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Resumo

O Neuroblastoma (NB) é o tipo de tumor extracraniano mais comum em casos pediátricos. De-
vido à sua baixa taxa de incidência e ao seu comportamento heterogéneo, o seu prognóstico e
escolha do melhor tratamento contsitui um desao para a patologia. Adicionalmente, a taxa de
sobrevivência de um paciente diagnosticado com NB é altamente variável, motivando para a ne-
cessidade de haver a estraticação de pacientes de acordo com o seu risco. A amplicação do
oncogene MYCN está correlacionada com NB de alto risco, sendo a deteção deste biomarcador
crucial para a seleção do tratamento e previsão do seu prognóstico. O protocolo clínico atual para
a deteção deste biomarcador recorre a procedimentos invasivos como a biópsia.

A área radiogenómica estuda a deteção de biomarcadores relevantes a partir de fenótipos em
imagens médicas, tendo sido bem sucessida para vários tipos de cancro. Após uma revisão da
literatura, abordagens radiogenómicas para a deteção do estado de MNA, embora superciais, ob-
tiveram resultados satisfatórios na previsão deste biomarcador a partir de abordagens clássicas de
Machine Learning (ML). Uma abordagem radiogenómica permite desenvolver um procedimento
não invasivo para a previsão de MNA.

O trabalho proposto nesta dissertação aborda o desenvolvimento de abordagens radiogenómi-
cas para detetar o estado do biomarcador MNA. O conjunto de dados utilizado inclui exames de
Tomograa Computadorizada (TC) e informação clínica relativa a 46 pacientes, assim como o
estado de MNA respetivo. São propostas quatro abordagens para este estudo, com o objetivo de
implementar os métodos mais utilizados em publicações anteriores. A abordagem nal inclui uma
componente de interpretabilidade, onde métodos explicáveis são implementados para avaliar a ro-
bustez da metodologia desenvolvida. Os modelos gerados obtiveram desempenhos satisfatórios
utilizando métodos semelhantes para comparação: o modelo radiómico apresentou uma AUROC
de 0,84±0,06; o modelo semântico obteve uma AUROC de 1,00±0,00; a abordagem multimodal
atingiu uma AUROC de 0,98±0,01; por m, o modelo de Deep Learning (DL) atingiu uma AU-
ROC de 0,94±0,04.
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Abstract

Neuroblastoma (NB) is the most common extracranial tumor in pediatric cases. Due to its low
incidence rate and behaviour heterogeneity, it constitute a challenging pathology in terms of prog-
nosis and treatment options. Furthermore, the outcome of patients diagnosis with NB is highly
variable, rising the need for risk stratication of the patients. The amplication of the MYCN
oncogene is knowingly correlated with high-risk NB, being the detection of this biomarker crucial
for treatment selection and survival prediction. The current clinical protocol for MNA detection
includes invasive procedures, such as biopsy.

Radiogenomics addresses the detection of important biomarkers through imaging phenotypes,
being successful in several types of cancer. As literature review is concerned, Radiogenomic ap-
proaches for MNA detection in NB patients has been supercially investigated, being able to pre-
dict the biomarker status through classical Machine Learning (ML) approaches. A Radiogenomics
approach allows a non-invasive procedure for MNA prediction.

The proposed work tackles the challenge of developing a Radiogenomics approach to detect
MNA status. The utilized dataset contains CT scans and clinical information of 46 patients, along
with the correspondent MNA status. Four different approaches are proposed for this task, with
the aim of covering the most common and state-of-the-art methods from previous publications. A
nal approach includes an interpretability component, where explainable methods are utilized to
assess the robustness of the developed pipeline. The trained models were able to achieve satis-
factory performances with the same baseline pipeline: the radiomic model presented a AUROC
of 0.84±0.06; the semantic model obtained a AUROC of 1.00±0.00; the multi-modal approach
reach a AUROC of 0.98±0.01; the Deep Learning (DL) model reached a AUROC of 0.94±0.04.
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Chapter 1

Introduction

Neuroblastoma (NB) is the leading malignant tumor in children under the age of 1 worldwide,

constituting around 30% of all diagnosed cancers among European and US infants, that by the age

of two decreases by half. Due to its sporadic nature, the challenge of studying the aetiology of this

pathology remains, being few the factors associated with the diagnosis and prognosis of NB (Heck

et al., 2009).

NB arises from malignancy of neural crest cells that endure differentiation and migration to

form the sympathetic nervous system, leading to tumor formation in various locations along the

latter, with higher frequency on the adrenal glands, but also in the abdomen, chest or pelvis. The

disease characterization follows the International Neuroblastoma Classication System to predict

prognosis (Heck et al., 2009).

Due to its clinical behavior variability, the range of possible outcomes is wide, since it can

follow three possible outcomes: spontaneous regression or maturation to a benign ganglioneu-

roma, that usually present high survival rates (80-96%), or rapid progression to life-threatening

aggressiveness, which have a survival rate lower that 50% and may include patients that do not

respond to therapy (Huang and Weiss, 2013). The survival of patients may rely on several factors,

which include the age of diagnosis and the stage and biological prole of the disease. Moreover,

a low survival probability is shown to be correlated with an advanced age of diagnosis (later than

15 months), advanced stage of the disease, and the presence of specic biomarkers, namely the

myelocytomatosis viral related oncogene, NB derived (MYCN) oncogene (Heck et al., 2009),

present in 20% of neuroblastoma cases, and in 40% of high stage tumors (Marrano et al., 2017).

1.1 Motivation

Since NB is characterized by its signicant variability of the subset of neuroblastic tumors, the

clinical protocol includes the adjustment of therapy in compliance with the predicted biological

behavior of the individual tumor, which is determined according to several factors that include

not only the age of the patient and the tumor stage, but also histological properties, tumor cell

DNA content and the MYCN oncogene, being the latter highly correlated with aggressive tumor

1
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behaviour and, consequently, poor prognosis, regardless of age and stage of the tumor (Ambros

et al., 2009). Therefore, the MYCN amplication (MNA) constitutes a key prognostic factor,

essential for the evaluation and risk stratication of this pathology (Brisse et al., 2017).

Currently, the MNA detection protocol requires the study of a tumor sample through open or

needle biopsy. These procedures are invasive, being not only painful for the patients, but also

possible of causing complications, such as hemorrhage, bowel obstruction, and infections (Wu

et al., 2021). Moreover, the study of a mass by analyzing a small portion of the latter can lead to

non-representative solutions of the totality of the tumor, especially taking into account the hetero-

geneity of NB, namely for MYCN copy number in tumor cells (Marrano et al., 2017). Thus, the

need arises to develop a non-invasive MNA detection method that is able to perform the analysis of

the whole tumor, aiding doctors in a more accurate implementation of the best course of treatment

for the patient, along with all the currently utilized diagnostic and staging tools.

Imaging techniques currently play a critical role in the clinical decision-making process in

oncology, mainly in diagnosing and staging phases, presenting several tumoral characteristics

(origin, volume, shape and local extension) that can provide relevant insights regarding the prog-

nosis (Brisse et al., 2017). Computerized Tomography (CT) is one of the recommended tech-

niques for evaluation of NB due to its fast acquisition time, therefore avoiding the need for seda-

tion (Di Giannatale et al., 2021). Moreover, imaging phenotypes have shown correlations with the

neuroblastoma tumor genomic prole (Brisse et al., 2017), motivating to the implementation of a

radiomic analysis, which is a trending domain of advanced image analysis through mathematical

computation algorithms, able to extract a large amount of features from a standard radiological im-

age (Di Giannatale et al., 2021). Radiomics derived data has been shown predictive capability of

specic gene expression patterns in different tumors. This methodology, named Radiogenomics,

provides an alternative method to assess the genotype of the patient from phenotype features that

can be acquired by medical imaging techniques (Bodalal et al., 2019; Rutman and Kuo, 2009).

This type of information could allow physicians to nd correlations with oncology-related prog-

nostic factors, constituting a predictive biomarker.

In a nutshell, the detection of biomarkers is now a hallmark for cancer treatment selection

and outcome prediction, which inherently leads to the importance of genetic proling. Radio-

genomics allows for the development of non-invasive, computer-assisted techniques to fulll the

said need (Bodalal et al., 2019). Moreover, a radiogenomic approach allows for a more com-

prehensive analysis of the tumor, since the medical exam provides a three-dimensional capture

of the tumor and, consequently, of the intra tumural heterogeneity, contributing to overcome the

sampling bias by having a more broad representation of the lesion, not mentioning the ultimate

advantage of non-invasiveness (Chen et al., 2021).

1.2 Objectives

The aim of this dissertation is to develop a non-invasive binary detection system for MNA using

imaging phenotypes identied in CT images that can contribute to the decision-making process in
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the eld of precision medicine. In order to achieve the best predictive system with the available

data resources, two distinct studies were conducted: (1) a machine learning approach using tabular

data, namely automatically extracted from the CT images and from clinical annotations relevant to

the usual protocol; (2) a deep learning approach considering the CT images as input and assessing

the robustness of the model using interpretability methods.

Firstly, a study on the potential of the available data using classical machine learning tech-

niques will be performed: standard, commonly used methods for medical applications will be

trained with two different types of data, radiomic (features automatically extracted from the CT.

images) and semantic (clinical annotations and patient information that are relevant for the prog-

nosis assessment in the clinincal routine), generating two different models. Lastly, an ensemble

approach will have place to evaluate the complementarity of the two different models to predict

MNA.

The second portion of dissertation will target the use of deep learning to predict MNA using

the available images per say, exploiting the consideration of different portions of the images as

region of interest (ROI) to feed the model as input. After obtaining a model with satisfactory

performance and behavior, a robustness study will be performed on the developed network by

utilizing post-hoc explainable methods to generate maps of pixel contributions to the prediction.

1.3 Contributions

This dissertation presents the following contributions:

• A study on Articial Intelligence (AI) systems to predict MNA status.

• Utilization of Machine Learning (ML) methods to explore the correlation between radiomic

features and MNA status.

• Utilization of ML methods to explore the correlation between semantic features and MNA

status.

• Utilization of ML ensemble methods to explore the combination of radiomic and semantic

features to predict MNA status.

• Utilization of DL method to explore the correlation between CT slices of NB tumors and

MNA status.

• Utilization of XAI methods as a tool to assess the robustness of models trained with different

data splits.

1.4 Document Structure

This dissertation include 5 Chapters:
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• Chapter 1 - Introduction: brief introduction of the problem to be studied, as well as some

motivation for the proposed solutions.

• Chapter 2 - Literature Review: detailed overview of the state-of-the-art methods with rele-

vance for the problem in question, namely Radiogenomic Approaches, Multi-modality and

Interpretability.

• Chapter 3 - Data Description: detailed description of the utilized dataset, as well as the data

preparation process before using as input in the models.

• Chapter 4 - MNA Status Prediction with ML Approaches: description of the 4 developed

approaches, including methodology, results and discussion.

• Chapter 5 - Conclusions and Future Work: overview of the developed work, overall conclu-

sions and future work considerations.



Chapter 2

Literature Review

The present chapter concerns an overview of relevant studies regarding Radiogenomics approaches

in several types of cancer (2.1), namely in the target use-case of this dissertation - Neuroblastoma

Cancer and the detection of an important prognostic biomarker. A collection of two relevant

trends of AI-based systems is also covered in two distinguished sections: Multi-modality (2.2)

and Interpretability (2.3).

2.1 Cancer Radiogenomics

Gene expression proling provides an additional understanding regarding tumorogenic processes,

assisting in diagnosis, staging, prognosis and treatment response prediction in cancer patients (Rut-

man and Kuo, 2009). These biomarkers can also be clinically relevant for the assessment of risk

proling and target therapy treatments, but their detection currently relies on the surgical procure-

ment of tissue, and invasive procedure that allows for the analysis of a tumor sample that may not

be representative (Bera et al., 2022).

The potentiality of Articial Intelligence (AI) for radiology applications has motivated the

research on several predictive tasks on cancer imaging analysis (Reyes et al., 2020), since ra-

diographic imaging incorporates the routine of clinical care and studies have shown associations

between radiological tumor phenotypes and gene expression signatures, providing information

concerning tumor sub-type and molecular biology (Rutman and Kuo, 2009). This AI-enabled

biomarker prediction approach, known as Radiogenomics, arises as an alternative solution to de-

tect biomarkers with the potential of wildly improving the medical standard protocol procedure,

due to its detection through routine clinical radiology scans, non-invasiveness and non-tissue de-

structiveness, small detection time-frame, easy serialization, low costs and no changes in the cur-

rent clinical workow. Additionally, a radiogenomic approach allows a global analysis of the

tumor, overcoming the heterogeneity problem when sampling the tumor (Bera et al., 2022).

This methodology of biomarker prediction can be obtained with two main approaches: hand-

crafted radiomic and deep learning (DL) techniques. The radiomic approach uses quantitative

measurement features that can be obtained with off-the-shelf radiomics libraries and are fed into a

5
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machine learning (ML) pipeline. DL approaches develop neural networks to generate new repre-

sentations of the image data that can be synthesized into a biomarker prediction (Bera et al., 2022).

Recent advances in the eld allowed the achievement of promising results in several cancer types

and biomarkers. Table 2.1 describes some of the most relevant investigations found related to this

research topic.
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Morgado et al. (2021) proposed a machine learning (ML) pipeline with the experimentation of

several feature selection and ML methods on the Non-Small Cell Lung Cancer (NSCLC) Radio-

genomics Dataset (Bakr et al., 2018) to predict the EGFR mutation status, an important biomarker

for target therapy in lung cancer patients. The input consisted on radiomic features extracted from

the total volume of the lung containing the nodule on CT scans. The best results were achieved

with Principal Component Analysis (PCA) as feature selection method, reaching similar perfor-

mances with several commonly used classiers, namely Elastic Net and linear Support Vector

Machine (SVM), showing the latter slightly higher results. Overall, linear models presented the

best behavior for the classication task in question.

Wang et al. (2019) proposed a DL architecture to predict the EGFR mutation status on two

private datasets of adenocarcinoma CT scans, a subtype of NSCLC. A region of interest (ROI)

containing the tumor for all slices of the patient was given as input to the network, being the

EGFR mutation status probability the average of each patient probabilities. The pipeline of this

work is demonstrated in Figure 2.1, where two sub-networks are presented. The sub-network 1

is equivalent to the rst 20 layers in DenseNet (Huang et al., 2017), having been pre-trained with

natural images. The sub-network 2 is trained with the dataset of the study.

Figure 2.1: Architecture of DL model: convolutional layers with kernel size 3×3 and 1×1, batch
normalization and pooling layers. From Wang et al. (2019).

Chen et al. (2022b) proposed a ML pipeline with the experimentation of several ML meth-

ods on a private dataset of breast cancer PET and CT scans to predict the HER2 expression status,

important for target therapy purposes. The input of the pipeline was an integration of radiomic fea-

tures extracted from both PET and CT scans of the volume of interest (VOI) containing the gross

tumor volume (GTV). The best results were achieved using eXtreme Gradient Boosting (XG-

Boost).

Xu et al. (2022) proposed a DL architecture to predict the HER2 expression status of a private

dataset of breast cancer cross-section ultrasound (US) images. The input of the network comprised

a cropped, resized ROI of the image, being the pipeline of the proposed work presented in Fig-

ure 2.2. The proposed network contains 2 types of dense-block, having the dense-block 14 layers,

whilst the dens-block 2 has 32 layers. Both types have shortcut connections from one layer to the

subsequent ones.

Iwatate et al. (2020) proposed a ML pipeline with the experimentation of XGBoost to predict

both p53 mutation status and PD-L1 expression status, two biomarkers with clinical relevance for
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Figure 2.2: Architecture of DL model: DenseNet-based deep learning classier. From Xu et al.
(2022).

pancreatic cancer for being a tumor suppressor gene and a poor prognostic factor, respectively. The

utilized dataset was private and contained CT scans from patients with pancreatic ductal adenocar-

cinoma (PDAC). The pipeline was fed radiomic features extracted from the VOI of the segmented

tumor.

Kocak et al. (2019) proposed two different pipelines for the prediction of PBRMI mutation

status, a biomarker associated with poor survival rate in clear cell renal cell carcinoma (ccRCC),

a subtype of kidney cancer. The utilized dataset was obtained from The Cancer Genome Atlas

- Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database (Akin et al., 2016; Clark et al.,

2013), being the input of the pipeline radiomic features extracted from the 3D VOI of the tumor.

The radiomic features were fed to two distinct algorithms: Articial Neural Network (ANN) and

Random Forest (RF), being the performance superior in the classical machine learning approach -

RF.

Li et al. (2017) proposed a DL approach for the prediction of the IDH1 mutation status in

glioma patients through a private MRI imaging dataset. The used pipeline is illustrated in Fig-

ure 2.3.

2.1.1 Neuroblastoma Cancer Radiogenomics

As demonstrated in the previous section, utilizing radiogenomics approaches with the analysis of

CT-based radiomic features has shown promising results for predicting specic target biomarkers

in several tumors. More recently, this technique was also applied to Neuroblastoma (NB), being
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Figure 2.3: Architecture of DL model: two selection steps, initialized with recognition of tumor
regions in the input images through a state-of-the-art based CNN structure, and followed by deep
lter responses extraction from the last convolutional layer through Fisher vector encoding. The
prediction is obtained through an SVM. From Li et al. (2017).

all the publications to the best of our knowledge related to MNA detection in CT scans and using

classical ML techniques for the predictive model. Table 2.2 describes some of the most relevant

investigations found related to this research topic.

Wu et al. (2021) proposed a simple radiomic pipeline to return the MNA prediction. The

features were extracted from the ROI of the tumor and selected using the Least Absolute Shrinkage

and Selection Operator (LASSO) regression method. Data Imbalance was addressed with data

augmentation, being used the SMOTE library (Chawla et al., 2002). A radiomics score (rad-score)

was implemented with a linear combination of the features after selection.

Di Giannatale et al. (2021) used logistic regression (LogReg) to radiomic features extracted

from CT images and selected with two feature selection methods: Boruta algorithm and Pearson

correlation analysis.

Chen et al. (2021) used four ML algorithms to predict MNA with radiomic features from

the ROI containing the tumor: Logistic Regression, Support Vector Machine, Bayes and Random

Forest. The features are selected before being fed to the methods by utilizing Interclass Correlation

Coefcient (ICC); minimum Redundancy Maximum Relevance (mRMR) and LASSO methods.

More recently, Tan et al. (2022) proposed a MNA detetcion ML approach utilizing 3D ra-

diomic fetaures from the VOI containing the tumor. The features were selected by computing

and analysing the correlation matrix of the latter with a cut-off threshold of 0.70 correlation.

Data imbalance was addressed with an oversampling algorithm - Random Oversampling Exam-

ples (ROSE) (Lunardon et al., 2014). The XGBoost algorithm was used to train the predictive

model.

As previous work, Pereira et al. (2022) used a Random Forest-based classier for MNA status
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prediction utilizing 2D Radiomic Features extracted from CT slices. The proposed work utilized a

private dataset that will be utilized for this dissertation, being further described in the next chapter.

Thus, this publication will be the baseline standard for the developed pipelines.
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2.2 Multi-modality

Clinical routine includes various phases, namely screening, diagnosis, treatment selection and

prognosis assessment, during which several types of medical data are generated, such as clinical

data, laboratory data and medical imaging data (Jiang et al., 2017). The totality of the acquired

information is taken into consideration in clinical practice to make a nal decision, being however

a complex approach, possibly limited by the inherent subjectivity of the human decision-making

process. Computer-aided solutions based on AI techniques have proven ability of providing sup-

portive assistance in the clinical routine (Aljaaf et al., 2015).

Imaging data extracted from Computed Tomography (CT) scans have been able to achieve

promising results when utilized for training AI-based methods for tasks such as the classication

of malignancy risk (Silva et al., 2020) and for the characterization of cancer genotypes (Pinheiro

et al., 2020). Furthermore, the use of annotated semantic features has also shown to provide

relevant information for cancer characterization (Pinheiro et al., 2020; Gevaert et al., 2017). The

incorporation of clinical data, genomic proling and medical imaging may leverage the prognosis

predictive capability, which will improve clinical decision-making (Bi et al., 2019).

Figure 2.4: Conceptual diagram of the traditional and comprehensive approaches based on CADs,
illustrated with the use-case of lung cancer. From Pereira et al. (2020).

A multi-modal approach provides the opportunity of exploring relationships between data

modalities (Bi et al., 2019), which can aid in the identication of specic biomarkers that are not
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usually detected on an individual input modality. The development of a multi-modal comprehen-

sive system will allow for the combination of information from several data sources by claiming

that the whole is greater than the sum of its parts (Fiandaca et al., 2017). However, due to the high

degree of variability within the gathered data, there is the need for a representative arrangement

of the data that covers all the heterogeneities, in order to create a reliable representation of the

affected population (Pereira et al., 2020), as illustrated in Figure 2.4.

Recently, several approaches have used multi-modal datasets to achieve higher scores. Most

state-of-the-art pipelines include fusing features from different medical imaging techniques, namely

CT scans and PET scans (Chen et al., 2022b), magnetic resonance imaging (MRI) and ultra-

sound (Gayet et al., 2016).

In Malafaia et al. (2021), an machine learning (ML)-based exploratory study is performed on

the Non-Small Cell Lung Cancer (NSCLC) Radiogenomics public dataset (Bakr et al., 2018) to

predict the mutation status of the Epidermal Growth Factor Receptor (EGFR) biomarker. The

used methodologies consist on exploring the contributions of ensemble methods when applied to

the combination of clinical data, semantic data, and radiomic data. The proposed pipeline can be

found in Figure 2.5.

Figure 2.5: Pipeline developed for EGFR mutation status classication based on ensemble meth-
ods to combine patient clinical information, radiomic features, and semantic features. As illus-
trated in the diagram, ve methods are studied to join the different modalities of features and
make the nal prediction. From Malafaia et al. (2021).

The ve used methods were studied and tuned in order to outperform the performance of the

best single modality learner: the semantic model, being used XGBoost for all the ML predictive

models. The rst approach, Multimodal Dataset, consisted on training the predictive model with

all data modalities. The following approach, Simple Ensemble, consisted on the utilization of a

simple cascade model that fed the predictions of the semantic model along with the radiomic fea-

tures to make the nal prediction. The third approach, Static Weighted Ensemble, computed the

output classication by performing a weighted average of the predictions from both radiomic and

semantic data. A Stacking Ensemble approach was also used, in which a simple linear meta-model

outputs the nal predictions, being fed as features the predictions of the learners in question. The

last approach, Dynamic Weighted Ensemble, focused on introducing some novelty to an weighted
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average of the predictions, by dynamically assigning the weights of each learner according to

the condence on its prediction. To achieve that, a condence measurement was dened as the

distance of a sample on a specic predictive outcome to the value 0.50. Despite not being able

to outperform the stronger learner, this study describes several commonly used approaches that

may increase the predictive ability of the model by broaden the spectrum of utilized data modal-

ities, however being extremely dependent on the data availability and single modality predictive

capability.

On now a deep learning (DL) perspective, DL multi-modal approaches mainly rely on the

utilized technique for the fusion of features. In Chen et al. (2022a), a DL fusion approach is

proposed to combine medical images with clinical data in skin cancer patients. The proposed

pipeline in Figure 2.6 illustrates the use of a feature extractor to transform the medical image into

a feature vector, and one-hot encoding and transformation of clinical data to apply feature fusion

and an attention mechanism to predict skin cancer. Despite the elaborate pipeline, the authors face

the main challenge of multi-modality by not being able to outperform the single-modality model

with feature fusion. This demonstrates that multi-modal approaches can cause overlapping and

using redundant information due to the complexity of the fusion features.

Figure 2.6: Architecture diagram of the developed DL model. Image and clinical data suffer
transformations in order to be combined with fusion techniques. From Chen et al. (2022a).

2.3 Interpretability

The study of AI-based systems to applications in the medical domain have achieved top results,

namely in radiology applications. The developed solutions, however, consist of complex, black-

box models that present inherent difculties for human comprehension of their reasoning. Con-



Literature Review 16

sequently, the trust on the decisions of these systems is compromised, principally for high-stake

decisions such as in a clinical practice environment (Reyes et al., 2020). Therefore, the develop-

ment of systems that are transparent and in which humans trust is crucial. Additionally, within

machine learning (ML) approaches, deep learning (DL) methods are considered the least inter-

pretable due to the inherent mathematical complexity, leading to the lack of reasoning for the

prediction and, hence, the lack of trust in these models (Reyes et al., 2020). To allow these frame-

works to be potentially used in the medical domain, it is essential to ensure trustworthiness and

reliability to clinicians, enforcing the need of transparency and easy comprehension for humans

incorporated in these approaches.

Explainable AI (XAI) refers to techniques or methods that aim to nd connections between

the input and the prediction of the black-box; hence, looking to provide some reasoning to the

decision and its reliability. Perceptive interpretability consists of XAI methods with a focus on

generating interpretations that can be easily perceived by humans, despite not actually ‘unblack-

boxing’ the algorithm (Tjoa and Guan, 2020). Visual Explanations are the most commonly used

XAI methodologies in deep learning image analysis approaches (van der Velden et al., 2022),

namely in radiology image-based predictive models, where the trust on a Computer-Assisted De-

tection (CAD) system can increase substantially by presenting the areas of a medical image with

higher contribution to the prediction, along with the prediction itself (Reyes et al., 2020).

A large portion of the most utilized XAI methods in the medical domain are post-hoc models,

which consist of methods external to the already trained predictive model, performing evaluations

on the predictions without altering the model itself. These are off-the-shelf agnostic methods

that can be found in open-source libraries, such as Pytorch Captum (Kokhlikyan et al., 2020).

An example of a post model approach can be found in Knapič et al. (2021), where two popular

post-hoc methods, local interpretable model agnostic explanations (LIME), and SHAPley Additive

exPlanations (SHAP) were compared in terms of understandability for humans in the predictive

model with the same medical image dataset.

Moreover, gradient-based methods have been extensively used to explain COVID-related deep

learning models using medical image (Hryniewska et al., 2021), due to the need to produce more

information about the classication models to be used in the clinical routine. An illustration of

these studies is presented in Figure 2.7. These models have been studied and used in several other

studies, namely for lung classication tasks, demonstrated in Lei et al. (2020).

As previous work is concerned, Malafaia et al. (under peer-review) proposed a pipeline for a

lung nodule classier that uses XAI gradient-based methods in order to assess the robustness of

the predictive model over different data splits. Explanations are generated for all test samples and

all trained models, being compared the explanations from the same sample with image similarity

metrics.

The concern for interpretability is increasing, especially in the medical eld, where there are

high stakes and responsibilities in the CAD systems that are used. However, the research in the

area of interpretable models is still in progress, despite the recent rise in the development of this

approach. The increase in research efforts of interpretable CAD systems is already noticeable,
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Figure 2.7: Example of explanations for COVID-related models from several studies.
From Hryniewska et al. (2021).

mainly regarding the verication and explanation of the predicted decision, rather than the unrav-

elling of the black-box (Tjoa and Guan, 2020). The methods may show future potential, not only in

providing trustworthy explanations to physicians, but also assuring the reliability and consistency

of the developed models.

2.4 Summary

The studies enumerated in this chapter were selecting considering three main subjects: the de-

velopment of radiogenomics approaches, namely for neuroblastoma cancer; the combination of

several data modalities; the incorporation of interpretability to the developed black-box models,

namely using DL techniques. Considering the overall analysis of the reviewed issues and the

considered methodologies, there are several key aspects one should consider:

• Radiogenomics approaches have shown promising results in several types of cancer, both

using classical ML or DL techniques;

• Studies concerning the detection of the MNA biomarker are limited, being, to the best of

our knowledge, related to classical ML techniques and demonstrating a high correlation

between MNA detection and imaging phenotypes;



Literature Review 18

• The implementation of more than one data modality to an AI-based system can provide

complementary information and increase the predictive capacity of the framework. How-

ever, the employment of different modalities to the model is a critical task that may not be

successful due to data redundancy;

• Interpretability is a key aspect to future deployment of the model into a CAD system; there

are several aspects of the functioning of the developed pipeline that may be studied with

XAI, namely the reasoning behind a prediction made by the developed pipeline. Visual

explanations, namely gradient-based methods, are suitable for human understanding and

provide insightful information regarding the areas of higher importance in a input image.



Chapter 3

Data Description

The following chapter illustrates the database that was utilized for this work, on top of the required

steps to adjust the raw medical data to properly t the model development stage. Hence, two

sections were included: Dataset 3.1, where a description of the utilized data, inclusion criteria and

available information is presented; Data Pre-processing 3.2, which entails the used methodologies

on the presents types of data that lead to the features to be utilized in the AI models.

3.1 Dataset

For the proposed work, a private dataset was collected with the collaboration of Hospital de São

João (HSJ) and Instituto Português de Oncologia (IPO). The named dataset consisted of multi-

modal data from 46 patients with diagnosed Neuroblastoma cancer between 2005 and 2020, that

included CT scans and correspondent tumor segmentation masks of some slices, patient clinical

information, and the MNA status (16 MNA positive patients / 30 MNA negative patients). The

course of treatment chosen for all patients was based on previous or ongoing protocols or trials of

the International Society of Pediatric Oncology European Neuroblastoma (SIOPEN).

Inclusion criteria for this study consisted on: age of diagnosis under 18 years old; conrmed

neuroblastoma through an histopathological report; MYCN amplication detection; availabil-

ity of CT studies at the time of diagnosis before any intervention such as biopsy, radiotherapy,

chemotherapy or surgery; availability of patient clinical information.

3.1.1 CT scans

The available medical exams for the 46 patients concern the primary tumor location, which may

include several anatomic compartments, namely abdomen, chest or pelvis. Regarding the image

acquisition protocol, CT scans present a highly variable number of slices per exam, with a slice

thickness range of 0.5-5.0 mm per slice and pixel spacing in (x,y) directions of 0.2383-0.9766

mm.

Regarding the segmentation masks of the tumor, experts manually segmented the mass in ve

slices of the exam, which were the ones utilized for this study. The remaining slices without
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Figure 3.1: Demonstration of a CT slice (left) and the correspondent annotation of the tumor
segmentation from a clinical expert (right). From the private utilized dataset in joint collaboration
with HSJ and IPO.

annotations are discarded. In Figure 3.1, an illustration of the CT slice from the exam of a patient

is presented, along with the following manual segmentation.

Additionally, for every exam there was information available regarding whether the CT scan

was done with or without contrast.

3.1.2 Patient Clinical Information

Clinical information concerned data with clinical relevance for the prognosis of the patient, thus

having potential to aid in the prediction of the MYCN amplication status.

Regarding patient data itself, the sex of each patient was available, as well as the age of di-

agnosis and information regarding the tumor, namely its anatomical location and type of mass.

Furthermore, a description of the image-dened risk factors (IDRFs) was also provided, along

with the International Neuroblastoma Risk Group Staging System (INRGSS). In addition, genetic

alterations were also listed for all patients due to potential genetic predisposition.

3.1.3 MNA status

The MYCN amplication status was measured through Fluorescence in situ hybridization tech-

nique (FISH), being consideres amplied in case at least a fourfold increase in the MYCN expres-

sion was veried towards the reference probe. This requirement followed the regulations from the

INRG Biology Committee (Ambros et al., 2009). This information will be used as the target label

for which the designed frameworks will be trained.
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Table 3.1: Patient Clinical Information Description. Each type of tabular information provided
by the private dataset is enumerated in the following table. Additionally, the type of variable and
possible values are also described.

Data Type of Variable Possible Values
Age of Diagnosis Discrete In months

Sex Binary
0 - Female
1 - Male

Anatomical
Compartment Categorical

0 - Adrenal Glands
1 - Retroperitoneum
2 - Posterior Mediastinum
3 - Cervical
4 - Pelvis

Cross Middle Line Binary
0 - No
1 - Yes

Morphology Binary
0 - Single Mass
1 - Several Masses

Calcium Binary
0 - Absent
1 - Present

IDFRs Categorical

0 - Tumor encasing the aorta and/or vena cava
1 - Tumor encasing branches of superior mesenteric artery
2 - Tumor encasing origin of the celiac axis and/or of the superior
mesenteric artery
3 - Tumor encasing brachial plexus roots
4 - Tumor encasing the iliac vessels
5 - Tumor encasing subclavian vessels and/or vertebral and/or
carotid artery
6 - Tumor inltrating duodeno-pancreatic block
7 - Tumor inltrating mesentery
8 - Tumor inltrating the porta hepatis
9 - Tumor compressing the trachea and/or principal bronchi
10 - Tumor invading renal pedicles
11 - Tumor crossing the sciatic notch
12 - Lower mediastinal tumor, inltrating the costo-vertebral
junction
13 - Intraspinal tumor extension
14 - Kidney
15 - Liver
16 - Pericardium
17 - Diaphragm
18 - Two body compartments

Number of IDFRs Categorical No. of listed IDRFs

INRGSS Categorical

0 - L1: Local-regional tumor without IDRFs
1 - L2: Local-regional tumor with one or more IDRFs
2 - M: Distant metastatic disease
3 - MS: Metastatic disease in children younger than 18 months

Segmental Chromosomal
Alterations Binary

0 - No
1 - Yes

11q Deletion Binary
0 - No
1 - Yes

1p36 Deletion Binary
0 - No
1 - Yes

17q Duplication Binary
0 - No
1 - Yes

Chromosome 1
Trisomy Binary

0 - No
1 - Yes
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3.2 Data Pre-processing

Each data type was pre-processed according to its characteristics. For image processing, the CT

scans were converted from the original format to image data, undergoing several phases to stan-

dardize all images. Regarding tabular data, simple pre-processing steps were used to make all

types of variables equivalent for the studied approaches.

3.2.1 Image Pre-Processing

Given the CT scans available for each patient, only 5 slices of each had annotations concerning

the mask of the segmented tumor. Thus, only 5 slices were utilized for each patient. The original

data format was DICOM, which contained all the relevant information, including the CT slices,

tumor masks and pixel spacing.

3.2.1.1 DICOM Objects to Image Data Conversion

As mentioned above, it was necessary to convert the medical exam, stored in DICOM format, to

an image array, in order to implement the necessary processing steps. For the conversion step,

the open source package, pydicom (Mason, 2011), developed to work with data elements of DI-

COM data. Each .dcm le is organized by study (SOPInstanceUID), series (SeriesSequence) and

slice image (ImageSequence), being provided both the image and, if available, a non-image le,

correspondent to the mask annotation. Additionally, there is an abundance of meta-data available

within the le, containing various information regarding the protocol of the medical exam that can

also be helpful for the study, namely Pixel Spacing with tag (6000), Rescale Intercept with tag

(0028,1052) and Rescale Slope with tag (0028,1053).

The tags of slice images of each patient with correspondent annotations were selected for

conversion. The target images and annotations were saved into image arrays of, in most cases,

512×512 pixels with the Pixel Array and Overlay Array attributes, respectively. Additionally to

the image and tumor segmentation, pixel spacing was saved to implement Pixel Resampling.

The annotations from the segmentation of the tumor were processed with a series of simple

image processing steps, namely closing and opening methods, in order to ll the annotation into a

binary mask representative of the Region of Interest (ROI). An illustrative example of the process

in question is displayed in Figure 3.2.

3.2.1.2 Pixel Resampling

Due to inconsistencies in scanning protocols, CT scans from different patients present different

spacing between adjacent pixels, being a common practice to resample all images in order to

achieve a constant pixel spacing. For this task, the pixel spacing range of 0.2383-0.9766 mm was

extracted from the Pixel Spacing attribute in the .dcm les. A new pixel spacing of 0.50 mm

was chosen in order to minimize the loss information of images with small pixel spacing (<0.50

mm) and, on the other hand, minimize the addition of redundant information through interpolation
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Figure 3.2: The annotation provided by the clinician, representative of the tumor segmentation,
is transformed into a binary mask through a lling process achieved with closing and opening
methods.

on images with large pixel spacing (>0.50 mm). This procedure was implemented using a zoom

factor given by the ratio between the original pixel spacing and the new pixel spacing (0.50 mm),

which was applied to change the resolution of both the image and the correspondent tumor mask.

Due to the change of resolution, the size of the images was changed accordingly, as illustrated by

Figure 3.3. This process guaranteed a similar representation of the same anatomical structures for

the whole image dataset.

3.2.1.3 Image Size

After resampling all images in order to have the same pixel spacing, the resolution of the altered

images was changes, consequently modifying the size of each picture. Furthermore, some exams

presented non-squared dimensions. Thus, a size standardization process was implemented to all

images in order to be squared and with constant image size. The chosen dimensions for image size

were 224×224 pixels, since its a standard size, used, for example, in the ImageNet Dataset (Deng

et al., 2009), that simultaneously is able to include the tumor size in the totality of the utilized

dataset.

For cases in which the image size was smaller than the desired size, a padding was used

with the intensity value of the border of the image in question, as illustrated in Figure 3.4. For

images with size bigger than 224×224 after resampled, the surplus pixels were removed from the

edges of each image through a cropping process, as demonstrated in Figure 3.5. The image size

standardization process was applied to both images and respective tumor masks.

3.2.1.4 Intensity Normalization

CT scans use multiple X-Ray projections that pass through the tissues with different density val-

ues, being the detector reached with various levels of energy that provide contrast imaging of

the different tissues. This density values are expressed with Hounseld (HU) scale values. As

demonstrated in Equation 3.1, the formula for HU computation varies with the linear attenuation
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Figure 3.3: Illustration of Pixel Resampling Process. The original image, with size 512×512
pixels, is resampled in order to have a pixel spacing of 0.50mm between adjacent pixels. The new
size, with lower resolution, is 386×386 pixels.

coefcient of water, µwater, the linear attenuation coefcient of air, µair, and the linear attenuation

coefcient of the substance µ (Kalra, 2018).

HU = 100× µ−µwater
µwater−µair

(3.1)

The result of the equation 3.1 is based on a range in which the radiodensity of water is 0 (HU)

and the radiodensity of air is -1000 HU, at standard pressure and standard conditions. Thus,

higher HU values concern regions with higher densities, represented with brighter pixels in the

image (Kalra, 2018).

In order to obtain the intensities in HU units, the pixel values were converted utilizing the

attributes Rescale Intercept and Rescale Slope. However, after analysing the range of intensities

amongst images from different exams, disparities were found which lead to discredit the veracity

of these values.

To overcome this problem, a simple approach was implemented in order to scale the whole

dataset according to a single reference image, chosen by visually assessment of the contrast be-

tween different tissues and the tumor itself. Thus, a non-linear sigmoid normalization was imple-

mented following Equation 3.2, representing α the arithmetic mean of the input intensity range,

and β the standard deviation of the input intensity range.

Inorm = (maxnew−minnew)
1

1+ exp−
I−β
α

+minnew (3.2)
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Figure 3.4: Illustration of Image Size Standardization Process for images size lower than 224×224
pixels using padding methods.

An illustration of the process of reference normalization is presented in Figure 3.6, where the

intensity range of an image is normalized according to the dened image reference.

3.2.2 Region of Interest (ROI) Extraction

Taking advantage of the manual segmentation of the tumor for all images, and since the radiomic

features were extracted exclusively in the ROI, one possible image input for DLmodels can consist

on the portion of the images containing the tumor. Thus, images were pre-processed in order to

obtain a transformed image containing only the tumor. In order to facilitate the learning process,

and simultaneously as an attempt to overcome the variability of size and shape of the tumor, the

ROIs were centered in the images, being the center of mass of the nodules constantly in the center

of the image, as illustrated in Figure 3.7.

3.2.3 Radiomic Features Extraction

Radiomic features were extracted from the CT images after conversion to image array, pixel re-

sampling, image size standardization and intensity normalization. The feature extraction was used

with the open-source package PyRadiomics (Van Griethuysen et al., 2017). A total of 869 fea-

tures were obtained utilizing several lters organized by classes: First Order Statistics, 2D Shape-

based, Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray

Level Run Length Matrix (GLRLM), Gray Level Dependence Matrix (GLDM). All the feature

classes but shape were computed both from the original image and derived images from applied
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Figure 3.5: Illustration of Image Size Standardization Process for images size higher than
224×224 pixels using cropping methods.

Laplacian-of-Gaussian and Wavelet lters. These features were based exclusively on the region of

interest (ROI), in these case concerning the manually delineated tumor masks.

3.2.4 Tabular Data Pre-processing

With the goal of standardize the different types of tabular features to be equally representative

in a machine learning model, discrete features were transformed into ranges of values, in order

to convert them to categorical features. Then, all categorical features were binarized through the

one-hot encoding process. The nal number of semantic features was 42.

3.3 Summary

Figure 3.8 summarizes the detailed description of the pre-processing methods utilized for the uti-

lized dataset. From the previous techniques, three types of data become available to use and

train machine learning (ML) and deep learning (DL) models: pre-processed CT images, includ-

ing exclusively or not the ROI; Radiomic features, representative of CT imaging properties, but

expressed in tabular data; Semantic features, binarized with one-hot encoding.
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Figure 3.6: Illustration of Intensity Normalization Process. The original intensity range is normal-
ized with a sigmoid function in order to standardize the scale of intensities for the whole dataset.

Figure 3.7: Illustration of ROI selection and centralization. The pixel resampled, size adjusted and
normalized images are transformed in order to obtain exclusively the tumor, being the remaining
pixels changed to zero intensity. Then, the ROI is relocated to the center of the image.

Figure 3.8: Illustration of pre-processing methods on the utilized dataset for the proposed work.



Chapter 4

MNA Status Prediction with ML
Approaches

The following chapter illustrates the development of predictive models for MNA status classica-

tion that were a target in this study. The chapter is distributed in 5 sections: overall experimental

design, followed by all studied approaches for comparability purposes; detection of MNA using

radiomic features extracted from CT images and classical ML methods; detection of MNA us-

ing clinical semantic data and classical ML methods; detection of MNA using both radiomic and

semantic features with a multi-modal approach; detection of MNA using CT images and a DL

approach.

4.1 Experimental Design

In order to promote comparability amongst different approach, the experimental design, described

in Figure 4.1, was utilized for the following sections: Section 4.2, concerning radiomic features

extracted from CT images are utilized as input to traditional ML methods; Section 4.3, concern-

ing semantic features based on patient clinical annotations, utilized as input to traditional ML

methods; Section 2.2, concerning the combination of the two previous approaches to implement

a multi-modal pipeline; Section 4.5, concerning the use of CT images in a DL-based architecture.

Firstly, out of the total of 46 patients and 230 slices, 6 patients and the corresponding 30 slices

were separated from the remaining dataset for evaluation purposes. Each approach was target of

10 independent runs, obtaining 10 trained models for each studied algorithm, in order to assess

the variability within models from different data splits. The nal performance of each approach

consisted on the average results of the totality of runs, in order to address the data variance over

different train-validation splits when training the models. The test set was utilized to assess the

predictive ability of the developed models with various performance metrics.
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Figure 4.1: Experimental Design utilized to study the several approaches of the proposed work.
An initial train-test split was made, being the training samples utilized to train the both by ne-
tuning the hyper-parameters of the models. The best models of each approach were selected and
tested with the testing data samples through standard performance metrics.

4.1.1 Performance Evaluation

In order to evaluate the performance of each developed model and compare the developed ap-

proaches, standard performance metrics were computed with the predictions of the test samples

and the correspondent true labels. The results provide objective measures of the predictive ability

of the model. The utilized metrics for the performance evaluation stage were: Balanced Accu-

racy, Area Under the Receiver-Operator Characteristics (AUROC) Curve, F1 score, Recall and

Precision.

4.2 Radiomic Approach

Radiomic features extracted from a total of 230 CT slices (5 slices per patient), as described in

Chapter 3, Section 3.2.3, were utilized as input for traditional machine learning methods. Several

methods were studied regarding data augmentation, feature selection and classication, in order

to construct the pipeline with best results.

4.2.1 Materials and Methods

The methods utilized for this approach are illustrated in Figure 4.2. The pipeline utilized the

previously pre-processed data, in this case the extracted radiomic features, following the training

process and, nally, the evaluation process.

4.2.1.1 Data Augmentation

The utilized radiomic features were extracted from the CT slices of the NB available dataset,

after pre-processing the images, through the process describe in Section 3.2.1. However, due to

the low amount of samples and the notorious imbalance between classes (≈ 35%/65%), the data
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Figure 4.2: Suggested pipeline for Radiomic Approach. The training radiomic features are uti-
lized to train several models, with various Feature Selection/Construction (FS/C), Data Augmen-
tation (DA) and Classication (CLF) methods. The trained models are utilized to get MNA pre-
dictions for the test samples, which are then used for computing the Evaluation metrics.

was oversampled using Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al.,

2002). The nal ratio between classes after creating synthetic samples of the minority class was,

approximately, 50/50.

4.2.1.2 Dimensionality Reduction

The number of features that are used to trained the model is directly correlated with computa-

tional costs while training the models. Hence, Feature Selection and Feature Construction allow

a decrease of data dimensionality, either by excluding redundant or misleading features from the

feature space, or by transforming the feature space into a more compact one, respectively. As

Feature Selection is concerned, the Koehrsen’s Feature Selection (KFS) package (Koehrsen) was

used. This open-source toolkit provides several methods for the selection of features, being the ap-

plicable utilized for our study. The rst step included identifying and removing collinear features,

with a correlation threshold of 0.95. Afterwards, a Gradient Boosting Machine (GBM) learning

model is utilized to identify and remove both zero and low importance features that do not consti-

tute a cumulative importance of 0.98. In order to reduce variance, the model is run 10 times using

early stopping with a validation set in order to avoid overtting. Regarding Feature Construction

methods, Principal Component Analysis (PCA) was utilized since it is widely applied for Feature

Selection in ML tasks with datasets containing continuous variables.

4.2.1.3 Classication Models

In order to predict the MNA status with the provided dataset after assessing Data Augmentation

and Feature Selection or Feature Construction, four traditional ML algorithms were utilized to

obtain the best predictive ability: Logistic Regression (LogR), Support Vector Machines (SVM),

Random Forest (RF) and eXtreme Gradient Boosting (XGB). These methods are widely used in
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classical ML approaches, being proven to show interesting results in literature, as described in

Chapter 2, Section 2.1.1. Several hyper-parameters for each algorithm were trained, as listed in

Table 4.2.

The hyper-parameters ne-tuning process was achieved through a hyper-parameter search

method, GridSearchCV (Scikit-learn), which performs an exhaustive search over the parameters

of a certain estimator using a 5-fold cross-validation process.

4.2.2 Results and Discussion

In this Section the best hyper-parameters of the trained models as well as the performance results

of the studied pipelines are presented and discussed.

4.2.2.1 Classication Results

The average performance results for the four classication models are presented in Table 4.1.

Several performance metrics, described in Subsection 4.1.1, were computed for the predictions of

the best models in each run, being the nal result the mean and standard deviation values. These

results were also compared with the baseline results (Pereira et al., 2022), consisting on a Random

Forest classier with an average AUROC of 0.69±0.16.

After analyzing the obtained results, the SVM classier presents the overall best results in

terms of performance, with a AUROC value of 0.84±0.06, a Balanced Accuracy of 0.76±0.04

and a F1 Score of 0.68±0.05. With this performance results, one can consider the developed SVM

model as capable of class separation, due to a high AUROC value directly correlated with the

ability of distinguishing between positive and negative samples. Furthermore, a high Balanced

Accuracy indicates a good ratio of correct predictions whilst addressing the imbalance of the

dataset. Despite not presenting the best precision (0.71±0.07) and recall (0.65±0.05) values,

its results are satisfactory, providing information regarding true positive ratio over all predictive

positives and all labelled positives, respectively. Since the F1 score represents the harmonic mean

of both the previous metrics, the SVM classier presented the higher value in the metric in question

(0.68±0.05), being an indicator of a better balance between precision and recall scores.

Regarding Data Augmentation, the utilization of SMOTE to balance the dataset showed dif-

ferent behaviours according to the classier. Considering Logistic Regression, SMOTE was sig-

nicant for the improvement of performance, not only in terms of AUROC but also and especially

in terms of recall and precision, inherently related to the ratio of true positives. Random Forest

also improved with data augmentation techniques, although not showing great improvements in

precision, recall and F1 score. On the other hand, the addition of synthetic positive samples to

balance the dataset did not increase the predictive ability of the classiers SVM and XGB.

Concerning now the study on Feature Construction and Feature Selection methods, PCA and

KFS, respectively, were used to all classiers with and without data augmentation as an attempt

to improve the results. However, none of the methods caused a signicant improvement on the

performance results. Furthermore, the results of pipelines including PCA showed a signicant
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Table 4.1: Performance Results for the studied pipelines. Each approach is evaluated in terms of
AUROC, Balanced Accuracy, F1 score, Precision and Recall.

AUROC Balanced
Accuracy

F1
Score Precision Recall

Logistic
Regression

No SMOTE
No FS 0.51±0.03 0.50±0.00 0.0±0.0 0.0±0.0 0.0±0.0
PCA 0.42±0.15 0.51±0.03 0.05±0.14 0.05±0.14 0.05±0.15
KFS 0.50±0.01 0.50±0.01 0.0±0.0 0.0±0.0 0.0±0.0

SMOTE
No FS 0.69±0.07 0.62±0.06 0.52±0.05 0.47±0.06 0.58±0.04
PCA 0.69±0.01 0.60±0.01 0.48±0.01 0.46±0.02 0.50±0.0
KFS 0.40±0.02 0.35±0.01 0.32±0.01 0.24±0.01 0.50±0.0

SVM

No SMOTE
No FS 0.84±0.06 0.76±0.04 0.68±0.05 0.71±0.07 0.65±0.05
PCA 0.63±0.08 0.53±0.07 0.38±0.07 0.40±0.10 0.39±0.10
KFS 0.67±0.06 0.50±0.06 0.41±0.05 0.34±0.05 0.53±0.05

SMOTE
No FS 0.77±0.07 0.72±0.04 0.62±0.05 0.66±0.09 0.59±0.05
PCA 0.73±0.23 0.70±0.22 0.63±0.27 0.61±0.30 0.67±0.23
KFS 0.63±0.12 0.49±0.06 0.39±0.04 0.33±0.05 0.50±0.0

Random
Forest

No SMOTE
No FS 0.50±0.02 0.51±0.07 0.14±0.18 0.26±0.38 0.10±0.12
PCA 0.56±0.06 0.50±0.04 0.13±0.18 0.13±0.17 0.14±0.21
KFS 0.54±0.05 0.58±0.05 0.30±0.12 0.88±0.24 0.19±0.08

SMOTE
No FS 0.64±0.06 0.52±0.04 0.13±0.12 0.48±0.42 0.08±0.07
PCA 0.72±0.04 0.70±0.08 0.56±0.14 0.83±0.18 0.45±0.15
KFS 0.64±0.03 0.61±0.03 0.41±0.09 0.67±0.08 0.31±0.10

XGB

No SMOTE
No FS 0.61±0.0 0.68±0.0 0.56±0.0 0.63±0.0 0.5±0.0
PCA 0.62±0.03 0.66±0.01 0.54±0.01 0.58±0.03 0.50±0.0
KFS 0.64±0.0 0.73±0.0 0.63±0.0 0.83±0.0 0.50±0.0

SMOTE
No FS 0.61±0.0 0.68±0.0 0.56±0.0 0.63±0.0 0.5±0.0
PCA 0.59±0.02 0.59±0.03 0.49±0.03 0.42±0.04 0.59±0.03
KFS 0.78±0.0 0.68±0.0 0.56±0.0 0.63±0.0 0.5±0.0

increase in terms of standard deviation over the 10 runs, indicating a certain instability in the

capacity of the models to detect MNA status. This can be related to the stochastic component

of the PCA technique, due to its unsupervised character and also for not maintaining the original

features, but creating new ones. Regarding KFS, its utilization did not show great improvements

in terms of performance, with the exception of Random Forest models, in which both KFS and

PCA inuenced positively the performance of this classier.

Finally, several studied approaches were able to overcome the baseline performance of AU-

ROC (0.69±0.16). Despite using the same dataset, there was an investment in data preparation and

pre-processing (Section 3) in order to provide standardized CT images for the radiomic feature ex-

traction. Furthermore, additional data augmentation and dimensionality reduction techniques were

studied, as well as other classical ML classiers.

Overall, the SVM classier presented the best behaviour amongst the studied classiers, not

improving performance with Data Augmentation nor Feature Selection or Construction. However,

this techniques did increase the predictive ability of other classiers, namely the utilization of

SMOTE with Logistic Regression, PCA with Random Forest and KFS with XGB.
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4.2.2.2 Best Hyper-parameters

As previously described in Subsection 4.2.1, for each studied algorithm, a search method was used

to perform a cross-validated grid search over a range of each parameter and nd the best hyper-

parameters for each classier. The best models of each run were selected to make predictions of

the test samples and evaluate their performance. Table 4.2 illustrates the hyper-parameter ne-

tuning process of this approach, analyzing both the most frequent set of hyper-parameters and

the best estimator over the 10 different runs, by assessing the AUROC performance. For the

XGB classier, the range of several parameters was continuous and, therefore, obtaining a great

variety of best values. Thus, the best hyper-parameters for this algorithm were chosen exclusively

according to a set of values that achieved the top AUROC.

After analyzing the best and most frequent hyper-parameter values, it is noticeable that the set

of parameters with best achieving performance is often different from the most frequent values,

which is an indicator that the best model is highly variable according to the random train-validation

splits used by the search algorithm. This may be a direct consequence of the low amount of avail-

able data samples and its inherent high variability, which leads to different models with different

training sets. However, the XGB classier is able to present the top performance for the classier

over different runs despite the variability of chosen hyper-parameters, being able to maintain a

constant predictive ability.

Furthermore, the denition of hyper-parameters is a challenging task, due to its specicity

towards the task and the dataset itself. The used ne-tuning approach addresses the challenge

by studying several ranges of parameters for several runs, in order to understand which subset of

values is able to achieve the best performance.
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4.2.3 Limitations

The proposed work using the radiomic features to predict MNA studied several state-of-the-art

pipelines utilizing traditional ML methods, and including Data Augmentation, Feature Selection,

and Feature Construction methods to help improve the performance of the trained models. How-

ever, this study still presented some limitations, being possible to further understand and perhaps

improve the obtained results. Firstly, a more exhaustive ne-tuning process not only regarding

the classication hyper-parameters, but also the parameters of PCA and KFS, could lead to per-

formance improvements since it would reect on a more personalized t to the dataset and the

classication task. Furthermore, the increase of running trials would provide further information

regarding the stability of models and the variability within the training samples.

4.3 Semantic Approach

Semantic approach consisted on utilizing semantic features, previously pre-processed in Chap-

ter 3, Section 3.2.4, and utilize the same classical machine learning methods than in the previous

approach (Section 4.2), as well as data augmentation and feature selection and construction meth-

ods. Contrarily to the Radiomic Data, Semantic Data concerns patients clinical information and

not slice-related annotations. Therefore, the semantic features have 46 samples, one per patient,

constituting an even greater challenge to obtain satisfactory and reliable results with such a small

amount of data samples.

4.3.1 Materials and Methods

With the purpose of building similar pipelines for both approaches using tabular data, the same

methods were utilized for the semantic data. Figure 4.3 illustrates the procedure for training

semantic models. The input of the pipeline consisted on the previously pre-processed clinical

annotations provided by experts, all transformed in order to be categorical and binarized.

4.3.1.1 Data Augmentation

As mentioned in the previous approach, a data augmentation technique was studied in order to

balance the classes in the dataset. Since semantic features are categorical and not continuous such

as radiomic features, SMOTEN, a different version of SMOTE, was utilized.

4.3.1.2 Dimensionality Reduction

Comparatively to the radiomic pipeline, PCA and KFS were utilized as Feature Construction and

Fetaure Selection methods to reduce the number of features. Several number of components were

studied with PCA, and KFS consisted solely in utilizing a correlation threshold of 0.80 to remove

collinear features, due to the signicantly low number of semantic features and its categorical

nature.
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Figure 4.3: Suggested pipeline for Semantic Approach. The training semantic features are uti-
lized to train several models, with various Feature Selection/Construction (FS/C), Data Augmen-
tation (DA) and Classication (CLF) methods. The trained models are utilized to get MNA pre-
dictions for the test samples, which are then used for computing the Evaluation metrics.

4.3.1.3 Classication Models

The same classication algorithms were studied for comparison purposes. These algorithms are

described in Subsection 4.2.1.3, including the utilized hyper-parameters and the ne-tuning pro-

cess.

4.3.2 Results and Discussion

In this Section the best hyper-parameters of the trained models as well as the performance results

of the studied pipelines are presented and discussed.

4.3.2.1 Classication Results

Similarly to the previous approach, the classication performance results from the 10 runs of the

pipeline were averaged in order to have a nal performance value for each methodology.

After an overview of the results, it is noticeable that, due to the small number of test samples,

a certain instability in the results is shown, being several results equal to the minimum or maxi-

mum possible values, and some displaying high standard deviation values. Furthermore, despite

generally high AUROC and Balanced Accuracy values, F1 score, Precision and Recall display

lower values overall. In this case, these last metrics are descriptive of the true positive ratio, which

for medical use-cases is extremely important since positive patients must not be misdiagnosed.

In MNA detection, if a classier presented a precision and recall of 0.00 and, consequently, a F1

score of 0.00, it indicates that all MNA positive cases were misdiagnosed and, therefore, all test

samples were classied as MNA negative. In this case, the model showed no separability between

classes, not serving the task in question by mislabelling the whole minority class.
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Table 4.3: Performance Results for the studied pipelines regarding the Semantic Approach. Each
approach is evaluated in terms of AUROC, Balanced Accuracy, F1 score, Precision and Recall.

AUROC Balanced
Accuracy

F1
Score Precision Recall

Logistic
Regression

No SMOTEN
No FS 1.00±0.00 0.65±0.20 0.33±0.42 0.40±0.49 0.30±0.40
PCA 1.00±0.00 0.58±0.11 0.20±0.31 0.30±0.46 0.15±0.23
KFS 1.0±0.00 0.58±0.11 0.20±0.031 0.30±0.46 0.15±0.23

SMOTEN
No FS 1.00±0.00 0.98±0.05 0.96±0.08 0.93±0.13 1.00±0.00
PCA 0.56±0.29 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00
KFS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SVM

No SMOTEN
No FS 0.19±0.38 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00
PCA 0.49±0.35 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00
KFS 0.50±0.43 0.48±0.05 0.00±0.00 0.00±0.00 0.00±0.00

SMOTEN
No FS 0.84±0.11 0.53±0.05 0.10±0.20 0.10±0.20 0.10±0.20
PCA 0.85±0.19 0.63±0.13 0.33±0.33 0.50±0.50 0.25±0.25
KFS 0.75±0.38 0.63±0.17 0.35±0.37 0.43±0.47 0.35±0.39

Random
Forest

No SMOTEN
No FS 1.00±0.00 0.53±0.08 0.07±0.20 0.10±0.30 0.05±0.15
PCA 0.93±0.06 0.55±0.10 0.13±0.27 0.20±0.40 0.10±0.20
KFS 1.0±0.00 0.68±0.11 0.47±0.31 0.70±0.46 0.35±0.23

SMOTEN
No FS 1.00±0.00 0.80±0.19 0.67±0.37 0.80±0.40 0.60±0.37
PCA 0.94±0.06 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00
KFS 1.00±0.00 0.75±0.00 0.67±0.00 1.00±0.00 0.50±0.00

XGB

No SMOTEN
No FS 1.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00
PCA 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
KFS 0.88±0.00 0.75±0.00 0.67±0.00 1.00±0.00 0.50±0.00

SMOTEN
No FS 1.00±0.00 0.75±0.00 0.67±0.00 1.00±0.00 0.50±0.00
PCA 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
KFS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Notwithstanding the good performance of several used pipelines, XGB was the classier that

presented a more stable performance not only over different runs, but regardless of data augmen-

tation and dimensionality reduction techniques, predicting correctly all test samples using PCA

without SMOTEN, PCAwith SMOTEN, and KFS with SMOTEN. Logistic Regression using KFS

as Feature Selection and SMOTEN for Data Augmentation was also able to accurately predict all

test samples.

Regarding Data Augmentation, SMOTEN improved the predictive ability of several classiers,

especially in terms of F1-score, Precision and Recall. Models with dimensionality reduction also

showed an overall higher predictive ability, although not as signicant as with data augmentation.

4.3.2.2 Best Hyper-parameters

After performing a grid-search technique to search the best model for each classier over 10

different runs, the hyper-parameters of the chosen models were analysed in order to assess the

combination with best results. Contrarily to the previous approach, the best models over the 10

runs were assessed exclusively taking into account the most common grid of parameters per clas-

sier. The change in methodology was due to the decrease of the total number of samples, since

the semantic information concerns each patient (46 samples) and not each slice (230 samples).
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Table 4.4: Detailed description concerning the hyper-parameter tuning process for the machine
learning models. Best values relate to the set of hyper-parameters that achieved the highest perfor-
mance with the test set, whilst most frequent values refer to the set of hyper-parameters that were
chosen by the search method more frequently.

Possible Values
Most Frequent Values

No SMOTE SMOTE
No FS PCA KFS No FS PCA KFS

LogR
C 0.01, 0.1, 1, 10 0.01 0.01 0.1 1 0.01 1
penalty L1, L2 L2 L2 L2 L1 L2 L1

SVM
C 0.01, 0.1, 1, 10, 100 0.1 0.01 100 1 0.1 10
kernel linear, poly, rbf linear linear poly linear linear poly

RF
max_depth

5, 20, 50, 100, 250,
None

250 None None 5 250 250

max_leaf_nodes 3, 4, 5, None 3 4 5 None 5 None
n_estimators 50, 100, 250, 500 100 100 100 50 500 50

XGB

colsample_bytree 0.3 : 1
gamma 0.5 : 2.5
learning rate 0.03 : 0.33
max_depth 2 : 6
min_child_weight 1 : 5
n_estimators 100 : 1100
subsample 0.4 : 1

After analyzing the most common set of hyper-parameters for each approach, there were some

patterns. Firstly, regarding Logistic Regression, a L2 regularization was constant for several ap-

proaches, whilst varying the C parameter. In SVM pipelines, linear kernels also were most often

chosen as best hyper-parameters indicating that a linear solution was more suitable for most ap-

proaches. In RF models, the hyper-parameters presented a higher variability, also due to the fact

of having a larger range of possible values. XGB not only presented several grids of best hyper-

parameters, since most range of values were continuous. Furthermore, in all runs, XGB models

were able to achieve the same performance, indicating that all chosen hyper-parameters were able

to equally predict the test samples.

Once again, it is important to reinforce that the denition of the best set of parameters for a

certain model is not a standard process, displaying an open solution space with several possible

methodologies.

4.3.3 Limitations

The proposed study on predicting MNA status utilizing semantic features was done using the same

traditional ML pipelines as in the previous approach, described in section 4.2. Data augmentation

techniques showed signicant improvements in the predictive ability of the models. However, the

size of the dataset directly inuences not only the performance of the developed models, as well as

the reliability in its interpretation, since the number of test samples is too low to draw consistent

conclusions.
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4.4 Multi-modal Approach

After studying both the radiomic and semantic approaches, a multi-modal approach is proposed

in order to build a classier with higher performance results than the radiomic approach and more

robust predictive ability than the semantic approach. Therefore, several ensemble methods are

proposed in order to combine both sets of features in order to obtain a stronger learner. This work

follows previous work (Malafaia et al., 2021), utilizing the same methods but with adaptation

towards the task in question.

4.4.1 Materials and Methods

To follow the previous work (Malafaia et al., 2021), 5 different approaches were studied to com-

bine radiomic and semantic features to predict MNA status. This approaches were previously

described in Chapter 2, Section 2.2, and are summarized in Figure 4.4.

Figure 4.4: Suggested pipeline for the Multi-modal Approach. The training semantic features are
utilized to train several models, with various Feature Selection/Construction (FS/C), Data Aug-
mentation (DA) and Classication (CLF) methods. The trained models are utilized to get MNA
predictions for the test samples, which are then used for computing the Evaluation metrics.

4.4.1.1 Fusion Methods

The 5 studied predictive ensemble techniques were used as an attempt to explore the most common

solutions to combine several modalities of data and build a more robust model to predict MNA

status. This was achieved through the combination of two learners - RadiomicModel and Semantic

Model - with the same samples but different types of information, being able to use the whole

dataset into one approach. The utilized approaches were the following:

• Multimodal Dataset: Both semantic and radiomic features were concatenated in order to

represent a single, multi-model, dataset. This data was utilized to train models using the

same techniques as in the two previous approaches, described in Sections 4.2 and 4.3. The

best model was selected and then compared to the remaining fusion approaches.
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• Simple Ensemble: A cascade pipeline was used where the semantic model was trained, being

its predictions given as a feature along with the radiomic features. The utilized classiers

were the best classiers in the previous approaches: SVM without Data Augmentation and

Dimensionality Reduction for the Radiomic Model; XGB with SMOTE and KFS for the

Semantic Model.

• Stacking Ensemble: A simple linear meta-model, in this case Logistic Regression, is trained,

giving the predictions of the semantic and radiomic models as features. The meta-model

returns the nal probability of the MNA status.

• Static Weighted Ensemble: In order to obtain the nal MNA status prediction, a static weight

is given to the predictions of each model. Both radiomic and semantic models were previ-

ously trained. The weight of each prediction was manually adjusted.

• Dynamic Weighted Ensemble: This approach was developed as an attempt of improving the

performance of the model by dynamically assigning a weight to each prediction, according

to the trust of the model in the result. Thus, a condence value was computed, being dened

as the absolute difference between the probability of a sample being positive and the value

0.50. The higher this value, the less condence the learner has in the prediction, being

the weight lower. This parameter was then utilized to perform a weighted average of both

predictions with respect to the ratio of condences between both sub-models. The described

algorithm followed Equation 4.1, in which dsem and drad refer to the condence values of

each sub-model, and α is a manually adjusted constant.

yprob = α
dsem
drad

ysem+(1−α)
dsem
drad

yrad (4.1)

4.4.2 Results and Discussion

4.4.2.1 Classication Results

The performance results of this stage of the purpose work were split into to portions: the rst one,

where a procedure very similar to the previous approaches is used, but with a multi-modal dataset

of the concatenated radiomic and semantic features; the second one, where the best classier from

the previous phase is utilized to train the multi-modal dataset, and all the ve fusion methods are

train over 10 runs along with the radiomic and semantic models, as baseline.

In Table 4.5, the average and standard deviation results of the rst stage of this approach are

presented. When utilizing the multi-modal dataset, Logistic Regression is the classier with an

overall best performance, presenting an average AUROC of 0.98±0.01 with Data Augmentation

and Feature Construction methods. For those reasons, this was the classiers chosen for the next

stage. It is noticeable that SMOTENC, a version of SMOTE for both continuous and categorical

data, improves the performance results of most classiers.
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Table 4.5: Performance Results for the studied classiers with the Multi-modal Dataset.

AUROC Balanced
Accuracy F1 score Precision Recall

Logistic
Regression

no SMOTENC
No FS 0.47±0.03 0.51±0.02 0.04±0.07 0.20±0.40 0.02±0.04
PCA 0.44±0.05 0.49±0.05 0.05±0.08 0.30±0.46 0.03±0.09
KFS 0.53±0.11 0.50±0.000 0.08±0.16 0.07±0.13 0.10±0.20

SMOTENC
No FS 0.82±0.01 0.80±0.02 0.73±0.02 0.67±0.05 0.81±0.00
PCA 0.98±0.01 0.75±0.01 0.66±0.01 0.50±0.01 1.00±0.00
KFS 0.73±0.01 0.64±0.02 0.51±0.02 0.53±0.05 0.50±0.00

SVM

No SMOTENC
No FS 0.61±0.15 0.59±0.10 0.48±0.13 0.39±0.07 0.65±0.27
PCA 0.55±0.08 0.59±0.04 0.40±0.09 0.54±0.13 0.37±0.14
KFS 0.43±0.09 0.36±0.06 0.33±0.03 0.25±0.03 0.50±0.00

SMOTENC
No FS 0.57±0.16 0.62±0.07 0.49±0.11 0.46±0.05 0.61±0.27
PCA 0.50±0.21 0.55±0.08 0.32±0.17 0.38±0.06 0.36±0.34
KFS 0.30±0.15 0.36±0.06 0.28±0.07 0.22±0.05 0.39±0.11

Random
Forest

No SMOTENC
No FS 0.56±0.01 0.57±0.02 0.23±0.07 1.00±0.00 0.13±0.05
PCA 0.80±0.09 0.53±0.05 0.14±0.20 0.28±0.39 0.16±0.27
KFS 0.43±0.05 0.53±0.12 0.39±0.13 0.39±0.16 0.40±0.10

SMOTENC
No FS 0.55±0.03 0.58±0.05 0.32±0.13 0.62±0.09 0.23±0.12
PCA 0.76±0.10 0.74±0.05 0.65±0.08 0.81±0.16 0.55±0.07
KFS 0.56±0.06 0.65±0.08 0.54±0.08 0.62±0.16 0.50±0.00

XGB

No SMOTENC
No FS 0.43±0.00 0.48±0.00 0.30±0.00 0.30±0.00 0.30±0.00
PCA 0.67±0.01 0.72±0.01 0.62±0.01 0.81±0.05 0.50±0.00
KFS 0.49±0.00 0.48±0.00 0.38±0.00 0.31±0.00 0.50±0.00

SMOTENC
No FS 0.50±0.00 0.50±0.00 0.32±0.00 0.33±0.00 0.30±0.00
PCA 0.83±0.01 0.65±0.00 0.53±0.00 0.56±0.00 0.50±0.00
KFS 0.43±0.00 0.45±0.00 0.37±0.00 0.29±0.00 0.50±0.00



MNA Status Prediction with ML Approaches 42

Table 4.6: Performance Results for the Multimodal Approach. Radiomic and Semantic Models
were also trained in the same 10 runs for baseline comparison purposes.

Fusion Method AUROC Balanced
Accuracy F1 score Precision Recall

Radiomic Only 0.78±0.06 0.70±0.10 0.63±0.08 0.64±0.08 0.60±0.07
Semantic Only 1.00±0.00 0.75±0.00 0.67±0.00 1.00±0.00 0.50±0.00
Multimodal Dataset 0.98±0.01 0.74±0.02 0.66±0.01 0.49±0.02 1.00±0.00
Simple Ensemble 0.76±0.07 0.68±0.04 0.58±0.06 0.65±0.10 0.53±0.05
Stacking Ensemble 0.63±0.10 0.53±0.06 0.13±0.021 0.15±0.24 0.12±0.20
Static Average 0.53±0.05 0.74±0.03 0.65±0.06 1.00±0.00 0.48±0.06
Dynamic Average 0.51±0.01 0.74±0.03 0.65±0.06 1.00±0.00 0.48±0.06

After selecting the best pipeline for the multi-modal dataset, the 5 ensemble approaches were

trained over the same 10 runs for comparability purposes. Although none of the methods being

able to over-perform the semantic model, the multi-modal dataset approach was able to reach a

close performance from the baseline, obtaining a higher recall value, which inherently means that

all true positives were correctly predicted. Furthermore, the semantic model is evaluated with 6

test samples, one per patient, whilst the multi-modal dataset includes information per patient and

per slice, counting with 30 test samples. Regarding the remaining fusion methods, once can state a

general decrease of performance. It is possible to correlate the discrepancy between the two types

of combined models and their performance with this decrease.

4.4.3 Limitations

After performing an exploratory study on the most common ML methods for combining different

feature modalities, the approach of simply joining all features and use traditional ML methods

seemed to have shown the best performance results. However, when combining two learners with

different types of information, one can infer that if the predictive ability of one is signicantly

lower than the other, the combination of the two models may arise in a decrease of overall per-

formance, as noticeable in the majority of the utilized methods. This suggests that the predictive

ability of the radiomic approach has room for improvement and, once its performance is increase

with a better pipeline, the multi-modal results may improve signicantly.

Furthermore, the Dynamic Weighted Ensemble method brings an interesting perspective on

how the models should be combined, by dynamically giving more importance to the learner that,

at a specic test sample, showed more condence in the prediction. It may be interesting to further

develop this last methodology and study whether its possible to increase its predictive ability.

Nonetheless, a multi-modal approach is a target of great interest for medical applications,

since the clinical protocol allows for the availability of several different types of data that should

be considered for the classication task.
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4.5 Deep Learning Approach

The previous sections focused on utilized traditional ML methods to assess the correlation be-

tween imaging phenotypes and/or patient clinical information with the prediction of MNA status,

showing a high correlation and a great predictive ability with the developed models. As a nal ap-

proach, a simple Deep Learning (DL) approach was developed, where transfer learning is utilized

to build a CNN network that receives as input CT slices and predicts the MNA status. Moreover,

a robustness analysis is performed on the developed architecture using as tool XAI methods. The

used experimental design follows Figure 4.1 from Section 4.1, in order for the results to be compa-

rable to the previous approaches. The proposed study is based on previous work (Malafaia et al.,

under peer-review), following the utilized methods.

4.5.1 Materials and Methods

Methods utilized for the proposed approach are described in Figure 4.5. In this section the utilized

data is described, as well as the MNA status classication model and the explainable methods.

Each portion of the pipeline is detailed in the following subsections.

Figure 4.5: Overview of the developed pipeline for the DL approach.

4.5.1.1 Data Preparation

As previously described in Chapter 3.2.1, the input for the model consisted on pre-processed CT

slices. In order to assess which image input would get better results, 3 types of images, exemplied

in Figure 4.6 were attempted: total CT slice; CT slice just containing the manually segmented

tumor (ROI); CT slice with the tumor centered in the image (centered ROI). Within the three

inputs, the model is provided different information: with the whole input image, the network has

pixel data exterior to the tumor; the ROI will exclusively provide the pixels related to the tumor,

which may allow the network to focus on the most relevant region of the image; the centered ROI

may facilitate the learning process of the network, by being constant the center of mass location

of the tumor and, thus, providing spacial features relevant for the classication.
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Figure 4.6: Attempted input images for the DL Approach.

For data storage and image manipulation purposes, the pre-processing for this approach was

made online, transforming the images within the pipeline. Data Augmentation was used in order

to increase variability within the dataset, namely Random Horizontal Flips, Gaussian Blurs and

Random Rotations.

4.5.1.2 Classication Architecture

The proposed DL architecture consisted on a ResNet50 (He et al., 2016) pre-trained with the Ima-

geNet Dataset (Deng et al., 2009). Several other pre-trained Convolutional Neural Networks (CNNs)

were attempted, being the one with higher perfomance results utilized.

Several hyper-parameters were tuned, namely the number of frozen layer, the learning rate,

the batch size and the optimizer. A weighted loss was used to address the data imbalance.

This architecture was utilized for 10 different runs, arising 10 models, once again to assess

the variability of the trained models when given different data splits. The developed models were

assessed in terms of performance with the metrics utilized in the previous sections.

4.5.1.3 Explainable Methods

Visual explanations are easily understandable by humans, since its possible to analyze which re-

gions of the input image contributed the most for the prediction made by the classier. For this

study, 3 gradient-based methods were used to generate visual explanations of the test samples over

the 10 runs. This explanations consisted on heatmaps that translate the score of each pixel for the

nal classication.

The utilized methods were: Saliency Maps (Simonyan et al., 2013), Integrated Gradients (Sun-

dararajan et al., 2017) and Layer-wise Relevance Propagation (LRP) (Bach et al., 2015). The lat-

ter constitute off-the-shelf post-hoc methods that can be found in open-source libraries such us

Pytorch Captum (Kokhlikyan et al., 2020). To illustrate the expected output of these methods,

Figure 4.7 illustrates a representation of the prediction of 2 images from ImageNet belonging to

two different classes and predicted by a VGG16 pre-trained network (Pal, 2016). Additionally,

a prediction of a lung nodule image from the LIDC dataset (Armato III et al., 2011) with a lung

classier is also demonstrated, as a more similar example to our use-case.
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Figure 4.7: Demonstration of expected results when utilizing the described XAI methods using
three different test samples. The rst sample is classied as "goldnch" and the second one is
labeled as "orange", being predicted by the pre-trained VGG16 network. The last sample belongs
to the LIDC dataset, being predicted by a lung cancer classier. For each image, the explanations
generated by the 3 XAI methods in question are displayed, as well as an overlay of the explanation
on the original image.

4.5.1.4 Robustness Assessment

The robustness assessment stage of this stage consisted on a comparison amongst the explanations

from the same test sample and XAI method over different runs, with the aim of assessing the

similarity between explanations generated from different predictive models for the same input.

The more similar the explanations from the sample sample, the more consistent the proposed

architecture was over different runs, since the generated predictive models would attribute higher

importance scores to the same image regions.
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In order to asses the coherence of the network for the same test sample over different train-

validation data splits, the heatmap explanations were compared two by two according to quantita-

tive image similarity metrics. Quality Image Assessment Techniques (IQA), namely full-reference

metrics, allow the comparison between two images, being utilized traditional methods, such as

Root Mean Squared Error (RMSE), as well as methods that attempt to approximate the perceptual

quality assessment of the Human Visual System (HVS), namely the Structural SIMilarity (SSIM)

index and the Multi-Scale Structural SIMilarity (MS-SSIM) index. Euclidean distance was also

used due to its popularity in image similarity metrics.

4.5.2 Results and Discussion

4.5.2.1 Best Architecture

Several parameters and changes were made to the pipeline in order to achieve the best perfor-

mance, which was evaluated with the AUROC value.

Firstly, regarding the input of the network, the three types of images were tested, being the

performance better when the input was the centered ROI. A comparison between the Loss and

Performance curves over the number of epochs with the whole image and the centered ROI is

presented in Figure 4.8, where the stability of the model is clearly higher when using just the

centered ROI instead of the whole image. When using the whole image as input, the model starts

overtting around epoch number 50. On the other hand, when giving exclusively the centered ROI

as input, the validation loss acocompanies the train losse decrease, in this case until around epoch

170. Moreover, when feeding the whole image, both the AUROC and the Balanced Accuracy

values are very unstable, not improving as the model is training. When giving the centered ROI as

input to the network, the performance metrics increase with the number of epochs.

After choosing the most appropriate input for the model, the hyper-parameters were selected

for the pre-trained ResNet50 according to the AUROC value computed with the test set over the

10 runs. The best learning rate was 0.00001, with a batch size of 32. The maximum number of

epochs was set to 300, with an early stopping criteria of not improving the performance over 30

consecutive epochs. The chosen optimizer was Adam, and a Weighted Cross Entropy Loss was

utilized. Furthermore, an adaptive layer defreezing was implemented to the pre-trained network,

being the last convolutional layer defrozen at epoch number 80, and the previous to the last one at

epoch number 150.

4.5.2.2 Classication Results

After the selection of the best hyper-parameters for the task, 10 models were trained and tested,

being the performance computed, as presented in Table 4.7.

The obtained performance with this approach was able to reach high performances, achieving

a AUROC value of 0.94±0.04 in the test set. The Recall value of 0.98±0.04 indicates a very high

ratio of true positives over the total existent positives, indicating that the model accurately detects

the MNA positive samples. The Precision, however, is lower than expected, indicating that some
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Figure 4.8: Network behaviour over epochs concerning Train and Validation Losses (on the left),
and Performance Metrics (on the right). The best model is saved according to the lowest validation
loss value, as indicated in the graphs by a red dotted line.
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Table 4.7: Average Performance Results for the DL Approach.

AUROC Balanced
Accuracy F1 score Precision Recall

Validation Set 0.89±0.05 0.80±0.07 0.81±0.07 0.74±0.07 0.87±0.06
Test Set 0.94±0.04 0.74±0.08 0.66±0.08 0.51±0.10 0.98±0.04

negative samples was mislabelled as positive. However, for clinical use-cases, a compromise in

terms of precision may occur if recall presents high values, since it guarantees that most positive

cases are being detected.

4.5.2.3 Robustness Assessment

Similarity metrics were computed based on the obtained explanations from Saliency Maps, Inte-

grated Gradients and LRP methods. Results were computed for every two heatmaps of the same

test sample, being the results then average to get a overall comparison of similarity between sam-

ples, as presented in Table 4.8.

After analyzing the coherence results among explanations from the same sample, indirect con-

clusions regarding the assessment of the predictive model can be drawn. The explainable methods

were utilized to assess the congruence between heatmaps of importance scores for the model to

make predictions when providing different train-validation data sets. The obtained results show

values of NRMS close to zero, as well as low L2 distances between maps, which are indicators of

similar explanations for the same input. Furthermore, SSIM and MS-SSIM results are close to the

reference, 1.00, indicating structural similarity amongst the compared images.

However, the results for Saliency Maps generated explanations show worst values when com-

paring to the other methods. This can be due to the fact that Saliency Maps is a simpler, less

detailed method that generates generally more scattered and noisy explanations, causing worse

similarity results. This can be visually observed in Figure 4.9, where it is noticeable that the ex-

planation provided by Saliency Maps is scattered beside the tumor region, activating regions of

Table 4.8: Overview of average Robustness Results for the DL approach. The results are indicative
of the similarity between explanations generated by the predictive model with different train-
validation splits and the same test sample. The metrics were computed for the three explainable
methods: Saliency Maps (SM), Integrated Gradients (IG) and LRP. The reference column (ref)
indicates the perfect score for each metric, which would reect on equal explanations for the same
image.

metric ref SM IG LRP
NRMS ↓ 0.00 0.05±0.01 0.03±0.01 0.02±0.00
L2 ↓ 0.00 1258±151 385±185 193±61
SSIM ↑ 1.00 0.61±0.07 0.95±0.05 0.98±0.02
MS-SSIM ↑ 1.00 0.77±0.07 0.91±0.06 0.94±0.04



4.6 Summary 49

the image that have null intensity. On the other hand, it is also clear that Integrated Gradients and

LRP show more specic regions that are always within the ROI boundaries.

Overall, this study showed that even with different data splits the trained models show some

degree of consistency regarding the regions of the input that contribute the most to the prediction.

4.5.3 Limitations

After the development of a simple DL learning pipeline with a explainability component to assess

the robustness of the classication model, the obtained performance results showed a high predic-

tive capability and high consistency between explanations from the same test sample. However,

the utilized architecture consisted on a pre-trained, well-known and commonly used network,

ResNet50, thus having the opportunity of personalizing the architecture to further improve the

performance results.

Moreover, despite the coherence results having shown a correlation between explanations of

the same image, the utilized XAI methods consisted exclusively of post-hoc models, due to their

simple utilization and ability to use over the trained models. These methods focus on explaining

the prediction with concern to the input image, not interpreting the rationale of the architecture

itself. This may be a limitation to the extent of explainability they are able to provide.

Finally, by studying and developing DL approaches, the need for larger amounts of data is

clear, in order to build a more robust pipeline that is able to learn from a representative amount of

data.

4.6 Summary

In this chapter, an extensive study on state-of-the-art approach for the prediction of MNA status

utilizing different types of data was in order. Four different approach were developed and de-

tailed, as well as the classication results for each methodology. For comparison purposes, all

techniques were trained using the same pipeline and the same test cohort, running 10 models for

each approach and averaging its results in order to also assess consistency and address the dataset

variability. Despite using different data modalities, all data concerned the same patients.

The rst experiment consisted on utilizing radiomic features extracted from CT slices and

traditional ML methods in order to predict MNA status. The obtained results showed that the

utilization of an SVM model without Data Augmentation nor Dimensionality Reduction was the

pipeline with the highest performance, achieving and AUROC of 0.84±0.06.

The second experiment utilized semantic data with the same classical ML algorithms to predict

the MNA status. The best semantic model was achieved with both XGB and Logistic Regression,

being SMOTEN helpful for performance improvement, as well as PCA and KFS. The chosen

best model was XGB with SMOTEN for data augmentation and KFS as feature selector, with

an AUROC performance of 1.00±0.00. Despite the great results, it is important to notice that

the semantic model only provides one sample per patient, whilst the remaining models utilize 5
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Figure 4.9: Illustrative test sample with generated explanations over 4 different train-validation
splits. For every run the input is presented, as well as the explanation generated by Saliency
Maps (SM), Integrated Gradients (IG) and LRP.
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samples per patient, due to the utilization of imaging features. Therefore, the test cohort consists

exclusively of 6 patients, being the results not comparable to the other approaches.

With the goal of joining both radiomic and semantic features to a single pipeline, a multi-modal

approach was studied and implemented in the third experiment. Five different fusion methods were

utilized to predict MNA status utilizing the semantic and radiomic models, being the best results

achieved by the concatenation of both fetaure modalities into one single multi-modal dataset.

The best ML algorithm for this dataset was Logistic Regression, utilizing SMOTENC for data

augmentation and PCA for feature construction, achieving a AUROC value of 0.98±0.01.

The nal experiment used DL techniques to predict the MNA status. A partially pre-trained

ResNet50 was utilized as classier, being the input of the network the centered ROI of each slice,

containing the tumor. The performance was evaluated utilized the test set, achieving an average

AUROC value of 0.94±0.04. After assessing the predictive ability of the model, its robustness

was evaluated by utilizing XAI methods to generate importance heatmaps for all test samples over

different runs. All explanations from the same sample were compared utilized image similarity

metrics, obtaining satisfactory results that show correlation between explanations. Thus, models

trained with different data splits consider similar importance for the same regions of the image,

guaranteeing some degree of coherence and consistency to the model.

Overall, the developed models showed a promising behaviour in predicting the MNA status,

being able to achieve great performance results.



Chapter 5

Conclusions and Future Work

The proposed work evaluates several approaches with the goal of predicting MNA status, an im-

portant biomarker in Neuroblastoma (NB) cases for patient risk stratication. To achieve that goal,

several state-of-the-art Machine Learning (ML) and Deep Leaning (DL) methods were studied and

utilized, in order to evaluate its predict ability towards the application of this study.

The utilized dataset for this work incorporated a total of 46 patients, with 5 CT slices each,

comprising data from two different sources. Furthermore, the heterogeneity of this type of cancer

includes tumors in several anatomical compartments, being the available images very different

amongst themselves. The low amount of data and its variability constitute 2 great challenges in

this type of tasks, despite the attempt of standardizing all data in the pre-processing stage.

All studied approaches were able to demonstrate a strong correlation between imaging phe-

notypes, patient clinical information and the amplication of the MYCN oncogene (MNA). High

performance scores were obtained for all approaches, as summarized in Table 5.1, being able to

over-perform the baseline approach (Pereira et al., 2022). Despite the good results, the size of the

dataset does not guarantee that the data is representative, which may inuence the performance

with external samples. Furthermore, the semantic model has a signicantly lower amount of data,

which may translate in a less robust model.

Regarding the robustness assessment of the last approach, this study could be of great interest

not only for this approach, but also for the remaining ones. In order for the developed models to

be utilized in real-life applications, there is a rising need to understand the behaviour of the model

and be able to explain to physicians the decisions made by the developed system. Therefore, this

Table 5.1: Overview of Performance Results for the proposed approaches concerning MNA pre-
diction.

MNA Detection
Approach

No. of
Test Samples AUROC Balanced

Accuracy F1 Score Precision Recall

Baseline Radiomic Approach 30 0.69±0.16 — — — —
Radiomic Approach 30 0.84±0.06 0.76±0.04 0.68±0.05 0.71±0.07 0.65±0.05
Semantic Approach 6 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Multi-modal Approach 30 0.98±0.01 0.74±0.02 0.66±0.01 0.49±0.02 1.00±0.00
Deep Learning Approach 30 0.94±0.04 0.74±0.08 0.66±0.08 0.71±0.10 0.98±0.04
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analysis is just an introductory study on the importance of ensuring the reliability, transparency

and consistency of the developed pipelines, and should be further extended in the broad spectrum

of interpretability and explainability. The generated explanations may be also used for clinical in-

terpretation, by interpreting the given heatmaps and provide insights to the correspondent clinical

meaning apprehended by the algorithm.

Overall, the proposed work allowed for a exploratory study on the state-of-the-art methods in

Articial Intelligence for Medical Applications, namely in Radiogenomics. The used algorithms

showed great potential for the detection of MNA status, being a great milestone for further investi-

gation. As Future Work is concerned, the utilization of more datasets is crucial for the evolution of

this study, along with the development of more personalized algorithms for the task itself, namely

in the DL domain and the fusion of multi-modality and interpretability with the latter. In order

for the pipeline to be applicable to pratical cases, the development of aggregation methods of the

slice-wise results into patient-level prediction is necessary, providing a single prediction for each

patient.
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