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Abstract

Composite materials provide an alternative to metals, offering a higher strength and stiffness
to weight ratio. The aerospace sector has incorporated these materials, resorting to autoclave
manufacturing as the de-facto manufacturing process. However, with environmental sustainability
demands, out-of-autoclave processing is becoming a new industry driver.

Liquid Composite Moulding (LCM) is a family of out-of-autoclave processes, capable of
achieving high production throughputs, as well as providing parts with mechanical performances
similar to those obtained by autoclave processing. However, process design plays an important role
in guaranteeing the mechanical reliability of the parts, as a bad choice of processing parameters can
contribute to the formation of defects, namely high void content.

Voids are air inclusions on the matrix, which can have a considerable impact on the mechanical
properties of the parts. Despite previous research works, void dynamics inside fibrous reinforce-
ments during LCM manufacturing still lacks the desired level of comprehension to be adopted by
industry during the process design stage.

Using a multi-scale approach, this work aims to clarify the mechanisms behind void formation
in LCM, thus providing valuable insights that can be applied in future LCM manufacturing design
approaches.
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Resumo

Os materiais compósitos são uma alternativa aos metais, oferecendo um maior rácio entre resistência
e rigidez face ao peso. O sector aeroespacial tem vindo a incorporar estes materiais, recorrendo
sobretudo ao fabrico de peças pelo processo de autoclave. No entanto, dada a maior consciência
ambiental actual, acompanhada por normativos para as empresas, os processos de fabrico fora-de-
autoclave começam a ganhar maior relevância.

Os processos de transferência de resina são uma família de processos de fabrico fora-de-
autoclave, capazes de atingir cadências de produção elevadas, assim como produzir peças cuja
prestação mecânica é similar a peças obtidas pelo processo de autoclave. No entanto, nestes
processos, a garantia da fiabilidade mecânica das peças fabricadas, está muito dependente da
qualidade do desenho da estratégia de fabrico. Assim sendo, uma má escolha de parâmetros de
processo pode contribuir para a elevada formação de defeitos, nomeadamente um elevado conteúdo
de vazios. Os vazios são inclusões de ar na matriz, que podem ter um impacto considerável nas
propriedades mecânicas das peças. Apesar da investigação feita até à actualidade, o conhecimento
sobre o comportamento dos vazios dentro dos reforços utilizados em materiais compósitos ainda
está aquém do desejado para uma implementação industrial na etapa do desenho da estratégia de
fabrico.

Utilizando uma abordagem multi-escala, este trabalho tem como objectivo clarificar os mecan-
ismos que coordenam a formação e transporte de vazios em processos de transferência de resina,
providênciando abordagens que podem ser aplicadas em futuros desenhos de estratégia de fabrico.

Keywords: Materiais compósitos. Processos de transferência de resina. Defeitos. Vazios.
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Introduction
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2 Introduction

1.1 Motivation and background

The invention and commercialization of glass fibre in the late 1940s, allied to new resin systems,

led to the use of composite materials in general aviation components, such as the Boeing 707 in

the 1950s, in as as little as 2% of the structural weight [1]. The need for lighter aircraft, that could

carry bigger payloads, led to an increase in the adoption of this type of materials in the following

years [1, 2]. By the beginning of the 21st Century, it was established that aircraft structures could

benefit from the adoption of composite materials in a multidimensional design approach: reducing

the number of parts through increased to design flexibility, which leads to lower maintenance costs

[3]; Lighter structures, improvements in fuel consumption through lighter structures; diminished

radar footprint; high payload aircraft capable of achieving sub-sonic velocities;

It was also in the beginning of the 21st Century that the European Union (EU) regulations

became more strict with green-house effect gases emitted by global air transportation. As the World

annual traffic is increasing exponentially since the 1970s, with no signs of decreasing [4], in 2050

CO2 emissions from international and domestic EU civil aviation are expected to increase 300%,

compared to 2010 [5], as even the COVID-19 pandemic is believed to not impact the dominant

upward trend [6]. This situation left OEMs with the need of more efficient aircraft. In the last

decade both Airbus and Boeing developed aircraft containing 50% of its structural mass based on

composite materials, by which the contribution of the different technologies involved in the new

Airbus airliner led to a decrease of as much as 50% of fuel consumption, compared to what was

possible in 1990 [4].

Despite such achievements, the Airbus aircraft demand to 2038 is expected to be 39200 new

aircraft [4]. Such increasing demand poses a challenge to meet environmental regulations, as well

as to the implemented production lines throughput, by which the economical and environmental

impact of the adoption of composite materials in aircraft structures should be measured by a Life

Cycle Assessment (LCA), instead of fuel economy alone [7]. One can conclude that more energy

efficient manufacturing processes should be implemented for composite parts fabrication, in order

to have a real advantageous material choice over traditional metallic alloys, such as aluminium or

steel [7–11]. This paradigm applies to the aeronautic [7–9] and the automotive [11, 10] sectors.

However, a diverse panoply of industrial sectors, could benefit from improved manufacturing

processes for composite materials, requiring less energy and delivering an increased throughput.

Throughout this paradigm change, process design became a fundamentel dimension of the

switch to composites. In order to guarantee the reliability of the manufacturing process, and

ultimately the composite parts dimensional and mechanical performance, a robust process design

methodology requires improvements in its scientific basis, to replace the existing trial-and-error

process optimization, based on operator skills acquired over time. Therefore, the developement of

more robust models based on physics are paramount to enable the prediction of possible outcomes

from a given process design approach.

This work aims to give new insights into void dynamics for process optimization, with the

ultimate objective of eliminating the gap between the industry standards in terms of part quality,
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given by autoclave processing, and out of autoclave strategies that have been proven to be more

energy efficient and sustainable, as well as suitable to keep up with the scalability required for

today’s production lines and the future of the environment.

1.2 Problem statement

Fluid flow in porous media, in the context of composites manufacturing, is still surrounded

by great uncertainty due to the inherent high statistical scatter of the properties of the porous

medium. As a consequence, void dynamics in fibrous reinforcements still lack the desired level of

comprehension to be effectively considered during the process design stage. Ultimately, this can

lead to the manufacturing of parts with higher than desired void content, which can compromise

their structural reliability.

This work presents experimental and computational developments in the scope of void dynamics

in composites manufacturing, with special focus on Liquid Composite Moulding (LCM) processes.

The study of void dynamics is done in a decoupled multiscale approach. Nevertheless, results are

correlated with experimental data available in the literature, where multiscale decoupling is not

possible.

1.3 Thesis structure

Each chapter in this work reflects a particular study, either focused on void dynamics, or more

centered on the development and assessment of a computational tool, following a top-down multi-

scale perspective: Chapter 2 presents a state-of-the-art review of the literature available on void

formation and transport applicable to LCM processes. A comprehensive review of the different

scales is made, analyzing the methodologies employed at each scale, and the underlying challenges

inherent to each methodology. The questions which remain unaddressed by the literature serve as

the basis for the work developed on the subsequent chapters.

Chapter 3 focuses on the macro-scale and addresses the issue of achieving a robust mould design,

insensitive to the natural process variability. To fulfill this objective, a global sensitivity analysis

framework was developed, encompassing stochastic mould filling simulations. The obtained results

suggest that the implemented framework can capture the effects of the natural process variability

and inherent macro-void formation, leading to new insights on the robustness of different design

approaches.

Chapters 4 and 5 focus on the development of computational tools that contribute to the creation

of new methodologies and experimental/manufacturing setups. Chapter 4 describes the development

and assessment of a machine-learning assisted software tool that allows the automatic calculation

of the void content on laminate cross-section micrography samples, through image processing

techniques. Chapter 5 builds on the machine-learning methodology developed on Chapter 4, and

applies it to the automatic detection and tracking of flow-front and bubbles during mould filling

experiments.
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Chapter 6 addresses the meso-scale, reporting experiments on the assessment of void formation

and transport phenomena in between fibre-tows, using the software tool developed on Chapter 5

and a 3D printed representative geometry, thus contributing to the reduction of statistical scatter-

ing. Modelling approaches are discussed and the observed statistical scattering is quantified and

discussed.

Chapter 7 addresses the micro-scale, discussing experiments on the characterization of void

entrapment inside fibre tows, again using the tool developed in Chapter 5 and a 3D printed

representative geometry, allowing the coupling of experimental results to numerical simulations.

This methodology allowed a precise quantification of the fluid flow conditions around voids, leading

to new insights on void entrapment.

Chapter 8 reports the development of a bubble tracking algorithm for the LIMS software

[12], which is coupled to mould filling simulations, thus allowing the prediction of void content

dynamically throughout the process.

Chapter 9 integrates the different chapters that compose this work, proposing a global vision of

the addressed research topic.

Chapter 10 presents the diverse conclusions, as well as the additional research paths that were

opened in this work.



Chapter 2

State of the art on void formation and
transport in LCM

Voids are a matrix defect, which is formed during manufacturing. They can be present at different

scales, possessing different geometries and sizes, which are a function of different matrix materials,

the manufacturing process and the processing conditions [13]. Voids have a detrimental effect on the

mechanical properties of composite laminates. Transverse tensile strength [14, 15], inter-laminar

shear strength [16–20], compression strength [21, 22] and fatigue life-span [23–25, 17] have been

identified as the properties that are most sensitive to an increase in void content. Literature suggests

that these properties deterioration may be affected by up to 10% per 1% of void content increase,

or even more for fatigue life [13]. Additionally, literature also suggests that void morphology,

distribution and reinforcement architecture also play an important role in the degree of mechanical

properties deterioration [26–28]. The goal of this work is to contribute to the increase in part quality,

through the correct optimization of processing parameters. Therefore, the comprehension of void

formation and transport phenomena is paramount to provide effective means for accurate process

optimization, ultimately leading to an increase in part performance and reliability.

2.1 Macro-scale

The primary objective of any LCM mould design, is to assure the complete mould filling. In the

case of incomplete mould fill, dry spot or macro-void is the denomination given to the unsaturated

regions, which render the manufactured part defective. Other considerations in mould design

consist in minimizing fill time, in order to optimize production cycle times. As part geometries

get increasingly complex, mould design becomes a non-trivial task, thus increasing the probability

of creating defective parts. Mould filling simulations aid this optimization task, by being able to

predict the resin flow-front, as well as pressure, velocity fields and mould filling times. Figure-2.1

depicts the mould filling simulation of a T-stringer component. These softwares consider the resin

filling process as the flow of newtonian fluid through a porous medium, where a moving sharp edge

5
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(flow front) separates the saturated and dry regions of the domain. Hence, Darcy’s equation (Eq.

2.1) is introduced into the continuity (mass conservation) equation (Eq. 2.2) [12]:

v⃗ =−KKK
µ

∇∇∇P (2.1)

∇∇∇ ··· v⃗ = 0 (2.2)

Thus, leading to:

∇∇∇ ···
(

KKK
µ

∇∇∇P
)
= 0 (2.3)

Where KKK is the permeability tensor of the reinforcement, µ is the resin viscosity, ∇∇∇P is the

resin pressure gradient and v⃗ is the volume-averaged velocity of the resin phase, which can be

related to the apparent velocity inside the pores va, by Eq. 2.4, where φ is the porosity ratio.

va =
v⃗
φ

(2.4)

This modelling approach assumes that the porous media (in this case, the fibrous reinforcement)

cannot deform, and that the resin kinematic behaviour does not change during mould filling.

Generally, these assumptions are valid for LCM, since it is desirable to do the resin injection

without creating fibre displacement. Furthermore, in many LCM applications it is desirable that

the resin viscosity is maintained fixed throughout the mould filling process. In the case these

assumptions are not valid, separate transport equations, along with mass momentum and energy

balance equations need be solved [29, 30].

Figure 2.1: 2D vacuum infusion simulation for a T-stringer
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2.1.1 Permeability

According to Eq.2.1, permeability is a property of the fibrous reinforcement, which reflects the

resistance the reinforcement offers to the resin flow. This property can be described by a tensor,

which three dimensional representation takes the form:

KKK =

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 (2.5)

Due to the difficulty of obtaining the values for all the different components experimentally,

this tensor is usually diagonalized. By convention, it was defined that K11 and K22 are the two

in-plane permeability components and K33 is the out-of-plane, through thickness, component:

KKK =

K11 0 0

0 K22 0

0 0 K33

 (2.6)

Unlike mechanical properties determination, which already benefit from predefined standards

(i.e. ASTM, ISO, etc.), permeability determination is still an ongoing research area. Three

world-wide benchmark exercises have been done with the objective of determining permeability

of reinforcement fabrics, however, the high scatter registered between institutions is a constant

factor [31–33]. The effort for uniformization of the measurement setups has been a significant

contribution to the reduction of the registered scatter, however, cavity deformation, pressure

measurement, fluid viscosity and fibre volume fraction estimations are still pointed as relevant

causes for result uncertainty [33]. In an effort to eliminate the statistical scatter, thus allowing the

calibration and standardarization of permeability setups, a 3D printed porous geometry alternative

has been proposed [34].

2.1.2 Permeability variability

The common notion of permeability is that of a constant homogeneous property of the reinforcement,

depending on its architecture (e.g. random mat, woven, filament count, etc.), lay-up configuration

and compaction. Despite the already proven usefulness of this approach in aiding LCM manufactur-

ing numerical simulations, by allowing the detection of possible dry spot formation and calculating

mould filling times, it may be an oversimplification of the actual characteristics of the medium

and its permeability. Although for certain applications, flat component geometries may be desired,

many types of geometries can be manufactured using LCM. As such, during preforming, the lay-up

operation usually subjects the reinforcement to deformations, in order to conform the reinforcement

to the desired geometry. This changes permeability and introduces local fluctuations that reflect the

type and degree of deformation that the reinforcement is subjected to.

By conducting in-plane permeability tests in non-crimp fabrics submitted to shear deformation,

Hammami et al. [35] have shown that with an increase of the shear angle until 35◦, the principal per-
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meability component also increases, whereas the second in-plane component decreases. Covering a

wide variety of fabric architectures, Smith et al. [36] have reached similar conclusions for the same

range of shear angle, however, by extending the range to 65◦, the principal permeability component

has been found to diminish past the 40◦. On the contrary, Louis and Huber [37] and Zeng et al.

[38] reported that as the shear deformation in the fabric increases, there is an increase of the fibre

volume fraction, which in turn reduces the permeability of the reinforcement. Other studies were

found on the literature where instead of determining permeability experimentally, it is determined

via numerical simulations which make use of a representative geometry of a fabric unit-cell (Figure

2.2). Studies conducted by Bickerton et al. [39] and Zeng et al. [38], both confirm the decreasing

trend of permeability, with an increasing shear deformation angle. Since reinforcement fabrics may

be subject to involuntary deformation during handling and layup, Endruweit et al. [40] evaluated

the effect of the handling history of the fabric on its permeability. In order to mimic the effect of

fabric handling, 2x2 twill weave specimens were subject to sequential shear deformations before

being subject to permeability measurements. It was found that the effect of involuntary deformation

during the fabric handling, can affect permeability in the principal direction, by factors up to 2.

Figure 2.2: Example of a computational unit cell domain generated using TexGen®
software [41]

Nesting is a phenomenon promoted by out-of-plane compression of the reinforcement and

is characterized by an increased packing of the fabric layers at their interfaces. Therefore, for a

laminate composed by a single layer of fabric, nesting phenomena is inexistent as there are no layer

interfaces. With the increasing number of layers in a laminate, nesting phenomena become more

significant, contributing to the thickness reduction of the laminate [42]. By conducting in-plane

permeability measurements in PVC coated fabrics, therefore effectively constraining the possibility

of nesting effects, Hoes et al. [43] suggest that permeability experimental scatter can be almost

eliminated. Using a 3D computational model of a woven, braided and non-crimp fabric, Lomov et

al. [44] showed how shear deformation reduces the degree of nesting in the reinforcement.

Race-tracking is a phenomenon that results from the bad positioning of the reinforcement layers

inside the LCM mould. If small gaps are left between the mould walls and the reinforcement, these

provide a preferential flow path for the resin, due to the higher local permeability. This type of

phenomenon is considered as a defect in LCM manufacturing, since if the gaps are large enough,

the flow path may become distorted, thus originating dry spots and ultimately rendering the part

defective. Both Li et al. [45] and Gokce et al. [46–48] characterized race-tracking as following
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a Weibull distribution, with the objective of feeding stochastic mould filling simulation. Robust

mould design would be achieved by coupling the stochastic simulations with an optimization

algorithm, in order to find the best injection strategy (less sensitive to race-tracking). This idea was

latter extended for Vacuum Infusion (VI) setups, by optimizing the lay-out of the distribution media

[49] Other studies focus on detecting race-tracking during mould filling, with the ultimate objective

of feeding an online process control algorithm, capable of taking the necessary actions to guarantee

a complete mould fill [50, 51].

As research has shown, permeability is not an homogeneous property of the reinforcement. Lo-

cal variations often arise due to a variety of factors, including shearing, nesting and bad positioning

of the reinforcement inside the mould cavity. In addition, natural variations in the reinforcement

architecture also have an effect on the local permeability variation of the reinforcement. This last

phenomenon has been stochastically modelled by Bodaghi et al. [52] for the in-plane components

and Yun et al. [53] for the out-of-plane components, however, a single reinforcement layer was

regarded in the permeability measurements. Further uncertainty propagation methodologies for

entire lay-ups were not yet proposed.

2.2 Meso & Micro Scales

In LCM mould design, the most important condition that is expected to be met is the complete

mould fill. However, the absence of dry spots (macro-voids) does not invalidate the existence of

smaller voids at other scales. Reinforcements commonly used in LCM are composed by fibre

tows, which are then braided to form the textile structure. Hence, instead of a single porous scale,

reinforcements commonly show a dual-scale porosity, which encompasses the porous zones in

between fibre tows, designated meso-scale, and the porous zones inside fibre tows, designated

micro-scale. Different methodologies were proposed in the literature to model void formation and

transport, with applicability to LCM process simulation.

2.2.1 Capillary number master curves

Recalling the dual-scale porosity principle, the meso-scale porosity (situated between fibre tows)

which dimensions range between 80-250 µm [42]. Hence, mesoscopic resin flow is mostly governed

by viscous forces. On the other hand, the dimensions of the empty porous spaces located inside

fibre tows (micro-scale porosity), usually range between nanometers to a few micrometers. Due to

the very small porosity dimensions, the main flow driving mechanism therefore becomes capillary

pressure.

The relative strength of one flow mechanism to another, was found to be quantifiable by the

capillary number (Ca) [54], or its modified form (Ca∗) [55], which differs from the traditional

formulation (Equation 2.7), by accounting the contact angle, θ , which characterizes the wettability

of the reinforcement. The Ca∗ approach, is therefore intended to generalize the definition of the

capillary number for any type of resin/fibre system [55].
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Hence, for a small Ca∗, it is expected a predominant flow velocity inside the fibre tows, which

leads to void formation in between the tows by air entrapment. The opposite situation is expected

for a high Ca∗, in which the flow velocity in between the tows is higher, leading to void formation

inside the tows. The modified capillary number is therefore a dimensionless number, formulated in

Equation 2.8:

Ca =
µv
σ

(2.7)

Ca∗ =
µv

σ cosθ
(2.8)

Where µ is the resin viscosity, v is the macroscopic resin velocity, σ is the resin surface tension

and θ is the resin-fibre contact angle.

meso-voids

(a)

micro-voids

(b)

Figure 2.3: Void formation as a function of the capillary number (competition
between viscous and capillary flow): (a) low capillary number; (b) high capillary
number

This rationale has been corroborated by experimental studies, which have found that an optimal

Ca∗ exists, by which the minimization of void content in LCM manufactured parts can be achieved

[55, 54, 56–59]. For this matter, a master curve of void content as a function of Ca∗ is obtained

experimentally, thus providing a processing window, which corresponds to the Ca∗ values that

correlate to the range of minimum void content [59] (Figure 2.4).

As described above, since the Ca∗ is a function of the resin rheological properties, the porous

architecture of the reinforcement and resin-fibre contact angle, the optimum Ca∗ may differ from

the combination of type of reinforcement and resin system in use. However, from a literature review,

Park and Lee concluded that for most cases, the optimum Ca∗ is around 10−3, which corresponds

to a macroscopic resin velocity of 0.1−1mm/s [60]. In terms of minimization of the void content,

it has been found that is possible to achieve zero void content in random mats [61, 62] and very

close results on unidirectional stitched fabrics [55, 63], as long as the injection direction is kept

longitudinal to the fibres. The reasoning behind such void content increase in the non-longitudinal

direction is the existence of fibre tows transverse to the flow, which promote void formation due to
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Figure 2.4: Processing window definition, through a master curve of void content
as a function of capillary number

cross-flows led by capillary action [63, 64]. The same principle applies to woven and bidirectional

stitched fabrics, as this type of fabrics have fibre tows transversely positioned. As such, despite a

minimization of void content can be carried out by adjusting the Ca∗, still, a residual void content

may not be eliminated [64, 54, 65–67].

In order to determine the optimum Ca∗, without the need of multiple LCM experiments, Patel

and Lee proposed the determination of each separate rheological resin property, in addition to the

resin-fibre properties [68, 69]. More recently, Lebel et al. [70] and Ravey et al. [71], suggest the

determination of the optimum Ca∗, to be done with the aid of imbibition tests, where a piece of

fabric is partially submerged in test fluid and subjected to a capillary rise experiment. These tests

simplify the determination of Ca∗, thus providing the necessary parameters in one test alone, in

which the fluid advancement can be tracked by thermographic imagery or light refraction.

As demonstrated by Trochu et al. [72] and Huang at al. [73], the relation of void content as

a function of capillary number, can be implemented in mould filling numerical simulations, for

prediction of void distribution, based on the local resin flow velocity. This approach enables a

further optimization of processing parameters, targeting the reduction of void content, through a

precise control of the resin velocity during mould filling. However, not only a strong experimental

validation of the numerical results was not provided, as well as the models do not consider void

transport, after formation.

2.2.2 Unsaturated flow

As referred in the former section, the resin flow velocities that provide an optimum capillary

number are relatively low (0.1− 1mm/s), which pose a constraint in order to minimize mould

filling times. Since this is not desirable in order to achieve the required production rates by the

industry, the employed mould filling velocities tend to be higher than the ones corresponding to
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the optimum capillary number. For that matter, researchers focused on the modelling assumption

that resin starts to flow to the inside of the fibre tows, after permeating the cavities left between the

fibre tows, therefore promoting void formation inside the tows (microvoids). Such flow behaviour

deviates from the assumption of a distinct frontier between the saturated and the dry zones of

the reinforcement. Instead, a partially saturated zone exists at the flow front (Figure 2.5), which

separates the fully saturated from the dry regions of the reinforcement. A new variable of interest,

saturation, is thus introduced:

s =
Vr

1−Vf
(2.9)

Saturation (s) is therefore the quotient between the volume that is effectively occupied by resin

(Vr) and the volume it can potentially ocupy, which can be equated to the local porosity, as itself is

equal to (1−Vf ), as porosity and fibre volume fraction must add to unity.
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Figure 2.5: Saturation curve in LCM manufacturing, where x f f is the flow-front position

2.2.2.1 Multi-phase flow equations for porous media

The first approaches to solve the unsaturated flow problem had its roots in soil science, with the

application of dual-phase extended forms of the Darcy equation [74, 75]:

v⃗(s) =−Kr(s)
µ

KKK ·∇∇∇(p− pc(s)) (2.10)

Where v⃗(s) is the macroscopic velocity as a function of saturation, KKK is the saturated permeabil-

ity tensor, p is the pressure, pc is the capillary pressure as a function of saturation, µ is the resin

viscosity and Kr(s) is the relative permeability as a function of saturation.

Due to the difficulty in treating this type of equation analytically, simplified formulations, such

as the Buckley-Leverett equation [76] were also employed [77]. However, the main challenge
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faced by these models is the inclusion of the relative permeability Kr, which acts as a relative

measure between saturated permeability Ksat and unsaturated permeability Kunsat , depending on the

saturation. In this approach, instead of a single permeability, the porous medium possesses two

permeabilities, either Ksat when the reinforcement is fully wetted and steady-state flow is imposed,

or Kunsat which reflects the permeability when transient flow conditions are imposed, near the flow

front, where the saturation degree is very low. The relation between unsaturated and saturated

permeabilities has been a subject of scientific research. Experimental investigations suggest that

the ratio Kr = Kunsat/Ksat is close to unity, however the presented values can range from 1/4 to 4,

depending on the reinforcement architecture, test fluid and experimental conditions [78–82]. This

contradicts the knowledge already established in soil science, in which kr can only vary between

zero and unity [83–85]. Due to its convenience, there exist also analytical models for determining

the relative permeability Kr, as a function of saturation in addition to adjustable parameters, usually

in the exponential form. Michaud presents a collection of the most commonly used expressions in

the composites field, in [86].

These models, however, possess a major problematic which is their phenomenological nature.

Despite widely used in other branches of engineering [83, 87, 74], the concept of unsaturated

permeability and its dependence on the resin rheological properties and fabric architecture lacks

therefore the necessary comprehension, for accurate composite manufacturing simulation [82, 86,

60, 13]. For that matter, other approaches more relatable to the composites field exist. These

approaches maintain the "macroscopic perspective" of the former, however, instead of considering a

single-scale porous region as the former models, these make use of the already mentioned duality of

flow scales, one corresponding to the flow between the tows (meso-scale) and another corresponding

to the flow inside the tows (micro-scale). Again, it is assumed that the resin only permeates the

inside of the fibre tows, after filling the gaps in between the tows, due to the high resin flow

velocities (high Ca∗).

2.2.2.2 Sink term (dual-phase approach)

These models make use of a sink term, which is responsible to account for the delayed impregnation

of the tows. In its mathematical concept, the sink term (q) is therefore a negative source term

appended to the macroscopic mass continuity equation (Equation 2.2):

∇∇∇ ··· v =−q(p,s) (2.11)

Several approaches for estimating the sink term exist in the literature. These consider the radial

impregnation of idealized tow geometries, and, as such, usually rely on physical quantities such as

the tows permeability in addition to adjustable parameters [88–92]. Other models further include

capillary effects [93, 94]. The assumption that the tows are radially impregnated is corroborated by

the experimental observations of Binetruy et al., which endorse that the transverse impregnation of

the fibre tows is predominant over the longitudinal form [95, 96]. By coupling the tow infiltration

models into the macroscopic flow equation, in the form of Equation 2.11, a non-linear pressure
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profile is obtained, which confirms the experimental pressure results for dual-scale fabrics, where

instead of a linear pressure profile, pressure droops with time [97] (Figure 2.6). This is not the case

for single-scale porosity reinforcements, such as random mats, where a linear pressure profile is

obtained. Therefore, the pressure drooping curve can serve as a "signature" of the fabric, by which

the tow infiltration models can be calibrated. This calibration is done by approximating the pressure

curve obtained with the macroscopic flow equation, to the experimental longitudinal injection

results [97]. Other approach is to approximate the unsaturated and saturated flow front positions

predicted by the model, to the experimental longitudinal injection results: Advani and co-workers

coupled a tow infiltration model into the macroscopic flow equation, in a single analytical model, for

constant pressure and constant flow rate processing conditions [98, 89]. This approach conveniently

allows the determination of the tow permeability in setups which make use of rigid moulds (constant

pressure or constant flow rate can be applied), or setups which mimic VI conditions (use a flexible

membrane as upper mould) and, therefore, only constant pressure conditions can be applied. The

determined tow permeability, in addition to the bulk permeability, can be applied in numerical

software packages, such as LIMS [12], in order to predict the unsaturated and saturated flow fronts

during mould filling, in complex part geometries, other than longitudinal injection scenarios [90].

Other approach by Tan and Pillai [99], estimates the sink term from meso-level simulations with a

fabric unit-cell, therefore adjusting the pressure and velocity fields in the mould filling simulation,

for each time step. The rationale behind these approaches is the determination of the amount

of time necessary, so the saturated flow front reaches the mould vents. For that matter, after the

leading unsaturated flow front reaches the mould vents, the resin outlet is kept open and resin is

allowed to "bleed". Since in common RTM moulds, resin flow front visualization is not possible,

the determination of this "bleeding" time is essential to achieve a full reinforcement saturation and,

therefore, low void content in the manufactured parts.

Despite being able to mimic experimental results to some extent, the determination of the

necessary properties for its implementation is not as robust as it would be desirable. Such as bulk

permeability, the tow permeability suffers from an high scatter, which in turn reduces the degree

of confidence of the obtained results [97]. This is not desirable, especially because the results

predicted by these methods are highly sensitive to the imposed tow permeability [98], by which a

small error in the calculation of this property, may render deviating results. At last, these models

consider that if the resin outlet is kept open long enough, a full saturation of the reinforcement is

achieved. This may not be a valid assumption, as frequently voids remain in the part. Therefore,

these models do not consider bubble compression and transport phenomena, which are essential for

a correct assessment of the void content in LCM manufacturing.

2.2.2.3 Heuristic methods

Another type of approach initially proposed by Kang et al. [100] assumes that void size and number

are a direct function of the difference between fluid flow velocity in between fibre tows, and the

fluid flow velocity inside fibre tows. As the fundamental parameter for the prediction of void

formation, a time ratio is proposed (Equation 2.12), which is the quotient between the time required
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Figure 2.6: Pressure drooping phenomenon for dual scale fabrics: (1) random mat; (2) woven fabric

for the flow-front inside the fibre tow to traverse the tow width (∆tlt,T ), and the time the meso-scale

flow-front takes to traverse the fibre tow width (∆tLt ,C).

∆tLt ,T

∆tLt ,C
=

FK,C(φ)d2
C

FK,T (φ)d2
T

[
1− K(φ)

Ca∗
Fc,T (φ)

dT LT
log

(
1+

Ca∗

K(φ)

dT LT

Fc,T (φ)

)]
(2.12)

Where FK,C(φ) and FK,T (φ) are "shape factors" which contemplate the normalized permeability

of porous medium by the square of its characteristic length, for the meso-scale and micro-scale,

respectively. Fc,T (φ) is the shape factor of capillary pressure inside a fibre tow, obtained through

Equation 2.13, K(φ) is the reinforcement bulk permeability, and dT and lT are the tow inter-

fibre distance and tow width, respectively. Since these are volume averaged properties, they can

be written as a function of porosity (φ ), and are only dependent on the reinforcement internal

architecture. This allows to decouple these properties from fluid characteristic properties, which

are condensed in the modified capillary number (Ca∗).

pc,T =
Fc,T (φ)γcos(θ)

dT
(2.13)

The rationale of this model follows that if the time ratio is much higher than unity, than a void

should be formed inside the fibre tow. The width of the void (Lv) can be extrapolated by Equation

2.14.

Lv = LT −Lt (2.14)
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Where lt is given by the relation in Equation 2.15. Since this model just considers transverse

flow accross the fibre tow, the aspect ratio of the void needs to be determined experimentally.

∆tLt ,C =− Lt

FK,T (φ)
d2

T
µ

d p
dn

[
1+

pc,T/LT

d p/dn
log

(
1− d p/dn

pc,T/LT

)]
(2.15)

In case the time ratio is much lower than unity, than voids are generated in between fibre tows.

As such, the void width is instead given by the expression given in Equation 2.16, where lc, which

is the length the fluid traveled in between tows (Equation 2.17), approximates Darcy’s law.

Lv = LT −Lc (2.16)

Lc =−FK,C(φ)
d2

C
µ

d p
dn

∆tLT ,T (2.17)

To obtain void number estimates, the time ratio is again taken as reference, by which for a

ratio lower than unity Equation 2.18 is used. If the time ratio is higher than unity, Equation 2.19 is

proposed instead.

Nv,C = ΠC(φ)

(
∆tLT ,C

∆tLT ,T
−1

)
NC (2.18)

Nv,T = ΠT (φ)

(
∆tLT ,T

∆tLT ,C
−1

)
NT (2.19)

Here, NC and NT are the number of inter-tow spaces and the number of tows by area density,

respectively. Both ΠC(φ) and ΠT (φ) are taken as probability factors that should be calibrated

experimentally.

After calibration with experimental data, it was demonstrated that this model was capable of

capturing the general trends of void size, number, and volumetric content in a rectilinear mould

injection [100, 101]. Nevertheless, the highly scattered data suggests additional mechanisms that

are not being properly accounted for, namely in void size distribution and void count. Park et

al. [67] later expanded the model to account for two-dimensional flow in a representative fabric

unit-cell, by accounting the two separate components of the pressure gradient, and using numerical

mold filling simulations to obtain the two dimensional pressure field. Neitzel and Puch [102]

introduced a linear sink-term expression to the original model, to account for the flow-rate loss

to cross-flow to fibre tows perpendicular to the flow direction. This allows approximating a two

dimensional solution, maintaining the one dimensional approach, which is more convenient in

manufacturing setups. Nevertheless, the sink term expression contains additional parameters

that need experimental calibration. Similar heuristic models present in the literature [103, 104],

demonstrate that while this methodology can capture global trends, additional information is needed

to properly account for the registered experimental data scattering.
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2.2.2.4 Direct numerical simulation

A fourth type of approach has been found on the literature, where the actual geometry of the

reinforcement fabric is used to simulate the resin flow in an unit-cell grid [105, 106]. While the

Navier-Stokes equation is solved for the inter-tow domain, the algorithm needs to recognize the

elements belonging to the fibre tows, so that in the case of intra-tow resin flow, source terms

are added in order to account for porous resistance and capillary effects. Due to the complexity

of these multi-scale approaches, computational times are expected to be higher than the ones

needed for calculations using the former methods. Nevertheless, these methods are able to predict

void content for a wide range of capillary numbers, with a very good agreement to experimental

results. Furthermore, the detail that can be achieved with this type of analysis, can provide close

approximations to both size and location of voids, which may lead to new insights for further

process optimization.

2.2.3 Void transport

Common strategies adopted by the industry after mould filling in LCM processes, include allowing

the resin to bleed for a given time, and increase the hydrostatic pressure in the mould cavity, when

a rigid mould process is being used. These practises have been corroborated by experimental

studies [57, 58], which have reinforced that increasing the mould pressure after filling (mould

packing), in addition to resin bleeding contributes to the global reduction of void content. Such

effectiveness of post-fill strategies is attributed to void transport and compression. However, due to

the dual-scale nature of the reinforcement, as well as the inherent void sizes, not all voids present the

same behaviour, by which research has been developed on the understanding of void mobilization

and transport, both at the meso-scale (in between the tows) and the micro-scale (inside the tows).

Using unidirectional stitched fabrics, Rohatgi et al. [55] concluded that for both longitudinal and

transverse flow directions, micro-voids are more difficult to purge than meso-voids, even if the

bleeding process is done at much higher capillary numbers than mould fill. They attributed this

difficulty to the higher flow resistance offered by the fibre tows, as porous gaps are smaller than

the ones between the tows. Experimental works of Lundström [107] and Shih and Lee [108],

regarding void mobilization through constricted capillary tubes provided close results to the adapted

Young-Laplace equation, previously implemented in the branches of soil science and petroleum

engineering, with the works of Haines [109], Gardescu [110] and Chatzis and Morrow [111]. In a

generic form, this model states that in order to mobilize a void, the hydrodynamic pressure across its

length must overcome the capillary pressure around it. Therefore, the critical pressure differential,

required for void mobilization can be written as:

pc = 2σ

(
cosθR

R1
− cosθA

R2

)
(2.20)

Where Pc is the critical pressure differential, σ is the surface tension, θR and θA are the receding

and advancing contact angles and R1 and R2 are the void radius and constriction radius.
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A conclusion that can be taken from this model is that by maintaining R1/R2 constant, with the

reduction of R1, the higher the pressure gradient has to be in order to mobilize the void through

the constriction. This means that micro-voids should be much more difficult to mobilize, than

meso-voids. Both experimental works, regarding experiments of void mobilization, of Patel and

Lee [69], using a series of different reinforcements, as well as the results of Kang et al. [112], using

a transparent porous media model, are in agreement with the rationale of the model above-cited.

The porous structure of fibre tows was also found to have major implications on void transport,

also in accordance to the Young-Laplace equation. Using synchrotron X-ray computed tomography

to monitor in situ the resin impregnation and void transport inside a fibre tow, Vilá et al. [113]

observed that bigger voids are easily transported by the fluid flow (compared to the smaller

ones), however, due to the non-uniform packing and trajectory of the fibres, these may become

anchored in the tow fibrous structure, for which a further increase in pressure differential may be

needed to promote a complete washout. By simulating the resin flow inside a tow, considering the

deformation of the fibres, Frishfelds and Lundström [114] concluded that the amount of intra-tow

voids is minimized if the fibres are allowed to deform.

Despite being a useful indicator of the threshold of pressure differential necessary for bubble

mobility, the Young-Laplace equation itself cannot predict which velocity a bubble will move inside

a fibrous reinforcement, given the bubble dimensions and the processing parameters. In the com-

posites manufacturing discipline, void mobility is a commonly suggested measure to characterize

void velocity within fluid flow. It is the quotient between void velocity (vv) and the volume average

fluid apparent velocity (va), as formulated in Equation 2.21 [112]. For implementation in three

dimensional simulations, it takes the form of a second order tensor [115].

Mb =
vv

va
(2.21)

Using a combination of different fluids for both suspending phase, as well as drops, flowing

inside a homogeneous fibre array, Kang and Koelling [112] found that the drop mobility decreases

with size. However, a positive correlation was found between drop mobility and experimental capil-

lary number. Lee et al. [116] proposed a curve-fitting model based on experimental observations,

presented in Equation 2.22.

Mb =

A
(
1− 1

2 ek(vcritic−va)
)

A
2 ek(va−vcritic)

(2.22)

Where A and k are constants which have to be calibrated from experimental data. This model

considers that there is a critical fluid flow velocity which separates two different behaviours: for

fluid flow velocities below critical, void velocity is negligible; for fluid flow velocities above critical,

voids move faster than the fluid flow, and as the velocity increases, the mobility factor approaches

an asymptotic value. However, this model is agnostic to variables such as void size, which have

been found earlier to be important parameters for void mobility [112].
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Other models presented in the literature [117, 108] follow previous works in the microfluidics

field usually stemming from Bretherton’s theory [118], to build correlations between void mobility

and capillary number. The use of microfluidic devices however implies simplifications to the

actual porous architecture of a fibrous reinforcement commonly used in LCM processing, which

divergence between experimental and "real world" results is yet not fully known.

2.3 Concluding remarks

The presented literature review explored the different methodologies existent to address void forma-

tion and transport through fibrous reinforcements, in the context of LCM processing. Regarding

void formation, more specifically at the macro-scale, there is a reasonable amount of information

available regarding the statistical characterization of the bulk reinforcement permeability, as well as

secondary effects such as draping, shearing and racetracking. Nevertheless, few works have been

found on how to develop a mould design methodology encompassing the variability registered.

Moreover, these works tend to focus on a single stochastic variable, leaving all other process

variables as deterministic ones. The development of a comprehensive framework for mould design,

encompassing all the variability inherent in LCM processes, is therefore still an unadressed topic

[42]. Such a framework can enable a more robust mould design, as by principle, taking an optimized

injection strategy, the process inherent variability should not prevent from achieving a complete

mould cavity fill.

Regarding void formation at the meso and micro scales, research is usually done considering a

coupled behaviour between these two scales, in the form of dual-scale flow. Several methodologies

were proposed to characterize void formation, from capillary number master curves, to sink

terms applied to the mass-conservation equation, to other heuristic based methods. Despite the

merits of each methodology, one common parameter these methods are yet to encompass is void

morphology information. Although volume average void content is taken as an important measure

for mechanical properties loss prediction [17], the morphology of voids has also been identified as

a relevant parameter [25, 119, 13]. Moreover, most experimental methodologies observed in the

literature measure local void content after resin injection and curing, for later establishing model

correlations. This approach assumes that no void transport exists during mould filling, which may

hold for very low capillary numbers. However, as capillary number increases, this assumption ceases

to hold, as described in experimental observations [63]. Recent literature proposes circunventing

this caviat with the use of ultra-violet fast-curing resins [56, 102], which can "freeze" void and

flow-front movement in a very short amount of time, thus allowing a more accurate post-curing

local void content assessment. Nevertheless, direct experiment recording and frame processing,

initially explored by Patelet al. [63] and Rohatgi et al. [55] during the 1990s, can be a promising

technique to recover real-time void velocitmetry, as well as more detailed morphology. With the

recent developements in image processing algorithms, namely in the machine-learning discipline,

more robust void recognition algorithms can be developed, leading to more accurate data.
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Void transport is still a less explored topic, with a few different approaches being proposed,

usually based on experimental data fitting, or possessing a micro-fluidics oriented background.

However, the combined effect of void size and porous media structure on resulting void mobil-

ity still lacks the necessary level of comprehension, as pointed out by Kang and Koelling [112].

A better comprehension could allow the prediction of void mobility without relying on experi-

mental parameter-tuning, which avoids a time consuming task, that has to be repeated for every

reinforcement and resin combination before the mould design stage.

Concluding, void formation and transport is a discipline which could benefit from a better

comprehension of the phenomena surrounding it, towards a more robust implementation into

mould design strategies. A major factor hindering this comprehension is the variability present

in reinforcements porous architecture, which leads to a high scattering of the results. Therefore,

future studies regarding void formation and transport could benefit from improved experimental

setups and tools, which can capture data in real time, and additionally reduce the natural variability

present in common setups, to ideally allow the isolation of void behaviour, from flow related

variability. Thus, it is also important that future experiments rely on a detailed description of the

porous structure, in order to be able to quantify the contribution of both the porous structure and

the fluid flow conditions, leading to more insightful models on void formation and transport.
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3.1 Introduction

Liquid Composite Moulding (LCM) process design requires that the resin impregnation minimizes

both mould filling time, as well as the probability of occurrence of dry, unsaturated zones. As

described in Chapter 2, this can be challenging, as the degree of variability present in material

properties and the manufacturing process itself, can be substantial. Preliminary uncertainty analyses

investigating individual sources of variability are available in the literature, however, a complete

framework combining the different variables into a mould filling scenario, was not found.

The main purpose of this study is to understand and quantify how the different sources of

variability, present in LCM, may affect the performance of the mould filling process, creating

defects and to quantify how lower scale interactions may affect macro-scale flow. In order to

transfer the meso-scale stochastic behaviour towards a complete macro-scale model, an uncertainty

propagation model is proposed, whereby local statistical properties are used to predict the upscaled

flow behaviour. This is done by means of flow simulation, using stochastic models for the input

process variables. Local fabric distortions, combined with fabric permeability, pressure and race-

tracking serving as inputs to estimate the joint probability distribution that characterizes the global

uncertainty in flow performance.

3.2 Variance based sensitivity analysis

Variance based methods are capable of computing global sensitivity measures without the need of

relying on any assumption on the behaviour of the model. These methods provide an advantage

over the well-established derivative based methods, as the derivatives are only informative at the

point where they are computed and do not provide an additional exploration of the rest of the

input factors space. However, since variance based methods rely on a Monte-Carlo framework,

the computational cost involved in computing the sensitivity indexes is very high, therefore these

techniques are recommended only for models that require a little amount of time to run.

Fourier Amplitude Sensivity Test (FAST) [181], was the first method proposing the computation

of sensivity indexes by the use of the variance of the output. However, until the extension of this

algorithm by [182], the original work only allowed for the computation of the first order effects

and the reliability of the analysis could be compromised if the sum of the indices did not approach

unity.

With the work of Sobol [183, 184], using a Monte-Carlo implementation, it is possible to

decompose the model output into different hierarchical factors, as:

f = f0 +∑
i

fi +∑
i

∑
j<i

fi j + ...+ f12...k (3.1)

This decomposition is not a series decomposition, as it has a finite number of terms (2k),

where f0 is a constant and k is the number of elements. It was also proved that if each term of the
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expansion above has zero mean: ∫
f (xi)dxi = 0 (3.2)

Then, all the terms of the decomposition are orthogonal in pairs:

∫
f (xi) f (x j)dxidx j = 0 (3.3)

As a consequence of such theorem, the decomposition terms can be calculated as:

f0 = E(Y ) (3.4)

f i = E(Y |Xi)−E(Y ) (3.5)

fi j = E(Y |Xi,X j)− fi − f j −E(Y ) (3.6)

Having in mind that:

Vi =V ( fi(Xi)) (3.7)

And also, having equations 3.5 and 3.6, one can write:

Vi =V [E(Y |Xi)] (3.8)

Vi j =V ( fi j(Xi,X j)) =V (E(Y |Xi,X j))−V (E(Y |Xi))−V (E(Y |X j)) (3.9)

This leads to the ANOVA-HDMR decomposition:

V (Y ) = ∑
i

Vi +∑
i

∑
j>i

Vi j + ...+V12...k (3.10)

Bywhich, dividing the equation by V (Y ), one can get:

∑
i

Si +∑
i

∑
j>i

Si j + ...+S12...k = 1 (3.11)

Therefore, the first order indices can be calculated as:

Si =
V (E(Y |Xi))

V (Y )
(3.12)

A difficulty arises in determining the n order indices, as the number of terms increases expo-

nentially with the number of input factors, as 2k −1. Thus, a better way of determining the total

index is using the total effects, proposed by Saltelli et al. [185], whereby substituting Xi by X−i,

effectively conditioning the expected variance with respect to all factors but one (X−i). This way,

the total effects indices can be calculated as:

STi =
E [V (Y |X−i)]

V (Y )
= 1− V [E(Y |X−i)]

V (Y )
(3.13)
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The obvious computational strategy to compute the conditional variances would imply using a

set of Monte Carlo points to estimate the inner expectation for a given Xi and repeat the procedure

for all Xi values, effectively estimating the outer variance. However, this would be cumbersome

computational task, which would require N2 runs for a Monte Carlo sample of N values. To avoid

such a problem, Saltelli et al. [185] proposed a new procedure capable of reducing the number of

runs to N(k+2), where k is the number of parameters. Later, Prieur and Tarantola [186] proposed

an alteration to the original procedure, which will be used in this work. The procedure is defined

below:

1. Generate a (N, 2k) matrix of random numbers, where k is the number of inputs and N is the

sample size;

2. Define two matrices (A, B), each one containing half of the sample;

3. Define a C matrix, which will be formed by all columns of A, except the ith column, which is

taken from B;

4. Compute the model output for all the input values in the sample matrices A, B and Ci,

obtaining three vectors of model outputs of dimension N: yA = f (A);yB = f (B);yCi = f (Ci)

The first order sensitivity indices can be estimated as:

Si =
1
N ∑

N
i=1 yB(yCi − yA)

V (Y )
(3.14)

And the total effects sensitivity indices as:

STi =
1

2N ∑
N
i=1(yA − yCi)

2

V (Y )
(3.15)

Where:

V (Y ) =
1
N

N

∑
i=1

(yA −µA)
2 (3.16)

And:

µA =
1
N

N

∑
i=1

yA (3.17)

3.3 Permeability random field generation

A random field H(x,ξ ) can be defined as a group of random variables indexed by a continuous

parameter x. However, in computational numerical problems, it is practical to deal with discrete

variables rather than continuous. Several random field discretization approaches can be found in

the literature, which follow three main techniques, as pointed out by Sudret and Kiureghian [187],

Ghanem and Spanos [188] and Betz et al. [189]:
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1. Point collocation methods: where the discrete random variables χi are selected values of H

at the points xi

2. Average discretization methods: following the idea of weighted residual methods, χi shall be

obtained by the weighted integrals of H, over an infinitesimal domain Ω

3. Serires expansion methods: based on Fourier transforms, where the field shall be represented

as a series involving random variables and deterministic spatial functions. By truncating the

series, the approximation shall be obtained.

These methods, however, suffer from the drawback of being computationally expensive, which

render the discretization of the random field time consuming. Due to the need of a high number

of random field realizations in order to feed the Monte Carlo framework, the minimization of the

random field computing time is a critical factor.

A forth type of approach uses Gauss-Markov processes to discretize the random field usually

over a fixed coordinate grid. The Fast Sequential Simulation method [190] uses an extension of the

sequential generation of a first order Gauss-Markov process, from a 1D function of time to a 2D

function of horizontal space. From the algorithmic point-of-view this method is quite simple to

implement, providing low computational times for the realization of the random field. A downside

from this method is the requirement of a structured type of grid to compute the random field values,

which obliterates the applicability of this method on complex geometries. Nevertheless, for the

purpose of this study, such constraints are not problematic.

As described in the original paper, the method uses an exponential correlation function for both

spatial directions (x,y), over an evenly spaced grid. In the third dimension, for each point in the

grid domain, there is a normally distributed (Gaussian) standardized random variable, N(0,σ). The

spatial correlation function will be dependent on the values of the grid component-wise differences

in both x,y directions of two arbitrary grid points. This correlation function can be written as:

R(∆y,∆x) = e
−∆iδy

Uy e
−∆ jδx

Ux (3.18)

Where ∆i,∆ j are the absolute values of the component-wise differences in the (i, j) location of

two arbitrary points; δx,δy represent the grid spacing in the x,y directions and Ux,Uy represent the

spatial correlation distance constants. It is important to refer that congruence between units must

be maintained.

The core field generation equation is written as:

z(i+1, j+1) = l · z(i+1, j)+ k · z(i, j+1)− r · k · z(i, j)+u(i+1, j+1) (3.19)

Where:

1. i, j correspond to the indexes of each node belonging to the grid

2. k = e
δy
Uy
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3. l = e
−δx
Ux

4. u(i, j) is a random sample of Gaussian white noise N(0,σu)

5. σ2
u = (1− k2)(1− l2)σ2

z

6. σz is the desired standard deviation

A realization of a pemeability random field is depicted in Figure 3.1.

Figure 3.1: Example of a permeability random field

3.4 Numerical Simulations

The numerical mould filling simulations were conducted using LIMS software, which uses a mixed

finite element and control volume (FE/CV) approach [12]. Having a record of the fill fraction of

each element in the mesh, this software uses a finite element approach to calculate the pressure

field of the elements which fill fraction is higher than null, following equation 2.2. The velocity

field can then be extrapolated from the pressure field, using equation 2.1. At last, the flowfront is

advected by knowing the minimum time-step required to completely fill one of the elements close

to the flowfront. This type of strategy is proven to be computationally faster than other multiphase

approaches commonly employed in computational fluid dynamics.

LIMS uses two types of files to run a numerical simulation through the operating system

terminal:

1. a dump (.dmp) file contains information regarding the finite element mesh and material

properties. After a numerical simulation is conducted, a new results section is appended to

the dump file;

2. a LIMS BASIC (.lb) file, which contains instructions in the form of code, which the LIMS

interpreter reads and configures the numerical simulation accordingly.
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3.5 Framework

The framework used to conduct this study, exemplified in Figure 3.2 starts with the identification of

the relevant process related variables. Taking into consideration the variables needed to build a case

in LIMS, the relevant parameters are:

1. Part geometry;

2. Resin inlet and outlet positions;

3. Injection pressure or flow rate;

4. Resin viscosity;

5. Reinforcement permeability;

6. Race-tracking.

Both part geometry and resin inlet and outlet positions are regarded as non-statistical parameters,

since this framework is intended to validate the injection strategy planned to manufacture the part.

As such, after choosing the inlet and outlet positions, these remain fixed throughout all numerical

simulations. In this study, a thin rectangular plate of dimensions 400x200mm and thickness of

2mm was chosen as part geometry, due to its familiarity to LCM manufacturing, thus serving as

an intuitive example. Two different injection strategies were studied. The first one, regarded as

strategy A, has one inlet on the left side of the plate, whereas the vent is positioned on the right

side (Figure 3.3 ). The flow is thus imposed in the longitudinal direction of the plate. The second

strategy, regarded as strategy B, has one inlet on the front side of the plate, whereas the vent is

positioned on the back side (Figure 3.4 ). The flow is thus imposed in the transverse direction of

the plate.

Inlet injection pressure was considered to be constant throughout mould filling. No flow rate

boundary conditions were prescribed in this study. In order to model inlet pressure as a stochastic

input, pressure values can be drawn from a known statistical distribution. In this study, a uniform

probability distribution function was used to model injection pressure, as means of obtaining a

window of possible injection pressures. Pressures were drawn between 1 and 10 bar, corresponding

to the range of pressures utilized in light RTM processes. The use of higher injection pressures is

related to the generation of other phenomena, such as fibre washout [191], which are out of the

scope of this study.

Resin viscosity was considered to be constant throughout the filling process. This is a simplifi-

cation of the viscous behaviour of resin for isothermal LCM, considering that the resin gel time

is long enough to entirely fill the mould, and thus the resin does not suffer significant viscosity

changes. As such, considering resin viscosity as a stochastic input, it can be directly drawn from a

statistical distribution of choice. In this study, a uniform probability distribution function was used

to model resin viscosity, therefore giving a range of viscosities. The minimum and maximum limits
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of the uniform distribution were 0.1 and 0.6 Pa.s respectively, corresponding to a window of mid to

low viscosity epoxies.

Process
variables

Statistical
inputs

Numerical
simu-

lations

Sensitivity
indices

Figure 3.2: Global sensitivity analysis framework

Preform permeability was modelled as a two dimensional random field with a stationary mean,

by which the in-plane components of the permeability tensor were assigned. Hence, the random

field stationary mean corresponds to the average bulk permeability of the fabric, whereas the local

random field perturbations correspond to a given experimentally determined standard deviation

and correlation length. In order to feed the model with actual experimental data, in this study the

bulk permeability mean value and standard deviation was taken from the Permeability Benchmark

II exercise [32]. The probability distribution function was assumed to be normal, which is in

accordance to the literature [192]. Data from the work of Bodaghi et al. [52] was used to model

the local permeability fluctuations, as the fabric under study was the same as the one used on the

permeability benchmark II.

Race-tracking was modelled following a Weibull distribution, with the parameters as reported

by Gokce et al. [46–48]. For both injection strategies considered in this study, race-tracking

was imposed in the two longest edges of the plate, as in Figure 3.3 and Figure 3.4. A summary

containing all stochastic parameter characterization is shown in Table 3.1.

Table 3.1: Summary of the statistical characterization of the stochastic inputs

Bulk permeability
[m2]

Local permeability
fluctuations [m2]

Race-tracking
[m2]

Resin
viscosity

[Pa.s]

Injection
pres-

sure[bar]

Type of distribution Normal Normal Weibull Uniform Uniform
Mean (x,y) 8.07e-11; 1.31e-10 8.07e-11; 1.31e-10
Standard deviation 1.77e-11; 2.80e-11 1.01e-11; 1.39e-11
Shape parameter (k) 0.5
Location parameter (l) 15
Bounds (upper; lower) 0.1; 0.6 1; 10

In this study, two different outputs were regarded: filling time and remaining unsaturated

fraction of the reinforcement, hereby referred to as dry spot percentage. This means that in practise

two different sensitivity analysis studies were conducted, however, since the framework can be

maintained for both studies, the simulations do not have to be re-run for each regarded output.

Instead, after running the required simulations, only the output of interest is computed from the

simulation results and the sensitivity indices are calculated.

Both outputs of interest are computed from the LIMS dump file, containing the simulation data.

Filling time is computed as indicated in Equation 3.20.
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Figure 3.3: Injection strategy A

Figure 3.4: Injection strategy B

t f ill = max(te) (3.20)

Where te is the element filling time. Dry spot percentage was computed as Equation 3.21.

DS = ∑Ve ψ (3.21)

Where Ve is the element volume and ψ is the element fill factor.

3.6 Results

Following the methodology presented earlier, and choosing a sample size of N = 5000, a total of

30000 mould filling simulations were run. Due to the low computational time required to run each

numerical simulation, the study was run in a matter of hours, using a code which does not leverage

parallel processing capabilities.



30 Global sensitivity analysis of a resin transfer moulding setup

Taking the first order and total effects sensitivity indices for injection strategy A (Table 3.2), it

can be observed that the most influential process parameter on mould filling time is the injection

pressure. Resin viscosity follows as the second most influential process parameter, whereas the

reinforcement permeability and race-tracking seem to have a residual influence. On the other hand,

by computing the first order and total effects sensitivity indices for dry spot percentage, it is possible

to observe that race-tracking and permeability have the most influence, respectively.

By analysing the results for injection strategy B, it is possible to observe that the influence of all

parameters on dry spot percentage has decreased to null. Indeed, it is possible to conclude that this

strategy effectively eliminated the effect of race-tracking on dry-spot percentage. Regarding filling

time, pressure and race-tracking are the most influential parameters, followed by resin viscosity.

Table 3.2: First order sensitivity indices for injection strategy A

Filling time Dry spot percentage

Permeability 0.005 0.207
Race-tracking 0.035 0.552
Resin viscosity 0.279 0.068
Injection pressure 0.574 0.023

Table 3.3: Total effects sensitivity indices for injection strategy A

Filling time Dry spot percentage

Permeability 0.019 0.301
Race-tracking 0.076 0.977
Resin viscosity 0.388 0.221
Injection pressure 0.734 0.208

Table 3.4: First order sensitivity indices for injection strategy B

Filling time Dry spot percentage

Permeability -4e-5 0
Race-tracking 0.387 0
Resin viscosity 0.137 0
Injection pressure 0.362 0
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Table 3.5: Total effects sensitivity indices for injection strategy B

Filling time Dry spot percentage

Permeability 0.002 0
Race-tracking 0.639 0
Resin viscosity 0.290 0
Injection pressure 0.625 0

Figure 3.5: Example of a mould filling simulation with stochastic permeability and
race-tracking

3.7 Conclusions

This framework allows one to compute the sensitivity indices for each variable of interest, therefore

allowing a deeper understating of how each design variable will influence the final result, may it be

filling time, dry spot formation, or any other outcome of interest.

Injection pressure and resin viscosity were identified as the most influential parameters regarding

mould filling time, whereas race-tracking was identified as the most influential parameter regarding

dry spot formation. Nevertheless, it is essential to look at each mould design as an individual case

of study, as generalizations about the influence of process variables may lead to wrong conclusions.

In this study, it was demonstrated that an optimized position of the inlet gates and vents

minimizes the influence of variables such as race-tracking. Such approach foments an increase

in the process reliability, as the system is less sensitive to undesired flow behaviours created by

a defective positioning of the fabric layers. A strategy towards robust process design is therefore

presented. Nevertheless, in the literature it was found that permeability may play a more important

role than the one attributed in this model, even for rectangular geometries. Since this model does

not consider out-of-plane permeability (as the geometry is a rectangular shell with 2mm thickness),

an important component of the permeability tensor may have been omitted, especially in the case of

thicker lay-ups. Thus, a three-dimensional model may have to be considered in order to reflect the

resin flow mechanics with more accuracy. Furthermore, the permeability fluctuations considered in
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the model, do not reflect the case of more aggravated cases of fibre distortions, such as draping

effects or fibre washout, where it is possible to have highly discrepant permeabilities.



Chapter 4

Automatic void content assessment of
composite laminates using a
machine-learning approach

The present chapter is based on the following refereed publication:

J. Machado, J. R. S. Tavares , P. Camanho, N.Correia. Automatic void content assessment

of composite laminates using a machine-learning approach. Composite Structures, 288, 115383.

10.1016/j.compstruct.2022.115383.
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4.1 Introduction

Several methods exist to enable the assessment of void content in composite parts, namely density-

based methods (acid digestion, matrix burn-off), optical or electron microscopy, ultrasonic testing,

thermography, and X-Ray micro-CT. Non-destructive methods such as ultrasonic testing and

thermography have the added advantage of preserving the part, while allowing to estimate void

content. On the other hand, although X-ray micro-CT is not a destructive technique by nature,

microscopy, X-ray micro-CT and density techniques usually require the partial or total destruction

of the composite part in other to assess void content in smaller samples [13]. Another relevant issue

in void analysis is the extraction of void characteristics, such as dimensions, shape, and number

count. Such analysis requires a high level of detail, which not all analysis techniques can provide,

especially when the intended voids are small enough to be located inside or in between the fibre

tows. It is known that density-based techniques are not able to provide such data, whereas despite

the advancements in ultrasound testing techniques, still ultrasound and thermography usually do

not provide the ideal level of detail for such analysis [13, 120]. Usually, microscopy and X-ray

micro-CT techniques are reported to provide a good level of detail, which enables the accurate

measurement and parametrization of void characteristics on the smaller length scales [13, 120, 121].

Due to its simplicity, lower cost and reasonable accuracy and detail, optical microscopy is still a

commonly employed imaging technique to conduct void content analyses [122, 14, 26, 123–127].

In order to avoid the time-consuming task of evaluating the relative void content of micrography

images manually [14, 127], a commonly employed technique is automatic image segmentation

by pixel intensity thresholding [122, 123, 128, 129]. This technique relies on the different pixel

intensities of the composite and the void and is usually user calibrated. However, despite the good

results that can be achieved, this methodology can be very sensitive to the illumination conditions

during the acquisition of the images as well as the type of material being analysed. Therefore, the

calibration of the algorithm parameters, including the threshold value, is a necessary step before the

analysis of a given set of images. Another problem that can undermine thresholding approaches is

the appearance of large voids in laminates. As void size increases, light coming from the microscope

illumination can be reflected from the inside of the void cavities, which in turn originates lighter

areas inside the dark ones. This translates to high pixel intensities, which should be classified as

voids, that are mistakenly classified as matrix, due to its naturally higher pixel intensity. In turn, this

renders the common thresholding approaches ineffective, as these techniques are not able to detect

the void areas entirely (Figure 4.1). The adoption of machine-learning algorithms to do automatic

detection of voids has been reported in the literature for several void assessment techniques, such

as X-ray micro-CT [130–132], thermography [133] and ultrasound testing [134]. Luo et al. used a

deep learning framework based on DeepLabV3+, which achieved good void segmentation results

in optical microscopy images [121]. However, their results show that the segmentation accuracy

of a thresholding algorithm is very close to the one obtained by the deep learning algorithm. In

turn, it is plausible to infer that the images present in their dataset might not have the complexity

that is added when large pixel intensity scattering exists due to the presence of large voids and



4.2 Convolutional neural networks 35

reflections. This increased complexity could produce larger differences between thresholding and

machine-learning results than the ones Luo reported [121]. In this work, a machine vision algorithm

based on machine-learning was developed, to analyse microscopy images for void detection, in

order to overcome the shortcomings of common thresholding approaches, which reliability is

greatly affected by the pixel intensity variability. For that matter, a machine learning approach

based on convolutional neural networks was used to analyse microscopy images and obtain the

corresponding void contents.

Figure 4.1: Microscopy image with light reflecting voids (on the left) and poor
performance of thresholding based segmentation method (on the right)

4.2 Convolutional neural networks

In an artificial neural network, a set of inputs is mapped to an output, by means of a mathematical

function [135]. If the inputs are mapped directly to an output, it is denominated as a single-layer

neural network. On the contrary, if the inputs are mapped to an output through a succession of

subsequent (hidden) layers, the neural network is denominated as of the multi-layer type [135, 136].

The universal approximation theorem states that a neural network with at least one hidden layer

can be used to approximate any function well, provided that the network has enough hidden units

[135, 136]. Similarly to traditional artificial neural networks, the architecture of convolutional

neural networks is built upon layers, which are connected in a logical sequence. In analogy to

neural networks and the universal approximation theorem, a convolutional neural network can be

used to approximate any continuous function to a desired non-zero amount of error, provided that

the depth of the convolutional neural network is large enough [137]. However, unlike traditional

artificial neural networks, convolutional neural networks can possess different types of layers: fully

connected layers, convolutional layers and pooling layers. Fully connected layers are a type of

layer in which every neuron is connected each neuron of the previous layer by a distinct set of

weights, which are the layer trainable parameters:

cl =
n

∑
j=1

wl−1
i j hl−1

i +bl−1 (4.1)



36Automatic void content assessment of composite laminates using a machine-learning approach

where c is the vector containing the input node values to layer l, wi j is the connection weight

between neurons, hl−1 is the activated neuron value of the previous layer, and b is the bias vector

(omitted in Figure 2 for conciseness).

𝑧1

𝑧2

𝑧3

𝑧4

𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Layer𝑙 − 1

Layer𝑙

𝑤11

Figure 4.2: Example of a fully connected layer

Fully connected layers are the staple of traditional artificial neural networks, which are only

comprised by a succession of this type of layers. However, in convolutional neural networks, this

type of layers can be commonly found in the ending layers of the network [138–140]. Convolutional

layers implement the convolution operation, which for two-dimensional tensors can be written as:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)B(i−m, j−n) (4.2)

where I is the two-dimensional tensor being convolved, B is a two-dimensional kernel and S is

the resulting tensor.
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Figure 4.3: Example of a convolution operation

Unlike fully connected layers, which can only a accept an input of a predetermined size,

convolutional layers do not have this restriction, as the learnable parameters are embedded in the

kernel, which size is independent of the input tensor (feature map). One characteristic outcome of

convolutions (observable in Figure 3) is the reduction of the size of the feature map, whose extent
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depends on the size of the kernel. In case this behaviour is not desirable, and if one intends to

maintain the size of the feature map, padding can be added to the feature map before the convolution

operation. This is done by adding an outer layer of values, usually in the form of zeros, an operation

commonly designated as zero-padding (Figure 4). Moreover, if enough padding is added to the

input feature map, one can obtain a bigger output than the original input, leading to a transposed

convolution (also known as up-convolutions or deconvolutions). This increase of the size of the

feature map, commonly designated as up-sampling, can be useful in certain network architectures,

such as autoencoders [135].
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Figure 4.4: Example of a padded convolution

At the end of each convolutional layer or fully connected layer, a non-linear activation function

can be commonly found. These functions have been found to allow the network to learn more

complex features in data, compared to linear activation functions [135]. An activation non-linearity

commonly used in convolution neural networks is the Rectified Linear Unit (ReLU), which is a

piece-wise linear function that will output the received input, in case it is positive, otherwise the

output is zero. This activation function is particularly relevant for deep learning (neural network

architectures with several layers), as it better preserves the gradient information across several

layers deep, compared to the logistic, or commonly designated sigmoid activation function, which

can suffer from saturation for large activation values (Figure 5) [136]. The ReLU activation can be

written as:

f (x) =

x ∀ x > 0

0 ∀ x ≤ 0
(4.3)

The logistic, or sigmoid, activation function (Figure 6) can be written as:

f (x) =
1

1+ e−x (4.4)

The last staple in a convolutional neural network structure is the pooling layer. Pooling

layers can either extract the maximum, minimum or average value inside a sliding window with a

predetermined size and stride (Figure 7). No trainable parameters exist in this type of layers, as their

objective mostly relies in reducing the size of the feature map, an operation commonly designated

as down-sampling. However, alike the convolutional layers, pooling layers are not constrained to
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Figure 4.5: ReLU activation function
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Figure 4.6: Sigmoid activation function

an input of a predetermined size, as the pooling window slides throughout the entire tensor with a

defined stride, independently of the tensor size.
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Figure 4.7: Example of a maximum pooling operation

In the field of machine vision, images are interpreted as a collection of pixel intensity values,

which is represented as a tensor with varying depth, depending on the encoding of the image

colours. A greyscale image can be therefore represented as a two-dimensional tensor, which

dimensions match the resolution of the image, whereas an RGB encoded image can be represented

as a three-dimensional tensor, for example, with a depth equal to three, representing the red,

green and blue channels. When the neural network processes an image, the number of inputs

in the network will match the resolution of the image, multiplied by the number of channels it
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possesses. The number of inputs can be therefore substantially large. As convolutional neural

networks consist mainly of convolutional and pooling layers, in which trainable parameters are not

dependent on the size of the input tensor, this type of networks allow the design of deeper network

architectures allied with a faster training, without recurring into memory and computational

overloads, compared to traditional artificial neural networks [136]. Consequently, the field of

machine learning applied to computational vision has seen important performance gains with the

intensification of research around convolutional neural networks (CNNs) [135, 141]. As a result,

different research branches were created to solve problems such as image classification (assignment

of a single class per image) [140], or problems which require a pixel-level type of inference, such

as semantic segmentation (segmentation based on the classes existing) [142], as well as of instance

segmentation (segmentation based on instances of each class present in the image) [143]. In the

scope of this work, the automatic segmentation of microscopy images, for subsequent determination

of relative void content, is a semantic segmentation problem.

4.3 U-net architecture

The U-net is a semantic segmentation model architecture proposed by Ronneberger et al. [144],

which is built upon the previous fully convolutional network model for semantic segmentation

[142], making the U-net architecture a fully convolutional network, itself (Figure 8). As mentioned

in the former section, from the image segmentation point of view, as fully convolutional networks

do not contain fully connected layers, they present the added advantage of being able to process

images with a variable size, while reducing the computational overhead, due to connection sparsity

and parameter sharing [136].
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Figure 4.8: Original U-Net architecture model [144]

The U-net architecture possesses a contracting path (encoder), where the initial feature-map

(input image) is reduced in size, while the number of feature channels increases. This is done

through a series of convolution layers followed by pooling layers, as in a regular CNN. The relevant

features of the image (context) are intended to be captured in this portion of the network. The

second portion of the network is an expansive path (decoder), where the size of feature-map is
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up-sampled and the number of feature channels is reduced. During the up-sampling procedure,

the feature-map is concatenated with its corresponding pair of the contracting path. This strategy

ensures that the network captures with more refinement the locations of the relevant features

in the image. This forces the network to have an approximately symmetric architecture. The

up-sampling of the feature map is achieved through transposed convolutions (or up-convolutions),

followed by regular convolution layers. This portion of the network is thus intended to capture the

location of the relevant features, to make a refined reconstruction of the image. Due to this network

architecture strategy, the model can be trained with smaller datasets and higher learning rates than

other convolutional neural network models [144]. Because of this, several follow-through model

architectures have been proposed with the objective of enhancing the accuracy of the segmentation

results mainly for specific biomedical imaging problems [145–148], as well as segmentation of

aerial and satellite imagery [149, 150].

4.4 Methodology

4.4.1 Network architecture

The implemented network architecture follows much of the original U-Net architecture proposed

by Ronneberger et al. [28], with a contracting path composed by successive 3x3 convolution layers,

each followed by a rectified linear unit (ReLU) (Figure 9). The down-sampling is achieved by 2x2

pooling layers after each pair of convolution layers. A feature that can increase both the accuracy

and reliability of the results, is adapting the pooling layers to the natural appearance of voids in

micrographs, which translates to generally lower pixel intensity values. Hence, voids, which are

the relevant features of the image under analysis, can be better captured during the down-sampling

operation. This means that one can substitute the original maximum pooling layers by minimum

pooling layers or, instead, invert the pixel intensities of the image (voids become lighter and matrix

darker) and maintain the maximum pooling layers. In this work, the latter option was chosen, due to

the lack of a minimum pooling layer implementation in the framework used. Batch normalization

layers are added before each ReLU activation layer, as batch normalization is reported to increase

both the stability and speed of the learning process [35]. As in the original U-net, the expansive

path is constituted by four similar blocks, containing a set of different layers. These blocks start

with 2x2 transposed convolution layers, which are responsible for up-sampling the feature map. In

order to enhance the capacity of the network to capture more precisely the location of the relevant

features (voids), after the transposed convolution layer, the resulting feature map is concatenated

with its corresponding pair of the contracting path. The resulting concatenation is fed to a pair of

3x3 convolution layers, each followed by batch normalization and a ReLU activation. The eight

components of the remaining feature vector are mapped to the desired number of classes, adding a

1x1 convolution layer to the end of the network. As the intended pixel labelling is binary (void or

matrix), the 1x1 convolution layer maps to a single tensor, where a final sigmoid activation translates

the values obtained into values in the range ]0, 1[. These values can be seen as probabilities of the
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pixel belonging to the void class. After applying a probability threshold to the obtained values,

pixels with a value of 1 (one) are considered voids, whereas pixels with a value of 0 (zero) are

considered matrix.
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Figure 4.9: Proposed modified U-Net architecture

4.4.2 Dataset

The dataset used for this study is comprised by microscopy images captured at INEGI, under the

polishing and image capturing conditions described in Table 4.1. The samples come from three

different types of composite laminates (Figure 13): glass fibre and epoxy laminate processed by

vacuum infusion (Type A laminates); carbon fibre and epoxy laminate processed by resin transfer

moulding (Type B laminates); carbon fibre and epoxy laminate processed by vacuum infusion

(Type C laminates).

Table 4.1: Polishing and image acquisition conditions

Laminate type Sandpaper grit (last polishing) Optical microscope

A 2000 Olympus PMG3 w/ CCD camera
B 1000 Olympus PMG3 w/ CCD camera
C 1000 Olympus PMG3 w/ CCD camera

For each image in the dataset, a corresponding ground-truth mask was generated. The ground

truth masks consist of binary 8-bit gray-scale images, where the pixels representing voids have

a value of 255, whereas pixels representing matrix or fibers have a value of 0. Therefore, these

ground-truth masks allow to determine inequivocally which pixels are voids (the object of interest),

and which pixels are either matrix or fibres (no distinction is necessary in our study). The ground-

truth masks were generated by running a thresholding-based in-house software, while further

segmentation corrections were made manually, using GIMP open-source image processing software.
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From a total of sixty images in the dataset, thirty were used for training and the other half for

validation. The selection of the images was random.

In order to obtain a characterization of the dataset, for each type of laminate, void size and

frequency were measured automatically, using the contours of the voids present in the ground truth

masks. Contouring is a well-established method for the representation of the geometry of voids in

binarized images, allowing sub-pixel accuracy [13, 151]. In turn, the accuracy of the binarization

process dictates the accuracy of the extracted void related data. Python methods available in the

OpenCV library [152] were used for automatic contour extraction and respective area calculation.

The computation of the frequency measures was also carried by a Python script written for this

purpose, while further statistical analysis was done in R statistical language.

In turn the frequency measures were grouped into five bins with equal width. Mean pixel

intensity and standard deviation were also determined, encoding the original image in greyscale

format. The different backgrounds of the microscopy samples were expected to foment an increase

in the reliability of the network inference results, due to a higher capacity for generalization. As

it can be observed in Tables 4.2, 4.3 and 4.4, the size and frequency of voids varies significantly

depending on the manufacturing process. Laminates manufactured by vacuum infusion (type A

and type C) seem to possess a higher number of voids, as well as a higher variance in void sizes,

compared to the laminates manufactured by resin transfer moulding (type B). This can be due to

the lack of a mould packing procedure in vacuum infusion, whereas in resin transfer moulding, it is

possible to do so by increasing resin injection pressure after mould filling, which in turn compacts

the existent voids, therefore minimizing void content in the part [153]. However, conducting such

type of quantitative analysis is out of the scope of this study.

Nevertheless, the void sizes obtained for all laminate types in our dataset are in agreement with

the range of void sizes found in the literature [13, 121]. Moreover, plotting the frequency measures

of void sizes into an histogram, for each laminate type, it can be observed that the distribution of

void sizes follows a Weibull distribution (Figures 4.10, 4.11, 4.12), which is also consistent with the

reported literature [154]. For the sake of easiness of visualization, Figures 4.10 and 4.12 only plot

the frequency measures on the first bin of laminate types A and C, respectively, as the remaining

bins have only residual frequency values.

Table 4.2: Properties of type A laminates

Void area bin [µm2] Void nº
Mean
area

Area
standard
deviation

Coefficient
of

variation

Mean
pixel

intensity

Pixel
intensity
standard
deviation

22.72 - 104962.73 5932 1303.43 5255.83 403% 62.34 35.93
104962.73 - 209902.75 18 138140.45 26567.77 19% 75.55 46.38
209902.75 - 314842.76 9 258181.69 22393.60 9% 98.34 52.08
314842.76 - 419782.77 3 359158.30 26297.97 7% 128.60 43.88
419782.77 - 524722.79 1 440786.31 0.00 0% 57.19 21.30
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Table 4.3: Properties of type B laminates

Void area bin [µm2] Void nº
Mean
area

Area
standard
deviation

Coefficient
of

variation

Mean
pixel

intensity

Pixel
intensity
standard
deviation

74.62 - 24913.59 42 10430.46 8569.67 82% 45.86 6.56
24913.59 - 49752.57 11 32487.34 4695.19 14% 44.40 5.93
49752.56 - 74591.54 1 62479.84 0.00 0% 40.88 1.98
74591.54 - 99430.52 0 – – – – –

99430.52 - 124269.50 3 113349.23 7794.01 7% 47.57 10.07
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Figure 4.10: Void size frequencies from the first bin in type A laminates and fitted
weibull distribution (in red)

4.4.3 Training

To conduct the U-net training, each of the high-resolution training images was partitioned into a

set of twenty grayscale 256x256 pixel smaller images. The benefits of this strategy were twofold:

Firstly, this strategy allowed to increase the number of filters of the network without incurring in

GPU memory overloads. Moreover, this strategy allowed each training batch to contain images of

all types of laminates. As the network training is based on gradient optimization with an update of

the network weights on a per-batch basis, this strategy allows a better estimation of the gradient,

and therefore, a more efficient training. The network was trained using the Adam optimization

algorithm [155] with an initial learning rate of 0.001, binary cross-entropy loss function and a batch

size of 40 images, for a total of 400 epochs. The number of batches per epoch was estimated to
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Table 4.4: Properties of type C laminates

Void area bin [µm2] Void nº
Mean
area

Area
standard
deviation

Coefficient
of

variation

Mean
pixel

intensity

Pixel
intensity
standard
deviation

29.21 - 93240.56 774 3862.02 10122.17 262% 85.94 26.74
93240.56 - 186451.90 5 124782.00 28115.30 23% 104.63 12.34

186451.90 - 279663.25 5 262437.56 8067.09 3% 93.58 10.41
279663.25 - 372874.60 5 320011.96 25303.36 8% 83.79 10.31
372874.60 - 466085.94 4 449319.15 14296.00 3% 81.16 7.92
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Figure 4.11: Void size frequencies from the first bin in type B laminates and fitted
weibull distribution (in red)

assure that theoretically all 256x256 dataset images would be processed during a training epoch.

The model was implemented in Keras, using Tensorflow and an Nvidia Quadro RTX6000 with

24GB of memory.
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Figure 4.12: Void size frequencies from the first bin in type C laminates and fitted
weibull distribution (in red)

(a) (b) (c)

Figure 4.13: Microscopy samples of the used dataset: glass fibre laminate processed
by vacuum infusion – Type A laminate (a); carbon fibre laminate processed by
resin transfer moulding – Type B laminate (b); carbon fibre laminate processed by
vacuum infusion – Type C laminate (c)

4.5 Results

Four different metrics were calculated for both the training dataset, as well as the validation dataset,

using a probability threshold of 0.35: accuracy, precision, recall and intersection on union (IoU), to

evaluate the performance of the proposed deep learning network. These metrics can be calculated

from the confusion matrix, which stores the frequency measures for each true positive, false positive,

false negative and true negative pixel classifications, as demonstrated in Figure 4.14.

Subsequently, accuracy, precision, recall and IoU can be calculated as:



46Automatic void content assessment of composite laminates using a machine-learning approach

True 
Positive 

(TP)

False 
Positive 

(FP)

False 
Negative 

(FN)

True 
Negative 

(TN)

Void Matrix

V
oi

d
M

at
rix

Actual

P
re
d
ic
te
d

Figure 4.14: Confusion matrix

Accuracy =
T P+T N

T P+T N +FP+FN
(4.5)

Precision =
T P

T P+FP
(4.6)

Recall =
T P

T P+FP
(4.7)

IoU =
T P

T P+FP+FN
(4.8)

The use of different metrics allows one to obtain answers to different questions. Accuracy

reflects the number of correctly classified pixels by the total number of pixels analysed. Precision

allows one to assess out of all pixels classified by the network as voids, how many are voids. Recall

allows one to assess out of all pixels which are voids, how many were classified by the network

as voids. Lastly, IoU evaluates out of the group composed by all the pixels classified as voids,

as well as the pixels which are actually voids (union), how many pixels are actually correctly

classified as voids by the network (intersection). One relevant matter for assessing metrics, is the

fact that accuracy can be sensitive to unbalanced datasets (datasets in which one class is more

representative than the others), possibly giving biased results. In the case of an unbalanced dataset,

preference should be given to metrics such as IoU, as these are less sensitive to unbalances between

the dataset classes. A summary of the obtained metrics for both the training and validation datasets,

is presented in Table 4.5.

A physical interpretation of the segmentation results achieved by the network, was produced

by frequency measures, which were computed for the different void sizes present in the validation

dataset. In turn, these measures were compared to the ones obtained by the segmentation results

of the network. Using the same confusion matrix analogy for void instance statistics, intersection

on union was computed for each computed bin of void sizes. Tables 4.6, 4.7 and 4.8 contain the

obtained results for each type of laminate under analysis.
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Table 4.5: Network performance evaluation

Metric Training Dataset Validation Dataset

Accuracy (binary) 0.9970 0.9936
Precision 0.9491 0.9299
Recall 0.9907 0.9114
Intersection on Union (IoU) 0.9650 0.9241

Table 4.6: Segmentation results for type A laminate samples

Void area bin [µm2] Void nº Voids detected IoU

22.72 - 104962.73 3188 2349 73.68%
104962.73 - 209902.75 12 11 91.67%
209902.75 - 314842.76 4 4 100%
314842.76 - 419782.77 0 0 100%
419782.77 - 524722.79 2 2 100%

Table 4.7: Segmentation results for type B laminate samples

Void area bin [µm2] Void nº Voids detected IoU

381.92 - 20089.10 23 30 76.67%
20089.10 - 39796.28 8 7 87.5%
39796.28 - 59503.46 1 0 0%
59503.46 - 79210.65 0 1 0%
79210.65 - 98917.83 1 1 100%

Table 4.8: Segmentation results for type C laminate samples

Void area bin [µm2] Void nº Voids detected IoU

29.21 - 93240.56 83 100 83%
93240.56 - 186451.90 2 2 100%

186451.90 - 279663.25 2 3 66.66%
279663.25 - 372874.60 3 2 66.66%
372874.60 - 466085.94 2 2 100%

Table 4.9: Error analysis of global void content detected in dataset images

Mean void content error Error standard deviation

Type A laminate dataset 0.66% 0.29%
Type B laminate dataset 0.34% 0.27%
Type C laminate dataset 0.50% 0.20%

From the results presented in Tables 4.6, 4.7 and 4.8, it can be seen that the network correctly

identified the majority of voids present in the micrography images, whereas for the type B laminate

dataset, the network had its worst performance. This lack of performance may be due to the slightly



48Automatic void content assessment of composite laminates using a machine-learning approach

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

0% 5% 10% 15% 20% 25% 30% 35%

A
bs

ol
u

te
 e

st
im

at
io

n 
er

ro
r

Void content

Void content estimation error as a function of actual 
void content

ML based

Thresholding based

Figure 4.15: Comparison of void content absolute estimation error between the
proposed machine learning algorithm and a thresholding based algorithm
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Figure 4.16: Comparison of void content relative estimation error between the
proposed machine learning algorithm and a thresholding based algorithm

decreased capacity of the neural network in delineating edges of the voids, when these have fuzzy

edges (as exemplified in Figure 4.17 ). In turn, the overall detected area of the void is smaller than

in reality, leading to a biased detection of voids in the presented statistics. Additionally, the network

performed worse in detecting smaller voids (first bin of void sizes for all laminate types), probably

due to noise present in the images. This noise is composed by abrupt color changes, which may be
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Figure 4.17: Decreased capacity in void edge delineation, for voids containing
fuzzy edges (laminate type B)

Figure 4.18: Overdetection of small voids (laminate type C)

due to small scratches in the matrix, or darker matrix features. In turn, as the convolutional neural

network may have not learned entirely which set of features is characteristic to smaller voids, it

may be producing a slight difference in the predicted quantity of voids, as obtained in the current

analysis where laminates type B and C have an overprediction of voids, whereas laminte A suffers

from an underprediction. An example can be seen in Figure 4.18. Finally, in certain large bubbles,

the network still fails to capture the entire area of the bubble. This happens probably due to the



50Automatic void content assessment of composite laminates using a machine-learning approach

Figure 4.19: Underdetection of void area, for big voids (laminate type A)

high scattering of pixel intensities that can be found inside certain bubbles, which intensity values

can reach close to the maximum, 255. However, this effect is localized in very small regions of the

voids, compared to their global area, which in turn do not affect greatly their measured areas. This

effect can be seen in Figure 4.19.

The inference metrics appear to be better than the reported void detection results. A reasonable

explanation is that inference metrics are measured on a by-pixel basis, which has no relation to void

instance statistics. This means that although the pixel classification done by the network is good

enough globally, the segmentation may not be entirely precise. This means that the segmentation

may not cover the entire area of some voids, or on the contrary, exceed the area of the void, which

in turn biases the computed void instance statistics. Nevertheless, this relative segmentation error is

low enough as the mean absolute void content error is below 1%, independently of the laminate

type (Table 8). This error is the mean of the estimated errors for each validation dataset (Equation

9). As expected, no error was obtained between void contents derived from the real images and the

inference results of the training dataset. The global void content estimation error of the proposed

algorithm was compared to the results obtained with a thresholding based algorithm developed

prior to this study by the same authors. The thresholding parameters were optimized on a laminate

type basis. Absolute and relative errors were derived for each algorithm type using Equations 4.9

and 4.10 respectivelty, where V a
v is void content computed by the algorithm and V r

v is the real void

content:

eabs = |V r
v −V a

v | (4.9)

erel =
|V r

v −V a
v |

V r
v

(4.10)

From Figure 4.15, it can be seen that the absolute void content estimation errors associated with

the proposed machine learning algorithm were lower than the ones obtained using the manually

thresholding-based algorithm. No clear dependence between real void content and estimation error

was detected; however, it can be observed that with the void content increased the standard deviation

of the estimation errors also increases. Nevertheless, a cause-effect study is out of the scope of this

study. Regarding relative estimation errors, plotted in Figure 4.16, it can be seen that the errors were
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Figure 4.20: Segmentation results (on the right) for different microscopy images
(on the left)

proportionally higher for lower void contents. This was expected, independently of the segmentation

algorithm, as the segmentation error does not reach an absolute null value. Therefore, as the void

content approaches zero, since the estimation error does not drop accordingly, the relative error

tends to rise. Nevertheless, the errors related to the proposed machine learning algorithm were

lower than the errors related to thresholding alternative. It is important to emphasize that the results

shown in this study should only be interpreted in the context of the dataset used. Convolutional

neural networks, such as the U-Net, are designed to make inferences based on the interpolation

of several features present on the dataset provided. This means that the reliability of inference

results outside the training and testing datasets may be greatly affected since these algorithms

are not designed to make extrapolations outside the training data. Therefore, the generalization

capability of such algorithms is linked to how general the dataset is itself. Figure 4.20 depicts the

segmentation results for different types of microscopy images.
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4.6 Conclusions

It was successfully demonstrated that using machine learning techniques applied to computational

vision, common micrography samples can be automatically segmented, in order to calculate their

relative void content. The u-net architecture is a rather convenient machine learning approach

for semantic segmentation, as it needed very few annotated images and training time. Using a

microscopy image dataset built for this study, the segmentation results suggest that the network

performs worse in detecting smaller voids, while the appearance of fuzzy void edges may also

affect the accuracy of the segmentation. At last, pixel intensity variability can also be a factor for

incomplete segmentation of the void area. Nevertheless, the achieved inference results are very

promising as the obtained average void content error was below 1%, regardless of the laminate type.

These results have surpassed a thresholding based algorithm manually calibrated for each laminate

type dataset, thus proving the applicability of this methodology.



Chapter 5

On the development of a machine vision
algorithm for the detection of bubbles
and fluid flow with applicability to
Liquid Composite Moulding

The present chapter is based on the following article submitted for refereed publication:

J. Machado, M. Bodaghi, P. Camanho, N.Correia, S. Advani. A machine vision algorithm

to detect bubbles during fluid flow with applicability to Liquid Composite Moulding Process.

(Submitted to the Journal of Nondestructive Evaluation, Springer)
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On the development of a machine vision algorithm for the detection of bubbles and fluid flow with

applicability to Liquid Composite Moulding

5.1 Introduction

In the field of composite material manufacturing, machine learning solutions have been proposed

in areas such as void content determination in laminates, through different destructive and non-

destructive methods [133, 134, 130, 132, 156–158]. Overall, the proposed methodologies showed

promising in aiding the task of laminate quality assessment after manufacturing, which automatic

nature can contribute to reducing the necessary time to conduct the tests and provide more reliable

results than common image thresholding approaches. Although inspection is a fundamental step

in the quality assurance of the manufactured parts, the information provided can only be gathered

after both process design and part manufacturing. In turn, following this methodology alone,

trial-and-error experimental programmes have to be employed in order to find improved process

design iterations, which can have a significant impact on both design development time and cost

[159].

As discussed in Chapter 2, the flow-front position during mould filling will depend on variables

such as permeability, that display a high variability. In a way to circumvent the shortcomings of

trial-and-error process design, several methodologies have been proposed, in which mould filling

simulations are used, in combination with stochastic parameters [47, 46, 160]. As the end goal, the

improved injection design should be robust towards any variability present in the system. In parallel,

research in LCM also focused on the study of systems capable of conducting real-time monitoring

and control of the mould filling process. Different approaches have been suggested, from using

pressure sensor data in Resin Transfer Moulding setups linked to heuristic-based algorithms [51]

or machine-learning models for detecting flow disturbances [161, 162], to actively control the

flow-front through changing conditions on set of mould inlets [163], or allowing local relaxation

of the reinforcement in vacuum infusion setups [164]. Nevertheless, all systems require a form of

sensing the flow-front, which ultimately depends on the manufacturing setup, as some setups do

not allow the visual monitoring of the fluid flow [165]. Moreover, due to the employed machine-

vision algorithms, some systems require additional experimental preparation, either by the use

of a colouring agent mixed with the fluid, or precise lighting conditions, to increase the contrast

between saturated and non-saturated regions of the reinforcement [58].

To overcome these shortcomings, an algorithm which backbone uses a convolutional neural

network architecture is proposed, to detect and track the fluid flow, as well as bubbles generated

throughout the flow process. As a testbed, a 3D printed porous geometry resembling the meso-scale

architecture of a reinforcement textile [34] is used in the flow experiments, thus allowing the

validation of the applicability of the algorithm.

5.2 Methodology

5.2.1 Algorithm overview

The proposed algorithm conducts an analysis on a frame-by-frame basis, from a video recording,

following the flowchart in Figure 5.1. Until the end condition is met, the algorithm extracts a new
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frame from the video feed and segments it. This segmentation procedure allows the subsequent

detection of all objects of interest (bubbles and flow-front), as well as the processing of their

relevant properties, such as area, perimeter, and position inside the frame. Finally, due to the high

number of bubbles that can be generated in experiments, using a tracking algorithm ensures that

the measured properties are assigned to the correct bubble, by which a unique label is attributed to

each newly detected bubble in the video feed. Concluding, the general algorithm can be divided in

two main modules: video frame acquisition and segmentation, and bubble and flow-front tracking.

All modules were developed using the Python programming language. The detailed functioning of

these modules is elaborated in the following sections.

Bubble & flow-front 
tracking

Bubble & flow-front 
position, area and

perimeter recording

End of video?

Acquire frameSegment frame

Start

Exit
n y

Figure 5.1: Algorithm flowchart

5.2.2 Image segmentation

The implemented network architecture is similar to the original U-Net architecture [144], possessing

a few modifications. The contracting path is constructed by stacking successive 3x3 convolution

layers, each followed by a rectified linear unit (ReLU). The down-sampling of the feature map

is accomplished by using 2x2 maximum pooling layers after each pair of convolution layers.

The expansive path is composed by four similar blocks. Each block possesses a 2x2 transposed

convolution layer, which resulting feature map is then concatenated to its corresponding pair of the

contracting path. Finally, to the resulting concatenation follows a pair of 3x3 convolution layers and

a ReLU activation. Before each block, a dropout layer was added, as means of avoiding overfitting

[166]. A 1x1 convolution layer is added to the end of the network, to map the components of the

feature vector to the desired number of classes, followed by a soft-max activation, to map the output

of the network to a probability distribution over the predicted classes. The network model was

implemented in TensorFlow, using Keras [167].
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applicability to Liquid Composite Moulding

5.2.2.1 Dataset

The dataset used in this study is composed by video frames extracted from experimental recordings

of fluid flow inside porous media, where bubbles are generated naturally with the progression of

the fluid flow throughout the porous media length. No fluid colouring agents or other contrast

enhancing techniques to ease the segmentation task were used, in order to validate the generic

applicability of this methodology, thus eliminating the need for elaborated LCM setups.

In this study, a porous media architecture was used, which resembles the meso-scale architec-

ture of a technical fabric used in composite reinforcements [34]. Two different specimens of the

geometry were generated using different 3D printing technologies: Multi Jet Fusion (MJF) and

Stereolithography (SLA). Although these 3D printing processes provide different surface charac-

teristics [168] that may affect the fluid flow, the focus of this study relies on the visual aspect of

the porous medium in contrast to the bubbles and fluid flow, and its impact on image segmentation

quality. A depiction of the visual differences between MJF and SLA printed porous media is

available in Figure 5.2. All experiments using the meso-scale porous geometry were recorded

during the unsaturated flow regime. This means that the capturing of the flow-front progression is a

necessary element of the machine vision algorithm.

The training dataset, which is used to update the parameters of the network, is composed by

300 sub-frames of MJF experiments and 150 sub-frames of SLA experiments, with a resolution

of 512x512pixels. In parallel, a test dataset was used to assess the performance of the network

during each training epoch, thus allowing the detection of over or under-fitting. The test dataset is

composed by 100 sub-frames of MJF experiments and 50 sub-frames of SLA experiments, also

with a resolution of 512x512pixels. All sub-frames were extracted randomly from original video

frames, which were selected from different experiments in a random fashion. To evaluate the

performance of the network after training, a validation dataset was created, which possesses ten

complete video frames from MJF and SLA printed porous media flow experiments (twenty frames

for validation, in total), with a resolution of 1280x720 pixel. Again, all video frames were extracted

randomly from different experiment video recordings.

To create the ground-truth masks, an image with equal resolution as the original frame is

created, where the output classes are one-hot encoded in RGB format. In this study, four different

classes are intended: flow-front (encoded in green channel), bubble core (encoded in red channel),

bubble edge (encoded in blue channel) and background (encoded in black – all channels have null

pixel intensity). The flow-front class refers to the area occupied by the fluid, whereas the bubble

core class encompasses the central region of the bubbles, until the border region. The bubble edge

class refers to the border region of the bubbles, which width is of about 1 pixel. The idea behind the

implementation of this class is to avoid the implementation of post-processing algorithms such as

watershed separation, which would be necessary to define the contour of touching bubbles, if only

the bubble core class was implemented. In turn, a more reliable segmentation is expected using this

strategy since actual morphological data is used, as well as faster post-processing times since there

is no need to implement additional algorithms. The background class refers to the regions which do
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not provide any object of interest. A depiction of all classes is provided in Figure 5.3.

Figure 5.2: Visual differences between MJF (left) and SLA (right) 3D printed
porous media

Figure 5.3: Segmentation classes - red: bubble core; blue: bubble edge; green:
flow-front; black: background

5.2.2.2 Training

During the training procedure, the images were fed to the network in batches. This strategy allows

conducting the training without incurring in GPU memory overloads, while keeping ten images

per batch, favouring the training convergence. The Adam optimization algorithm [155] was used

with an initial learning rate of 0.001, and the number of batches per epoch was calculated so that all

512x512 images would theoretically be processed during an epoch. The selection of the images

per batch was randomized. A total of 100 training epochs were conducted. Due to the highly

unbalanced segmentation classes present in the dataset, boundary loss [169] was favoured over

weighted categorical cross-entropy or dice loss, as it provided improved results, especially in the

bubble edge regions which correspond to the least dominant class. From the plots in Figure 5.4,

which register the loss computed in the training and test datasets, during the training procedure, it

can be observed that no evident signs of overfitting exist. After sixty training epochs, no noticeable

improvements exist. The final U-Net models were trained using both the training and test datasets.



58
On the development of a machine vision algorithm for the detection of bubbles and fluid flow with

applicability to Liquid Composite Moulding

(a) (b)

Figure 5.4: Registered training and validation losses, for (a) MJF dataset; (b) SLA
dataset

5.2.3 Bubble and flow-front tracking

The tracking algorithm is responsible for tracking the bubbles centroid position in the image, as

well as the bubble area and perimeter at each processed frame. Bubble area, perimeter and centroid

position data are obtained using the contours of each bubble obtained from the bubble core class,

using well established methods provided in the OpenCV library [152].

To correlate bubbles from former to subsequent video frames, an object tracker algorithm was

used. Correlation filter tracking algorithms are part of the the current state-of-the-art in object

tracking [170]. The MOSSE algorithm [171] is capable of tracking object translations, as well

as rotation and occlusion, at a frame rate of 669 frames per second. The fDSST algorithm [172]

builds on the MOSSE algorithm, to account for variations in scale of the objects of interest. This

increases the tracking reliability, however the added complexity reduces the computational speed to

24 frames per second [172]. In this study, to accommodate for volume changes in bubbles, due to

pressure variations, as well as bubble splitting or coalescence, the fDSST algorithm was preferred

over the MOSSE algorithm, and an implementation available in the Dlib library was used [173].

To further increase the reliability of the tracking procedure, a set of additional heuristics were

implemented, on top of the object tracking algorithm. The bounding boxes of the segmented bubble

contours are compared to the bounding boxes predicted by the tracking algorithm. The tracking

algorithm bounding boxes that match to the contour bounding boxes (given a set of dimensional

and positional tolerances) are considered to belong to the same bubble. Otherwise, the tracking

algorithm bounding boxes that are left unmatched are discarded, and the contour bounding boxes

that are unmatched are regarded as new bubbles. In turn, two hyperparameters are needed for the

implementation of the additional heuristics: maximum radius of search and maximum admissible

bubble area change between frames. A unique identifier is given to each newly detected bubble,

as means to keep a consistent property record throughout the video capture. Regarding flow-front

tracking, since there is a single flow-front in the video recordings, the position of the flow-front is

computed using its most extreme point from the extracted contour.
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Table 5.1: Mean error values derived for each porous media type

Porous media type
Number

of
bubbles

Bubble
area

Bubble
perimeter

Bubble
centroid

Flow-front position

SLA 13.6% 7.3% 4.2% 0.1% 0.0%
MJF 9.6% 13.8% 6.7% 0.5% 0.0%

5.3 Results

Since the algorithm relies on a segmentation procedure, the quality of the data provided by the

segmentation has a direct influence on the quality of the tracking. To evaluate the segmentation

quality over the SLA and MJF printed porous media experiments, two separate U-Net models

were trained using the training datasets of each corresponding porous media. Since the network

models and training procedures are equal, this strategy allows a more thorough comparison of

results, uncovering potential difficulties specific to each porous medium type. Five different error

metrics were used to assess the quality of the segmentation, using the validation dataset images:

number of detected bubbles, bubble computed area, bubble computed perimeter, bubble computed

centroid and flow-front position. The number of detected bubbles refers to the error between the

number of bubbles found in ground-truth mask, compared to the number of bubbles found in the

U-Net segmented image. Bubble computed area refers to the error between the derived areas of

each bubble contour in the ground-truth mask and the derived areas of the corresponding contours

on the U-Net segmented image counterpart. The same concept applies to bubble perimeter error

and centroid. Finally, flow-front position refers to the error between the derived flow-front position

in the ground-truth mask and in the U-Net segmented image counterpart.

All the errors were computed in relative form, using the same principle of Equation 4.10, taking

the real value derived from the ground-truth mask and the value derived from the U-Net segmented

image.

The mean values of the errors considering all validation frames were calculated and are

displayed in Table 5.1. Regarding the SLA validation dataset, the highest error is related to the

number of detected bubbles by the U-Net. Nevertheless, bubble area and perimeter errors are well

below 10%, which is a promising indicator regarding the reliability of the segmentation. Errors

associated with the bubbles’ centroid and flow-front position are negligible. The results related

to the MJF porous medium are slightly different from the former, especially regarding the errors

associated with bubble area and bubble perimeter. A possible explanation for these differences

relies on the underlying visual aspect of the porous medium. While the SLA printed porous

medium possesses a smooth white colour, the MJF printed counterpart has a distinctive dotted

grey appearance, which may interfere with the contrast between bubble and fluid flow regions

(Figure 5.2). This reduced contrast may render the detection of the bubble borders more difficult,

hence the higher error.

Another phenomenon that appears ocasionally in the segmented images of both SLA and MJF
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porous media is an incomplete separation of bubbles that are contacting. This particular occurrence,

visible in Figure 5.5, is due to the incomplete segmentation of the bubble edge class (in blue),

which in turn renders a set of bubbles into a single one. Possible causes for this artifact can be the

need for a bigger dataset or re-evaluation of the best loss function for training, nevertheless, the

authors did not find a suitable answer as even in the same frame from which Figure 5 was extracted,

there are several examples of good segmentation with contacting bubbles (depicted in Figure 5.6).

Although this occurrence can impact the reported error metrics in Table 5.1, the impact is expected

to be small, due to the low number of occurrences. The correction of these artifacts can be done in

a straightforward manner with post-processing algorithms such as watershed separation, as the vast

majority of the bubble border region is well defined. Though, the use of image post-processing

algorithms would need a thorough evaluation, as additional hyperparameters would have to be

considered on the algorithm, as well as computing times would increase considerably with the

number of bubbles captured in the frame. This evaluation is out of the scope of this study.

Figure 5.5: Incomplete separation of contacting bubbles in the segmented image
(highlighted in orange)

Figure 5.6: Example of a good segmentation with contacting bubbles

Regarding the tracking algorithm, the most demanding situation for the algorithm is when a

bubble traverses a narrow channel of the porous medium, as depicted in Figure 5.7 – bubble 2. Due

to surface tension effects in combination with higher local fluid flow velocities, the bubble suffers

an abrupt increase of velocity while traversing a narrow gap, which can be registered as a position

jump by the video recording apparatus, due to insufficient frame rate. Nevertheless, when a bubble
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reaches the end of a narrow gap (Figure 5.7 – bubble 1), its velocity decreases again due to the

stabilization of the fluid flow velocity, as well as the absence of significant bubble deformation and

therefore surface tension forces. The combination of these effects is visible in Figure 5.8, where

the plotted bubbles’ position parallel to the flow direction versus the corresponding video recording

frame number may possess a “step” like appearance, reflecting the differences in local velocities.

Similarly, the flow-front position plot (dashed line) also possesses a “step” like appearance due to

the local higher fluid flow velocities in the narrow gaps of the porous medium. A total of twenty-five

bubbles chosen randomly were plotted per experiment in Figure 5.8, to ease visualization.

The bubble and flow-front tracking results allow to conclude that for this specific round

of experiments, a higher flowrate and thus higher fluid flow velocity helps promote a higher

bubble velocity. Nevertheless, not all bubbles appear to be mobile, as a portion of the plotted

bubbles maintain the same position throughout the entire video capture, on both experiments. This

phenomenon has been experimentally observed, as bubbles may get entrapped in the structure of

the porous medium. In light of this, future modelling attempts of bubble transport processes in

Liquid Composite Moulding should consider also the stochastic dimension of these phenomena,

rather than implementing a purely deterministic framework.

1

2

Figure 5.7: Bubbles with different velocities: (1) bubble with low instantaneous
velocity; (2) bubble with high instantaneous velocity
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(a) (b)

Figure 5.8: Position tracking results of bubbles (continuous lines) and flow front
(dashed line) for: (a) lower flowrate experiment; (b) higher flowrate experiement

5.4 Conclusions

In this study, a machine vision algorithm was proposed to effectively detect and track both flow-

front and generated bubbles in an LCM setup in which visual monitoring is possible. Using a U-Net

model, which original design was adapted and trained for this study, it was demonstrated that it is

possible to effectively detect bubbles and flow-front, as well as derive relevant properties associated

with these objects of interest, such as position, area, and perimeter, with low associated errors.

Moreover, by coupling a tracking algorithm, it is possible to track all relevant properties across a

video capture, correlating them with their associated object, either it be a bubble or the flow-front.

Nevertheless, challenges were detected such as incomplete segmentation of contacting bubbles,

which can introduce errors in estimation of bubble related variables and negatively impact tracking.

However, these punctual artifacts should be corrigible with image post-processing routines. As the

applicability of this algorithm was demonstrated on a testbed setup using two different 3D printed

porous media, it is expected that this methodology will enable future developments on real-time

monitoring in actual LCM setups, as the acquisition of this type of real-time data during LCM

processing can enable the calculation of in-situ void content on the saturated preform, as well as

the necessary bleeding time to purge most voids out.



Chapter 6

Understanding mesoscopic bubble
dynamics through a calibrated
textile-like porous medium

The present chapter is based on the following article submitted for refereed publication:

J. Machado, M. Bodaghi, P. Camanho, S. Advani, N.Correia. On the understanding of

bubble dynamics through a calibrated textile-like porous medium using a machine learning based

algorithm. (Submitted to Composites Part A: Applied Science and Manufacturing, Elsevier)
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6.1 Introduction

As detailed in Chapter 2, experimental studies refer to the capillary number as an important

parameter in void dynamics. Regarding void formation, several studies report that there is an

optimal capillary number that minimizes void formation during mould filling. This is attributed to

the balancing of the contribution of the viscous and capillary forces present in the meso and micro

scales, which even out the flow front profile, therefore minimizing lead-lag flow [55, 193, 54, 60].

As void formation during resin injection can only be minimized to a certain value above

null, research has also focused on characterizing what conditions may favour the mobilization of

voids, with the end goal of purging the remaining voids, after mould filling. Rohatgi et al. have

reported that intra-tow voids are much more difficult to purge than inter-tow voids [55], although

no quantitative measure was presented. Due to difficulty in direct visualization of void transport

phenomena in real fibrous reinforcements, a significant portion of research involves the experimental

study in idealized porous structures, such as constricted capillary tubes [108, 107], T-shaped junction

devices [194] and pore doublet models (PDM) consisting of two connected capillaries [195, 196].

Nevertheless, these porous structure representations imply many simplifications to the actual porous

structure of a dual scale porous medium, which in turn may not adequately represent the two-phase

flow of resin and air commonly encountered in LCM fibrous reinforcements. As suggested by

previous studies [112], besides the fluid flow conditions, the porous medium architecture should

also play a major role in the degree of mobility of bubbles. As such, it is fundamental to have

a detailed description of the porous structure, to carry out quantitative analyses on the effect of

process parameters on void formation and transport. Still, it is difficult to obtain microstructural

descriptions of an actual textile reinforcement, due to the stochastic nature and high variability of

its porous structure [42, 52]. Motivated by the relevance of this subject, this study aims to evaluate

the effect of flow conditions on void formation and transport inside a model porous media. To

achieve this, a series of experiments were conducted using an idealized porous medium geometry

created to serve as a benchmark for permeability tests [34]. This study, done in collaboration with

Lille University (France), presents new insights and observations about the factors that influence

void formation and their flow dynamics and mobility within the porous medium.

6.2 Experimental Setup and Methodology

6.2.1 Calibrated textile-like porous medium

In this study, two textile-like porous networks with anisotropic permeability were manufactured by

3D printing techniques [34], using two different technologies, namely Stereolithography (SLA) and

Multi Jet Fusion (MJF). These techniques provide very good geometrical accuracy, which enables

a close control of the architecture of the porous medium, while the surface finish of the fabricated

porous medium from SLA and MJF are distinctly different [168]. The 3D printed techniques

allowed the manufacturing of the porous media without all of the sources of variability, inherent to

real fabrics [34]. The porous medium possesses different resistances to flow in the two principal
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directions, as the porous gaps are wider in the Y direction (2.06mm) than in the X direction

(0.76mm), as depicted in Figure 6.1. Both directions are considered in the flow experiments using

the MJF printed porous medium, as means to evaluate the influence of the porous architecture on

void formation and transport. Hereby, flow experiments in the direction of the smaller porous gaps

(X direction) are designated “MJF small gap”, whereas experiments in the larger gap direction (Y

direction) are designated “MJF large gap”. With the SLA printed porous medium, experiments

were only conducted along the smaller gap direction.

Figure 6.1: Gaps dimensions of the 3D printed porous medium, according to axis
orientation

6.2.2 Flow experiments and visualization

The setup is designed to conduct rectilinear flow experiments, allowing the visual monitoring of the

flow front and the air bubbles inside, as depicted in Figure 6.2. The mould consists of a metallic

frame with a top PMMA thick plate, which provides a rigid and leak free cavity to contain the

porous medium. The test fluid is injected inside the mould with a controlled flow rate, ranging from

10g/min to 100g/min. A single inlet and outlet are provided in the mould. The test fluid used is a

motor oil, with the properties provided in Table 6.1. Finally, a camera positioned above the mould

allows the recoding of each experiment for data processing using an image analysis algorithm

described below.

Table 6.1: Rheological properties of the test fluid

Viscosity [mPa.s] Density [kg/m3] Surface tension [mN/m]

71.4 875 33

Each experiment starts with the opening of the inlet through which the resin flows at a constant

flow rate. The bubbles are generated naturally with the flow-front progression within the porous

medium. This happens due to mechanical air entrapment by the fluid flow, as there is a fingering

effect analogous to the one observable in LCM processing. The experiments are terminated when

the resin flow-front exits the porous medium, as the objective of this study is the analysis of void

dynamics within the unsaturated flow regime.
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Flow direction

Camera

Porous medium Flowfront

InletOutlet

Figure 6.2: Side view of experimental setup schematic

6.2.3 Image processing algorithm

As shown in Figure 6.2, the camera captures the bubble size and movement from the inlet to the exit

and image processing algorithms are developed to describe the bubble dynamics. The algorithm

responsible for processing relevant flow data is divided in three main modules: video frame

acquisition and segmentation, bubble and flow-front tracking, velocimetry and data post-processing

(Figure 6.3).

Bubble & flow-front 
tracking

Bubble & flow-front
position, area and 

perimeter recording

f < video n 
frames?

Acquire frameSegment frame

Start

Data post-processing

f++

Figure 6.3: Image processing algorithm flowchart

The analysis is conducted on a frame-by-frame basis, using a recorded video of an experi-

ment. Each frame is segmented using a convolutional neural network model [144] developed in

TensorFlow [167] and trained for this specific purpose. The segmentation output encompasses

four different classes: flow-front, bubble edge, bubble centre and the background (Figure 6.4 (b)).

Bubble tracking is achieved using a correlation tracker for each bubble centre contour (already

available in the Dlib library [173]). In each frame, three geometric parameters are calculated for

each bubble: its centroid position, area, and the perimeter. These properties are calculated using
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contour based approaches, the methods of which are provided in the OpenCV library [152]. To

ensure that the measured properties are assigned to the correct bubble, a unique label is attributed

to each newly detected bubble (visible in Figure 6.5). As such, when the parsing of the video is

complete, each bubble will have its own property history record. The same approach is used to

track the flow front position throughout the flow experiment video recording, thus enabling the

calculation of the apparent fluid flow velocity inside the porous medium.

(a) (b) (c)

Figure 6.4: (a) original video frame; (b) CNN segmentation by flowfront (green),
bubble centroid (red) and bubble edge (blue) (c) superposition of segmentation map
on the original frame and attribution of bubble ids. Note that as flow fronts meet
they entrap the air forming bubbles

Regarding bubble and flow front velocity calculation, instead of calculating the velocities on

each subsequent pair of frames, the average velocity was instead calculated in three equidistant

sections of the frame (as depicted in Figure 6.5), having the position history record of each bubble

and the flow front. This approach avoids an extensive amount of noise in the velocity-time profiles of

the bubbles and flow front, which is created when calculating the velocity on a frame-by-frame basis.

Nevertheless, it provides sufficient detail to encompass eventual variations in the instantaneous flow

front velocity, relative to the bubble velocity.

As the number of frames per second of the video acquisition is known a priori, the velocity

of each bubble inside each section is calculated from the difference of the first and the last known

positions of the bubble centroid in each frame section, divided by the time between reference

frames, as shown in Equation 6.1.

vsec =
x1 − x0

N f r
1

FPS

(6.1)

Where x1 and x0 are the final and first known bubble or flow front positions on the frame

segment respectively, N f r is the number of frames between the first and last known positions and

FPS is the number of frames per second of the video capture. The mean bubble velocity is then

calculated as the mean value of the different bubble section velocities (Equation 6.2). vsec is the

bubble velocity in each section of the porous medium and Nsec is the number of sections where the

bubble was detected, as it may not be present in all the sections. It is important to note that, in

this study, only the velocity component that is parallel to the flow direction was used, so that both
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Sec�on 1

Sec�on 2

Sec�on 3

Figure 6.5: Frame sections for the bubble velocity calculations

bubble and flow front velocity are scalars.

vgp =
1

Nsec
∑vsec (6.2)

6.2.4 Uncertainty analysis

The accuracy of the acquired data is crucial to conduct a reliable post-processing analysis, such as

the one described in the former section. Image resolution plays a significant role in the detection

of the bubble shape, by the artificial vision algorithm, which subsequently affects the bubble size

and motion parameters. All videos were recorded with a resolution of 1280x720 pixels at 50

frames per second. The camera was positioned perpendicular to the experiment field of view, at

a distance that ensured that the porous medium length was visible in the video frame. A study

on the algorithm’s accuracy was conducted prior to the experimental recordings analysis, using

a validation dataset composed by frames randomly extracted from experiment recordings. It was

found that the mean error values in bubble area detection were 7.3% using the SLA printed porous

medium and 13.8% using the MJF printed porous medium. These differences are believed to be

due to the underlying visual aspect of the porous media, as the differences in surface roughness and

material colours can interfere with the contrast between the bubble and the fluid regions. Since

velocity data is calculated considering the first and last bubble centre of mass positions in each

section of the porous medium, it was found that the uncertainty regarding the bubble centre of mass

calculation has negligible influence on the velocity calculations. The same principle applies to the

flow-front velocity calculations. The uncertainty regarding bubble volume variation due to the flow
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pressure gradient was also studied. Taking the permeability and porosity (φ ) of the porous medium

as displayed in Table 6.2 [34] and the apparent flow velocity from the experiments, it was possible

to calculate the pressure gradient throughout the porous medium using Darcy’s law (Equation 2.1)

and the porosity. Following the relation in Equation 6.3 based on the ideal gas law for isothermal

compression or expansion, where p1 is the pressure in the beginning of the porous medium, V1 is

the bubble volume after formation at the beginning of the porous medium, V2 is the bubble volume

at the end of the porous medium, p2 is the pressure at the end of the porous medium (assumed to be

the atmospheric pressure), ∂ p/∂ l is the pressure gradient parallel to the flow direction and ∆l is the

length of the porous medium, it is possible to predict the maximum bubble volume increase during

the experiment (Figure 6.6).

V2

V1
=

p2 − d p
dl ∆l

p2
(6.3)

Table 6.2: Permeability and porosity of the porous medium

Viscosity [mPa.s] Density [kg/m3] Surface tension [mN/m]

71.4 875 33

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 20 40 60 80 100 120

M
ax

im
um

 b
ub

bl
e 

vo
lu

m
e 

in
cr

ea
se

[%
]

Flowrate [g/min]

MJF big gap

MJF small gap

SLA small gap

Figure 6.6: Maximum bubble volume increase during flow experiments

The maximum expected bubble volume increase is approximately 9% for experiments with the

SLA printed porous medium, at a flowrate of 100 g/min, which considering a spherical bubble,

would equate to a radius increase of 2.9%. This upper limit of volume increase is only achieved if

the bubble traverses the entire porous medium, which would require the bubble to be formed in the

beginning of the porous medium. In turn, as bubbles are formed due to the flow front advancement



70 Understanding mesoscopic bubble dynamics through a calibrated textile-like porous medium

throughout the porous medium length, the volume increase experienced by most bubbles during the

experiments is expected to be very small.

6.3 Results and discussion

6.3.1 Void metrics

As can be seen from Figures 6.4 and 6.5, as the flow front advances from the inlet towards the

outlet, they merge trapping the air in between them forming bubbles of different sizes. These

bubbles move with the fluid towards the outlet at different velocities. As the flow front progressed

from the inlet to the outlet, bubble density and distribution was analysed counting the number of

bubbles generated, total bubble area (which is the sum of all individual bubble areas) and bubble

size distribution. Thus this also allows a macro-level characterization of the behaviour of bubble

formation and transport. Regarding the number of generated bubbles during the flow experiment,

data suggests that the number of bubbles has a positive correlation with the capillary number, as

depicted in Figures 6.8, 6.7 and 6.9. It can also be observed that the architecture of the porous

medium influences the number of generated bubbles, as the flow experiments using the orientation

of the porous medium containing smaller gaps generate more bubbles than experiments using the

large gap direction. Moreover, comparing the number of generated bubbles in the MJF small gap

experiments and the SLA experiments a difference in the number of generated bubbles is noticeable.

A possible explanation for this effect may be attributed to the surface roughness of the porous

media, which is significantly higher in the MJF printed medium (approximately three times higher

compared to SLA) [168]. This increased surface roughness can trap tiny pockets of air in surface

crevices and also favour the nucleation of bubbles during the flow of fluid from inlet to the outlet

[197].
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Figure 6.7: Number of bubbles vs flowrate for MJF large gap experiments
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Figure 6.8: Number of bubbles vs flowrate for MJF small gap experiments
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Figure 6.9: Number of bubbles vs flowrate for SLA experiments

The total bubble area, calculated as the sum of all individual bubbles area, presents a V-shaped

profile as also confirmed by [198] (Figure 6.10 through to 6.12), with a minimum achieved around

the flow rate of 40 g/min, translating to a capillary number of 0.01. This optimum capillary

number, corresponding to the minimum bubble formation, has agreed with the literature, as it has

values of the same order of magnitude reported by [54] and [198] using real textile reinforcements.

Nevertheless, it is reported that the existence of an optimum capillary number is due to the balance

between the generation of meso-scale voids (bubbles between the tows) and micro-scale voids

(bubbles inside the tows) [55, 69]. This is attributed to the flow front lead-lag effect, created by the

competition between the capillary pressure driving the flow inside the tows, and the hydrodynamic

pressure driving the flow in between the tows. In turn, for an increasing capillary number past

the optimum, as the hydrodynamic pressure is the main driving mechanism, the bubbles should

form inside the tows resulting in very low meso-scale void content. In our experiments this is

not observed, as the reference porous medium possesses solid tows, which makes it a single scale

porous medium. Consequently, in our experiments the increase of the capillary number tends to

generate smaller bubbles as shown using boxplots in (Figure 6.13a to 6.13c), totalling a higher

number, as explained earlier. This balance between bubble size and number of bubbles is what

results in the V-shaped profile. An important observation to note is the apparent absence of a

V-shaped profile in the SLA porous medium data (Figure 6.13c). Hence, one possible reason for
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the formation of the V-shaped profile could be the nature of 3D-printed techniques. In Multi Jet

Fusion technique, particle sintering is the main mechanism of layer formation and, hence, it may

still leave behind capillary spaces among the particles while the SLA leads to the layer formation

by selectively curing and solidifying the photopolymer resin [34, 168] with much higher uniform

density (minimised porosity) thanks to the homogenous mixture and lower viscosity attributed to

liquid-liquid suspension of state prior to start of the photocurable resin cross-linking.
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Figure 6.10: Total bubble area vs flowrate for MJF big gap experiments
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Figure 6.11: Total bubble area vs flowrate for MJF small gap experiments
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Figure 6.12: Total bubble area vs flowrate for SLA experiments
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Figure 6.13: Boxplot showing the minimum and maximum values along with
median, first and third quartile of individual bubble areas vs flow rate for (a) MJF
big gap experiments; (b) MJF small gap experiments; (c) SLA experiments. The
outliers are shown as dots
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6.3.2 Void transport metrics

Using the Buckingham π theorem, it was possible to reduce the number of parameters by forming

different dimensionless groups. The variables taken into consideration are the average fluid velocity

(v f l), the bubble velocity (vb), the fluid surface tension (σ ), the fluid viscosity (µ), the bubble

diameter (db) and the hydraulic diametre of the gaps that are aligned in the flow direction (dg).

The hydraulic diameter of the gaps was calculated according to Equation 6.4, where Ag is the

cross-section area and Pg is the wetted perimeter of the gap. The diameter of each bubble was

calculated from its area (Ab), using Equation 6.5. The area considered in the diameter calculations

for each bubble, corresponds to the average of its history recorded by the algorithm. The list of the

considered variables and corresponding dimensions are presented in Table 6.3.

dg =
4Ag

Pg
(6.4)

dv =

√
Ab

π
(6.5)

Table 6.3: Variables and Dimensions of the considered problem

Variables Dimensions

v f l LT−1

vb LT−1

σ MT−2

µ ML−1T−1

db L
dg L

Considering a total of six variables and the three dimensions, three dimensionless groups were

obtained:

π1 =
vb

v f l
= Mv (6.6)

π2 =
db

dg
= Dv (6.7)

π3 =
v f lµ

σ
=Ca (6.8)

The first dimensionless group π1 represents the bubble mobility. Bubble mobility (Mv) can be

described as the relative velocity of the bubble, considering the apparent velocity of the flow inside

the porous medium (va). This parameter is of interest in this study. The second dimensionless

group π2 consists of the quotient between the bubble diameter and the gap hydraulic diameter.

For this study, it was taken as the bubble dimensionless size (Dv), which acts as a geometrical
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parameter. The third dimensionless group π3 represents the capillary number (Ca). From the

obtained dimensionless groups, it is possible to infer that bubble mobility is a function of both

geometrical conditions, given by the bubble dimensionless size (Dv), and the fluid flow conditions,

given by the capillary number (Ca).

Mv = f (Dv,Ca) (6.9)

6.3.3 Effect of Capillary number on bubble mobility

The first objective was to study the effect of capillary number on bubble mobility. From the boxplots

presented in Figure 6.14a, 6.14b and 6.14c, one may conclude that flow rate alone does not seem to

have a significant effect on bubble mobility, as there is a lack of a perceivable pattern. However, it

can be observed that bubble mobility rarely surpasses unity, being usually concentrated in values

around 0.5 or lower. The boxplot whiskers with mobility above unity usually refer to bubbles

which coalesce with the flow front. Also, there are bubbles which are a product of a bubble split

before a porous media constriction and soon after coalesce with another bubble positioned ahead

of the constriction. Since these bubbles’ lifetime is restricted to local high flow velocity zones

(near porous media constrictions), their computed mobility is higher than unity. This phenomenon

is more predominant in higher flow rates, which is visible by the prolonged boxplot whiskers

and higher number of outliers. These results contrast with bubble mobility research based on

microfluidics [194, 118], which reports that the velocity of the bubble is always higher than the

average velocity of the flow and monotonically increases with the capillary number, for capillary

numbers relevant to LCM processes. Nevertheless, the use of a porous architecture introduces

several conditions that are not present in capillary tubes, such as a more complex flow velocity

field, as the cross section varies depending on the position on the porous medium. Moreover, the

solid tows act as obstacles for the bubble paths, slowing down or stalling bubble movement, and

increasing the length of the tortuous path, which does not happen in capillary tubes (Figure 6.15).

In turn, it is plausible that a higher dispersion of mobility values, translating to a lower overall

bubble mobility should be expected using the current setup, as compared to capillary tubes. This

has been observed in experiments using porous geometries [112], in which the mobility of bubbles

can drop below unity. Consequently, it has been suggested in the literature that the capillary number

alone is not appropriate to describe bubble mobility, thus a new dimensionless number considering

the geometrical properties of the bubble and the porous medium should be formulated [112].
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Figure 6.14: Boxplots of bubble mobility vs flowrate for: (a) MJF large gap
experiments; (b) MJF small gap experiments; (c) SLA experiments

Figure 6.15: Example of immobile bubbles due to porous medium blockage
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6.4 Effect of bubble size on bubble mobility

The effect of dimensionless bubble size on bubble mobility was also analysed, by correlating each

bubble average mobility with its dimensionless size. From Figure 6.16 it can be observed that

the influence of bubble dimensionless size on bubble mobility is twofold: for bubble diameters

smaller than the gap hydraulic diameter, bubble mobility tends to increase. On the other hand, for

bubble diameters larger than the gap hydraulic diameter, bubble mobility tends to decrease with

bubble dimensionless size. The inflexion point between these two opposite tendencies is when

the bubble diameter is approximately equal to the gap hydraulic diameter. On a qualitative level,

these results agree well with the theory. Considering the bubbles to be approximately spherical, the

forces promoting a higher bubble mobility are the Stokes drag and the force due to the pressure

gradient, is expressed in Equation 6.10:

F = 3πµdb (v− vv)−
π

6
d3

b∇∇∇p (6.10)

Where µ is the fluid viscosity, v is the fluid velocity, vv is the bubble velocity, dv is the bubble

diameter and ∇∇∇p is the pressure gradient. This means that the forces increase with the bubble

diameter, by which a higher mobility should be expected as bubbles get bigger. Hence, the obtained

results for bubbles with diameter smaller or equal to the gap hydraulic diameter agree with theory,

as bubble mobility increases with bubble diameter. On the other hand, for bubbles whose diameter

is larger than the gap hydraulic diameter, additional work must be done to squeeze the bubble

through the narrower gap. This additional work is due to the deformation the bubble experiments

while traversing the gap, which is counteracted by the surface tension. The required pressure

differential for mobilizing a bubble through a constriction, derived from the work principle, was

found to be dependent on both the bubble diameter and the constriction diameter, as denoted in

Equation 6.11 [107].

∆p = 4σ

(
1
dc

− 1
dv

)
(6.11)

Where ∆p is the pressure differential, σ is the surface tension, dc is the constriction diameter

and db is the bubble diameter. Based on Equation 6.11, as bubble size increases, a higher pressure

differential is necessary to overcome the force generated by the deformation of the bubble. Once

again, the experimental results are corroborated by theory, as bubble mobility decreases with bubble

size, for bubbles with diameter larger than the gap hydraulic diameter. The decrease in mobility

is based on the increase of the force generated by the deformation of the bubble, over the forces

enumerated in Equation 6.10. This type of behaviour has also been observed in other experimental

studies regarding void transport in porous like structures [112].
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Figure 6.16: Scatterplot of bubble mobility vs bubble dimensionless size

6.5 Combined effect of bubble size and Capillary number on bubble
mobility

A third analysis was conducted with the objective of studying the effect of the combination of

dimensionless parameters, bubble dimensionless size and capillary number exert on bubble mobility.

To condense both capillary number and bubble size effects into a single variable, a dimensionless

number is proposed (ϕ), which reflects both the interactions between the capillary number and the

non-dimensional bubble size as expressed in Equation 6.12:

ϕ =
√

DvCa (6.12)

Where Sb is the bubble non-dimensional size and Ca is the capillary number. The square-root

is used in the ϕ expression as means to centre the experimental scattered data (geometrical mean)

and has no physical significance, unlike Sb and Ca. Having the scatterplot results presented in

Figure 6.17, the resulting triangular shaped pattern allows one to draw similar conclusions to the

ones presented in the analysis of non-dimensional bubble size alone. Thus, located at the apex of

the triangle, there is a critical ϕc which separates two different tendencies: the bubble mobility

increases with ϕ until it reaches the critical value, ϕc, and then it continues to decrease.

A more in-depth analysis of the data was conducted by dividing the scatterplot data into three

different bins of equal size, thus taking advantage of the approximately symmetrical dataset. Hence,

the first bin encompasses the left side of the suggested triangle, where a positive correlation between

ϕ and bubble mobility is observed, the second bin, which encompasses the zone around the critical
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Figure 6.17: Scatterplot of bubble mobility vs non-dimensional number ϕ

ϕ value and the third bin, which encompasses the right side of the suggested triangle, where a

negative correlation between ϕ and bubble mobility is observed. This data binning process can

be seen in Figure 6.18. Having the binning concluded, data frequency measures were obtained

for bubble mobility in each individual bin and the respective histograms were computed (Figure

6.19). Moreover, taking the same values of ϕ for each bin, histograms were also computed for

the corresponding flow rates and non-dimensional bubble sizes, presented in Figure 6.20 and 6.21,

respectively. Three different tendencies can be observed in each respective bin histogram. In

the first bin’s histogram, although there are recorded values of bubble mobility above unity, the

most probable scenario is the bubble mobility being close to null. A decreasing probability of

larger bubble mobility is also observable. This is backed by the overall lower flow rates that are

registered in this bin, associated with a broader distribution of bubble sizes. As described earlier,

bigger bubbles need an additional effort to be squeezed through the constriction, which for lower

flow rate, greatly diminishes the probability of the mobility of the bubble. For the second bin, its

mobility histogram presents two different modes, by which it is possible to conclude that there

are two more probable scenarios: bubbles having a mobility close to null, or bubbles having a

mobility around 0.5. It is observable that in this bin the distribution of bubble non-dimensional

sizes is clustered around unity, which agrees with the above stated physical principles. Hence, the

scatter of the associated flowrates should also contribute to the bubble mobility inflexion observed

in Figure 6.17. Finally, in the third bin’s histogram it is possible to observe that the probability

decreases with mobility, however in a less steep amount than in the first bin. The most probable

scenario is still bubble mobility close to null. This behaviour should be due to the higher flow rates

registered, associated with intermediate bubble non-dimensional sizes. It is important to reinforce

that zero mobility appears in all bins, since in all experiments there were bubbles which were

formed in zones which did not provide any means for bubble movement. Moreover, throughout their
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trajectory, bubbles could end up stuck in one of those zones, therefore negatively impacting their

mobility and contributing to the registered bubble mobility scatter. A depiction of the referenced

bubble entrapment zones is provided in Figure 6.22. Lastly, as mentioned earlier, all bubbles were

generated naturally by the fluid flow progression throughout the porous medium. This means that

the bubble mobility study presented is limited to the conditions provided by the experiments and

should not be regarded as a parametric study considering independent variables.
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Figure 6.19: Histogram plot of mobility, corresponding to each ϕ data bin
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Figure 6.20: Histogram plot of flowrate, corresponding to each ϕ data bin
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Figure 6.21: Histogram plot of bubble non-dimensional size, corresponding to each
ϕ data bin

Figure 6.22: Mobile bubble paths (in green) and high probability bubble entrapment
zones (in yellow)
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6.6 Conclusions

In this study, void dynamics (formation and transport) in the context of Liquid Composite Moulding

were studied using two calibrated textile-like porous media manufactured by Stereolithography and

Multi Jet Fusion 3D printing technologies. By recording unsaturated mold filling flow experiments

it was possible to capture void formation and their mobility inside the porous medium during the

filling process. The use of a machine learning based algorithm developed to the effect, enabled

the post-processing of the experimental recordings, leading to new conclusions regarding void

dynamics, namely the statistical characterization of void mobility. Results suggest that there is

an optimum capillary number, which minimizes overall void content. This is the outcome of

the balance between the number of bubbles generated, which has a positive correlation with the

capillary number, and their respective size, which has a negative correlation with the capillary

number. Regarding bubble transport, the results suggest that bubble mobility is a function of the

capillary number and the ratio of the bubble diameter and porous gap hydraulic diameter. By

combining these two dimensionless into a dimensionless number (ϕ), it was demonstrated that

bubble mobility increases until a critical value after which the bubble mobility decreases. It was

also demonstrated that the histograms of bubble mobility differ significantly for non-dimensional

ϕ values above and below the critical ϕ value. Nevertheless, in the context of this study it was

found that the probability of bubble mobility above 0.5 decreases significantly. Future work should

be conducted with real dual-scale fibrous preforms, to assess how the differences in the porous

medium geometry will affect the mesoscopic fluid flow and bubble mobility.
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7.1 Introduction

As stated in the state of the art presented in Chapter 2, a well accepted model for void mobilization

through a constriction in microfluidics devices [107, 108] is the adapted Young-Laplace equation,

which states that void mobilization only happens if the pressure differential across its length is

superior to the capillary pressure around it (Equation 2.20). Hence, in order to squeeze a void

through a constriction, a pressure differential equal or higher to the critical pressure, has to be

provided.

It was also reffered that an additional conclusion that can be drawn from this model is that with

the reduction of both void and constriction radii, the higher the critical pressure differential must

be to mobilize the void. This conclusion is particularly relevant, as due to the increased pressure

gradient needed for their removal, micro-voids should be the predominant type of voids in composite

laminates. This has been observed in cross-sectional observations of manufactured composite

laminates, where the void size probability distribution was found to be a Weibull distribution

[156, 13, 154], in which the probability decreases exponentially with void size.

Due to the relevance of the micro-voids to the void transport subject, some works have studied

the influence of the microstructure of fibre tows on micro-void transport phenomena. It has been

experimentally observed that the non-uniform packing of the fibres contributes to the anchoring of

voids in the tow fibrous structure [113]. Moreover, using numerical simulations, it was found that

the non-uniform packing of the fibres should have an influence on the void size and distribution

inside a fibre tow [199]. This study explores the subject of void entrapment at the micro-scale,

employing 3D printing technology to produce a randomized cylinder packing geometry resembling

the microstructure of a fibre tow, scaled to the order of the millimetres. In addition, the experimental

results are coupled to fluid flow numerical simulations, to access void behavior under different

the flow conditions. The results obtained in this study should prove useful in designing improved

process techniques for void removal in LCM.

7.2 Methodology

7.2.1 Determination of the RVE size

In fibre tows, the interstitial spaces between fibres are not identical throughout the tow cross-section,

as they possess a stochastic nature. This suggests that in order to generate a representative geometry

of a fibre tow, it must possess a minimum size by which the variability of the fibre tow is similar to

the variability of the representative geometry. In this study, this principle of stochastic ergodicity

is applied considering the stochastic distributions of the measured filament nearest neighbour

distances. For that matter, a set of RVEs with different dimensions and fibre volume fractions was

generated recurring to an algorithm based on Catalanotti’s work [200]. The probability density

function of the filament nearest neighbour distances were estimated through a kernel density

estimator based on the normal distribution. Mean values, standard deviations and overlapping

indexes of the probability density functions (p.d.f.s) were calculated to assess the convergence of
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the statistical distributions with increasing RVE size. The overlapping indexes of the p.d.f.s can be

calculated by numerically integrating Equation 7.1 [201]:

η(A,B) =
∫

Ren
min [ fA(x), fB(x)]dx (7.1)

where fA(x) and fB(x) are the estimated probability density functions being evaluated. There-

fore, the overlapping index can be viewed as a similarity measure between distributions, for which

an index of 1 corresponds to a total overlap between p.d.f.s and an index of 0 corresponds to no

overlap. As the integration is done numerically, there is no need for a prior assumption of the

type of distributions being compared. The characteristic size of an RVE (N f ) can be defined as the

quotient between its length (LRV E) and the radius of the fibre (r f ) (Equation 7.2). The RVE size

was chosen based on the computational overhead, as the time that takes to generate an RVE rises

exponentially as a function of the RVE size.

N f =
LRV E

r f
(7.2)

In this statistical study, the RVE sizes considered range from Nf=16 to a maximum of N f =140.

The reasoning for such a maximum size is the computational time required to build an RVE with

such dimensions. As Figure 7.1 demonstrates, the computational time required to build an RVE

increases exponentially as a function of the characteristic size. An example of an RVE with N f =140

is presented in Figure 7.2.
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Figure 7.1: RVE generation time, as a function of its characteristic size, for a fibre
volume fraction of 70%

Since the RVE generation algorithm considers that all fibres have the same diameter, the

filament distance p.d.f.s may differ from what can be experimentally observed, as in reality the

diameter of the fibres is a stochastic variable as well [202, 203]. However, a more profound analysis
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Figure 7.2: Example of an RVE with N f =140 and Vf =50%

using stochastic fibre diameters is out of the scope of this study. By increasing the number of

considered neighbours, a widening of the p.d.f.s could be observed as in [202], converging when

the number of neighbours is above 6 (Figure 7.3). The distance between neighbours a is normalized

by the fibre diameter d.

Figure 7.3: Probability density function of filament distances to its nth-neighbours

Figure 7.4 shows a comparison between the twelve nearest neighbour filament distance p.d.f.s

as a function of the fibre volume fraction and RVE size. It can be observed that with increase

of both the fibre volume fraction and the RVE characteristic size, the standard deviation of the
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empirical distributions diminishes. Also, the coefficient of variation starts to converge for an RVE

characteristic size of N f =70, for all fibre volume fractions (Figure 7.5). The coefficient of variation

can be calculated by dividing the standard deviation (σ(X)) of the sample, by its mean value (µ(X))

(Equation 7.3):

CV =
σ(X)

µ(X)
(7.3)

(a) (b)

(c) (d)

(e) Vf = 70%

Figure 7.4: Observed 12 nearest neighbour filament distance p.d.f.s for different
fibre volume fractions and RVE characteristic sizes. (a) Vf = 30%; (b) Vf = 40%;
(c) Vf = 50%; (d) Vf = 60%; (e) Vf = 70%

To calculate the p.d.f. similarity with the overlapping indices, the observed filament distance
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Figure 7.5: Coefficient of variation of the measured 12 nearest neighbour filament
distances for different RVE characteristic sizes and fibre volume fractions

p.d.f.s for an RVE with a characteristic size of N f =140 were taken as a reference, by which the

smaller RVE p.d.f.s would be compared. From Figure 7.6 it can be observed that the overlapping

indices start to converge on an RVE characteristic size of N f =70, in which the similarity between

distributions is above 80%. A least squares regression of the mean normalized inter-filament

distance considering the 4 nearest neighbours, as a function of the RVE fibre volume fraction, can

be empirically represented by Equation 7.4:

a
d f

= 1+1.4915e−4.505Vf (7.4)

7.2.2 RVE 3D printing

In this study, the RVE geometry was 3D printed using stereolithography (SLA) as it was able to

capture the details as well as maintain lower surface roughness compared to other technologies such

as fused deposition modelling (FDM) [168]. Nevertheless, the RVE geometry target fibre diameter

was kept at 1 millimetre, as significant distortions could be introduced with lower diameters, due

to the limits of the printing resolution. Hence, it is intended that the differences between real and

model scales are kept to a minimum, considering the resolution of the 3D printing technology. The

surface roughness of the 3D printed geometry was measured and is displayed in Table 7.1.

7.2.3 Experimental setup

The experimental setup, described in Figure 7.7, consists of an in-house rigid steel mould with

a transparent window suitable for visual monitoring of the flow experiments equipped with four
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Figure 7.6: Measured overlapping index of the 12 nearest neighbour filament
distance p.d.f.s for different fibre volume fractions, having as reference distribution
that of the RVE with characteristic size of 140

pressure sensors positioned before and after the 3D printed porous medium, to monitor the pressure

differential. A vacuum pump provided the pressure differential needed for the experiment, and

a reservoir containing the test fluid was coupled to a mass scale, allowing the measurement of

the mass-flowrate during the experiment. Therefore, the flowrate of the experiment could be

extrapolated knowing the test fluid density, and the dimensions and porosity of the 3D printed RVE.

Finally, a video camera was positioned above the mould, to record the experiments. The mould

cavity dimensions were designed matching the 3D printed porous medium dimensions, in order to

avoid generalized racetracking around the porous medium. The test fluid used in this study consists

of a mixture of corn syrup with water. Different syrup/water concentrations were used to change

the properties of the fluid. The properties for different syrup/water concentrations, measured at

20◦C are listed in Table 7.2.

7.2.4 Post-processing

The in-house developed semantic segmentation algorithm based on a convolutional neural networks

described in Chapter 5 was used to post-process the video recordings, doing pixel-by-pixel classifi-

Table 7.1: Surface roughness of SLA 3D printed RVE

Ra [µm]

Mean Standard deviation
2.10 0.42
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Figure 7.7: Experimental setup schematic: (1) fluid reservoir resting on a mass
scale; (2) mould; (3) pressure sensor; (4) vacuum pump; (5) computer for sensor
data acquisition; (6) camera for video recording the experiment

cation in each video frame, according to three classes: bubble edge, bubble nuclei and background

(Figure 7.8). This strategy allowed for the detection of bubbles in each video frame, and the tracking

of the bubble’s position in the video recording. Moreover, the algorithm estimated the bubble

cross-sectional area and perimeter, using well established image contouring-based approaches

[13, 156, 151]. To ensure that the extracted properties are assigned to the correct bubble history

record, a unique numerical identifier was attributed automatically to each newly detected bubble.

The convolutional neural network was trained following the same approach described in Chapter 5,

using a training dataset composed by two hundred 256x256 pixel sub-frames extracted randomly

from experimental video recordings. Seventy sub-frames were used for validation. A segmentation

accuracy study using the validation dataset found that the derived errors regarding bubble centroid

position, bubble cross-sectional area and bubble perimeter were 1.8%, 7.9% and 5.4%, respectively.

The convolutional neural network was retrained using the combined training and validation datasets,

before being used in this study.

7.2.5 Dimensional analysis

A dimensional analysis using Buckingham’s π theorem was conducted, considering the fluid

velocity (v), the fluid surface tension (σ ), the fluid viscosity (µ) and the characteristic length scale

used was the fibre diameter (d f ). The list of considered variables and corresponding dimensions

are listed in Table 7.3. Considering four variables and three dimensions, one dimensionless group

was identified (Equation 9(9)), which is the capillary number. Due to its non-dimensional nature, it

can be weighted with the contact angle resulting in the modified capillary number (Ca∗) presented
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Table 7.2: Fluid rheologic properties at different syrup concentrations (at 20◦C)

Syrup
concentration

[%]
Viscosity

[Pa.s]

Surface
tension
[N/m]

Contact
angle [◦]

Density
[kg/m3]

80 0.287 0.08 64.7 1300
70 0.056 0.08 62 1240

Figure 7.8: Example of a video frame semantic segmentation by the algorithm (red:
bubble nuclei; blue: bubble boundary; green: background)

in Equation 7.5. Experimental results can be compared for different fluid properties and flow rates

at the same capillary number. Since fluid flow in this porous media meets creeping flow conditions,

inertial effects are insignificant as compared to viscous and capillary ones. Therefore, density was

not regarded in the dimensional analysis, as inertial effects were insignificant in the experiments.

The Reynolds number was calculated for every experiment to evaluate if creeping flow conditions

were met (Re < 1).

Table 7.3: Dimensions of the problem variables

Variable Dimensions

v LT−1

σ MT−2

µ ML−1T−1

d f L

π =
vµ

σ
=Ca (7.5)

7.2.6 Numerical simulations

To assess the local pressure and fluid flow velocity conditions which the bubbles inside the RVE

experience, a set of numerical simulations were performed. With this strategy it was possible

to obtain the local pressure and flow velocity maps inside the RVE domain, otherwise difficult

to obtain experimentally. The numerical simulations considered steady-state flow through the

RVE geometry, in a two-dimensional form which was a justifiable simplification as the flow was
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fully developed. For boundary conditions, a pressure differential is imposed, matching that of the

experiment. No-slip wall boundary conditions were imposed on the upper and lower faces of the

RVE (to reflect the experimental setup mould walls), as well as on the surface of each fibre as

shown in Figure 7.9. For pressure-velocity coupling, the SIMPLE scheme was used, in combination

with least-squares cell-based gradient scheme, a second-order pressure interpolation scheme and a

second-order upwind momentum discretization scheme. The numerical simulations were conducted

using ANSYS Fluent software.

Wall

Wall

Pressure inlet Pressure outlet

Figure 7.9: Boundary conditions for the numerical simulations with no slip at the
walls and on the fibre surfaces

7.2.7 Experiments

A total of four experiments were conducted at different flow rates by subjecting them to different

vacuum pressures. In each experiment, after opening the inlet, the fluid flow was maintained for

about 5 minutes, and the experiment was recorded. Steady-state flow was achieved after a few

seconds in all experiments. The range of required flowrates was estimated knowing the target

capillary numbers. From the literature, reported optimum capillary numbers fall within the range

from 0.004 [193] to 0.1 [55]. As already mentioned, the optimum capillary number reflects the

approximation of the resin flow velocity at the meso-scale (between fibre tows) to the flow velocity

at the micro-scale (inside the fibre tows). It is expected that capillary numbers usually experienced at

the micro-scale should fall inside this reported range. The combination of steady-state flowrate and

test fluid properties used in each experiment is summarized in Table 7.4. Note that the maximum

capillary number achieved was that of experiment 4, which was much lower than 0.1. This was due

to the limited amount of pressure differential that was possible to impose by vacuum.

7.2.8 Results and discussion

In the experiments, two main phenomena are visible: void transport and void entrapment. The

former refers to bubbles that are mobile and can traverse the porous medium. The later refers to
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Table 7.4: Properties used in the experiments

Experiment Flowrate
[m3/s]

Porosity
Viscosity

[Pa.s]

Surface
tension
[N/m]

Contact
angle [◦] Ca Ca∗ Re

1 6.15e-8 0.5 0.287 0.08 64.7 0.0032 0.0075 0.0041
2 9.42e-8 0.5 0.287 0.08 64.7 0.0050 0.0117 0.0061

bubbles that get entrapped in the porous medium architecture and do not leave the porous medium

for the entire experiment. Due to the moving bubbles’ trajectories however, it was not possible

to accurately track those bubbles throughout the porous medium. This was mainly due to two

conditions: bubbles moving to shaded areas deeper in the RVE, which due to the lack of any

contrast, renders bubble detection by the algorithm unfeasible; lack of frames per second of the

video capture, which makes it impossible to accurately track most of the moving bubbles’ position

history. Ultimately, void transport phenomena could not be reliably captured due to these limitations.

Nevertheless, entrapped bubbles that could not be removed from the porous medium, were reliably

detected. Therefore, this study focuses on the analysis of the properties of the entrapped bubbles.

7.2.8.1 Void number & void content as a function of capillary number

The void number was analysed by counting the number of entrapped voids in each experiment.

From Figure 7.10, there is a linear positive correlation between capillary number and number of

entrapped voids. This type of behaviour, characterized by a positive correlation between capillary

number and number of voids generated inside porous media, was also registered in the study

described in Chapter 6. The global void content was also computed for every experiment, taking

the quotient between the sum of all individual void areas, and the area of the RVE. Figure 7.11

depicts a positive linear relation between void content and capillary number past a Ca=0.005 . This

linear relation, by log-transformation of the void content, has been extensively used in literature in

order to generate void content master curves, where the positive correlation branch is attributed to

the generation of voids inside fibre tows [57, 71, 58, 57]. The saturation of the linear relation, for

Ca values below 0.005 is not captured in the master curves, possibly due to the use of dual scale

reinforcements, by which void formation in between fibre tows becomes preponderant.

7.2.8.2 Void size correlations

In each experiment, the voids cross-section, computed by the image processing algorithm, was

analysed by means of frequency count measures, as depicted in Figure 7.12. In all experiments, a

distribution of the exponential type was obtained, which can be correlated to a Weibull distribution

considering a shape parameter equal to unity. The exponential distribution rate parameter (λ ) and

corresponding Weibull distribution scale (η) parameter were computed using the R programming

language [204] “fitdistrplus“ package [205] and are presented in Table 7.5. It can be seen that the

parameters of the obtained distributions do not change significantly with the imposed capillary
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Figure 7.10: Number of entrapped voids vs capillary number

numbers, however, there is an apparent positive correlation between the exponential rate parameter.

The opposite apparent correlation is observed for the Weibull distribution scale parameter, which

is expectable, due to the expression of the Weibull probability function. A possible conclusion to

derive from such correlations is that void cross-sectional areas tend to diminish with the increase of

the capillary number. Combining the void count results, one may conclude that as capillary number

increases more voids are generated, albeit smaller. This type of behaviour was also observed in the

study reported in Chapter 6.

As a last remark, knowing that voids occupy the empty spaces between fibres, the void size

Table 7.5: Exponential distribution rate parameter (λ ) and Weibull distribution scale parameter (η)
as a function of the capillary number

Experiment Ca rate (λ ) scale (η)

1 0.0032 2.151 0.465
2 0.0050 2.817 0.355
3 0.0122 2.667 0.375
4 0.0129 2.778 0.360
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Figure 7.11: Void content as a function of capillary number (x axis in log scale)

distributions obtained above should be a function of the pore size distribution inside the RVE. To

test the validity of this rationale, the pore sizes inside the RVE need to be computed taking into

consideration the coalescence of the interstitial spaces around each individual fibre. This implies

that pores are a result of spatially correlated inter-fibre spacings. A commonly employed technique

to establish spatial correlations in diverse fields of engineering is spatial averaging, in which local

average properties are computed within a domain. In the case of a discretized domain, one can

apply the convolution operation (Equation 4.2) and a kernel whose elements are one divided by

the number of elements of the kernel (B), as in Equation 7.6. In the image processing field this

operation is commonly known as image smoothing.

B =
1
9

1 1 1

1 1 1

1 1 1

 (7.6)

This approach was followed in order to compute the pore sizes inside the RVE, where a picture

of RVE was used. The kernel size of 4x4 was chosen, since taking the representative length of

each pixel in the image, four pixels equate to 0.16 mm which is the average inter-fibre spacing
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Figure 7.12: Histograms of void cross-sectional areas

obtained using Equation 7.4 for the fibre volume fraction of the RVE (50%). The resulting image

is then thresholded to obtain a binary map of the pores inside the RVE. This process is depicted

in Figure 7.13. By calculating the areas of each pore, it was possible to compute the histogram

of pore sizes and derive the underlying pore size distribution. It was found that the pore size

distribution obeys to an Exponential distribution, with a rate parameter of λ = 2.09, equating to

a Weibull distribution with a shape parameter equal to unity and scale parameter (η = 0.478).

These parameters are similar to those obtained from the voids cross-sectional areas in the different

flow experiments, which corroborates a correlation between void size distribution and pore size

distribution. The computed pore size density histogram is depicted in Figure 7.14.

This correlation uncovers the possibility of obtaining the morphological properties of voids

as the ones described in the former section, provided that one has the micro-structure description

and void content correlations to capillary number. Nevertheless, Weibull distributions with a shape

parameter close to unity (exponential distribution approximation) have been used in the literature to

describe void sizes in composite laminates of different types [156, 154], by which the results in this

study reinforce that this statistical outcome should probably be a naturally expected output.

7.2.8.3 Numerical simulations

As described in the methodology section, a set of numerical simulations were performed to obtain

the pressure and velocity fields inside the RVE. Only simulations reflecting the conditions of
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(a) (b)

Figure 7.13: Pore extraction process: (a) original RVE
image; (b) smoothed and thresholded image (pores in white)

experiments 3 and 4 were conducted, due to the computational cost involved and the need of

pressure data to apply on the boundary conditions. To validate the results obtained from the

numerical simulations, the volume average velocity inside the RVE was computed and compared

to the estimated experimental volume average velocity, obtained from the mass flowrate. The

comparison was made in the form of relative error as described in Equation 7.7, where vr is the real

volume average velocity obtained experimentally, and vs is the volume average velocity obtained

from the numerical simulations. The results obtained are displayed in Table 7.6.

erel =
vs − vr

vr
(7.7)

7.2.8.4 Fibre volume fraction determination

Due to the random fibre distribution, the fibre volume fraction of the porous medium is not a

constant measure, but instead has a spatial distribution. To evaluate the effect of this spatial

distribution on the void extracted data, a Voronoi tessellation was created using the coordinates of

the fibres. Subsequently, local fibre volume fractions were calculated on a per-fibre basis, using

the fibre cross-section area and the area of the corresponding Voronoi cell. In order to convert the

scattered fibre volume fraction data into a continuum approximation in grid form, the data was

interpolated using linear radial basis functions. The advantage of this methodology is its inherent

grid independency, which makes it convenient over grid superposition methods. A depiction of

the Voronoi tessellation and the interpolated fibre volume fraction map is presented in Figure 7.15

and 7.16, respectively. A histogram containing the derived local fibre volume fractions is depicted

Table 7.6: Numerical simulations results

Experiment
Pressure

differential
[Pa]

Experimental
volume average
velocity [mm/s]

Numerical volume
average velocity

[mm/s]
Error [%]

3 44138.81 3.324 3.206 -3.56
4 45098.36 18.260 16.826 -7.85
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Figure 7.14: Density histograms of pore size distribution
and void cross-sectional area distributions

in Figure-7.17. Edge effects can be seen around the border of the RVE fibre volume fraction map

(very low fibre volume fractions). These are caused by tessellation issues on the boundary fibres, as

depicted in Figure 7.15, nevertheless, the subsequent analysis is not affected by these boundary

values, as the data used for this study is captured in the central zone of the RVE.

7.2.8.5 Void location

By extracting the coordinates of the centroid of each entrapped void detected by the machine vision

algorithm, it was possible to superimpose each ordered pair to the RVE fibre volume fraction map.

A depiction of this process is shown in Figure 7.18. It can be observed that voids get preferentially

entrapped in the border of zones with increased fibre volume fraction, which is further validated by

the histograms presented in Figure 7.19, which reflect the count of local fibre volume fractions,

corresponding to entrapped void positions.

To evaluate the void location results correlation with the Young Laplace equation using a

continuum approximation, the equivalent mean diameter (Equation 7.8) was computed for each

bubble, taking into consideration its cross-section area (Ab), obtained from the machine vision

algorithm.

db =

√
Ab

π
(7.8)
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Figure 7.15: Example of a Voronoi tessellation using fibres
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Figure 7.16: Example of a derived fibre volume fraction interpolation map

Having the bubble’s centroid position and the respective diameter computed, the mean pressure

gradient inside the region of each bubble was computed by searching for the finite volume mesh

results for which the node coordinates are inside the bubble region. After computing the mean

gradient, the gradient norm (∥∇∇∇p∥||) and angle (θ ) were calculated, and a ten-point search was

conducted to find the fibre volume fractions in the border region of the bubble, in the direction of
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Figure 7.17: Histogram of derived local fibre volume fractions inside the RVE

Figure 7.18: Void location (in white) superimposed on the fibre volume fraction
map

the local pressure gradient, as depicted in Figure 7.20. The extracted local fibre volume fractions

were then converted into an inter-fibre distance (d f ), using Equation 7.4, which in combination with

the bubble diameter (db) and the fluid surface tension was used to assess if the bubble has sufficient

pressure differential available for being dislodged and mobilized, according to Equation 7.9.

pmob = min
{

4σ

(
1
d f

− 1
db

)
−db∥∇∇∇p∥(cos(αi)cos(θ)+ sin(αi)sin(θ))

}
(7.9)
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Figure 7.20: Ten-point search process

A frequency analysis to the computed pressure differential for each bubble is presented in

Figure 7.21. It can be observed that all bubbles present a positive pressure differential, ranging

from circa 40 Pa to above 3000 Pa. Therefore, at least this amount of additional pressure should

be provided, to promote the mobility of the bubble. Since the pressure differential available is not

sufficient, all bubbles should be entrapped, which coincides with the experimental observations.

With this rationale, similar in nature to the one presented by Patel and Lee [69], it is assumed that

the bubble is approximately spherical, and the initial diameter is conserved even when the bubble is

entering the fibre constriction. This approximation may lead to an overestimation of the necessary
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mobilization pressure differential, especially in smaller bubbles, as the mass conservation principle

is not attained. Nevertheless, this approximation provides a direct solution, which otherwise would

require the formulation of a non-linear problem. A thorough evaluation of the divergence between

this approximation and a mass conservation compliant approach is intended in a future study.

An important note goes to the computed mean pressure gradients inside the bubble regions,

which are usually below the homogenized gradient usually obtained by employing Darcy’s law,

which can be calculated using the pressure differential obtained by the pressure sensors, divided

by the length of the porous medium. Taking the frequency analysis depicted in the histograms

of Figure 7.22, the calculated average pressure gradient ratio is 7% and 8.5% for experiment 3

and experiment 4, respectively. A possible conclusion is that since bubbles are located between

consecutive fibre constrictions, the local pressure gradients before the constriction tend to be smaller

than the pressure gradients right after fibre constriction. This effect has been described by some

researchers, when attempting to model the permeability of a fibre tow based on the lubrication

theory [206, 207]. Moreover, due to the random cylinder packing inside the RVE structure, the

pressure gradients between fibre constrictions possess a stochastic nature, by which it is reasonable

to assume that bubbles get entrapped in zones in which the pressure gradient is lower. Therefore,

approaches which make use of the direct coupling of the Darcy equation solution to obtain the

critical capillary number for bubble mobilization, may be overpredicting the available pressure

gradient for bubble buoyancy, which in turn may lead to underprediction of the necessary capillary

number for void removal, depending on the porous media architecture.
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Figure 7.21: Frequency of computed pressure differential
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Figure 7.22: Ratio of mean pressure gradient at bubble location and computed
Darcy pressure gradient

7.2.9 Modelling void entrapment

To create a probabilistic model for void entrapment using a continuum approximation, the same

premise of the former section was used, in which the pressure differential obtained by the Young-

Laplace equation should be lower than the local pressure differential around the bubble, obtained by

the local pressure gradient (Equation 7.10). Reversing Equation 7.10 solution to obtain the bubble

diameter, one obtains the maximum bubble diameter which allows the bubble to be mobile, based

on the local pressure gradient, inter-fibre distance and surface-tension of the fluid (Equation 7.11).

An example of a solution for Equation 7.11, considering a surface tension of 0.08N/m and a

pressure gradient of 642857Pa/m is plotted in Figure 7.23. The solution was correlated to the fibre

volume fraction, via Equation 7.4. Using the RVE fibre volume fraction map (Figure 7.16), it is

possible to extrapolate the maximum bubble diameter which allows the bubble to not be trapped,

for every location of the RVE domain, using Equation 7.11. Then, obtaining the corresponding

bubble cross-sectional area and coupling with the exponential distribution cumulative distribution

function (Equation 7.12), one can compute the probability map of bubble mobility propagated

within the entire RVE domain, depicted in Figure 7.24. It can be seen that the vast majority of the

entrapped bubbles agglomerate in zones in which the mobilization probability is close to zero, as

pointed by the black dots which mark the center of each bubble trapped in the experiment. This

methodology can be easily implemented either in a continuum or a discretized domain (such as
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a finite element mesh). Assuming that one has the pressure gradient solution of the fluid flow, as

well as the correlation of local fibre volume fraction to inter-fibre spacing or inter-tow spacing, this

methodology can be used in combination with mould filling simulations, during process design,

since it allows for a fast assessment of zones which can be problematic for void transport, in a

probabilistic framework. Nevertheless, as pointed out in the former section of this paper, due to

the internal architecture of the porous medium and its inherent stochasticity, most bubbles are not

subject to the usually computed Darcy gradient. Therefore, the computed Darcy pressure gradients

in the mould filling simulation should be multiplied by a correction factor, which in turn is a

function of the porous medium architecture and fibre volume fraction. Further research needs to be

conducted to obtain such gradient correction factors, as well as account for additional phenomena

such as bubble splitting.

∥∇∇∇p∥db ≥ 4σ

(
1
d f

− 1
db

)
(7.10)

dmax
b = 2

σ −
√

−∥∇∇∇p∥d2
f σ +σ2

d f ∥∇∇∇p∥
(7.11)

Pmob = 1− e−λdmax
b (7.12)

Figure 7.23: Inter-fibre distance & maximum bubble diameter, as a function of fibre
volume fraction for the considered pressure gradient and surface tension
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Figure 7.24: Bubble mobility probability map with trapped bubbles centroid anno-
tation in black

7.3 Conclusions

In this study, void behaviour inside fibre tows was studied by means of fluid flow experiments using

an upscaled 3D printed geometry for different capillary numbers. Using a machine vision algorithm,

it was possible to automatically detect all voids entrapped inside the porous medium, as well as

compute their properties such as cross-sectional area and centroid position. Results suggest that the

number of entrapped voids increases with capillary number, whereas void size tends to decrease.

For all capillary numbers, void cross-sectional areas were found to fit a Weibull distribution, with

its parameters correlated to the capillary number. By coupling experimental data with fluid flow

numerical simulations, it was possible to obtain a correlation between void entrapment and the

Young-Laplace equation, as well as understand that due to stochastic nature of the fibre packing

inside a tow, the local pressure gradient around the voids is much lower than the Darcy gradient

computed for the entire porous media geometry. Future research is needed to determine what

correction factors should be used on volume averaging procedures, to model void entrapment and

transport in LCM manufacturing simulations which can help design injection strategies for actively

controlling the flow and dislodging entrapped voids [208].





Chapter 8

Implementation of a void formation and
transport framework in LIMS

The present chapter is based on the following refereed publication:

J. Machado, P. Simacek, S. Advani, P. Camanho, N.Correia. Implementation of a void

formation and transport computational framework with applicability to Liquid Composite Moulding.

In MAT-COMP’23 - XV Congresso Nacional de Materiales Compuestos, Gijon, Spain, 2023.
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8.1 Introduction

The inclusion of reliable void formation and transport models in process models for LCM is

paramount to guarantee the reliability of the manufactured parts, since it allows the estimation of

part in-situ void content after mould filling, as well as the estimation of the ideal bleeding time. The

incorporation of void dynamics into mould filling simulations has traditionally been under the form

of unsaturated flow, where a continuous saturation field is advected [174, 92, 175, 176, 99, 30].

However, as discussed in Chapter 2, these models lack the prediction of the morphological properties

of voids, which are known to influence their mobility through the reinforcement [112], as well as the

final part mechanical properties [13]. Also, direct numerical simulation methodologies [105, 106],

which are fundamentally based on the Volume of Fluid (VoF) method [177], can provide void

morphological data but are too computationally expensive to apply directly into an entire mould

filling domain. Particle tracking methodologies have extensively been used in computational fluid

dynamics (CFD), to solve problems in which the fluid flow carries solid particles, such as in

sediment deposition [178]. This methodology could prove to be a computationally efficient way

to deal with the different void morphologies registered, both during void generation, as well as

transport, since each void is taken as a discrete particle, thus possessing its own set of properties.

As of today, mould filling simulation software do not encompass such a methodology to allow

mould design optimization. This work, done in a collaboration with the University of Delaware

(USA), discusses the implementation of such a methodology into LIMS source code, envisioning a

streamlined application into process design.

8.2 Methodology

8.2.1 Void framework & flow coupling

The coupling between the fluid flow solution provided by LIMS flow solver and the void framework,

is established through a Message Passing Interface (MPI) protocol implementation that synchronizes

the two different models [115]. This coupled modular strategy is advantegeous over a monolithic

approach, as every model can have its own independent implementation, by which there is no need

to modify pre-existing validated code. Thus, the framework developed in this work can be added to

LIMS functionality, without the need to modify LIMS flow solver itself. Nevertheless, it requires

that a synchronism mechanism between LIMS flow solver and additional models is implemented,

to maintain a physically accurate solution. This is specially important when coupling resin reactive

models, in which the change in resin viscosity affects the flow solution [115].

Due to its FEM/CV nature, LIMS stores values in nodes, while to develop this framework, a

cell centric approach is much more convenient. This will require the conversion of certain results

from nodes to cells, which can introduce some challenges. The details that arise from this model

coupling implementation will be described in the following sub-sections.
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8.2.2 Void creation

Each void is modelled as an individual particle and defined by its initial position when created,

initial size (given by the diameter), and the pressure at the creation instant. This framework is

flexible enough to allow the use of any void formation model available in the literature, as long

as the initial void diameter is known. Therefore, saturation dependent models can use the relation

between the FEM/CV mesh element volume and overall void volume inside the element, as stated

in Equation 8.1:

se =
∑iVi

Ve
(8.1)

where se is the element saturation, Vi is the volume of a void inside the element, and Ve is the

element volume. Additionally, it is possible to introduce void generation in specific locations such

as the mould inlet, to simulate certain conditions such as air leakage into the mould cavity.

8.2.3 Void transport tracking

Particle tracking schemes are usually implemented in CFD software using a Lagrangean reference

frame. The schemes usually formulate the particles equation of motion by summing all intervening

forces, according to Newton’s second law, as described in Equation 8.2 [179]:

mp
d⃗vp

dt
= mp

v⃗− v⃗p

τr
+mp

g⃗(ρp −ρ)

ρp
+ F⃗ (8.2)

where mp is the particle mass, v⃗p is the particle velocity, v⃗ is the fluid velocity, ρp is the particle

density, ρ the fluid density, F⃗ is an additional force and τr is the particle relaxation time [180],

which can be obtained according to Equation 8.3:

τr =
ρpd2

p

18µ

24
CDRe

(8.3)

where CD is the particle drag coefficient (which formulation depends on both geometry and

type of particle), d2
p is the particle diameter and Re is the relative Reynold’s number, which is

formulated in Equation 8.4.

Re =
ρdp |⃗vp − v⃗|

µ
(8.4)

However, contemplating such a framework for void motion through porous media is cumber-

some, since additional terms such as the capillary force would have to be considered due to the

presence of significant bubble deformation through the porous architecture [107]. This would

require the exact evaluation of both void and porous geometry at each time-step, which not only

is computationally expensive, but also hindered by the characterization of the porous geometry

of fibrous reinforcements due to the associated uncertainties and high statistical scatter that still

motivate several research topics [13, 42]. A commonly employed rationale in the composites

manufacturing field is to consider that voids move at the same speed as the fluid flow, multiplied by
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a mobility factor (Mv), which is a parameter that condenses all the complex related physical interac-

tions of the void with the resin flow as well as the fibres. Thus, considering the three-dimensional

cartesian space, void mobility takes the form of a second order tensor [115], by which void velocity

can be determined using Equation 8.5:

v⃗v = Mv · v⃗e (8.5)

where v⃗v is the void velocity, Mv is the void mobility tensor, and v⃗e is the volume average fluid

apparent velocity inside the mesh element. The apparent velocity is calculated using Equations 2.1

and 2.4 from LIMS pressure field solution, using a least-squares scheme [115].

Therefore the void position at each time-step can be integrated from Equation 8.5 using Euler

explicit discretization (Equation 8.6):

Ji+1
v = v⃗v ∆t + Ji

v (8.6)

where Jv is the void position in local element coordinates, Mv is the void mobility tensor, v⃗e

is the element volume average apparent velocity, and ∆t is the time-step. Having computational

performance in mind, a local coordinate based void tracking approach is preferable to a global

coordinate based one, since all fluid flow computations are done primarily using local variables,

as it is common in FEM software. The time-step in Equation 8.6 is given by LIMS’ fluid flow

solver for flow-front advection. Since v⃗e and Mv do not change within the time-step, Equation 8.6

is inherently stable, by which no sub time-stepping additions are needed.

Considering that the mobility tensor has components that higher than zero, it is expected that

voids cross different mesh elements throughout their trajectory inside the domain. Therefore, in

combination with the void position update scheme presented in Equation 8.6, the algorithm has to

check if the bubble exits the element while within the prescribed time-step. Since the void equation

of motion in Equation 8.6 takes the form of a line parametric equation, by having the coordinates

of the nodes of the element and the boundaries normal vector stored in program memory, one can

apply Equation 8.7 to calculate the time for the void to reach a boundary:

tbd =
(Jb − Jv) · n⃗

v⃗v · n⃗
(8.7)

where tbd is the time to reach boundary, Jb are the coordinates of a node at the boundary and n⃗

is the boundary normal vector. This process is depicted in Figure 8.1. To compute which element

boundary the void will cross, the tracking algorithm chooses the boundary which has the minimum

positive tbd , by evaluating Equation 8.7 for all boundaries. In case the time-step prescribed by

LIMS is higher than the calculated time to boundary, the void position is recalculated using the

remaining time-step, which is obtained by subtracting tbd .

The transition of a void between elements can be done by converting the void position in local

element coordinates to global coordinates, and back to the new assigned element local coordinates.
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Figure 8.1: Void time to reach boundary calculation in two dimensional quadrilateral
element

Provided that the local referential axes are orthogonal, one can compute the global coordinates of a

void (Wv) with Equation 8.8:

Wv = T T
e · Jv + J0 (8.8)

where T T
e is the transposed transformation matrix that maps the element local referential axes

to the global coordinate system and J0 are the coordinates of the reference node (which local

coordinates evaluate to null). Inversely, the local void coordinates inside a newly attributed element

can be computed from the global coordinates using Equation 8.9.

Jv = Te · (Wv − J0) (8.9)

The tracking of voids trajectories through element boundaries additionally allows the formula-

tion of a void termination criteria. Fundamentally, after a void is created, it can be terminated if it

coalesces with the flow-front, or exits the domain through a vent gate. Flow-front coalescence can

be modelled by knowing the fill-factor (given by LIMS solver) of the element which sits next to

the boundary being crossed by the void: if the fill factor is below a threshold value (circa 90%),

then the flow-front is partially located on that element and the void is considered to be coalesced

(and terminated). A void can also be terminated by exiting a vent gate if it crosses a boundary

in which all nodes are declared as gates. As explained in detail in [115], the use of single gate

nodes can lead to numerical instabilities in two or three-dimensional problems, as the node based

results calculated by LIMS solver are converted to cell-based results, in order to run control-volume

based algorithms (such as this case). At last, element boundaries can also be mould walls, which

delimit the domain. In the case a void collides with a wall, its velocity inside the element is updated

taking the orthogonal component of the velocity vector by the boundary normal vector (⃗uo
v), using

Equation 8.10.

v⃗o
v = v⃗v −

(
v⃗v · n⃗
n⃗ · n⃗

)
v⃗v (8.10)

In addition to position tracking, the tracking of void size was also considered in the algorithm.

This can be done in a straightforward manner, using the ideal gas law, and assuming that the void
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geometry can be approximated by a sphere, as in Equation 8.11:

rv = r0
v

3

√
p0

v

pv
(8.11)

where rv is the void current radius, pv is the current pressure being exerted on the void, r0
v is

the void radius when created, and p0
v is the pressure being exerted on the void at the moment of

generation.

Since the LIMS flow solver stores results on a nodal basis, in order to estimate the pressure

exerted on the void at each time-step, those results have to be converted to a cell basis. The

more straightforward approach is to compute the arithmetic mean pressure of all node values and

prescribe that as the element pressure, as in Equation 8.12:

p̄e =
1
nn

nn

∑
i=1

pi (8.12)

where p̄e is the mean element pressure, nn is the number of nodes in the element and pi is the

pressure in node i.

Further pressure solution refinement techniques are possible with the use of linear interpolation

schemes inside the element. Nevertheless, for quadrilateral and hexahedral elements, these would

heavily rely on an isoparametric representation of the element nodes local coordinates, for efficient

calculation. As LIMS does not rely on such representation for internal computations, the computa-

tional overhead related to these calculations would hardly compensate the most straightforward

solution, which is to increase mesh refinement.

It is possible to further refine the pressure solution with linear interpolation schemes inside the

element, as for one-dimensional elements Equation 8.13 can be used:

pv =
p1(x2 − x)+ p2(x− x1)

x2 − x1
(8.13)

where pv is the pressure acting on the void, given its local position x, p1 is the pressure at the

first node, x1 is the local position of the first node, p2 is the pressure prescribed on the second node

and x2 is the local position of the second node.

For two-dimensional triangular elements, a barycentric coordinate approach can be used, where

the pressure acting on the void can be calculated using Equation 8.14:

pv =
3

∑
i=1

ωi pi (8.14)

where ωi is the barycentric coordinate and pi is the node pressure. The numbering follows the

mathematical counter-clockwise numbering notation. The three barycentric coordinates can thus be

calculated from Equations 8.15 to 8.17.

ω1 =
(y2 − y3)(xv − x3)+(x3 − x2)(yv − y3)

(y2 − y3)(x1 − x3)+(x3 − x2)(y1 − y3)
(8.15)
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ω2 =
(y3 − y1)(xv − x3)+(x1 − x3)(yv − y3)

(y2 − y3)(x1 − x3)+(x3 − x2)(y1 − y3)
(8.16)

ω3 = 1−ω1 −ω2 (8.17)

where xv and yv are the void position on the local x and y axes, and the remaining (x,y)

coordinate pairs are the element nodes coordinates in local axes, following the same counter-

clockwise numbering notation.

A depiction of the complete algorithm is thus provided in the schematic in Figure 8.2.
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Figure 8.2: Schematic of the void formation and tracking algorithm

8.3 Results

To assess the correct functioning of the algorithm, two test cases were created: the first consists in

a box modeled by two-dimensional shell elements. Nevertheless, the elements are distributed in

three-dimensional space to account for the sides of the box. The second case uses three-dimensional

hexahedral elements to model a plate with an insert, which becomes an obstacle to fluid flow and

thus voids.
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Table 8.1: Material properties and boundary conditions used in the numerical simulation

Kxx [m2] Kyy [m2] Viscosity [Pa.s] Injection pressure [Pa]

1.1833e-9 1.1833e-9 0.285 100000

8.3.1 2D box case

The box mesh utilized for this test case is shown in Figure 8.3. An inlet was positioned in a top

corner of the box, thus allowing the fluid flow to address all three spatial dimensions, as can be

seen by the fluid flow velocity vectors at the last time-step of the filling simulation, displayed

in Figure 8.4. In order to simulate an air leak during mould filling, voids were generated in the

elements around the inlet, at each simulation time-step, for the first half of the mould filling time.

Three simulations were performed with different void mobility factors: 10, 2, and 0.5. The material

properties and boundary conditions used in the simulations are registered in Table 8.1.

From Figure 8.5, it can be seen that the void paths follow the local element flow velocity vectors.

Since the velocity field suffers changes throughout the mould filling simulation, this will lead to

different void paths, even for voids generated inside the same element.

Figure 8.3: Plot of the box mesh

Figure 8.4: Plot of the box flow velocity vectors at time of filling

By counting the number of voids still inside the domain after complete mould fill for every

simulation, the percentage of remaining voids was computed. From Figure 8.6, it can be observed
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Figure 8.5: Void paths, for a mobility factor of 10 (mesh nodes in purple)

that even for void mobility factors above unity, there is a significant percentage of bubbles that

still remain in the domain, by which only with a mobility factor of 10, over 95% of voids coalesce

with the flowfront. These results contrast with the expectable results using a rectilinear injection,

in which a mobility higher than one leads to bubbles rapidly coalescing with the flow-front. This

contrast is due to the non-uniform velocity field present in the box test-case, which leads bubbles

not having a rectilinear path, and also be guided to zones where the flow velocity is very low. This

effect can be seen in Figure 8.4, which at time of filling there are elements which flow velocity is

null, and the maximum flow velocity is in the order of 2 mm/s.

2 4 6 8 10
Void mobility

0

20

40

60

80

100

Re
m

ai
ni

ng
 v

oi
ds

 [%
]

Figure 8.6: Remaining percentage of voids after complete mould fill, for different
void mobility factors
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Table 8.2: Material properties and boundary conditions used in the numerical simulation

Kxx [m2] Kyy [m2] Kzz [m2] Viscosity [Pa.s] Injection pressure [Pa]

1e-11 1e-11 5e-13 1 100000

8.3.2 3D plate with insert case

In this test case, a 3D mesh of a plate with an insert was utilized, with four elements along the

thickness, as show in Figure 8.7. An inlet was positioned in the extremity of the plate, in front of

the insert, and similarly to the 2D box test-case, bubbles were generated around the inlet, during the

first half of the mould filling time. The same mobility factors of 10, 2 and 0.5 were used in three

distinct simulations. The material properties and boundary conditions are present in Table 8.2.

Figure 8.7: Plot of the box mesh

Figure 8.8: Plot of the plate with insert flow velocity vectors at time of filling

The void paths obtained from the simulation with a mobility factor of 10, and depicted in

Figure 8.9, circumvent the insert zone, following the flow velocity field (in Figure 8.8). By

computing the remaining void percentage at mould filling time for the different mobility factors

imposed, it was found that a mobility factor of 10 leads to a complete washout of voids. However,

93.76% of voids still remain for a mobility factor of 0.5. The reason behind having voids whose

mobility factor is below unity, coalescing with the flow-front, is once again due to the non-uniform
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flow velocity field, in this case amplified by its three-dimensional nature, by which at time of filling

the difference between registered maximum and minimum local flow velocities reached a 53x fold.

Figure 8.9: Void paths, for a mobility factor of 10 (mesh nodes in purple)
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Figure 8.10: Remaining percentage of voids after complete mould fill, for different
void mobility factors

8.4 Conclusions

In this work, a framework for void formation and transport was implemented in LIMS source code.

Using the MPI implementation provided, it was possible to efficiently exchange data between
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solvers, as this framework required reading fluid flow conditions at each time-step from the flow

solver and use those conditions to track voids inside the porous medium.

The results obtained from the preliminary studies show that the efficiency of void transport is

highly dependent on the voids mobility and processing conditions, but also on the injection scheme

being used. Since in non-unidirectional injections the fluid flow velocity field can possess a high

variability, even for higher mobility factors, such as 10, a significant portion of bubbles may still be

present inside the laminate. Therefore, this study shows the importance of devising more robust

bleeding strategies, as the efficiency of the voids washout may be highly dependent on part and

injection design.

Lastly, the comprehension of void mobility is yet scarce. Future research is needed to clarify

the conditions under which voids are mobile and what is the expected mobility.



Chapter 9

Discussion
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9.1 Macro-scale

The development of a global sensitivity analysis framework applicable to LCM, is detailed in

Chapter 3. It was demonstrated that is is possible to consider all process variables as stochastic ones,

and introduce them into a comprehensive stochastic framework. This enables the prediction of the

macro-void formation sensitiveness of a given injection design to each of the process variables. In

turn, one can modify the injection design in order to minimize its macro-void formation sentitiveness

to undesired variables such as race-tracking, thus leading to a more robust design.

This framework relies on a previous characterization of the statistical behaviour of each

process variable, such as race-tracking or permeability. For the study presented in Chapter 3,

the statistical characterization was provided by a literature review. Nevertheless, still there are

some gaps unaddressed by literature which can hinder the application of this framework into a

full three-dimensional problem. The available research regarding the characterization of local

permeability variability focused solely on single layer laminates, for both in-plane [52] and out-

of-plane components [53]. Thus, since no data is available for multi-layer laminates, the effect of

phenomena such as nesting on the permeability field variability is still unclear. Nevertheless, as

pointed in Chapter 2, the presence of nesting should contribute to an increase in local permeability

variability, by which the relevance of permeability variability to injection design should be greater

in thicker laminates.

Regarding future implementations of this framework into a streamlined process design method-

ology, the inclusion of an optimization algorithm which objective function minimizes sensitivity

indices as a function of inlet and vent positions should be a possibility, as there are several examples

present in the literature of both single and multi-objective optimization problems already applied

to LCM processing [209, 48, 210, 211]. Nevertheless, as each optimization iteration requires the

run of several simulations for the computation of the global sensitivity indices, the leveraging of

distributed computing functionalities should be regarded as a fundamental step to have a timely

design.

9.2 Meso-scale

The study of void formation and transport at the meso-scale during the unsaturated flow regime

was studied in Chapter 6. A 3D printed porous medium resembling the weave architecture of a

reinforcement fabric was utilized in fluid flow experiments at constant flow-rate. The 3D printed

part was used in detriment of a real fabric, as means of eliminating the statistical scatter usually

observed in porosity distributions inside reinforcements, which contribute to an amplification of

the uncertainty in derived results. Therefore, by knowing the exact morphology of the porous

medium, eventual correlations are easier to establish. This strategy allowed the assessment of the

main factors that drive void mobility, which are the capillary number and the relation between void

size and pore size. Both parameters were condensed into a proposed non-dimensional number (ϕ),

which can be correlated to the expected mobility. Despite the merits of the experimental setup
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and post-processing algorithm in enabling the drawing of clear correlations between fluid flow

conditions and void/porosity sizes, the results still register a high statistical scatter. Although this

behaviour can be attributed to spatial dependency, it is unclear whether the statistical scatter holds

for different types of porous morphologies. Therefore, additional experimental campaings are

necessary to further assess the expected limits of ϕ , as well as the expected critical ϕ , in different

reinforcements. Saturated flow conditions should also be object of research.

Regarding void formation, it was found that the commonly employed V-shaped correlation

between void content and capillary number [54] still holds in single scale porous media. However,

instead of being a result of a competition between micro and meso-void formation, it stems from

the balance between the number of voids generated (which is positively correlated to Ca) and the

average size of voids generated (which is negatively correlated to Ca). This is a relevant paradigm,

as void morphology is known to influence the mechanical properties of the manufactured parts,

asside from overall void content. Further research is needed in order to clarify how the mentioned

correlations work as a function of the fluid flow conditions and porous medium architecture.

Lastly, the use of numerical fluid flow simulations can help to map the conditions which bubbles

are subject within the porous medium. This can leverage the detail to which the analysis is made,

thus leading to new insights on void formation and transport.

9.3 Micro-scale

The study of void formation and entrapment at the micro-scale was studied in Chapter 7. Once

again, a 3D printed porous medium was used, this time resembling the distribution of fibres inside

a fibre tow. The rationale behind the use of a 3D printed part is still the control over the exact

morphology of the porous medium, leading to better insights and reduced uncertainty over the

experiments results. In this study, the randomness of the porosity distribution was considered, by

randomizing the position of each fibre in the array.

A positive correlation beween the number of entrapped voids and capillary number was found,

whereas a negative correlation was found between average void size and capillary number. These

results are coherent with what has been observed in the study present in Chapter 6, which also

uses a single scale porous medium, yet with a different morphology. Moreover, the void size

distribution was found to follow an exponential distribution, which intrinsic parameter shows

some dependency to the capillary number imposed, as well as the porous medium architecture

stochastic description. Since Weibull/Exponential distributions were also used in the literature to

represent void size distributions in manufactured laminates, albeit very few studies were found on

the subject, the results provided in this study are coherent with the composites manufacturing reality.

Therefore, acknowledging once again that void morphology influences the mechanical properties

of composite laminates, having correlations between capillary number, pore size distribution, and

void size distribution parameters can enable new insights on the prediction of composite laminates

mechanical properties.
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By conducting numerical fluid flow simulations, which make use of both the virtual geometry

of the porous medium and the experimental fluid flow conditions, good agreement was found

between numerical and experimental results, which is a promising indicator of the low uncertainty

associated to the experimental setup. The coupling of experimental results with numerical fluid flow

simulations enabled the mapping of the conditions which bubbles are subject when entrapped inside

the porous medium. Excellent agreement between the Young-Laplace equation and experimental

results was found. Considering the statistical distribution of entrapped void sizes, it was possible

to compute a void entrapment probability map for the entire porous medium geometry, taking the

local fibre volume fractions and pressure gradients. Due to the analytical nature of the methodology,

this approach can be used for a fast assessment of critical areas in composites manufacturing,

which will have a high probability of void entrapment. Nevertheless, depending on the porous

medium morphology, the calculation of local gradients cannot be derived directly from Darcy’s

law, as in this study the computed local pressure gradients around voids are a fraction of the Darcy

gradient computed for the entire porous media geometry. Therefore, directly using the Darcy

equation solution may lead to an underpreditction of the critical capillary number for void removal.

Although this modelling strategy provides useful results, it does not yet consider phenomena such

as void splitting. However, it is known that under certain conditions voids may split, and thus

become mobile inside the porous medium. Including this type of phenomena into the modelling

approach should enhance the accuracy of the results. However, further research is needed towards a

modelling approach for void splitting. Lastly, the presented modelling approach for void entrapment

considers a pass/no pass situation. Thus, no mobility is computed when voids can pass through a

fibre constriction. Future work will focus on the modelling of void mobility at the micro-scale, as

this type of data is fundamental to predict void transport during LCM manufacturing.

9.4 On the developent of tools and setups

The development of new experimental setups and tools is a relevant issue, as discussed in Chapter 2,

since experimental results are usually dominated by a high statistical scattering [42]. Thus the

ability of quantifying the experimental setup and results post-processing methodologies associated

uncertainty is fundamental towards understanding the natural variability of the physical system.

The tools developed in this thesis, such as the one presented in Chapter 4, have surpassed state-of-

the-art methodologies considering the derived error, thus contributing to a more reliable analysis.

Nevertheless, this comparison is not always simple, as many studies found in the literature do not

provide an uncertainty analysis of the methodologies employed.

Despite the success of the developed methodologies, both regarding uncertainty mitigation, as

well as enabling the assessment of novel results, both tools developed in Chapters 4 and 5, rely

on machine learning algorithms. While this strategy enables a detailed capturing of the objects

of interest features during image processing, machine-learning tools bring additional challenges,

namely in data curation. As detailed in Chapters 4 and 5, in order to successfully deploy a machine-

learning model, one needs to gather data to create a dataset for a specific purpose, if an akin dataset
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is not publicly available yet. Depending on the machine-learning model to be trained and its final

application, one has to understand what should be the minimum number of samples in dataset

(dataset size). Lastly, the data has then to be treated, by creating a ground-truth equivalent dataset,

which serves as a reference during the machine-learning model training. This is a logistically

challenging process, which has a direct impact on the reliability of the machine-learning model

accuracy, since the capacity for generalization of the model is dependent on how general is the

dataset considering its application, meaning that the dataset should encompass the maximum

number of different features characteristic to each object of interest.

Regarding the functionality presented in Chapter 8, it was demonstrated that a multi-scale void

formation and transport framework can be effectively implemented in mould filling simulation

software, using a particle tracking scheme. Additionally, it was demonstrated that the injection

strategy and part geometry can have a significant impact on the bleeding efficiency of voids formed

during the resin impregnation. Nevertheless, in order to have more accurate simulations, there is

the need for additional research regarding the quantification of void mobility, as well as additional

phenomena such as void splitting and merging, which will dictate the practical limits of the void

mobility function.

Regarding the experimental setups devised, the use of 3D printed porous media geometries

allowed to establish clear correlations between different variables, thanks to the reduction of the

associated uncertainty. Nevertheless, the randomness of the porous media architecture can still be

considered, as detailed in Chapter 7, where the virtual geometry was used in fluid flow simulations

to map flow conditions around voids. This task would not have been possible to accomplish without

the computational dimension and the exact knowledge of the porous medium morphology. Despite

the merits of the methodologies devised, still there is lack for improvement, as void mobility

could not be reliably captured in Chapter 7. The need for higher grade equipment, namely in

higher frames-per-second image acquisition is fundamental for a reliable assessment of the void

mobility and void splitting phenomena. The high accelerations and decelerations bubbles suffer

when passing thorugh narrow porous constrictions have been described in Chapter 5, however,

these were exacerbated in the experiments in Chapter 7.





Chapter 10

Conclusions and Future Work

The work developed in this thesis focused on the multiscale analysis of void formation and transport

in Liquid Composite Moulding. The main conclusions drawn were:

• The development of a comprehensive statistical framwork to aid mitigating macro-void

formation;

• The characterization of void formation and transport phenomena during the unsaturated flow

regime at the meso-scale;

• The characterization of void entrapment phenomena at the microscale;

• The developement of a machine-learning based tool capable of automatically parsing void

content from micrography laminate cross-section images;

• The developement of a machine-vision tool for autocatic tracking of both flow-front and

voids with applicability to LCM processing;

• The developement of additional functionality into LIMS source code, for the generation and

tracking of voids during LCM mould filling numerical simulations.

Additional research paths were opened during the developement of the work presented in this

thesis:

• The assessment of the mobility of voids both at the meso-scale and the micro-scale, during

the saturated flow regime;

• The study of which conditions favour bubble splitting inside reinforcements.
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Appendix A

Automatic void content assessment
software

A.1 General description

The software can be used to automatically determine the void content in composite laminates

cross-section micrography images. It employs the convolutional neural network model developed

in Chapter 4 to segment the images. To facilitate its use, the software contemplates a graphical user

interface (GUI), depicted in Figure A.1. Since the image segmentation operations are computa-

tionally expensive, a separate server module was created, which can be run in a different machine

than the one where the GUI is running. As the communication between GUI and server module is

established via socket communication using the Transmission Control Protocol (TCP), a network

connection between the two machines is required. Additionally, the software was programmed to

address the case of image batch processing. As such, if several server instances are running on the

network, the image processing is automatically parallelized, thus minimizing processing time.

(a) (b)

Figure A.1: Depiction of the software (a) graphical user interface (b) server module
successfully initialized
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