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“ We know a lot of things, but what we don’t know is a lot more. ”

Edward Witten
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Abstract

Within the context of AdS/CFT, our understanding of how bulk locality emerges from

the boundary remains incomplete. Moreover, it would be useful to have some kind of tool

or criterion which given a boundary CFT, would tell us whether or not it has a bulk dual

which is local at scales much smaller than the AdS radius of curvature. A recent paper

by Caron-Huot [1] proposed two devices, which he calls ’Holographic Cameras’, that help

us precisely with these questions. In particular, the signals of these cameras are easily-

interpretable images from which we can conclude about the locality of the bulk theory

without ambiguity. However, although the construction works for any four point function

with a specific operator ordering, the only considered case there is of the scalar correlator.

This thesis aims to extend this analysis for spinning correlators by computing the associated

conformal blocks in the Regge limit, which in turn are vital to plot the signal of the camera.

We start by introducing the basics of Conformal Field Theories and AdS/CFT. Then, we

proceed to give a brief overview of the large higher-spin gap and large N conjecture and the

construction of the Holographic Cameras, which are both related with the study of locality

in the bulk. Finally, after presenting Regge kinematics and going over the methods that

will be used here to compute the conformal blocks, we obtain these functions in the Regge

limit for two distinct types of spinning correlators: with one spinning operator and three

scalars and with two spinning operators and two scalars. We finish this thesis by stating

the main results and conclusions of our work and point out the next steps we could take

in the future.





Resumo

Dentro do contexto de AdS/CFT, a nossa compreensão sobre como a localidade do

’bulk’ emerge a partir da fronteira permanece incompleta. Adicionalmente, seria útil ter-

mos alguma espécie de ferramenta ou critério que, dada uma CFT na fronteira, nos dissesse

se esta possui ou não uma teoria dual no ’bulk’ que fosse local a escalas muito menores do

que o raio de curvatura de AdS. Um artigo recente proposto por Caron-Huot [1] propõe

dois dispositivos, a que ele chama de ’Câmeras Holográficas’, que nos ajudam precisamente

a responder a estas questões. Em particular, os sinais destas câmeras são imagens de fácil

interpretação, a partir dos quais podemos concluir also sobre a localidade da teoria do

’bulk’ sem qualquer ambiguidade. No entanto, embora a construção funcione para qual-

quer função de quatro pontos com uma certa ordenação espećıfica dos operadores, o único

caso considerado nesse artigo é o da função de correlação só com operadores escalares.

Esta tese tem como objetivo estender a análise do artigo para funções de correlação que

têm operadores com spin não nulo, calculando os blocos conformes associados no limite de

Regge, que por sua vez são essenciais para obter o sinal da câmera. Assim, começamos

por introduzir os conceitos básicos de Teorias de Campos Conformes e AdS/CFT. Depois,

procedemos a dar uma breve introdução sobre a conjetura de ’large higher-spin gap and

large N’, bem como a construção das Câmeras Holográficas, sendo que estão ambas rela-

cionadas com o estudo de localidade no bulk. Finalmente, após explicar em que consiste

o limite de Regge e introduzir os métodos que serão usados neste trabalho para calcular

os blocos conformes, obtemos essas mesmas funções no limite de Regge para dois tipos

distintos de funções de correlação: com um operador com spin e três escalares e com dois

operadores com spin e dois escalares. Finalizaremos esta tese com a apresentação dos re-

sultados principais deste trabalho e respetivas conclusões, e destacamos os passos seguintes

que podeŕıamos tomar no futuro.





Contents

Acknowledgements v

Abstract vii

Resumo ix

Contents xi

List of Figures xv

Glossary xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Conformal Field Theories 5

2.1 Conformal symmetry and conformal algebra . . . . . . . . . . . . . . . . . . 7

2.2 Primaries and descendants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Embedding Space formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Null Polarization Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Conformal correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Two point correlation functions . . . . . . . . . . . . . . . . . . . . . 15

2.5.1.1 Scalar operators . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1.2 Spinning operators . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Three point correlation functions . . . . . . . . . . . . . . . . . . . . 18

2.5.2.1 Scalar operators . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2.2 Spinning operators . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Higher point correlation functions . . . . . . . . . . . . . . . . . . . 21

2.6 Radial Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 State-Operator Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Operator Product Expansion (OPE) . . . . . . . . . . . . . . . . . . . . . . 26

2.8.1 Euclidean OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.2 Lorentzian OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Conformal Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Conformal Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



xii Locality in AdS/CFT

2.11 AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Locality of the bulk theory 35

3.1 Large higher-spin gap large N conjecture . . . . . . . . . . . . . . . . . . . 35

3.2 Holographic Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Cannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Active Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Folded OPE and Eikonal approximation . . . . . . . . . . . . . . . . 43

3.2.5 Vacuum state and the Conformal Regge theory . . . . . . . . . . . . 44

3.2.5.1 Regge limit and Folded OPE limit . . . . . . . . . . . . . . 44

3.2.5.2 Conformal Regge theory . . . . . . . . . . . . . . . . . . . 47

3.2.6 Image for N = 4 SYM at strong and weak coupling . . . . . . . . . 48

4 Conformal Blocks in the Regge Limit 53

4.1 Regge Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 More on Conformal Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Casimir differential equation . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Lightning Review on Conformal Regge Theory . . . . . . . . . . . . 60

4.2.3 Series expansion of Conformal blocks . . . . . . . . . . . . . . . . . . 61

4.2.3.1 Euclidean OPE limit . . . . . . . . . . . . . . . . . . . . . 62

4.2.3.2 Lorentzian OPE limit . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Differential operators method . . . . . . . . . . . . . . . . . . . . . . 65

4.2.4.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4.2 Identifying OPE structures . . . . . . . . . . . . . . . . . . 67

4.2.4.3 Elementary Differential Operators . . . . . . . . . . . . . . 68

4.2.4.4 Differential Basis and Standard Basis . . . . . . . . . . . . 69

4.2.4.5 Spinning Conformal Blocks . . . . . . . . . . . . . . . . . . 70

4.2.5 Analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Conformal Blocks in the Regge Limit . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Scalar-Scalar-Scalar-Scalar . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1.1 With the Casimir differential equation . . . . . . . . . . . . 75

4.3.1.2 With the Lorentzian lightcone OPE . . . . . . . . . . . . . 76

4.3.2 Spin J1-Scalar-Scalar-Scalar . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2.1 From the Casimir differential equation . . . . . . . . . . . . 80

4.3.2.2 From the action of differential operators . . . . . . . . . . . 86

4.3.2.3 From the lightcone expansion . . . . . . . . . . . . . . . . . 90

4.3.3 Spin J1-Spin J2-Scalar-Scalar . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3.1 With the Lorentzian lightcone OPE . . . . . . . . . . . . . 93

5 Conclusions and future work 95

A Holographic camera integral (3.19) by saddle-point approximation 99

A.1 Equivalence between ρ(ν)P 2−d
2

+iν(η) and Ωiν(η) . . . . . . . . . . . . . . . 102

B Hypergeometric function discontinuity 105



Contents xiii

C Casimir differential equations 109

C.1 Spin 1-Scalar-Scalar-Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





List of Figures

2.1 Configuration of the four points after we have used conformal transforma-
tions to put them in the same plane . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Spacetime foliation through surfaces of equal time and corresponding time
evolution between states living in different surfaces . . . . . . . . . . . . . . 24

2.3 Spacetime foliation with spheres Sd−1 of different radii around the origin . . 24

2.4 Cutting holes Bi in the path integral and gluing states on the boundaries
∂Bi to define a correlation function . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Relation between the Noether charge of a particle following a bulk null
geodesic with its time-like momentum vector in the boundary. . . . . . . . . 39

3.2 Schwinger Keldysh contour and operator insertions for measurement of energy-
momentum density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Schematic representation of the energy-momentum measurement in the bulk
of AdS. (Modified figure from [1]) . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Schematic representation of the holographic radar. (Modified figure from [1]) 41

3.5 Schematic representation of the holographic active camera. (Modified figure
from [1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Schwinger Keldysh contour and operator insertions for the active camera
out-of-time order correlator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Geometric interpretation of the equivalence of distinct limits of correlators
in the CFT vacuum. (Figure from [1]) . . . . . . . . . . . . . . . . . . . . . 46

3.8 Schematic representation of scrambling and the inequivalence between the
Regge limit and the folded OPE limit for an excited state. (Figure from [1]) 46

3.9 Plots of holographic camera signal for the N = 4 SYM theory at different
couplings. (Figure from [1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Leading Regge trajectories in the strong and weak coupling regime of a
planar gauge theory. (Figure from [37]) . . . . . . . . . . . . . . . . . . . . 50

4.1 Analytic continuation from spacelike separated points to the causal relations
of the Regge limit. (Figure from [40] . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Gain of a phase in u23 during analytic continuation. . . . . . . . . . . . . . 55

4.3 Path traversed in the space of z, z̄ in order to analytic continue the correla-
tors. (Figure from [1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Schematic representation of the Regge limit. . . . . . . . . . . . . . . . . . . 56

4.5 Schematic representation of the path in the u, v plane we must follow to
analytically continue the conformal blocks. . . . . . . . . . . . . . . . . . . . 72

4.6 Schematic figure that depicts the analytic continuation of the conformal
blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xv





Glossary

QFT Quantum Field Theory

CFT Conformal Field Theory

AdS Anti de-Sitter

GR General Relativity

SCT Special Conformal Transformation

OPE Operator Product Expansion

RG Renormalization Group

IR Infra-Red

UV Ultra-Violet

LHS Left Hand Side

RHS Right Hand Side

xvii





Chapter 1

Introduction

1.1 Motivation

It is a well known fact that nature is governed by four fundamental forces: gravity, strong

and weak interactions and electromagnetism. The last three are well described by quantum

field theory, the framework where the famed Standard Model is formulated. An indication

of the success of this latter is the extremely precise predictions it has given us over time,

such as the anomalous magnetic moment of the electron. However, in spite of its successes,

the understanding of QFTs is not yet fully satisfactory as we lack the tools to analyze

them in the strongly coupling regime. As for the gravitational force, General Relativity

constitutes our most powerful tool in this matter, having been one of the most important

triumphs of the 20th-century physics. Nevertheless, despite all of its successes, it still

has its own limitations and open questions. Indeed, there are some cases where both

gravitational and quantum effects need to be taken into account, such as in the vicinity of

a black hole. In light of this, one of the most important remaining tasks of modern physics

is then to incorporate the principles of quantum mechanics in General Relativity, thereby

constructing a so-called quantum gravity theory.

Throughout the years, several ideas for a theory which would solve both issues were

proposed and explored. One such proposal, which is still a target of great debate and

research nowadays is the AdS/CFT duality, put forward by Juan Maldacena in 1998 [2].

When it was first introduced, it used sound arguments to relate two apparently distinct

theories, namely N = 4 Super Yang-Mills theory, which is a Conformal Field Theory,

and a type IIB string theory on an asymptotically AdS5 × S5 spacetime. According to

the duality, not only are they related, as they are in fact equivalent to each other. This

1



2 Locality in AdS/CFT

equivalence, however, is not restricted to this case. The main notion behind AdS/CFT is

that some CFTs in a d−dimensional spacetime are equivalent to a corresponding theory

of quantum gravity/string theory in an asymptotically AdS (d+1)-dimensional spacetime.

The CFT is said to inhabit the boundary of AdS while the gravitational theory lives in

the bulk. Although no explicit proof has been given, this duality is generally accepted due

to the several successful tests which indicate its validity. One such instance, is the agree-

ment of the spectrum of some operators, which was extracted from correlation functions

computed from both the gauge theory and the gravitational theory perspective. However,

it is important to be aware that AdS/CFT will not provide us with a theory of quantum

gravity describing the world we live in. It can, nonetheless, be used to gain intuition about

general traits that such a theory would have.

Since its proposal, the AdS/CFT correspondence has proven to be particularly useful

in understanding universal features of strongly coupled field theories, by looking at their

dual bulk description. However, one has still to understand how to answer long-standing

questions about bulk physics from the boundary perspective. For instance, would it be

possible to know what happens to an observer that falls inside a blackhole by posing this

question in the language of CFTs? In principle, not only should this be possible but it

would also be easier for us since we are more acquainted with the formalism of QTFs.

However, this is far from being a trivial matter since both theories are constructed in

terms of completely different spaces and operators. Therefore, we would need to have a

”dictionary” mapping all operators from one theory to the other in order to address this

issue. It seems therefore, that there is still a lot of work to be done such that we can answer

the plethora of questions about this topic.

Among these, one important topic which is yet to be fully understood, is the locality of

the bulk theory. Specifically, we would like to be able to answer questions such as: how do

the CFT degrees of freedom organize themselves in order to give rise to bulk locality? What

conditions does the CFT have to obey such that its dual is local? Is there any construction

that could tells us whether or not the bulk theory is local? Being able to tackle these

issues would allow us take a step further in fully understanding how holography encodes

bulk locality and consequently the emergence of spacetime.
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1.2 Outline

In this thesis we will tackle the topic of locality of the bulk theory. In particular, we will

compute certain functions which are deeply related to CFTs correlation functions, and that

can be used to provide us information about the locality of the dual theory.

In chapter 2, we review the basics of Conformal Field Theories. We begin by motivating

the study of these theories. Then, we present the conformal symmetry group and its

generators and argue how it deeply constrains the observables of these theories. In addition,

we go over some of the tools which will be used throughout this work such as the Operator

Product Expansion, the Conformal Blocks, the Embedding Space formalism, among many

others.

In chapter 3, we give a brief overview of this topic’s state-of-art. In particular, we

present a key conjecture which dictates the necessary conditions for a CFT to have a local

bulk dual. We then proceed to introduce the construction of the Holographic Cameras

from [1], whose signals allow to unambiguously infer about the locality of the bulk theory.

Under certain conditions, which we will explain here, the four point functions defining

one of these devices are equivalent to the corresponding correlators given by Conformal

Regge theory. Since this paper only considered scalar correlators for plotting the camera’s

signal in a few cases, we found it compelling to extend the analysis for spinning correlation

functions. Doing so would not only validate this formalism further but could also provide

us with additional information.

In order to write these correlators according to Conformal Regge theory, it is indispens-

able to know the corresponding conformal blocks in the Regge limit. Thus, in chapter 4, we

start by extending the presentation on conformal blocks, where we explain how to obtain

and analytically continue these functions. Afterwards, we compute the conformal blocks

in the Regge limit of four point functions with one spinning operator and three scalars as

well as with two spinning operators and two scalars.

Finally, in chapter 5, we present our conclusions and address the future directions of

this work.





Chapter 2

Conformal Field Theories

Conformal Field Theories are not only relevant in the context of AdS/CFT but also on

their own. In particular, they have been studied extensively over the last few decades

for numerous reasons, some of which we will briefly point out here. Presently, one of the

biggest difficulties of modern physics is trying to understand the strongly coupled behavior

of QFTs. This stems from the fact that we only possess perturbative methods, which

by definition work strictly in the weak regime. It would thus be useful to find a non-

perturbative technique, such that we could overcome this problem. It is in this context

that CFTs come up. In particular, because these theories possess a larger symmetry group

(conformal symmetry), some of their observables are completely determined. Naturally,

this trait suggests that understanding the strongly coupled behavior in these theories might

be simpler. Nevertheless, CFTs remain entirely non-trivial. While there has been notable

progress in this area, there is still a lot to be comprehended.

One particular reason why CFTs are so compelling to study, is that they are fixed points

of the Renormalization Group flow. Within the framework of the Wilson renormalization

[3], we start by considering an arbitrary QFT described by a microscopic Lagrangian, L.

Necessarily, this theory has a large momentum cutoff Λ, associated with the scale of atomic

distances, above which the description of the system by a continuum theory breaks down.

Indeed, this is made clear by the UV divergences one finds when taking the integrals to

these higher scales. Thus, the partition function of this QFT is given by:

Z[J ] =

∫
[Dϕ]Λ e

∫
L+J ϕ , (2.1)

5



6 Locality in AdS/CFT

where

[Dϕ]Λ ≡
∏
|k|<Λ

dϕ(k) , (2.2)

with ϕ(k) the Fourier components of the field ϕ. The main idea of this construction is

to analyze the influence of the high energy degrees of freedom to the physical predictions

of the theory. In order to assess this, we can integrate the Fourier components whose

momenta is closer to the cutoff and compare it with the original partition function. The

starting point is then to integrate over a small shell in momentum space bΛ < |k| < Λ,

where 0 < b < 1, which leads to a new cutoff scale, bΛ. This integration takes us to a

slightly different partition function:

Z[J ] =

∫
[Dϕ]bΛ e

∫
Leff+Jϕ . (2.3)

The effective Lagrangian Leff differs from the original one with respect to the couplings. In

particular, these have changed in order to account for the integration and for fact that the

Lagrangian now concerns a different energy scale. This is the so called ”running of coupling

constants”. Moreover, because the Lagrangian has distinct parameters, it corresponds to a

completely different point in the space of all QFTs. By iterating this process while taking

the thickness of the momentum shell to be infinitesimally small, b ≈ 1, we get a continuous

flow in this space. This is referred to as an RG flow. This flow continues until it reaches

a point where further momentum shell integration does not alter the physical description

of the theory anymore. These are known as fixed points and correspond to scale invariant

theories. Given that CFTs possess scale invariance, they are necessarily fixed points.

Because completely different microscopic theories can flow asymptotically to the same

fixed point, this means that they can all be described by the same CFT at larger scales.

We say that these theories belong to the same universality class. Naturally, all of these

theories will have the same critical exponents, correlation functions, etc. One such instance

of this occurs with the 3d Ising model, which consists in a lattice of length a, where each

site has a classical spin si ∈ {±1}, and where we consider nearest-neighbor interactions.

Usually, we are interested in obtaining spin correlation functions such as:

⟨s(r)s(0)⟩ ∼ e−
r

ξ(T ) , (2.4)

where ξ(T ) is the characteristic length. At the critical temperature T = Tc the system

undergoes a phase transition and ξ(Tc) = ∞. When this happens, any sense of scale

disappears such that we find a scale invariant theory, or more specifically for this case, a
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CFT. Interestingly, this CFT is exactly the same as the one appearing in the λϕ4 theory,

which corresponds to the Wilson-Fisher fixed point.

In addition to the 3d Ising model, other systems such as water or uni-axial magnets,

which undergo such a phase transition, flow to the same fixed point. This means that all of

these theories belong to the same universality class. Moreover, we say that these theories

are IR equivalent at their critical points.

2.1 Conformal symmetry and conformal algebra

The symmetries/conserved charges of a given QFT inhabiting a particular spacetime are

determined by the Killing vector fields (ϵ = ϵµ∂µ). This stems from the fact that conserved

currents, which we associate with symmetries, are constructed with the Killing fields.

Consequently, the conserved charges, which result from integrating these currents, also

depend on them.

In flat space, where we can either have Poincaré or Euclidean symmetry, depending on

the considered signature, we have that the stress-energy tensor is conserved:

∂µT
µν = 0 . (2.5)

Relatedly, the Killing vector fields can be contracted with the stress-energy tensor in order

to construct a general conserved current [4]:

Jµ = ϵνT
µν . (2.6)

In addition, by integrating this current over a spatial volume, we obtain a conserved charge

associated to each symmetry/Killing field:

Qϵ =

∫
Σ
dSµ ϵν T

µν , (2.7)

where Σ is some closed surface. Given that it is a conserved quantity, it obeys:

0 = ∂µ (ϵν T
µν) = (∂µϵν)T

µν + ϵν ∂µ T
µν =

1

2
(∂µϵν + ∂νϵµ)T

µν , (2.8)

which in due turn implies

∂µϵν + ∂νϵµ = 0 . (2.9)

These are nothing more than the Killing equations.
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For Poincaré/Euclidean invariant theories, these equations admit the following solu-

tions:

pµ = ∂µ (translations) , mµν = xν∂µ − xµ∂ν (rotations) . (2.10)

Let us now see how CFTs have even more symmetries. To do this, we will start by

considering scale invariant theories, which remain unchanged under

xµ → λxµ , (2.11)

which can also be thought as a rescaling of the metric

gµν → λ2 gµν . (2.12)

Let us now take the rescaling factor to be given as λ − 1 = ϵ and consider a negligible

rescaling ϵ ≈ 0. Consequently, the infinitesimal change in the metric is δgµν = 2 ϵ gµν .

Now, given that the stress-energy tensor measures the response to a change in the metric,

we have

δS ∝
∫
dDxTµν δg

µν = 2ϵ

∫
dDxTµ

µ . (2.13)

If the theory is to be scale invariant, it must satisfy δS = 0 for every ϵ. Therefore, the

stress-energy tensor must be the total divergence of some vector operator [5, 6] :

Tµ
µ = ∂µK

µ . (2.14)

Since the stress tensor has dimension d, the vector operator Kµ must have dimension d−1

at the fixed point. However, except for conserved currents, most vector operators acquire

anomalous dimensions. Hence, Kµ is generally a conserved current, i.e. ∂µK
µ = 0, such

that Tµ
µ = 0. Note, however, that there are scale invariant theories with Tµ

µ ̸= 0 (see [7]

for such an example).

Interestingly, a scale invariant theory satisfying Tµ
µ = 0 becomes a conformal invariant

theory. To see why, consider a transformation leading to δgµν = c(x) gµν , for some arbitrary

position dependent function c(x). Such a theory satisfies:

δS ∝
∫
dDxTµν δg

µν =

∫
dDx c(x)Tµ

µ = 0 , (2.15)

thereby making it invariant under such transformations, which are called Weyl transfor-

mations. The majority of these Weyl transformations, however, changes the spacetime

geometry from flat to curved, which we do not want. Fortunately, there is a subclass
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of them which keep the spacetime flat, the so-called conformal transformations. These

transformations can be realized infinitesimally as local diffeomorphisms:

xµ → xµ + ϵµ(x) . (2.16)

Moreover, these transformations change the metric in a way that needs to be equivalent to

that of a infinitesimal Weyl transformation. Hence, we must have:

∂µ ϵν + ∂ν ϵν = c(x) gµν . (2.17)

In flat space, we either replace gµν in the above expression by δµν for Euclidean spacetime

or by ηµν for Minkowski spacetime. The above expression encodes the Killing equations for

the case of conformal symmetry, which in addition to translations and rotations, admits

two more solutions:

d = xµ ∂µ (dilatations) , kµ = 2xµ(x · ∂)− x2∂µ (SCTs) . (2.18)

Dilatations are related to rescaling and therefore scale invariance. On the other hand,

special conformal transformations can be shown to be given as a combination of inversions

and translations in the following way: SCT = I ◦ P ◦ I. We thus have that the conformal

group is constituted by: translations, rotations, dilatations and SCTs. This is summarized

in the following table.

Transformation Generator Coordinate transformation Number

Translation pµ x′µ = xµ + aµ d

Rotation mµν x′µ =Mµ
ν xν

d(d−1)
2

Dilatation d x′µ = λxµ 1

SCT kµ x′µ = xµ−bµ x2

1−2(b·x)+b2x2 d

Table 2.1: Conformal transformations, respective generators, finite form and number of
degrees of freedom

Summing the degrees of freedom of the different transformations we obtain a total of

(d+1)(d+2)
2 , which is precisely the number of generators of rotations in a (d+2)−dimensional

space. This hints a relation between the two groups, as will be seen ahead.

Since we know the conformal vector fields, we can construct the conserved charges

by using (2.7). These charges are of particular importance because they provide us a
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representation of the conformal algebra. In particular, they obey*

[
Qϵ1 , Qϵ2

]
= Q−[ϵ1,ϵ2] . (2.19)

Using this equality, one finds that the conformal charges satisfy the following commutation

relations:

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν ,

[Mµν , Pρ] = δνρPµ − δµρPν , [Mµν ,Kρ] = δνρKµ − δµρKν ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2 δµν D − 2Mµν .

(2.20)

The above relations define the conformal algebra. It is interesting to see that the first

line corresponds exactly to the algebra of SO(d). Accordingly, the second line tells us

that Pµ and Kµ transform as vectors under rotations. Even more interesting, however,

is the last line, which reveals that Pµ and Kµ act respectively as raising and lowering

operators with regard to the dilatation operator D. This is somewhat similar to how in

the single quantum harmonic oscillator the ladder operators a† and a, respectively increase

or decrease the energy by one unit, which in turn is the eigenvalue of the operator a†a.

As it turns out, the conformal algebra is isomorphic to SO(d+ 1, 1). To see this, one can

define a new set of generators LAB, where A,B ∈ {−1, 0, . . . , d}, and identify them with

the conformal generators as:

Lµν =Mµν , L−1,0 = D , L0,µ =
1

2

(
Pµ +Kµ

)
, L−1,µ =

1

2

(
Pµ −Kµ

)
, (2.21)

where µ, ν ∈ {1, . . . , d}. It is then a simple but tedious task to show that these generators

LAB satisfy the algebra of SO(d+1, 1). Indeed, this isomorphism was already implied before

when we verified that the number of conformal generators and SO(d + 1, 1) generators

agreed with each other. Thus, the action of the conformal group in Rd can be seen as

rotations on Rd+1,1. Naturally, this second approach seems easier to work with and in

particular to figure out the constraints imposed by conformal invariance on the theory’s

observables. This relation is the main idea behind the embedding space formalism, which

will be presented after the next section.

*For d = 2 CFTs this is this commutation relation is slightly different. See [8]
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2.2 Primaries and descendants

Given a certain CFT, we may identify the operators by their eigenvalue with respect to

the dilatation operator: [
D,O(0)

]
= ∆O(0) , (2.22)

where ∆ is called the conformal dimension of O. For reasons that will be explained later,

these dimensions must be positive ∆ ≥ 0. Additionally, the operators are also characterized

by their spin J , which is related with the irreducible representation under which they

transforms under rotations:

[
Mµν ,Oa1...aJ (0)

]
=
(
Sµν
) a1...aJ
b1...bJ

Ob1...bJ (0) . (2.23)

Here, Sµν are matrices satisfying the same algebra as Mµν while the indices ai, bi concern

the SO(d) representation of O. We often omit these spin indices for simplicity.

Now, as we had commented before, the conformal generators Kµ and Pµ act as lowering

and raising operators with respect to the dilatation operators, respectively. In particular,

each time we act with Kµ on a certain operator we lower the conformal dimensions by one

unit. As such, if we act multiple times with this generator, we must eventually reach zero,

given that conformal dimensions are bounded from below. It is customary to define the

primary operators as the ones that are annihilated by Kµ:

[
Kµ,O(0)

]
= 0 . (2.24)

Acting with momentum generators on these primaries, we construct operators of higher

dimensions, which we refer to as descendants:

O(0)→ Pµ1 . . . Pµℓ

(
P 2
)n
O(0) , ∆→ ∆+ 2n+ ℓ . (2.25)

Note that we have distinguished between acting with momentum generators with free

indices or contracted indices. This is essential since both things have a significant difference.

In particular, while in the first case the spin of the operators is also increased, in the second

it is not.

To the set of a given primary operator and all of its descendants we call a conformal

family. Each of these is characterized by the dimension ∆ and spin J of the corresponding

primary.
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Lastly, it is worth remarking that in a CFT every local operator is a linear combination

of primaries and descendants. For a proof of this, see for example [8].

2.3 Embedding Space formalism

When considering a CFT living in d dimensions, we have seen that the conformal group is

SO(d+1, 1). Thus, while its action in Rd might be non-trivial, it is simpler in the embedding

space Md+2 since it acts linearly through rotations. Figuring out the constraints imposed

by conformal symmetries should thus be easier from this second perspective. The idea

then is to embed the d dimensional space and the CFT living on it in Md+2.

This lift between both spaces is done through a one-to-one correspondence between

points xµ in Rd and null-rays in the embedding space Md+2, given by the vectors

PA
x = λ

(
1, x2, xµ

)
, λ ∈ R . (2.26)

Here we are using the coordinates

PA =
(
P+, P−, P a

)
, (2.27)

and the metric

P · P = ηAB P
A PB = −P+ P− + δab P

a P b . (2.28)

Under the action of SO(d + 1, 1) the null rays get mapped to other null rays, which

translates into a map between points of the physical space Rd. Importantly, these trans-

formations between the xµ correspond precisely to conformal transformations. This had

to be the case in order for this formalism to work.

We can also lift fields to the embedding space. For this, we define a generic field

inhabiting the lightcone (P 2 = 0) by a tensor FA1...AJ
(P ) of SO(d + 1, 1) satisfying the

following properties:

• Depends homogeneously on P with weight −∆: FA1...AJ
(λP ) = λ−∆ FA1...AJ

(P ) ;

• Is symmetric and traceless;

• Is transverse: PA1 FA1...AJ
(P ) = 0;

For a certain null ray, characterized by a given direction (1, x2, xµ), we can move along it by

varying λ. Moreover, we know how the fields transform under rescalings by λ. Therefore,

if we know the value of the field in some point of a light-ray, we necessarily know it for the
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entire light-ray. This invariance under P → λP can be seen as sort of a gauge freedom.

Consequently, if the field is known in a particular section of the lightcone it becomes

determined in all of it. Generally, we choose the Poincaré section,

PA
x = (1, x2, xµ) , (2.29)

although other choice would be valid as well. The restriction of the tensor FA1...AJ
to

the Poincaré section, which has only d dimensions, can be projected to Rd. This gives a

symmetric and traceless field on the physical space,

fµ1...µJ (x) =
∂PA1

∂xµ1
. . .

∂PAJ

∂xµJ
FA1...AJ

(P ) , (2.30)

where
∂PA1

∂xµ1
=
(
0, 2xµ1 , δ

a1
µ1

)
. (2.31)

Due to the transversality of the tensors FA1...AJ
, terms proportional to PAi project to zero

in the physical space. We call these tensors pure gauge.

It can then be showed [9, 10] that the tensors fµ1...µJ behave like symmetric and trace-

less primary fields of dimension ∆ and spin J under conformal transformations. Thus,

this formalism allows also to lift the operators of a CFT to the embedding space and

consequently correlation functions.

2.4 Null Polarization Vectors

There are times when we want to consider operators with nonzero spin. Working with

all the indices of the fields fµ1...µJ , however, is a slightly bothersome matter. In order to

obtain neater equations, we contract these tensors with appropriate vectors and get rid of

the indices. As an outcome, we obtain a polynomial which encodes the original tensor. A

thorough presentation of this construction is given in [11].

The idea is then as follows. We take a symmetric and traceless tensor fµ1...µJ and

contract the indices with vectors zµ:

f(x; z) = fµ1...µJ (x) z
µ1 . . . zµJ . (2.32)

The zµ are referred to as polarization vectors. In particular, because the field is traceless

we restrict these to be null, z2 = 0. Consequently, two polynomials which differ from each

other by O(z2) terms encode the same tensor. Moreover, because we contract every index
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with a polarization vector, the resulting polynomial will be of degree J in z, thus encoding

the spin of the field.

Given a polynomial, we can also retrieve the indices and obtain the original tensor with

the Todorov differential operator:

Da =

(
h− 1 + z · ∂

∂z

)
∂

∂za
− 1

2
za

∂2

∂z · ∂z
, (2.33)

where h ≡ d/2. In particular, the tensor can be retrieved by:

fµ1...µJ (x) =
1

J !(h− 1)J
Dµ1 . . . DµJ f̃(x, z) , (2.34)

where (n)J = Γ(n + J)/Γ(n) is the Pochhammer symbol and f̃(x, z) represents the poly-

nomial f(x, z) restricted to the submanifold z2 = 0, i.e.:

f(x, z) = f̃(x, z) +O(z2) . (2.35)

This construction can be also be used in the embedding space. Given a symmetric,

traceless and transverse tensor FA1...AJ
inMd+2 we can contract it with vectors ZA ∈Md+2:

F (P,Z) = FA1...AJ
(P )ZA1 . . . ZAJ . (2.36)

Analogously to before, we once again use null vectors (Z2 = 0) due to the tracelessness of

the tensors. Moreover, because these are also transverse we further restrict to the subset

of Z’s satisfying Z · P = 0. Hence, polynomials which differ modulo terms proportional to

P 2 and Z · P encode the same tensor. Here, the polynomial will also encode the spin J of

the field by the degree in Z.

The transversality condition of the tensors imposes that the polynomials obey:

P · ∂
∂Z

F (P,Z) = 0 ⇔ F (P,Z) = F (P,Z + αP ) , ∀α ∈ R , (2.37)

which then dictates the transversality of the polynomials.

In order to retrieve the tensors from the polynomials we can proceed in the same way

as before (2.34), by acting with the Todorov operator in d+ 2 dimensions,

DA =

(
h− 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
, (2.38)

in the polynomials with no O(P 2) and O(P · Z) terms.

We could now wonder about the relation about the polynomials in the physical f(x, z)

and embedding space F (P,Z). Indeed, taking into account how we go from the embedding
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space to the physical space (2.30) we have that the polynomials in these spaces are related

as

f(x, z) = F (Px, Zz,x) , (2.39)

where Zz,x = (0, 2x · z, z), which in turn satisfy

Zz,x · Px = 0 , Z2
z,x = z2 . (2.40)

In the case of a traceless tensor, the RHS of the right equality is 0.

Lastly, we give the map between certain quantities in both spaces, which are essential

for writing correlation functions interchangeably in the embedding and physical space:

Zi · Zj ←→ zi · zj , Pi · Zj ←→ zj · xij , Pi · Pj ←→ −
1

2
x2ij (2.41)

2.5 Conformal correlators

Most of the times we are studying a CFT, we are interested in obtaining correlation func-

tions of local operators. As we will see now, conformal symmetry alone is strong enough to

completely fix the structure of two and three point functions in such a theory. Although

for higher point functions this is not the case anymore, symmetry still help us figuring out

the general structure that these functions must have.

2.5.1 Two point correlation functions

2.5.1.1 Scalar operators

Start by considering the correlation function of the two scalar primaries located at dif-

ferent points ⟨O1(x1)O2(x2)⟩. Translation and rotation invariance immediately impose

⟨O1(x1)O2(x2)⟩ = f(|x1−x2|). Moreover, if this correlator is to be scale invariant, it must

vanish under the action of D on both of its operators. Thus, we have:

0 = ⟨
[
D,O1(x)O2(x)

]
⟩ = ⟨

[
D,O1(x)

]
O2(x)⟩+ ⟨O1(x)

[
D,O2(x)

]
⟩

=
(
xµ1∂1,µ +∆1 + xµ2∂2,µ +∆2

)
f(|x1 − x2|) ,

(2.42)

where we have used the commutation relation between the operator D and a local primary

located at an arbitrary position x:

[
D,O(x)

]
= (x · ∂ +∆) O(x) . (2.43)
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It is easy to show that the solution of (2.42) is:

f(|x1 − x2|) =
C

|x1 − x2|∆1+∆2
. (2.44)

Consider now a general conformal transformation. In particular, given a conserved charge

Qϵ we can construct the operator U = eQϵ , which implements a finite conformal transfor-

mation as:

U Oa1...aJ (x)U−1 = Ω(x′)∆D
(
R(x′)

) a1...aJ
b1...bJ

Ob1...bJ (x′) . (2.45)

Here, x′ denotes the transformed coordinate, Ω(x) is a local scale factor andD
(
R(x′)

) a1...aJ
b1...bJ

is a matrix which implements the action of the rotation R in the representation of O. Given

that the two point function is a conformal object, it must be invariant under these trans-

formations:

⟨O1(x1)O2(x2)⟩ = ⟨
(
U O1(x1)U

−1
)(

U O2(x2)U
−1
)
⟩

=Ω(x′1)
∆1 Ω(x′2)

∆2 ⟨O1(x
′
1)O2(x

′
2)⟩ .

(2.46)

In addition, we have that under any conformal transformation, distances transform as:

(x− y)2 =
(
x′ − y′

)2
Ω(x′) Ω(y′)

. (2.47)

The validity of this expression is easy to show for translations, rotations and dilatations.

It is also possible to show this holds true for inversions, which implies it is valid for SCTs

since these are built up from inversions and translations. Imposing the equality of the two

point function under (2.46) and (2.47) we can fix it even further:

Ω(x′1)
∆1 Ω(x′2)

∆2
C

|x1 − x2|∆1+∆2
=
(
Ω(x′1) Ω(x

′
2)
)∆1+∆2

2
C

|x1 − x2|∆1+∆2
. (2.48)

This equality is verified when either C = 0 or ∆1 = ∆2. By absorbing the constant C in

the definition of the operators, we get that two point functions are completely determined

by symmetry and given as:

⟨O1(x1)O2(x2)⟩ =
δ∆1,∆2(
x212
)∆1+∆2

2

, (2.49)

where xij ≡ xi − xj . Interestingly, these correlators are nonzero only when the operators

have identical dimensions. Moreover, note that (2.49) imposes ∆1 ≥ 0 since otherwise, the

correlation function would diverge when the separation between the two operators became

very large. This would be completely unphysical.
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2.5.1.2 Spinning operators

We can also consider two point functions of spinning operators and show that they are

completely fixed by symmetry as well. Similarly to the scalar case, spinning two points

functions are also diagonal in the space of operators, meaning that they are only nonzero

when both operators have the same dimension ∆ and spin J . For these objects, however,

we would be better at computing them in the embedding space where the conformal group

acts linearly.

Let us denote the two point function of a spin J primary by:

GA1...AJ , B1...BJ (P1, P2) = ⟨OA1...AJ (P1)OB1...BJ (P2)⟩ . (2.50)

It is convenient to employ the formalism of the polarization vectors since we are dealing

with a tensor with indices:

G(P1, P2, Z1, Z2) = ZA1
1 . . . ZAJ

1 ZB1
2 . . . ZBJ

2 GA1...AJ , B1...BJ
(P1, P2) . (2.51)

According to what was said previously, this polynomial must satisfy the following con-

ditions: it must transform homogeneously under scalings, with weight −∆; it must have

degree J in Z1 and Z2; it must be transverse, thus obeying (2.37). Taking into account

these considerations and dropping terms proportional to P 2
i and Pi ·Zi, which are vanishing

for our purposes, we can only have [11]:

G̃(P1, P2;Z1, Z2) = CO
HJ

12

(P12)
∆+J

, (2.52)

where Pij ≡ −2Pi · Pj and H12 is given by:

Hij ≡ −2
[
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

]
. (2.53)

This structure is referred to as a building block. More of these will be seen for three point

functions.

We can now project this result into the physical space by using the relations from

(2.41). This gives

⟨Oµ1...µJ (x1)Oν1...νJ (x2)⟩ = CO

(
I (µ1 ν1(x12) . . . I

µJ νJ )(x12)(
x212
)
∆

− traces

)
, (2.54)

where

Iµν(x) ≡ δµν − 2
xµ xν

x2
. (2.55)
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The symmetrization over the indices µi, νi and subtraction of the traces in (2.54) are

necessary in order to obtain a symmetric and traceless result, just like the operators.

These, however, result directly from how the embedding space and the null polarization

vectors formalism are constructed.

Most of the times, we can also normalize the operators so as to have CO = 1 in (2.54).

An exception, however, occurs for the stress tensor in which its normalization is already

fixed by the Ward identities, thus preventing us from getting rid of CT . This constant,

however, has a physical significance, which will not be explored here.

2.5.2 Three point correlation functions

2.5.2.1 Scalar operators

The case of the scalar three point function ⟨O1(x1)O2(x2)O3(x3)⟩ is similar to the two

point. Once again, translation and rotation invariance impose that ⟨O1(x1)O2(x2)O3(x3)⟩ =

f(x212, x
2
13, x

2
23). Moreover, given the structure of the two point function, is it resonable to

propose the following ansatz for the three point correlator:

f(x212, x
2
13, x

2
23) = λ123

(
x212

)a1 (
x213

)a2 (
x223

)a3
, (2.56)

where the coefficients ai are undetermined by now and λ123 is some constant. Because this

correlator is also conformally invariant it must satisfy the analogue of eq.(2.46), namely:

⟨O1(x1)O2(x2)O3(x3)⟩ = Ω(x′1)
∆1 Ω(x′2)

∆2 Ω(x′3)
∆3 ⟨O1(x1)O2(x2)O3(x3)⟩ . (2.57)

According to our ansatz, the three point function is also made up strictly from products of

squared distances. Therefore, under a conformal transformation it must change according

to (2.47). Consistency then requires this result to be equivalent to the previous expression:

Ω(x′1)
∆1 Ω(x′2)

∆2 Ω(x′3)
∆3 =

[
Ω(x′1) Ω(x

′
2)
]−a1[Ω(x′1) Ω(x′3)]−a2[Ω(x′2) Ω(x′3)]−a3 ,

(2.58)

which in turn gives us the ai coefficients. In the end, conformal symmetry fixes the scalar

three point function to be given by:

⟨O1(x1)O2(x2)O3(x3) =
λ123(

x212
)∆1+∆2−∆3

2
(
x213
)∆1+∆3−∆2

2
(
x223
)∆2+∆3−∆1

2

. (2.59)



2. Conformal Field Theories 19

The constant λ123, however, cannot be determined by conformal invariance but is rather

a dynamical quantity. We call this a OPE coefficient for reasons that will become clear

later.

2.5.2.2 Spinning operators

More generally, we can consider three point functions of nonzero spin operators in the

symmetric and traceless representation of SO(d). Similarly to the two point case, it is

simpler to first compute these objects in the embedding space and only after project to

the physical space. A detailed presentation of these objects can be found in [11].

Let us denote the generic three point function of operators in the symmetric and trace-

less representation of SO(d) by:

G(P1, P2, P3)
{µ,ν,γ} = ⟨O{µ}

1 (P1)O{ν}
2 (P2)O{γ}

3 (P3)⟩ , (2.60)

where we are using the notation {µ} = µ1 . . . µJ . Contracting this object with null polar-

ization vectors Zi, we get:

G(P1, P2, P3, Z1, Z2, Z3) =

Zµ1
1 . . . ZµJ

1 Zν1
2 . . . ZνJ

2 Zγ1
3 . . . ZγJ

3 ⟨O1,{µ}(P1)O2,{ν}(P2)O3,{γ}(P3)⟩ .
(2.61)

Taking into account all the same conditions mentioned in the two points case, namely

homogeneity under scaling, degree Ji in each Zi and transversality, this correlation function

needs to be given as:

G̃(P1, P2, P3, Z1, Z2, Z3) =
∑
{ℓi}

λℓ1ℓ2ℓ3J1J2J3
V J1−ℓ2−ℓ3
1,23 V J2−ℓ1−ℓ3

2,31 V J3−ℓ1−ℓ2
3,12 Hℓ3

12H
ℓ2
13H

ℓ1
23

(P12)
τ̄1+τ̄2−τ̄3

2 (P13)
τ̄1+τ̄3−τ̄2

2 (P23)
τ̄2+τ̄3−τ̄1

2

, (2.62)

where τ̄i = ∆i+Ji and the tilde above G means we have restricted to P 2
i = 0 and Pi ·Zi = 0.

Here, in addition to the structures Hij we have another kind of building blocks given by:

Vi,jk ≡
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)

(Pj · Pk)
. (2.63)

The basic building blocks Hij and Vi,jk are transverse polynomials which satisfy Hij = Hji

and Vi,jk = −Vi,kj . Consequently, not all of these are linearly independent. It is then a

matter of choice to choose the three independent Hij and the three independent Vi,jk with

which to express the correlators.
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In addition, because each term of G̃(P1, P2, P3, Z1, Z2, Z3) must have the appropriate

degrees on the Zi’s, the ℓi’s must satisfy:

ℓ2 + ℓ3 ≤ J1 , ℓ1 + ℓ3 ≤ J2 , ℓ1 + ℓ2 ≤ J3 . (2.64)

This translates into a sum over ℓi ∈ {0, . . . ,min (Jk)}, which labels the different possible

structures.

Projecting (2.62) according to (2.30), we obtain the generic spinning three point func-

tion in the physical space. In particular, this is is given by (2.62) with Pij → x2ij and the

building blocks expressed in the physical space:

Vi,j k =
(zi · xik)x2ij − (zi · xij)x2i k

x2jk
, Hij = x2ij(zi · zj)− 2(zi · xij)(zj · xij) . (2.65)

The three point can thus be written as:

⟨O1(x1, z1) . . .O3 (x3, z3)⟩ =∑
{ℓi} λ

ℓ1ℓ2ℓ3
J1J2J3

t(ℓ1,ℓ2,ℓ3) (x̃12, z̃1, z̃2, z3)(
x212
) 1

2(∆1+∆2−∆3+
∑

i Ji) (x213) 1
2(∆1+∆3−∆2+

∑
i Ji) (x223) 1

2(∆2+∆3−∆1+
∑

i Ji)
,

(2.66)

where

x̃12 ≡ x13x223 − x23x213 , z̃1 ≡ I (x13) z1 , z̃2 ≡ I (x23) z2 , (2.67)

and the structures t(ℓ1,ℓ2,ℓ3)(x, z1, z2, z3) are given by:

(x2z2 · z3)ℓ1 (x2z1 · z3)ℓ2 (x2z1 · z2 − 2x · z1 x · z2)ℓ3 (−x · z1)m1(−x · z2)m2(x · z3)m3 , (2.68)

with

mi = Ji −
∑
k ̸=i

ℓk . (2.69)

The reason why we have decided to express the spinning three point functions this way,

in terms of these t structures, is because these objects appear in the OPE (which is to be

introduced later) between spinning operators (see [12]). Indeed, notice how this choice of

polynomials t treats O3 differently from O1 and O2. This happens because these structures

concern the OPE O1 × O2 where O3 is the exchanged operator. Equivalently, we could

have chosen a different OPE between these three operators, although we would have to

use different but intimately related tensor structures t′ (see for [11] this). Moreover, these

structures will be relevant farther ahead, such that identifying them like this will prove

helpful.
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2.5.3 Higher point correlation functions

It seems that following the reasoning of the previous two sections, we would be able to

completely fix higher point functions with conformal symmetry alone. Unfortunately, this

is not the case, as when we consider more than three points we begin to have nontrivial

combinations of the positions, which are conformally invariant, called cross-ratios. In the

case of a four point function we have two distinct cross-ratios:

u =
x212x

2
13

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (2.70)

In order to understand why there are only two independent cross ratios in this case consider

the following steps:

• Start with four points at arbitrary positions xi, with i = 1, . . . , 4.

• Use special conformal transformations to send x4 to infinity.

• Using translations, move x1 to the origin, x1 = (0, . . . , 0).

• Use rotations and dilatations to move x3 to (1, 0, . . . , 0).

• Using rotations that leave x3 unchanged, move x2 to (x, y, 0, . . . , 0).

The final configuration is illlustrated in figure 2.1.

x1

x2

1

x3 x4 →∞
z

Figure 2.1: Configuration of the four points after we have used conformal transforma-
tions to put them in the same plane

In this procedure we have used all possible conformal symmetry transformations to fix

everything except for two undetermined quantities x and y, which give two independent

conformal invariants. Hence, up to conformal transformations, any set of four points can

be described by two quantities. These are usually expressed in terms of complex quantities

z ≡ x + i y and z̄ ≡ x − i y. It is then a trivial matter to compute u and v in this

configuration, which gives:

u = z z̄ , v = (1− z)(1− z̄) . (2.71)
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Thus, the four point function must depend non-trivially in these two cross-ratios. For four

scalars with conformal dimensions ∆i, this correlator can be expressed as:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =

(
x2
24

x2
14

)∆12
2
(
x2
14

x2
13

)∆34
2(

x212
)

∆1+∆2
2

(
x234
)

∆3+∆4
2

G(u, v) . (2.72)

The position dependence, which we refer to as the pre-factor, is easily found in the same

manner as for the two and three point functions. In particular, it is responsible for the

correct scaling properties of the correlator:

⟨O1(λx1) . . .O4(λx4)⟩ = λ−(∆1+∆2+∆3+∆4) ⟨O1(x1) . . .O4(x4)⟩ . (2.73)

It is also possible to consider four point functions of spinning operators. However, if

written with the null polarization vectors, the basic building blocks Vi,jk and Hij must ap-

pear in order to correctly encode the spin of the external operators. As such, the structure

of these correlators will be similar to (2.72), but with several cross ratios functions Gi(u, v),

each associated with a different four point function tensor structure. These structures, in

turn, can be generated using the building blocks.

We could now add one more point x5 to the correlator and consider a similar analy-

sis. Indeed, by once again making use of conformal transformations we could obtain the

configuration of figure 2.1 for the first four points. At first sight this seems to make use

of all conformal transformations such that it is not clear how we can handle x5. However,

this is not completely true since the previous procedure did not exploit all of the rotations

symmetries. In particular, we can use the set of rotations orthogonal to the plane defined

by the other four points, to move x5 to (x̃, ỹ, z̃, 0, . . . , 0). This leaves us with three more

undetermined quantities, thereby leading to a total of five independent cross ratios. A

convenient choice for these is [13]:

u1 =
x212 x

2
35

x213 x
2
25

, ui+1 = ui |xi→xi+1
, (2.74)

where the subscript in xj is taken modulo 6. Analogously, the five point function of different

scalars should be given by a pre-factor which takes care of the scaling properties and a

nontrivial function of these cross-ratios:

⟨O1(x1) . . .O5(x5)⟩ =

(
x2
23

x2
13

)∆12 (
x2
14

x2
13

)∆34
2

(
x212
)∆1+∆2

2
(
x234
)∆3+∆4

2

(
x213

x215 x
2
35

)∆5
2

G (u1, . . . , u5) . (2.75)
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Analogously, we could consider spinning five point functions, which would also require the

presence of tensor structures generated with the basic building blocks. This could go on as

we continue to consider more points in the correlation function. However, a time will come

when there will not be enough conformal transformations to fix the components of the new

points. Indeed, in d dimensions the conformal group is SO(d + 1, 1) and has (d+1)(d+2)
2

transformations. Hence, while the number of points n is less than d+2, we can keep using

conformal transformations to fix the points. When n ≥ d+2, however, the totality of these

transformations will be used. Since each point has d components, a n point function will

have a total of nd degrees of freedom, of which only (d+1)(d+2)
2 can be constrained. The

number of independent cross ratios for a given n point function is then given by
n(n−3)

2 if n ≤ d+ 2

nd− (d+1)(d+2)
2 if n > d+ 2

(2.76)

Similarly, all of the scalar higher point functions will depend on a non trivial function

of these cross ratios and on a prefactor which absorbs the weight of the external operators.

When the external operators have nonzero spin, the correlators will also depend on several

tensor structures, each associated with a cross ratios function.

2.6 Radial Quantization

Up to now we have seen numerous commutation relations and correlation functions without

having explicitly specified the quantization of the theory. In general, we choose to quantize

the theory in a way that respects its symmetries. For instance, when we are dealing with

Poincaré invariant theories we always choose a certain spacetime direction x0 = t, which we

call time. We then opt to foliate spacetime by surfaces of equal t (figure 2.2), each of these

endowed with its own Hilbert space. This procedure is advantageous since the temporal

component of the momentum operator P 0, which is identified with the Hamiltonian H,

move us from surface to surface. In particular, this achieved by an operator, which we call

evolution operator U , and which we define as:

U = eiH t . (2.77)

Since all surfaces are related by this operator, the Hilbert space is the same in all of them.

What is more, every state in one of these surfaces is characterized by their energy and



24 Locality in AdS/CFT

t2

t−2

. . .

. . .

t−1

t0

t1
U

|ψ′⟩

|ψ⟩

Figure 2.2: Spacetime foliation through surfaces of equal time and corresponding time
evolution between states living in different surfaces

momentum:

Pµ |k⟩ = kµ |k⟩ . (2.78)

In CFTs, however, this choice of quantization is not the most convenient. Indeed, because

these theories are scale invariant it is more natural to foliate spacetime with spheres Sd−1

of different radii around the origin, associating an Hilbert space to each of them (figure

2.3). We then propagate states between different spheres with the dilatation operator D,

r1
r2

r3
. . .

|ψ⟩

|ψ′⟩
U

Figure 2.3: Spacetime foliation with spheres Sd−1 of different radii around the origin

by defining the following evolution operator:

U = e τ D , (2.79)

where τ = ln r. The states living in these spheres are characterized by their dimensions ∆,

D|∆⟩ = ∆|∆⟩ , (2.80)

and their SO(d) spins J ,

Mµν |∆, J⟩µ1...µJ =
(
Sµν
) ν1...νJ
µ1...µJ

|∆, J⟩ν1...νJ , (2.81)
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since Mµν are the only commuting generators with D. Here, the matrices Sµν are the

same as before. Note, lastly, that we are free to choose the point around which we perform

this quantization, similarly to how we can change to different reference frames in Lorentz

invariant theories.

2.7 State-Operator Correspondence

An important property of CFTs which is most easily perceptible in the radial quantization

picture is the so-called state-operator correspondence. The main idea behind this, is that

given a CFT it is possible to define a state from an operator and vice-versa. A detailed

presentation of this topic can be found for example in [8, 6].

Indeed, given an operator O which is inserted inside a sphere B of unitary radius at x,

we can define a state at its boundary ∂B by the following path integral:

|O(x)⟩ =
∫
Dϕb |ϕb⟩⟨ϕb|O(x)|0⟩ . (2.82)

Here, |ϕb⟩ are a basis of states defined only at ∂B, which span the entire Hilbert space of

the sphere. Moreover, the vacuum state |0⟩, defined at ∂B as well, results from performing

the path integral over the interior of the sphere without any operator insertions. The

coefficients of this expansion are given by the path integral over B:

⟨ϕb|O(x)|0⟩ =
∫ r<1

ϕ(r,n)=ϕb(n)
Dϕ(r,n)O(x) e−S[ϕ] , (2.83)

where we must impose the appropriate boundary conditions, ϕb.

This relation can also be constructed in the opposite direction. Let us denote by |Oi⟩

the eigenstates of the dilatation operator, which we had previously defined by |∆⟩ in (2.80),

satisfying:

D |Oi⟩ = ∆i |Oi⟩ . (2.84)

For each of these states, we can define the corresponding operators Oi by constructing

correlation functions with these. To see this, suppose that we cut holes Bi located at

positions xi in the path integral. Then, we glue in the boundary of these spheres ∂Bi

the states |Oi⟩, as in figure 2.4. This leads to an object that behaves very similarly to a

correlation function of local operators and that is given by:

⟨O1(x1) . . .On(xn)⟩ =
∫ ∏

i

Dϕbi ⟨ϕbi |Oi(xi)⟩
∫
ϕ∂Bi

=ϕbi
x/∈Bi

Dϕ(x) e−S[ϕ] . (2.85)
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B1 B2

B3

|O1⟩ |O2⟩

|O3⟩

Figure 2.4: Cutting holes Bi in the path integral and gluing states on the boundaries
∂Bi to define a correlation function

Here, the second integral is taken outside the spheres Bi and ϕbi denotes the field defined

at ∂Bi.

It is important that the positions xi are sufficiently far from each other such that the

Bi’s do not overlap. In case they do, we can always rescale so as to prevent this. Then,

since these positions are arbitrary, we can take them to be infinitesimally close, thereby

defining local operators.

The RHS of (2.85) only depends on the states |Oi⟩ and is able to define a correlation

function of local operators Oi. Bearing in mind that local operators are realized in QFTs

through their correlation functions, this then suffices to prove the claim.

Since we define local operators as being the ones that satisfy (2.22) (eigenstates of the

dilatation operator), the above paragraphs prove the validity of the two directions of the

equivalence between states and operators.

A more natural way to think about local operators, is to consider an arbitrary state

which gets evolved to the origin by using D. The resulting state will then be defined in the

neighborhood of x = 0. Due to the state-operator correspondence we just presented, this

state is associated unequivocally with an operator defined in the exact same infinitesimal

region. This is precisely what we have in mind when we say an operator is local.

2.8 Operator Product Expansion (OPE)

2.8.1 Euclidean OPE

There is a nice property of CFTs which comes about due to the state-operator correspon-

dence. The idea, however, is not a novelty but rather something we are already familiarized

for general QFTs. In particular, it consists on being able to replace the product of two
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local operators by a linear combination of other operators inserted somewhere in between,

in the limit they become very close to each other. This argument is also valid for CFTs,

but because these theories have additional symmetries such that we can radially quantize

them, the OPE gains additional properties as we will see. In particular, its structure is

almost completely fixed by the conformal symmetries.

We start by quantizing the theory around x2. We then insert two local operators O1(x1)

and O2(x2) inside a ball centered around this point. Performing the path integral inside

the interior of the ball, the operators define a state O1(x1)O2(x2)|0⟩ ≡ |ψ⟩ on its boundary,

which in turn can be written as a linear combination of the dilatation operator eigenstates

|∆, J⟩:

|ψ⟩ =
∑
∆,J

c∆,J |∆, J⟩ , c∆,J = c∆,J(x12) . (2.86)

Due to the state-operator correspondence, each of these states |∆, J⟩ is uniquely identified

with a local operator which can be either primary or a descendant. Hence, we can write:

O1(x1)O2(x2)|0⟩ =
∑
∆,J

c∆,J(x12)O∆,J(x2) |0⟩ , (2.87)

where we are denoting both the primaries and descendants schematically by O∆,J , omitting

possible spin indices. Recall now that descendants are defined as derivatives of primaries.

Taking this into account and once again using the state-operator correspondence, we can

translate the above equality into the following statement about operators:

O1(x1)O2(x2) =
∑
O

C(x12, ∂x2)
µ1...µJ Oµ1...µJ (x2) , (2.88)

where the sum runs only over all primary operators of the spectrum. Moreover, the

C(x12, ∂x2) are known as coefficient functions. As they are a power series of derivatives,

they generate the descendants upon acting on the primaries, thus encoding the contribu-

tion of these operators as in (2.87). Interestingly, conformal symmetry allows us to fix the

OPE even further, such that the above expression becomes:

O1(x1)O2(x2) =
∑
O

λ12O(
x212
)∆1+∆2−τ

2

F (x12, ∂x2)
µ1...µJ Oµ1...µJ (x2) . (2.89)

where τ = ∆ − J is the twist of the exchanged operator Oµ1...µJ . The above expression

is the generally found expression for the OPE in the case of two scalars. Note that the

exchanged operator must transform in the symmetric and traceless representation of SO(d)

since the OPE is between scalar operators.
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To go from (2.88) to (2.89) we have imposed that the three point function computed

by means of the OPE agrees with the three point function expression (2.59) in the same

limit:

lim
x2→x1

⟨O1(x1)O2(x2)O3(x3)⟩ = C
(
x12, ∂x2

)
⟨O3(x2)O3(x3)⟩ , (2.90)

where we have chosen to perform the OPE O1×O2. Moreover, because two point functions

are diagonal, the only non-vanishing term in the OPE sum is for the exchanged operator

O = O3.

This equality tells us that the C(x12, ∂x2) are proportional to F (x12, ∂x2), where the

proportionality constants are the three point function coefficients λ12O. The latter cannot

be fixed by symmetry and in fact depend on the theory. On the other hand, the functions

F (x12, ∂x2) get completely fixed by this procedure [8]. In particular, it is found that the

leading term of the Euclidean OPE is given by:

O1(x1)O2(x2) =
∑
O

λ12O(
x212
)∆1+∆2−τ

2

(x12 ·Dz)
J

J !
(
d
2 − 1

)
J

O(x1, z) + . . . , (2.91)

where the . . . denote subleading contributions. Note also that we could equally as well

have quantized the theory around x1 or any other point. Expression (2.89) would still be

valid, but with the exchanged primary inserted around the new origin.

In contrast to the OPE for general QFTs, the sum in (2.89) is valid and converges for a

finite separation between the operators. In particular, it converges within a ball enclosing

the two operators where no other operator are inserted. Naturally, this defines a radius of

convergence for the OPE.

The OPE is a very powerful tool since it can be used to reduce any n point function

to an n− 1 point function:

⟨O1(x1)O2(x2) . . .On(xn)⟩ =
∑
k

λ12k(
x212
)∆1+∆2−τ

2

F (x12, ∂x2) ⟨Ok(x2) . . .On(xn)⟩ , (2.92)

where we have suppressed spinning indices for simplicity and are labeling the primaries by

k. Iterating this procedure, we are able to write every conformal correlator as a sum over

one-point functions, which in flat space are given by

⟨O(x)⟩ = δO,I , (2.93)

with I the unit operator.
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2.8.2 Lorentzian OPE

The OPE we just described makes sense when we take the near coincidence limit x12 → 0.

However, in Lorentzian signature there is another useful limit which we can take, where

we take one operator to approach the lightcone of another. In this limit, x212 → 0, we have

a different OPE, which is given by [13, 14]:

O1(x1)O2(x2) =
∑
O
λ12O (x12 ·Dz)

J
∫ 1

0
[dt]

etx21·∂x1 O(x1, z)

(x212)
∆1+∆2−τ

2

+ . . .

=
∑
O
λ12O

∫ 1

0
[dt]
O(x1 + tx21, x12)

(x212)
∆1+∆2−τ

2

+ . . . . (2.94)

where . . . represents subleading terms and the integration measure is given by:

[dt] =
Γ(τ̄)

Γ( τ̄+∆12
2 )Γ( τ̄−∆12

2 )
t
τ̄−∆12

2
−1 (1− t)

τ̄+∆12
2

−1dt . (2.95)

Mostly often, we will refer to the near coincidence limit OPE as the Euclidean OPE while

the lightcone limit OPE will be called the Lorentzian OPE. This is because the former

is usually taken when we are in the Euclidean signature or the operators are space-like

separated, whereas the latter is only valid in Lorentzian signature.

There is a crucial difference between both OPEs, which can be seen by comparing (2.91)

with (2.94) in the respective limits. In particular, we find that while in the Euclidean limit

(x12 → 0) the lowest dimension operators dominate, in the Lorentzian limit (x212 → 0), it

is those with the lowest twist that give the biggest contribution.

2.9 Conformal Blocks

A nice consequence of the OPE is that it allows us to expand correlators in terms of

a certain basis of functions. To see this, start by considering a four point function of

scalar operators Oi(xi), each with conformal dimension ∆i, i = 1, . . . , 4. As stated before,

conformal symmetry imposes the structure of this correlator to be as in (2.72). On the

other hand, we can perform the Euclidean OPE twice, for instance between the pairs

O1 ×O2 and O3 ×O4. Using formula (2.88), this yields:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =

=
∑
O
λ12Oλ34O C(x12, ∂x1)

µ1...µJC(x34, ∂x3)
f1...fJ ⟨Oν1...νJ (x1)Of1...fJ (x3)⟩

=
∑
O
λ12O λ34OWO(x1, x2, x3, x4) .

(2.96)
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where we have taken the OPE constants out of the coefficient functions. Here, the functions

WO(x1, x2, x3, x4) are called conformal partial waves. Analogously to correlators, their

structure is fixed by conformal symmetry to be like:

WO(x1, x2, x3, x4) =

(
x224
x214

)∆12
2
(
x214
x213

)∆34
2 GO(u, v)(

x212
)

∆1+∆2
2

(
x234
)

∆3+∆4
2

, (2.97)

where the cross-ratios function GO(u, v) is referred to as a conformal block. By how they

are defined, each of these functions encodes the contribution of a full conformal family to

the four point function.

Comparing (2.72) with (2.96) and (2.97) combined, we can make the following identi-

fication:

G(u, v) =
∑
O
λ12O λ34OGO(u, v) . (2.98)

Thus, the four point function can be expanded as sum over conformal blocks. Consequently,

knowledge of these functions translates into information about the correlator.

Although these conformal blocks were obtained by taking the Euclidean OPE, we could

have equally as well performed the Lorentzian OPE. This, in turn, would have lead to

different conformal blocks and therefore an alternative expansion of the same correlator.

This will be seen more ahead when we present the results in chapter 4.

2.10 Conformal Bootstrap

Thus far, we have seen that we could use the OPE to reduce any n point function to an

n− 1 point function (2.92). Consequently, any correlator can be written as a sum over one

point functions, which are known. Moreover, the OPE is completely fixed by symmetry

in terms of the spectrum {∆i, Ji} and the OPE coefficients λijk. We call this two sets of

numbers the CFT data. This then means that we can compute any correlator of the CFT

given this set. We could now wonder, whether given some arbitrary CFT data, it always

defines a consistent* CFT? The answer would be no. Indeed, there are certain constraints

these numbers must obey such that the CFT they define is consistent. For a more detailed

presentation on the conformal boostrap see for example [8, 6].

Consider then a four point function of identical scalars ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩. This

correlator is crossing symmetric, which means that even if any two positions get swapped

*By consistent we mean that the CFT satisfies certain properties such as crossing symmetry in four
point functions of identical operators.
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xi ↔ xj it remains the same*. Moreover, when we presented the OPE before, we chose to

perform it in the ϕ(x1)× ϕ(x2), ϕ(x3)× ϕ(x4) channel:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
1

x
2∆ϕ

12 x
2∆ϕ

34

∑
O
λ2ϕϕOGO(u, v) , (2.99)

where we have used the Wick contraction symbol to denote the OPE. However, if the

OPE is to be consistent with the crossing symmetry, choosing any other channel, say

ϕ(x1)×ϕ(x4), ϕ(x2)×ϕ(x3) for example, should give the same result. In other words, the

OPE should be associative:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ . (2.100)

This other choice of OPE results from swapping 1 ↔ 3 (or equivalently 2 ↔ 4), which

in terms of cross ratios corresponds to u ↔ v. Accordingly, each term of the sum (2.99)

becomes:
GO(u, v)

x
2∆ϕ

12 x
2∆ϕ

34

→ GO(v, u)

x
2∆ϕ

12 x
2∆ϕ

34

x
2∆ϕ

12 x
2∆ϕ

34

x
2∆ϕ

14 x
2∆ϕ

23

=
GO(v, u)

x
2∆ϕ

12 x
2∆ϕ

34

(
u

v

)∆ϕ

, (2.101)

for the OPEs of the RHS of (2.100). Thus, if we replace the appropriate conformal block

expansions in (2.100) we get:

∑
O

λ2ϕϕO

(
v∆ϕ GO(u, v)− u∆ϕ GO(v, u)

)
= 0 . (2.102)

This is the bootstrap equation for the case of a four point function of identical scalars.

As stated before, it constrains the spectrum and the λϕϕO by demanding that the above

equality is satisfied for any u and v. Thus, any CFT data that satisfies this, defines a

consistent CFT. We stress out that this equation is only satisfied by the whole sum and

not each of its individual terms. Otherwise, the conformal blocks of each conformal family

would satisfy v∆ϕ GO(u, v) = u∆ϕ GO(v, u), which is not what is observed in the explicit

expressions of these functions (see for example (4.63)). Finally, while this equation can be

solved numerically (see [8] for example), an analytical analysis of the boostrap equation

around the lightcone limit is also possible for example in the large spin regime [15, 16].

*We can think about this from a path integral perspective. This correlator is given by a path integral
whose integrand consists on the product of these fields. The result will be the same independently of the
order by which we set the operators.
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2.11 AdS/CFT

To conclude this chapter, we will now say a few words about how CFTs arise in the

AdS/CFT duality. For a detailed presentation of this topic, see for example [17, 18].

Let us begin by presenting the Anti-deSitter spacetime in the Euclidean signature,

which is given by:

−
(
X−1

)2
+

d∑
i=0

(Xi)2 = −R2 , X−1 > 0 , (2.103)

where R denotes its radius of curvature. This equation defines an hyperboloid embedded

in Rd+1,1, which approaches the light-cone of the embedding space we presented in section

2.3. For this reason, we say that the boundary of AdS is the space of light-rays which go

through the origin of Rd+1,1.

Moreover, this spacetime has a few interesting properties, which make it relevant to

study. One of these traits, is that it is maximally symmetric, which means that has the

maximal number of spacetime symmetries. In particular, for d + 1 dimensions, AdSd+1

has (d+1)(d+2)
2 symmetries, which as previously remarked, is the same number of rotation

generators in a (d+ 2)-dimensional flat space. In addition, it is a homogeneous and locally

isotropic spacetime. Consequently, it does not have a center since all points are equivalent.

One of the most fascinating properties, however, is that it acts as a confining box for

massive particles. Indeed, an analysis of this spacetime timelike geodesics, tells us that

massive particles either stay at rest at the origin* or oscillate around it, with a period

of 2π. Quantum mechanically, this last property implies that the energy spectrum of a

massive particle is discrete.

Now that we have presented AdS, although rather briefly, we are prepared to understand

how the AdS/CFT comes by. Indeed, we mentioned below (2.103) that the boundary of

this spacetime is the null cone of the embedding space. But this is exactly the same place

where the CFT lives, according to the embedding space formalism. As such, it would be

natural to be expect that for certain bulk theories, their observables would satisfy the same

properties as those of CFTs, as we approach the boundary of this space-time. Interestingly,

this is precisely the case. Given a certain bulk theory in AdS, with a corresponding field ϕ

of mass m, we can define correlation functions in the bulk. Moreover, we are free to send

*As we stated previously, all points in AdS are equivalent. Hence, we cannot define one single origin for
the whole space. It is possible, however, to choose some point as the origin, and parameterize the spacetime
with that choice in mind.
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those operators to infinity, which is the same of saying to the boundary, such that we have:

lim
λ→∞

(
λ∆
)n 〈

ϕ(X1 = λP1 + . . . ) . . . ϕ(Xn = λPn + . . . )
〉
= ⟨O(P1) . . .O(Pn)⟩ , (2.104)

where each Pi is a point in the null cone in Rd+1,1, satisfying P 2
i = 0, and the . . . inside the

position argument, denote terms that do not grow with λ, and which are necessary to have

X2 = −R2. As it turns out, when we do this, the resulting correlators at the boundary

fulfill the homogeneity and conformal invariance conditions and satisfy an associative OPE,

similarly to CFT correlators. It is also important to point out that the above equality

naturally defines a quantum operator which is ”dual” to ϕ. In fact, we may even relate

the mass of the bulk field ϕ with the conformal dimension of the dual operator O:

m2R2 = ∆(∆− d) . (2.105)

This is an instance of the AdS/CFT dictionary we mentioned before, which relates bulk

quantities with boundary ones.

At this point, we would like to stress out that simply having a QFT in the bulk is

not enough to have the duality. Indeed, one also needs to have gravitational dynamics

as well, in order for the dual theory on the boundary to have a stress-tensor and be a

full-fledged CFT. That is why when we stated the AdS/CFT duality before, we mentioned

gravitational theories in the bulk and not simply QFTs.

There is another relation of the AdS/CFT map worth introducing, which is related

with this last fact. Indeed, because we have a QFT with gravity, we can construct the

associated partition function as a path integral over the metric and field, with appropriate

boundary conditions. However, we presently do not know how to make computations with

it (compute correlators that is), which would seem to render it useless. The best we can

do, is a semiclassical expansion of it in the regime where the AdS radius of curvature is

much bigger than the Planck length, R ≫ ℓP . When this happens, the partition function

leads to connected correlators of the stress-tensor which scale as:

⟨Tµ1ν1(x1) . . . Tµnνn(xn)⟩c ∼
(
R

ℓP

)d−1

, (2.106)

where xµ are some of the coordinates parameterizing the Poincaré patch of AdS (see [17]).

Interestingly, when examining CFTs in the regime of large N , where the parameter N is a

measure of the degrees of freedom of the theory, one finds that the same correlators scale
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as N2. Thus, not only does this allow to identify:

N2 ∼
(
R

ℓP

)d−1

, (2.107)

but it also suggests that CFTs related with semiclassical gravitational theories in AdS

should have large N . This is something that we will return to more ahead, in chapter 3.



Chapter 3

Locality of the bulk theory

In the last few years, there has been a considerable amount of papers addressing the topic

of locality in AdS/CFT. While some of them tackle specific different problems within this

broader subject, others resort to distinct approaches for the same questions. For instance,

the two papers [19, 20] analyze the singular structure of Lorentzian correlators of the

boundary CFT, albeit from distinct viewpoints. Nevertheless, they both assert that a

specific kind of singularity in these objects signals bulk physics at scales much smaller

than the AdS radius of curvature, R.

In this chapter, we will summarize the main ideas of two other papers which are in-

timately related to the ones mentioned above. In particular, we start by presenting the

conjecture from [21], which puts forward the properties that a boundary CFT must have

in order for the dual to be local at sub-Ads scales*. Then, we proceed to introduce the

construction of the holographic cameras [1], from whose signal we can infer the locality of

the dual theory at these scales. It is mostly from the ideas of this second paper, that the

main goal of this thesis comes from.

3.1 Large higher-spin gap large N conjecture

Only when the AdS radius of curvature R is much bigger than the Planck length ℓP and

the strings length ℓs, can we have local bulk physics at sub-AdS scales. Otherwise, the

notion of locality at these smaller scales (called ”sharp locality” in [21]) would not make

sense. In due turn, this translates into a large N expansion and a large higher spin gap

∆higher-spin
gap of the dual CFT, following from relations (2.105) and (2.107) of the AdS/CFT

*By sub-AdS scales we mean distances much smaller than the AdS radius of curvature R.

35



36 Locality in AdS/CFT

map. Therefore, it would be natural to think that this implication also runs in the opposite

direction. Such reasoning, lead to the proposal of the following conjecture [21]:

Any large N CFT in which all single-trace operators with spin higher than two have

very large dimensions (large gap ∆higher-spin
gap in the spectrum), has a bulk dual which is local

at sub-AdS scales.

Each of these two conditions is essential for their own specific reasons. In particular,

the large N criterion needs to be satisfied such that it is possible to distinguish between

single-particle and multi-particle states, which can be respectively associated with single-

trace operators, O = cJ Tr(ϕ
J) where cJ is some normalization constant, and multi-trace

operators Õ = O1 . . .Ok, where each Oi is a single-trace operator. On the other hand,

a large higher-spin gap means we can neglect the operators with parametrically large

dimensions. This yields a low-energy effective theory, where only operators with spin

lesser than two are present. If this was not the case, the theory would have an infinite

tower of higher spin fields and an unbounded number of derivatives in the interactions. As

a result, the dual theory in bulk AdS would undoubtedly be a non-local theory.

Although the validity of this conjecture is yet to be proven for all cases, it is generally

accepted due to the well-founded arguments which support it. Indeed, [21] showed that

it holds for a rather general set of CFTs through a counting argument. For starters,

the paper considered a model with only one low dimension single-trace operator O of

dimension ∆, and with Z2 symmetry (O → −O). Moreover, it restricted the analysis to

account for a maximal spin of the local interactions, or equivalently a maximal spin for

which the corrections are nonzero. Considering the four point function of this scalar in the

configuration of figure 2.1:

⟨O(0)O(z, z̄)O(1)O(∞)⟩ ≡ A(z, z̄) = 1

(zz̄)∆
+

∞∑
n=0

∞∑
J=0

p(n, J)
G∆(n,J)(z, z̄)

(zz̄)∆
, (3.1)

where p(n, J) denotes the squared OPE coefficients, one then tries to solve the crossing

condition for this correlator:

A(z, z̄) = A(1− z, 1− z̄) . (3.2)

Assuming that this model admits a large N expansion, these solutions amount to correc-

tions to the conformal dimensions γi (also known as anomalous dimensions) and corrections
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to the squared OPE coefficients pi in the 1/N expansion:

∆(n, J) = 2∆+2n+J+
1

N2
γ1(n, J)+ . . . , p(n, J) = p0(n, J)+

1

N2
p1(n, J)+ . . . , (3.3)

resulting from interactions. Note that the conformal dimensions correspond to double-

trace operators, due to the symmetry of the model and because higher-trace operators do

not contribute at order 1/N2.

In case the conjecture holds, the interactions giving rise to these corrections must be

dual to local interactions in the bulk. In due turn, this implies that each of these bulk

interactions is in a one-to-one correspondence with a pair (γ1, p1).

In fact, this turned out to be the case, as it was verified that the number of solutions

to the crossing condition (3.2) up to a certain maximal spin, matched with the number of

quartic interactions up to the same maximal spin, which are of the type:

ϕ4 , ϕ2 ϕ;µν ϕ
;µν , ϕ2 ϕ;µνσ ϕ

;µνσ . . . . (3.4)

The reason why quartic interactions are the only ones that need to considered, stems once

again from the Z2 symmetry, plus the fact that these are the only ones contributing to

the 1/N2 order. Recall that we are dealing with a four point function, such that these

interactions correspond to contact diagrams.

It was then argued that general solutions could be taken as limits of the bounded-spin

ones, which demonstrated the conjecture for this model. Finally, it was briefly explained

why the conjecture would still hold after the Z2 symmetry was dropped and the stress-

tensor was added to the system, thereby making it valid for a general set of CFTs. Although

this was not explicitly demonstrated in [21], a proof can be found in [22].

3.2 Holographic Cameras

Although the large N large gap criterion helps us understand which CFTs admit local

duals, it does not address the question of how locality emerges in the bulk. This topic is

investigated in [1] by means of two tools which the paper names as Holographic Cameras.

The main idea behind these devices is to send something into the bulk, where it can interact

with local excitations following bulk null geodesics. This interaction leads to a point-like

signal, which is a diagnostic of local bulk dynamics. However, in case the theory dual is

not local, the interpretation of localized excitations propagating in the bulk fails, and the
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cameras should provide us with blurred images. Therefore, these quantities produce simple

images from which we can very straightforwardly conclude whether or not the dual is local.

This formalism has several upsides. First, not only it allows us to conclude something

about the locality of the bulk dual, but it also provides us with information about the

bulk, such as its geometry. Moreover, it only requires the analysis of four point functions

independently of the spacetime dimension the CFT lives in. This is in contrast with previ-

ous approaches, such as [20], which assesses the locality of the bulk theory by the singular

behavior of d + 2 point functions. The reason why one uses this many points, is because

we need to have exactly the same number of points as the dimensions of the embedding

space, in order to satisfy the necessary conditions for the specific singularity which signals

bulk locality. Thus, this construction would requires us to deal with higher-point functions

as we increased the spacetime dimensions. Furthermore, the cameras have the advantage

that one can look at their data and immediately conclude if the dual theory is well-defined,

in the sense that it is a well-constructed theory by itself or if it is defined in terms of

the boundary theory. This differs from some of the approaches of bulk reconstruction

[23, 24, 25], which always give us a bulk dual, and associated quantities like its metric,

even if this theory is not well-defined as explained before.

3.2.1 Cannon

We begin by introducing half of what constitutes the devices, known as the ”cannon”,

whose role is to shoot the particles into the bulk. The process of the cannon starts by

considering an arbitrary state |ψ⟩ of the boundary CFT. Then, we create an excitation by

acting on this state with an operator O, which for simplicity will be taken to be a scalar,

and proceed to integrate it against a wavepacket, which amounts to a Fourier transform:

|Ψ⟩ → |Ψ′⟩ ≡
∫
ddxψ∗

p,L(x)O(x) |Ψ⟩ , with ψp,L ∼ ei pµx
µ−|δx|2/(2L2) . (3.5)

In this case, these wavepackets are plane waves with a Gaussian envelope, which are re-

sponsible for creating localized high-energy excitations. In particular, these have a fairly

well-defined energy and momentum
(
p0L >> 1

)
and a relatively small position uncertainty

L compared to intrinsic timescales and lengthscales of the state.

Moreover, the momenta pµ will be taken to be time-like and large, such that we can

interpret this whole procedure as creating local excitations being fired into the bulk. Indeed,

according to [26], any particle following a null geodesic in the AdS bulk carries a Noether
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charge PA, whose projection in the boundary is necessarily a time-like vector pµ (see figure

3.1). Thus, opting for a time-like boundary momentum is simply a matter of choice which

Figure 3.1: Relation between the Noether charge of a particle following a bulk null
geodesic with its time-like momentum vector in the boundary.

allows us to interpret (3.5) from the opposite direction of this relation.

In order to confirm if a projectile has indeed been fired into the bulk, we can measure

one point functions in the state (3.5), such as the energy-momentum density. This can

achieved by computing the one-point function of the stress-energy tensor Tµν in the state

(3.5):

⟨Tµν(y)⟩|Ψ′⟩ =

∫
ddx ddx′ ψp,L(x

′)ψ∗
p,L(x) ⟨Ψ|O(x′)Tµν(y)O(x)|Ψ⟩

∼
∫
ddδxψp,L(δx) ⟨Ψ|O(x+ δx)Tµν(y)O(x)|Ψ⟩ .

(3.6)

Here, x is the point from where we are firing the excitation and y is a point in the future

of x in which we measure Tµν . Moreover, note that from the first to the second line we

have dropped an inessential integration, keeping only the one over the separation of the

positions where the excitation is created and absorbed.

Interestingly, we see that the three point function in the second line has an unusual

ordering of operators. In the path integral formalism, this could be computed by an

integration over the time contour of figure 3.2, which is called Schwinger-Keldysh contour.

1
2

O(x) Tµν(y)

O(x+ δx)

t
>

Figure 3.2: Schwinger Keldysh contour and operator insertions for measurement of
energy-momentum density

Although this formalism will not be presented here, a nice introduction to it can be

found for instance in [27, 28, 29]. The important point here, is that the excitation cannot go
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directly from x to x+ δx but must go along the whole contour. From the AdS perspective,

we can see this as an excitation which is evolved forward in time, interacts with Tµν and

is then evolved backward in time. Such interpretation is depicted in figure 3.3.

t

x⃗

O(x)
O(x+δx)

Tµν(y)

Figure 3.3: Schematic representation of the energy-momentum measurement in the bulk
of AdS. (Modified figure from [1])

These kinds of correlators have already been studied before in [30], namely for holo-

graphic theories in the vacuum state, where it was found that they displayed an expanding

shell of energy. Unfortunately, although these are compatible with the idea of local exci-

tations moving in the bulk, they do not constitute irrefutable proof of this as they are not

something point-like. The problem then, is that even though the cannon is creating high-

quality point-like excitations, the ”camera” we are using to see them is not good enough.

Hence, in order to have a better image of the bulk we need to complement the cannon with

something else.

3.2.2 Radar

The first tool which will be presented is the ”holographic radar”. In this device, in addition

to the point-like excitation fired from x we also send a pulse from z, which is space-like

separated from x. The pulse then intersects the projectile’s trajectory at a some point P ,

which belongs to the intersection of the future lightcones of both points. Later, we record

the reflection of the pulse from P at a point y. This construction is formulated in terms

of the quantity: ∫
ddδx ⟨Ψ|O(x+ δx)O′(y)O′(z)O(x)|Ψ⟩ . (3.7)
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P

t

x⃗

x

px
z

y

Figure 3.4: Schematic representation of the holographic radar. (Modified figure from
[1])

As y approaches the intersection of the future lightcone of P with the boundary, (3.7)

diverges. Such a sharp peak signals the existence of a point-like excitation.

Figure (3.4) illustrates this device. Once again, due to the operator ordering, we find

that the particle follows the same ”folded temporal path” as we have seen in the cannon.

In the ideal regime for the operation of this device, we work with high-energy pulses

which follow a null geodesic and are governed by bulk geometrical optics. Therefore, this

construction only requires us to work with three null geodesics.

3.2.3 Active Camera

The other device is called the ”holographic active camera”. It combines the holographic

cannon with its time-reversed analogue. As such, it involves two pairs of near-coincident

points from which the excitations are created and then absorbed. The signal of this camera

is described by the following correlator:

G(x, px, Lx; y, py, Ly) ≡
∫
ddδx ddδy ψpx,Lx(δx)ψpy ,Ly(δy)

× ⟨Ψ|O′(y + δy)O(x+ δx)O′(y)O(x)|Ψ⟩ ,
(3.8)

where we take y to be in the future of x. In this case, we only have two null geodesics

in the bulk, which the excitations follow (see figure 3.5). Naturally, when the trajectories

intersect each other (bbulk → 0) the quantity (3.8) diverges. Therefore, when plotting the

signal of the camera for different shooting angles py, with fixed px, finding a sharp peak



42 Locality in AdS/CFT

around the shooting angle in which this happens, is the smoking gun that there are point-

like excitations moving in the bulk. In addition, we can also keep track of this peak while

varying y and py so as to obtain a movie of the particles trajectory on the bulk. This movie

can in turn be used to extract the bulk geometry, similarly to how the gravity field of the

Sun is inferred by studying the trajectories of the orbiting planets. Although we have not

commented about this in the holographic radar, it is also possible to build the same kind

of movie by varying the time of z.

x

y

bbulk

px

py

Figure 3.5: Schematic representation of the holographic active camera. (Modified figure
from [1])

Furthermore, note that it is the Fourier transforms which allow the camera to discern

the bulk angles. In particular, the angular resolution will be roughly given by δθi =

1/(pi Li) where i = x, y. Since ideally, this camera operates with high-energy excitations,

this resolution is small, which means it can give a finely-detailed image of the bulk. In

other words, it is able to identify structures with short characteristic wavelengths.

Lastly, we stress out the fact that this device involves an out-of-time order correlator

(OTOC). In fact, this is an essential trait of this construction, since it is what allows us

to examine the locality of the bulk theory without having to work with more than four

points when increasing the spacetime dimensions. Furthermore, it is the reason why active

cameras can give us images for an arbitrary state of the CFT and not just the vacuum.
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3.2.4 Folded OPE and Eikonal approximation

From now on we will focus on the active camera. As seen above, the signal of this device is

given by an OTOC. This, in turn, can be associated with the folded time contour in figure

3.6.

O(x) O′(y)

O(x+ δx) O′(y + δy)

1
2
3
4

t

Figure 3.6: Schwinger Keldysh contour and operator insertions for the active camera
out-of-time order correlator.

As mentioned before, the excitations must evolve along this contour and cannot jump

between different branches. Therefore, we cannot go directly from x to x+ δx or from y to

y + δy. This means that the operators are not actually ”close” to each other and as such

we cannot perform the usual OPE (2.89) in the near coincidence limit δx→ 0, in terms of

local operators. There is, nonetheless, a natural extension of the OPE for this case, which

instead makes use of non-local operators. This was dubbed as the folded OPE in [1].

It is this folded OPE which explains the dominant contribution of the OTOC, in the

limit δx → 0, which from now on we call folded OPE limit. Here, we will simply present

the expression of this OPE for a gravitational theory, but is derivation and analysis can be

found in [1]. In particular, for a scalar in AdS coupled to gravity, the folded OPE and its

time-reversed version are given by:

O2(δx)O1(0) ∼ ⟨O2(δx)O1(0)⟩+
C̃∆

2

∫
Hd−1

dd−1θ

(−θ · δx−)2∆+1
L0,θ[huu] + . . . ,

O′
3(δy)O′

2(0) ∼ ⟨O′
3(δy)O′

2(0)⟩+
C̃∆′

2

∫
Hd−1

dd−1θ′

(−θ′ · δy−)2∆
′+1

L′
y,θ[hvv] + . . . ,

(3.9)

where the subscripts in the operators denote the branch of the Schwinger-Keldysh contour

(figure 3.6) in which the operators are inserted, Hd−1 is the d− 1 dimensional hyperbolic

space, θµ is a time-like vector parameterizing this space, u and v are affine times along the

lightcone, C̃∆ and C̃∆′ are constants, the minus sign in δx− and δy− denotes a negative

imaginary small part and L,L′ represent the ”light transforms” defined as:

Lx,p [huu] ≡
∫ u0

−∞
du(huu,1 − huu,2) , L′

y,p [hvv] ≡
∫ ∞

v0

dv(−hvv,2 + hvv,3) , (3.10)
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where u0 and v0 are such that all regions with nonvanishing integrand are covered. These

light transforms are usually referred to as non-local operators since they are defined through

an integration over the lightcone. We point out, however, that they are not operators in

the conventional way as they only make sense when inserted in the Schwinger-Keldysh path

integral. The first term in (3.9) denotes the contribution of the identity operator whereas

the . . . designates the contributions of other operators to this OPE.

When in flat space, in the regime of high energies and small scattering angles, scattering

amplitudes of the type A ∼ ⟨O′OO′O⟩ are dominated by the exchange of massless particles

with maximal spin J [31]. For gravitational theories, these particles are the gravitons, with

J = 2. Therefore, when we have a theory and state |Ψ⟩ which are holographic, such that

they have a dual description in terms of a gravitational theory, we also expect the correlator

in (3.8) to be dominated by tree level graviton exchange. In fact, it can be shown by using

(3.9) (see [1] for this) that the OTOC is approximately given by:

G
(
x, px; y, py

)
≈ 1− 8πiG

(d+1)
N

∫ u0

−∞
du

∫ +∞

v0

dv⟨huu(X)hvv(Y )⟩Ψ,ret . (3.11)

Here, X(u), Y (v) are coordinates parameterizing null lines in the lightcone with initial

conditions (x, px) and (y, py), and the integrand is the retarded bulk-to-bulk propagator

for metric perturbations, which depends only on the bulk geometry dual to the state Ψ.

Note also that in contrast with the folded OPE (3.9) in which the integral is over the base

of the lightcone Hd−1, the camera correlator integral runs only in a single null line. This

stems from the integration with wavepackets (Fourier transform), which focus the OPE on

a single null geodesic. This how they resolve bulk angles, as was stated before.

It is worth remarking that the above expression for the active camera correlator is

valid for any arbitrary state Ψ of the CFT. However, in the vacuum state we can use the

results from Conformal Regge theory to numerically compute this observable and plot it

for different receiving angles.

3.2.5 Vacuum state and the Conformal Regge theory

3.2.5.1 Regge limit and Folded OPE limit

In order the understand why in the vacuum state Ω of the CFT the folded OPE limit

and the Regge limit are physically the same, let us consider the following scalar four point

function where all the points are space-like separated. As we have seen before (2.72), such
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objects are given by:

⟨Ω|O′(x4)O′(x3)O(x2)O(x1)|Ω⟩ =
1

x2∆O
12 x

2∆O′
34

G(z, z̄) , (3.12)

where the cross-ratios z and z̄ are the exactly the ones we defined back in (2.71).

Moreover, we can specify the positions of these operators such as to have the same

kinematics of the camera correlator (3.8). In particular, we fix x = 0 and y = e, with

e2 = −1, and choose:

x1 = 0 , x2 = δx , x3 = e+ δy , x4 = e . (3.13)

With this choice, the cross-ratios are given by:

zz̄ ≈ (δx−)
2(δy−)

2 ,
1

2
(z + z̄) = −δx · δy − 2(e · δx)(e · δy) ≡ −δx · Ie · δy . (3.14)

Thus, in the folded OPE limit (δx → 0, δy → 0), z and z̄ are small. This is in similarity

with what happens in the Regge limit, characterized by z, z̄ → 0.

However, specifying the kinematics is not enough to obtain the active camera OTOC.

In order to achieve the operator ordering of (3.8), we must analytically continue G(z, z̄).

The case of δx ≻ 0 and δy ≺ 0 is explained with much detail in appendix C.1 of [1]. The

main point is that this analytic continuation requires taking z clockwise around 1 while

holding z̄ > 0 fixed. The outcome of this procedure is then the analytically continued

correlator, corresponding to the one in (3.8), and which is given by:

G3241 ≡ ⟨Ω|O′(x3)O(x2)O′(x4)O(x1)|Ω⟩ =
e−iπ(∆O−∆O′ )

(−x212)∆O (−x234)∆O′
G⟲(z, z̄) . (3.15)

Here, G⟲ denotes the analytically continued cross ratios function, where the arrow indicates

the direction traversed in the z, z̄ space (or equivalently the u, v space) needed for this

procedure. In general, the analytic continuation leads to the gain of an overall phase

factor or even an additional term due to crossing of branch cuts, relatively to the original

function.

The camera correlator could also be obtained for different cases of δx and δy, for

instance δx ≻ 0 and δy ≻ 0, or both space-like, by analytically continuing this expression.

What matters is that z and z̄ remain infinitesimally small.

The crucial point of this argument is that the analytically continued function G⟲(z, z̄)

is exactly the same one describing the Regge limit, where a large boost between two pairs

of points is applied (see for example [32, 33, 34]). Consequently, when in the CFT vacuum,
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we can use the results from Conformal Regge Theory to describe the behavior of the camera

correlator in the folded OPE limit, given their equivalence.

There is in fact a more intuitive way to think about this equivalence, as can be seen

in figure 3.7. Indeed, in the vacuum state, the dynamics of all the limits depicted in this

I+I+

I−I−

∞∞
3 1

2 4

(a) Regge correlator

3

4

1

2

(b) Detectors

1

2

4

3

(c) OTOC

Figure 3.7: Geometric interpretation of the equivalence of distinct limits of correlators
in the CFT vacuum. (Figure from [1])

picture are equivalent [1]. We are simply picking different choices to place the four points

inside the Poincaré patch*, but the correlator remains the same (up to some overall phase).

In other words, we are interpreting the same correlator in different physical situations. In

fact, this relation has already been explored before in several contexts, such as in [30, 35, 36].

Note, however, that these equivalence relations hold only in the vacuum state. To

understand why, consider the following argument supported by figure 3.8. For pure AdS

x1

x1+δx

x2

Figure 3.8: Schematic representation of scrambling and the inequivalence between the
Regge limit and the folded OPE limit for an excited state. (Figure from [1])

spacetime, all lightrays leaving x1 will arrive at x2 whether they propagate through the

bulk or the boundary. This, in turn, would give rise to the Regge singularity as x212 → 0.

*The Poincaré patch is the set of all points which are space-like separated from a reference point at ∞.
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However, if we consider an excited state such that the bulk dual has matter or even a

blackhole, the bulk null geodesics will suffer a Shapiro time delay. As a result, the Regge

limit singularity fades. This occurrence is known as saturation in high-energy scattering

or scrambling.

On the other hand, in the folded OPE limit, the null geodesics will traverse the exact

same path in different Schwinger-Keldysh time branches, independently of whether the bulk

geometry is or not pure AdS. This is so because, even if the lightray in the first branch,

which propagates forward in time, suffers a time delay, the one propagating backwards

will have the opposite time delay, thus canceling it. We must, nonetheless, restrict the

center of mass energy to be below the Planck energy, in order to prevent the probes

from backreacting. Accordingly, the δx → 0 singularity does not disappear even if the

background is far from AdS. This is the reason why the active camera works for an arbitrary

excited state and not just the vacuum. For all these other states, however, we cannot expect

Conformal Regge Theory to provide us with the expression for the camera correlator.

3.2.5.2 Conformal Regge theory

Taking into account what was said above, let us focus on the case of the CFT vacuum. As

such, we can use Conformal Regge theory, which describes the correlator in the Regge limit

in terms of the exchange of the so-called Regge trajectories* Ji(ν). Assuming for simplicity

that a single trajectory dominates, the cross-ratios function in (3.15) is given by [33]:

G⟲(z, z̄) ≈ 1 + 2πi

∫ ∞

0

dν

2π
ρ(ν)α(ν) (zz̄)

1−J(ν)
2 P 2−d

2
+iν

(
z + z̄

2
√
zz̄

)
, (z, z̄ → 0) , (3.16)

where the quantum number ν is related to the conformal dimension of the exchanged

operator as ∆ = d
2 + i ν, and α(ν) are coefficient functions� which are related to the OPE

coefficients and are characteristic of the considered boundary theory. Moreover, ρ(ν) and

P are respectively defined as:

ρ(ν) =
2d−2

Ωd−1
q 2−d

2
+i ν q 2−d

2
−i ν , with qJ ≡

(d− 2)J

(d−2
2 )J

, Ωd ≡
2π

d
2

Γ(d2)
, (3.17)

and

PJ(η) = 2F1

(
−J, d− 2 + J,

d− 1

2
,
1− η
2

)
. (3.18)

*Regge trajectories define a path in the space of the conformal dimension and spin where the analytic
continued cross-ratios function describing the correlator in the Regge limit has poles.

�Not to confuse with the coefficient functions in the OPE (2.88)
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By specifying (3.16) to the kinematics of the active camera correlator (3.13) and integrating

against the wavepackets, one obtains an explicit formula for the contribution of a Regge

trajectory to (3.8):

G(0, p, L; e, p′, L′)
∣∣
CRT
≈

1− i
∫ ∞

0

dν

2π
ρ(ν)α̃(ν)

(
|p||p′|

)J(ν)−1 P 2−d
2

+i ν(cosh
−1
(
p̂ · Ie · p̂′

)
) e−

ν2

2
σ2
0 , (3.19)

where

σ20 =
1

L2 |p|2
+

1

L′2 |p′|2
, (3.20)

and where α̃(ν) differs from the previous α(ν) from a choice of normalization which proves

useful. In addition, the standard notation p̂ = p/
√
−p2 is being used.

It is worth noticing the Gaussian factor at the end of this integral, which tells us that

the intensity peak of the camera’s image, in case it exists, follows a normal distribution.

On top of that, its variance (3.20) is determined by the angular resolution of the cannons.

Hence, whether or not we obtain a high-quality image depends on the properties of the

wavepackets we use.

The integral in (3.19) can be computed analytically in some cases. In particular, defin-

ing the center of mass energy and bulk impact parameter as:

sbulk =
|p||p′|
R2

,
bbulk
R

= cosh−1
(
p̂ · Ie · p̂′

)
, (3.21)

this integral can be computed by the saddle point approximation, in the regime of large

sbulk, where we expect to find a peak when bbulk → 0. This was done in appendix A.

Moreover, for a gravitational theory this expression corresponds exactly to the graviton

propagator on Hd−1 (see appendix A of [1]).

3.2.6 Image for N = 4 SYM at strong and weak coupling

Given the equation (3.19), we are fully equipped to obtain the signal of the active camera,

for any theory and operators we wish to consider. For this, we simply have to know the

expressions for the corresponding coefficient functions α̃(ν) and leading Regge trajectory

J(ν), and replace them inside the integral.

The choice of [1] was to considerN = 4 SYM and two different operators of its spectrum.

Afterwards, the integral (3.19) was computed numerically for fixed px = p and different
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py = p′. For simplicity, the choice |px|Lx = |py|Ly = |p|L was taken. The obtained signals

of the holographic camera are then the ones illustrated in figure 3.9.

Figure 3.9: Plots of holographic camera signal for the N = 4 SYM theory at different
couplings. (Figure from [1])

For the analysis of these images, first recall that a sharp peak signals locality of the

bulk dual theory. What is more, the two most important parameters here are the optical

quality of the camera |p|L and the coupling of the theory, g2 ≡ λ/(16π2).

Within the strongly coupled regime, we see that a smaller optical quality translates

into a blurred image. This is not surprising, since a smaller value of |p|L implies a bigger

angular resolution, which prevents us from imaging point-like structures. By increasing

this parameter, we are able to find a sharp peak located at the center, which indicates that

the strongly coupled regime of N = 4 SYM has a local bulk dual. As we decrease the value

of the coupling, we see that the singular behavior starts spreading out until it reaches a

point in which we cannot find the sharp peak, no matter how much we ”focus” the camera.

This leads us to conclude that for weak coupling, this theory does not have a local bulk

dual. A possible interpretation of what might be hapenning, is that because the dual is

not local, the camera cannot shoot the projectile in a well-defined direction. Additionally,

as the point-like excitations propagate through the bulk, they suffer non-local interactions

and become delocalized. Consequently, the integral (3.19) no longer decreases rapidly as

we move away from the configuration with bbulk ∼ 0, but instead has a reasonable value

for other angles. Naturally, this results in a spreading of the peak.
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By looking at these plots, we can also argue that the profile of the holographic camera

signal can be roughly approximated by a Gaussian distribution, which has a characteristic

variance. This quantity, in due turn, quantifies the spread of the signal peak. From the

above observations, we can infer that there are two contributions to the effective variance

of the signal, one optical and one dynamical:

σ2eff = σ20 + σ2dyn . (3.22)

The first one is related with the properties of the probes we use, and is given by

(3.20). Indeed, if we do not use excitations which are of the same size of the structures

or phenomena we wish to image, we will not obtain focused images of them. This can be

fixed by either increasing their energy or the position uncertainty of the wavepackets. Note

that this is simply a consequence of the position-momentum uncertainty.

The dynamical contribution, on the other hand, can be explained by the behavior of

Regge trajectories. Consider the plot of the leading Regge trajectory for this case, in both

the strong and weak coupling regime, depicted in figure 3.10. As it turns out, the dynamical

contribution to the effective variance we referred before is essentially the curvature of these

trajectories. For weak coupling the curvature is high, which implies a bigger variance and

a blurrier image, which does not improve no matter by how much we increase the camera’s

optical quality. Contrarily, the strongly coupled leading trajectory is nearly flat, which

is why we could see that sharp peak in (3.9) for good angular resolution. Interestingly,

this curvature is proportional to the inverse of the higher-spin gap of the theory. In fact,

Figure 3.10: Leading Regge trajectories in the strong and weak coupling regime of a
planar gauge theory. (Figure from [37])
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∆higher-spin
gap gives a lower bound to the effective variance as σeff ≳ 1/∆higher-spin

gap . Hence,

having a local dual implies having a large ∆higher-spin
gap such that the leading Regge trajectory

is nearly flat. But this is precisely one of the characteristics of the CFT that the conjecture

from section 3.1 asserted as necessary, such that the bulk dual would be local at sub-AdS

scales.

Interestingly, the other requirement stated in this conjecture is also necessary to have a

sharp image. In particular, the coefficient functions for this theory in both regimes depend

inversely on the central charge Nc, which is proportionally related with N . Thus, N must

be large such that the overall coefficient in the integral of (3.19) is small. This, in turn,

allow us to go to higher energies, without surpassing the Planck energy*, such that we can

image smaller scale dynamics.

Thus, we have seen for this particular case, that the holographic camera corroborated

the large N large ∆higher-spin
gap conjecture, which is believed to always hold.

We have seen here the simplicity of the holographic cameras formalism for one case.

Indeed, the images from the active camera leave no room for doubt regarding the locality

of the bulk dual. However, the only correlators considered here were constituted by scalars.

In order for the formalism to be consistent, performing the same analysis with spinning

four points functions should lead us to the same conclusions. Furthermore, because the

bulk theory is gravitational, it makes sense to consider four point functions with the stress-

tensor, since this corresponds to the propagation of gravitons. This would not only further

consolidate the construction but it could also provide us with new insights, depending on

the sharpness and shape of the peaks.

In order to plot the signal of the active camera, one has to be able to write the corre-

sponding correlators according to Conformal Regge theory. For this, we first need to know

the conformal blocks in the Regge limit. Therefore, in the next chapter we will compute

the spinning blocks in this kinematical limit. In due turn, these could then be used to

write the four point functions analogously to (3.19) and later obtain similar images as in

figure 3.9.

*The energy must be kept below the Planck energy as we stated previously in order for the probes to
not react with each other





Chapter 4

Conformal Blocks in the Regge

Limit

As we mentioned above, knowing the conformal blocks in the Regge limit is vital if we

wish to express the spinning four point functions according to Conformal Regge theory,

and later obtain the signal of the holographic camera. Therefore, here we will compute

the blocks in the Regge limit for correlators with one spinning operator and three scalars,

and with two spinning operators and two scalars. Note, however, that only the second

kind of correlator could later be used to plot the camera’s image. Before the computation

of the blocks, we will introduce the methods with which we can compute these functions

and exemplify for the case of scalar operators. Additionally, we will also describe how to

analytically continue the correlators.

Although the discussion of this chapter focuses on four point functions, given their

importance for active cameras in the study of locality, the methods and ideas presented

here can also be employed for higher-point functions. In particular, outside the context of

bulk locality and as such of this thesis, we are currently trying to compute the conformal

blocks of scalar five-point functions with the Casimir differential equation (in the Euclidean

limit), using a different choice of cross ratios with respect to the standard ones (see for

example [13, 38, 39]). What makes this choice so compelling, is that it turns the Casimir

equation into a separable differential equation, such that it is easier to obtain the blocks.

In particular, we find that the five point conformal blocks can be written in a factorized

form, which was first noticed in [14].

53
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4.1 Regge Kinematics

Prior to the discussion of conformal blocks, we will first give a clear presentation on the

Regge limit. In spite of having being mentioned and briefly explained several times before,

we found appropriate to dedicate a section to it, given the role it plays in this thesis.

The starting point of this presentation will be to consider a scalar four point function

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = G(z, z̄)/
(
x2∆12 x

2∆
34

)
, which for simplicity we assume to have

operators of equal dimension ∆. Because CFTs are better understood in the Euclidean

signature, we generally compute correlators in this regime. Equivalently, we can also

consider correlators in the Lorentzian signature, with the points all spacelike separated. We

say these correlators are in the Euclidean region, since all operators commute and there are

no timelike relations. Hence, for all purposes, it is as if we were in the Euclidean signature.

However, the Regge limit is intrinsically Lorentzian due the specific causal relations that

define it. As such, we must analytically continue the Euclidean region correlators if we

wish to analyze the Regge limit.

In this case, we begin by considering a certain configuration of spacelike separated

points, which commute with each other. In this initial configuration where all points are

spacelike separated, the cross ratios satisfy 0 < z, z̄ < 1. However, because the Regge

kinematics is defined by having x214, x
2
23 < 0 (timelike separated) and all others x2ij > 0

(spacelike separated), we move x4 to the future of x1 and x3 to the past of x2, as depicted

in figure 4.1. In this picture, u and v are not the cross ratios, but rather the lightcone

4

3

1 2

u

v

Figure 4.1: Analytic continuation from spacelike separated points to the causal relations
of the Regge limit. (Figure from [40]

coordinates defined by u = x− t and v = t+ x. As we do this, the points x4 and x3 cross

the lightcones of x1 and x2, respectively, which leads to branch cut singularities. The way
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how we deal with these branch cuts, namely how we move around them, depends on the

iϵ prescription we use. For this case, in order to achieve the causal relations mentioned

before, or equivalently the ordering ⟨ϕ(x4)ϕ(x1)ϕ(x2)ϕ(x3)⟩ (or any other ordering without

commuting ϕ(x1) with ϕ(x4) and ϕ(x2) with ϕ(x3), since these are timelike separated), we

must take:

t23 → t23 − iϵ , t41 → t41 − iϵ , (4.1)

with ϵ > 0. This choice of the iϵ prescription, is such that in Euclidean time (τ = it), x3

comes before x2 (τ23 > 0) and x4 comes after x1 (τ41 > 0). In due turn, this is necessary

such that the corresponding Euclidean correlators are not divergent (see [40] for more about

Euclidean correlators). Moreover, note that we do not have to specify the iϵ prescription

for any other pairs, since all other points are spacelike separated and thus commute. In

terms of the lightcone coordinates, the iϵ transcription translates into:

u23 → u23 + iϵ , u41 → u41 + iϵ , (4.2)

while v can be kept fixed during the continuation in figure 4.1. To see what this continuation

implies for the cross ratios z, z̄, we begin by giving their definition:

z =
u12u34
u13u24

, z̄ =
v12v34
v13v24

. (4.3)

As the v’s are kept fixed, z̄ remains unchanged. On the other hand, z does not. In order

to figure out whether z goes around 0 or 1, which are branch points of the correlator, one

has to analyze z and 1− z, and figure out which of the two change sign as we analytically

continue. However, we can already see from the definition of z and looking at figure 4.1

that this will not happen for z alone, which means it will not go around 0. On the other

hand, 1− z is given by:

1− z = u23 u41
u31 u24

. (4.4)

As we analytically continue, u23 changes sign from positive to negative. Moreover, taking

into account the iϵ prescription, the term u23 gains a phase of π (u23 → eiπ u23), as depicted

in figure 4.2. A similar analysis for u41 shows it also gains the same phase (u41 → eiπ u41).

0

u23

Figure 4.2: Gain of a phase in u23 during analytic continuation.
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This leads to an overall phase of 2π in (1 − z), that is (1 − z) → e2πi(1 − z), which tells

us that z winds counter-clockwise around 1 in this analytic continuation. This path of

analytic continuation in the space of cross ratios z, z̄, is depicted in figure 4.3. According

0 1

z̄

z

z, z̄

Figure 4.3: Path traversed in the space of z, z̄ in order to analytic continue the correla-
tors. (Figure from [1])

to our previous definition of G⟲(z, z̄) below (3.16), after following the path of the above

figure, the analytically continued cross ratios function of this scalar correlator is denoted

by G⟲(z, z̄), where the arrow indicates the direction of the path.

Now that we have the correct causal relations between the points, we can consider

the Regge limit, which results from taking a large relative boost between the two pairs of

points, 1 and 4, 2 and 3:

x1 = (e−ηu1,−eηv1) , x2 = (−e−ηu2, e
ηv2) ,

x3 = (eηu3,−e−ηv3) , x4 = (−eηu4, e−ηv4) , (η →∞) .
(4.5)

This is depicted in figure 4.4. Ergo, the Regge limit is characterized by z, z̄ → 0, or

1

24

3

Figure 4.4: Schematic representation of the Regge limit.

equivalently in the u, v cross ratios, by u→ 0 and v → 1.
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After this discussion, we have a clearer understanding of what the Regge limit is, and

the path of analytic continuation that needs to be followed, in order to go from the spacelike

separated configuration to the one with the causal relations of Regge kinematics. Thus,

we are now better prepared to proceed to the conformal blocks, where these concepts will

play a central role.

4.2 More on Conformal Blocks

4.2.1 Casimir differential equation

By now, we have already realized that conformal symmetry plays a big role in this dis-

cussion. In particular, it completely fixes two and three point functions and imposes the

structure of higher-point correlators up to cross-ratios functions. What is more, the con-

formal algebra is isomorphic to SO(d+ 1, 1) such that its generators, Pµ,Kµ, D,Mµν , can

be identified with the Lorentz group generators LAB in d+2 dimensions. In the embedding

space formalism these latter are expressed as:

LAB = PA∂BP − PB∂AP . (4.6)

Let us now consider once again the scalar four point function. We are free to introduce a

complete basis of states labeled by |n⟩ and insert it the correlation function as:

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =
∑
n,m

1

⟨m|n⟩
⟨0|ϕ4(x4)ϕ3(x3)|m⟩⟨n|ϕ2(x2)ϕ1(x1)|0⟩ , (4.7)

where the sum runs over both primaries and descendants. Let LAB
i designate the action of

the Lorentz group generators on the field ϕi(xi). Since all correlation functions in a CFT

are conformally invariant we have that:

(LAB
1 + LAB

2 + LAB
n )⟨n|ϕ2(x2)ϕ1(x1)|0⟩ = 0

⇔ (LAB
1 + LAB

2 )⟨n|ϕ2(x2)ϕ1(x1)|0⟩ = −LAB
n ⟨n|ϕ2(x2)ϕ1(x1)|0⟩ . (4.8)

Thus,

− 1

2
(LAB

1 + LAB
2 )2 ⟨n|ϕ2(x2)ϕ1(x1)|0⟩ = −

1

2

(
LAB
n

)2
⟨n|ϕ2(x2)ϕ1(x1)|0⟩

⇔ D1,2 ⟨n|ϕ2(x2)ϕ1(x1)|0⟩ = Dn ⟨n|ϕ2(x2)ϕ1(x1)|0⟩ . (4.9)



58 Locality in AdS/CFT

Moreover, it can be shown that every primary operator O satisfies:

C |O⟩ = C∆,J |O⟩ , (4.10)

where C ≡ −1
2LABL

AB is the Casimir operator, and the Casimir eigenvalue C∆,J of O is

given by:

C∆,J = ∆(∆− d) + J(J + d− 2) . (4.11)

Importantly, any descendant of O will also satisfy the same equation as the primary, i.e.

(4.10), with exactly the same eigenvalue. Therefore, each of these C∆,J defines a conformal

family where ∆ and J are the conformal dimension and spin of the primary, respectively.

It will be more useful for us to rewrite the sum (4.7) as:

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =
∑
O
⟨0|ϕ4(x4)ϕ3(x3)|O|ϕ2(x2)ϕ1(x1)|0⟩ , (4.12)

where now the sum runs over only the primary operators of the theory. Moreover, the

operator |O|, which projects into the conformal family of O, is given by:

|O| =
∑

α,β=O,PO,...

|α⟩N−1
αβ ⟨β| , with Nαβ = ⟨α|β⟩ . (4.13)

Naturally, the sum of these projectors over all primaries must give the identity:

∑
O
|O| = 1 . (4.14)

Comparing (4.12) with (2.96), we find that each term of the first expression can be identified

with a conformal partial wave, up to the OPE coefficients:

⟨0|ϕ4(x4)ϕ3(x3)|O|ϕ2(x2)ϕ1(x1)|0⟩ = λ12Oλ34O

(
x2
24

x2
14

)∆12
2
(
x2
14

x2
13

)∆34
2

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

GO(u, v) . (4.15)

If we now act with D1,2 on (4.12) and make use of (4.9), we find the following equality:

D1,2⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =

=
∑
O

∑
α,β=O,PO,...

⟨0|ϕ4(x4)ϕ3(x3)|α⟩N−1
αβ D1,2 ⟨β|ϕ2(x2)ϕ1(x1)|0⟩

=
∑
O
C∆,J ⟨0|ϕ4(x4)ϕ3(x3)|O|ϕ2(x2)ϕ1(x1)|0⟩ .

In order to express the first line of this expression as a sum over the same kind of terms as

in the last line, we make use (2.96) and (2.97). Doing this, we find that each term of the
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sums satisfy:

D1,2⟨0|ϕ4(x4)ϕ3(x3)|O|ϕ2(x2)ϕ1(x1)|0⟩ = C∆,J⟨0|ϕ4(x4)ϕ3(x3)|O|ϕ2(x2)ϕ1(x1)|0⟩ . (4.16)

Finally, by using relation (4.15) we find that the conformal blocks obey what we call the

Casimir differential equation:

DGO(u, v) = C∆,J GO(u, v) , (4.17)

where D is a second-order differential operator given by:

D =1
2(1 + u− v)∆12∆34 +

(
u(v + 1)− (1− v)2

) [
(∆12 −∆34 − 2) ∂v − 2v ∂2v

]
+ u

[
−2(d+ u− v − 1) + (1− v + u)

{
(∆12 −∆34) ∂u − 4v∂v ∂u + 2u∂2u

}]
. (4.18)

Equation (4.17) would in theory be able to provide us with the conformal blocks expres-

sion in the most general cases. Unfortunately, this is a completely non-trivial differential

equation from which we can only obtain closed form solutions for even dimensions. For

d = 4 for example, the conformal blocks are given by [41, 42]:

GO(u, v) =
(−1)J

2J
zz̄

z − z̄
[
k∆+J(z) k∆−J−2(z̄)− (z ↔ z̄)

]
, (4.19)

with

kβ(x) ≡ x
β
2 2F1

(
β −∆12

2
,
β +∆34

2
, β;x

)
, (4.20)

where 2F1(a, b, c; z) is the Hypergeometric function.

Nevertheless, there are some kinematical limits we can consider in order to simplify

the Casimir differential equation and obtain an approximated expression of the conformal

blocks in generic dimensions. Alternatively, these functions can also be obtained via differ-

ent methods, such as through a series expansion on radial coordinates [43, 44] or recursion

relations [12].

There is an important property of the Casimir differential equation which deserves to

be commented. Indeed, a simple analysis of eq.(4.17) reveals that this equation is invariant

under ∆ → d −∆. This can be easily seen from the Casimir eigenvalue C∆,J expression

(4.11) and the lack of dependence in ∆ by D. Consequently, the conformal blocks with

∆ → d −∆, which go by the name of shadow conformal blocks, are also solutions of the

Casimir differential equation. Naturally, a linear combination of the conformal blocks and

respective shadow blocks also satisfies (4.17), such that we may equally as well express
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the correlation functions in terms of this alternative basis. These linear combinations are

sometimes also denoted by conformal partial waves, which is not to be confused with the

previous definition of conformal partial waves that will be used throughout this work.

In practice, when expressing the correlation functions in an integral representation, as

we will see next, it is convenient to express the correlation functions in terms of these linear

combinations of conformal blocks and respective shadows, denoted by:

F∆,J(z, z̄) = K∆,J G∆,J(z, z̄) +Kd−∆,J Gd−∆,J(z, z̄) , (4.21)

where K∆,J are coefficients consisting on Gamma functions. The reason why this basis

is preferable to work with, is because in contrast with the individual conformal blocks,

these are Euclidean single-valued functions, meaning they do not have branch cuts in the

Euclidean kinematics z̄ = z∗. In addition, the functions F∆,J(z, z̄) form a complete basis

of functions. Therefore, it is preferable to expand the Euclidean correlators G(z, z̄ = z∗),

which are also single-valued, in terms of this basis.

4.2.2 Lightning Review on Conformal Regge Theory

Supposing we knew the conformal blocks, such that we could express the correlator as in

(2.99), we would then like to analytically continue it so as to later analyze it in the Regge

limit. Our first instinct, would then be to analytically continue each conformal block

inside the sum. However, because the analytically continued conformal blocks behave like

G⟲
∆,J(z, z̄) ∼ (zz̄)

1−J
2 , the sum over J diverges in the Regge limit (z, z̄ → 0), which means

it is ill-defined. The issue with this line of thought, is that we cannot analytically continue

the correlator by analytically continuing each term of the sum, since analytic continuation

does not commute with the infinite sum. Therefore, to properly analytically continue this

correlator, so as to later analyze it in the Regge limit, we must write it in some other

representation, namely in terms of an integral over complex dimensions and spins. This

procedure is a key idea of Conformal Regge Theory. We will now present an extremely

brief overview of it, although several steps and details will be omitted, given that it is not

the main focus of this thesis. A more thorough presentation on the subject can be found

for example in [33, 34, 45].

To begin with, we point out that the correlators will be expressed in terms of the

functions F∆,J(z, z̄) introduced before in (4.21), by the reasons explained below the same

equation. The first step of the procedure is then to turn the sum over discrete dimensions
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to an integral over continuous dimensions [33]:

G(z, z̄) =
∞∑
J=0

∫ ∞

−∞

dν

2πi
c(ν, J)Fν,J(z, z̄) , (4.22)

where ν is defined by:

ν2 +

(
∆− d

2

)2

= 0 , (4.23)

and with c (ν, J) being analytic functions of ν and J [34, 45], which have poles. The

summation and integral representations are equivalent, since some of the poles of the

integrand correspond exactly to the dimensions that are being summed over. An adequate

deformation of the contour that would englobe all these poles, would give us the sum over

the physical conformal dimensions by the residue theorem. Crucially, the contour of this

integral must be such that all poles are found on the same side of it.

The next step is to transform the sum over spins into an integral, in order to overcome

the aforementioned issue. This is achieved by performing the Sommerfeld-Watson trans-

form (see [33]). The outcome of this step is an integral that runs along a contour that can

be deformed to encircle the poles of c(ν, J).

After these two steps, we obtain an expression for the correlator in terms of two in-

tegrals over the dimensions and spins. At this point, we can safely analytic continue this

function. Taking into account the aforementioned (zz̄)1−J dependence on the integrand,

it is straightforward to infer that the pole with the biggest real part will dominate in the

Regge limit. Denoting such pole by j(ν), which depends on the conformal dimension by

construction, we finally find that the analytic continued correlator in the Regge limit is

approximately given by:

G⟲(z, z̄) ≈
∫ ∞

−∞

dν

2πi
(zz̄)

1−j(ν)
2 Ων

(
z̄

z

)
β(ν) , (z, z̄ → 0) . (4.24)

This expression is of the same form of (3.16) if one takes into account that the ν dependent

functions are even. Moreover, Ων is an arbitrary function of the ratio of the cross ratios and

β(∆) are the residues of the aforementioned poles, which are related with the coefficient

functions α(ν) in (3.16).

4.2.3 Series expansion of Conformal blocks

Let us now present the first method with which we can compute the blocks. In particu-

lar, when we are trying to find the conformal blocks by means of the casimir differential

equation, it is helpful to consider either the Euclidean OPE limit (u → 0, v → 1) or the
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Lorentzian lightcone limit (u → 0 with fixed v). Doing so is advisable since it simplifies

the analysis. Moreover, the OPE provides us with boundary conditions, which we can use

to propose an ansatz for the conformal blocks. In turn, we can plug this in the differential

equation and solve it order by order, so that in the end we have a series expansion of the

blocks. However, because these limits are different in nature, each deserves an unique anal-

ysis. In particular, the aforementioned fact regarding which operators give the dominant

contribution in each limit, needs to be taken into account when we expand the conformal

blocks as a power series.

4.2.3.1 Euclidean OPE limit

Let us then start by considering the Euclidean OPE limit. To begin, it will prove more

useful to use the cross ratios σ and ξ of [43]*, which are related to the original u and v by:

u = σ2 , ξ =
1− v + u

2
√
u

. (4.25)

In these new variables, the near coincidence limit translates into σ → 0 while holding ξ

fixed. Moreover, r can be thought of as a radial coordinate whereas ξ is related to an angle.

By taking the Euclidean OPE between any two operators in the scalar four point

function, we obtain the leading order behavior of the conformal blocks as σ → 0, namely

G∆,J ∼
σ→0

σ∆ (where we are omitting the dependence on ξ). Alternatively, we could analyze

the solution of the Casimir differential at leading order for small σ. Both procedures would

suggest that we propose the following ansatz for a single scalar conformal block:

G∆,J =
∞∑

m=0

∑
j

am,j g∆+m,j(σ, ξ) , gE,j(σ, ξ) = σE Ch−1
j (ξ) , (4.26)

where Cλ
n(z) denotes the Gegenbauer polynomial. In order to understand the above equa-

tion, recall that given a primary operator Oµ1...µJ , we may act with the translations gen-

erator of the conformal group Pµ to obtain descendants. For instance, at level� two we can

have:

P 2Oµ1...µJ , Pµ1 Pµ2 Oµ1...µJ , P ν1 P ν2 Oµ1...µJ , . . . (4.27)

Note that while both descendants have the same dimension, they have different spins.

Nonetheless, they contribute equally to the four-point function, given that in this limit,

*The cross-ratio σ in here corresponds to s in this paper.
�By ”level” we mean the number of P ’s we are acting with on the primary. Here, we use the letter m

to label this.
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the operators contribution depends purely on their dimension. Thus, they must be encoded

at the same order in σ in (4.26). This implies that the Gegenbauer polynomial encodes the

contributions of operators with different spins but same conformal dimensions to the block.

This analysis also tells us that at each level, where the conformal dimension is ∆+m, the

sum over j must be in the interval:

j ∈
{
J +m,J +m− 2, . . . ,max (J −m,J +m mod2)

}
. (4.28)

In order to obtain the expansion coefficients am,j , it is more useful to separate the

Casimir differential operator into two components, D = D0 +D1, which are given by:

D0 =σ2 ∂2σ + (d− 1)
[
ξ ∂ξ − σ ∂σ

]
+ (ξ2 − 1) ∂2ξ , (4.29)

D1 =σ
[
∆12∆34ξ − (d− 2 + ξ2 + (1− ξ2)(∆12 −∆34)) ∂ξ + ξ(1− ξ2) ∂2ξ

+(∆12 −∆34 − 1) ξ σ ∂σ + 2 (1− ξ2)σ ∂σ ∂ξ − ξ σ2 ∂2σ
]
. (4.30)

Notice that, whereas D0 keeps the degree in σ fixed, D1 increases it by one unit. Relatedly,

it is possible to show that gE,j(σ, ξ) satisfies an eigenvalue equation under the action of

D0:

D0 gE,j(σ, ξ) = CE,j gE,j(σ, ξ) , (4.31)

where CE,j is the same as the Casimir eigenvalue. By making use of the above equality

while imposing its asymptotics as boundary conditions, one finds the explicit expression

for the functions gE,j(σ, ξ), which is indicated in (4.26). In particular, we use the behavior

of the conformal block in the Euclidean OPE limit, which was mentioned above, as the

boundary condition. Note also that this differential equation coincides with what would

be obtained after expanding the Casimir differential operator up to leading order in σ.

Crucially, after imposing the same asymptotics behavior, the solution we obtain is none

other than the m = 0 term of (4.26).

What is more, the differential operator D1 is vital to obtain the coefficients am,j . In

particular, a simple analysis shows that acting with this differential operator on gE,j(σ, ξ)

gives a linear combination of the same functions with shifted dimensions and spins [6, 46].

Using this fact in the Casimir equation, we can solve it order by order in σ, ultimately

obtaining recurrence relations for cE,j . Providing an initial condition then fixes all other

coefficients. This will be seen explicitly more ahead, when we compute the blocks of some

correlators.
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4.2.3.2 Lorentzian OPE limit

We can also conduct a similar analysis for the Lorentzian lightcone limit. Nonetheless,

in contrast with the Euclidean limit, we can keep using the u, v cross-ratios. We start

by performing the Lorentzian OPE (2.94), which tells us that at leading order in u, the

behavior of the blocks goes as GO ∼
u→0

u
τ
2 (where we are omitting dependence on v).

Taking into account this and the fact that equal twist operators contribute equally to the

four-point function in this limit, it is reasonable to suggest the following ansatz:

GO(u, v) =
∞∑

m=0

m∑
k=0

cm,k gτ+2m,J−k(u, v) , gT,j(u, v) = uT/2 g̃T,j(v) , (4.32)

where the function g̃T,j(v) will be made explicit more ahead. The above expression has

some resemblances with (4.26). However, it organizes the operators not by its conformal

dimension but rather by its twist. This means that for every order of u, the sum over k,

namely in g̃τ+2m,J−k(u, v), encodes the contributions coming from operators with the same

twist but different spins. For instance, consider a primary Oµ1...µJ of twist τ = ∆− J . By

acting either with P 2 or Pµ1 contracted with one of the indices of the primary, we obtain

descendants of different spins but same twist, namely τ + 2. It is the sum over k that

translates exactly this degeneracy. In particular, for every twist, i.e. every m, there are

m+ 1 descendants with different spins, such that the sum runs over k ∈ {0, . . . ,m}. Note

that in here m does not denote the level as in the Euclidean OPE limit formula (4.26).

In this case, it is also convenient to separate the differential operator in two parts, one

that keeps the degree in u fixed and another that raises it by one unit. It follows then,

that the Casimir differential equation becomes:

[D0 +D1] GO(u, v) = C∆,J GO(u, v) , (4.33)

where

D0 =
1

2
(1− v)∆12∆34 + (2−∆12 +∆34)(1− v)2∂v + 2(1− v)2v ∂v (4.34)

+ u
[
2(1− d+ v) + (1− v)(∆12 −∆34)

]
∂u − 4(1− v)u ∂u v ∂v + 2(1 + v)u2∂2u ,

D1 =u

[
1

2
∆12∆34 − (2−∆12 +∆34) (1 + v)− 2 v (1 + v) ∂2v − u (2−∆12 +∆34) ∂u

− 4u ∂u v ∂v − 2u2 ∂2u

]
. (4.35)
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In similarity with the previous case, the functions gτ,J(u, v) also satisfy an eigenvalue

equation under the action of D0:

D0 gT,j(u, v) = CT,j gT,j(u, v) , (4.36)

where the eigenvalue is simply the Casimir expressed in terms of the twist:

CT,j = (j + T )(j + T − d) + j(d+ j − 2) . (4.37)

What is more, eq.(4.36) coincides with the leading order of the Casimir differential operator,

which admits the m = 0 term as a solution. By imposing that gT,j(u, v) ∼ u
T
2 (1 − v)j in

the limit v → 1, we can unequivocally fix these functions. In particular, we find that:

gT,j(u, v) = u
T
2 (1− v)j 2F1

(
T + 2j −∆12

2
,
T + 2j +∆34

2
, T + 2j, 1− v

)
. (4.38)

Analogously to the Euclidean case, we also have that D1 gT,j(u, v) can be written in

terms of these same functions with different T and j. This relation can be used to obtain

recurrence relations for the coefficients cm,k, by imposing they solve the Casimir differen-

tial equation order by order in u. After obtaining these recurrence relations, we choose

the appropriate initial conditions such that the remaining coefficients become completely

determined.

Lastly, note that whether we choose to consider the Euclidean limit or the Lorentzian

limit depends on the analysis we wish to do, as each one of them has its own advantages.

We will further discuss this later in subsection 4.2.5.

4.2.4 Differential operators method

In addition to the series expansion, we will now present an alternative procedure to obtain

the conformal blocks, which makes use of a specific set of differential operators. We will

also try to understand the advantages of this method in comparison with all the others.

To grasp the main point of this approach, start by recalling that conformal blocks

can be directly computed with the OPE. In fact, this is relatively straightforward when

the correlation function involves only scalar operators. However, as soon as we consider

nonzero spin operators in the correlator, the required computations can become quite

cumbersome. Nevertheless, what if instead of performing the OPE summations all over

again, we could reuse the scalar result for the spinning case? Indeed, we will see that by

applying some specific differential operators to the scalar conformal blocks, we come by the
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desired spinning conformal blocks. This construction and associated differential operators

were proposed in [47], in which this exposition is based upon.

4.2.4.1 General idea

We start by considering the OPE of two spinning operators. Although such a formula has

not yet been introduced, a quick look at the Euclidean OPE equation (2.88) would lead us

to propose:

O{µ}
1 (x1)O{ν}

2 (x2) =
∑
O
λ12O C

(
x12, ∂x2

){µ,ν,α} O{α}(x2) . (4.39)

The above expression is very similar to the scalar formula, with the novelty that the

coefficient functions must now encode the spinning indices of the external operators, {µ}

and {ν}.

By using this expression, we could define the conformal partial waves similarly to the

scalar case, from which we could then extract the spinning conformal blocks. As it turns

out, however, for external spinning operators each exchanged operator can have more than

one conformal partial wave associated. In other words, the coefficient functions in (4.39)

are actually a sum over different possible structures. As such, we first need to catalog all

of these OPE structures.

In addition, we would later have to perform the sum over the indices like in (2.88).

This would be a bothersome step, given that even in the simplest case of scalars this sum

is not trivial. Fortunately for us, we can avoid this step by making use of the scalar result,

whose computation was already done in [41]. The idea is to write the spinning coefficient

functions in (4.39) as the action of differential operators on the scalar one:

C
(
x12, ∂x2

){µ,ν,α}
= D{µ,ν}

x1,x2
C
(
x12, ∂x2

){α}
. (4.40)

Since we will have several OPE structures, each of these differential operators are in a

one-to-one correspondence with the different conformal partial waves.

It then follows from (4.40), that each of the spinning conformal partial waves can be

expressed as the action of the D’s on the scalar conformal partial wave:

W
{µ,ν,α,β}
O (x1, x2, x3, x4) = D{µ,ν}

x1,x2
D{α,β}

x3,x4
WO (x1, x2, x3, x4) . (4.41)

Before proceeding, however, an important comment is in order. In particular, because this

method reuses the results from the scalar case, it can only give us the spinning conformal
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blocks associated with the exchange of spinning operators in the symmetric and trace-

less representation. For any other case, such as the antisymmetric or mixed symmetry

representations, another route must be taken. For a detailed discussion about this see [47].

4.2.4.2 Identifying OPE structures

The first step of this procedure is to identify the OPE structures that can appear in the

OPE of two spinning operators. This is not as hard as it seems, given that the OPEs are in

a one-to-one correspondence with three point functions. One such indication of this, is the

fact that the OPE coefficients appearing in (2.89) are also the normalization constants of

the corresponding three point functions. In fact, the OPE between two spinning operators

can be written as a sum over the associated three point function structures [12]. As a

result, our task is then that of identifying the structures of generic spin J1 - spin J2 - spin

J three-point functions, so as to later express these in terms of the scalar-scalar-spin J

three point functions:

⟨O{µ}
1 (x1)O{ν}

2 (x2)O{α} (x3)⟩ = D{µ,ν}
x1,x2
⟨O1 (x1)O2 (x2)O{α} (x3)⟩ . (4.42)

These structures, however, were already introduced prior to this discussion. In the

embedding space, they are nothing more than the numerator of each term of the sum

(2.62), without the OPE coefficient. Meanwhile, in the physical space, they correspond to

what we had previously denoted by tℓ1,ℓ2,ℓ3(x, z1, z2, z3), and are given by (2.68).

From now on we will denote these structures in the embedding space by: ∆1 ∆2 ∆3

J1 J2 J3

ℓ1 ℓ2 ℓ3

 ≡ V m1
1,23 V

m2
2,31 V

m3
3,12H

ℓ3
12H

ℓ2
13H

ℓ1
23

(P12)
1
2
(τ̄1+τ̄2−τ̄3)(P13)

1
2
(τ̄1+τ̄3−τ̄2)(P23)

1
2
(τ̄2+τ̄3−τ̄1)

, (4.43)

such that eq.(2.62) becomes

G̃(P1, P2, P3;Z1, Z2, Z3) =
∑
{ℓi}

λℓ1ℓ2ℓ3J1J2J3

 ∆1 ∆2 ∆3

J1 J2 J3

ℓ1 ℓ2 ℓ3

 . (4.44)
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4.2.4.3 Elementary Differential Operators

With the structures identified, we must now find the differential operators satisfying (4.42).

In the embedding space and using the notation introduced above, this equality becomes: ∆1 ∆2 ∆

J1 J2 J

ℓ1 ℓ2 ℓ

 = D
(
Pi, Zi,

∂

∂Pi
,
∂

∂Zi

) ∆′
1 ∆′

2 ∆

0 0 J

0 0 0

 (i = 1, 2) , (4.45)

where we are implicitly dropping terms proportional to P 2
i , Z

2
i and Pi · Zi. Note that, in

general, ∆′
1,2 will be different from ∆1,2 since these differential operators can raise or lower

the conformal dimensions of the structures.

In order for the differential operators to be consistent with the embedding space and

null polarization vectors formalisms, they must obey certain conditions. In particular:

• They must map terms of the type O(P 2
i , Z

2
i , Zi · Pi) to the same kind, in order to

keep the structures within the submanifold defined by

Z2
i = Zi · Pi = P 2

i = 0 (i = 1, 2) . (4.46)

• They must be interior to the space of transverse functions.

Moreover, so as to satisfy (4.45), they must increase the degree on Z1 and Z2 from 0

to J1 and J2, respectively. In practice, we can think of these operators as composed of

elementary differential operators which raise the degrees one unit at a time. Taking all

of these considerations into account, one finds that the only independent operators which

satisfy these conditions are the following first-order differential operators [47]:

D11 ≡ (P1 · P2)(Z1 ·
∂

∂P2
)− (Z1 · P2)(P1 ·

∂

∂P2
)− (Z1 · Z2)(P1 ·

∂

∂Z2
)

+ (P1 · Z2)(Z1 ·
∂

∂Z2
) ,

D12 ≡ (P1 · P2)(Z1 ·
∂

∂P1
)− (Z1 · P2)(P1 ·

∂

∂P1
) + (Z1 · P2)(Z1 ·

∂

∂Z1
) ,

(4.47)

and two more with 1↔ 2, in addition to a zeroth order differential operator H12, which is

the building block defined back in (2.53). However, there is crucial difference between the

operators Dij and H12. In particular, whereas the Dij increase the spin at i by one unit

and decrease the conformal dimension at position j by one unit, H12 increases the spin

and decreases the conformal dimension by one unit at both points.
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4.2.4.4 Differential Basis and Standard Basis

Once we have the elementary differential operators, we can compose them in order to raise

the spins as much as we want. This translates into the following relation:
∆1 ∆2 ∆3

J1 J2 J3

ℓ1 ℓ2 ℓ3

 ≡ Hℓ3
12D

ℓ2
12D

ℓ1
21D

m1
11 D

m2
22

 ∆1 +m1 + ℓ1 + ℓ3 ∆2 +m2 + ℓ2 + ℓ3 ∆3

0 0 J3

0 0 0

 .
(4.48)

Note that here, we have designated the LHS three point function structure with a different

bracket. This happens because acting with the elemantary differential operators on a

standard basis structure (4.43), does not produce a result which can be expressed in the

same form. This new basis for spinning three point structures will be referred to as the

differential basis, and denoted by curly brackets. Importantly, both basis can be related

by inverting the matrix which relates them.

To understand the reasoning of this change of basis, consider an arbitrary spinning three

point function with conformal dimensions ∆i and spins Ji, where i = 1, 2, 3. Moreover,

suppose there are N possible structures in the standard basis [I] associated with this

correlator, and necessarily, an identical number of analogous structures in the differential

basis {I} characterized by the same numbers ℓi. When acting with the differential operators

according to (4.48), we obtain the differential basis elements {I}. However, each of these

structures can be expressed as a linear combination of the standard basis elements, which

is the same as saying it can be written in a different basis according to:

{I} =
N∑

J=1

aIJ [J ] . (4.49)

However, the opposite is also true. If we invert the matrix with elements aIJ , we are able

express the standard basis structures as a linear combination of the previously obtained

differential basis structures. Hence, we can freely go from one basis to the other.

Lastly, we stress out that not all of the differential operators commute among them-

selves. The order of operators in (4.48) is simply a matter of choice. In particular, the

only non-vanishing commutation relations are:

[D11, D22] =
1

2
H12

(
Z1 ·

∂

∂Z1
− Z2 ·

∂

∂Z2
+ P1 ·

∂

∂P1
− P2 ·

∂

∂P2

)
, (4.50)

[D12, D21] =
1

2
H12

(
Z1 ·

∂

∂Z1
− Z2 ·

∂

∂Z2
− P1 ·

∂

∂P1
+ P2 ·

∂

∂P2

)
. (4.51)
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4.2.4.5 Spinning Conformal Blocks

Now that we established the differential operators and how to go from one basis to the

other, we may move on to the conformal blocks. In reality, the reasoning is going to be

similar as for the three point structures. Namely, we will have to act with the differential

operators in the scalar conformal partial wave, as represented in (4.41).

Given a spinning four point function, each conformal partial wave is characterized by

the couplings of the exchanged field, which amount to the three point functions of this

operator with the external ones. This relation is not difficult to understand, bearing in

mind the correspondence between OPEs and three point functions, in addition to how

conformal partial waves are defined. These three point functions, in turn, are associated

with the following structures in the differential basis:
∆1 ∆2 ∆0

J1 J2 J0

ℓ1 ℓ2 ℓ0

 ,


∆3 ∆4 ∆0

J3 J4 J0

ℓ3 ℓ4 ℓ0

 , (4.52)

where the label 0 denotes the exchanged field.

Each pair of these elements has an associated spinning conformal partial wave given by

DleftDrightWO(P1, P2, P3, P4) , (4.53)

where

Dleft = Hℓ0
12D

ℓ2
12D

ℓ1
21D

m1
11 D

m2
22 Σm1+ℓ1+ℓ0,m2+ℓ2+ℓ0 , (4.54)

and Dright is given by the same expression with 1→ 3 and 2→ 4. In the above expression,

the operator Σa,b amounts to the following shifts in the conformal dimensions:

∆1 → ∆1 +m1 + ℓ0 + ℓ1 , ∆2 → ∆2 +m2 + ℓ0 + ℓ2 . (4.55)

The shifts for ∆3,4 are similar but with the replacements 1 → 3 and 2 → 4. In addition,

note that the scalar conformal partial wave written in the embedding space is given by

(2.97), with x2ij → Pij as shown in (2.41).

After applying the differential operators on the scalar conformal block as in (4.53), we

obtain the spinning partial waves in the differential basis. In order to obtain these functions

in the standard basis, we must follow the same reasoning as for three point functions. In

practice, we impose equality between the characteristic three point functions (couplings) as

a sum over the standard basis elements, and a generic linear combination of the differential

basis structures. This completely fixes the arbitrary coefficients of the linear combination
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in terms of the OPE coefficients. This procedure will be seen further ahead in section

(4.3.2.2), in particular in (4.102) and (4.103).

After taking all these actions, we obtain the spinning conformal partial waves in the

embedding space, whose structure must be of the form:(
P24

P14

) τ̄1−τ̄2
2
(
P14

P13

) τ̄3−τ̄4
2
∑

k fk(u, v)Q
(k)({Pi;Zi})

(P12)
τ̄1+τ̄2

2 (P34)
τ̄3+τ̄4

2

, (4.56)

where the sum over k is simply here to label the different structures and associated cross

ratios functions.

Here, Q(k) are transverse polynomials of Pi and Zi, of degree Ji. They are constructed

with the same basic building blocks (Vi,jk and Hij) that are used for three point functions.

In addition, the coefficient functions fk(u, v) consist of linear combinations of shifted

scalar conformal blocks GO(u, v) and respective derivatives with regard to the cross ratios

u and v.

Similarly as we did for the scalar case, we can identify the spinning conformal blocks

in (4.56) by the sum in k. Consequently, we see that with this definition, the spinning

conformal blocks explicitly depend on the basic building blocks Vi,jk and Hij , since as

previously mentioned, the polynomials Q(k) are generated with these.

4.2.5 Analytic continuation

Up until now, the methods we have presented concerned only correlators with all points

spacelike separated. Thus, we must analytically continue them if we wish to analyze them

in the Regge limit. This was already explained in section 4.1, where we introduced the

Regge limit and the underlying ideas behind this analytic continuation. Here, we will revise

some of those concepts and extend the discussion on the matter.

As always, the starting point of this subject are the correlators in the Euclidean region.

Moreover, we assume we know the associated conformal blocks, which can be computed by

any of the approaches given above. As already stated, we then need to analytically continue

the correlators (which implies an analytic continuation of the blocks as well), by traversing a

certain path in the cross ratios space, which depends on the initial and final configurations.

We stress out that different paths lead in general to different analytic continuations, since

some might find branch cuts, whereas others can avoid them altogether.

In the case of Regge kinematics, the path that must be followed was already presented

in figure 4.3. We point out, however, that this figure only depicts the path for analytically
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continuing the spacelike separated points to the configuration with the necessary causal

relations. In practice, what we will do to consider the Regge limit (z, z̄ → 0), is to start by

taking z̄ to be small, z̄ → 0. Next, while keeping z̄ > 0 fixed, we take z counter-clockwise

around 1 as previously mentioned. Finally, we take z → 0, such that we find ourselves in

the same region of the Regge limit: z, z̄ ∼ 0. Note, however, that this will not correspond

to the Regge limit, as we sent z and z̄ to 0 in a certain order rather than simultaneously.

Nonetheless, the result still provides us information about the behavior of the correlator

or conformal blocks in the Regge limit, and can in fact be used as boundary conditions to

obtain the blocks in this kinematical limit. In here, we have chosen to think about this

procedure in terms of the u, v cross ratios. Equivalently, we start by sending u → 0 and

then take v counter-clockwise around 0, while holding u > 0 fixed. Finally, we send v → 1,

in order for the correlator to be in the same region of the Regge limit (u → 0, v → 1).

This path is depicted in figure 4.5.

1

0

u, v

u v

Figure 4.5: Schematic representation of the path in the u, v plane we must follow to
analytically continue the conformal blocks.

It is important to be aware that we might pick discontinuities as we traverse the path,

due to branch cuts of the correlator/conformal blocks. In particular, in the cases considered

here, we will find the branch cut depicted in figure 4.5 by the wobbly blue line, which arises

due to the hypergeometric functions through which the blocks are expressed. When this

happens, we will generally find that the analytically continued conformal blocks will have

an extra term, which is this discontinuity of the function across the cut:

G⟲
∆,J(u, v) = G∆,J(u, v) + Disc

[
G∆,J(u, v)

]
. (4.57)

Recall that branch cuts arise in multi-valued functions, so as to impose we remain in a single

sheet of the function, thus leading to the discontinuity. If instead we could move through
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different sheets of it, the function would be continuous. Physically, these discontinuity

terms arise when one of two spacelike separated points crosses the lightcone of the other,

as mentioned in section 4.1.

To have a better understanding of this whole procedure, we have constructed figure

4.6. For simplicity, we have used conformal transformations to put the points in the same

configuration of figure 2.1, with all points spacelike separated. Moreover, the blue lines

represent the future and past lightcones of x1 and x3.

x1
x2 1

x3 x4 →∞

Figure 4.6: Schematic figure that depicts the analytic continuation of the conformal
blocks.

The first thing we would like to point out, is the grey shaded region in which x2 is

spacelike separated from x1 and x3. Inside of it, the conformal blocks remain unchanged,

independently to where the point x2 is moved within this same region. The issue, however,

is that we do not have an expression for the blocks in closed form for any dimension.

Therefore, in order to overcome this problem, we must consider a specific kinematical limit,

in which these objects become simpler. One possible choice is to consider the lightcone

limit x212 → 0, where the usage of the Lorentzian lightcone OPE (2.94) provides us with an

explicit expression of the blocks in this same limit. This is depicted by the red and green

arrows coming out of x2.

Next, we want to analytically continue the lightcone conformal blocks. In particular,

if we wish to analyze the blocks in the Regge limit, x2 has to cross the future lightcone of

x3. When the crossing takes place, x2 and x3 become lightlike (x223 = 0) such that v = 0.

Consequently, we must take v around 0 in the path of analytic continuation. This step is

illustrated by the red arrow which crosses the future lightcone of x3.
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The obtained result, however, is only valid near the future lightcone of x2 (red shaded

region), since we have initially considered x212 → 0. In order to extend the result to the

whole future lightcone of x3, we would have to take a step further and analytically continue

this function again.

Alternatively, we could have chosen to cross the future lightcone of x1, although this

would not correspond to the Regge kinematics. Such analytic continuation would involve

taking u around 0, given that x1 becomes lightlike from x2 (x212 = 0) throughout the

path (small green arrow). By the same reasoning as before, the outcome of this procedure

remains valid only near x212 = 0 (green shaded region), but can be extended by analytic

continuation.

It is important to remark that these two analytic continuations would yield different

results, as the discontinuities of the correlator/conformal block across the branch cuts of the

u plan are different from the ones in the v plan. This arises due to different dependencies

on these cross ratios.

Figure 4.6 is also helpful to understand which one of the two limits, namely the Eu-

clidean limit and the Lorentzian limit, is more useful depending on what we want to do. In

particular, when one has to analytic continue the correlators to later take the Regge limit,

x2 must be taken to cross the future lightcone of x3. If we considered the near coincidence

limit, the result would only be valid around x1, where x12 ∼ 0, and x1 could not be moved

to cross this lightcone. Thus, we must take the lightcone limit, whose outcome is valid in

the entire vicinity of the lightcone of x1. Nevertheless, the near coincidence limit also has

its uses. In fact, because it corresponds to the same limit in the u, v cross ratios as the

Regge limit (u → 0, v → 1), one can compare the conformal blocks obtained from taking

the Euclidean limit, with the same blocks in the Regge limit. Naturally, these will differ,

as the latter resulted from an analytic continuation before taking this limit.

Now that we have presented all methods with which we can obtain the conformal blocks,

and have extensively explained how to analytically continue these functions and take its

Regge limit, we will begin by computing the blocks of the scalar correlator for the sake of

clarity. We then proceed to compute the blocks of the two spinning four point functions

mentioned at the beginning of this chapter.
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4.3 Conformal Blocks in the Regge Limit

4.3.1 Scalar-Scalar-Scalar-Scalar

In this section, we compute the conformal blocks in the Regge limit of the scalar four-

point function with operators of different dimensions ⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩, by the

different approaches we introduced so far. Throughout this analysis, we will compare the

results obtained from the different methods to check whether or not they yield matching

results, while also inferring about the advantages of each one.

4.3.1.1 With the Casimir differential equation

In order to obtain the scalar conformal blocks from the Casimir differential equation (4.33),

we consider the lightcone limit. As we already argued before, in this limit the conformal

blocks can be expanded in powers of u as in (4.32). Moreover, we know that the func-

tions gτ,J(u, v) satisfy an eigenvalue equation (4.36), which after choosing their asymptotic

behavior fixes the solution. The missing pieces are then the expansion coefficients cm,k.

We proceed as explained below (4.38). We start by acting with D1 in the functions

gτ,J(u, v), only to find that this can be written as a linear combination of the same kind

of functions, but with a twist shifted by two units:

D1 gτ,J(u, v) = b
(−2)
τ,J gτ+2,J−2(u, v) + b

(−1)
τ,J gτ+2,J−1(u, v) + b

(0)
τ,J gτ+2,J(u, v) , (4.58)

b
(−2)
τ,J = −4 J (J − 1) , b

(−1)
τ,J =

2 J (τ + J − 1)∆12∆34

(τ + 2J − 2)(τ + 2 J)
,

b
(0)
τ,J = −

(
J2 + J(2τ − 1) + (τ − 1)τ

) (
(2J + τ)2 −∆2

12

) (
(2J + τ)2 −∆2

34

)
4(τ + 2J − 1)(τ + 2J)2(τ + 2J + 1)

.

It is important that the action of this operator involves functions of higher twist and

not lower. Otherwise, the sum over m in (4.32) would have to run from m = −∞ instead

of starting at m = 0.

Then, by using (4.58) in the Casimir differential equation, we can obtain the following

recurrence relation for the coefficients cm,k:

(
C2m+τ,J−k − Cτ,J

)
cm,k + b

(0)
τ+2m−2,J−k cm−1,k + b

(−1)
τ+2m−2,J−k+1 cm−1,k−1+

+ cm−1,k−2 b
(−2)
τ+2m−2,J−k+2 = 0 (4.59)

By choosing the initial conditions c0,0 = 1 and cm,k = 0 form < k, we completely determine

all the coefficients cm,k.
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In the simplest case of external operators with equal conformal dimensions, the b
(i)
τ,J

coefficients become simpler and the recurrence relation is given by:

(
C2m+τ,J−k − Cτ,J

)
cm,k − (J−k+2m+τ−3)(J−k+2m+τ−2)(2(J−k+m−1)+τ)2

4(2J−2k+2m+τ−3)(2J−2k+2m+τ−1) cm−1,k

− 4(1 + J − k)(2 + J − k)cm−1,k−2 = 0 . (4.60)

Since we know every quantity entering in (4.32), the next logical step would be to analyt-

ically continue this sum. Indeed, at each order in u, the conformal blocks are given by a

finite sum of hypergeometric functions, whose discontinuity is easily computed. In spite of

that, we will refrain from undertaking that procedure over here as it will be simpler to do

this in the approach considered next.

4.3.1.2 With the Lorentzian lightcone OPE

The immediate use of the leading lightcone OPE (2.94) between ϕ1 × ϕ2 gives:

⟨ϕ1(x1) . . . ϕ4(x4)⟩ ≈
∑
O

λ12O

(x212)
∆1+∆2−τ

2

∫
[dt] ⟨O(x1 + tx21, x12)ϕ3(x3)ϕ4(x4)⟩ (4.61)

=
∑
O

λ12Oλ34O

(x212)
∆1+∆2−τ

2 (x234)
∆3+∆4−τ

2

∫
[dt] (x214x

2
23 − x213x224)J

(x223t+ (1− t)x213)
τ̄+∆34

2 (x224t+ (1− t)x214)
τ̄−∆34

2

,

where we used the general expression for three point functions in the physical space (2.66).

To compute this integral, it is convenient to do the change of variables: t → t/(t + 1)

and t → t x214/x
2
24. This makes it easier to recognize the integral at hand as the integral

representation of an hypergeometric function, whose arguments can be readily identified

from the expression. In the end, the lightcone expansion of the scalar four point function

is given by:

⟨ϕ1(x1) . . . ϕ4(x4)⟩ =

(
x2
24

x2
14

)∆12
2
(
x2
14

x2
13

)∆34
2

(
x212
)∆1+∆2

2
(
x234
)∆3+∆4

2

∑
O
λ12Oλ34O

(
GO(u, v) + . . .

)
, (4.62)

where

GO(u, v) = u
τ
2

(
v − 1

2

)J

2F1

(
τ̄ −∆12

2
,
τ̄ +∆34

2
, τ̄ , 1− v

)
, (4.63)

denotes the leading term of the lightcone blocks, and . . . stand for the subleading terms

of these same functions.

As a sanity check of the obtained result, we could compare it with the leading behavior

of equation (28) in [33], in the limit u→ 0. Note that, although this expression is valid in

the simultaneous limits of u→ 0 and v → 1, expanding it for small u gives us its behavior
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in the same kinematics we are considering, namely u → 0 and fixed v. Indeed, by doing

so, we find that the two expressions agree with each other.

The next step is to analytically continue the above result. As we mentioned previously,

this involves passing through a branch cut. Hence, we must compute the discontinuity of

(4.63). In particular, this was already done in [48]. To begin, we make use of the expansion

of the hypergeometric function around 1, since as stated before, we wish to take v around

zero. Thus, for ∆34−∆12
2 ∈ Z we may write:

2F1

(
τ̄ −∆12

2
,
τ̄ +∆34

2
, τ̄ , 1− v

)
= terms without branch cut − (4.64)

− (−1)
∆34−∆12

2 Γ (τ̄)

Γ
(
τ̄+∆12

2

)
Γ
(
τ̄−∆34

2

)
Γ
(
2+∆34−∆12

2

) 2F1

(
τ̄−∆12

2
,
τ̄+∆34

2
,
2+∆34−∆12

2
, v

)
ln(v) .

When we go around v = 0 as in figure 4.5, the logarithm picks up a factor of 2πi and leads

to a discontinuity given by:

Disc GO(u, v) ∼ (4.65)

− u
τ
2

(
v − 1

2

)J
2πi(−1)

∆34−∆12
2 Γ(τ̄)

Γ

(
τ̄+∆12

2

)
Γ

(
τ̄−∆34

2

)
Γ

(
2+∆34−∆12

2

) 2F1

(
τ̄−∆12

2 , τ̄+∆34
2 , 2−∆12+∆34

2 , v
)
,

The leading behavior of this expression for v ∼ 1 is:

Disc GO(u, v) ∼ −C0 u
τ
2

(
v − 1

2

)1−∆

, (4.66)

where we have defined for simplicity:

Ck12 =
2 i π (−1)

∆34−∆12−k12
2 Γ (τ̄) Γ (τ̄ − 1)

Γ
(
τ̄−∆12−k12

2

)
Γ
(
τ̄+∆12+k12

2

)
Γ
(
τ̄−∆34

2

)
Γ
(
τ̄+∆34

2

) . (4.67)

Here are anticipating the shifts (k12 ≡ k1− k2) in the external dimensions, required by the

differential operators, since this factor will reappear in that method as well.

Therefore, we find that the analytically continued lightcone block is given by:

G⟲
O(u, v) ≈ u

τ
2

(
v − 1

2

)J

− C0 u
τ
2

(
v − 1

2

)1−∆

, (4.68)

where we have considered the leading behavior of (4.63) for v ∼ 1. It will prove useful to

express this result in terms of new cross ratios σ2 = zz̄, t = z̄/z. Doing so we find:

G⟲
O(σ, t) ≈

(
−1

2

)J (
t−

J
2 σ∆ − C0 t

∆−1
2 σ1−J

)
(4.69)

In these new variables, the Regge limit corresponds to σ → 0 and fixed t. As such, it
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is immediate to see from the above expression that the second term dominates relatively

to the first one when J > 1. However, the bootstrap equation imposes the necessity of

exchanged fields with spin higher than 1, such that the whole sum on the LHS of (2.102)

vanishes. Consequently, the discontinuity term will always dominate the conformal block

in the Regge limit, such that we can ignore the other one.

Although (4.69) is valid in the region of u ∼ 0 and v ∼ 1, or equivalently σ ∼ 0 and

fixed t, it does not correspond to the Regge limit result because we have taken the limits

in a certain order. Nevertheless, if we wish to obtain the conformal blocks in the Regge

limit, we can use this result as boundary conditions for the Casimir differential equation

near σ → 0 and fixed t. In particular, the asymptotic behavior of the solution in the Regge

limit must be G⟲
O(σ, t) ∼ t

∆−1
2 σ1−J . In general, the conformal block will be given by:

G⟲
O(σ, t) ∼ t

∆−1
2 σ1−J g(t) , (4.70)

where the function g(t) can be found by solving the Casimir equation. Near σ ∼ 0 and

fixed t, the Casimir operator expressed in terms of these cross ratios becomes:

2 t (4− d(1 + t))

1− t
∂t + 4 t2 ∂2t + σ

(
(1− d) ∂σ + σ ∂2σ

)
. (4.71)

Inserting (4.70) in the Casimir differential equation and imposing the aforementioned

boundary conditions, we find the solution:

G⟲
O(σ, t) =−

(
−1

2

)J
C0 t

∆−1
2 σ1−J

2F1

(
d

2
− 1,∆− 1,∆− d

2
+ 1, t

)
, (4.72)

which corresponds precisely to the scalar conformal block in the Regge limit. The main

aspect to notice about this expression is the σ1−J behavior, which is characteristic of the

Regge limit. Indeed, taking into account the relation between σ and the cross-ratios z, z̄,

one can see that this factor of σ1−J was already present in (3.19), which makes sense, as this

equation describes the four point function in the Regge limit in an integral representation.

Therefore, we anticipate this dependence on σ for the upcoming results.

Now that we have demonstrated the different approaches to obtain the blocks in the

case of the scalar four point function, we are ready to proceed to spinning correlators. In

general, the analysis will not differ much from what was done here. However, for these

cases the basic building blocks will make their appearance, in order to encode the spins of

the external operators.
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4.3.2 Spin J1-Scalar-Scalar-Scalar

We begin by considering the case of a four point-function with one nonzero spin J1 operator

and three scalars. Although the discussion concerns the case of generic spin J1, we we will

mostly restrict to the case of J1 = 1 to present the results.

In order to obtain the associated Casimir differential equation, it is essential to know

the structure of the spinning correlator. Indeed, we are aware that correlation functions

can generally be written as the product of a pre-factor, where the appropriate scaling

weights are taken care of, and a linear combination of cross ratios functions. Moreover,

given we are considering a spinning correlation function, we anticipate the basic building

blocks (2.53) and (2.63) to appear. Accordingly, the conformal blocks will have a form like

the sum over k in (4.56). Thus, this four point function ought to be given as [44]:

⟨ϕ1(P1;Z1)ϕ2(P2)ϕ3(P3)ϕ4(P4)⟩ =
∑
O

∑
p

λ
(p)
12Oλ34OW

(p)
O (Pi;Z1) , (4.73)

where the conformal partial waves are given by:

W
(p)
O (Pi, Z1) =

(
P24
P14

)∆12+J1
2

(
P14
P13

)∆34
2

(P12)
∆1+∆2+J1

2 (P34)
∆3+∆4

2

∑
s

G
(p)
O,s(u, v)Q

(s)(Pi;Z1) . (4.74)

Notice that we have two different labels in the above expressions. In particular, p labels

the different structures of the three point function ⟨ϕ1(P1;Z1)ϕ2(P2)O(P ;Z)⟩, where the

exchanged operator must be in the symmetric and traceless representation of SO(d), while

s labels the independent tensor structures of the four point function.

For generic spin J1, p can take min(J, J1)+1 values, whereas s can can be any of J1+1

possibilities. In particular, each of these J1+1 possible tensor structures for the four point

function is given by:

Q(s) (Pi;Z1) = V J1−s
1,23 V s

1,34 , (4.75)

where s ∈ {0, . . . , J1}. Hence, the spinning conformal correlator can be written as:

⟨ϕ1(P1;Z1)ϕ2(P2)ϕ3(P3)ϕ4(P4)⟩ =(
P24
P14

)∆12+J1
2

(
P14
P13

)∆34
2

(P12)
∆1+∆2+J1

2 (P34)
∆3+∆4

2

∑
O

∑
p,s

λ
(p)
12Oλ34O V

J1−s
1,23 V s

1,34G
(p)
O,s(u, v) .

(4.76)

Let us now restrict to J1 = 1. For this case, p can only be one of two values, p = 1, 2.

This, however, is only if one assumes that the exchanged operator has spin J ≥ 1. For

J = 0, only one of these two structures of the associated three point function remains.
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Moreover, the only independent four point function tensor structures are:

Q(1) (Pi;Z1) = V1,23 , Q(2) (Pi;Z1) = V1,34 . (4.77)

Thus, the previous expression for the spinning correlator (4.76) becomes:

⟨ϕ1(P1;Z1)ϕ2(P2)ϕ3(P3)ϕ4(P4)⟩ =(
P24
P14

)∆12+J1
2

(
P14
P13

)∆34
2

(P12)
∆1+∆2+J1

2 (P34)
∆3+∆4

2

∑
O

2∑
p=1

λ
(p)
12Oλ34O

(
V1,23G

(p)
O,1(u, v) + V1,34G

(p)
O,2(u, v)

)
.

(4.78)

We can choose to organize the above expression differently, namely by the tensor structures

of the four point function. By doing so, we get:

⟨ϕ1(P1;Z1) . . . ϕ4(P4)⟩ =

(
P24
P14

)∆12+J1
2

(
P14
P13

)∆34
2

(P12)
∆1+∆2+J1

2 (P34)
∆3+∆4

2

∑
O

(
V1,23 f1(u, v) + V1,34 f2(u, v)

)
,

(4.79)

with

f1(u, v) =

2∑
p=1

λ
(p)
12O λ34OG

(p)
O,1(u, v) , f2(u, v) =

2∑
p=1

λ
(p)
12O λ34OG

(p)
O,2(u, v) . (4.80)

4.3.2.1 From the Casimir differential equation

We have previously defined the Casimir differential operator as C ≡ −1
2L

2, where the

(d + 2)−dimensional rotations generator LAB was given in (4.6). However, in this case

where one of the operators has non zero spin, we must instead use [44]:

LAB
i = PA

i ∂
B
Pi
− PB

i ∂
A
Pi

+ ZA
i ∂

B
Zi
− ZB

i ∂
A
Zi
, (4.81)

which accounts for the Zi encoding the spin. In particular, we will only need this expression

for the generator acting at position i = 1.

Thus, acting with−1
2

(
LAB
1 + LAB

2

) (
L1,AB + L2,AB

)
(where LAB

1 is given by (4.81) and

LAB
2 by (4.6)) on the four point function (4.76), we obtain the desired Casimir differential

equation for the spinning conformal blocks. For J1 = 1, acting with the Casimir operator

in (4.79) and separating the V1,23 and V1,34 dependence of the Casimir equation, we obtain

two coupled differential equations for f1 and f2. These are given in appendix C.1 by (C.1)

and (C.2).

In order to solve these differential equations and obtain the conformal blocks, we need

to provide boundary conditions. For this, we will take the OPE ϕ1 × ϕ2, by making use of
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the leading order (in x12) OPE between two spinning operators [12]:

ϕ1(x1, z1)ϕ2(x2, z2) ≈

≈ 1

J !(h− 1)J

O(x2, Dz)

(x12)
∆1+∆2−τ+J1+J2

2

∑
p

λ
(p)
12O t

(p)
J (−x12, z, I(x12) · z1, z2) ,

(4.82)

where t
(p)
J are the tensor structures of the associated three point function

⟨ϕ1(x1; z1)ϕ2(x2; z2)O(x; z)⟩, which we defined in (2.68), and the superscript p labels each

of these structures and associated OPE coefficients as before.

In our case, this expression is even simpler because ϕ2 is a scalar and as such there is

no dependence on z2. Moreover, one can easily check that we only have two independent

tensor structures:

t
(1)
J (x12, z, z1) ≡ (x12 · z)J (x12 · z1) , t

(2)
J (x12, z, z1) ≡ (x12 · z)J−1 (z · z1)x212 . (4.83)

Notice that, as stated above, for J = 0 only t
(1)
J (x12, z, z1) exists.

Therefore, taking the aforementioned OPE in the four point function and replacing

(4.83) in (4.82) we find:

WO(x1, x2, x3, x4) ∼
x4→∞

1

J ! (h− 1)J

λ34O (x23 ·Dz)(
x212
)∆1+∆2−τ+1

2
(
x223
)∆3−∆4+τ̄

2

×
(
λ
(1)
12O (x12 · z)J (x12 · z1) + λ

(2)
12O (x12 · z)J−1 (z · z1)x212

)
, (4.84)

where for simplicity we have used conformal symmetry to send the point x4 to infinity in

the last step. In order to proceed, we need to know how to act with the contracted Todorov

operator in the z polynomial inside the brackets. In fact, there are two crucial equations

for this purpose, which can be found in [11, 47], respectively:

πa1...aJ ,b1...bJ =
1

J !(h− 1)J
Da1 . . . DaJ zb1 . . . zbJ ,

xa1 . . . xaJ πb1...bJa1...aJ
yb1 . . . ybJ = cd,J

(
x2y2

)J
2
Ch−1
J (x̂ · ŷ) ,

(4.85)

where cd,J ≡ J !
2J (h−1)J

. Combining both equations of (4.85), it is then straightforward to

compute the action of (x23 · Dz) on the first term inside the parenthesis in (4.84). The

second one, though, requires a clever manipulation, namely:

(x23 ·Dz) (x12 · z)J−1 (z · z1) =
1

J

d

dw

[
(x23 ·Dz)

(
z · (x12 + w z1)

)J ]∣∣∣∣
w=0

, (4.86)

where w is a parameter we have introduced, but that must be taken to zero at the end.
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The term inside the brackets on the last line of this expressions can be treated similarly

as the first term, by applying (4.85). Then, we must take the derivative of the outcome

with respect to w and evaluate it at zero. Naturally, the result will contain derivatives of

Gegenbauer polynomials.

After performing the aforementioned computations, the outcome is given by:

WO(x1, x2, x3, x4) ∼
λ34O cd,J(

x212
)∆1+∆2−∆+1

2
(
x223
)∆3−∆4+∆

2

×

λ(1)12O (x12 · z1)Ch−1
J (ζ) +

λ
(2)
12O

(x212)
1/2(x223)

1/2

(
(x12 · z1) (x212)1/2(x223)1/2Ch−1

J (ζ)

+
(
(x12 · x23)(x12 · z1) + (x23 · z1)x212

)
Ch−1 ′

J (ζ)

)]
,

(4.87)

where

ζ = x12·x23

(x2
12)

1/2(x2
23)

1/2 , (4.88)

and the prime in the last term denotes the derivative of the Gegenbauer polynomial with

respect to its argument. Note that if written in terms of cross ratios and the basic building

blocks, we could identify from (4.87) the exact expression for the leading order of the

conformal blocks.

In order to obtain a simpler expression out of (4.87), we will consider the lightcone

limit (x212 → 0), which will allow us to retain only the dominant term of the Gegenbauer

polynomials. Moreover, within this limit, we will also expand around v ∼ 1. This ex-

pansion not only simplifies the expressions, but also focuses on the exchanged primary,

associated with the leading term in (1− v). This allows us to fix the normalization of the

conformal blocks, such as to be consistent with the normalization of the associated three

point functions. The outcome of this procedure, will act as boundary conditions and later

help us fix the solution of the Casimir equations.

Performing the aforementioned expansions, keeping terms up to subleading order, and

expressing the obtained result in terms of the cross ratios and the basic building blocks,
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we obtain:

WO(x1, x2, x3, x4) ∼

u
τ
2 λ34O

2J
(
x212
)∆1+∆2+1

2
(
x213
)∆3−∆4

2

[
V1,23

(
λ
(1)
12O

[
(v − 1)J − J(J−1)

J+h−2 u (v − 1)J−2
]

(4.89)

−λ(2)12O
2 (J−1)
J+h−2 u (v − 1)J−2

)
+ V1,34

(
λ
(1)
12O u (v − 1)J + 2λ

(2)
12O u (v − 1)J−1

)]
.

Comparing this expression with (4.79), projected to the physical space and in the

conformal frame where x4 →∞, yields the following identification of f1 and f2:

f1(u, v) ∼
u→0
v→1

λ
(1)
12O λ34O

(
u

τ
2 (12(v − 1))J − J(J−1)

4(J+h−2) u
τ+2
2 (12(v − 1))J−2

)
− λ(2)12Oλ34O

J−1
2(J+h−2) u

τ+2
2 (12(v − 1))J−2 ,

f2(u, v) ∼
u→0
v→1

λ
(1)
12Oλ34O u

τ+2
2 (12(v − 1))J + λ

(2)
12Oλ34O u

τ+2
2 (12(v − 1))J−1 .

(4.90)

Although these results concern the spinning case, it is interesting to notice that the leading

term of f1, i.e. f1(u, v) ∼ u
τ
2 (v − 1)J , behaves exactly like the leading order term of the

scalar conformal block for u→ 0 (4.63), near v ∼ 1. The reason why it is f1 that satisfies

this and not f2, is because f2 is subleading in u comparatively to f1. In due turn, this

difference between the two functions stems from the different dependencies in u of the

structures they are associated with (V1,23 with f1 and V1,34 with f2). Indeed, taking into

account the definition of these building blocks (2.65), one immediately sees that V1,34 does

not depend explicitly on x212 ∼ u, which is not the case for V1,23. In order to compensate

for this difference, such that the two terms inside brackets in (4.79) are of the same order

in u, f2(u, v) needs to be subleading in comparison with f1(u, v). The importance of these

two equations lies in their role as boundary conditions.

Let us return to the differential equations in the appendix C.1. Bearing in mind the

asymptotic behavior of the functions fi(u, v) in (4.90), it is reasonable to propose the

following ansatz:

f1(u, v) =
∞∑

m=0

u
∆−J

2
+m g

(1)
O,m(v) , f2(u, v) =

∞∑
m=0

u
∆−J+2

2
+m g

(2)
O,m(v) . (4.91)

Plugging these into the coupled differential equations and expanding them for small u, we

find that up to subleading order, the only contributions come from g
(1)
O,0(v), g

(2)
O,0(v) and their

derivatives. Initially, however, we restrict the analysis to leading order, since interestingly,

one of the differential equations decouples and becomes a differential equation solely for
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g
(1)
O,0(v), as can be seen in (C.3). This was to be expected given that f2 is an order higher

in u than f1.

In order to proceed, we once again make use of the asymptotics to specify the v depen-

dence of g
(1)
O,0(v):

g
(1)
O,0(v) =

∞∑
k=0

c
(1)
O,0,k (1− v)J+k . (4.92)

Earlier in section 4.2.3, we saw that the conformal blocks could be expanded in terms of

hypergeometric functions of (1− v). Given the definition of this function, this corresponds

to a series in powers of (1−v), which is precisely what we are proposing. We then expect the

coefficients c
(1)
O,0,k to be such that (4.92) corresponds to a sum of hypergeometric functions.

Inserting the above definition for g
(1)
O,0(v) in (C.3), we obtain an equation relating dif-

ferent coefficients c
(1)
O,0,k, from which we can extract the following recurrence relation:

c
(1)
O,0,k =

1

4k(∆ + J + k − 1)

[
(∆12 −∆− J − 2k + 5) (∆ +∆34 + J + 2k − 6) c

(1)
O,0,k−2

+
(
18− 11J + J2 +∆(2J + 8k − 11) + 8 J k + 8k2 − 26k +∆34(∆ + J + 2k − 1)

+∆2 −∆12 (∆ +∆34 + J + 2k − 2)
)
c
(1)
O,0,k−1

]
(4.93)

with

c
(1)
O,0,k = 0 (k < 0) , c

(1)
O,0,0 =

(
−1

2

)J

λ
(1)
12Oλ34O . (4.94)

Note that, after choosing an initial condition, the rest of the coefficients become completely

fixed.

Next, we take the expansion in u to subleading order. Doing so, results in the differ-

ential equation (C.4) for g
(2)
O,0(v), which is coupled to g

(1)
O,0(v). However, since we known

the expansion coefficients of the latter, we may proceed analogously, such as to obtain

a recurrence relation for the expansion coefficients of g
(2)
O,0(v) in terms of the coefficients

c
(1)
O,0,k. From (4.90), it seems plausible to propose:

g
(2)
O,0(v) =

∞∑
k=0

c
(2)
O,0,k (1− v)J−1+k . (4.95)
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Replacing this in the differential equation (C.4), gives us the following recurrence relation

for c
(2)
O,0,k:

c
(2)
O,0,k =

1
2 k(∆+J−1+k)

[
(∆−∆34 + J + 2k − 2)c

(1)
O,0,k−1 − (∆−∆12 + J + 2k − 5)c

(1)
O,0,k−2

]
+ 1

4k(∆+J−1+k)

[(
14 + J(J + 8k − 9)− 22k + 8k2 +∆2 +∆(2J + 8k − 9)+

+∆34(∆ + J + 2k − 3)−∆12 (∆ +∆34 + J + 2k − 2)
)
c
(2)
O,0,k−1

− (∆−∆12 + J + 2k − 5) (∆ +∆34 + J + 2k − 4) c
(2)
O,0,k−2

]
, (4.96)

with initial conditions:

c
(2)
O,0,k = 0 (k < 0) , c

(2)
O,0,0 =

(
−1

2

)J−1

λ
(2)
12Oλ34O . (4.97)

Therefore, we get that in the lightcone limit (u → 0) the functions f1 and f2 can be

expanded as:

f1(u, v) ∼
u→0

u
τ
2

∞∑
k=0

c
(1)
O,0,k (1− v)

J+k , f2(u, v) ∼
u→0

u
τ+2
2

∞∑
k=0

c
(2)
O,0,k (1− v)

J−1+k , (4.98)

with the coefficients given by (4.93) and (4.96).

To proceed, we would have to analytically continue the above equations. This is not

straightforward, as the discontinuity does not commute with the sum. Alternatively, we

could write these in some other representation, which would make the analytic continuation

easier. In particular, we have seen in the scalar case (4.32) that at each order in u, we have

a finite sum of hypergeometric functions. Therefore, it is natural to expect that the two

sums in (4.98) are equivalent to a linear combination of some hypergeometrics. Indeed,

as we will see next, this turns out to be true. After knowing the specific coefficients of

this linear combination, it would be easier to analytically continue f1 and f2, given that

we know the discontinuity of the hypergeometric (see appendix B). Afterwards, we would

take the limit v → 1, so as to obtain the boundary conditions for the Casimir differential

equations. If considered in the region u ∼ 0 and v ∼ 1, these equations combined with

the aforementioned boundary conditions, would give us the conformal blocks in the Regge

limit. Expressing these functions in the σ, t cross ratios and bearing in mind the scalar

result (4.72), one would expect to observe the characteristic σ1−J behavior of the Regge

limit in the function f1, which is the leading order function. As for f2, it would be one

order higher.
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4.3.2.2 From the action of differential operators

We will now compute the same conformal blocks by means of the procedure from section

4.2.4. In particular, we will stick to the case of J1 = 1, such that we may compare with

the results from the previous section.

The starting point of this method, is to figure out all the possible differential operators

we must act accordingly to (4.53), in order to obtain the desired conformal partial waves.

In our case, we only have to act with Dleft, since Dright acts on positions x3 and x4, where

we have scalars. It is not difficult to see that there are only two possibilities for Dleft in

this case:

D11W
1,0
O , D12W

0,1
O , (4.99)

whereW k1,k2
O is the scalar conformal partial wave with the appropriate shifts in the external

conformal dimensions ∆1 and ∆2.

The two quantities of (4.99) are simple to obtain, given that we have the definition of

the Dij operators in (4.47). Thus, acting with these operators and expressing the outcome

in terms of cross ratios and the basic building blocks, and excluding the pre-factors, we

get:

F (1)(u, v;Vi,jk) = −
v

2
V1,23

(
(1 + ∆12)G

1,0
O (u, v) + 2(1− v)∂vG1,0

O (u, v)− 2u∂uG
1,0
O (u, v)

)
− 1

2
uV1,34

(
(1 + ∆12)G

1,0
O (u, v)− 2 v ∂v G

1,0
O (u, v)− 2u ∂uG

1,0
O (u, v)

)
,

F (2)(u, v;Vi,jk) =
1

2
v V1,23

(
(∆12 − 1)G0,1

O (u, v) + 2u ∂uG
0,1
O (u, v)

)
− 1

2
uV1,34

(
(1−∆12 +∆34)G

0,1
O (u, v)− 2 v ∂v G

0,1
O (u, v)

)
,

(4.100)

where we have respectively designated D11W
1,0
O and D12W

0,1
O , up to the pre-factor, by

F (1)(u, v;Vi,jk) and F
(2)(u, v;Vi,jk). Similarly to the notation used for the conformal partial

waves, Gk1,k2
O (u, v) denotes the scalar conformal block with shifts in the external conformal

dimensions, ∆1 → ∆1 + k1 and ∆2 → ∆2 + k2.

In order to identify the functions f1 and f2 of (4.79) from the two quantities in (4.100),

we first have to express F1 and F2 in the standard basis. To do this, we first recognize that

up to a pre-factor, the conformal partial wave in the standard basis is going to be given

by a linear combination of F1 and F2:

a1 F
(1)(u, v;Vi,jk) + a2 F

(2)(u, v;Vi,jk) , (4.101)
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given that standard basis elements can be expressed in the differential basis, according to

the inverse relation of (4.49).

As already explained above (4.100), the coefficients a1 and a2 can be found from the

relation between the three point function ⟨ϕ1(P1;Z1)ϕ2(P2)O(P )⟩ (which is one of the cou-

plings characterizing the conformal partial wave) in the differential basis and the standard

basis. In particular, these can be fixed by imposing the following equality:

⟨ϕ1(P1;Z1)ϕ2(P2)O(P3)⟩ = a1D11

[
∆1 + 1 ∆2 ∆

0 0 J

0 0 0

]
+ a2D12

[
∆1 ∆2 + 1 ∆

0 0 J

0 0 0

]
⇔ (4.102)

λ
(1)
12O

[
∆1 ∆2 ∆

1 0 J

0 0 0

]
+ λ

(2)
12O

[
∆1 ∆2 ∆

1 0 J

0 1 0

]
= a1

{
∆1 ∆2 ∆

1 0 J

0 0 0

}
+ a2

{
∆1 ∆2 ∆

1 0 J

0 1 0

}
.

Since we know how to write the standard basis elements from (4.43) and also how to act

with the differential operators, we can easily write (4.102) in the embedding space, from

which we find the coefficients to be given by:

a1 =
2 J λ

(1)
12O + λ

(2)
12O (1−∆+ J −∆12)

2 J(∆− 1)
, a2 =

2 J λ
(1)
12O − λ

(2)
12O (1−∆− J +∆12)

2 J(∆− 1)
.

(4.103)

Replacing these in (4.101) and comparing with (4.79), we identify the functions f1 and f2:

f1(u, v) =
v

4J(∆− 1)

[(
2Jλ

(1)
12O − (1−∆− J +∆12)λ

(2)
12O

)(
(∆12 − 1)G0,1

O + 2u ∂uG
0,1
O

)
−
(
2Jλ

(1)
12O + (1−∆+ J −∆12)λ

(2)
12O

)(
(1 + ∆12)G

1,0
O (u, v) + 2(1− v) ∂vG1,0

O

−2u ∂uG1,0
O

)]
, (4.104)

f2(u, v) =
u

4J(∆− 1)

[(
2Jλ

(1)
12O − (1−∆− J +∆12)λ

(2)
12O

)(
(∆12 −∆34 − 1)G0,1

O

−2v∂vG0,1
O

)
−
(
2Jλ

(1)
12O + (1−∆+ J −∆12)λ

(2)
12O

)(
(1 + ∆12)G

1,0
O

−2v ∂vG1,0
O − 2u ∂uG

1,0
O

)]
, (4.105)

where for simplicity, we have suppressed the dependency of the conformal blocks in the

cross ratios.

We could now test whether or not (4.104) and (4.105) are consistent with the results

we obtained from the Casimir equation in the previous section. For this, we consider the

limit u→ 0, where the leading term of the scalar conformal block is given by (4.63).

First, we found by expanding (4.104) and (4.105) for small u, keeping only leading order

terms, and considering these expressions near v ∼ 1, that we obtain the same asymptotics
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for f1(u, v) and f2(u, v) as the ones in (4.90).

Additionally, we have also replaced the scalar conformal block in (4.104) and (4.105)

by (4.63), taking into account the dimension shifts, and expanded the expressions around

v ∼ 1. Doing so, we have confirmed that the coefficients of this expansion satisfied pre-

cisely the recurrence relations of (4.93) and (4.96), which we had found previously for the

expansion in powers of (1− v). Given that the scalar conformal block is given in terms of

a hypergeometric function, this confirms our previous suspicion that the coefficients c
(i)
O,0,k

(i = 1, 2), give a sum of hypergeometric functions of argument (1− v) in (4.92) and (4.95).

Therefore, we are confident that we have obtained the same expansion of the conformal

blocks in the limit u→ 0, as the one in (4.98). This demonstrates the coherence between

both approaches.

Next, we will analytically continue the functions fi(u, v), to later analyze them in the

Regge limit. We start by expressing (4.104) and (4.105) more compactly as:

fi(u, v) = DiGO(u, v) , i = 1, 2 , (4.106)

where Di are differential operators, which also encode the necessary dimensions shifts in

the scalar conformal blocks. Because the analytical continuation path we consider here, is

the one represented in figure 4.5, we will most likely pick up a discontinuity. Consequently,

when analytic continued, these functions gain an extra term:

f⟲i (u, v) = DiGO(u, v) + Disc
[
DiGO(u, v)

]
. (4.107)

Computing the above discontinuity could in practice be something non trivial. However,

we have verified for a few cases, namely for hypergeometric functions, that the disconti-

nuity commutes with derivatives. Therefore, because the scalar conformal block consists

on a hypergeometric function and other terms without discontinuities, these two things

commute:

Disc
[
DiGO(u, v)

]
= Di

(
Disc

[
GO(u, v)

])
. (4.108)

Moreover, it was seen before that the discontinuity term dominates in the Regge limit.

Therefore, we can ignore the first term in the RHS of (4.107), such that the analytically

continued fi(u, v)’s are given by:

f⟲i (u, v) = Di

(
Disc

[
GO(u, v)

])
. (4.109)
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We could now think that, since we know the discontinuity of the scalar conformal block in

the Regge limit, we could replace it in the above expression and obtain the fi(u, v) in the

same limit. It turns out this is doable in our case, although the reason is not trivial. Note,

however, that this is not valid in every case, such that caution is needed. Indeed, let us

analyze the differential operators Di expressed in the σ, t cross-ratios. Each of these can

be separated according to:

D1 = D(0)
1 +D(1)

1

D2 = D(1)
2 +D(2)

2 ,
(4.110)

where the upper label in each D
(j)
i , denotes by how much the differential operator raises

the degree in σ. In turn, these are given as

D(0)
1 =

1

4J(∆− 1)

{
a (∆12−1+σ∂σ+2t∂t) Σ

0,1−b (∆12+1+σ∂σ−2t∂t) Σ1,0
}
, (4.111)

D(1)
1 = − σ√

t
D(0)

1 , D(1)
2 =

t
3
2 σ

J(∆− 1)

{
−a ∂tΣ0,1 + b ∂tΣ

1,0
}
, (4.112)

D(2)
2 =

σ2

4J(∆− 1)

{
a (∆12−∆34−1+4t∂t) Σ

0,1 + b (∆12+1− σ∂σ+2t∂t) Σ
1,0
}
, (4.113)

where we have made the following definitions for convenience:

a = 2 J λ
(1)
12O + (τ̄ −∆12 − 1)λ

(2)
12O , b = 2 J λ

(1)
12O − (τ +∆12 − 1)λ

(2)
12O , (4.114)

and we recall that Σk1,k2 denotes the shifts in the external dimensions ∆1,2.

Looking carefully at these expressions, we observe that the differential operators either

keep or raise the degree in σ but never decrease it. Crucially, this trait of the operators is

what makes it valid to replace Disc GO by its Regge limit behavior (4.72). Indeed, taking

into the account the leading behavior of the scalar conformal block in the Regge limit, it

is reasonable to say that the functions f⟲i can be given as:

f⟲i (σ, t) = Di

∞∑
m=0

σ1−J+m gm(t) , (4.115)

where gm(ξ) are some functions of the fixed cross-ratio t. In particular, g0(t) is found by

changing the t dependence of (4.72) to t.

Now, as we have seen, the differential operators either keep or increase the degree in σ.

Therefore, we have:

f⟲1 (σ, t) =
(
D(0)

1 +D(1)
1

)
σ1−J

(
g0(t) + σ g1(t) + . . .

)
,

f⟲2 (σ, t) =
(
D(1)

2 +D(2)
2

)
σ1−J

(
g0(t) + σ g1(t) + . . .

)
.

(4.116)
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In the Regge limit, where we take σ → 0, the leading order terms in these functions are:

f⟲1 (σ, t) ∼
σ→0
D(0)

1 σ1−Jg0(t) , f⟲2 (σ, t) ∼
σ→0
D(1)

2 σ1−Jg0(t) . (4.117)

The term σ1−J g0(t), however, is precisely the Regge behavior of Disc GO(σ, t).

Thus, by making this replacement and keeping only the leading term of the differential

operators D
(j)
i , we find the leading behavior of f⟲i (σ, t) in the Regge limit to be:

f⟲1 (σ, t) ≈ σ1−J t
∆−1
2

2J

{
t
(d− 2)(a C̃−1 − b C̃1)

2(∆ + 1)− d 2F1

(
d

2
,∆,∆− d

2
+ 2, t

)

+
a (τ +∆12 − 1) C̃−1 − b (τ̄ +∆12 − 1) C̃1

2(∆− 1)
2F1

(
d

2
−1,∆−1,∆− d

2
+1, t

)}
, (4.118)

and

f⟲2 (σ, t) ≈ σ2−J t
∆
2

2J

(
b C̃1 − a C̃−1

) {
2F1

(
d

2
− 1,∆− 1,∆− d

2
+ 1, t

)

+ t
2(d− 2)

2(∆ + 1)− d 2F1

(
d

2
,∆,∆− d

2
+ 2, t

)}
, (4.119)

where:

C̃k12 = (−1)J+121−τ̃ Ck12 , (4.120)

with Ck12 defined in (4.67).

Looking at the above equations for the fi functions, we detect once again the char-

acteristic leading order behavior of the Regge limit σ1−J , and f2 being subleading in σ

(or equivalently u) with respect to f1, by the same reasons we gave below (4.90). These

two properties are also expected to be found in the results obtained in the last subsection,

namely (4.98), since as previously mentioned, we checked that the expansion coefficients

of (4.104) and (4.105) obeyed the recurrence relations (4.93) and (4.96).

4.3.2.3 From the lightcone expansion

We will now obtain the conformal blocks of the same spinning four point function, by

taking the Lorentzian lightcone OPE (2.94). We will keep the discussion for generic spin

J1.

We start by performing the OPE ϕ3 × ϕ4 between the two scalar operators. Similarly

to the scalar correlator, the resulting integral defines a hypergeometric function whose

arguments are easily identified. Moreover, given that a spinning three point function arises

from the OPE, we will need to have a sum over the possible three-point structures. In
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particular, we will only need one sum over ℓ, labeling these structures, as the correlator

is of the type spinJ1 − scalar− spin J . After undergoing all of these steps, the four point

function can be organized as:

⟨ϕ1(x1, z1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ ≈(
x2
24

x2
14

) τ̄12
2
(
x2
14

x2
13

) τ̄34
2

(
x212
) τ̄1+τ̄2

2
(
x234
) τ̄3+τ̄4

2

∑
O

min(J1,J)∑
ℓ=0

λ
(ℓ+1)
12O λ34OG

(ℓ+1)
O (u, v;Vi,jk, Hij) . (4.121)

Note that in contrast with expression (4.74), where we separated the cross ratios function

GO,s(u, v) from the structuresQ(s)(Pi;Zi), here we denote everything byG
(ℓ)
O (u, v;Vi,jk, Hij).

These functions, which include both the dependence on the cross ratios and the indepen-

dent tensor structures of the four point function, are the conformal blocks, in accordance

with what was said below (4.56). Moreover, notice the label of the OPE coefficients and

the conformal blocks, which we chose to be ℓ+ 1 rather than ℓ. This was done in order to

maintain consistency with all of the above results, where we have labeled the three point

structures with p and started at p = 1 (see 4.73 for example).

By undertaking the aforementioned steps, we found that these conformal blocks are

given by:

G
(ℓ+1)
O (u, v;Vi,jk, Hij) = (4.122)

J1−ℓ∑
m=0

J1−ℓ−m∑
n=0

V J1−ℓ−n
1,23 V ℓ+n

1,34

(−1
2 )

J

(
τ̄+∆34

2

)
m

(
τ̄−∆34

2

)
J1−ℓ−m

(τ̄)J1−ℓ

(
J1 − ℓ
m

)(
J1 − ℓ−m

n

)
× u

τ
2
+ℓ+n (1− v)J−ℓ vJ1−ℓ−n

2F1

(
τ̄+J1−∆12

2 − ℓ, τ̄+∆34
2 +m, τ̄ + J1 − ℓ, 1− v

)
.

There are a few things in the above expression worth being noted. The first is that the

sums in m and n resulted from the binomial expansion of terms with V1,23, V1,34 and the

cross ratios. Additionally, we observe that the combined exponents of both V1,23 and V1,34

is such that z1 has degree J1. This had to be the case in order for the result to be consistent

with the formalism of the null polarization vectors.

As usual, we now analytically continue this result, by following the same reasoning of

the scalar case. In particular, we first take v to go around 0 and then take v ∼ 1, such that

we find ourselves in the region of the Regge limit (u→ 0, v → 1). Afterwards, we keep only

the discontinuity term, which dominates in the Regge limit, and express the result in the
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σ, t cross ratios. Doing so we find:

G
⟲ (ℓ+1)
O (σ, t;Vi,jk, Hij) =

J1−ℓ∑
m=0

J1−ℓ−m∑
n=0

V J1−ℓ−n
1,23 V ℓ+n

1,34 A
(ℓ)
m,n

× t
∆+J1−1

2 σ1−J−J1+2ℓ+2n
kmax∑
k=0

B
(ℓ)
k

(
σ√
t

)k

, (4.123)

where

A(ℓ)
m,n = (−1

2)
J

(
τ̄+∆34

2

)
m

(
τ̄−∆34

2

)
J1−ℓ−m

(τ̄)J1−ℓ

(
J1 − ℓ
m

)(
J1 − ℓ−m

n

)
× 2πi (−1)

J1+∆12−∆34
2 −m−1 Γ(τ̄+J1−ℓ) Γ(τ̄+J1−ℓ−1)

Γ

(
τ̄+J1+∆12

2

)
Γ

(
τ̄+J1−∆12

2 −ℓ

)
Γ

(
τ̄−∆34

2 +J1−ℓ−m

)
Γ

(
τ̄+∆34

2 +m

) , (4.124)

B
(ℓ)
k =

(
τ̄+J1+∆12

2
−1
)
k

(
τ̄−∆34

2
+J1−ℓ−m−1

)
k

k! (τ̄+J1−ℓ−2)k
, kmax =

∆34 −∆12 − J1 + 2m− 2

2
. (4.125)

Notice, in the last line of (4.123), that we have kept several orders in σ. In due turn, these

stemmed from the choice of also keeping several orders in the expansion around v ∼ 1

of the hypergeometric emerging in the analytic continuation (see section 4.3.1.2). This is

necessary because the sums over m and n of the first leading order terms vanish for some

of the cross ratios functions multiplying the structures. In particular, the subleading order

up to which we must take this expansion, such that we can obtain the leading behavior

of all of these cross ratios functions, depends on J1. In reality, because some of the terms

in the above expression are actually zero when we take the sums, we should find a better

formula that already accounts for this. Unfortunately, there was not enough time to do

this, such that it remains a goal for the future.

To test this expression, we could set J1 = 1 and see if it is consistent with the previous

results. Indeed, this expression predicts f1(σ, t) ∼ t
∆−1
2 σ1−J and f2(σ, t) ∼ t

∆
2 σ2−J ,

which is precisely the leading behavior obtained with the differential operators method

(see (4.118) and (4.119)).

However, recall that the above result only serves as boundary conditions, which we

could use to fix the solutions of the corresponding Casimir differential equations in the

Regge limit. Here we will refrain from undertaking this procedure as the computations are

too extensive. Nonetheless, by the same reasoning of (4.70), we expect each cross ratios

function multiplying a structure, to have the same leading σ dependence we found here,

combined with a function of the fixed cross ratio t.
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4.3.3 Spin J1-Spin J2-Scalar-Scalar

The last case we will consider here, is the generic four-point function of two nonzero

spin operators and two scalars, ⟨ϕ1(x1; z1)ϕ2(x2; z2)ϕ3(x3)ϕ4(x4)⟩. We will only compute

the spinning conformal blocks by applying the Lorentzian lightcone OPE (2.94), as the

necessary computations for generic spins are simpler than the ones for the Casimir equation

procedure. Moreover, we do not consider the differential operators method as it would

require us to specify the spins of the external operators.

4.3.3.1 With the Lorentzian lightcone OPE

The procedure is equivalent to what was done in the case of one external spinning operator.

The only difference is that the spinning three point function resulting from the OPE ϕ3×ϕ4

is of the type spin J1 − spin J2 − spin J , such that we will have a sum over three indices,

ℓ0, ℓ1, ℓ2, instead of just one.

By undertaking the same kind of steps, we find that this correlator can be written as:

⟨ϕ1(x1, z1)ϕ2(x2, z2)ϕ3(x3)ϕ4(x4)⟩ ≈

(
x2
24

x2
14

) τ̄12
2
(
x2
14

x2
13

) τ̄34
2

(
x212
) τ̄1+τ̄2

2
(
x234
) τ̄3+τ̄4

2

×

∑
O

min(J1,J2)∑
ℓ0=0

min(J,J2)∑
ℓ1=0

min(J,J1)∑
ℓ2=0

λ
(ℓ̃0,ℓ̃1,ℓ̃2)
12O λ34OG

(ℓ̃0,ℓ̃1,ℓ̃2)
O (u, v;Vi,jk, Hij) , (4.126)

where ℓ̃i = ℓi + 1 and the conformal blocks are given by:

G
(ℓ̃0,ℓ̃1,ℓ̃2)
O (u, v;Vi,jk, Hij) = (4.127)

J1−ℓ0−ℓ2∑
m=0

J1−ℓ0−ℓ2−m∑
n=0

J2−ℓ0−ℓ1∑
p=0

ℓ1∑
q=0

Hℓ0
12 V

J1−ℓ0−ℓ2−n
1,23 V l2+n

1,34 V p+q
2,13 V

J2−ℓ0−p−q
2,14

×
(
J1 − ℓ0 − ℓ2

m

)(
J1 − ℓ0 − ℓ2 −m

n

)(
J2 − ℓ0 − ℓ1

p

)(
ℓ1
q

)

× (−1)ℓ0+ℓ1−J2−q(−1
2)

J

(
τ̄−∆34

2

)
J1+J2−2ℓ0−ℓ1−ℓ2−m−p

(
τ̄+∆34

2

)
m+p

(τ̄)J1+J2−2ℓ0−ℓ1−ℓ2

× vJ1−ℓ0+ℓ1−ℓ2−n−q u
τ
2
+ℓ2+n (1− v)J−ℓ1−ℓ2

× 2F1

(
τ̄−∆12+J1+J2

2 − ℓ0 − ℓ2, τ̄+∆34
2 +m+ p, τ̄ + J1 + J2 − 2ℓ0 − ℓ1 − ℓ2, 1− v

)
.
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Once again, we now analytically continue this expression and keep only the discontinuity

terms. Expanding around v ∼ 1 and expressing the result in the cross ratios σ, t, we find:

G
⟲ (ℓ̃0,ℓ̃1,ℓ̃2)
O (u, v;Vi,jk, Hij) =

J1−ℓ0−ℓ2∑
m=0

J1−ℓ0−ℓ2−m∑
n=0

J2−ℓ0−ℓ1∑
p=0

ℓ1∑
q=0

Hℓ0
12 V

J1−ℓ0−ℓ2−n
1,23 V ℓ2+n

1,34 V p+q
2,13 V

J2−ℓ0−p−q
2,34

× Ã(ℓ0,ℓ1,ℓ2)
m,n,p,q t

∆+J1+J2−2ℓ0−1
2 σ1−J−J1−J2+2ℓ0+2ℓ2+2n

kmax∑
k=0

B̃
(ℓ0,ℓ1,ℓ2)
k

(
σ√
t

)k

,

(4.128)

where

Ã(ℓ0,ℓ1,ℓ2)
m,n,p,q = (−1

2)
J

(
J1 − ℓ0 − ℓ2

m

)(
J1 − ℓ0 − ℓ2 −m

n

)(
J2 − ℓ0 − ℓ1

p

)(
ℓ1
q

)

×
(−1)

J1−J2+∆12−∆34
2 +m+p−q+1

(
τ̄−∆34

2

)
J1+J2−2ℓ0−ℓ1−ℓ2−m−p

(
τ̄+∆34

2

)
m+p

(τ̄)J1+J2−2ℓ0−ℓ1−ℓ2
Γ

(
τ̄+∆34

2 +m+p

)
× 2πiΓ(τ̄+J1+J2−2ℓ0−ℓ1−ℓ2)Γ(τ̄+J1+J2−2ℓ0−ℓ1−ℓ2−1)

Γ

(
τ̄+J1+J2+∆12

2 −ℓ0−ℓ1

)
Γ

(
τ̄+J1+J2−∆12

2 −ℓ0−ℓ2
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Γ

(
τ̄−∆34

2 +J1+J2−2ℓ0−ℓ1−ℓ2−m−p

) , (4.129)

B̃
(ℓ0,ℓ1,ℓ2)
k =

(
τ̄+J1+J2+∆12−2ℓ0−2ℓ1−2

2

)
k

(
τ̄−∆34

2
+J1+J2−2ℓ0−ℓ2−ℓ2−m−p−1

)
k

k! (τ̄+J1+J2−2ℓ0−ℓ1−ℓ−2)k
, (4.130)

kmax =
∆34 −∆12 − J1 − J2 + 2ℓ0 + ℓ1 + 2m+ 2r − 2

2
. (4.131)

Similarly to the one spinning operator case, we keep several orders of the expansion of the

hypergeometric near v ∼ 1, as the sums of the first orders can cancel for certain values

of ℓi. This is why we find the sum over several orders in σ in the last line. To obtain

the leading behavior of each of the cross ratios function multiplying a given structure, the

order of the hypergeometric to which we must take the expansion depends on the external

spins. One test we did do check this result, was to send J2 → 0, ℓ0, ℓ1 → 0 and p, q → 0.

By doing so, we recovered the result of the one spinning operator case.

It is also relevant to stress that the above formula is the main result of this thesis.

Although it does not give us the blocks in the Regge limit, it provides us information

about them, such as its leading σ behavior. Later, we could also use them as boundary

conditions to find the explicit blocks in the Regge limit, by means of the Casimir equations.

Moreover, because correlators with the stress tensor are objects of interest in our context,

we could replace J1 = J2 = 2 in the above formula to see how the corresponding blocks

would behave in the Regge limit.



Chapter 5

Conclusions and future work

To finish off this thesis, we will go over the main results and ideas presented here, as well

as point out the future directions of this work.

We started by introducing the basics of Conformal Field Theories in chapter 2, where

we became aware of the importance of conformal blocks.

We then proceeded to the main topic of this thesis, which is that of locality of the

bulk theory. We kicked off chapter 3 by introducing a quite well known and generally

accepted conjecture, which asserts the necessary conditions a CFT must obey, in order

for its bulk dual to be local at sub-AdS scales. Subsequently, we briefly presented the

key concepts behind the functioning of the holographic cameras, whose signals allow for a

quick inference regarding the locality of the bulk theory. In particular, when considering

the vacuum state, we explained why the the active camera correlator was equivalent to the

Regge limit correlator, such that we could use the results from Conformal Regge theory

to compute the camera’s signal. This was done in [1] for a couple of cases, where the

aforementioned conjecture was seen to hold. However, as this paper only considered scalar

correlators, we believed that a natural extension of this work was to perform the same kind

of analysis, for correlation functions with external spinning operators.

In order to do this, one first needs to compute the conformal blocks of these spinning

four point functions in the Regge limit, such as to later be able to write the correlators in an

integral representation. The first of these two steps was exactly the main focus of chapter

4. We began by presenting three distinct approaches to obtain the conformal blocks: by

solving the Casimir differential equation, by applying the specific differential operators of

[47] and by performing the OPE (either Euclidean or Lorentzian, although we only used

the second). We have also minutely described the procedure to analytically continue the

95
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blocks, having emphasized the required care due to branch cuts and associated disconti-

nuities. After this initial presentation and exemplification for scalar four point functions,

we proceeded to compute the conformal blocks of spin J1-scalar-scalar-scalar correlators in

the Regge limit, by means of the three methods. Given that in this case, the exchanged op-

erator can only be in the symmetric and traceless representation, we were able to compute

all possible conformal blocks. We then moved on to spin J1-spin J2-scalar-scalar corre-

lators, having computed the blocks purely with the Lorentzian OPE, since the necessary

computations were simpler for generic spins Ji (i = 1, 2) in comparison with the other

two approaches. However, contrarily to the previous case, these correlators admit the ex-

change of operators in the antisymmetric or mixed symmetry representations. To compute

the respective conformal blocks one could either solve the Casimir differential equation or

use the construction of [49]. Here, however, the computed conformal blocks concern only

exchanged operators in the symmetric and traceless representation. We inferred that the

different methods are consistent with each other, as they provided matching results for the

same functions. Additionally, we observed the characteristic leading behavior σ1−J of the

conformal blocks in the Regge limit.

Although it was not done here, the next step would be to write these correlation func-

tions in terms of the corresponding Regge limit blocks, analogously to (3.19). Afterwards,

one could choose the N = 4 SYM theory to plot the signal of the camera and compare the

results with those of [1]. It would be interesting to see if this would lead us to find peaks

with a different shape and/or sharpness, which could give us a better understanding.

In the future, it would also be compelling to perform a similar analysis with the cor-

relators ⟨J JJJ ⟩ and ⟨TTTT ⟩, where J is a vector operator and T the stress-tensor. In

particular, the latter has a special relevance because the stress tensor is present in every

CFT and also because the bulk dual is a gravitational theory. Naturally, computing the

conformal blocks in the Regge limit of these functions would be far from as easy task. In

addition to an increase of the computations difficulty, we would also have to consider the

exchange of operators in the antisymmetric and mixed symmetry representations besides

the symmetric one. Nevertheless, it would be interesting to see whether or not these cor-

relators provided us with new information. Moreover, in the context of [48], knowledge of

these correlators’ conformal blocks could also allow us to obtain a bound on the associated

OPE coefficients, such as λTTT .

Furthermore, it would also be interesting to compare the construction of the holographic
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cameras with more recent methods [50, 51], which also aim at a better understanding of

the bulk locality in AdS/CFT.

To finish, we would like to comment on something partly related. Although outside

the context of this thesis, one of the things we are usually interested in computing while

studying a CFT are its OPE coefficients. Because the conformal bootstrap for scalar four

point functions is the best examined case, the majority of the known OPE coefficients

involve two scalars and one spinning operator. On the other hand, OPE coefficients with

more spinning operators remain less studied. To compute these constants we would have

to consider four point functions with spinning external operators. However, as it became

clear in this work, the conformal blocks computations increase significantly in complexity

as we consider more external operators with nonzero spin. Alternatively, we can consider

higher point functions with scalar operators, and impose consistency conditions with which

we could compute the OPE coefficients. Although the conformal blocks for higher point

functions are generally not known in an explicit form, the case of five points functions has

already been studied. In particular, the five point block for a scalar exchange was obtained

in [52] and there have also been some proposals to obtain the spinning five point blocks

[38, 39, 53]. In spite of this, the existing methods for the latter are still unsatisfactory,

as they involve too many sums that lead to larger computational times. However, it was

recently noticed in [14], that a different choice of cross ratios leads to a factorized form of

the conformal blocks. As such, we are presently applying some of the concepts presented

here for four point functions, namely the series expansion associated with the Casimir

differential equation, to compute the conformal blocks of scalar five points functions, with

this choice of cross ratios.





Appendix A

Holographic camera integral (3.19)

by saddle-point approximation

Here we will present the computation of the holographic camera integral (3.19), by means

of the saddle point approximation. We will closely follow what was done in [48], since we

are dealing with a similar kind of integral.

We will start by rewriting the integral in a more practical way. For simplicity, we will

drop the ”bulk” label in the two quantities of (3.21), which from now on are denoted by s

and b, and we will set R = 1. Furthermore, we demonstrate in A.1 that the integrand term

ρ(ν)P 2−d
2

+iν(b), is essentially the harmonic function Ωiν(b) on Hd−1 of [48, 54]. Therefore,

we may rewrite (3.19) as:

G|CRT − 1 ≈ −2i
∫ ∞

0
dν α̃(ν) sJ(ν)−1Ωiν(b) e

− ν2

2
σ2
o . (A.1)

Next, we use the fact that Ωiν can be written in terms of the scalar propagators in hyper-

bolic space Hd−1, which are defined as [54]:

Πiν+ d
2
−1(ρ) =

Γ(iν + d
2 − 1)

2π
d
2
−1Γ(iν + 1)

e−ρ(iν+d/2−1)
2F1

(
iν +

d

2
− 1,

d

2
− 1, iν + 1, e−2ρ

)
. (A.2)

In particular, we have:

Ωiν(ρ) =
iν

2π

(
Πiν(ρ)−Π−iν(ρ)

)
. (A.3)

What is more, α̃(ν) and J(ν) are both even functions of ν, such that the integral domain

can be expanded to −∞. Hence, the correlator becomes:

G|CRT − 1 ≈ 1

π

∫ ∞

−∞
dν ν e [J(ν)−1] ln(s) α̃(ν)Πiν(b) e

− ν2

2
σ2
o . (A.4)
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Before we start discussing the saddle-point approximation let us take one more extra step,

which is that of multiplying by eibν e−ibν . There is no problem in doing so, since this

amounts to multiplying by one. In addition, we shall assume that α̃(ν) might have an

exponential dependency on ν, such that:

α̃(ν) = eα̃e(ν)h(ν) , (A.5)

where α̃e(ν) is a function which characterizes the exponential dependency on ν of α̃(ν),

and h(ν) is a function that represents the remaining behavior of the coefficient functions.

Taking all of these considerations into account, we are able to rewrite (3.19) as:

G|CRT − 1 ≈ 1

π

∫ ∞

−∞
dν e [J(ν)−1] ln(s)− ν2

2
σ2
o+α̃e(ν)−ibν

[
ν eibν h(ν)Πiν(b)

]
≈ 1

π

∫ ∞

−∞
dν e

ln(s)

(
J(ν)−1− σ2

o
2 ln(s)

ν2+
α̃e(ν)
ln(s)

−i b
ln(s)

ν

) [
ν eibν h(ν)Πiν(b)

]
.

(A.6)

The structure of this integral is exactly the same of equation (4.3) in [48], with the exception

of an additional Gaussian factor, which accounts for the optical resolution of the camera.

Importantly, this integral is of the form:

F (λ) =

∫
C
dν g(ν)eλ f(ν) , C = integration contour , (A.7)

which is exactly the general structure of the integrals, in which the saddle-point approx-

imation can be performed to evaluate the asymptotic behavior of F (λ) at large λ. In

particular, in order for this approximation to be valid, certain conditions must be met:

• g(ν) and f(ν) must be analytic functions of ν;

• The integration contour C is, or can be deformed, such that in the large λ limit the

dominant contribution to the integral comes from the neighborhood of the saddle

point ν0, where |f(ν0)| is maximum on the path;

• The integration path traverses ν0 with an orientation that leads to a rapid decrease

of |f(ν)| as we move away from ν0, in any direction of the path;

• In the large λ limit, the integral’s contribution coming from the vicinity of ν0, asymp-

totically approaches the exact value of F (λ);

• g(ν) is a slowly-varying function near the saddle point and does not depend on λ.

When the only significant contribution to the integral comes from the vicinity of a single

saddle point ν0 and the above conditions are satisfied, the result from the saddle-point
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approximation is [55]:

F (λ) ≈
√
2π g(ν0) e

λf(ν0) eiθ

|λf ′′(ν0)|
1
2

≈

√
2π

−f ′′(ν0)λ
g(ν0) e

λf(ν0) ,

(A.8)

where θ = π
2 −

1
2arg(f

′′(ν0)), specifies the direction with which the integral contour must

cross the saddle-point. In other words, this angle specifies the path of steepest descent.

Fortunately, in our case, the aforementioned requirements can be fulfilled, such that

the saddle approximation can be used to evaluate (A.6). In particular, we may identify

the term inside brackets in (A.6), as the slowly varying function g(ν) of (A.7):

g(ν) = ν eibν h(ν)Πiν(b) . (A.9)

This stems from the fact that this term does not have any exponential dependency on ν.

Indeed, one easily sees that eiBν Πiν(B) has no exponential behavior, due to the definition

of the scalar propagator (A.2). Moreover, f(ν) can be identified with:

f(ν) = J(ν)− 1− σ2o
2 ln(s)

ν2 +
α̃e(ν)

ln(s)
− i b

ln(s)
ν , (A.10)

whereas ln(S), which is real and positive, is recognized as the parameter λ, which will be

taken to be large. Furthermore, the saddle-point of (A.6) is defined by:

J ′(ν0) ln(s)− σ2o ν0 + α̃′
e(ν0)− ib = 0 . (A.11)

We stress out that the saddle point is itself a function of b, such that a change in b implies

a variation of the saddle point position.

Before writing the final expression, there is a relevant observation to be made. In

particular, when we expand the integrand of (A.6) around the saddle point, we find:

G|CRT − 1 ≈ eln(S)f(ν0)+iθ

π

∫ ∞

−∞
dν g(ν) e− ln(S)|f ′′(ν0)| (ν−ν0)

2

2
+... , (A.12)

where we are keeping with the notation of f(ν) and g(ν) for simplicity. It is intuitive to

infer that ln(s) |f ′′(ν0)| is essentially the rate at which the integrand decreases, as we move

away from ν0. Therefore, in order to meet the third necessary condition for the viability

of the saddle-point approximation, this rate must be large:

| ln(s) J ′′(ν0)− σ2o + α̃′′
e(ν0)| ≫ 1 . (A.13)
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This condition can always be achieved by making ln(s) large enough, even if the remaining

quantities are small.

Finally, making use of (A.8) and the aforementioned identifications, we get that the

saddle point approximation of the holographic camera signal (3.19) is given by:

G
(
0, p, L; e, p′, L′)∣∣∣

CRT
− 1 ≈

≈ sJ(ν0)−1

π
ν0 h(ν0)Πiν0(b)

√
2π

σ2o − ln(s) J ′′(ν0)− α̃′′
e(ν0)

e−
σ2
o
2
ν20+α̃e(ν0) .

(A.14)

In the limit we are interested (b ≪ ln s), the saddle point equation (A.11) demands that

Im(J ′(ν0))≪ 1 and Im(α′
e(ν0))≪ 1. Accordingly, we can expand this equation around the

symmetric point ν = 0, where J ′(0) = 0, and obtain an explicit expression for the saddle

point. If we replace this in the above expression, while also making use of the definition of

Πiν(ρ) (see (A.2)), we find that the maximum value of (A.14), which corresponds to the

peak, occurs for b = 0, in accordance with what was said in the main text.

A.1 Equivalence between ρ(ν)P 2−d
2 +iν(η) and Ωiν(η)

Here, we will show that ρ(ν)P 2−d
2

+iν(η) and Ωiν(η) are equivalent. In particular, they

differ from a choice to absorb or not the measure ρ(ν) in the definition of the harmonic

functions, combined with a decision of expressing the Gamma functions differently. The

exact relation between these two quantities which we will prove is:

1

4π
ρ(ν)P 2−d

2
+iν(η) = Ωiν(η) . (A.15)

To begin, it will be useful to have the explicit expression for Ωiν(η). Using (A.3) together

with the transverse scalar propagators definition (A.2), we find:

Ωiν(η) =
ν sinh(πν) Γ

(
d−2
2 − iν

)
Γ
(
d−2
2 + iν

)
2d−1π

d+1
2 Γ

(
d−1
2

) 2F1

(
d− 2

2
− iν, d− 2

2
+ iν,

d− 1

2
,
1− η
2

)
.

(A.16)

This is exactly what appears in [54] if we take into account the change of variable:

η = 1 + 2 sinh2
(
r

2

)
= cosh r , (A.17)
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where the r represents the same as our b, i.e, it is the bulk impact parameter. Now that

we know the expression for Ωiν(ν), we can rewrite (A.15) as:

1
4π

2d−2 Γ
(

d−1
2

)
2π

d−1
2

Γ
(

d−2
2

−iν
)
Γ
(

d−2
2

+iν
)
Γ
(

d−2
2

)2
Γ(iν) Γ(−iν)Γ

(
d−2
2

)2 2F1

(
d−2
2 − iν,

d−2
2 + iν, d−1

2 , 1−η
2

)
=

=
ν sinh(πν) Γ

(
d−2
2

−iν
)
Γ
(

d−2
2

+iν
)

2d−1π
d+1
2 Γ

(
d−1
2

) 2F1

(
d−2
2 − iν,

d−2
2 + iν, d−1

2 , 1−η
2

)
.

(A.18)

Using the following property of the Gamma functions:

Γ(iν) Γ(−iν) = π

ν sinh(πν)
, with ν ∈ R , (A.19)

it is easy to see that among others, the sinh(πν) terms cancel out and we are left with:Γ
(
d
2 − 1

)
Γ (d− 2)


2

=
π

22d−6 Γ
(
d−1
2

)2 . (A.20)

Next, we use another property of the Gamma functions, namely:

Γ

(
z − 1

2

)
Γ (z) = e2−2z√π . (A.21)

In our case, z = d/2, such that:

Γ

(
d

2
− 1

2

)
= 22−d√π Γ(d− 1)

Γ
(
d
2

) . (A.22)

Using this equality, (A.20) becomes:

1

4

Γ
(
d
2 − 1

)
Γ
(
d
2

) Γ(d− 1)

Γ(d− 2)


2

= 1 , (A.23)

which can be verified to hold by applying the defining property of the Gamma function:

Γ(z + 1) = z Γ(z) , z ∈ Z . (A.24)

This concludes our demonstration that, in fact, ρ(ν)P 2−d
2

+iν(η) and Ωiν(η) denote the

same function.





Appendix B

Hypergeometric function

discontinuity

The hypergeometric functions 2F1(a, b; c; z) are defined as solutions of the so-called hyper-

geometric differential equation:

z(1− z) y′′(z) + [c− (a+ b+ 1)z] y′(z)− a b y(z) = 0 , (B.1)

which has singularities at z = 0, 1,∞. Relatedly, these functions can be expressed in terms

of a power series, which converges absolutely in |z| < 1:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (B.2)

Moreover, the function as defined above is analytic in this same region, provided that c is

neither zero or a negative integer. We can also analytically continue the function to outside

of the unit disk. This can be done so, by using one of the possible integral representations

of the hypergeometric:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− zt)−bdt

(Re(c) > Re(a) > 0; |arg(1− z)| ≤ π − ϵ (0 < ϵ < π))

(B.3)

or equivalently:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt

(Re(c) > Re(b) > 0; |arg(1− z)| ≤ π − ϵ (0 < ϵ < π)) .

(B.4)
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Note that when we consider z to satisfy z ∈ Z and |z| > 1, the term (1 − zt) inside

the integral will certainly vanish at some point along the integration interval, causing the

integral to diverge. We thus say that the integral is ill-defined. For this reason, the analytic

continuation of the hypergeometric function is defined for the whole complex plane except

for the cut in the real axis going from z = 1 to z =∞ (branch cut). We will keep denoting

this analytic continuation by 2F1(a, b; c; z).

As the hypergeometric function is multi-valued, it happens to have a discontinuity as

we cross the aforementioned branch cut. In due turn, this discontinuity is defined as:

Disc 2F1(a, b; c; z) = 2F1(a, b; c; z + i0)− 2F1(a, b; c; z − i0) (B.5)

To compute it, we are going to use the integral representation of the hypergeometric

function. Moreover, it will prove useful to split this integral over two regions:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1/z

0
tb−1(1− t)c−b−1(1− zt)−adt

+
Γ(c)

Γ(b)Γ(c− b)

∫ 1

1/z
tb−1(1− t)c−b−1(1− zt)−adt .

(B.6)

The first integral is associated with the region 0 < |z| < 1 over the real axis, where there is

no branch cut. Thus, the difference of these terms in (B.5) vanishes. On the other hand,

because the second integral is defined over |z| ≥ 1, the discontinuity must arise from it.

Lastly, we have that right above the cut θ = 0, whereas below it θ = 2π. As such, we must

take z → z and z → ze2πi, respectively, in the above integrals. Doing so, we obtain:

2F1(a, b; c; z + i0)− 2F1(a, b; c; z − i0) =

=
Γ(c)

Γ(b)Γ(c− b)

[ ∫ 1

1/z
tb−1(1− t)c−b−1(1− zt)−adt−e−2πai

∫ 1

1/z
tb−1(1− t)c−b−1(1− zt)−adt

]
=

Γ(c)

Γ(b)Γ(c− b)
(1− e−2πai)

∫ 1

1/z
tb−1(1− t)c−b−1(1− zt)−adt . (B.7)

Changing variables according to:

t = (1− 1

z
) τ +

1

z
, (B.8)

the former expression becomes:

Γ(c)

Γ(b)Γ(c− b)
(1− e−2πai)z1−c(1− z)−a(z − 1)c−b

∫ 1

0
τ−a(1− τ)c−b−1(1− (1− z)τ)b−1dτ .

(B.9)

But this integral is simply the integral representation of the hypergeometric function, up
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to some constants, and where the argument is (1−z) rather than z. Hence, we can rewrite

the former expression as:

Γ(c)Γ(1− a)
Γ(b)Γ(c− a− b+ 1)

(1− e−2πai)z1−c(1− z)−a(z−1)c−b
2F1(1−a, 1− b; c−a− b+1; 1− z) .

(B.10)

Lastly, we make use of the following Gamma functions property:

Γ(a) Γ(1− a) = π

sinπa
, a /∈ Z , (B.11)

with which we finally obtain the discontinuity:

Disc 2F1(a, b; c; z) =

=
2πiΓ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
z1−c(z − 1)c−a−b

2F1 (1− a, 1− b; c− a− b+ 1; 1− z) .

(B.12)

It is curious to see that the discontinuity of the hypergeometric function along its branch

cut is another hypergeometric function with different arguments.





Appendix C

Casimir differential equations

C.1 Spin 1-Scalar-Scalar-Scalar

By acting with the correct differential operator one obtains the Casimir differential equa-

tion. From this, it is possible to obtain the two following coupled differential equations by

separating the V1,23 and V1,34 dependence:

1

2v

[
(C∆,J + 2)v + u− v2 − 1 + ∆34

(
v2 − u(v + 2)− 3v + 2

)
−∆12

(
2∆34 v (u− v + 1)

−2u+ 2(v − 1)2
)]

f1(u, v) + v f2(u, v) +

(
−∆12

(
u(v + 1)− (v − 1)2

)
+∆34

(
u(v + 1)

−(v − 1)2
)
+ (v − 1)(u+ v − 1)

)
∂vf1(u, v)− 2v(1 + v)∂vf2(u, v)− 2v

[
(v − 1)2

−u(v + 1)
]
∂2vf1(u, v)− u

[
−2d+∆12(u− v + 1) + ∆34(−u+v−1)−u−v + 5

]
∂uf1(u, v)

− 2u v ∂uf2(u, v) + 4u v(u− v + 1) ∂u ∂vf1(u, v) + 2u2 (u− v − 1) ∂2uf1(u, v) = 0 , (C.1)

−
uf1(u, v)

(
∆34 +∆12(v − 1) + v − 1

)
v

+

[
C∆,J −

1

2
∆34(u− v + 1)− 2d+ u

−1

2
∆12

(
∆34(u−v+1)−2u

)]
f2(u, v)+2u(v − 1)∂vf1(u, v)−

{
∆12

[
u(v + 1)− (v − 1)2

]
−∆34

[
u(v+1)−(v−1)2

]
+(v−1)(u+v−1)

}
∂vf2(u, v)−2v

[
(v − 1)2−u(v + 1)

]
∂2vf2(u, v)

+ 2u2∂uf1(u, v)− u
(
−2 d+∆12(u− v + 1) + ∆34(−u+ v − 1) + u+ v − 1

)
∂uf2(u, v)

+ 4u v (u− v + 1) ∂u∂vf2(u, v) + 2u2 (u− v − 1) ∂2uf2(u, v) = 0 , (C.2)

where C∆,J is given by (4.11).
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After finding the boundary conditions for the above differential equations, plugging in

the ansatz (4.91) and expanding until leading order in u we obtain a differential equation

which concerns only one of the cross ratio functions. This is given by:

− 1

2v

(
2 + v2(J + 1−∆)(J + 2−∆)− v

(
4 + J2 +∆(∆− 3) + (2∆− 1)J

)
−∆34(v − 1)(v(J + 1−∆)− 2) + ∆12(v − 1)

(
v (J + 2−∆)−∆34 v − 2

))
g
(1)
O,0(v)

+ (v − 1)
(
2 v (J −∆) +∆12(v − 1)−∆34(v − 1) + v − 1

)
∂v g

(1)
O,0(v)

− 2(v − 1)2 v ∂2v g
(1)
O,0(v) = 0 . (C.3)

The above equation enables us to obtain recurrence relations for c
(1)
O,0,k (see (4.93)). In

order to obtain the same kind of recurrence relations for the coefficients of g
(2)
O,0,k we need

to consider the subleading terms of the coupled differential equations (C.1) and (C.2) in

the u expansion. By doing this, we obtain the following differential equation:

− 1

v

(
∆34 + Jv −∆v +∆12(v − 1) + v − 1

)
g
(1)
O,0(v) + 2u(v − 1) ∂vg

(1)
O,0(v)

+
1

2

(
∆− 2∆J(v + 1) + ∆12(v − 1) (−∆−∆34 + J − 2)−∆34(v − 1)(−∆+ J − 1)

+(J − 2)(J − 1)(v − 1) + ∆2(v − 1) + 3∆v
)
g
(2)
O,0(v) + (v − 1)

(
1 + v(−2∆ + 2J − 5)

+∆12 + (v − 1)−∆34(v − 1)
)
∂vg

(2)
O,0(v)− 2(v − 1)2v ∂2vg

(2)
O (v) = 0 . (C.4)

Similarly to before, we write g
(2)
O,0 as in (4.95) and obtain the recurrence relations for c

(2)
O,0,k

(see (4.96)).
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