, j, k;

20 // Arrange the numbers into the matrix

21 matrix[0][0] = numbers[0];

22 matrix[0][1] = numbers[1];

23 matrix[1][0] = numbers[2];

24 matrix[1][1] = numbers[3];

25 // Multiply the matrix by itself

26 for(i = 0; i < 2; ++i) {

27 for(j = 0; j < 2; ++j) {

28 for(k = 0; k < 2; ++k) {

29 result[i][j] += matrix[i][k] * matrix[k][j];

30 }

31 }

32 }

33 // Print the resulting matrix

34 /*for(i = 0; i < 2; ++i) {

35 for(j = 0; j < 2; ++j) {

36 printk(KERN_INFO "%d ", result[i][j]);

37 }

38 printk(KERN_INFO "\n");

39 }*/

40 }

41

42 void get_evtchn_ts(void)

43 {

44 /* Get the current time */

45 ktime_get_real_ts64(&current_time_new);

46

47 /* Calculate the time difference */

48 delta_time_new = timespec64_sub(current_time_new, last_interrupt_time);

49

50 if (last_interrupt_time.tv_sec==0 || delta_time_new.tv_sec>5)
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51 {

52 printk(KERN_ALERT "First ts");

53 }

54 else

55 {

56 printk(KERN_ALERT "Time:%lld.%09ld", (long long)delta_time_new.tv_sec,

delta_time_new.tv_nsec);

57

58 }

59 /* Store the current time for the next calculation */

60 last_interrupt_time = current_time_new;

61 }

62 static irqreturn_t evtchn_handler1(int port,void *data)

63 {

64 //get_evtchn_ts();

65 count1++;

66 /* Print the time difference in seconds and nanoseconds */

67 xen_irq_lateeoi(irq1,0);

68 return IRQ_HANDLED;

69 }

70

71 static irqreturn_t evtchn_handler2(int port,void *data)

72 {

73 memcpy(&count, shared_mem+16, sizeof(count));

74 //get_evtchn_ts();

75 count2++;

76 /* Print the time difference in seconds and nanoseconds */

77 xen_irq_lateeoi(irq2,0);

78 return IRQ_HANDLED;

79 }

80 static irqreturn_t evtchn_handler3(int port,void *data)

81 {

82 memcpy(&random_numbers, shared_mem+20, sizeof(random_numbers));

83 multiply_and_print_matrix(random_numbers);

84 //get_evtchn_ts();

85 count3++;

86 /* Print the time difference in seconds and nanoseconds */

87 xen_irq_lateeoi(irq3,0);

88 return IRQ_HANDLED;

89 }

90

91 static irqreturn_t evtchn_handler4(int port,void *data)

92 {

93 count_total1=count_total1+count1;

94 count_total2=count_total2+count2;

95 count_total3=count_total3+count3;

96 printk(KERN_ALERT "\n\nFirst interrupt activated:%d\n", count1);

97 printk(KERN_ALERT "Second interrupt activated:%d\n", count2);

98 printk(KERN_ALERT "Third interrupt activated:%d\n\n", count3);
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99 printk(KERN_ALERT "\n\nFirst interrupt activated in total:%d\n",

count_total1);

100 printk(KERN_ALERT "Second interrupt activated in total:%d\n",

count_total2);

101 printk(KERN_ALERT "Third interrupt activated in total:%d\n\n",

count_total3);

102 printk(KERN_ALERT "______________________________");

103 count1=0;

104 count2=0;

105 count3=0;

106 /* Print the time difference in seconds and nanoseconds */

107 xen_irq_lateeoi(irq4,0);

108 return IRQ_HANDLED;

109 }

110

• The function executed when the module is installed in the system:

1 static int __init testmodule_init(void)

2 {

3 struct evtchn_alloc_unbound evtchn_alloc1,evtchn_alloc2,evtchn_alloc3,

evtchn_alloc4;

4 int rc,rc1,rc2,rc3,rc4;

5 char *str = "go";

6 struct device_node *np = of_find_compatible_node(NULL,NULL,"xen,shared-

memory-v1");

7 struct resource r;

8

9 if (np==NULL)

10 {

11 return -ENODEV;

12 }

13 rc= of_address_to_resource(np,0,&r);

14

15 if(rc<0)

16 {

17 return -EINVAL;

18 }

19 shared_mem=phys_to_virt(r.start);

20 if(!shared_mem)

21 {

22 return -EINVAL;

23 }

24

25 evtchn_alloc1.dom=DOMID_SELF;

26 evtchn_alloc1.remote_dom=2;

27 rc1= HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, &evtchn_alloc1);

28 if (rc1==0)

29 {

30 printk(KERN_ALERT "EVENT CHANNEL 1 CREATED\n");
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31 }

32 else

33 {

34 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

35 return rc1;

36 }

37 rc1 = bind_evtchn_to_irqhandler_lateeoi(evtchn_alloc1.port, evtchn_handler1

, 0, "Domain-0_1", NULL);

38 evtchn_alloc2.dom=DOMID_SELF;

39 evtchn_alloc2.remote_dom=2;

40 rc2= HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, &evtchn_alloc2);

41 if (rc2==0)

42 {

43 printk(KERN_ALERT "EVENT CHANNEL 2 CREATED\n");

44 }

45 else

46 {

47 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

48 return rc2;

49 }

50 rc2 = bind_evtchn_to_irqhandler_lateeoi(evtchn_alloc2.port, evtchn_handler2

, 0, "Domain-0_2", NULL);

51 evtchn_alloc3.dom=DOMID_SELF;

52 evtchn_alloc3.remote_dom=2;

53 rc3= HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, &evtchn_alloc3);

54 if (rc3==0)

55 {

56 printk(KERN_ALERT "EVENT CHANNEL 3 CREATED\n");

57 }

58 else

59 {

60 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

61 return rc3;

62 }

63 rc3 = bind_evtchn_to_irqhandler_lateeoi(evtchn_alloc3.port, evtchn_handler3

, 0, "Domain-0_3", NULL);

64 evtchn_alloc4.dom=DOMID_SELF;

65 evtchn_alloc4.remote_dom=2;

66 rc4= HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, &evtchn_alloc4);

67 if (rc4==0)

68 {

69 printk(KERN_ALERT "EVENT CHANNEL 4 CREATED\n");

70 }

71 else

72 {

73 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

74 return rc4;

75 }



Kernel module files 68

76 rc4 = bind_evtchn_to_irqhandler_lateeoi(evtchn_alloc4.port, evtchn_handler4

, 0, "Domain-0_4", NULL);

77 irq1=rc1;

78 irq2=rc2;

79 irq3=rc3;

80 irq4=rc4;

81 memcpy(shared_mem+4, &evtchn_alloc1.port, sizeof(evtchn_alloc1.port));

82 mb();

83 memcpy(shared_mem+8, &evtchn_alloc2.port, sizeof(evtchn_alloc2.port));

84 mb();

85 memcpy(shared_mem+12, &evtchn_alloc3.port, sizeof(evtchn_alloc3.port));

86 mb();

87 memcpy(shared_mem+40, &evtchn_alloc4.port, sizeof(evtchn_alloc4.port));

88 mb();

89 memcpy(shared_mem, str, 3);

90 return 0;

91 }

92

93

• The function executed when the module is uninstalled:

1 static void __exit testmodule_exit(void)

2 {

3 printk(KERN_ALERT "Goodbye module world.\n");

4 }

5 module_init(testmodule_init);

6 module_exit(testmodule_exit);

7

File used for the Dom2 (sender) kernel module: This file is composed by:

• The libraries used:

1 #include <linux/kernel.h>

2 #include <linux/module.h>

3 #include <linux/of_address.h>

4 #include <linux/of_irq.h>

5 #include <linux/kthread.h>

6 #include <linux/delay.h>

7 #include <xen/events.h>

8 #include <xen/xenbus.h>

9 #include <xen/xen.h>

10 #include <linux/jiffies.h>

11

• Module information:

1 MODULE_LICENSE("GPL");
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2 MODULE_AUTHOR

3 ("Xilinx Inc.");

4 MODULE_DESCRIPTION

5 ("testmodule - loadable module template generated by petalinux-create -t

modules");

6

• The threads used for testing, functions and other structures:

1 static char *shared_mem;

2 static int irq;

3 static struct evtchn_send send1,send2,send3,send4;

4 static struct task_struct *task;

5 static int num_interrupts=0;

6 static int interrupts1=0;

7 static int interrupts2=0;

8 static int interrupts3=0;

9 /*Execute task1 with X sec between notification*/

10 void task1(int time)

11 {

12 unsigned long start_time_new = jiffies; // get the current time

13 unsigned long end_time_new = start_time_new + 20*HZ; // 60 seconds later

14 while (time_before(jiffies, end_time_new)) {

15 HYPERVISOR_event_channel_op(EVTCHNOP_send, &send1);

16 interrupts1++;

17 msleep(time);

18 }

19 HYPERVISOR_event_channel_op(EVTCHNOP_send, &send4);

20 printk(KERN_ALERT "NOTIFIED %d times \n",interrupts1);

21 interrupts1=0;

22 }

23

24 /*Execute task2 with X sec between notification*/

25 void task2(int time)

26 {

27 int count=1;

28 unsigned long start_time_new = jiffies; // get the current time

29 unsigned long end_time_new = start_time_new + 20*HZ; // 60 seconds later

30 while (time_before(jiffies, end_time_new)) {

31 memcpy(shared_mem+16, &count, sizeof(count));

32 HYPERVISOR_event_channel_op(EVTCHNOP_send, &send2);

33 count++;

34 interrupts2++;

35 msleep(time);

36 }

37 HYPERVISOR_event_channel_op(EVTCHNOP_send, &send4);

38 printk(KERN_ALERT "NOTIFIED %d times \n",interrupts2);

39 interrupts2=0;

40 }

41
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42 /*Execute task3 with X sec between notification*/

43 void task3(int time)

44 {

45 int random_numbers[4]; // Array to hold four random numbers

46 unsigned long start_time_new = jiffies; // get the current time

47 unsigned long end_time_new = start_time_new + 20*HZ; // 60 seconds later

48 while (time_before(jiffies, end_time_new)) {

49 // Generate 4 random numbers

50 for (int i=0; i<4; ++i) {

51 get_random_bytes(&random_numbers[i], sizeof(int));

52 }

53 // Copy the 4 random numbers to the shared memory

54 memcpy(shared_mem+20, &random_numbers, sizeof(random_numbers));

55 HYPERVISOR_event_channel_op(EVTCHNOP_send, &send3);

56 interrupts3++;

57 msleep(time);

58 }

59 HYPERVISOR_event_channel_op(EVTCHNOP_send, &send4);

60 printk(KERN_ALERT "NOTIFIED %d times \n",interrupts3);

61 interrupts3=0;

62 }

63

64

65 static int thread_function1(void *data)

66 {

67 printk(KERN_ALERT "....EXECUTING THE FIRST TEST....\n");

68 printk(KERN_ALERT "NOTIFYING EVERY 1 SEC\n");

69 task1(1000);

70 printk(KERN_ALERT "NOTIFYING EVERY 0.1 SEC\n");

71 task1(100);

72 printk(KERN_ALERT "NOTIFYING EVERY 0.01 SEC\n");

73 task1(10);

74 printk(KERN_ALERT "NOTIFYING EVERY 0.001 SEC\n");

75 task1(1);

76 printk(KERN_ALERT "....ENDING THE FIRST TEST....\n");

77 return 0;

78 }

79

80 static int thread_function2(void *data)

81 {

82 printk(KERN_ALERT "....EXECUTING THE SECOND TEST....\n");

83 printk(KERN_ALERT "NOTIFYING EVERY 1 SEC\n");

84 task2(1000);

85 printk(KERN_ALERT "NOTIFYING EVERY 0.1 SEC\n");

86 task2(100);

87 printk(KERN_ALERT "NOTIFYING EVERY 0.01 SEC\n");

88 task2(10);

89 printk(KERN_ALERT "NOTIFYING EVERY 0.001 SEC\n");

90 task2(1);
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91 printk(KERN_ALERT "....ENDING THE SECOND TEST....\n");

92 return 0;

93 }

94

95 static int thread_function3(void *data)

96 {

97 printk(KERN_ALERT "....EXECUTING THE THIRD TEST....\n");

98 printk(KERN_ALERT "NOTIFYING EVERY 1 SEC\n");

99 task3(1000);

100 printk(KERN_ALERT "NOTIFYING EVERY 0.1 SEC\n");

101 task3(100);

102 printk(KERN_ALERT "NOTIFYING EVERY 0.01 SEC\n");

103 task3(10);

104 printk(KERN_ALERT "NOTIFYING EVERY 0.001 SEC\n");

105 task3(1);

106 printk(KERN_ALERT "....ENDING THE THIRD TEST....\n");

107 return 0;

108 }

109

• The function executed when the module is installed in the system:

1 static int __init testmodule_init(void)

2 {

3 struct evtchn_bind_interdomain evtchn_alloc1,evtchn_alloc2,evtchn_alloc3,

evtchn_alloc4;

4 int rc,rc1,rc2,rc3,rc4;

5 struct device_node *np = of_find_compatible_node(NULL,NULL,"xen,shared-

memory-v1");

6 struct resource r;

7 if (np==NULL)

8 {

9 return -ENODEV;

10 }

11 rc= of_address_to_resource(np,0,&r);

12 if(rc<0)

13 {

14 return -EINVAL;

15 }

16 shared_mem=phys_to_virt(r.start);

17 if(!shared_mem)

18 {

19 return -EINVAL;

20 }

21 while (1)

22 {

23 if (strcmp(shared_mem,"go")==0)

24 {

25 break;

26 }
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27 }

28 mb();

29 memcpy(&evtchn_alloc1.remote_port, shared_mem+4, sizeof(evtchn_alloc1.

remote_port));

30 evtchn_alloc1.remote_dom=1;

31 evtchn_alloc1.local_port=0;

32 rc1= HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain, &evtchn_alloc1)

;

33 if (rc1==0)

34 {

35 printk(KERN_ALERT "EVENT CHANNEL CREATED\n");

36 }

37 else

38 {

39 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

40 return rc1;

41 }

42 send1.port = evtchn_alloc1.local_port;

43 memcpy(&evtchn_alloc2.remote_port, shared_mem+8, sizeof(evtchn_alloc2.

remote_port));

44 evtchn_alloc2.remote_dom=1;

45 evtchn_alloc2.local_port=0;

46 rc2= HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain, &evtchn_alloc2)

;

47 if (rc2==0)

48 {

49 printk(KERN_ALERT "EVENT CHANNEL CREATED\n");

50 }

51 else

52 {

53 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

54 return rc2;

55 }

56 send2.port = evtchn_alloc2.local_port;

57 memcpy(&evtchn_alloc3.remote_port, shared_mem+12, sizeof(evtchn_alloc3.

remote_port));

58 evtchn_alloc3.remote_dom=1;

59 evtchn_alloc3.local_port=0;

60 rc3= HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain, &evtchn_alloc3)

;

61 if (rc3==0)

62 {

63 printk(KERN_ALERT "EVENT CHANNEL CREATED\n");

64 }

65 else

66 {

67 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

68 return rc3;

69 }
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70 send3.port = evtchn_alloc3.local_port;

71 memcpy(&evtchn_alloc4.remote_port, shared_mem+40, sizeof(evtchn_alloc4.

remote_port));

72 evtchn_alloc4.remote_dom=1;

73 evtchn_alloc4.local_port=0;

74 rc4= HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain, &evtchn_alloc4)

;

75 if (rc4==0)

76 {

77 printk(KERN_ALERT "EVENT CHANNEL CREATED\n");

78 }

79 else

80 {

81 printk(KERN_ALERT "EVENT CHANNEL NOTCREATED\n");

82 return rc4;

83 }

84 send4.port = evtchn_alloc4.local_port;

85 task = kthread_run(thread_function1, NULL, "domain1_thread");

86 if (IS_ERR(task)) {

87 iounmap(shared_mem);

88 return PTR_ERR(task);

89 }

90 msleep(87000);

91 printk(KERN_ALERT "....STARTING TEST IN 3....\n");

92 msleep(1000);

93 printk(KERN_ALERT "....STARTING TEST IN 2....\n");

94 msleep(1000);

95 printk(KERN_ALERT "....STARTING TEST IN 1....\n");

96 msleep(1000);

97 task = kthread_run(thread_function2, NULL, "domain1_thread");

98 if (IS_ERR(task)) {

99 iounmap(shared_mem);

100 return PTR_ERR(task);

101 }

102 msleep(87000);

103 printk(KERN_ALERT "....STARTING TEST IN 3....\n");

104 msleep(1000);

105 printk(KERN_ALERT "....STARTING TEST IN 2....\n");

106 msleep(1000);

107 printk(KERN_ALERT "....STARTING TEST IN 1....\n");

108 msleep(1000);

109 printk(KERN_ALERT "....EXECUTING THE THIRD TEST....\n");

110 task = kthread_run(thread_function3, NULL, "domain1_thread");

111 if (IS_ERR(task)) {

112 iounmap(shared_mem);

113 return PTR_ERR(task);

114 }

115 return 0;

116 }
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117

118

• The function executed when the module is uninstalled:

1 static void __exit testmodule_exit(void)

2 {

3 printk(KERN_ALERT "Goodbye module world.\n");

4 }

5

6 module_init(testmodule_init);

7 module_exit(testmodule_exit);

8
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Zephyr RTOS build process

This procedure was executed in the following environment:

• Host PC with Linux OS • zephyr-sdk-0.16.1 already installed

The first step is initializing the virtual environment:

1 source ~/zephyrproject/.venv/bin/activate

Then, the board xenvm was used to compile the .bin files needed.

1 west build -p always -b xenvm <path to project> -d <path to output directory> -f
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CPU load files

This was the c file used for the tests executed in the event channel demonstration. This file is

composed by:

• The libraries used:

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <time.h>

4

• The function used to stress the CPU:

1 #define NANOSECONDS_PER_SECOND 1E9

2 void do_work_for(long nanoseconds) {

3 // Get the current time

4 struct timespec start_time, current_time;

5 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_time);

6

7 do {

8 // Get the current time

9 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &current_time);

10

11 // Break if we’ve worked long enough

12 if ((current_time.tv_sec - start_time.tv_sec) *

NANOSECONDS_PER_SECOND + (current_time.tv_nsec - start_time.tv_nsec) >=

nanoseconds) {

13 break;

14 }

15 } while (1);

16 }

17 void sleep_for(long nanoseconds) {

18 struct timespec time;

19 time.tv_sec = nanoseconds / NANOSECONDS_PER_SECOND;

20 time.tv_nsec = nanoseconds % (long)NANOSECONDS_PER_SECOND;

21 nanosleep(&time, NULL);
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22 }

23

• The main function used:

1 int main() {

2 double target_usage = <desired load>; // Target CPU usage, e.g., 0.2 for

20%

3

4 while(1) {

5 // Time spent working

6 do_work_for(NANOSECONDS_PER_SECOND * target_usage);

7

8 // Time spent sleeping

9 sleep_for(NANOSECONDS_PER_SECOND * (1.0 - target_usage));

10 }

11

12 return 0;

13 }

14
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Zephyr RTOS dom0less domain file

This file is composed by:

• The libraries used:

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <time.h>

4

• The hypercall structure used to print directly into the Xen console:

1 #define HYPERVISOR_console_io 18

2 #define CONSOLEIO_write 0

3 /* hypercalls */

4 static inline int64_t xen_hypercall(unsigned long arg0, unsigned long arg1,

5 unsigned long arg2, unsigned long arg3,

6 unsigned long hypercall)

7 {

8 register uintptr_t a0 asm("x0") = arg0;

9 register uintptr_t a1 asm("x1") = arg1;

10 register uintptr_t a2 asm("x2") = arg2;

11 register uintptr_t a3 asm("x3") = arg3;

12 register uintptr_t nr asm("x16") = hypercall;

13 asm volatile("hvc 0xea1\n"

14 : "=r" (a0), "=r"(a1), "=r" (a2), "=r" (a3), "=r" (nr)

15 : "0" (a0),

16 "r" (a1),

17 "r" (a2),

18 "r" (a3),

19 "r" (nr));

20 return a0;

21 }

22

23 static inline void xen_console_write(const char *str)

24 {

25 ssize_t len = strlen(str);
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26 xen_hypercall(CONSOLEIO_write, len, (unsigned long)str, 0,

27 HYPERVISOR_console_io);

28 }

29

30 static inline void xen_printf(const char *fmt, ...)

31 {

32 char buf[128];

33 va_list ap;

34 char *str = &buf[0];

35 memset(buf, 0x0, 128);

36 va_start(ap, fmt);

37 vsprintf(str, fmt, ap);

38 va_end(ap);

39 xen_console_write(buf);

40 }

41

• The main function used:

1 int main()

2 {

3 xen_printf("Hello World\n\r");

4 return 0;

5 }

6
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Zephyr RTOS test file

This was the c file used for the Zephyr RTOS build to test the lowest time value between of the

event channels.

This file is composed by:

• The libraries used:

1 #include <zephyr/kernel.h>

2 #include <zephyr/sys/printk.h>

3 #include <zephyr/xen/events.h>

4 #include <string.h>

5 #include <zephyr/random/rand32.h>

6

• The threads used for testing, functions and other structures:

1 static char *shared_mem = (char *)0x70000000;

2 static struct evtchn_send send1,send2,send3,send4;

3 K_THREAD_STACK_DEFINE(my_stack_area, 1024);

4 struct k_thread my_thread1;

5 struct k_thread my_thread2;

6 struct k_thread my_thread3;

7 int counting1=0;

8 int counting2=0;

9 int counting3=0;

10 int random_numbers[4];

11 int count=1;

12 void timer_expiry_function1(struct k_timer *timer_id)

13 {

14 notify_evtchn(send1.port);

15 counting1++;

16 }

17 void timer_expiry_function2(struct k_timer *timer_id)

18 {

19 memcpy(shared_mem+16, &count, sizeof(count));

20 notify_evtchn(send2.port);

80
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21 count++;

22 counting2++;

23 }

24 void timer_expiry_function3(struct k_timer *timer_id)

25 {

26 for (int i=0; i<4; ++i) {

27 random_numbers[i]=7;

28 }

29 memcpy(shared_mem+20, &random_numbers, sizeof(random_numbers));

30 notify_evtchn(send3.port);

31 counting3++;

32 }

33 K_TIMER_DEFINE(my_timer1, timer_expiry_function1, NULL);

34 K_TIMER_DEFINE(my_timer2, timer_expiry_function2, NULL);

35 K_TIMER_DEFINE(my_timer3, timer_expiry_function3, NULL);

36 void task1(int time)

37 {

38 k_timer_start(&my_timer1, K_USEC(time), K_USEC(time));

39 /* Wait for 20 seconds */

40 k_sleep(K_SECONDS(10));

41 /* After 20 seconds, stop the timer */

42 k_timer_stop(&my_timer1);

43 notify_evtchn(send4.port);

44 printk("....Notified %d times....\n",counting1);

45 }

46 void task2(int time)

47 {

48 k_timer_start(&my_timer2, K_USEC(time), K_USEC(time));

49 /* Wait for 20 seconds */

50 k_sleep(K_SECONDS(10));

51 /* After 20 seconds, stop the timer */

52 k_timer_stop(&my_timer2);

53 notify_evtchn(send4.port);

54 printk("....Notified %d times....\n",counting2);

55 }

56 void task3(int time)

57 {

58 k_timer_start(&my_timer3, K_USEC(time), K_USEC(time));

59 /* Wait for 20 seconds */

60 k_sleep(K_SECONDS(10));

61 /* After 20 seconds, stop the timer */

62 k_timer_stop(&my_timer3);

63 notify_evtchn(send4.port);

64 printk("....Notified %d times....\n",counting3);

65 }

66 void thread_function1(void *dummy1, void *dummy2, void *dummy3)

67 {

68 printk("....EXECUTING THE FIRST TEST....\n");

69 int time=1000;



Zephyr RTOS test file 82

70 while(1)

71 {

72 counting1=0;

73 task1(time);

74 if(counting1<(10/(time*0.000001)))

75 {

76 printk("Maximum in test1 is %d micro\n", time);

77 break;

78 }

79 else

80 {

81 time=time*0.1;

82 printk("Testing %d micro\n", time);

83 }

84 }

85 printk("....ENDING THE FIRST TEST....\n");

86 }

87 void thread_function2(void *dummy1, void *dummy2, void *dummy3)

88 {

89 printk("....EXECUTING THE SECOND TEST....\n");

90 int time=1000;

91 while(1)

92 {

93 counting2=0;

94 task2(time);

95

96 if(counting2<(10/(time*0.000001)))

97 {

98 printk("Maximum in test2 is %d micro\n", time);

99 break;

100 }

101 else

102 {

103 time=time*0.1;

104 printk("Testing %d micro\n", time);

105 }

106 }

107 printk("....ENDING THE SECOND TEST....\n");

108 }

109 void thread_function3(void *dummy1, void *dummy2, void *dummy3)

110 {

111 printk("....EXECUTING THE THIRD TEST....\n");

112 int time=1000;

113 while(1)

114 {

115 counting3=0;

116 task3(time);

117

118 if(counting3<(10/(time*0.000001)))
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119 {

120 printk("Maximum in test3 is %d micro\n", time);

121 break;

122 }

123 else

124 {

125 time=time*0.1;

126 printk("Testing %d micro\n", time);

127 }

128 }

129 printk("....ENDING THE THIRD TEST....\n");

130 }

131

• The main function used:

1 void main(void) {

2

3 uint16_t remote_port;

4 uint16_t remote_domid = 1;

5 while (1)

6 {

7 if (strcmp(shared_mem,"go")==0)

8 {

9 break;

10 }

11 }

12 memcpy(&remote_port, shared_mem + 4, sizeof(remote_port));

13 send1.port=bind_interdomain_event_channel(remote_domid, remote_port, NULL,

NULL);

14 if (send1.port!=0)

15 {

16 printk("EVENT CHANNEL CREATED\n");

17 }

18 else

19 {

20 printk("EVENT CHANNEL NOTCREATED\n");

21 }

22 memcpy(&remote_port, shared_mem + 8, sizeof(remote_port));

23 send2.port=bind_interdomain_event_channel(remote_domid, remote_port, NULL,

NULL);

24 if (send2.port!=0)

25 {

26 printk("EVENT CHANNEL CREATED\n");

27 }

28 else

29 {

30 printk("EVENT CHANNEL NOTCREATED\n");

31 }

32 memcpy(&remote_port, shared_mem + 12, sizeof(remote_port));
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33

34 send3.port=bind_interdomain_event_channel(remote_domid, remote_port, NULL,

NULL);

35

36 if (send3.port!=0)

37 {

38 printk("EVENT CHANNEL CREATED\n");

39 }

40 else

41 {

42 printk("EVENT CHANNEL NOTCREATED\n");

43 }

44 memcpy(&remote_port, shared_mem + 40, sizeof(remote_port));

45 send4.port=bind_interdomain_event_channel(remote_domid, remote_port, NULL,

NULL);

46 if (send4.port!=0)

47 {

48 printk("EVENT CHANNEL CREATED\n");

49 }

50 else

51 {

52 printk("EVENT CHANNEL NOTCREATED\n");

53 }

54 notify_evtchn(send4.port);

55 k_sleep(K_SECONDS(10));

56 k_thread_create(&my_thread1, my_stack_area,

57 K_THREAD_STACK_SIZEOF(my_stack_area),

58 thread_function1,

59 NULL, NULL, NULL,

60 K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

61 k_sleep(K_SECONDS(100));

62 k_thread_create(&my_thread2, my_stack_area,

63 K_THREAD_STACK_SIZEOF(my_stack_area),

64 thread_function2,

65 NULL, NULL, NULL,

66 K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

67 k_sleep(K_SECONDS(100));

68 k_thread_create(&my_thread3, my_stack_area,

69 K_THREAD_STACK_SIZEOF(my_stack_area),

70 thread_function3,

71 NULL, NULL, NULL,

72 K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

73

74 }

75



Appendix I

Openamp APU and RPU files

This was the filed used for the RPU slave firmware.

This file is composed by:

• The libraries used:

1 #include "xil_printf.h"

2 #include <stdlib.h>

3 #include <string.h>

4 #include <openamp/open_amp.h>

5 #include "matrix_multiply.h"

6 #include "platform_info.h"

7

• The multiplication function used:

1 #define MAX_SIZE 6

2 #define NUM_MATRIX 2

3 #define SHUTDOWN_MSG 0xEF56A55A

4 #define LPRINTF(fmt, ...) xil_printf("%s():%u " fmt, __func__, __LINE__, ##

__VA_ARGS__)

5 #define LPERROR(fmt, ...) LPRINTF("ERROR: " fmt, ##__VA_ARGS__)

6 typedef struct _matrix {

7 unsigned int size;

8 unsigned int elements[MAX_SIZE][MAX_SIZE];

9 } matrix;

10

11 static struct rpmsg_endpoint lept;

12 static int shutdown_req = 0;

13 static void Matrix_Multiply(const matrix *m, const matrix *n, matrix *r)

14 {

15 unsigned int i, j, k;

16

17 memset(r, 0x0, sizeof(matrix));

18 r->size = m->size;

19

85
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20 for (i = 0; i < m->size; ++i) {

21 for (j = 0; j < n->size; ++j) {

22 for (k = 0; k < r->size; ++k) {

23 r->elements[i][j] +=

24 m->elements[i][k] * n->elements[k][j];

25 }

26 }

27 }

28 }

29

• The callback function executed when the RPU gets notified and when the RPU gets
notified with a shutdown:

1 static int rpmsg_endpoint_cb(struct rpmsg_endpoint *ept, void *data, size_t

len,

2 uint32_t src, void *priv)

3 {

4 matrix matrix_array[NUM_MATRIX];

5 matrix matrix_result;

6

7 (void)priv;

8 (void)src;

9

10 if ((*(unsigned int *)data) == SHUTDOWN_MSG) {

11 ML_INFO("shutdown message is received.\r\n");

12 return RPMSG_SUCCESS;

13 }

14

15 memcpy(matrix_array, data, len);

16 /* Process received data and multiple matrices. */

17 Matrix_Multiply(&matrix_array[0], &matrix_array[1], &matrix_result);

18

19 /* Send the result of matrix multiplication back to host. */

20 if (rpmsg_send(ept, &matrix_result, sizeof(matrix)) < 0) {

21 ML_ERR("rpmsg_send failed\r\n");

22 }

23 return RPMSG_SUCCESS;

24 }

25

26 static void rpmsg_service_unbind(struct rpmsg_endpoint *ept)

27 {

28 (void)ept;

29 ML_ERR("Endpoint is destroyed\r\n");

30 }

31

32

• Main function where the setup is initialized and the RPU waits for notifications:
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1 int app(struct rpmsg_device *rdev, void *priv)

2 {

3 int ret;

4 ret = rpmsg_create_ept(&lept, rdev, RPMSG_SERVICE_NAME,

5 RPMSG_ADDR_ANY, RPMSG_ADDR_ANY,

6 rpmsg_endpoint_cb,

7 rpmsg_service_unbind);

8 if (ret) {

9 ML_ERR("Failed to create endpoint.\r\n");

10 return -1;

11 }

12 ML_INFO("Waiting for events...\r\n");

13 while(1) {

14 platform_poll(priv);

15 /* we got a shutdown request, exit */

16 if (shutdown_req) {

17 break;

18 }

19 }

20 rpmsg_destroy_ept(&lept);

21 return 0;

22 }

23

24 int main(int argc, char *argv[])

25 {

26 void *platform;

27 struct rpmsg_device *rpdev;

28 int ret;

29 LPRINTF("Starting application...\r\n");

30 /* Initialize platform */

31 ret = platform_init(argc, argv, &platform);

32 if (ret) {

33 LPERROR("Failed to initialize platform.\r\n");

34 ret = -1;

35 } else {

36 rpdev = platform_create_rpmsg_vdev(platform, 0,

37 VIRTIO_DEV_DEVICE,

38 NULL, NULL);

39 if (!rpdev) {

40 ML_ERR("Failed to create rpmsg virtio device.\r\n");

41 ret = -1;

42 } else {

43 app(rpdev, platform);

44 platform_release_rpmsg_vdev(rpdev, platform);

45 ret = 0;

46 }

47 }

48 ML_INFO("Stopping application...\r\n");

49 platform_cleanup(platform);
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50 return ret;

51 }

52

This was the file used for the APU master application:

This file is composed by:

• The libraries used:

1 #include <dirent.h>

2 #include <errno.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <limits.h>

6 #include <unistd.h>

7 #include <sys/ioctl.h>

8 #include <time.h>

9 #include <fcntl.h>

10 #include <string.h>

11 #include <linux/rpmsg.h>

12

• The matrix multiplication functions used:

1 #define RPMSG_BUS_SYS "/sys/bus/rpmsg"

2 #define PR_DBG(fmt, args ...) printf("%s():%u "fmt, __func__, __LINE__, ##

args)

3 #define SHUTDOWN_MSG 0xEF56A55A

4 #define MATRIX_SIZE 6

5 struct _matrix {

6 unsigned int size;

7 unsigned int elements[MATRIX_SIZE][MATRIX_SIZE];

8 };

9 static void matrix_print(struct _matrix *m)

10 {

11 int i, j;

12

13 /* Generate two random matrices */

14 printf(" \r\n Master : Linux : Printing results \r\n");

15

16 for (i = 0; i < m->size; ++i) {

17 for (j = 0; j < m->size; ++j)

18 printf(" %d ", (unsigned int)m->elements[i][j]);

19 printf("\r\n");

20 }

21 }

22 static void generate_matrices(int num_matrices,

23 unsigned int matrix_size, void *p_data)

24 {
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25 int i, j, k;

26 struct _matrix *p_matrix = p_data;

27 time_t t;

28 unsigned long value;

29 srand((unsigned) time(&t));

30 for (i = 0; i < num_matrices; i++) {

31 /* Initialize workload */

32 p_matrix[i].size = matrix_size;

33

34 printf(" \r\n Master : Linux : Input matrix %d \r\n", i);

35 for (j = 0; j < matrix_size; j++) {

36 printf("\r\n");

37 for (k = 0; k < matrix_size; k++) {

38

39 value = (rand() & 0x7F);

40 value = value % 10;

41 p_matrix[i].elements[j][k] = value;

42 printf(" %d ",

43 (unsigned int)p_matrix[i].elements[j][k]);

44 }

45 }

46 printf("\r\n");

47 }

48

49 }

50 static int charfd = -1, fd;

51 static struct _matrix i_matrix[2];

52 static struct _matrix r_matrix;

53 void matrix_mult(int ntimes)

54 {

55 int i;

56

57 for (i=0; i < ntimes; i++){

58 generate_matrices(2, MATRIX_SIZE, i_matrix);

59

60 printf("%d: write rpmsg: %lu bytes\n", i, sizeof(i_matrix));

61 ssize_t rc = write(fd, i_matrix, sizeof(i_matrix));

62 if (rc < 0)

63 fprintf(stderr, "write,errno = %ld, %d\n", rc, errno);

64

65 puts("read results");

66 do {

67 rc = read(fd, &r_matrix, sizeof(r_matrix));

68 } while (rc < (int)sizeof(r_matrix));

69 matrix_print(&r_matrix);

70 printf("End of Matrix multiplication demo Round %d\n", i);

71 }

72 }
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• The Remoteproc and RPMsg function used to communicate with the other processor:

1 void send_shutdown(int fd)

2 {

3 int sdm = SHUTDOWN_MSG;

4

5 if (write(fd, &sdm, sizeof(int)) < 0)

6 perror("write SHUTDOWN_MSG\n");

7 }

8 int rpmsg_create_ept(int rpfd, struct rpmsg_endpoint_info *eptinfo)

9 {

10 int ret;

11

12 ret = ioctl(rpfd, RPMSG_CREATE_EPT_IOCTL, eptinfo);

13 if (ret)

14 perror("Failed to create endpoint.\n");

15 return ret;

16 }

17 static char *get_rpmsg_ept_dev_name(const char *rpmsg_char_name,

18 const char *ept_name,

19 char *ept_dev_name)

20 {

21 char sys_rpmsg_ept_name_path[64];

22 char svc_name[64];

23 char *sys_rpmsg_path = "/sys/class/rpmsg";

24 FILE *fp;

25 int i;

26 int ept_name_len;

27

28 for (i = 0; i < 128; i++) {

29 sprintf(sys_rpmsg_ept_name_path, "%s/%s/rpmsg%d/name",

30 sys_rpmsg_path, rpmsg_char_name, i);

31 printf("checking %s\n", sys_rpmsg_ept_name_path);

32 if (access(sys_rpmsg_ept_name_path, F_OK) < 0)

33 continue;

34 fp = fopen(sys_rpmsg_ept_name_path, "r");

35 if (!fp) {

36 printf("failed to open %s\n", sys_rpmsg_ept_name_path);

37 break;

38 }

39 fgets(svc_name, sizeof(svc_name), fp);

40 fclose(fp);

41 printf("svc_name: %s.\n",svc_name);

42 ept_name_len = strlen(ept_name);

43 if (ept_name_len > sizeof(svc_name))

44 ept_name_len = sizeof(svc_name);

45 if (!strncmp(svc_name, ept_name, ept_name_len)) {

46 sprintf(ept_dev_name, "rpmsg%d", i);

47 return ept_dev_name;

48 }
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49 }

50

51 printf("Not able to RPMsg endpoint file for %s:%s.\n",

52 rpmsg_char_name, ept_name);

53 return NULL;

54 }

55 static int bind_rpmsg_chrdev(const char *rpmsg_dev_name)

56 {

57 char fpath[256];

58 char *rpmsg_chdrv = "rpmsg_chrdev";

59 int fd;

60 int ret;

61 /* rpmsg dev overrides path */

62 sprintf(fpath, "%s/devices/%s/driver_override",

63 RPMSG_BUS_SYS, rpmsg_dev_name);

64 PR_DBG("open %s\n", fpath);

65 fd = open(fpath, O_WRONLY);

66 if (fd < 0) {

67 fprintf(stderr, "Failed to open %s, %s\n",

68 fpath, strerror(errno));

69 return -EINVAL;

70 }

71 ret = write(fd, rpmsg_chdrv, strlen(rpmsg_chdrv) + 1);

72 if (ret < 0) {

73 fprintf(stderr, "Failed to write %s to %s, %s\n",

74 rpmsg_chdrv, fpath, strerror(errno));

75 return -EINVAL;

76 }

77 close(fd);

78

79 /* bind the rpmsg device to rpmsg char driver */

80 sprintf(fpath, "%s/drivers/%s/bind", RPMSG_BUS_SYS, rpmsg_chdrv);

81 fd = open(fpath, O_WRONLY);

82 if (fd < 0) {

83 fprintf(stderr, "Failed to open %s, %s\n",

84 fpath, strerror(errno));

85 return -EINVAL;

86 }

87 PR_DBG("write %s to %s\n", rpmsg_dev_name, fpath);

88 ret = write(fd, rpmsg_dev_name, strlen(rpmsg_dev_name) + 1);

89 if (ret < 0) {

90 fprintf(stderr, "Failed to write %s to %s, %s\n",

91 rpmsg_dev_name, fpath, strerror(errno));

92 return -EINVAL;

93 }

94 close(fd);

95 return 0;

96 }

97 static int get_rpmsg_chrdev_fd(const char *rpmsg_dev_name,
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98 char *rpmsg_ctrl_name)

99 {

100 char dpath[2*NAME_MAX];

101 DIR *dir;

102 struct dirent *ent;

103 int fd;

104

105 sprintf(dpath, "%s/devices/%s/rpmsg", RPMSG_BUS_SYS, rpmsg_dev_name);

106 PR_DBG("opendir %s\n", dpath);

107 dir = opendir(dpath);

108 if (dir == NULL) {

109 fprintf(stderr, "opendir %s, %s\n", dpath, strerror(errno));

110 return -EINVAL;

111 }

112 while ((ent = readdir(dir)) != NULL) {

113 if (!strncmp(ent->d_name, "rpmsg_ctrl", 10)) {

114 sprintf(dpath, "/dev/%s", ent->d_name);

115 closedir(dir);

116 PR_DBG("open %s\n", dpath);

117 fd = open(dpath, O_RDWR | O_NONBLOCK);

118 if (fd < 0) {

119 fprintf(stderr, "open %s, %s\n",

120 dpath, strerror(errno));

121 return fd;

122 }

123 sprintf(rpmsg_ctrl_name, "%s", ent->d_name);

124 return fd;

125 }

126 }

127

128 fprintf(stderr, "No rpmsg_ctrl file found in %s\n", dpath);

129 closedir(dir);

130 return -EINVAL;

131 }

132

133 static void set_src_dst(char *out, struct rpmsg_endpoint_info *pep)

134 {

135 long dst = 0;

136 char *lastdot = strrchr(out, ’.’);

137

138 if (lastdot == NULL)

139 return;

140 dst = strtol(lastdot + 1, NULL, 10);

141 if ((errno == ERANGE && (dst == LONG_MAX || dst == LONG_MIN))

142 || (errno != 0 && dst == 0)) {

143 return;

144 }

145 pep->dst = (unsigned int)dst;

146 }
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147

148 /*

149 * return the first dirent matching rpmsg-openamp-demo-channel

150 * in /sys/bus/rpmsg/devices/ E.g.:

151 * virtio0.rpmsg-openamp-demo-channel.-1.1024

152 */

153 static void lookup_channel(char *out, struct rpmsg_endpoint_info *pep)

154 {

155 char dpath[] = RPMSG_BUS_SYS "/devices";

156 struct dirent *ent;

157 DIR *dir = opendir(dpath);

158

159 if (dir == NULL) {

160 fprintf(stderr, "opendir %s, %s\n", dpath, strerror(errno));

161 return;

162 }

163 while ((ent = readdir(dir)) != NULL) {

164 if (strstr(ent->d_name, pep->name)) {

165 strncpy(out, ent->d_name, NAME_MAX);

166 set_src_dst(out, pep);

167 PR_DBG("using dev file: %s\n", out);

168 closedir(dir);

169 return;

170 }

171 }

172 closedir(dir);

173 fprintf(stderr, "No dev file for %s in %s\n", pep->name, dpath);

174 }

• The main function used:

1 int main(int argc, char *argv[])

2 {

3 int ntimes = 1;

4 int opt, ret;

5 char rpmsg_dev[NAME_MAX] = "virtio0.rpmsg-openamp-demo-channel.-1.0";

6 char rpmsg_char_name[16];

7 char fpath[2*NAME_MAX];

8 struct rpmsg_endpoint_info eptinfo = {

9 .name = "rpmsg-openamp-demo-channel", .src = 0, .dst = 0

10 };

11 char ept_dev_name[16];

12 char ept_dev_path[32];

13

14 printf("\r\n Matrix multiplication demo start \r\n");

15

16 /* Load rpmsg_char driver */

17 printf("\r\nMaster>probe rpmsg_char\r\n");

18 ret = system("set -x; lsmod; modprobe rpmsg_char");

19 if (ret < 0) {
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20 perror("Failed to load rpmsg_char driver.\n");

21 return -EINVAL;

22 }

23

24 lookup_channel(rpmsg_dev, &eptinfo);

25

26 while ((opt = getopt(argc, argv, "d:n:s:e:")) != -1) {

27 switch (opt) {

28 case ’d’:

29 strncpy(rpmsg_dev, optarg, sizeof(rpmsg_dev));

30 break;

31 case ’n’:

32 ntimes = atoi(optarg);

33 break;

34 case ’s’:

35 eptinfo.src = atoi(optarg);

36 break;

37 case ’e’:

38 eptinfo.dst = atoi(optarg);

39 break;

40 default:

41 printf("getopt return unsupported option: -%c\n",opt);

42 break;

43 }

44 }

45

46 sprintf(fpath, RPMSG_BUS_SYS "/devices/%s", rpmsg_dev);

47 if (access(fpath, F_OK)) {

48 fprintf(stderr, "access(%s): %s\n", fpath, strerror(errno));

49 return -EINVAL;

50 }

51 ret = bind_rpmsg_chrdev(rpmsg_dev);

52 if (ret < 0)

53 return ret;

54 charfd = get_rpmsg_chrdev_fd(rpmsg_dev, rpmsg_char_name);

55 if (charfd < 0)

56 return charfd;

57

58 /* Create endpoint from rpmsg char driver */

59 PR_DBG("rpmsg_create_ept: %s[src=%#x,dst=%#x]\n",

60 eptinfo.name, eptinfo.src, eptinfo.dst);

61 ret = rpmsg_create_ept(charfd, &eptinfo);

62 if (ret) {

63 fprintf(stderr, "rpmsg_create_ept %s\n", strerror(errno));

64 return -EINVAL;

65 }

66 if (!get_rpmsg_ept_dev_name(rpmsg_char_name, eptinfo.name,

67 ept_dev_name))

68 return -EINVAL;
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69 sprintf(ept_dev_path, "/dev/%s", ept_dev_name);

70

71 printf("open %s\n", ept_dev_path);

72 fd = open(ept_dev_path, O_RDWR | O_NONBLOCK);

73 if (fd < 0) {

74 perror(ept_dev_path);

75 close(charfd);

76 return -1;

77 }

78

79 PR_DBG("matrix_mult(%d)\n", ntimes);

80 matrix_mult(ntimes);

81

82 send_shutdown(fd);

83 close(fd);

84 if (charfd >= 0)

85 close(charfd);

86

87 printf("\r\n Quitting application .. \r\n");

88 printf(" Matrix multiply application end \r\n");

89

90 return 0;

91 }

92



Appendix J

Iperf3 test results

These are the iperf3 TCP test results with the various connections.

Explanation of Metrics:

• Transfer: This indicates the amount of data transferred during the test. It is measured in

Bytes or GBytes (Gigabytes) and shows how much data was sent or received within the

specified time interval (10 seconds in this case).

• Bitrate: The bitrate measures the average data transfer rate over the network. It represents

how many bits (or Mbits, Gbits, etc.) of data were transferred per second. Higher bitrates

generally indicate better network performance.

• Retransmissions: This metric shows the number of retransmissions that occurred during

the test. In the provided results, the value is consistently 0, which means no data packets

needed to be retransmitted due to errors or congestion.

1

2 #Linux native to PC

3 [ ID] Interval Transfer Bitrate Retr

4 [ 5] 0.00-10.00 sec 1.10 GBytes 943 Mbits/sec 0 sender

5 [ 5] 0.00-10.04 sec 1.10 GBytes 938 Mbits/sec receiver

6

7 #Dom0 to PC

8 [ ID] Interval Transfer Bitrate Retr

9 [ 5] 0.00-10.02 sec 660 MBytes 552 Mbits/sec 0 sender

10 [ 5] 0.00-10.03 sec 660 MBytes 552 Mbits/sec receiver

11

12 #Dom1 to Dom0

13 [ ID] Interval Transfer Bitrate Retr

14 [ 5] 0.00-10.00 sec 1.21 GBytes 1.04 Gbits/sec 0 sender

15 [ 5] 0.00-10.02 sec 1.20 GBytes 1.03 Gbits/sec receiver

16

17 #Dom1 to Dom0 to PC

18 [ ID] Interval Transfer Bitrate Retr

19 [ 5] 0.00-10.00 sec 620 MBytes 510 Mbits/sec 0 sender
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20 [ 5] 0.00-10.03 sec 620 MBytes 510 Mbits/sec receiver

21

22 #Dom1 to Dom2

23 [ ID] Interval Transfer Bitrate Retr

24 [ 5] 0.00-10.00 sec 1.11 GBytes 955 Mbits/sec 0 sender

25 [ 5] 0.00-10.00 sec 1.11 GBytes 952 Mbits/sec receiver

These are the iperf3 UDP test results with the various connections.

Explanation of Metrics:

• Transfer: This indicates the amount of data transferred during the test. It is measured in

Bytes or GBytes (Gigabytes) and shows how much data was sent or received within the

specified time interval (10 seconds in this case).

• Bitrate: The bitrate measures the average data transfer rate over the network. It represents

how many bits (or Mbits, Gbits, etc.) of data were transferred per second. Higher bitrates

generally indicate better network performance.

• Jitter: Jitter measures the variation in the delay of received data packets. It indicates the

irregularity in the time it takes for packets to reach the receiver. Lower jitter values suggest

a more stable network with consistent packet delivery.

• Lost/Total Datagrams (Packets): Lost/Total Datagrams (Packets): This metric shows the

number of lost data packets compared to the total number of packets transmitted. It is usually

expressed as a percentage. A lower loss percentage indicates a more reliable network.

1

2 #Linux native to PC

3 [ ID] Interval Transfer Bitrate Jitter Lost/Total

Datagrams

4 [ 5] 0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) sender

5 [ 5] 0.00-10.04 sec 1.25 MBytes 1.05 Mbits/sec 0.010 ms 0/906 (0%)

receiver

6

7 #Dom0 to PC

8 [ ID] Interval Transfer Bitrate Jitter Lost/Total

Datagrams

9 [ 5] 0.00-10.01 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) sender

10 [ 5] 0.00-10.01 sec 1.25 MBytes 1.05 Mbits/sec 0.138 ms 0/906 (0%)

receiver

11

12 #Dom1 to Dom0

13 [ ID] Interval Transfer Bitrate Jitter Lost/Total

Datagrams

14 [ 5] 0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) sender

15 [ 5] 0.00-10.01 sec 1.25 MBytes 1.05 Mbits/sec 0.003 ms 0/906 (0%)

receiver

16
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17 #Dom1 to Dom0 to PC

18 [ ID] Interval Transfer Bitrate Jitter Lost/Total

Datagrams

19 [ 5] 0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) sender

20 [ 5] 0.00-10.04 sec 1.25 MBytes 1.05 Mbits/sec 0.192 ms 0/906 (0%)

receiver

21

22 #Dom1 to Dom2

23 [ ID] Interval Transfer Bitrate Jitter Lost/Total

Datagrams

24 [ 5] 0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) sender

25 [ 5] 0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.005 ms 0/906 (0%)

receiver
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