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Type 2 diabetes Mellitus (T2DM) prevalence has significantly increased worldwide in
recent years due to population age, obesity, and modern sedentary lifestyles. The
projections estimate that 439 million people will be diabetic in 2030. T2DM is
characterized by an impaired b-pancreatic cell function and insulin secretion,
hyperglycemia and insulin resistance, and recently the epigenetic regulation of b-
pancreatic cells differentiation has been underlined as being involved. It is currently
known that several bioactive molecules, widely abundant in plants used as food or
infusions, have a key role in histone modification and DNA methylation, and constituted
potential epidrugs candidates against T2DM. In this sense, in this review the epigenetic
mechanisms involved in T2DM and protein targets are reviewed, with special focus in
studies addressing the potential use of phytochemicals as epidrugs that prevent and/or
control T2DM in vivo and in vitro. As main findings, and although some controversial
results have been found, bioactive molecules with epigenetic regulatory function, appear
to be a potential replacement/complementary therapy of pharmacological hypoglycemic
drugs, with minimal side effects. Indeed, natural epidrugs have shown to prevent or delay
the T2DM development and the morbidity associated to dysfunction of blood vessels,
eyes and kidneys due to sustained hyperglycemia in T2DM patients.

Keywords: type 2 diabetes mellitus, hyperglycemia, protein target, epigenetic, epidrug, phytochemicals
INTRODUCTION

Type 2 diabetes Mellitus (T2DM) is a metabolic disorder associated with high morbi-mortality rates
and expenses in the healthcare system at worldwide level (1). Featured by an insulin deficit triggered
by the pancreatic dysfunction of b-type cells and insulin resistance in target organs (2), in 2014, the
World Health Organization (WHO) referred that 8.5% of adults (18 years or older) had this disease,
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and that in 2015, 1.6 million people died as a direct result of
T2DM. Even high blood sugar levels alone has been the cause of
another 2.2 million deaths in 2012 (3).

The global increase in obesity, along with physical inactivity
and energy dense diets (4), has triggered direct or epigenetic
changes in phenotype that would be the cause of the disease (5).
So, these environmental changes have been correlated with the
large increase in the number of T2DM patients. Recently, it has
been recognized that T2DM results from regulatory imbalances
at both genetic and epigenetic levels. Currently it is known that
epigenetics has an important role in the insulin secretion and
action and T2DM development (6). The differentiation of b-
pancreatic cells is controlled by several genes, such as GLP1
(glucagon-like peptide-1; stimulates insulin secretion and
inhibits glucagon secretion), PAX4 (paired box gene 4;
involved in pancreatic islet development) and PDX1
(pancreatic and duodenal homeobox 1; involved in pancreatic
development, b-cell differentiation and the maintenance of
mature b-cell function) receptor, with all these genes being
regulated at the epigenetic level. In addition, some factors
involved in insulin resistance, such as the nuclear factor kappa-
B (NF-kB), osteopontin and Toll-like receptors, are also
epigenetically regulated (7). Human T2DM case-control
studies and intervention studies in non-diabetic people showed
epigenetic alterations of PDX1, CDKN1A (cyclin-dependent
kinase inhibitor 1; involved in cell cycle regulation) and
GLRA1 (glycine receptor alpha 1; down-regulation of neuronal
excitability) genes which seem to contribute to diabetes (6). An
increase in the level of DNA methylation of PDX-1 has been
related to a reduced activity in pancreatic islets and a
dysregulation of pancreatic b-cells in T2DM (8). CDKN1A
overexpression decreases insulin secretion and proliferation (9)
and GLRA1 silencing in clonal b-cells reduced glucose-
stimulated insulin secretion (10). In addition, physical activity
alter DNA methylation of T2DM gene candidates such as FTO
(fat mass and obesity-associated protein; associated with energy
intake) and TCF7L2 (transcription factor 7-like 2; blood glucose
homeostasis) in adipose tissue (6). In obese humans after a
metabolic surgery, epigenetic and metabolic changes were
reported in skeletal muscle during the improvement of insulin
sensitivity (11). The major sign of uncontrolled diabetes is
hyperglycemia, and when it is maintained for prolonged
periods, results in the blood vessels destruction, that
consequently triggers damages to the heart, eyes, kidneys and
central nervous system (CNS) (12). As a result, both
macrovascular (atherosclerotic) and microvascular (retinopathy
and nephropathy) disorders occur. These complications are the
main causes of mortality in diabetic patients. In this sense,
intensive lifestyle modification, pharmacotherapy or both have
been proposed, as they are able to reverse or delay the T2DM
complications (2). Studies have reported an increased use of
natural products in patients with T2DM (13–15); this is due to
the long-term use of oral hypoglycemic agents and insulin,
characterized by numerous side effects, that include episodes of
hypoglycemia, gastrointestinal problems (nausea, vomiting and
diarrhea), edema and even hepatorenal disorders (16, 17). The
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therapeutic activity of these plants, used as food or infusions,
depends on the interaction of several kinds of phytochemicals.
Actually, there are more than 1,200 species of medicinal plants
with antidiabetic activity, and of these approximately 200 pure
bioactive compounds possess potent hypoglycemic properties
(18) and have an important role in histone modification and
DNA methylation (19). In this sense, here we aim to discuss the
epigenetic mechanisms involved in diabetes and protein targets,
also giving a special emphasis to in vitro and in vivo studies and
clinical trials, addressing the phytochemicals with epidrug
potential in diabetes.
EPIGENETIC MECHANISMS OF TYPE 2
DIABETES MELLITUS

The hyperglycemia occurring in T2DM is a systemic alteration
that affects all tissues leading to long-term diseases (20).
Particularly, hyperglycemia is able to alter the expression of
genes involved in insulin resistance, low grade systemic
inflammation and renal fibrosis (21). The biological process
underlying the changes in gene expression comprises the
epigenetic regulation of the genome of different tissues
including skeletal muscle, liver, pancreas, blood and adipose
tissue for T2DM (22). The physical basis of the epigenetic
regulation are changes in the chromatin structure without
changes in DNA sequence, some of them could even be
transmitted through generations. Globally, the epigenetic
modifications can be grouped into three categories: DNA
methylation, posttranslational histone modifications and non-
coding RNAs (23).

General Epigenetic Mechanisms
Methylation of DNA was the first epigenetic mechanism
discovered and is associated to transcriptional genes silencing,
whose promoter has been methylated. It consists in the covalent
attachment of a methyl group at the 5’ carbon of cytosine
residues in a promoter region rich in cytosine-phosphate-
guanine (CpG), called CpG islands (24). The presence of these
modified nucleotides is able to recruit methyl-CpG binding
proteins that promote chromatin condensation and, therefore,
restrict the accessibility of transcription factors and the general
transcription machinery to the promoter (24). The DNA
methyltransferases (DNMTs) are a family of enzymes that
catalyze the methyl transfer from S-adenosylmethionine (SAM)
to cytosine and are composed of DNMT1, DNMT3A and
DNMT3b. The removal of the methyl group is accomplished
by demethylases of the ten eleven translocation (TET) family,
which mediates an oxidation of the methyl group that renders a
5-hydroxymethylcytosine that is later replaced by cytosine
during DNA repair. DNA demethylation counteracts the
chromatin compaction elicited by methyl marks and is usually
linked to transcriptional activation (25). DNMT3A was reported
as epigenetic mediator of adipose insulin resistance in mouse and
human adipocytes (26).
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Post-translational histone modifications are a diverse group
of covalent modification generally located in the N-terminal.
Briefly, the acetylation, methylation, phosphorylation and
ubiquitination of specific residues are among the most studied,
but there is an emerging number of up to 67 newly identified
histone modifications with the potential of regulating gene
expression (27). First, histone acetylation occurs in lysine
residues and activates gene transcription through chromatin
de-condensation and acts as a binding site for transcriptional
activators. Histone acetyl transferases (HAT) catalyze acetylation
and so stimulate gene transcription, whereas histone deacetylases
(HDACs) remove the acetyl group from histones, promoting the
transcriptional repression (28). Methylation of histones takes
place in lysine and arginine residues and each residue could
present different methylation states, including mono, di and
trimethyl lysine, while arginine may be symmetric or
asymmetrically mono or dimethylated. Depending on the
specific residue and the methylation state, transcription effect
could be activated or repressed. For example, the mono, di or
trimethylation of histone H3 (H3) at Lys4 (H3K4m1/2/3) have
been associated with transcriptionally active genome regions,
while trimethylation of H3 at Lys9 or at Lys27 (H3K9m3/
H3K27m3) and trimethylation of H4 at Lys20 (H4K20m3) are
abundant in silenced DNA regulatory elements (29). Second,
histone methylation is carried out by histone methyltransferases
(HMTs) of different specificity for lysine or arginine, with methyl
removal depending on the action of demethylases with defined
specificity as well. Other emerging histone modifications relevant
for T2DM are crotonylation and b-hidroxybutyrilation, both
affecting lysine residues (30, 31). Finally, gene expression can also
be regulated transcriptionally and post-transcriptionally by non-
coding RNA molecules. Among them, miRNAs are typically
composed of 21 to 23 nucleotides long and mediate post-
transcriptional repression through binding to complementary
regions of specific target mRNAs, leading to its degradation by
the RISC complex (32). Another relevant non coding RNA for
T2DM are long non-coding RNAs (lncRNAs) involved in
recruitment of DNMTs and histone modifiers to their target
genes and, particularly the eRNAs, facilitate promoter-enhancer
looping, thus increasing the transcription rate of neighboring
genes (33).

Epigenetic Alterations in T2DM
DNA Methylation
T2DM is a complex metabolic disease in which many
interconnected pathologic mechanisms ensue. Initial studies
analyzed DNA methylation of candidate genes for T2DM such
as INS (insulin), PDX1, PPARGC1A (PGC1a; transcriptional
co-activator), and GLP1R (GLP1 receptor) in human pancreatic
islets from donors with TD2M and non-diabetic controls (22, 34,
35). In these studies, islets from T2DM donors were found to
have increased DNA methylation and decreased expression of
these key genes associated with impaired insulin secretion (22).
In addition, the increase of DNA methylation of these genes
seemed to directly be associated with high glucose and glycated
hemoglobin (HbA1c) levels. In pancreatic islets, early molecular
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alterations occur and mediate islet dysfunction before the onset
of diabetes (36). DNAmethylation patterns of b-cell are dynamic
during maturation and T2DM onset and evolution (37). Some
differentially methylated regulatory elements have been
associated with key function genes such as PDX1, TCF7L2 and
NKX6-1 (homeobox protein Nkx-6.1; regulation of islet
transcription factors and genes involved in glucose and insulin
homeostasis). In Langerhans Islets from obese mice which
differed in their degree of hyperglycemia and in liver fat
content a semi-explorative approach identified 497
differentially expressed and methylated genes linked to insulin
secretion and extracellular matrix-receptor interaction (38). In
addition, the comparison of mouse data with DNA methylation
levels of TD2M participants of European Prospective
Investigation Cancer (EPIC)-Potsdam cohort revealed 105
genes with altered DNA methylation at 605 CpG sites, which
were associated with future T2DM. The first epigenome-wide
association studies of DNA methylation markers of obesity and
T2DM are helping to gain a comprehensive insight into the
global epigenetic alterations related to the onset of T2DM. In
samples of blood cells of 5,387 individuals, changes in
methylation markers of genes involved in lipid metabolism,
substrate transport and inflammatory pathways have been
reported (39). In addition, although these changes have been
detected in a non-metabolically relevant tissue, similar DNA
methylation abnormalities were also detected in adipose, muscle
and liver tissue samples of a small subset of participants.
Interestingly, the DNA methylation disturbances induced by
obesity can predict future development of T2DM (22, 39).
Another study conducted in the same population, developed a
prospective nested-control study that analyzed genome-wide
DNA methylation markers in blood cells of participants before
the T2DM onset. DNA methylation markers at five genes:
ABCG1 (ATP-binding cassette sub-family G member 1;
regulates cellular lipid homeostasis, including pancreatic b
cells), PHOSPHO1 (phosphatase, orphan; involved in bone
mineralization), SOCS3 (suppressor of cytokine signaling 3;
negative regulator of insulin signaling), SREBF (sterol
regulatory element binding transcription factor 1; regulator of
hepatic lipogenesis) and TXNIP (thioredoxin interacting protein;
key component of pancreatic b cell biology, nutrient sensing,
energy metabolism and regulation of cellular redox) have been
associated with up to four times higher risk of future T2DM (40),
so that these markers raise the possibility to identify
normoglycemic subjects that could benefit from early
pharmacological or lifestyle interventions to prevent the T2DM
development (40). Besides these genomic-wide studies of DNA
methylation markers in T2DM, several other studies have
focused on the epigenetic markers of specific genes in the
context of particular pathogenic events related to T2DM. In
this regard, chronic inflammation has been recognized as a key
pathologic feature of T2DM, accompanied by DNA methylation
changes. In blood mononuclear cells from T2DM patients, the
methylation level at the CpG sites of the monocyte
chemoattractant protein (MCP)-1 promoter is decreased, and
associated to an overexpression of this chemotactic factor in
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serum (41). A similar decreased in DNA methylation was found
at interleukin (IL)-1b promoter in blood cells and at 3’UTR of
TXNIP in skeletal muscle from T2DM patients (42, 43). In other
study, increased methylation and decreased expression of
PPARGC1A were reported in skeletal muscle from TD2M
humans and when this gene was silenced in human islets,
insulin secretion was decreased (44).

Histone Tail Modifications
Alterations in the multiple types of histone modifications have
also been implicated among the epigenetic mechanisms
underlying T2DM inflammation. Studies mainly developed in
cell models have reported changes in histone marks within
regulatory elements of inflammation genes in response to
hyperglycemia. For example, Miao and Gonzalo (45) found an
increase of histone acetylation at NF-kB promoter in THP-1
monocytes induced by a transient exposure to high levels of
glucose. The higher acetylation was correlated to increased
recruitment of p300/CBP-associated factor (PCAF) to NF-kB
promoter and overexpression of proinflammatory target genes,
like cyclooxygenase-2 (COX-2) and tumor necrosis factor (TNF)
(45). Interestingly, similar changes in histone modification of
NF-kB have been stated in monocytes from T2DM subjects,
showing an in vivo correlate of the epigenetic changes (45). IL-8
is another proinflammatory gene whose overexpression is
induced by hyperglycemia in human primary vascular cells by
an epigenetic mechanism involving hyperacetylation of its
promoter region (46). Ibarra Urizar and Prause (47)
hypothesized that prolonged exposure of b-cells to IL-1b
induce b-cell dedifferentiation characterized by impaired
glucose-stimulated insulin secretion, reduced expression of key
b-cell genes and changes in histone modifications. In their study
they observed that IL-1b at low concentration induces epigenetic
changes associated with loss of b-cell identity as observed in
T2DM. The epigenetic effect of hyperglycemia is not limited to
induction of hyperacetylation but also triggers H3K4
hypermethylation and H3K9 hypomethylation in NF-kB p65,
leading to a persistent upregulation in endothelial cells under
hyperglycemic conditions. These changes in histone methyl
marks are mediated by the recruitment of SETD7 (SET
domain containing 7, histone lysine methyltransferase) and
lysine-specific demethylase 1 (LSD1) to NF-kB promoter and
are linked to a higher expression of NF-kB regulated genes, like
MCP-1 and vascular cell adhesion protein 1 (VCAM) (48). In
addition, the ex vivo methylation changes of NF-kB p65 in
endothelial cells have also been shown in blood mononuclear
cells of T2DM patients, where the unbalance is also related to an
increased expression of MCP-1, intercellular adhesion molecule
(ICAM)-1 and COX-2 (49). Similarly, the increased expression
of IL-8 in endothelial cells is not only mediated by higher histone
acetylation but also by H3H4 hypermethylation induced by
SETD7 methylase (50). These examples underline that
hyperglycemia induce an overexpression of proinflammatory
genes by redundant epigenetic histone marks, that in the case
of NF-kB, additionally involve acetylation of lysine residues of
transcription factor itself (51). Other relevant overexpression
Frontiers in Endocrinology | www.frontiersin.org 4
states of proinflammatory genes mediated by methylation
changes related to hyperglycemic stimulus are the IL-6 and
MCP-1 in vascular smooth muscle cells, IL-6 in rat
cardiomyocytes, IL-12 subunit beta (IL-12B), macrophage
inflammatory protein (MIP)-1a, MIP-1b, and IL-6 in THP-1
monocytes (52).

Non-Coding RNA
Post-transcriptional repression mediated by miRNA also
contribute to the dysregulation of proinflammatory gene
expression in T2DM, usually mediating the accelerated mRNA
decay of transcriptional activators of inflammatory mediators.
An increased expression of miR-125b in vascular smooth muscle
cells has also been reported in a T2DM mouse model (53). The
higher levels of miR-125b triggers a decrease in the SUV39H1
histone methylase levels, leading to a reduction of the H3K9
activating signal in the promoters of IL-6 and MCP-1 (53). Other
m iRNAs up r e gu l a t i on s i n T2DM impac t i ng th e
proinflammatory genes expression are: miR-146a decreasing
the expression TNF receptor-associated factor 6 (TRAF6) and
interleukin 1 receptor-associated kinase 1 (IRAK1); miR-200c
family members increasing the expression of COX-2 andMCP-1;
and miR-504 increasing the expression of IL-6, COX2 and MCP-
1 (52). Abnormalities of lncRNA have also been observed in
T2DM-associated inflammation. For example, the E33 lncRNA
levels were increased in macrophages of a mouse model of
T2DM as well as the human homolog MIR143HG (54, 55).
However, only partial data is now available related to the
mechanism of deregulation, but an induction of several
proinflammatory genes, like IL-6, TNF and COX-2, whereas
the downregulation of MCP-1 and of anti-inflammatory IL-10
has been reported (55). Sathishkumar and Prabu (56) related that
metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is another lncRNA that may regulate the T2DM-
related inflammation through upregulation of serum amyloid
antigen (SAA), ultimately inducing IL-6 and TNF in human
umbilical vein endothelial cells (HUVECs).
PHYTOCHEMICAL REGULATION OF
PROTEIN TARGETS FOR THE
TREATMENT OF DIABETES

The treatment of T2DM is usually focused in the regulation of
protein target activities (7). Several phytochemicals from fruits,
vegetables, spices, teas, and medicinal plants may regulate
epigenome and exhibit low toxicity in chronic administration
(57). The applicability of major phytochemical groups such as
polyphenols, terpenoids, organosulfur and alkaloids as epidrugs
is experimentally established (58, 59). In this section, the
common protein targets for T2DM treatment and
phytochemicals that modulate the activities of these proteins
with antidiabetic activities in in silico, in vitro and in vivo studies
are presented, while data related to clinical trials is shown in
Table 1.
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TABLE 1 | Clinical trials related to natural epidrugs to treat Type 2 Diabetes Mellitus.

Supplement Period Population N (T/C) Results References

11b-HSDs inhibitors
Ginger
capsule (1.6 g/d) 12 weeks T2DM 30–60 yr BMI

20–35
33/30 ↓FBG, HbAb1, INS, HOMA-IR (60)RCT

tablet (2 g/d) 8 weeks T2DM 30–70 yr BMI ×
30

28/30 ↓INS HOMA-IR (61)RCT

capsule (3 g/d) 12 weeks T2DM 30–70 yr BMI
<40

40/41 ↓FBG, HbAb1 (62)RCT

capsule (1 g/d) 12 weeks T2DM 20–60 yr BMI
<30

39/31 ↓FBG, HbAb1, INS, HOMA-IR (63)RCT

tablet (2 g/d) 12 weeks Women 18–45 yr BMI
30–40

39/31 ↓FBG (64)RCT

tablet (2 g/d) 12 weeks Women 18–45 yr BMI
30–40

39/31 ↓INS, HOMA-IR (65)RCT

capsule (1 g/d) 10 weeks Dialyzed 29–79 yr 18/18 ↓FBG (66)RCT

Flavonoids, isoflavones and lignans
soy products (9 g/d protein) 1 yr Women 40–70 yr BMI

>25
323/

39,062
↓glycosuria (67)CSS

10 mg/d s-equol 12 weeks Men and women 59.4
yr BMI ≥25

49/49 ↓HbA1c (68)RCT,DB,
Pl,CO

tablet 54 mg/d genistein 2 yr Women 49–67 yr BMI
25

198/191 ↓FBG, INS, HOMA-IR (69)RCT,DB,
PL

360 mg/d lignan 2 × 12 weeks wash-
out 8 weeks

T2DM Men and
women 50–79 yr

37/36 ↓HbA1c (70)RCT,DB,
Pl,COS

40 or 80 mg/d isoflavones 1 yr Women 48–62 yr 68/68/67 ↓FBG (71)RCT,DB,
PL

stratified phytoestrogens intake 2 yr Men 47–83 yr 468 Lignan ↓C peptide Isoflavones no
effect

(72)CSS,PS

stratified soy food intake 5.7 yr Men and women 45–
74 yr

43,176 ↓T2DM risk isoflavones and unsweet
soy

(73)LS

stratified soy foods 4.6 yr Women 40–70 yr 64,191 ↓T2DM risk (74)LS,CCS,
PS

stratified soy food intake 14 yr Men and women 45–
75 yr

75,344 Modest ↑T2DM risk BMI ≥25 (75)CCS,PS

stratified soy products and isoflavones 5 yr Men and women 40–
69 yr

59,791 ↓T2DM risk in women BMI ≥25 (76)CCS,PS

stratified flavonoids and lignans intake 12 months Men and women 15,258 ↓T2DM risk (77)CCS,PS

stratified isoflavones intake 2 yr Pregnant women 28
yr

299 ↓FBG, INS, HOMA-IR (78)CSS

stratified genistein intake 1 yr Women 45–74 yr BMI
26

255/107/
46

↓INS (79)PL,DB,
RCT

stratified lignan intake 6 yr Women 32–79 1,107/
1,107

↓T2DM risk (80)LS

Curcumin
nano-micelles 30 mg/d 3 months T2DM in treatment

>18 yr
35/35 ↓FBG,HbA1c (81)RCT,DB

capsule 1,5g/d 9 months Prediabetic ≥35 yr 120/120 ↓T2DM risk, FBG,HbA1c, HOMA-IR,
C-peptide ↑HOMA-b

(82)RCT,DB

500 mg/d plus piperine 5 mg/d 3 months T2DM 18–65 yr 50/50 ↓FBG, C-peptide (83)RCT,DB

1.5 g/d ethanolic extract 6 months T2DM ≥35 yr 107/106 HOMA-IR (82)RCT,DB,
PL

nano-micelles 300 mg/d 3 months T2DM 18–65 yr
BMI≥24

50/50 ↓ FBG,HbA1c, HOMA-IR (84)RCT,DB

Black and green tea
3 cups/d green tea 14 weeks 35–65 yr 65/58 No changes (85)RCT,

1 g/d green tea 12 weeks T2DM 37–78 yr 32/28 ↓FBG (86)RCT,DB

1 capsule 200 mg green tea extract twice daily 9
months plus thrice 9 months

18 month T2DM 20–45 yr 17/14 No changes (87)RCT,DB

3 cups/d black tea 12 week T2DM 44–55 yr 30/20 ↓HbA1c (88)RCT

capsule 560 mg polyphenols/d 20 weeks T2DM >18 yr 27/28 No effect (89)RCT,DB

Epigallectine-3-galleate
capsule 150 mg/d 8 weeks T2DM 20–60 yr 25/25 ↓FBG (90)RCT,DB

(Continued)
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Decrease Insulin Resistance via 11b-
Hydroxysteroid Dehydrogenase Inhibition
Cortisol plays an important role in metabolism and T2DM, and
the inhibition of the hepatic glucocorticoid receptor was found to
reduce the serum glucose levels in T2DMmice while improve the
insulin resistance (106). Indeed, an abnormal glucocorticoid
metabolism has been linked to T2DM (107). Specifically, the
11b-hydroxysteroid dehydrogenase (11b-HSDs) is an
oxidoreductase enzyme that catalyzes the conversion of inert 11
keto-products (cortisone, 11-dehydrocorticosterone) to active
glucocorticoids (corticosterone, cortisol). 11b-HSD1 regulates
cortisol levels mainly in adipose, hepatic and brain tissues
(108). Briefly, 11b-HSDs has several isoforms in humans, where
11b-HSD1 is a NADPH-dependent isoform highly expressed in
key metabolic tissues of liver, adipose, pancreas, and skeletal
muscle (109), while 11b-HSD is a potent therapeutic target whose
inhibition may be useful for the treatment of T2DM (107, 110).

A high enzyme activity of 11b-HSD1 is related with the
development TD2M and others metabolic disorders and the
inhibition of this enzyme attenuate the development of T2DM,
Frontiers in Endocrinology | www.frontiersin.org 6
insulin resistance, metabolic syndrome and other diseases
mediated by excessive cortisol production (108).

Zhu and Ge (111) in a study compared the ability offlavonoids
and isoflavonoids to inhibit human 11b-HSD1 and 11b-HSD2.
Briefly, the authors found that apigenin, quercetin, genistein and
(±)-equol were able to inhibit human 11b-HSD1, with IC50 values
of 2.2, 5.4, 11.0, and >100 mM, respectively. However, apigenin
and (±)-equol were not able to inhibit 11b-HSD2 at doses as high
as 100 mM, while genistein and quercetin inhibited it by 60 and
50% at 100 mM, respectively (111). In streptozotocin–
nicotinamide induced diabetic rats, quercetin showed
antidiabetic activity acting as 11b-HSD1 inhibitor (112).
Moreover, genistein suppressed 11b-HSD1 in rodent adipose
tissue and blocked the glucocorticoid amplification (113).
However, in male ob/ob mice a diet rich in genistein (600 mg/
kg) for 4 weeks reduced hypercorticosteronism, decreasing
protein expression of renal 11b-HSD2 without changes in
hepatic 11b-HSD1 (114).

Teich and Pivovarov (115) assessed the inhibitory action on
11b-HSD1 activity of curcumin on preserving metabolic health
TABLE 1 | Continued

Supplement Period Population N (T/C) Results References

PTP1B inhibitors
Resveratrol
capsule 10 g/d 4 week T2DM men >18 yr 10/9 ↓HOMA-IR (91)PL,DB,

RCT

capsule 250 mg/d 3 months T2DM in treatment 30
× 70 yr

28/29 ↓HbA1c (92) LS,RCT

75 mg/d 12 week women × 59 yr BMI
<30

15/14 No effect (93)PL,DB,
RCT

capsule 1,500 mg twice daily 8 week NALD men BMI >25 10/10 No effect (94)PL,DB,
RCT

capsule 300 mg/d 4 week men 18–70 yr BMI
>30

12/12 No effect (95)PL,DB,
RCT

Mediterranean diet 2 yr T2DM 55–80 BMI ≥30 1,000
(quintiles)

↓FBG (96)PL,DB,
RCT

17b-HSD inhibitors
Extra virgin olive oil
500 mg/d OLF 12 weeks Men 35–55 yr BMI

25–30
21/22 ↑b-cell function, ↓FBG, INS sensitivity (97) RCT,COS

500 mg/d OLF 14 weeks T2DM 18–79 yr BMI
<40

41/38 ↓HbA1c, fasting INS (98)RCT

20 ml HPOO 20 ml LPOO 6 weeks 18–75 yr 34/9 29/9 ↓FBG (99)PL,RCT

Mediterranean diet with 50 ml/d EVOO 5 yr 55–80 yr 1,154/
1,240

↓ T2DM risk (100)PL,RCT

GFAT inhibitors
Fenugreek
capsule 2.5 g twice daily 1 weeks T2DM and CAD 30/30 ↓FBG, 2 h glucose (101)PL

capsule 1.176 g/d 6 weeks Overweight men ×
18–59 yr

20/20 ↓FBG, fasting INS (102)PL,RCT

capsule 6.3 g/d 12 weeks T2DM in treatment
25–65 yr

46/25 ↓FBG, HbA1c, 2 h glucose (103)PL,RCT

capsule 1 g/thrice daily 12 weeks T2DM in treatment
30–70 yr

30/30 ↓FBG, post prandial glucose, HbA1c (104)PL,RCT

powder 25 g/d 24 weeks T2DM 30–70 yr 60/10 ↓glucosuria, HbA1c (105)
June 2021 | Volume 12 | A
BMI, body mass index (kg/m2); CAD, coronary arterial disease; CCS, case-cohort study; COS, cross-over study; CSS, cross-sectional study; DB, double-blind; FBG, fast blood glucose;
T2DM, type 2 Diabetes Mellitus; HbA1c, glycosylated hemoglobin; INS, insulin; IR, insulin resistance; HOMA, Homeostasis Model Assessment; HPOO, high phenolic extra virgin olive oil;
LPOO, low phenolic olive oil; LS, longitudinal study; NALD, no-alcoholic liver disease; OLF, olive leaf extract; PL, parallel trial; PPG, postprandial glucose; PS, prospective study; RCT,
randomized clinical trial; T/C, treated v/s control.
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and limiting adipose tissue growth following the cessation of
daily exercise and caloric restriction (50–65% of ad libitum
intake) in Sprague–Dawley rats. As main findings, the authors
stated that curcumin (200 mg/kg) significantly reduced insulin,
homeostasis model assessment-insulin-resistance (HOMA-IR),
and C-reactive protein levels, and also exhibited inhibitory
activity against human and rat 11b-HSD1 in intact cells (IC50 =
2.3 and 5.8 µM, respectively) and on 11b-HSD2 (IC50 = 14.56 and
11.92 µM, respectively) (116). Also, curcumin (200 mg/kg) reduced
serum glucose, cholesterol, triglyceride, low density lipoprotein
levels in high-fat-diet-induced obese rats (116).

Resveratrol is a plant-derived polyphenolic compound and a
potent antioxidant. The effects of resveratrol on 11b-HSD1
activity in rodent adipose tissue was studied by Tagawa and
Kubota (117). In this study, the 11b-HSD1 activity by resveratrol
was inhibited (IC50 value of 35.2 mM) but resveratrol did not
affect the activities of 11b-HSD2 and hexose-6-phosphate
dehydrogenase. Several teas (Camellia sinensis (L.) Kuntze) and
tea specific polyphenolic compounds were also tested in
human liver microsomes and purified human 11b-HSD1
for their possible antidiabetic potential via cortisone
reduction by 11b-HSD1 inhibition (118). The polyphenol
(−)-epigallocatechin gallate (EGCG) exhibited the strongest
inhibition of 11b-HSD1 (IC50 = 57.99 mM for reduction; IC50 =
131.2 mM for oxidation).

In a systematic review and meta-analysis of 10 short and
small-size randomized controlled trials, ginger (Zingiber
officinale Roscoe) has also demonstrated good ameliorative
effects in fasting blood glycemia (FBG), insulin, HOMA-IR and
HbA1c (1–3 g/day for 4–12 week, n <40) control and insulin
sensitivity (119). In particular, in two studies, T2DM patients
decreased FBG, HbA1c, insulin and HOMA-IR after receive a
daily capsule with 1.6 or 1 g/day of ginger, respectively. In the
first study, 33 subjects received the treatment and 30 were
controls (60), meanwhile in the second one, the sample were
39 subjects and the control 31 (63). Moreover, specifically, the
three gingerol derivatives, namely paradol, (E)-shogaol, and
(5R)-acetoxy-gingerol, were able to inhibit human and mouse
11b-HSD1 activities (IC50 values ranged between 1.09 and 1.30
mM) (120). Licorice (Glycyrrhiza glabra L.) is a plant that has
been increasingly studied for its antidiabetic potential (121) and
has shown pre-translational inhibitory effects of 11b-HSD in
vitro (rat pituitary GH3 cells) and in vivo (rats, 75 mg/kg/day
glycyrrhizic for 5 days) (121).

Gumy and Thurnbichler (122) also investigated the ability of
some medicinal plants extracts to inhibit 11b-HSD1 in
transfected HEK-293 cells. As main findings, the authors found
that leave extracts of loquat (Eriobotrya japonica (Thunb.)
Lindl.) and extracts of roasted but not coffee beans were
capable of inhibiting 11b-HSD1. Concomitantly, there have
been several clinical studies exploring the effect of natural
inhibitors of 11b-HSD1 in T2DM, principally soy isoflavones,
despite some of them are still in process. In general, results are
inconsistent, mainly because of the small sample size, different
characteristics of enrolled population, source and doses of
administration or the use of other molecules in combination.
Frontiers in Endocrinology | www.frontiersin.org 7
There are several meta-analysis of clinical studies related to
beneficial effect of flavonoids, lignans and isoflavones intake in
decreasing T2DM risk or improving biochemicals parameters of
glucose metabolism (123, 124). For example, a daily intake of soy
product with 9 g of protein for 1 year in 323 overweight post-
menopausal women (control 39,062 women), decreased
glycosuria (67). Moreover, the intake of 10 mg of s-equol for
12 weeks in 49 women and men (control 49 subjects), decreased
HbA1c (68). Similar effect showed the administration of 360 mg/
day flaxseed-derived lignan supplement in 37 T2DM patients
(control 36 subjects) in two periods of 12 weeks each one (70). In
the case of genistein, the administration of 54 mg/day for 2 years
in 198 post-menopausal women (control 191 women) reduced
fasting insulin levels and also improved FBG and HOMA-IR
(69). Also isoflavones intake showed beneficial effect in post-
menopausal women, at doses of 40 and 80 g/day for a year,
decreasing 5.2 and 3.3 mg/dl FBG, respectively (n = 68 each
experimental group, control n = 67) (71).

Also, there are long long longitudinal studies that evaluated the
beneficial effect of soy food, phytoestrogens, flavones, isoflavones
and lignans consume. A small study performed in 468 men
stratified according to phytoestrogen intake for two years,
showed that lignan intake decreased C-peptide level, but
isoflavones do not had effect (72). Other study performed in 299
pregnant women followed for 2 year of National Health and
Nutrition Examination Survey-US, found an inverse relation
between isoflavones intake and FBG, insulin and HOMA-IR
(78). Goodman-Gruen and Kritz-Silverstein (79) analyzed the
genistein intake in post-menopausal women for 1 year and
founded an inverse relation with fasting insulin. Date from six
cohort studies were also used to analyze the effect of soy foods,
flavonoids, isoflavones and lignans. Zamora-Ros and Forouhi (77)
found lower risk of T2DM associate to higher intake of flavonoids
and lignans in 15,258 men and women of EPIC-InterAct study
followed for a year. In date of the Nurses’ Health Study (NHS) I
and II, lignan intake for 6 year was associated to lower risk of
T2DM in 1,107 women over 1,107 control (80). Moreover, when
soy food intake was analyzed in 43,176 men and women from
Singapore Chinese Health Study, followed for 5.7 years, only
isoflavones and unsweet soy food were associated to lower risk
of T2DM, meanwhile sweated soy food was associate to higher risk
(73). In date from Japan Public Health Center-Based Prospective
Study, in 59,791 men and women followed for 5 years, consume of
soy products and isoflavones reduced the risk of T2DM in
overweight-obese women (76). Finally, in 64,191 post-
menopausal women of Shangai Women’s Health Study, soy
food reduced risk of T2DM when is consumed for 4.6 years (74).

In summary, case-control and prospective cohort studies
suggest inverse associations between the total flavonoids,
isoflavones and lignans intake with T2DM risk, and
improvement of the disease development, with different
effectiveness. Taken together, the findings evidence that there
are other compounds in soy, such as lipids and fiber, than can
have glycemic effect or can interact with flavone and that is
necessary to measure specific phytoestrogen biomarkers to study
its relationship with T2DM risk.
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There are also some few clinical trials addressing the role of
curcumin in T2DM. In a small meta-analysis, three out of five
randomized clinical trials, it was stated a reduction in FBG,
HOMA-IR and HbA1c, in doses between 250 and 1,000 mg and
treatment between 10 days and 9 months (124). In the longest
study (9 months, 120 treated and 120 controls), curcuminoids-
treated prediabetic subjects (1.5 g/day) did not develop T2DM,
meanwhile in placebo group, 16% developed T2DM (82). Treated
group also showed lower C-peptide and higher HOMA-b,
revealing improvements in b cell function. Moreover, in T2DM
patients (50 treated and 50 controls), curcuminoids (500 mg/day
for 3 months) decreased FBG, C-peptide and HbA1c (83). Other
meta-analysis (125) showed that when curcumin was
administrated in nano-micelles (300 mg/day for 3 months, n =
50 for treated and control T2DM subjects), FBG reduced 18% and
HbA1c 11% (84), similar result were obtained when 30 mg/day
were administrated for 3 months (n = 35 for treated and control
T2DM groups) (81). In addition, one out of three studies that
analyzed renal function in T2DMpatients, found beneficial effect of
curcumin (125). Curcumin has rapid metabolism and low
intestinal absorption, for that, micelles, nanoparticles, liposomes
and phospholipid complexes have been used in some studies to
improve its bioavailability and biological efficacy (124). Moreover,
a differential gender-bioavailability has been reported, related to a
higher hepatic metabolization of curcumin in men and effect of
body fat in women, which could be consider in future studies (126).

Finally, there are some preclinical and clinical studies
exploring the effect of green and black tea in T2DM. Studies
were performed between 12 weeks and 18 months with doses/
day between 200 mg/day and 2.5 g/3 times for day (127). For
example, in a clinical trial for 12 weeks performed in 32 T2DM
patients and 28 controls, 1 g/day of green tea infusion reduced
HbA1c (86, 88). But, in other four studies, no changes were
observed after green tea administration when the intervention
was shorter, as in Toolsee, Aruoma (85) study (4 weeks, 3 cups/
day, n = 65 and control n = 58) (127). However, when three (n =
24) or 4 (n = 25) cups of green tea were administrated for 4 weeks
in T2DM subject (control n = 14), systolic and diastolic blood
pressure were decreased, with other four similar studies also
evidencing significant improvements in both blood pressure and
anthropometric data in T2DM patients (128, 129). Noteworthy,
despite studies reveal controversial results related to effect of tea
in T2DM, with an evident importance of the duration of the
intervention, should be underlined that green tea also has flavan-
3-ols, that by itself have shown beneficial effects in clinical trials
with hypertense, diabetic and overweight subjects (130). Finally,
few human studies relating EGCG intake with T2DM have been
done, with only a clinical trial finished (25 treated and 25 control
T2DM subjects) found that 300 mg of EGCG/day for 8 weeks
significantly reduced FBG (90).
Enhance Insulin Activity via Protein
Tyrosine Phosphatase 1B Inhibition
The improvement in insulin sensitivity is a key therapeutic
strategy in T2DM. Protein tyrosine phosphatase 1B (PTP1B)
inhibitors improve the insulin receptor sensitivity and, in the
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latter years, targeting PTP1B inhibitors is being considered an
attractive target to treat T2DM (131). Binding of type 1 insulin-
like growth factor (IGF-1) to its tetrameric receptor induces the
auto-phosphorylation of the receptor, the downstream activation
of protein kinase B (PKB) and mitogen-activated protein kinases
(MAPK) pathways triggering the GLUT4 transporter
translocation to the plasma membrane (132).

Natural products possessing inhibitory activities against PTP1B
were reviewed by Jiang and Liang (133). In their work, the authors
provide an overview of approximately 300 secondary metabolites
that were isolated from various natural sources or derived from
synthetic process. Among them, the phytochemicals targeting
PTP1B include phenolics, terpenes, steroids, N- or S-containing
compounds, and miscellaneous phytochemicals.

For example, resveratrol (dose equivalent at 2.5 mg/kg orally
administered via drinking water) improved peripheral insulin
signaling independently of Sirt1 in diabetic mice in association
with PTP1B inhibition (134). Sirt1 is one of seven mammalian
orthologs of the yeast protein, and has been suggested to be
involved in the processes of glucose homeostasis and insulin
secretion (135). Indeed, several studies have shown association of
the effect of resveratrol in both proteins together (PTP1B and
Sirt1) (136, 137).

Chuang and Martinez (138) showed that quercetin is more
effective than resveratrol in inhibiting PTP1B in primary cultures
of human adipocytes treated with TNF-a. Indeed, the treatment
with quercetin decreased the mRNA levels of PTP1B, while
resveratrol treatment had no effect on PTP1B expression (138).

Curcumin and cinnamaldehyde decreased PTP1B enzymatic
activity in breast cancer MCF-7 cell line (139), despite curcumin
was more effective than cinnamaldehyde. Briefly, curcumin
inhibited PTP1B at concentrations starting from 1 mM (IC50 ≈
100 mM) (139). In fructose-fed rats, curcumin ingestion inhibited
PTP1B and improved insulin and leptin sensitivity in the liver of
rats, also protecting hypertriglyceridemia and hepatic steatosis
induced by fructose diet (140). Also, it has been suggested that
curcumin activate miRNA206 and then improve insulin
sensibility (141).

Papaverine from Papaver somniferum L. is an isoquinoline
alkaloid with inhibitory effects against PTP1B in humans (142).
In vitro papaverine illustrated potent in vitro inhibitory effects
against recombinant h-PTP1B (IC50 = 1.20 µM), while in vivo it
led to a marked decreased in fasting blood glucose level in Balb/c
mice (142).

Xu and Wang (143) studied anti-diabetic effect of bis(2,3-
dibromo-4,5-dihydroxybenzyl) ether (BDDE), a bromophenol
isolated from the red alga (Odonthalia corymbifera). The in vitro
treatment with 2.5, 5, or 10 mM of BDDE for 16 h dose-
dependently inhibited the over-expression of PTP1B in insulin-
resistant HepG2 cells. In vivo in db/db mice model, the BDDE
activity was compared with that of metformin, where a
significant decrease in blood glucose levels and HbA1c were
stated following BDDE treatment, without weight gain (143).

Inhibitory activity of lipophilic compounds from Salvia
miltiorrhiza Bunge roots against PTP1B, was also investigated
(144), being shown PTP1B inhibitory effects using cryptotan
shinone (IC50 = 5.5 ± 0.9 µM), tanshinol B (IC50 = 4.7 ± 0.4 µM)
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and dehydrodanshenol (IC50 = 8.5 ± 0.5 µM) (144). In vivo studies
in diabetic rats treated with a polyphenolic fraction of S.
miltiorrhiza, also evidenced a lower fasting glucose (145). In this
way, the active ingredient tanshinone IIA reduced glycemia in fasted
mice after an acute injection of a glucose bolus (146).

There is limited data from human assays exploring specific
targeting PTP1B inhibitors, and that available investigated the
effect of resveratrol. The first clinical trial, composed of a very
small sample (total 19, 10 intervened and nine controls), found that
10 mg/day of resveratrol capsule administered for a month
improved HOMA-IR (91) meanwhile in other, performed in 28
medicated T2DM subjects treated with 250 mg/day of resveratrol
for 3 months improved HbA1c level (control n = 29) (92).
However, no effect of resveratrol was observed in three studies,
in 15 post-menopausal women (control n = 14), 10 overweight
men with no-alcoholic liver disease (control n = 14) and 12 obese
men (control n = 12) when was administrated in doses of 75 g/day
for 12 weeks (93), 3,000 mg/day for 8 weeks (94) and 300 mg/day
for 4 weeks (95), respectively. In preliminary date from
PREDIMED study (Prevention with Mediterranean Diet) 1,000
obese T2DM patients followed for two years improved FBG (96).
Data of resveratrol clinical trials is resumed in Table 1. In general,
the beneficial preventive or curative effect of resveratrol in T2DM
depend on doses, time of intervention and characteristic of
population, but as other phytochemicals, should be consumed as
supplement, because the doses ingested through diet are very low.
Moreover, urinary metabolites should be controlled (130, 147, 148).

Estradiol Regulation Via 17b-
Hydroxysteroid Dehydrogenase
Estradiol induces metabolic homeostasis and its accumulation in
serum may be indicative of estrogen resistance, metabolic
deficiency and T2DM (149). In postmenopausal women,
elevated levels of circulating estradiol were associated with
T2DM (150) but did not reflected causality. 17b-HSDs play a
key role in both degradation and activation of androgens and
estrogens. Specifically, 17b-HSD1 facilitates the reduction of
estrone to estradiol, while 17b-HSD2 mediates the oxidation of
estradiol to estrone (151). In humans, 17b-HSD1 is expressed in
placenta, ovary and breast epithelial cells, and 17b-HSD2 in
placenta, lung, liver, pancreas, kidney, prostate, colon, small
intestine, endometrium and breast epithelial cells (151).

Stupans and Stretch (152) examined the ability of complex
phenols from olive oil to inhibit human hepatic microsomal both
reductive and oxidative 17b-HSD activity. Specifically,
dihydroxybenzoic acid, gallic acid, hydroxytyrosol, and
oleuropein glycoside inhibited the reductive 17b-HSD activity
but not the oxidative one. Rather, gallic acid stimulated the
activity by approximately 30% (152).

Some molecules, like epicatechin may also activate 17b-HSDs
in rat testicular Leydig cells (153). In the same way, resveratrol
also regulates protein and mRNA expression of 17b-HSD in rats
(154, 155). Curcumin and quercetin increased the activity of
17b-HSD, but curcumin evidenced a slightly better activity as
compared to quercetin (156). On the contrary, soy isoflavones
treatment in female rats decreases 17b-HSD levels (157).
In this way, a previous report indicates that genistein can
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inhibit 17b-HSD enzyme in both human and rat testis
microsomes (158).

There are few studies in human related to extra-virgin olive
oil consume and T2DM (130). In two intervention studies, 500
mg of leaf extract improved insulin resistance parameters. The
first study, performed in 21 overweight men treated for 12 weeks
compared with 22 control men, improved b-cell function and
insulin levels. Those parameters showed a higher improve when
36 subjects treated with hypolipemiant or anti-hypertensive
medication were excluded (97). In another study, the intake of
one capsule a day (51.1 mg oleuropein and 9.7 mg
hydroxytyrosol for 12-week) improved pancreatic b-cell
function and insulin sensitivity in T2DM patients. The other
study was performed in 41 T2DM men for 14 week (control n =
38) and showed an improvement of HbA1c and fasting insulin
levels (98). The doses of olive leaf extract administrated had 51.1
mg oleuropein and 9.7 mg hydroxytyrosol. In contrast, in other
study, no significant effect was stated following administration of
two polyphenol-rich olive oil (20 ml/day, 6 mg hydroxityrosol)
for 6 weeks in 63 healthy participants (group 1 n = 39, group 2
n = 29, control n = 9) (99). In yet another study performed in 11
overweight T2DM adults, found that the administration of 25 ml
of high phenol olive oil for 4 weeks reduced HbA1c and FBG
(159). Finally, the PREDIMED trial revealed that Mediterranean
diet supplemented with extra-virgin olive oil reduced in 40% the
T2DM incidence while improved glucose metabolism in
participants with high cardiovascular risk (100, 160). Also
50 ml of virgin olive oil a day increased expression of insulin-
related candidate genes in peripheral mononuclear cells (161).
Indeed, extra-virgin olive oil is not only rich in polyphenols, but
also has flavonoids, flavones and lignans, that present action over
glucose metabolism, that can be considered when data from
intervention studies is analyzed.

Incoming Glucose Into Hexosamine
Biosynthesis Regulation via Glutamine-
Fructose-6-Phosphate Aminotransferase
Glutamine-fructose-6-phosphate aminotransferase (GFAT) is a
rate-limiting enzyme in the hexosamine biosynthetic pathway
that plays an important role in T2DM (162). GFAT enzyme
converts fructose-6-phosphate to glucosamine-6-phosphate. In
mammals, the glucose integration through the hexosamine
biosynthetic pathway is regarded as a cell nutrient sensor and
this pathway is one of the mechanisms through which
hyperglycemia mediates peripheral insulin resistance (163) and
diabetic complications (164). In this sense, an enhanced activity
of human GFAT has been implicated in insulin resistance in
cellular and animal models (165, 166).

In Wistar rats, fenugreek (Trigonella foenum-graecum L.) was
revealed to be able to control the increase in GFAT activity
provoked by corn starch diet and reduced kidney damage (167).
Similarly, Coriandrum sativum L. fruit and its phytoconstituents
evaluated in an evaluated in silico model (168), evidenced,
specifically the compound limonene, to be a good inhibitor of
GFAT. Indeed, a meta-analysis including 10 clinical trials
revealed that fenugreek ingest between 1 and 100 g/day for 10
to 84 days reduced FBG by −17.93 mg/dl, 2 h post-load glucose
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by −39.46 mg/dl and HbA1c by −0.85%. Fenugreek was
administered in powder, alcoholic extract or capsules (169).
More prominent changes were found in T2DM and overweight
patients (20 case and 20 control subjects, 1 g/day for 2 weeks)
(102, 169), and T2DMwith coronary arterial disease (30 case and
30 control subjects, 25 g/twice daily for 1 week) (101, 103). It has
been suggested that larger double blind randomized trials should
be performed according to rigorous standards for herbal
intervention, because the trails analyzed and available so far
have low sample sizes (≤25 subjects) (169). Another meta-
analysis analyzing the same articles was performed later, with
similar conclusions, highlighting therefore the low quality of
studies and underlining the promising beneficial effects of
fenugreek in pre-diabetes subjects (170). Another later simple
study in 60 metformin-treated T2DM patients found that thrice
daily 1 g fenugreek for 12-week improved FBG, post-prandial
glucose and HbA1c in higher proportion when compared to the
group receiving only metformin (n = 30 each group), suggesting
that fenugreek can be used as complementary therapy in T2DM
control (104). Meanwhile another longitudinal study found that
in T2DM patient with hyperglycemia and under different
treatments, 25 g/day of fenugreek for 24 week decreased
glucosuria and HbA1c (n = 60, 10 control) (105).

Insulin Secretion, Glucose Uptake and
Gluconeogenesis Regulation via Mono-
ADP-Ribosyltransferase-Sirtuin-6
Sirtuin 6 (SIRT6) has both NAD+-dependent deacetylase (171)
and mono-ADP-ribosyltransfease activity (172), and is targeted
by antidiabetic epidrugs exhibiting inhibitory or activating
mechanisms. Briefly, the absence of SIRT6 has been linked to
an increased tissue glucose uptake and decreased serum glucose
levels (173) through inhibiting the expression of the
transcription factor hypoxia inducible factor (HIF)-1a, which
is involved in the transcription of glucose transporters (174).
Also, SIRT6 boosts the deacetylation of peroxisome proliferator-
activated receptor-g coactivator (PGC)-1a, which robustly
stimulates hepatic gluconeogenesis (175).

The interactions between the main bioactive compounds of
ginger (i.e., 4-gingerol, 6-gingerol, 8-gingerol, 10-gingerol, 6-
shogaol, and b-bisabolol) and protein targets (GFAT, SIRT6,
GLUT4, 11b-HSD1 and glycogen phosphorylase) were studied
using computational interaction methods, molecular docking and
pharmacophore (176). SIRT6 and GFAT showed binding affinity
ranges lower than 11b-HSD1 and glycogen phosphorylase but
more stables, and strong interaction with GLUT4 was observed.
The study concluded that the synergistic mixture of ginger
phytochemicals may have functional effects for T2DM
treating therapy.

Euphorbia thymifolia L. is a medicinal plant with reported
anti-hyperglycemic activity (177). In a study aiming to
investigate the antidiabetic mechanism involved, molecular
interactions between phytochemicals in E. thymifolia and
protein targets (11b-HSD1, GFAT, PTP1B, and SIRT6) were
analyzed (178). As main findings, seven bioactive compounds
with high binding affinity (<−8.0 kcal/mol) to all four targeted
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proteins were found, namely b-amyrine, taraxerol, 1-O-galloyl-
b-D-glucose, corilagin, cosmosiin, quercetin-3-galactoside and
quercitrin. To date, there is no data available on clinical trials
exploring specific targeting SIRT6 inhibitors, so that this should
be an area of high search in the near future.
CONCLUSION

Epidrugs are another strategy to prevent or delay the T2DM onset
through epigenetic mechanisms. The use of these new drugs has
shown to have a high potential since they can genetically
modulate diseases while other treatments act through other
biochemical mechanisms. Many known plants (i.e. ginger, tea
and fenugreek) and phytochemicals (i.e. curcumin and
resveratrol) with an impact on diabetes have been shown to
interact with different protein targets of T2DM. However, in some
cases, there are controversial results. Data currently available
underline that some bioactive compounds have epigenetic
regulatory effects and appear to be useful for therapeutic and/or
complementary purposes along with pharmacological
hypoglycemic drugs, featured by numerous side effects. The
mechanisms involved in the therapeutic effects of the potential
epidrugs discussed in this review are the decrease of insulin
resistance via 11b-HSDs inhibition, the enhance of insulin
activity via PTP1B inhibition, estradiol regulation via 17b-HSD
inhibition, incoming glucose into hexosamine biosynthesis
regulation via GFAT inhibition, and the role of SIRT6 in
insulin secretion, glucose uptake and gluconeogenesis
regulation. Further, increasingly deeper studies on natural and
synthetic compounds and new protein targets must be performed.
In addition, new preclinical studies must also be done to better
elucidate the epigenetic mechanisms, along with new clinical
studies to determine the effectiveness of these epidrugs.
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