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Abstract

Wi-Fi is a wireless communication technology working on the basis of radio waves, that has
steadily become more common in day-to-day use. It is present in a wide variety of appliances,
since it allows local connectivity between devices.

The IEEE 802.11 standard was developed to implement Wi-Fi technology. Recent amend-
ments to the standard introduced multiple configurable parameters. Among them, are several
Modulation and Coding Schemes (MCS), which allow the network to better adapt to its envi-
ronment. However, the environment is rarely ever static, so dynamic Rate Adaptation (RA) was
developed. Dynamic RA is the act of dynamically adjusting the MCS depending on current wire-
less link quality. This can decrease repeated data transfers from errors, in turn resulting in a higher
throughput.

Some algorithms have been proposed to allow a network to continuously adapt to its link
quality. One option that has gathered a lot of interest recently, is Reinforcement Learning (RL).
Although there is an increasing amount of research in RL applied to dynamic link quality prob-
lems, not a lot of it was conducted in experimental scenarios. Similarly, we could not find much
information about the influence of computational delays on RL-based RA algorithms.

Computational delays not only slow down the algorithm’s speed, but may also further impact
them if it affects their responsiveness to changes in link quality. Outdated information of link
quality can impact its choice of rates, resulting in degrading network throughput.

In this dissertation we analyse a preexisting dynamic RA algorithm implemented through RL
called Data-driven Algorithm for Rate Adaptation (DARA). This algorithm faced some issues
when deployed in an experimental scenario. We have made changes and new contributions to this
algorithm that reduce its computational delays and enable its use in an experimental scenario. Our
analysis revealed some insights on the causes of computational delays and ways to address them.
Our implementation resulted in an algorithm around seven times faster than its predecessor.
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Resumo

Wi-Fi é uma tecnologia de comunicação de redes sem fios que funciona à base de ondas rádio,
cujo uso tem vindo a ser mais comum no dia-a-dia. Está presente numa grande variedade de
dispositivos, pois permite uma ligação local entre eles.

A norma IEEE 802.11 foi desenvolvida para implementar a tecnologia Wi-Fi. Alterações
recentes à norma introduziram vários parâmetros configuráveis. Entre eles, estão os Modulation
and Coding Schemes (MCS), que permitem à rede adaptar-se melhor ao seu ambiente. No entanto,
esse ambiente raramente é estático. Por isso, desenvolveu-se Rate Adaptation (RA) dinâmica. RA
dinâmica é o ato de ajustar dinamicamente o MCS dependendo da qualidade da ligação sem fios
atual. Isto pode diminuir as retransmissões devido a erros, levando a um aumento do débito.

Alguns algoritmos foram propostos para que uma rede se adapte continuamente à sua quali-
dade de ligação. Uma opção que tem sido alvo de interesse recentemente, é Reinforcement Learn-
ing (RL). Ainda que a pesquisa de RL aplicada a problemas de qualidade dinâmica de ligação
tenha vindo a aumentar, não encontramos muita investigação feita em ambientes experimentais.
De forma semelhante, não conseguimos encontrar grande informação sobre a influência de atrasos
computacionais em algoritmos de RA baseados em RL.

Atrasos computacionais não só afetam a velocidade do algoritmo, como podem também ter um
maior impacto se afetarem a reatividade desses algoritmos a mudanças da qualidade da ligação.
Dados desatualizados sobre a qualidade da ligação podem influenciar a sua escolha de MCS, o que
resulta num decréscimo do débito da rede.

Nesta dissertação, analisaremos um algoritmo de RA dinâmica preexistente implementado
através de RL chamado Data-driven Algorithm for Rate Adaptation (DARA). Este algoritmo ap-
resentou dificuldades a ser aplicado a um cenário experimental. Fizemos mudanças e novas con-
tribuições a este algoritmo que diminuem os seus atrasos computacionais e tornam possível o seu
uso num cenário experimental. A nossa análise aumentou o nosso conhecimento sobre as causas
desses atrasos computacionais, e soluções para esses atrasos. A nossa implementação resultou
num algoritmo aproximadamente sete vezes mais rápido que o seu antecessor.
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Chapter 1

Introduction

1.1 Context

The IEEE 802.11 standard, commonly known as Wi-Fi, is present in most household and office

devices nowadays. It establishes the rules for the creation and use of Wireless Local Area Net-

works (WLAN), such as the frequencies that are used in communications, or which transmission

techniques to use.

Due to advances in technology, the complexity of connected services has grown significantly

over the last decade. Consequently, the demand for higher communication throughput has also

increased across all forms of communication. Wi-Fi is no exception, and to meet those demands,

several amendments were released over the years. One possibility introduced in those amend-

ments, is adapting the Physical Layer (PHY) transfer rate to the current link quality. This is done

by adjusting the Modulation and Coding Scheme (MCS). However, link quality is not static, and

to fit the current channel conditions, the PHY transfer rates have to be changed dynamically. This

mechanism is called dynamic Rate Adaptation (RA).

Algorithms for dynamic RA exist, such as Minstrel [1], the default RA algorithm of Linux

kernels; and Iwlwifi [2], the RA algorithm used in Intel wireless chips. However, they have a

few shortcomings [3]. They sample the network and compare different rates to choose the most

appropriate one, but often take too long to converge to a fitting rate. They may even miss it entirely,

because both algorithms tend to not work optimally under network conditions with very dynamic

link quality. Dynamic RA algorithms based on Reinforcement Learning (RL) are now emerging

on the state of the art as an alternative to these traditional static and heuristic-based algorithms.

The Wireless Networks Research Group (WiN), that belongs to the Centre for Telecommuni-

cations and Multimedia of INESC TEC, developed a Data-driven Algorithm for Rate Adaptation

(DARA) [4], which is the basis of this dissertation. DARA is a standard compliant and RL-based

RA algorithm that was initially implemented in Network Simulator 3 (ns-3) [5]. Afterwards, and

previous to the work of this dissertation, there was an initial effort to migrate the implementation

of DARA to an experimental environment. This preliminary implementation of DARA, for an

1



2 Introduction

Figure 1.1: Simplified overview of a Rate Adaptation implementation.

experimental environment, was the focus of the work developed in this dissertation. However, this

migration faced some issues.

1.2 Motivation

RL algorithms have been applied to the RA problem to increase the throughput of WLANs

while remaining standard compliant. Instead of sampling the network as Minstrel and Iwlwifi do,

these algorithms often require an exploratory training phase. It is possible to separate the training

phase from the deployment of the algorithm. Training could be performed only once, reducing the

computational delays of training during the deployment. Alternatively, the training can be done

alongside deployment, which can accommodate online learning. Online learning would allow the

algorithm to deal with unforeseen circumstances. Automatic solution finding and online learning

are keys to improving Wi-Fi network speed and quality. Many encouraging results have been

achieved with RL algorithms [3, 6, 7, 8], often better than the results of Minstrel and Iwlwifi.

Running an RL algorithm in a wireless device may affect its normal function. Computational

delays can slow down optimal MCS selection for the current link quality, and overuse of system

resources can even halt the process entirely. To the best of our knowledge, issues stemming from

computational delays have not been analysed in detail. Reducing those delays should improve the

effectiveness of RL algorithms. In turn, this should lead to an even higher throughput increase in

Wi-Fi networks when using an RL algorithm for dynamic RA.

Most work of the state of the art on RL-based approaches for RA was validated in simulation.

Despite the advantages of simulation, it is not always an accurate representation of real scenarios.

Networks in real environments tend to be volatile and unpredictable. Furthermore, simulation

can obscure the aforementioned problems stemming from computational delays. An algorithm

that was only validated in simulation may have problems when implemented in an experimental

scenario. This can happen since the simulation did not account for the computational delays of:
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1) gathering and calculating the state information of the environment; 2) calculating the action to

take based on that observation; and 3) implementing the appropriate action.

DARA was originally developed considering a real environment. However, it faced several

issues that led to its development in simulation instead. Among these issues, is the impact of

the algorithm’s processing time. The algorithm took so much time to collect the observation, the

reward, and to apply an action, that its decision was outdated by the time it was made. Analysing

and reducing its delays may solve the problem of implementation in a real environment, which

motivated the work developed on this dissertation.

1.3 Problem Definition

On a device running an RL algorithm for RA, there are many factors that affect the algorithm’s

performance. To the best of our knowledge, factors such as the computational delays of the algo-

rithm have not been detailed in the state of the art. These delays will be our focal point, and can

exist for various reasons:

• Algorithm Delays – Inefficiency or unnecessary halting from the algorithm. A task that the

algorithm executes may be too slow for the algorithm’s requirements. In such situations, it

may be necessary to find alternatives to how it executes the task.

• OS Overheads – Overheads introduced by the Operating System (OS) of the device. The

OS manages the system resources and services. It can be seen as an interface between the

device’s hardware and software, thus affecting our algorithm.

• Hardware Limitations – Device hardware specifications may limit the algorithm’s process-

ing. For example, not enough CPU (Central Processing Unit) or GPU (Graphics Processing

Unit) power can delay the RA action.

Delays in the algorithm’s processing impair its performance in RA. If the algorithm takes too

long to choose an MCS, the Wi-Fi node might spend too much time using a sub-optimal MCS for

the current link quality in the scenario. It might also take so long that when it does change, the

chosen MCS is no longer appropriate for the current link quality, since it is constantly changing.

In the end, this may result in a lower network throughput. If we minimise those delays, we can

avoid situations where we end up with a sub-optimal throughput due to using an outdated MCS

selection for the current link quality.

As previously stated, DARA has faced issues in an experimental scenario. Some of these

issues are due to computational delays. We intend to verify this, and solve these issues if possible.

We will take as a basis DARA [4], in which we found room for improvement. We will not

develop a new algorithm from scratch for this dissertation. This approach allows us to compare the

original version of the algorithm to our Enhanced DARA (E-DARA), and evaluate the difference

of the impact of computational delays between both.
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1.4 Objectives

As far as we know, there is limited research on the state of the art addressing the computational

delays of RL-based solutions. More specifically, we did not find any work focusing on the impact

of using RL algorithms for RA in experimental scenarios. Therefore, the main objective of this

dissertation is to characterise and quantify the computational delay of each main function of the

algorithm, evaluating the feasibility of using RL algorithms for RA in experimental scenarios.

More specifically, to enhance DARA’s execution speed (i.e. minimise DARA’s computational

delays).

To achieve this, we intend to:

• Improve our understanding of the computational delays in RL algorithms – There are

few works addressing this problem in the state of the art. Often, problems of this type are

not the focus of these works, so the solution to the delays is not documented in detail. In

this work, we will address this problem and document the steps we take.

• Develop and implement the solution in an experimental scenario – Experimental sce-

narios represent real environments more accurately than simulation. We will document the

hardware specifications, the OS of the device, and other relevant information.

• Analyse the computational delays – This involves the use of profiling tools that assess the

processing time, and the use of system resources when running the RL algorithm. The goal

is to identify which issues arise from the processing time. This is an important step to decide

how to approach the problem.

• Devise a solution for the identified issues – We implemented an enhanced version of

DARA which aims to solve the identified problems. This implementation is documented

in Chapter 3.

• Validate our solution – We compare the obtained results using our enhanced version of

DARA to the baseline, the original DARA algorithm. This comparison is documented in

Chapter 4.

1.5 Contributions

In this dissertation we have made several contributions. These contributions have resulted in

our E-DARA implementation being faster than the original DARA. These were our main contri-

butions:

• Multiple alternative implementations – We implemented and tested multiple ways to

parse and input data in the algorithm. These implementations are detailed in Chapter 3.

We documented the thought process behind these alternative implementations, and clarify

some of their advantages and disadvantages.
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• Improvements to data acessibility – Our device used a version of the Linux kernel. The

kernel separates data into kernel space and user space. Accessing data in kernel space is not

trivial. Some of the necessary data for our algorithm was updated to user space every 100

milliseconds. Our modifications to a kernel module enable us to access it without the 100

millisecond limitation.

• Evaluation and validation of implementations – We collected and analysed statistics on

the aforementioned implementation versions. These analyses, displayed in Chapter 4, al-

lowed us to make informed decisions on which of the implementations was probably the

best for the combination of hardware and software used in the experimental setup of this

dissertation.

1.6 Document Structure

This document is organised as follows: in Chapter 2, we introduce the state of the art and rele-

vant background of our work. It includes information on the IEEE 802.11 standard, Reinforcement

Learning, the DARA algorithm, relevant tools we use, and related work that was done in the field.

In Chapter 3, we have our E-DARA specification and implementation. Here, we talk about how

the algorithm works as a whole, which options we had to specify and implement, and the thought

process behind our choices. In Chapter 4, we detail the evaluation and validation of our solution.

We share our results, with accompanying plots, as well as compare our E-DARA implementation

to the original DARA. In Chapter 5, we present the conclusions we derived from our results, final

thoughts, and future work that can possibly improve our implementation even further.
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Chapter 2

State of the Art

2.1 Introduction

In this dissertation, we analyse the computational delays in Reinforcement Learning algo-

rithms used in an experimental environment. This involves the use of an RL algorithm in order

to improve IEEE 802.11 network quality of service – e.g. increasing throughput and decreasing

packet loss – and the analysis of the processing time of such a system. We will be covering the

following topics in this chapter:

• IEEE 802.11 – Brief description of what it is, and the most relevant revisions to it;

• Rate Adaptation – Motivation behind RA, and how it works;

• Reinforcement Learning – How RL works and can be applied, and a brief description of

relevant algorithms;

• Computational Delay – How it can affect the performance of RL algorithms, and possible

ways to address the issue;

• Fed4Fire+ – The experimental testbed that was used in our analysis;

• Linux Tools – Linux components that were a part of our implementation;

• Related Work – Work that has contributed to the topic we discuss.

2.2 IEEE 802.11

IEEE 802.11 [9] is a standard that was developed to implement WLAN communications, and

is commonly referred to as Wi-Fi. It specifies Medium Access Control (MAC) and physical layer

(PHY) protocols. Although first developed in 1997, it has since seen many amendments and

improvements that extend the technology’s capabilities, keeping it up to date. It has become a

popular technology due to its ease of use; adding new devices is fast and simple. When used to
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connect to a modem, it permeates Internet access to multiple simultaneously connected devices

wirelessly.

IEEE 802.11-1997 The first official protocol of the IEEE 802.11 standard is called IEEE 802.11-

1997, also known as IEEE 802.11 legacy mode. It operated on the 2.4 to 2.4835 GHz band, and

had a transmission rate of 1 or 2 megabits per second (Mbit/s). It implemented Frequency Hopping

Spread Spectrum (FHSS), and Direct Sequence Spread Spectrum (DSSS).

IEEE 802.11b In 1999, IEEE 802.11b-1999, known as just IEEE 802.11b, was created. It ex-

tends transmission rate possibilities by allowing 5.5 and 11 Mbit/s connections, in addition to the

original legacy rates. They also share the same frequency bands of 2.4 to 2.4835 GHz. The new

rates were only implemented with DSSS because FHSS did not follow the Federal Communi-

cations Commission’s instructions on operating with rates superior to 2 Mbit/s. IEEE 802.11b

achieved theoretical ranges of 400 m in open spaces, and was the first widely adopted standard.

IEEE 802.11a On the other hand, the IEEE 802.11a standard – conceived around the same time

as IEEE 802.11b – could employ 6, 9, 12, 18, 24, 36, 48 and 54 Mbit/s connections. However,

it operated in the 5 GHz frequencies, with 20 MHz channels. This amendment introduced a

technique known as Orthogonal Frequency Divison Multiplexing (OFDM), instead of using DSSS

or FHSS. OFDM enables data to be sent in smaller sets simultaneously in different frequencies,

but only when they would not interfere with each other. The 5 GHz band reduces the possibility of

interference, since this band is less used. These two points improved the IEEE 802.11a reliability.

However, it did not work with devices that only implemented the IEEE 802.11b and legacy modes,

and the signal quality could be worse when there were obstacles present.

IEEE 802.11g In 2003, IEEE 802.11g (or IEEE 802.11g-2003) introduced IEEE 802.11a rates

of up to 54 Mbit/s, in the IEEE 802.11b band of 2.4 GHz. Since it uses the same band, it shares the

same expected network area coverage. An IEEE 802.11g device is compatible and can commu-

nicate with IEEE 802.11b devices. Furthermore, IEEE 802.11g also implements OFDM. When

communicating with an IEEE 802.11b device, it reverts back to DSSS instead [10].

IEEE 802.11n Afterwards, in 2009, came the IEEE 802.11n amendment, also known as Wi-Fi

4. Among the biggest changes brought by this amendment is the introduction of configurable

parameters. Namely, Short Guard Interval , Multiple Input Multiple Output, several Modulation

and Coding Schemes (MCS), and Frame Aggregation. It can reach theoretical rates of 450 Mbit/s.

IEEE 802.11ac The IEEE 802.11ac amendment – or Wi-Fi 5 – is the successor to IEEE 802.11n,

and was finalized in 2013. A lot of the related work was done in this version of the standard. It

further improves IEEE 802.11n features by introducing Multi-User Multiple Input Multiple Output

(MU-MIMO), which enables simultaneous transmission between more than just one device, using
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multiple antennae; and 256-QAM modulation which increases the amount of data that can be

transferred at once.

IEEE 802.11ax Finally, the IEEE 802.11ax amendment was approved in 2021. It is commonly

known as Wi-Fi 6. It introduces further improvements such as 1024-QAM modulation and Orthog-

onal Frequency Division Multiple Access (OFDMA). OFDMA is an upgraded version of OFDM

that also distributes packets in frequency divisions, but for multiple users at once. This version

of Wi-Fi works in both 2.4 GHz and 5 GHz frequencies, unlike previous versions. It can reach

theoretical rates of 9.6 Gb/s.

Table 2.1: Table of IEEE 802.11 standards.

Standard Theoretical Rate Frequencies Techniques
802.11-1997 2 Mbit/s 2.4 GHz FHSS; DSSS

802.11b 11 Mbit/s 2.4 GHz DSSS
802.11a 54 Mbit/s 5 GHz OFDM
802.11g 54 Mbit/s 2.4 GHz OFDM; DSSS
802.11n 450 Mbit/s 2.4 GHz OFDM; MIMO
802.11ac 1.7 Gb/s 5 GHz OFDM; MU-MIMO
802.11ax 9.6 Gb/s 2.4, 5 and 6 GHz OFDMA; MU-MIMO

In Table 2.1, we can see a summary of the discussed versions of the standard. Most of the

related work was done in the IEEE 802.11ac standard, since IEEE 802.11ax is still recent. In this

dissertation our focus will be the IEEE 802.11n standard due to limitations of the tools we will

be using. However, the biggest change that impacts our work between IEEE 802.11n and IEEE

802.11ac is the number of MCS indexes. Therefore, extending our results to more recent versions

of the standard should be straightforward.

2.3 Rate Adaptation

The objective of RA is to find the optimal data transmission rate for a given link quality.

However, this is not an easy task. Just as link quality constantly changes, so do the optimal rates.

To properly adjust the rate, the link quality should be monitored. The objective of RA is to improve

network performance (e.g. throughput), despite changes in link quality.

For example, in a situation with poor link quality, it may be worthwhile to reduce the trans-

mission rate. A lower transmission rate should reduce the error rate, which in turn lowers the

number of retransmissions. By avoiding wasteful retransmissions, a lower rate can increase the

useful throughput.

One way to monitor link quality, is to probe the Signal-to-Noise Ratio (SNR) of the data that

is being transmitted. The SNR is the ratio of power of a meaningful signal over the power of

background noise. A higher SNR means the signal is clear, and often indicates a higher quality
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communication. Alternatively, we can calculate the frame loss ratio. The frame loss ratio is the

ratio between the number frames that are not delivered, and the total number of frames sent. High

frame loss ratios may indicate poor link quality, although this is not always the case. High frame

loss ratios may also exist due to frame collisions from simultaneous transmissions.

Another possibility is probing different rates. Instead of only making decisions based on pas-

sively monitored link quality, it is possible to switch to different rates, and evaluate their success.

One disadvantage of this method is that while probing unsuitable rates, the throughput may de-

cline. This method is how some existing RA algorithms work, such as Minstrel [1] – the default

algorithm of Linux kernels – and Iwlwifi [2] – the RA algorithm used in Intel wireless chips.

Minstrel Minstrel collects statistics to calculate the probability of success of a frame transmis-

sion for a given rate. For each rate, Minstrel starts by calculating the probability of success of a

frame transmission periodically, using an Exponential Weighted Moving Average, as follows:

Psuccess = (1−α)∗Pcurrent +α ∗Pprevious (2.1)

where Pcurrent represents the ratio of successful transmissions over the total number of attempts of

the current period, and Pprevious represents the weighted moving average of the previous period.

Psuccess is the probability that is used for the calculation of the maximum achievable throughput –

which Minstrel does for each rate, according to the following equation [11]

MaximumT hroughput = Psuccess ∗Npackets ∗FrameSize (2.2)

where Psuccess is the previously calculated weighted moving average of success of a frame trans-

mission, and Npackets is the number of packets that can be transmitted in one second under perfect

link quality.

Minstrel uses the Multi-Rate Retry chain. In summary, it takes 4 candidate rates (r0, r1, r2 and

r3), and a corresponding number of frame transmission retries (c0, c1, c2 and c3) specified by the

driver. Rate r0 will be used until the retries exceed c0. Then, r1 is used instead. This continues

down to r3 if necessary. Since Minstrel dedicates 10% of its transmissions to probe randomly

chosen rates, only 90% of its transmissions are normal packets. It populates the 4 rates differently,

depending on whether it is a random lookaround rate, or a normal rate, as follows:

As shown in Table 2.2, for normal traffic, the rates are: the best throughput rate, the next best

throughput rate, the best probability rate, and the base rate. For the lookaround rate, if the ran-

domly selected rate is lower than the current best throughput rate, the rates are: the best through-

put rate, the random rate, the best probability rate, and the base rate. If the randomly selected

rate turns out to be higher, then the random rate is first, and the best throughput rate is second.

Despite switching between the rates in its Multi-Rate Retry chain based only on the number of

frame transmission retries, the rates that constitute the chain are only updated once every 100 ms.
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Table 2.2: Table of Minstrel’s Multi-Rate Retry chain.

Attempt
Lookaround Rate Normal

RateRandom < Best Random > Best
r0 Best Rate Random Rate Best Rate
r1 Random Rate Best Rate Next Best Rate
r2 Best Prob Best Prob Best Prob
r3 Base Rate Base Rate Base Rate

The rates are switched by adjusting one of IEEE 802.11’s configurable parameters, the MCS.

Each MCS index is a combination of a modulation type and a coding rate. Lower index MCS have

lower theoretical throughputs, but should be more reliable in terms of error rates.

There is a distinction to make between RA methods that are standard-compliant, and those

that are non-compliant. Non-compliant methods make use of features and information that may

not be easily accessed in most common Network Interface Controllers (NICs). Accessing those

features requires modifying the NIC, or using feedback mechanisms (e.g. sending receiver’s SNR

back to the transmitter with out-of-band mechanisms). Those methods can only be implemented

on devices with the same modifications afterwards. On the other hand, compliant methods only

use features that are available by default on NICs that implement the IEEE 802.11 standard. Not

only would this most likely mean an easier implementation, it should also be easier to extend it to

most NICs.

RL-based algorithms applied to RA can improve network performance, by learning to relate

link quality data – such as the SNR – to the most appropriate rate to use in that case. There are

several solutions [3, 7, 12, 13] in the state of the art achieving this.

2.4 Reinforcement Learning

Reinforcement Learning is a subset of Machine Learning with the goal of automatically learn-

ing a solution to a problem. It works by having an agent that receives an observation from an

environment. Then, the agent executes the action it deems best, considering the observation. This

action interacts with the environment, which returns a new observation, and a reward associated

with the action. This process can loop indefinitely.

In Figure 2.1 we can see a summary of RL interactions. The objective is to determine which

actions give the highest reward in each state, without optimal examples of how to achieve the goal.

This process is similar to how humans and animals learn. We do not require optimal examples

of how to perform something in order to learn. Instead, we commonly learn by trying out things

– resembling the actions taken by the agent – and then considering whether what we did held

good results – resembling the reward. Afterwards, favourable actions are repeated, while different

actions are attempted if they were not successful before.
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Figure 2.1: Reinforcement Learning interaction loop.

When making a decision on an action, we have two choices: exploration and exploitation. Ex-

ploration is choosing random actions to see how they perform. This allows the agent to gain more

knowledge about the environment. Exploitation repeats actions that worked favourably before, in

an attempt to maximise the reward. Although exploitation seems strictly better, balancing both is

important [14]. For example, in a system that changes over time, exploration is key to adapting to

new circumstances and achieving a higher cumulative reward.

However, maximising a total reward only coincides with achieving a goal if we pick an appro-

priate reward. For instance, if we are training an RL algorithm to play a video game where the goal

is to survive as long as possible, considering the score as the reward is probably not the best course

of action. Even if we had a great RL agent capable of maximising the reward — in this case, the

score – this would not necessarily align with our goal, which is surviving for as long as possible.

A more fitting choice might be to increment a reward for each time step we survive. While RL is

a very goal-oriented form of Machine Learning, the task of picking the reward it should maximise

in order to achieve that goal, is still ours.

In this dissertation, we will be evaluating the processing time of two different kinds of RL

agents: a Deep Q-Network (DQN) agent and a Q-learning agent.

Q-learning This is an RL algorithm based on a lookup table, called a Q-table. A Q-table is a

table with a row for each possible state, and a column for each possible action. In its cells, the

corresponding state-action value is stored. This state-action value is the expected return of picking

an action when presented with a certain state, and is more often called a Q-value. Q-learning

converges the Q-table values to the optimal Q-values, eventually estimating the best action to pick

for each state.

It learns by updating the Q-table after each action, through the Bellman equation:

q(s,a) = q(s,a)+α(R+ γ max
a′

q(s′,a′)−q(s,a)) (2.3)

where q(s,a) is the Q-value for a state s and action a; q(s′,a′) is the Q-value of the next state

s′, in which we would pick the action that would result in the highest Q-value of that next state;

α is the learning rate, which determines how quickly the agent abandons its previous Q-values

in favour of its most recent results; γ is the discount rate, which determines the weight of future
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rewards – a lower number would indicate a preference towards immediate rewards; and R is the

numerical reward that resulted from our action.

DQN A Deep Q-Network is an RL algorithm based on the simpler Q-learning algorithm. Instead

of having a Q-table that maps states and actions to their expected Q-values, it relies on a Q-function

f (s,a) that does the same. It leverages the power of Neural Networks (NNs) to approximate that

Q-function. DQN refers to the learning method, but the NN itself can have any structure. In

situations with many states and actions, DQN is preferred over Q-learning. A Q-table has to map

every state to every action, so it can be computationally intensive to utilise it in such situations.

A Neural Network is a concept in Machine Learning, more relevant to deep learning algo-

rithms, such as a DQN algorithm. It is a structure composed of multiple layers of nodes called

neurons. These neurons connect to other neurons. There are multiple types of neurons, but we

only focus on the simplest type, which has an associated weight and threshold. If the output of

a neuron is above the threshold, it passes that output to the connected neurons depending on the

weight of the connection. The first layer of an NN is an input layer that takes data from the out-

side. The last layer is an output layer which returns the result of the NN. The layers in between

are called hidden layers and are usually the core of the NN’s functioning.

An NN is often composed of multiple layers with many neurons. This results in a structure

capable of identifying patterns in data. When coupled with iterative updates of the weights and

thresholds of the neurons, the NN can improve its accuracy over time. This pattern can range from

identifying an object in an image, to approximating a function.

The process through which a DQN agent learns, is analogous to Q-learning. Instead of updat-

ing Q-values in a Q-table towards the optimal Q-values, we update our NN to better approximate

the Q-function. This is usually done with two nearly identical NN, one computing our predicted

Q-value, and the other computing a target Q-value. Afterwards, we calculate the Mean Square

Error of the loss, using the difference between those two Q-values. Then, we update the weights

of the NN by back-propagating the loss using gradient descent. With a good approximation of

the Q-function, the DQN agent knows the actions with the highest return for each state, and picks

them.

2.5 Computational Delay

Computations are calculations done by a computer. They are not limited to arithmetic steps,

and include executing instructions. Since algorithms are sets of instructions and arithmetic steps,

devices running algorithms perform computations.

Despite individual computations usually being fast, they are not instant. Certain complex

tasks can be very demanding in terms of computations. The speed of an algorithm depends on

how quick these computations are executed. Since algorithms can be used to solve time-critical

problems, faster computations are often desired. However, many factors can affect the end speed

of an algorithm negatively. We call them computational delays.
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One common example of a computational delay, is an overhead introduced by the OS of a

device. Our algorithm will be a process in a device that is managed by an OS, and will not be the

only process on the device. The OS is responsible for managing the resources and processes of the

device, and thus, its multi-tasking. Multi-tasking is achieved by allocating time slots to its various

tasks. During a task’s time slot, the CPU processes that task. When the time slot is over, the task’s

processing is interrupted, and it works on a different task instead. These extra computations do

not progress the algorithm’s function, and are perceived as a delay from the algorithm’s point of

view.

We can also consider computational delays from the algorithm itself. Certain tasks can be

slow to process, either due to their complexity, or due to their implementation. An implementation

might be executing redundant or inefficient computations. It can also be an implementation that

prioritises preserving memory over speed. Sometimes, a task is too complex, and we must explore

alternative ways of achieving the desired output.

The physical components of the device also impact the overall performance. Although they do

not directly cause a delay, the overall speed is dependant on the characteristics of the components.

For instance, newer CPUs can perform the same instructions in a fraction of the time it would take

older CPUs.

2.6 Fed4FIRE+

Fed4FIRE+ is a project under the European Union’s Programme Horizon 2020. This project

aims to facilitate research and innovation in the area of the Internet. They provide multiple Next

Generation Internet testbeds for free experimentation [15].

Our testbed of interest will be w-iLab.2 [16]. This testbed is located in Zwijnaarde, Belgium.

It is composed of nodes scattered throughout 100 spots. There are 4 types of nodes, 2 of which are

relevant to us. These are 48 ZOTAC nodes, 40 APU nodes, 10 DSS nodes and 15 mobile nodes,

but we only used ZOTAC and DSS nodes. Each node has an embedded computer with 2 Atheros

based Wi-Fi interfaces, supporting standards IEEE 802.11a to 801.11ac. The available computers

can be accessed and controlled freely. In the nodes we used, we ran a Linux kernel, version 3.13.0,

using an Ubuntu 14.04 distribution. A summary of the node specifications can be seen in Table

2.3.

Table 2.3: Specifications of w-iLab.2 nodes [16].

Feature ZOTAC APU DSS/Mobile
CPU type Intel Atom D525 (2cores, 1.8 GHz) AMD G series T40E APU (2cores, 1GHz) Intel core i5

RAM (GB) 4GB DDR2 800MHz PC2-6400 CL6 4GB DDR3 1066MHz 4GB DDR2 800MHz PC2-6400 CL6
Hard disk 160GB (2.5”, SATA, 7200RPM, 16MB) 32GB (SSD,mSATA) 60GB (2.5”, SATA, SSD)

Wi-Fi 2x802.11abgn 2x802.11ac 1x802.11abgn, 1x802.11ac

We use a Fed4FIRE+ testbed as it provides a real environment on which we can implement

and evaluate our work. We test in an experimental setting as opposed to a simulated one due to the
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unpredictability of real world wireless networks, and also because physical hardware is the most

adequate equipment since the focus of our work is the processing time.

2.7 Linux Tools

Our version of the algorithm was implemented in the Linux OS, and a big part of the imple-

mentation depends on it. In this section we describe two Linux components that are relevant to

our implementation. Namely, the mac80211 module [17], which we modified as part of our work,

and the proc filesystem, that we used in these modifications.

2.7.1 mac80211 module

The Linux kernel is responsible for many different tasks. It is responsible for memory man-

agement, executing processes, controlling hardware, etc. Kernel modules are pieces of code which

extend kernel functionality and enable it to accomplish some of these tasks.

Mac80211 [17] is a module for managing wireless devices. More specifically, it is a framework

to create drivers for those wireless devices. For example, ath9k, the wireless device our wilab2

nodes (discussed in Section 2.6) use a device driver that depends on mac80211. It is similar to an

interface between the linux kernel and the wireless device.

Mac80211 also implements rate control algorithms. One of those rate control algorithms – and

its default – is Minstrel. Minstrel needs to calculate the probability of successful transmission. To

calculate it, it needs information on frame successes and attempts. The mac80211 module stores

this information in its variables. Furthermore, it computes and stores the Minstrel table of rates.

The table of rates DARA reads comes from mac80211’s implementation of Minstrel.

2.7.2 proc filesystem

The proc filesystem, also called procfs, is a virtual filesystem. It serves as an interface to

data structures in the Linux kernel, and enables communication between kernel space and user

space. Procfs often serves to provide information or statistics about the system, or a process. For

example, each Linux process has a subfolder in the system, with information such as the virtual

memory the process uses, or what command started the process.

It works by creating virtual files. Those virtual files do not have content that can be read

and written to like a normal file. Instead, when read or written, they execute a function. These

functions commonly read internal variables and output them, similar to a regular read. But they

are not limited to this, and can have more complex behaviour. These internal variables, if part of

a kernel module, would usually be restricted to kernel space. However, through procfs, the virtual

file is in user space, despite being able to output data from the kernel space. This is what enables

communication between the two spaces.
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2.8 Related Work

In this section we discuss related work, such as the original DARA implementation this dis-

sertation is based on. We also briefly talk about other RL implementations developed for RA, and

possible gaps in the literature.

2.8.1 DARA

DARA[4] is an RA algorithm that employs a Deep RL method. More specifically, it uses a

DQN. It takes the SNR of the environment as an input to its NN. The output is the MCS to adjust

the rate of the link. To evaluate its performance, it uses a method similar to Minstrel’s of evaluating

the frame error rate. The version of DARA we had access to during the course of this dissertation

was built for an experimental scenario.

It can be divided into 2 main components, the agent side and the environment side. The agent

side is the agent itself and the NN. It is responsible for deciding the action as well as training.

It was originally implemented with tf-agents [18], which works on the basis of Tensorflow [19].

These are Python modules created for implementing Machine Learning solutions.

The environment side serves as the interface which provides the input data to the algorithm,

the SNR; is responsible for taking the action and applying it, i.e., actually switching the MCS that

the wireless device uses; gathering information on frame attempts and successes, and calculating

the reward. It makes use of the Python gym module, and a bash script created by the author that is

ran through the Python subprocess module [20].

The bash script has several commands. This is because of the multiple different functions of

the environment. The commands are used to access files, and often that information is parsed

through piping other commands. For example, the information for calculating the reward is ob-

tained through mac80211’s Minstrel implementation, by reading a file with the tables Minstrel

uses. One thing to note is that the tables are only updated every 100 ms. This means DARA is

limited to calculating one reward once every 100 ms.

2.8.2 Other Works

There is a lot of work done in the topic of using ML-based approaches for the task of RA

[3, 6, 7, 8, 21, 22]. A lot of these approaches have provided results superior to those of Minstrel

and Iwlwifi. However, our focus in this dissertation is the computational delays of RL algorithms,

a subset of ML.

The existing research on computational delays on the topic of RL algorithms used for RA is

very limited. We believe that when computational delays are detected in other works, they are seen

as problems in the implementation that are not a focus of the work. Therefore, contributions are

not often made to the general understanding of computational delays. However, the authors in [3]

mention the delay between querying the agent and receiving a candidate for switching rates. It was

around 1.3 ms to 3.7 ms on average (tested in two different devices). When compared to common
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probing intervals which tend to be in the order of tens of milliseconds, this is an improvement. This

was achieved through the use of an asynchronous framework, which coordinates the RL agent and

the kernel driver, so that it does not need to halt for the agent’s training and inference.

Despite encouraging results of RL, they were mostly achieved in simulated scenarios, or in

very specific experimental ones, with very powerful computational resources. As is often admit-

ted by the authors, more rigorous testing in real environments is necessary before this technology

can be deployed. To the best of our knowledge, there are no other works that evaluate and char-

acterise computational and processing delays such as hardware limitations, and overheads that

come from the OS. As such, our work may provide insight into causes of computational delays in

these algorithms, as well as possible solutions. Such insights could possibly enhance preexisting

algorithms, or facilitate the development of new ones.
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Chapter 3

E-DARA Specification and
Implementation

In this chapter, we will discuss our implementation of the DARA algorithm, which we call En-

hanced DARA (E-DARA). The goal of E-DARA is to increase throughput in a Wi-Fi connection

through Rate Adaptation, through a similar process to the original DARA. However, our imple-

mentation is different so as to decrease the computational delays of the algorithm, thus minimising

the associated impact on performance. Note that the focus of this solution are the computational

delays, rather than its training and evaluation as a RA algorithm.

The action of the algorithm corresponds to an MCS rate that the wireless device switches

to. The state of the algorithm comes from a parameter called signal level. The signal level is a

measurement of the strength of the connection’s signal, similar to the Received Signal Strength

Indicator (RSSI). The reward function that the algorithm uses to learn, differentiating good actions

from bad actions, comes from Equation 3.1, which is similar to the one Minstrel uses.

Reward =
Successes
Attempts

× Current Rate
Max Rate

(3.1)

The equation depends on the frame success probability and the theoretical throughput of the rate

used, in comparison to the maximum rate.

We could not implement the agent side through tf-agents [18] such as in DARA. We believe

this was due to the use of an older version of tf-agents in DARA, coupled with the use of a

different Linux version with different libraries installed. Instead, we used Keras [23], a Python

application programming interface for implementing NN models, and agents. The agent side’s

implementation is conditioned by the library used. The two main changes we apply to this side are

choosing a different agent (between DQN and Q-learning), and different NN model sizes (in the

case of a DQN agent). Hence, most of our implementation focuses on changes to the environment

side. However, as we will see in the following chapter, this is the main bottleneck of the algorithm,

so our focus on this side is not misdirected.

The key parts of our implementation are: 1) changes to the accessibility of data from the

19
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kernel, which was done in the C programming language; 2) changes to the way data is collected

and input into the algorithm; 3) changes to how the data is parsed; and 4) variations to the agent,

such as Q-learning and DQN, or changing the NN that is used. Parts 2 to 4 have been implemented

in both Python and Rust.

3.1 Overview

As previously stated, the functioning of the algorithm can be divided into two parts: the agent

side, and the environment side. The agent side comprises the training of the agent and the action

decision. We do not have a lot of control over this side. On the other hand, the environment side

handles the action deployment, the reward calculation and the state query. This side is imple-

mented by a function created by us, and that we have full control over. This function runs at every

step.

To start, the agent and the environment are initialised. After initialising, the environment

queries the state, which will be used for the first action decision. Then, the algorithm enters a

loop. We can identify five main steps which are the biggest bottlenecks of the operation, and

whose analysis is the focus of this dissertation. Figure 3.1 is an overview of the loop, with these

main steps in orange (note that the reward statistics are queried twice, but this is considered the

same step).

Figure 3.1: Basic overview of the algorithm loop.

The following is a quick summary of the algorithm loop. The loop begins when the agent

decides an action, and we enter the environment side’s step function. This function starts by de-

ploying the chosen action. Then, it queries the total frame successes and attempts. The algorithm

waits a configurable amount of time (we chose 50 ms), and queries the total frame statistics again.

After, it calculates the difference of the previous query to obtain the reward according to Equation

3.1. The pause between queries gives time to collect information on frame statistics. Then, the

algorithm queries the signal level, which will be the next step’s state. Subsequently, the algorithm

leaves the environment side’s step function. Using the reward, the agent is trained, and the loop

starts over.

The alternatives we explored are two different agents (DQN and Q-learning), different NN

models in the case of DQN, and then three ways to implement the three main environment side

steps. These alternatives are discussed in further detail in the following sections.
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3.2 mac80211 Changes

Before implementing the algorithm, we wanted to avoid the 100 ms limitation in calculating

the reward that affected DARA. This limitation came from Minstrel updating its table only once

every 100 ms. To achieve this, we went to the source of the Minstrel data. Our goal was to find an

alternative way to obtain information on frame attempts and successes.

The mac80211 module implements a version of Minstrel. The module keeps track of frame

successes and attempts. However, this data usually remains in kernel space. To address this, we

modified the mac80211 module’s implementation of Minstrel. In our modification, we created a

procfs system that can access the same frame successes and attempts variables Minstrel uses to

create its tables. We can access the data without needing to wait 100 ms for Minstrel to update the

table. Instead, we read the file at any time to obtain this data. By accessing the data more frequently

we can reduce the time of each step. This may not leave us enough time to gather information since

the last query, and lead to a premature conclusion. The trade-off between acessing the data more

frequently or giving it more time to gather information has to be considered when choosing the

time between queries.

In this section we will detail our implementation, dividing it into three steps: initialisation of

the procfs system, defining file operations to implement the features we need, and compilation as

well as installation of the modified module.

3.2.1 Procfs Initialisation

We start with the source code of mac80211. This is a folder with many C files and headers. The

version of the module’s source code must match the Linux kernel version in use. In our case, we

were running Linux kernel version 3.13.0. Our changes are limited to the file rc80211_minstrel.c,

which contains mac80211’s implementation of Minstrel.

We start by adding the following to the list of includes in the file:

1 # i n c l u d e < l i n u x / p r i n t k . h>
2 # i n c l u d e < l i n u x / p r o c _ f s . h>

Listing 3.1: Includes added to rc80211_minstrel.c.

<linux/proc_fs.h> is the header file for the procfs library. This library is necessary to im-

plement a procfs system. <linux/printk.h> is not mandatory, but it enables the use of the printk

function to print kernel messages for debugging.

Then, we need to initialise the procfs system. We do this on minstrel’s initialisation func-

tion, called rc80211_minstrel_init. This will create the procfs files whenever mac80211 initialises

minstrel. The following is how our rc80211_minstrel_init function looked after our changes:

1 i n t _ _ i n i t
2 r c 8 0 2 1 1 _ m i n s t r e l _ i n i t ( void )
3 {
4 p r o c _ f o l d e r = proc_mkd i r ( " t e s e " , NULL) ;
5 i f ( p r o c _ f o l d e r == NULL) {
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6 p r i n t k ( " Tese − E r r o r c r e a t i n g / p roc / t e s e \ n " ) ;
7 re turn −ENOMEM;
8 }
9

10 p r o c _ f i l e = p r o c _ c r e a t e ( " s t a t s " , 0666 , p r o c _ f o l d e r , &f o p s ) ;
11 i f ( p r o c _ f i l e == NULL) {
12 p r i n t k ( " Tese − E r r o r c r e a t i n g / p roc / t e s e / s t a t s \ n " ) ;
13 proc_remove ( p r o c _ f o l d e r ) ;
14 re turn −ENOMEM;
15 }
16
17 re turn i e e e 8 0 2 1 1 _ r a t e _ c o n t r o l _ r e g i s t e r (& mac 802 11_ min s t r e l ) ;
18 }

Listing 3.2: Minstrel initialisation function rc80211_minstrel_init after our changes.

Our procfs file is called /proc/tese/stats. This means we create a subdirectory tese under the

proc directory. This is done in lines 4-8. Within the tese subdircetory, we create the file we will

use, called stats. This is done in lines 10-15.

Line 4 in the initialisation function creates the tese subdirectory. The proc_mkdir function in

line 4 creates a new procfs directory. It takes two arguments. The first argument is a string with

the name of the new directory. The second argument is a pointer to the parent directory. It returns

a pointer to the newly created directory. When it is NULL, such as in our case, it uses the standard

proc directory as its parent.

Line 10 creates the stats file. The proc_create function creates a procfs file on which file

operations (such as read and write) can be defined. It takes four arguments. The first argument

is a string with the name of the new file. The second argument is the access rights of the file.

0666 gives access to the user without any privileges. The third argument is a pointer to the parent

directory. We used the previously created proc/tese directory’s pointer. The fourth argument is a

pointer to a structure with file operations applicable to this file. This function returns a pointer to

the newly created procfs file.

Lines 5-8 and 11-15 are there for error handling purposes. In case of an error creating any

procfs file or directory, the error is logged, pointers are cleared, and the initialisation of the module

is aborted. Line 17 is part of minstrel’s original initialisation and was left unchanged.

3.2.2 File Operations

In the previous subsection, we created a procfs file through the proc_create function. This

function took a pointer to a structure with file operations as an argument. This structure simply

maps certain file operations to a function. When a file operation is executed on the procfs file, the

mapped function is executed. The mapped functions usually follow conventions depending on the

file operation. For example, when reading a file, it is expected that the return value of the function

is the number of bytes that were successfully read, and that certain arguments are passed, such as

the number of bytes to read.
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Our file operations structure only uses two file operations: read and write. When reading from

the file, it executes a function called pread. While writing to the file, it executes a function called

pwrite. Both functions are implemented by us. The code for the structure we used, which we

called fops, is the following:

1 s t a t i c s t r u c t f i l e _ o p e r a t i o n s f o p s = {
2 . r e a d = pread ,
3 . w r i t e = p w r i t e ,
4 } ;

Listing 3.3: Procfs file operations definition.

As stated before, procfs is a virtual file system. Its files do not have any content. The same

holds for our stats file. When the file is read, our pread function is executed. It is up to the function

to implement the functionality we want. In our case, we want it to be similar to a regular file read,

except it prints variables directly from the code. In Listing 3.4, we have our pread function.

1 s t a t i c s s i z e _ t p r e a d ( s t r u c t f i l e * F i l e , char * u s e r _ b u f f e r , s i z e _ t count ,
l o f f _ t * o f f s ) {

2 s t a t i c char b u f f e r [PROCFS_MAX_SIZE ] ;
3 s t a t i c unsigned long b u f f e r _ s i z e ;
4 s t a t i c i n t f i n i s h e d = 0 ;
5
6 i f ( f i n i s h e d ) {
7 f i n i s h e d = 0 ;
8 re turn 0 ;
9 }

10 f i n i s h e d = 1 ;
11
12 b u f f e r _ s i z e = ( unsigned long ) s p r i n t f ( b u f f e r , "%d,%d \ n " , g _ s u c c e s s e s ,

g _ a t t e m p t s ) ;
13
14 i f ( c o p y _ t o _ u s e r ( u s e r _ b u f f e r , b u f f e r , b u f f e r _ s i z e ) ) {
15 re turn −EFAULT ;
16 }
17
18 re turn b u f f e r _ s i z e ;
19 }

Listing 3.4: pread function that is executed when our file is read.

In a regular read, the function returns the number of bytes read. Additionally, it requires

arguments such as the pointer to the file that will be read; a pointer to the buffer on which the

contents that were read are copied to; the number of bytes to read; the offset that determines the

position at which reading will start. Our pread function follows that convention.

Line 12 places the frame successes variable and the frame attempts variable to a temporary

buffer, separated by a comma through the sprintf function. This temporary buffer is what the

output from "reading" the file will be. The return of the sprintf function is the number of bytes

that were printed, which tells us the size of the buffer. Line 14 uses the copy_to_user function,
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which is the proper way to copy contents from kernel space to user space. It copies from the

temporary buffer to the buffer that was passed as a function argument. Finally, the number of

bytes that were passed to the user buffer is returned.

When a file is too large, it is not read in a single read function. Instead, the read function

is executed several times, until the return is zero, meaning there is nothing left to read. We had

an issue when reading our file. Rather than executing the pread function once, it would execute

it in a loop. This happened because our return value was never zero. For this reason, we added

lines 4-10. This lets our file be read normally once, then return zero at the second execution. This

should not be a problem because the printed variables are small enough that they can be read in a

single function call.

The following is our pwrite function.

1 s t a t i c s s i z e _ t p w r i t e ( s t r u c t f i l e * F i l e , c o n s t char * u s e r _ b u f f e r , s i z e _ t
l en , l o f f _ t * o f f s ) {

2 i n t command ;
3
4 i f ( k s t r t o i n t _ f r o m _ u s e r ( u s e r _ b u f f e r , 1 , 0 , &command ) ) {
5 re turn −EFAULT ;
6 }
7
8 i f ( command == 1) {
9 g _ s u c c e s s e s = 0 ;

10 g _ a t t e m p t s = 0 ;
11 } e l s e {
12 p r i n t k ( " Tese − Unknown command − do ing n o t h i n g \ n " ) ;
13 }
14
15 re turn 1 ;
16 }

Listing 3.5: pwrite function that is executed when our file is written to.

Analogous to the pread function, our pwrite function definition is similar to a regular write

function. It takes as arguments a pointer to the file; a pointer to the buffer from which contents

would be written to the file; the amount of bytes that would be written; and the offset, which is the

position in the file after which writing would begin. The return value of the function is the number

of written bytes.

Despite the similarities to a regular write function, we have no intention of writing any content

to the file. Instead, this is a way to issue commands to mac80211. Commands can be executed

by attempting to write an integer – each integer corresponding to a certain command – to the file.

We only implemented one command: resetting the successes and attempts variables to zero. This

happens when we write a 1 to the file.

Line 4 uses the function kstrtoint_from_user. This function is the proper way to pass a user

space string to a kernel space integer. The first argument is the user buffer from which the conver-

sion will happen. The second argument is the number of bytes to be converted. We only have one
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command, of one digit, so we only consider one byte. The third argument is the base the number is

in. Passing a zero detects the base automatically, and in this case uses a decimal base. The fourth

argument is a pointer to the variable on which the integer will be stored. Since commands are only

one byte, the function ends when it returns one.

3.2.3 Module Compilation

After making changes to the rc80211_minstrel.c file, all that is left is to compile and install

the modified module. To do this, we use the Makefile within the mac80211 source code directory,

with a few changes. A Makefile contains tasks to be executed. Makefiles are often used to compile

executable files from the source code.

The following is a snippet of what we changed in the Makefile:

1 a l l :
2 make −C / l i b / modules / 3 . 1 3 . 0 / b u i l d modules M=/ g r ou ps / i l a b t −imec −be /

i n e s c t e c −win / r i c a r d o j t / mac80211
3
4 c l e a n :
5 make −C / l i b / modules / 3 . 1 3 . 0 / b u i l d c l e a n M=/ g r ou ps / i l a b t −imec −be /

i n e s c t e c −win / r i c a r d o j t / mac80211
6
7 insmod :
8 cp / g ro up s / i l a b t −imec −be / i n e s c t e c −win / r i c a r d o j t / mac80211 / mac80211 .

ko / l i b / modules / 3 . 1 3 . 0 / k e r n e l / n e t / mac80211 / mac80211 . ko
9 modprobe − r a t h 9 k

10 modprobe − r a t h 1 0 k _ p c i
11 modprobe − r a t h 1 0 k _ c o r e
12 modprobe − r mac80211
13 modprobe mac80211
14 modprobe a t h 9 k

Listing 3.6: Mac80211 module Makefile.

Lines 1 and 2 define the default task of the Makefile, which is to compile the module. Compil-

ing Linux kernel modules requires specialised tools, provided by Linux. In our case, those tools

were in the /lib/modules/3.13.0/build directory. In line 2, we call another Makefile in that directory

with access to those tools. We pass modules as an argument because we are building a module, and

then the directory with the module source code. Our directory is /groups/ilabt-imec-be/inesctec-

win/ricardot/mac80211.

In line 4, we define a task to clean our directory. In line 5, we call that same Makefile, but with

clean as an argument. Cleaning the directory deletes all compiled files, but leaves source code

files.

The final task, insmod, copies the compiled kernel module file – called mac80211.ko because

it is a kernel object. It places the kernel object file in the location of the original mac80211

module, replacing it. After replacing the module files, our changes will be applied after restarting

the module. We do this with the modprobe utility. modprobe -r stops a module. First, we stop
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the modules ath9k, ath10k_pci and ath10k_core. They depend on mac80211, and the mac80211

module cannot be shut down before stopping its dependencies. Then, we stop and restart the

mac80211 module. This will apply the changes. Finally, we also restart the ath9k module, since it

is the driver for our wireless device.

After these steps, our changes to mac80211 should be applied. A file in /proc/tese/stats should

exist. When this file is read, either through a terminal command such as cat, or through a Python

function such as read, it should output the frame successes and attempts, separated by a comma.

Additionally, writing a 1 to the file should reset the frame successes and attempts.

Figure 3.2: Console output from reading /proc/tese/stats.

Figure 3.2 is an example of reading the file, using the Linux terminal and the cat command.

3.3 Information Parsing

Many of the processes of our algorithm involve reading files. For example, querying the

state requires reading from a file in /proc/net/wireless, and calculating the reward requires reading

the file /proc/tese/stats. However, these files can contain information other than what we need.

Additionally, the contents are read as a string, and may not be formatted in a way that the algorithm

can process.

We came up with three methods to parse the information to extract data that the algorithm can

process. Those methods are: a) shell command piping; b) python string functions; and c) regular

expressions (Regex). We ran some preliminary tests to ascertain which was the fastest option. In

Chapter 4, we detail these tests. In the following paragraphs, we have a description of each method

as well as an example of its usage.

The input file is a copy of /proc/net/wireless called input. The /proc/net/wireless file is the one

we read from when querying the state. We use a copy because the file is constantly updating. This

ensures the example input file stays the same in the following examples.

Figure 3.3 shows the content of the input file after reading it.

Figure 3.3: Content of the input file.

Shell Command Piping Shell command piping is the use of a shell utility called piping. Piping

is the act of carrying over the output from one command to another. Usually, piping is a way to
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filter some output. For example, reading from a file in the shell, and passing the output through a

filtering command such as grep or awk. This was used in the original DARA implementation, and

required the use of the subprocess module.

As an example, we will pipe the contents of cat input, which reads the input file, to the

awk command. Our goal is to retrieve only the signal level, which in this example is -72. The

awk command accepts arguments that define how it filters what it receives as an input. The

full awk command we will use in this example is awk ’NR==3 {print substr($4, 1,

length($4)-1)}’. The NR==3 leaves only the third line in the file, which is the one that

contains the values. The value we are looking for is the fourth field of the line, which can be

printed with $4. However, this would also print the period in the field, which we do not want.

To avoid this, we use the substr function, which only prints a subset of the original string. This

function takes as the first argument the input field; as the second parameter the start position, 1,

which means the start of the field; and the third parameter is the length of the subset of the string,

which in our case is one less than the whole length of the field, removing the final period.

To apply these filters to the content of the input file, we pipe the output from reading it

with cat, to our awk command, hence cat input | awk ’NR==3 {print substr($4,

1, length($4)-1)}’.

Figure 3.4 shows an example of the full piping process, correctly outputting only the value we

are looking for.

Figure 3.4: Shell command piping example.

Python The Python approach consists of using built-in Python functions that modify strings.

Some of the functions relevant to this approach are the find and split functions. This has the

advantage of not requiring any additional modules. Note that in this approach we used preexisting

string operation functions, rather than creating original ones specifically tailored to our purposes.

For the Python example, we created a small script. This script reads the file, filters the infor-

mation we need and turns it into an integer, as we would in the algorithm. Additionally, it prints

that integer so that we can see the result.

The script code is the following:

1 wi th open ( ’ i n p u t ’ , ’ r ’ ) a s f :
2 c o n t e n t = f . r e a d ( )
3
4 r e s u l t = c o n t e n t . s p l i t ( ’ \ n ’ ) [ 2 ]
5 r e s u l t = r e s u l t . s p l i t ( ) [ 3 ]
6 r e s u l t = r e s u l t [ : − 1 ]
7 r e s u l t = i n t ( r e s u l t )
8
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9 p r i n t ( r e s u l t )

Listing 3.7: Python script with built-in functions to process the input file.

Lines 1-2 read the file called input. Line 4 splits the content by lines, and takes the third line

(Python is zero-indexed). Line 5 splits the line by space-separated fields, and takes the fourth.

Line 6 excludes the final character of the field (the trailing period). Line 7 converts the result from

a string to an integer. In line 9 the result is printed.

Figure 3.5 shows the output of running our Python parsing script.

Figure 3.5: Console output of running our Python parsing script.

Regex Regex is a way to specify text patterns, and enables searching for these patterns. The

advantage of Regex is the ability to create complex search patterns without needing dedicated

search functions. In theory, string operations should be faster. However, we did not create Python

functions optimised for our purposes, while the Regex patterns we use are tailored to our intents.

We use a Python built-in module called re [24] to implement Regex pattern matching. There-

fore, in this example we still use a Python script, but the implementation is different.

This script’s code is the following:

1 import r e
2
3 wi th open ( ’ i n p u t ’ , ’ r ’ ) a s f :
4 c o n t e n t = f . r e a d ( )
5
6 p a t t e r n = r e . compi le ( r ’ ( ? : wlan0 [ ^ − ] * ) ( − \ d +) ’ )
7 r e s u l t = p a t t e r n . f i n d a l l ( c o n t e n t ) [ 0 ]
8 r e s u l t = i n t ( r e s u l t )
9

10 p r i n t ( r e s u l t )

Listing 3.8: Python script with Regex to process the input file.

The main differences between this script, and the previous are lines 6 and 7. Line 6 compiles

our Regex pattern into a variable. In line 7 we find all occurrences of the pattern in the content of

the file. The first occurrence is our intended output.

The Regex pattern we use is (?:wlan0[ˆ-]*)(-\d+). This pattern searches for a line

starting with wlan0. This corresponds to our intended line, the third one. Then, it saves the first

number that is a negative value. This corresponds to our signal level. It also does not save the

trailing period because that is not a digit.

Figure 3.6 shows the output of running our Python parsing script.
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Figure 3.6: Console output of running our Regex parsing script.

3.4 Agent Implementation

After making changes to the mac80211 module, and finding out the best way to process infor-

mation, all that is left is the implementation of the RL algorithm. This is also done in Python. We

use two scripts, one that implements the agent side, building and running the agent, and another

that implements environment side.

This section focuses on the agent side script. In the agent side, the agent training and action

decision are the two main steps. We only experiment with parameters such as the type of agent,

which can be a DQN or use Q-learning; and in the case of a DQN agent, the NN architecture. This

is because there are not many alternatives in this method, since we use the tensorflow and keras

modules to create the DQN agent; and our Q-learning implementation follows the mathematical

definition closely.

We implemented a DQN and a Q-learning agent. The DQN agent was considered because it is

the agent that was used in the original DARA implementation. Q-learning was considered because

it is a simpler algorithm, and should be faster. In theory, Q-learning should be sufficient for the

task, because the number of states and actions is small enough that having a Q-table should not

be too computationally intensive. We implemented a working Q-learning agent that can learn and

improve, but did not evaluate its performance in order to validate its effectiveness, since that was

not our focus.

3.4.1 DQN Agent Implementation

We use the tensorflow and keras modules, as they provide tools to create a DQN agent. The

DQN agent, after being built with these modules, has functions to train and evaluate the agent.

The following is the Python function we use to create the agent.

1 def b u i l d _ a g e n t ( ) :
2 a c t i o n s = env . a c t i o n _ s p a c e . n
3 model = b u i l d _ m o d e l ( 1 , a c t i o n s )
4 p o l i c y = Bol tzmannQPol icy ( )
5 memory = Sequent ia lMemory ( l i m i t =50000 , window_length =1)
6 dqn = DQNAgent ( model=model , memory=memory , p o l i c y = p o l i c y ,
7 n b _ a c t i o n s = a c t i o n s , nb_s teps_warmup =10 , t a r g e t _ m o d e l _ u p d a t e =1e −2)
8 dqn . compi le (Adam( l r =1e −2) , m e t r i c s =[ ’mae ’ ] )
9 re turn dqn

Listing 3.9: build_agent function definition.

The actions variable has the number of possible actions, also known as action space. In our

case there are eight MCS rates, so our action space is eight. The build_model function creates
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the NN. The policy, memory buffer and compilation parameters used were taken from a Github

repository [25]. Optimising these parameters was beyond the scope of this dissertation.

The build_model function that creates the NN changes depending on our choice of NN. The

following is an example of the function to build an NN with two hidden layers of 32 neurons.

1 def b u i l d _ m o d e l ( s t a t e s , a c t i o n s ) :
2 model = S e q u e n t i a l ( )
3 model . add ( I n p u t L a y e r ( i n p u t _ s h a p e =( s t a t e s , ) ) )
4 model . add ( Dense ( 3 2 , a c t i v a t i o n = ’ r e l u ’ ) )
5 model . add ( Dense ( 3 2 , a c t i v a t i o n = ’ r e l u ’ ) )
6 model . add ( Dense ( a c t i o n s , a c t i v a t i o n = ’ l i n e a r ’ ) )
7 re turn model

Listing 3.10: build_model function definition.

Line 2 means that the layers will be connected sequentially. Line 3 adds an input layer with

as many neurons as there are possible states. In our case, we consider 100 discrete states. Lines

4 and 5 add the two hidden layers. Line 5 adds a final output layer with as many neurons as there

are actions.

To modify the NN structure we only change lines 4 and 5. For example, if we wanted

one layer with 64 neurons, we would replace both lines with a single line with the function

model.add(Dense(64, activation=’relu’)) instead.

With these two functions, we can create a DQN object with two methods, fit and test. We

use these methods to train and evaluate the agent, respectively. After training the agent, we can

save the model’s weights. By saving and loading the model’s weights, we can resume training or

evaluate the model.

3.4.2 Q-learning Agent Implementation

The Q-learning agent was implemented in Python by us. It uses a matrix initialised with zeroes

as the Q-table. The Q-table is updated through the Bellman optimality equation. It uses an epsilon-

greedy policy. We used the numpy module [26], to create and utilise the Q-table matrix; and the

gym module, to interface with the environment.

The following code block (Listing 3.11) is the setup of the algorithm, where we initialise some

of the variables that we will use.

1 l r = 0 . 1
2 gamma = 0 . 8
3 e p s i l o n = 1 . 0
4 max_eps i l on = 1 . 0
5 m i n _ e p s i l o n = 0 . 1
6 d e c a y _ r a t e = 0 . 1
7
8 q t a b l e = np . z e r o s ( ( env . o b s e r v a t i o n _ s p a c e . n , env . a c t i o n _ s p a c e . n ) )
9

10 s t a t e = env . r e s e t ( )
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11 t o t a l _ r e w a r d s = 0

Listing 3.11: Q-learning algorithm setup.

The variable lr is the learning rate. Variable gamma is the discount rate. Variable epsilon

is the current epsilon. In a greedy-epsilon policy, the epsilon decreases in order to progressively

exploit more often. In this case, our epsilon varies decays from 1 to 0.1. The variable decay_rate

dictates how fast the epsilon value declines. Line 8 creates the Q-table. Lines 10 and 11 reset the

environment and the rewards.

After initialisation, the algorithm enters a loop. Each loop cycle is a time step. The loop

continues until our target number of steps is achieved. Listing 3.12 is the code for the loop.

1 f o r s t e p in range ( max_s teps ) :
2 t r a d e o f f = random . un i fo rm ( 0 , 1 )
3
4 i f t r a d e o f f > e p s i l o n :
5 a c t i o n = np . argmax ( q t a b l e [ s t a t e , : ] )
6 e l s e :
7 a c t i o n = env . a c t i o n _ s p a c e . sample ( )
8
9 n e w _ s t a t e , reward , _ , _ = env . s t e p ( a c t i o n )

10
11 q t a b l e [ s t a t e , a c t i o n ] = q t a b l e [ s t a t e , a c t i o n ] + l r * ( reward + gamma *

np . max ( q t a b l e [ n e w _ s t a t e , : ] ) − q t a b l e [ s t a t e , a c t i o n ] )
12
13 t o t a l _ r e w a r d s += reward
14 s t a t e = n e w _ s t a t e
15 e p s i l o n = m i n _ e p s i l o n + ( max_eps i l on − m i n _ e p s i l o n ) *np . exp ( − d e c a y _ r a t e *

s t e p )

Listing 3.12: Q-learning algorithm implementation with training.

The tradeoff variable is a random number between 0 and 1. It is compared to the epsilon value

in lines 4-7 to see if the algorithm will exploit or explore. If an exploitation step is chosen, the

algorithm picks the action it deems best (line 5). Otherwise, in an exploration step, it samples a

random action instead (line 7).

In line 9, the algorithm runs the step function. The step function belongs to the environment

side of the algorithm and will be explored in further detail later. It applies the action, returns the

reward of that action and the following state.

In line 11, the algorithm applies the Bellman optimality equation and updates the Q-table. In

line 15, the new decayed epsilon is calculated.

These two code blocks detail our full Q-learning algorithm implementation. This implementa-

tion both chooses actions and trains the algorithm. If instead we had a trained Q-table and wanted

to only exploit it without further training, we can instead use a more concise version. Listing 3.13

shows a full exploitation-only implementation of our Q-learning algorithm.

1 s t a t e = env . r e s e t ( )
2 t o t a l _ r e w a r d s = 0
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3 f o r s t e p in range ( max_s teps ) :
4 a c t i o n = np . argmax ( q t a b l e [ s t a t e , : ] )
5
6 n e w _ s t a t e , reward , _ , _ = env . s t e p ( a c t i o n )
7
8 t o t a l _ r e w a r d s += reward
9 s t a t e = n e w _ s t a t e

Listing 3.13: Exploitation-only Q-learning implementation.

3.5 Environment Implementation

The environment side is the interface between the agent and the device. This side is where

the majority of our focus was directed to, and where we have the most control over, since it was

implemented entirely by us. As will be seen in Chapter 4, this is the biggest bottleneck of the

algorithm’s execution, which means our focus here was warranted.

Figure 3.1 once again has an overview of our algorithm implementation. In the figure, we can

see the steps associated with the environment side. The main steps are coloured orange. Note that

querying the reward happens twice, but that is only an implementation detail. We consider it a

single task.

The environment side extends the Python gym module in order to create an interface with

the environment. This side is mostly comprised by a Python function that is executed at every

time step. This function is called step. It is responsible for querying the state, calculating the

reward, and deploying the action. The following code block (Listing 3.14) is our step function

implementation.

1 def s t e p ( s e l f , a c t i o n ) :
2 r a t e = s e l f . a c t i o n l i s t [ a c t i o n ]
3 r a t e i n t = s e l f . r a t e i n t l i s t [ a c t i o n ]
4 s e l f . s e t _ a c t i o n ( s e l f . wi face , r a t e )
5 o l d _ s t a t s = s e l f . g e t _ r e w a r d ( )
6
7 t ime . s l e e p ( 0 . 0 5 )
8
9 s t a t s = s e l f . g e t _ r e w a r d ( )

10 s u c c e s s e s , a t t e m p t s = s t a t s [ 0 ] − o l d _ s t a t s [ 0 ] , s t a t s [ 1 ] − o l d _ s t a t s [ 1 ]
11
12 i f a t t e m p t s == 0 :
13 reward = 0
14 e l s e :
15 reward = r a t e i n t /MAX_RATE * ( s u c c e s s e s / a t t e m p t s )
16
17 s e l f . i t e r a t i o n += 1
18
19 i f s e l f . i t e r a t i o n >= s e l f . max_s teps :
20 done = True
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21 e l s e :
22 done = F a l s e
23
24 s e l f . s t a t e = _ c o n v e r t _ s i g n a l ( s e l f . g e t _ s t a t e ( ) )
25
26 re turn s e l f . s t a t e , reward , done , {}

Listing 3.14: Implementation of the step function.

Note the set_action, get_reward and get_state functions. Each of these sub-functions inside

the main step function represents one of the main tasks of the environment side. We explored three

alternative implementations for each of these functions. Those alternatives were implemented and

evaluated in order to reduce the computational delay of the algorithm. There is a sub-section for

each of these tasks that details their functioning, as well as the three alternative implementations.

The three alternatives we explored are: 1) a pure Python approach; 2) an approach that uses a

Python module called subprocess; and 3) to extend Python with Rust.

The subprocess approach is the most similar approach to the original DARA implementation,

which is why we implemented it. In this approach, we make use of a Python module called

subprocess. This module enables the use of shell commands from within Python. Because DARA

made extensive use of a bash script, it used the subprocess module often.

In the Python approach, we attempted to use idiomatic Python for the task functions. For

accessing the files to query the state and to calculate the reward, we used the regular Python built-

in function read. The only exception is on action deployment. In this case, the implementation

is the same as in the subprocess approach, because deploying an action requires the use of a shell

command.

Rust is a compiled programming language whose execution speed is comparable to C. This

means that the execution speed is much faster than Python. For this reason, we attempted to

implement the three aforementioned tasks as Rust functions, that are called from within Python.

3.5.1 Action Deployment

Deploying an action is separate from the agent deciding it. When the agent decides on an

action, it outputs an integer that corresponds to a certain MCS rate. The integer is an index to the

list of MCS rates we use, which are of 6, 9, 12, 18, 24, 36, 48 and 54 Mbit/s. These are the rates

of IEEE 802.11g, but it would be easy to adjust the possible actions to a different version of the

standard.

Deploying an action refers to getting the wireless device to start transmitting with the new

rate. To do that, we use a Linux terminal application called iwconfig. With this application we can

change the MCS rate at will using the following command: iwconfig [device name] rate

[rate] fixed. The device name is the name by which the computer recognises the wireless

device, in case it has multiple devices. In our case, the device name is wlan0.

In Figure 3.7 we can see the console output of an iperf connection. iperf is a tool for measuring

connection bandwidth. Before the measurement, the highest MCS rate of 54 Mbit/s was set,
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Figure 3.7: iperf example of switching the MCS rate.

by using the command iwconfig wlan0 rate 54M fixed. In the 1-2 second interval, the

following command was executed: iwconfig wlan0 rate 6M fixed. This switched the

MCS rate to the lowest of 6 Mbit/s. This switch causes the decrease in bandwidth seen in the last

two seconds.

In our algorithm, the action deployment is handled by the set_action function. This function

is responsible for running the previous console command. For this reason, both the subprocess

and Python versions of this function are the same. We did not find a reliable alternative to run a

console command in Python.

Listing 3.15 defines the subprocess version of the set_action function. The function body of

the Python version is the same.

1 def s u b p r o c e s s _ s e t _ a c t i o n ( s e l f , wi face , r a t e ) :
2 p = s u b p r o c e s s . run ( [ ’ i w c o n f i g ’ , s e l f . wi face , ’ r a t e ’ , r a t e , ’ f i x e d ’ ] )

Listing 3.15: Subprocess version of set_action.

The Rust version of the set_action function follows a similar thought process. It invokes

the same iwconfig shell command as well. Listing 3.16 shows the Rust implementation of the

set_action function.

1 fn s e t _ a c t i o n ( _py : Python , w i f a c e : &s t r , r a t e : &s t r ) −> PyResu l t < S t r i n g > {
2 l e t mut cmd = " i w c o n f i g " . to_owned ( ) ;
3 cmd . p u s h _ s t r ( w i f a c e ) ;
4 cmd . p u s h _ s t r ( " r a t e " ) ;
5 cmd . p u s h _ s t r (& r a t e ) ;
6 cmd . p u s h _ s t r ( " f i x e d " ) ;
7 Command : : new ( " sh " ) . a r g (" − c " ) . a r g (&cmd ) . o u t p u t ( ) . e x p e c t ( " E r r o r c h a n g i n g

a c t i o n " ) ;
8 Ok ( cmd )
9 }

Listing 3.16: Rust version of set_action.

3.5.2 Reward Calculation

To calculate the reward, we have a function that obtains the total frame successes and attempts.

The function achieves this by reading from our procfs virtual file that has access to the mac80211

internal variables.
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The internal variables correspond to the total frame successes and attempts rather than those

over a certain timeframe. Thus, we run the function once after deploying the action, wait for a

configurable amount of time – we chose 50 ms for our tests – and then run the function again.

By calculating the difference between the two results, we get the frame successes and attempts in

those 50 ms, with the chosen action. The configurable pause gives the algorithm time to collect

enough frame statistics with the new rate.

To finalise, we calculate the reward according to Equation 3.1:

Reward =
Successes
Attempts

× Current Rate
Max Rate

(3.1)

In this equation, we divide the frame successes by the attempts to obtain the frame success ratio.

Then, we divide the current rate’s theoretical maximum throughput, by the theoretical maximum

throughput of the highest rate (54 Mb/s). In the end, the reward should be a number between 0

and 1, where 1 corresponds to the theoretical maximum achievable throughput.

The core of this step, and the biggest bottleneck, is reading the procfs file. In comparison, the

calculations that are performed, are negligible. Those calculations are done in the step function,

and the access to the procfs file is done by the get_reward function.

In our get_reward function alternatives, the main difference is how we access the procfs file.

As seen in Figure 3.2, the content is two values separated by a comma. After accessing the file,

we separate the values by the comma, and turn them to integers.

Listings 3.17, 3.18 and 3.19 are our three implementations of the get_reward function.

1 def s u b p r o c e s s _ g e t _ r e w a r d ( s e l f ) :
2 p = s u b p r o c e s s . run ( [ ’ c a t ’ , ’ / p roc / t e s e / s t a t s ’ ] , c a p t u r e _ o u t p u t =True ,

u n i v e r s a l _ n e w l i n e s =True )
3 o u t = p . s t d o u t
4 s t a t s = [ i n t ( x ) f o r x in o u t . s p l i t ( ’ , ’ ) ]
5 re turn s t a t s

Listing 3.17: Subprocess version of get_reward.

1 def p y t h o n _ g e t _ r e w a r d ( s e l f ) :
2 wi th open ( ’ / p roc / t e s e / s t a t s ’ , ’ r ’ ) a s f :
3 o u t = f . r e a d ( )
4 s t a t s = [ i n t ( x ) f o r x in o u t . s p l i t ( ’ , ’ ) ]
5 re turn s t a t s

Listing 3.18: Python version of get_reward.

1 fn g e t _ r e w a r d ( _py : Python ) −> PyResu l t <( i64 , i 6 4 ) > {
2 l e t mut c o n t e n t = r e a d _ t o _ s t r i n g ( " / p roc / t e s e / s t a t s " ) . unwrap ( ) ;
3 c o n t e n t . pop ( ) ;
4 l e t v : Vec<&s t r > = c o n t e n t . s p l i t ( ’ , ’ ) . c o l l e c t ( ) ;
5 l e t s u c c e s s e s : i 6 4 = v [ 0 ] . p a r s e ( ) . unwrap ( ) ;
6 l e t a t t e m p t s : i 6 4 = v [ 1 ] . p a r s e ( ) . unwrap ( ) ;
7 Ok ( ( s u c c e s s e s , a t t e m p t s ) )
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8 }

Listing 3.19: Rust version of get_reward.

3.5.3 State Query

For the agent to decide on the best action, it needs information about the environment. This

information is the state. In our case, the state should convey information of how good the link

connection is. To do this, we read from a file in the directory /proc/net/wireless This file is a

procfs file, present in Linux in the distribution we used, Ubuntu 14.04. In Figure 3.8 we can see

the output of the file. The file contains statistics about network interfaces. Among these statistics

is the one we use, signal level. In the case of the figure, the signal level is -69.

Figure 3.8: Console output from reading /proc/net/wireless.

The signal level is a measure of the signal’s strength, akin to the RSSI. This measure is not

guaranteed to represent the RSSI accurately, but it should be consistent between measurements.

Our agent takes in discrete states, ranging from 0 to 99. Because the signal level is a negative

value, we apply some calculations after being queried. We add 99 to the signal level, and set it to

99 in case it exceeds that value, or to 0 if it is lower than that. This ensures the value stays between

0 and 99. However, we have not seen any occurrence of the signal level exceeding those bounds

after the operation. Taking the example of Figure 3.8, the final state according to the algorithm

would be 30.

This conversion to a state between 0 and 99 is done by an auxiliary function that is executed

after all three versions of the get_state function. Listing 3.20 shows the code of that auxiliary

function.

1 def _ c o n v e r t _ s i g n a l ( s i g n a l ) :
2 s i g n a l += 99
3 i f s i g n a l < 0 :
4 s i g n a l = 0
5 e l i f s i g n a l > 9 9 :
6 s i g n a l = 99
7 re turn s i g n a l

Listing 3.20: State conversion function.

The three alternatives of the get_state function differ in how they read the /proc/net/wireless

file. After reading the file, we use a Regex pattern to extract the signal level. In the python

and subprocess versions, we compile the Regex pattern beforehand as a global variable with

state_regex = re.compile(r’(?:wlan0[ˆ-]*)(-\d+)’). After extracting the signal
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level, we transform it into an integer and convert it with the convert_signal function. Listings 3.21,

3.22 and 3.23 are the three alternatives of the get_state function.

1 def s u b p r o c e s s _ g e t _ s t a t e ( s e l f ) :
2 p = s u b p r o c e s s . run ( [ ’ c a t ’ , ’ / p roc / n e t / w i r e l e s s ’ ] , c a p t u r e _ o u t p u t =True ,

u n i v e r s a l _ n e w l i n e s =True )
3 o u t = p . s t d o u t
4 s i g n a l = i n t ( s t a t e _ r e g e x . f i n d a l l ( o u t ) [ 0 ] )
5 re turn s i g n a l

Listing 3.21: Subprocess version of get_state.

1 def p y t h o n _ g e t _ s t a t e ( s e l f ) :
2 wi th open ( ’ / p roc / n e t / w i r e l e s s ’ , ’ r ’ ) a s f :
3 o u t = f . r e a d ( )
4 s i g n a l = i n t ( s t a t e _ r e g e x . f i n d a l l ( o u t ) [ 0 ] )
5 re turn s i g n a l

Listing 3.22: Python version of get_state.

1 fn g e t _ s t a t e ( _py : Python ) −> PyResu l t < i64 > {
2 l e t c o n t e n t = r e a d _ t o _ s t r i n g ( " / p roc / n e t / w i r e l e s s " ) . unwrap ( ) ;
3 l e t r e = Regex : : new ( r " ( ? : wlan0 [ ^ − ] * ) ( − \ d +) " ) . unwrap ( ) ;
4 l e t cap = r e . c a p t u r e s (& c o n t e n t ) . unwrap ( ) . g e t ( 1 ) . unwrap ( ) . a s _ s t r ( ) ;
5 Ok ( cap . p a r s e ( ) . unwrap ( ) )
6 }

Listing 3.23: Rust version of get_state.
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Chapter 4

Evaluation of the E-DARA Algorithm

4.1 Methodology

All of our tests were done in an experimental setting, in nodes from the W-iLab.2 testbed [16]

acessible through Fed4Fire+. They consist of a client node and a server node communicating

wirelessly. The client is running our E-DARA implementation, and adjusts the MCS dynamically.

Our tests are conducted in the client node.

We used 2 nodes: a ZOTAC node and a DSS node 1. The ZOTAC node is the server, while the

DSS node is the client. Since the algorithm runs on the client, it uses a DSS node because of its

better CPU. The ZOTAC has an Intel Atom D525 1.8 GHz 2-core as its CPU, and a 160 GB HDD.

The DSS node has an Intel Core i5 2.6 GHz 4-core as its CPU and a 60 GB SSD. Both nodes

have a 4 GB DDR2 800 MHz PC2-6400 CL6 RAM, and use a Ubuntu 14.04 Linux Distribution,

version 3.13.0 of the Linux kernel.

To begin, we load our modified version of the mac80211 module, and initialise E-DARA.

After making sure both devices can communicate with each other, we start a UDP transmission

through iperf. Our algorithm can log each action it takes, the state that lead to that action, as

well as the resulting reward.

Our tests are timing measurements of Python functions in the algorithm. These Python func-

tions usually represent a certain task of the algorithm. By selecting which function to time, we

can measure the time of specific tasks separately. For example, we can know the time it took to

deploy an action, or the time it took to query the state. Timing introduces a slight overhead to the

regular functioning of the algorithm. This overhead should be small enough to be negligible. To

avoid this overhead as best we can, we do not time all the functions at once. For example, when

measuring the time that it takes the algorithm to process information, we do not measure the time

of tasks such as calculating the reward.

As stated in Chapter 3, we often came up with multiple alternatives for each challenge we

faced. We use the previously mentioned timing measurements to determine the best alternative.

We will measure our final version of E-DARA – containing the best alternatives we considered

1The hardware specifications of the nodes can be found at https://doc.ilabt.imec.be/ilabt/wilab/hardware.html#id2
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– and a version of DARA as close to the original as we could get. In the end, we compare and

analyse these measurements.

4.2 Preliminary Algorithm Evaluations

In the implementation of our algorithm, we had challenges such as how to gather information

from the device, how to process it, or which NN model to use. For each of these problems,

we considered multiple alternatives. In this section, we run preliminary tests for each of the

alternatives. This allows us to find the best option for each challenge.

4.2.1 Information Processing

As stated before, we process information from files frequently. This information cannot be

directly used by the algorithm. First, we have to filter the information from those files, as well

as format it in the appropriate way. To process information, we considered three alternatives: 1)

Regex; 2) Python functions; and 3) bash commands, through the subprocess module.

We tested the three alternatives in two different scenarios to evaluate them, through a Python

script using the timeit module [27]. The two scenarios considered are when reading from the

/proc/net/wireless file, which has a complex structure; and our /proc/tese/stats file which only has

two values separated by a comma. We called these scenarios wireless and stats respectively due to

the name of the files. For our tests, we read each of the two files only once. We placed the contents

of each file in a string in our script, so that the input is always the same.

For the wireless file scenario, our objective is a negative integer that corresponds to the signal

level of the connection. The input is the same as in Figure 3.3, so the result should be -72. The

implementations are also the same as in Section 3.3.

For the stats scenario, our objective is a list with two integers, one for the number of successful

frame transmissions and another for the total frame transmission attempts. In this scenario, the

input is the same as in Figure 3.2, so the result should be 4902 successes and 6538 attempts.

We use the timeit module to measure the time each method takes to execute ten thousand times.

Then, we repeat that measurement five times, and consider the fastest measurement. Finally, we

divide that number by the number of times the function was executed to find out the average. The

time to load the required modules is not measured, since this is a one-time delay at the algorithm’s

initialisation. Additionally, after creating a regex pattern, the pattern needs to be compiled before

use. Since this can also be done at initialisation, and only needs to be done once, it is not measured

either.

Subprocess Using a bash script through subprocess to process information is how DARA han-

dles this challenge. For this reason, we decided to evaluate this method.

We implemented this by having the subprocess module execute a bash script that pipes our

predetermined input to a awk command that filters the information we need. Since each command

returns one value, for the stats scenario we needed to execute two bash scripts, one for each value.
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The alternative would be to return these values in a certain format, like in two different lines, or

comma-separated. However, the data already comes separated by a comma. If it returned one of

those formats, it would require further processing through another method, so this approach would

be redundant.

We can see this implementation in Listing 4.1. The subprocess_stats1.sh script pipes the

input to the command awk -F’,’ ’{print $1}’. This command separates the contents by a

comma and returns the first field. The subprocess_stats2.sh script is very similar, but has {print

$2}. This returns the second field instead.

1 def s u b p r o c e s s _ s t a t s ( ) :
2 p = s u b p r o c e s s . run ( [ " t e s t e s / s u b p r o c e s s _ s t a t s 1 . sh " ] , c a p t u r e _ o u t p u t =True

, u n i v e r s a l _ n e w l i n e s =True )
3 s u c c e s s e s = i n t ( p . s t d o u t )
4 p = s u b p r o c e s s . run ( [ " t e s t e s / s u b p r o c e s s _ s t a t s 2 . sh " ] , c a p t u r e _ o u t p u t =True

, u n i v e r s a l _ n e w l i n e s =True )
5 a t t e m p t s = i n t ( p . s t d o u t )
6 re turn [ s u c c e s s e s , a t t e m p t s ]

Listing 4.1: Subprocess method that calls bash scripts to process /proc/tese/stats data.

In Figure 4.1 we can see the results of this approach.

Figure 4.1: Results of the subprocess method for information processing.

Python In this approach, we use generic Python built-in functions, namely split. It should be

noted that when reading the /proc/net/wireless file, we often copied a single value from the list

that the function returns, and pasted that value to a variable that we modify further. This operation

also takes time. A Python approach developed very specifically for our requirements, as opposed

to using generic functions, might be faster.

The Python approach for processing /proc/tese/stats is the following.

1 def p y t h o n _ s t a t s ( ) :
2 re turn [ i n t ( x ) f o r x in c o n t e n t _ s t a t s . s p l i t ( ’ , ’ ) ]

Listing 4.2: Python method to process /proc/tese/stats data.

In Figure 4.2 we can see the results of this approach.
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Figure 4.2: Results of the Python method for information processing.

Regex In theory, processing the Regex pattern should introduce an overhead, and a pure Python

string function approach should be faster. However, complex patterns can be created with Regex.

These complex patterns often rule out potential candidate matches very fast. This reduces the

amount of time spent on something that will not match. As we see in the results, for a more

complex scenario, Regex pattern matching is faster than using Python’s generic functions.

The Regex approach for processing /proc/tese/stats is the following. The Regex pattern used

is (\d+), which returns any numbers it finds.

1 def r e g e x _ s t a t s ( ) :
2 re turn [ i n t ( x ) f o r x in r e _ s t a t s . f i n d a l l ( c o n t e n t _ s t a t s ) ]

Listing 4.3: Regex method to process /proc/tese/stats data.

In Figure 4.3 we can see the results of this approach.

Figure 4.3: Results of the Regex method for information processing.

In conclusion, Regex was the fastest method for the proc/net/wireless file, with the Python

approach coming in second. For the /proc/tese/stats file, Python was the fastest, while Regex

came second. Using Bash scripts through subprocess was by far the slowest method.

The discrepancy in the fastest method for the two files comes from their complexity. The

/proc/tese/stats file only requires separating the values by a comma. This is trivial to do in Python,

with a single use of the split function. On the other hand, processing the /proc/net/wireless file

with the Python approach requires using the split function twice, picking the correct index from

their result, and then removing the trailing period from that result. With the Regex approach, this

is a matter of matching a single pattern.

The subprocess approach was the slowest because every time a command is executed, a shell

instance needs to be created. Furthermore, the subprocess module needs to be compatible with

multiple OSes. In order to have this compatibility, an overhead is introduced.

With these results, we used the Regex approach for processing the /proc/net/wireless file in

the get_state function, and the Python approach for processing the /proc/tese/stats file in the

get_reward function.
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4.2.2 Comparison of the Environments

In Section 3.5, we detailed our environment implementation. We had three alternatives for the

tasks of the environment side. These tasks are deploying the action, calculating the reward, and

querying the state. The alternatives are using the subprocess module, using an idiomatic Python

approach, and using a Rust approach.

To compare these three different alternatives we ran two tests. One test was to measure the

step function execution time. This effectively measures the environment side’s execution time as

a whole. The other test was to measure each of the task sub-functions separately. Note that the

get_reward function is called twice at each time step. Because the implementations were already

detailed, we only discuss the results of these measurements in this section.

The measurements to the functions were done by measuring the clock time before the function

call, and after it. Afterwards, the difference between the clock time after the function call, and

before it, is the time spent in the function execution. This clock time is gathered with the time

module’s perf_counter_ns function. Additionally, we can also measure the time spent outside the

function by taking the difference between the clock time at function exit, and the clock time at the

following function call.

Measurements can be taken when the algorithm is training, and when it is only being exploited.

This should not affect our measurements when we are evaluating the environment side.

For the sake of comparing only the different environment alternatives, we kept all other param-

eters the same. This means our measurements involve a DQN agent training for 10,000 steps, with

an NN model with two hidden layers of 32 neurons. Measuring the execution time of function calls

introduces an overhead, albeit small. Because of the overhead, we completed two measurements

for each environment alternative, one for the step function, and another for the task sub-functions.

Figure 4.4 is a box plot of the execution time of the step function in milliseconds for each

approach. Table 4.1 contains the average execution time of the step, set_action, get_reward and

get_state functions in milliseconds. Table 4.2 contains the minimum execution time of the step,

set_action, get_reward and get_state functions in milliseconds. We considered the minimum to

be relevant in delay analysis because delays are always positive, so it serves as an approximation

of a best case scenario. Note that these measurements include the 50 ms waiting period for data

gathering that the step function has.

Table 4.1: Average function execution time for environment alternatives in milliseconds.

Environment Subprocess Python Rust

step average (ms) 99.637 62.805 65.107

set_action average (ms) 11.535 15.105 14.981

get_reward average (ms) 13.226 0.246 0.085

get_state average (ms) 13.468 0.299 1.012
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Figure 4.4: Box plots of step function time in milliseconds for each approach.

Table 4.2: Minimum function execution time for environment alternatives in milliseconds.

Environment Subprocess Python Rust

step minimum (ms) 78.421 56.701 58.539

set_action minimum (ms) 7.369 10.646 9.949

get_reward minimum (ms) 7.827 0.113 0.034

get_state minimum (ms) 8.640 0.125 0.571

From these results, we conclude the idiomatic Python approach was the fastest, and Rust was

a close second. The execution time of Rust might be faster, but every time a Rust function is

called from within Python, a conversion to the passed and returned variables must be computed.

This conversion introduces an overhead to the use of Rust functions which might explain why it is

slower in the long run.

The subprocess version was the slowest. The subprocess module has a lot of overhead due to

cross-platform support, that is not useful in our case.

We decided to use the Python alternative because overall, it was the fastest. It may be worth to

pursue a mixed approach that uses the best approach for each task. Otherwise, for improvements

on the environment side of the algorithm, the focus should be on action deployment. Action

deployment is slower than the other two tasks by at least a whole order of magnitude.

During testing, we had concerns with the fluctuation of execution time over the 10,000 steps

of training and/or exploitation. If this execution time varied drastically over time, this could affect

our measurements if they were done sequentially. For this reason, we also evaluated the execution
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time of the step function over time. Figure 4.5 is a plot of those results. A moving average of

window size 16 was applied in order to smooth out the results, because our intent was to find

variations over time, and not occasional irregularities.

Figure 4.5: Plot of step execution time moving average over time.

As we can see from Figure 4.5 , with the exception of the very first time outside the step

function, the execution time stays within certain bounds, and a systemic increase or decrease is

not observable. The spike in the first time outside the step function may be a delay stemming from

the initialisation of the agent side.

4.2.3 Comparison of the Agents

In the agent side, we do not have the same level of control as in the environment side. Instead

of evaluating conceptually different implementations, we instead have certain choices to make.

The choices we have are the type of agent used – DQN and Q-learning – and in the case of a DQN

agent, the NN architecture.

Because of our lesser control over this side, implementing a way of measuring the time spent

training and exploiting the algorithm is not trivial. To solve this issue, we instead perform the same

measurements on the step function as before. Then, we consider the time spent between exiting

the step function, and calling it again. This measures the time spent outside the step function,

which should be the agent side’s execution time.

One disadvantage of this approach is that we do not have direct and separate measurements of

the time it takes to train the algorithm, and the time it takes to decide the action. For this reason,

we measure and compare the same agents twice. Once training and exploiting, and then again

exploiting only.
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Training the algorithm is required at first, but after having a sufficiently trained algorithm,

further training may no longer be necessary. This is why we decided to prepare these two mea-

surements.

In our implementation, the NN is configurable, and we have several choices. We decided to

evaluate four. Those are a model with one layer of 24 neurons; two layers of 32 neurons each; a

layer of 1024 neurons; and with four layers of 256 neurons. The environment implementation we

chose is the Python approach.

The reasoning to evaluate the first model, is to test a relatively minimalist model with few

neurons. The second model is to evaluate what we considered to be a standard model. The final

two models intend to test bigger models, one with emphasis on a single layer with many neurons,

another with the same number of neurons but more layers.

Figure 4.6 is a box plot of the agent side execution time for each NN when both training

and exploiting. Figure 4.7 is a box plot of the agent side execution time for each NN when only

exploiting. Table 4.3 contains the average time spent outside the step function for each of the

network models, when training and exploiting the agent as well as when exploiting only. Table

4.4 contains the minimum time spent outside the step function for the same parameters. The

measurements were taken over 10,000 steps in both the training and the exploitation-only scenario.

Figure 4.6: Box plots of the agent side execution time in milliseconds for each NN with training.
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Figure 4.7: Box plots of the agent side execution time in milliseconds for each NN without train-
ing.

Table 4.3: Average time outside step function for different NNs.

Neural Network Training & Exploitation (ms) Exploitation-Only (ms)
24 21.349 6.967

32x32 21.606 6.915
1024 23.022 7.263

256x256x256x256 24.912 7.761

Table 4.4: Minimum time outside step function for different NNs.

Neural Network Training & Exploitation (ms) Exploitation-Only (ms)

24 6.973 4.829

32x32 7.209 4.946

1024 7.522 4.907

256x256x256x256 7.997 5.618

From these results, we gather that model size does slightly impact execution time. Bigger

models are slightly slower, but the difference is very small. For this reason, the model should be

chosen in accordance with the algorithm’s performance. However, this is beyond the scope of this

dissertation. Because we could not ascertain an objectively better NN model, we decided to use

the NN composed of two layers with 32 neurons on future evaluations.
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We also performed similar measurements with the Q-learning algorithm implementation. The

environment side approach we chose is the Python approach. Our measurements were taken over

10,000 steps including training. However, we only measured a Q-learning algorithm with training

because we realised it was still faster than the DQN approach on exploitation-only scenarios.

Figure 4.8 is a box plot of the agent side execution time in milliseconds of a DQN and Q-

learning agent. It has a plot of a DQN agent with a training phase, and with exploitation-only. The

Q-learning plot both trains and exploits. Table 4.5 contains the average and the minimum time

spent outside the step function for the Q-learning algorithm.

Figure 4.8: Box plots of the agent side execution time in milliseconds of DQN and Q-learning.

Table 4.5: Average and minimum time outside step function for the Q-learning algorithm.

Q-learning Training & Exploitation
Average time (ms) 3.062

Minimum time (ms) 1.472

By looking at Figure 4.5 and comparing Tables 4.3 and 4.4 to Table 4.5, we can conclude that

a Q-learning algorithm does indeed train faster than a DQN. In fact, a Q-learning training step is

faster than a DQN exploitation-only step.

Our Q-learning algorithm did have an increasing average reward over its training period, sug-

gesting it is a feasible option. However, we did not rigorously evaluate its performance in compar-

ison to the DQN apart from execution time.
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4.3 Final Evaluation and Comparison

The previous preliminary evaluations enabled us to make informed decisions about our choices

for our final algorithm implementation. In the end, our choice was a DQN agent, similar to

DARA’s. We used a 32 by 32 NN model for the DQN. We used the Python version of the en-

vironment side’s step function because it was the fastest overall.

In this section, we compare that final version of our algorithm, to a baseline as close as we can

get to DARA.

4.3.1 Baseline DARA Evaluation

The original DARA implementation used the tf-agents module to create its agent. Just like in

our own implementation, we could not get this to work. It was also implemented in a different

Linux version than the one we used. This Linux version had a different version of mac80211’s

Minstrel implementation. DARA’s implementation depended on a file created by mac80211 that

did not exist in our devices. For these reasons, we had to make some changes to the DARA

implementation

The first was to implement a tensorflow and keras DQN agent, similar to our own. This meant

that agent side comparisons between E-DARA and DARA are not meaningful because we do not

have a fair representation of DARA’s original agent side. In fact, the agent side we used in DARA

for it to work, is the same as our E-DARA. We used a 32 by 32 NN model for DARA as well. We

were not discouraged by this, since the main bottleneck of the algorithm is the environment side,

so that should be where our focus is.

The second was changes to the environment, because of the file that did not exist in our devices.

Instead, a different version of the file existed. We changed the environment side to be able to apply

the original logic to the new file as closely as possible. Our changes to the environment side should

have a negligible affect on the results, especially considering the discrepancy between the time E-

DARA and the original DARA take.

Table 4.6 contains the average time spent on the agent and environment sides of our baseline

DARA implementation. Table 4.7 contains the minimum time spent on the agent and environent

sides of our baseline DARA implementation. The measurements were taken over 2,000 steps in

both the training and the exploitation-only scenario. The lower step count in comparison to other

measurements is due to how much slower this implementation is.

Table 4.6: Average time of the environment and agent sides in our baseline DARA algorithm.

DARA Training & Exploitation (ms) Exploitation-only (ms)
Environment Side 578.770 578.878

Agent Side 20.670 5.603
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Table 4.7: Minimum time of the environment and agent sides in our baseline DARA algorithm.

DARA Training & Exploitation (ms) Exploitation-only (ms)
Environment Side 556.642 563.651

Agent Side 5.384 3.974

4.3.2 Final comparison

In Figure 4.9 we can see a box plot comparing the environment side execution time of our final

E-DARA implementation to DARA’s. The scale of the y-axis is logarithmic.

From Figure 4.9 and Tables 4.6 and 4.7, we can see DARA is exceptionally slow when com-

pared to any of our results. In fact, it is around seven times slower when we compare a full step

time of both agent and environment side. We attribute this to the frequent use of bash scripts

in DARA, which tend to be slow. The way the bash scripts are called through the subprocess

module also introduces further overheads. Furthermore, execution time was not a priority when

developing DARA.

When we compare even the best case scenario of minimum time of DARA’s implementation,

to the average step function time of a Python environment in Table 4.1, we obtain very promising

results. Namely, that our implementation of the environment side algorithm is around eight to nine

times faster than the original DARA algorithm.
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Figure 4.9: Box plots of the environment side execution time in milliseconds of E-DARA and
DARA.
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Chapter 5

Conclusions and Future Work

The original DARA implementation was intended to be tested in experimental scenarios. How-

ever, DARA faced challenges that impacted its performance, and the focus was turned to simu-

lation scenarios instead. One possible reason for those challenges may have been computational

delays. From our results, we concluded that the two main origins of computational delays in the

DARA implementation are the frequent use of bash commands, and the time Minstrel takes to

update its tables.

Bash commands are not very fast. Furthermore, they require the initialisation of a shell in-

stance, which introduces an overhead. In DARA’s Python script, it runs these bash commands

through the subprocess module. This module introduces further overheads due to its code for

cross-platform compatibility.

DARA got the data to calculate its reward from Minstrel update tables. This became another

limitation because those tables only updated once every 100 ms. We succeeded in overcoming this

limitation by modifying a Linux kernel module. This enabled access to that same data whenever

we needed it.

Through these contributions, we managed to create our own implementation, E-DARA. E-

DARA is faster than DARA by a factor of around seven times. If computational delays were the

issue preventing DARA from being applied to an experimental scenario successfully, we believe

our improvements solve that issue. The time our algorithm takes on each complete time step (agent

and environment side), which is around 60 to 80 ms, is faster than the minimum time Minstrel takes

on each table update (only relevant for the calculation of the reward), which is 100 ms.

Despite these satisfactory results, we have identified several shortcomings and further im-

provements to our work. For example, even though our algorithm is faster than Minstrel, it does

not implement backup rates. Despite the higher frequency of updates from our algorithm, there

may be situations where Minstrel seemingly reacts faster by switching to one of its backup rates.

Also, because the performance of the algorithm was beyond the scope of this work, we could

not reach conclusive judgements on certain challenges. In particular, the challenge of picking the

best NN architecture in a DQN agent, or the time the algorithm spends collecting data for the

calculation of the reward.

53
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Considering the NN influence on computational delays is very small, our suggestion is that the

performance of the algorithm should be the prime factor in this decision. As for the choice of data

collection time, we suggest the lowest time that still allows the algorithm to perform robustly.

We have implemented a Q-learning agent that should in theory have a similar performance to

the DQN while being faster. Future work involves validating this hypothesis rigorously, which

we did not do apart from the execution time comparison. If the Q-learning agent can be suitably

applied to this scenario, it may be worthwhile to implement it in a programming language with

faster execution speed, such as C or Rust. This should not be too hard to achieve, because the

Q-learning algorithm is not very complex.

Other possible rooms for improvement we have identified are the use of a Rust extension to

replace the environment side; and further modifications to the mac80211 module. The reason why

Rust was not faster than the Python implementation has to do with overheads from converting

variables to and from Rust-compatible functions. This happens on each Rust function call and

return. If instead we implemented the whole environment side in Rust – as opposed to particular

functions for each task that are called multiple times – we could possibly have an even faster

environment side that is not dragged down by the aforementioned conversion overheads.

Additional modifications to the mac80211 module – particularly to enable direct action de-

ployment – may also prove to be relevant future work. In the environment side, action deployment

was the slowest task. Thus, it has the biggest room for improvement. Direct action deployment

through procfs, for example, could result in bash command overheads to be eliminated from the

algorithm.

We believe our advancements in this area can improve or help the performance of RL algo-

rithms for RA. In turn, this can bring improvements to network throughput in a standard-compliant

way. Deployment of such RA solutions could enhance Wi-Fi technologies without significant

changes to Wi-Fi’s implementation. In the future, very specific or complicated technical adjust-

ments may not be necessary to use these solutions. Using such solutions could be as simple as

installing an algorithm. This could result in a higher Wi-Fi quality of service while keeping in line

with its ease of use.
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