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Abstract: The mixture design of cement-based materials can be complex due to the increasing num-
ber of constituent raw materials and multiple requirements in terms of engineering performance
and economic and environmental efficiency. Designing experiments based on factorial plans has
shown to be a powerful tool for predicting and optimising advanced cement-based materials, such
as self-compacting high-early-strength cement-based mortars. Nevertheless, the number of factor
interactions required for factor scheduling increases considerably with the number of factors. Con-
sequently, the probability that the interactions do not significantly affect the answer also increases.
As such, fractioned factorial plans may be an exciting option. For the first time, the current work
compares the regression models and the predicting capacity of full, fractionated (A and B fractions)
and small factorial designs to describe self-compacting high-early-strength cement-based mortars’
properties, namely, the funnel time, flexure and compressive strength at 24 h for the function of the
mixture parameters Vw/Vc, Sp/p, Vw/Vp, Vs/Vm and Vfs/Vs for the different factorial designs.
We combine statistical methods and regression analysis. Response models were obtained from the
full, fractionated, and small plans. The full and fractionated models seem appropriate for describing
the properties of self-compacting high-early-strength cement-based mortars in the experimental
region. Moreover, the predicting ability of the full and fractionated factorial designs is very similar;
however, the small design predictions reveal some concerns. Our results confirm the potentiality of
fractioned plans to reduce the number of experiments and consequently reduce the cost and time of
experimentation when designing self-compacting high-early-strength cement-based mortars.

Keywords: design of experiments; high strength; response model; self-compacting mortar

1. Introduction

Self-compacting concrete (SCC) is distinguished by its ability to fill spaces within
formwork and consolidate only by its self-weight, eliminating the need for vibration.
Therefore, the final product properties of SCC elements/structures are less dependent on a
worker’s technical skills. As such, it has enormous potential to improve the final quality of
concrete products and extend the service life of modern concrete structures [1,2].

Professor Okamura developed SCC at the University of Tokyo in the 1980s [3] to
improve the durability of reinforced concrete structures associated with deficiencies in
concrete compaction execution due to the shortage of skilled workers. SCC presents several
advantages in terms of design, application and durability, such as (i) resource savings (in
terms of manpower, equipment, and energy); (ii) the possibility of using new constructive
systems with higher complexity and flexibility (reinforcement) which have a better finishing
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quality; (iii) a reduction in the noise associated with the vibration process; (iv) improved
quality of life, as well as health and safety on construction sites and their surroundings; and
(v) the possibility of incorporating significant quantities of supplementary cementitious
materials, including industrial wastes or by-products.

Over the last few decades, the scientific community has contributed to a climate of
confidence in using SCC in the construction industry. Numerous researches on the subject
and the vision of some European organisations (for example, RILEM and EFNARC) have
ensured the technical benefits of SCC and the quality of life, health, safety and management
of environmental resources. It is expected that SCC may shortly replace conventional
concrete as an innovation, improving the durability and final quality of structures and
potentially lowering costs [2,4–8].

Even though SCC presents exciting advantages and has attracted the interest of in-
dustry, one of the main barriers to the more widespread use of SCC is the sensitivity of
the mixture to small variations in the characteristics of the constituent materials, the mix
proportions and other external factors [7].

SCC constituent materials are used in vibrated concretes (VC), but in different pro-
portions. SCC requires high fluidity and moderate cohesion. To ensure high fluidity, a
superplasticiser is of utmost importance. Viscosity modifier agents and/or supplemen-
tary cementitious materials usually reach an adequate viscosity without segregation. The
supplementary cementitious materials and cement form the so-called fines and, when
used in appropriate proportions, improve the rheological properties of the SCC through
particle packing and other hardened-state properties. As such, the mixture design of SCC
may be more complex than that of vibrated concretes due to the increasing number of
constituent raw materials (cement, one or more supplementary cementitious materials,
viscosity-modifying admixtures, superplasticisers, and aggregates) with distinct natures
and functions. Moreover, real projects are challenging nowadays, and several performance
requirements are targeted for engineering, architecture, and economic and ecological impacts.

Generally, the SCC mixture design can be divided into four phases as follows [1,6]:

• Establishing the structural, constructive and environmental conditions of the application;
• The selection and characterisation of constituent raw materials;
• The preliminary SCC mixture design;
• Checking the performance requirements.

The mixture design must be revised and tested if a requirement is not checked until
the desired performance is achieved. In the literature, it is possible to find a wide range
of compositions that satisfy the criteria of being able to self-compact. Therefore, no single
original composition exists for a given application or performance requirements. An
important and decisive factor for SCC mixture design is understanding the effect of each
constituent material and its interaction on the final properties of the SCC [1].

Three main types of approaches can be distinguished for SCC mixture design. The
first approach is based on laboratory experiments, using the trial-and-error method. The
second is based on optimising concrete paste volume, and the third approach uses statistical
analyses based on factorial plans, such as the design of experiments [6,9,10].

The factorial design approach refers to planning experiments so that good-quality
data can be collected and analysed using statistical methods and empirical models can be
constructed that enable valid and objective conclusions and involve a minimum number
of experiments. The obtained numerical models can subsequently be mathematically
manipulated for various purposes, particularly for the optimisation of mixtures. In general,
after formulating the problem, the factorial design involves the following steps:

1. The selection of factors (mixture parameters), levels to be considered and ranges
of variation;

2. The selection of response variables;
3. The choice of the type of factorial plan;
4. Performing the experiments;
5. Performing the statistical data analysis (adjustments of a numerical model);
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6. Performing further calculations involving the fitted models (optimisation) and conclusions.

Based on the method of Okamura et al. [3], the SCC mixture design can be defined by
the following mixture parameters: the water-to-cement mass ratio (w/c), water-to-fines
volume ratio (Vw/Vp), sand-to-mortar volume ratio (Vs/Vm), superplasticiser-to-fines
mass ratio (Sp/p), the ratio between the volume of coarse aggregate and the maximum
volume of coarse aggregate that can be included in 1 m3 in the compacted state (Vg/Vg,lim)
and the ratio between the sands in mass (s1/s2), if a mixture of two grains of sand is used
as fine aggregate. The air content is generally fixed at 2%. Thus, all the variables except
Vg/Vg,lim [1,2,7] are employed for the study of mortars. In turn, in the concrete study, only
the variables related to the solid skeleton are adopted as independent variables (Vg/Vg,lim
and Vs/Vm), because the paste composition remains fixed, as the result of a previous study
performed at the mortar level [1,2,7].

Research Significance and Objectives

The precast industry promoted the beginning of SCC in Europe in the 1990s and
applications for ready-mix concrete for bridge structures and buildings. To reduce the
demoulding time and accelerate production, high-early-strength concrete compositions are
typically preferred by precast companies. If self-compacting high-early-strength concrete
mixtures are applied, additional advantages can be reached, namely, reducing the time
needed for the demoulding strength by reducing the amount of labour in the compaction
process. The recommended demoulding compressive strength ranges from 10 to 17 MPa
depending on the final application [11], after a 12 to 24 h waiting period in the mould.

High-early-strength and self-compacting concrete mixtures may be challenging be-
cause they present contradicting mixture design prerequisites and fresh properties from
a materials science point of view. For example, a low water/binder ratio (w/b) is crucial
to attain high early strength [12]. Conversely, it may affect the mixture’s self-compacting
capacity, which is especially susceptible to changes in the Vw/Vp.

This work proposed a methodology for modelling and predicting high-early-strength
self-compacting concrete properties by studying key properties at the mortar level (self-
compacting high-early-strength cement-based mortars) using the data from [13]. Without
any special curing treatment, the goal was to develop self-compacting high-early-strength
cement-based mortars with 10 s of flow time and at least 50 MPa of compressive strength at
the age of 24 h and with 260 mm of minimum slump flow. The five key parameters for the
self-compacting high-early-strength cement-based mortars mixture chosen by [13] were as
follows: (i) the water-to-powder ratio by volume, Vw/Vp; (ii) the fine-sand-to-total-sand
ratio by volume, Vfs/Vs; (iii) the water-to-cement ratio by volume, Vw/Vc; (iv) the sand-
to-mortar ratio by volume, Vs/Vm; and (v) the superplasticiser-to-powder ratio by mass,
Sp/p. A total of 50 mixtures were produced.

As can be perceived, the number of combinations increases considerably between the
number of input parameters and factors required for factor planning. Consequently, they
also intensify the probability that the interactions will not significantly impact the response.
As such, there is a need to reduce the time and experimentation costs [14]. For this reason,
fractioned plans may be an exciting option for full factorial plans [15]. Then, this work aims
to compare the response models taken from a full, fractioned, and small central composite
design to describe, predict and optimise self-compacting high-early-strength cement-based
mortars’ properties.

2. Factorial Plan
2.1. Design

A central composite design (CCD) was preferred by Maia [13] to find the significant
properties of self-compacting high-early-strength cement-based mortars explained by
response models as a function of the mixture input parameters (factors). The 25 CCDs
consisted of 32 factorial points (Fi) augmented by 10 axial points (CCi) and 8 central
runs (Ci), with a total of 50 self-compacting high-early-strength cement-based mortars.
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Commercially available raw materials in Portugal were employed to produce SCHSM,
and the mixture proportions were translated by five independent factors (input variables):
(i) Vw/Vp—water-to-powder volume ratio; (ii) Vs/Vm—sand-to-mortar volume ratio;
(iii) Vw/Vc—water-to-cement volume ratio; (iv) Sp/p—superplasticiser-to-powder-mass
ratio; and (v) Vfs/Vs—fine-sand-to-total-sand volume ratio.

The effect of each factor, Vw/Vc, Sp/p, Vw/Vp, Vs/Vm and Vfs/Vs, were evaluated
at five levels: −α, −1, 0, +1 and +α, as shown in Table 1. For a rotatable design, the value
of α was equal to nF1/4, where nF is the number of factorial combinations of the design,
which was 32 in the current CCD. Thus, it corresponds to −α and +α, which are equal to
−2.378 and +2.378, respectively. The correspondence of coded and absolute values of input
mixture parameters is presented in Table 1. In addition, 14 extra points (mixtures) in the
range of the CCD were produced for model validation purposes (as explained in Section 3)
and are also included in Table 1 (Vi).

Table 1. Correspondence of actual and coded values of input mixture parameters.

Units −2.378 −1 0 +1 +2.378

X1: Vw/Vc - 0.682 0.805 0.895 0.984 1.108
X2: Sp/p % 0.9101 0.0217 0.0236 0.0255 0.0281
X3: Vw/Vp - 0.4344 0.5130 0.5700 0.6270 0.7056
X4: Vs/Vm - 0.306 0.432 0.480 0.528 0.594
X5: Vfs/Vs - 0.043 0.250 0.400 0.550 0.757

Four response variables were analysed: (i) D-flow—slump-flow diameter; (ii) T-
funnel—the time in the V-funnel; (iii) F,24h—flexural strength at the age of 24 h (the
three-point loading method was applied); and (iv) Rc,24h—compressive strength at the
age of 24 h [13]. The details concerning raw materials’ properties, specimen production
and measurement of both fresh and handed properties (response variables) can be found
in [13].

2.2. Data Set

Table 2 presents the experimental findings reported by Maia [13] concerning the
response variables D-flow, T-funnel, F,24h and Rc,24h. Maia [13] considered the average
of two results obtained for D-flow as shown in Table 2. The F,24h has an average of 3 test
records for each single mixture, and the Rc,24h has an average of 6 test records [13].

Table 2. Coded values used for determining mixtures’ contents’ the corresponding experimental
findings are used to adjust models and CCD points for each CCD.

CCD
Point

Coded Values Responses

CCDVw/Vc Sp/p Vw/Vp Vs/Vm Vfs/Vs D-Flow T-Funnel F,24h Rc,24h
[mm] [s] [MPa] [MPa]

C1 0.00 0.00 0.00 0.00 0.00 346.50 14.98 11.77 59.89 Full, A, Small
C2 0.00 0.00 0.00 0.00 0.00 346.00 13.77 12.29 62.10 Full, A, Small
C3 0.00 0.00 0.00 0.00 0.00 339.50 14.15 11.28 59.31 Full, A, B, Small
C4 0.00 0.00 0.00 0.00 0.00 348.00 14.74 12.08 60.90 Full, A, B, Small
C5 0.00 0.00 0.00 0.00 0.00 339.50 14.53 11.96 60.00 Full, A, B, Small
C6 0.00 0.00 0.00 0.00 0.00 341.00 14.38 11.89 62.17 Full, A, B
C7 0.00 0.00 0.00 0.00 0.00 345.00 13.56 11.05 60.18 Full, B
C8 0.00 0.00 0.00 0.00 0.00 344.50 14.23 11.03 59.63 Full, B

F1 −1.00 −1.00 −1.00 −1.00 −1.00 330.00 18.89 11.60 72.54 Full, B, Small
F2 1.00 −1.00 −1.00 −1.00 −1.00 349.00 12.26 11.05 57.80 Full, A
F3 −1.00 1.00 −1.00 −1.00 −1.00 338.50 16.70 12.64 70.09 Full, A
F4 1.00 1.00 −1.00 −1.00 −1.00 354.50 11.32 10.50 56.06 Full, B
F5 −1.00 −1.00 1.00 −1.00 −1.00 375.00 9.24 11.26 67.05 Full, A
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Table 2. Cont.

CCD
Point

Coded Values Responses

CCDVw/Vc Sp/p Vw/Vp Vs/Vm Vfs/Vs D-Flow T-Funnel F,24h Rc,24h
[mm] [s] [MPa] [MPa]

F6 1.00 −1.00 1.00 −1.00 −1.00 369.50 7.08 9.43 55.72 Full, B
F7 −1.00 1.00 1.00 −1.00 −1.00 376.00 7.80 10.60 68.47 Full, B
F8 1.00 1.00 1.00 −1.00 −1.00 375.00 6.91 10.18 53.40 Full, A, Small
F9 −1.00 −1.00 −1.00 1.00 −1.00 253.00 114.06 11.68 73.13 Full, A
F10 1.00 −1.00 −1.00 1.00 −1.00 289.50 38.91 11.64 58.49 Full, B
F11 −1.00 1.00 −1.00 1.00 −1.00 260.50 74.32 10.48 71.81 Full, B
F12 1.00 1.00 −1.00 1.00 −1.00 289.50 33.03 10.91 59.30 Full, A, Small
F13 −1.00 −1.00 1.00 1.00 −1.00 295.00 25.40 11.83 67.80 Full, B
F14 1.00 −1.00 1.00 1.00 −1.00 313.50 17.53 11.41 55.93 Full, A
F15 −1.00 1.00 1.00 1.00 −1.00 303.50 26.33 11.41 68.43 Full, A, Small
F16 1.00 1.00 1.00 1.00 −1.00 320.00 14.15 10.93 56.48 Full, B
F17 −1.00 −1.00 −1.00 −1.00 1.00 300.00 28.43 11.06 66.54 Full, A
F18 1.00 −1.00 −1.00 −1.00 1.00 351.50 12.89 10.69 55.93 Full, B, Small
F19 −1.00 1.00 −1.00 −1.00 1.00 334.50 17.67 11.57 69.59 Full, B
F20 1.00 1.00 −1.00 −1.00 1.00 349.50 11.73 10.73 55.10 Full, A, Small
F21 −1.00 −1.00 1.00 −1.00 1.00 378.00 9.90 11.20 65.92 Full, B
F22 1.00 −1.00 1.00 −1.00 1.00 379.50 7.16 9.93 54.52 Full, A, Small
F23 −1.00 1.00 1.00 −1.00 1.00 385.50 8.54 10.71 64.39 Full, A, Small
F24 1.00 1.00 1.00 −1.00 1.00 382.00 6.94 10.26 53.64 Full, B
F25 −1.00 −1.00 −1.00 1.00 1.00 233.00 * 12.10 67.34 Full, B
F26 1.00 −1.00 −1.00 1.00 1.00 275.00 52.64 11.42 55.30 Full, A, Small
F27 −1.00 1.00 −1.00 1.00 1.00 265.50 67.34 12.79 68.54 Full, A, Small
F28 1.00 1.00 −1.00 1.00 1.00 285.00 33.30 10.48 56.02 Full, B
F29 −1.00 −1.00 1.00 1.00 1.00 289.50 26.20 11.98 65.12 Full, A, Small
F30 1.00 −1.00 1.00 1.00 1.00 315.00 16.51 10.98 53.39 Full, B
F31 −1.00 1.00 1.00 1.00 1.00 309.00 18.57 11.88 60.96 Full, B
F32 1.00 1.00 1.00 1.00 1.00 314.00 17.07 10.66 53.41 Full, A

CC1 −2.38 0.00 0.00 0.00 0.00 168.00 * 11.91 78.42 Full, A, B, Small
CC2 2.38 0.00 0.00 0.00 0.00 342.00 11.55 10.25 48.92 Full, A, B, Small
CC3 0.00 −2.38 0.00 0.00 0.00 330.50 17.64 11.45 62.44 Full, A, B, Small
CC4 0.00 2.38 0.00 0.00 0.00 337.00 12.71 11.22 58.89 Full, A, B, Small
CC5 0.00 0.00 −2.38 0.00 0.00 295.00 79.63 12.11 64.13 Full, A, B, Small
CC6 0.00 0.00 2.38 0.00 0.00 368.50 7.27 10.18 63.04 Full, A, B, Small
CC7 0.00 0.00 0.00 −2.38 0.00 398.00 7.49 9.43 59.77 Full, A, B, Small
CC8 0.00 0.00 0.00 2.38 0.00 169.50 * 10.32 62.62 Full, A, B, Small
CC9 0.00 0.00 0.00 0.00 −2.38 338.00 16.55 Na 62.21 Full, A, B, Small

CC10 0.00 0.00 0.00 0.00 2.38 330.50 16.14 Na 57.75 Full, A, B, Small

V1 0.63 3.05 0.21 0.52 −2 320.50 16.17 11.70 58.45 Full, A, B, Small
V2 0.63 1.5 0.21 0.52 −2 327.00 16.58 11.09 60.53 Full, A, B, Small
V3 0.63 1.5 0.21 0.52 −2.67 310.50 18.33 11.17 61.54 Full, A, B, Small
V4 −0.13 0.21 −0.66 −0.62 0.00 353.00 12.96 12.02 61.33 Full, A, B, Small
V5 1.08 −0.42 −1.13 −0.62 0.00 337.50 14.09 11.47 56.70 Full, A, B, Small
V6 −1.34 0.52 −0.14 −0.62 0.00 347.00 14.15 10.35 70.59 Full, A, B, Small
V7 −0.82 0.58 −0.39 −0.62 0.00 338.50 13.64 9.68 65.96 Full, A, B, Small
V8 0.57 −0.15 −0.92 −0.62 0.00 335.00 13.02 11.16 59.11 Full, A, B, Small
V9 −0.13 −0.42 −0.66 −0.62 0.00 350.00 14.76 13.29 63.51 Full, A, B, Small
V10 −0.13 −0.42 −0.66 −0.62 0.00 344.50 15.01 11.14 65.16 Full, A, B, Small
V11 1.08 −0.42 −1.13 −0.62 0.00 346.50 14.32 11.76 57.25 Full, A, B, Small
V12 −1.34 0.52 −0.14 −0.62 0.00 344.50 15.65 13.97 72.63 Full, A, B, Small
V13 −0.82 0.58 −0.39 −0.62 0.00 345.50 15.26 13.12 68.96 Full, A, B, Small
V14 0.57 −0.15 −0.92 −0.62 0.00 347.50 15.08 Na 59.54 Full, A, B, Small

* impossible to measure/Na—result is not available.

Figure 1a depicts the T-funnel against D-flow experimental results obtained by Maia [13].
As expected, with a decrease in flow time, an increasing trend for the slump-flow diameter
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is observed. The experimental plan enveloped a wide range of deformability and viscosity,
with D-flow varying from 168 to 398 mm and T-funnel varying from 6.94 to 104 s. According
to Okamura et al. [1] and EFNARR recommendations, self-compacting mortars must
present a target D-flow between 250 and 260 mm and T-funnel of 10 s, meaning self-
compatibility was reached within CCD. All D-flow and T-funnel results are also listed
in the first three columns of Table 2. The CCD points F25, CC1, and CC9 do not present
T-funnel values due to blocking in the V-funnel, and testing was impossible to perform.
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Figure 1. Results of all 50 mixtures in the CCD (a) D-flow and T-funnel and (b) F,24h and Rc,24h.

Figure 1b presents mechanical strength results. As can be seen, a scattered distribution
occurred, and flexure results seem to have experienced narrow variation (9.43–12.79 MPa)
while compressive strength varied between 48.92 and 78.42 MPa.

2.3. Factorial Plans Reformulation

The size of a set of experiments increases rapidly with increasing levels and factors. For
example, in the factorial plan adopted by Maia [13], there were k = 5 factors corresponding
to the following: 5 main effects; 10 s-order effects; 10 third-order effects; 5 fourth-order
effects; and 1 fifth-order effect.

As can be perceived from Section 2.1, laboratory efforts to produce and test at least
50 mixtures (plus validation mixtures) can be hard, costly and time-consuming. Thus,
in some situations, there is a need to reduce the cost of experimentation and save time,
reducing the number of treatments [14]. As such, the following principle is adopted:
the system is generally dominated by the main effects and the lower-order interactions.
Third-order and higher-order interactions are generally neglected. Moreover, when the
number of factors is high (equal to or larger than 4), it is common to perform only one
point of the planning and consider the high-order interactions when estimating the error.
If there is no interest in studying high-order interactions (4th and 5th orders), these may
be disregarded, assuming that their effects are not significant and considered an error,
thus originating a fractional factorial plan. The present study assumed that high-order
interactions are not significant, and thus 25-1 fractional factorial designs and small designs
were re-formulated based on the full factorial design of Maia [13]. Small central composite
designs are the designs with the minimum number of points required to estimate the terms
in a second-order model. They are not rotatable and are exceptionally sensitive to outliers.
Therefore, their use must be limited (see Draper and Lin (1990) [16] for details). The present
work used a 3/8 fraction of the 25 factorial CCD [16].

From the full central composite design performed by Maia [13], two fractionated plans,
A and B, were designed using Design expert software and a small CCD. The discrimination
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of CCD points included in each plan is presented in the last column of Table 2, and the final
designs are summarised in Table 3. Central points were considered as follows: C1 to C6 for
fractionated plan A, C3 to C8 for fractionated plan B and C1 to C5 for small plan. Thus,
4 factorial plans were studied: Full Factorial Design (Full), Fractionated A, Fractionated B
and Small, with 50, 32, 32 and 26 points, respectively.

Table 3. Central composite design plans under study: Full, Fractioned A, Fractioned B and Small.

Full Fractioned A Fractioned B Small

Factorial point 2ˆ5 = 32 2ˆ(5 − 1) = 16 2ˆ(5 − 1) = 16 11
Axial points 10 10 10 10
Central points 8 6 6 5

Total points 50 32 32 26

3. Response Models
3.1. Test Results Analysis

Statistical summaries of the experimental results, presented in Table 4, were obtained
in the full factorial design and for the set of the results for eight central points. A good fit
for the D-flow, T-funnel and Rc,24h was predicted with the coefficient of variation on the
central points (Ci) and all CCD points (all Ci, Fi and CCi). Conversely, for the coefficient of
variation obtained for F,24h, when evaluating the central points (4.16%), good fits are not
expected. In fact, this coefficient of variation is close to the coefficient of variation obtained
for the evaluation of the 50 points of the CCD (6.93%).

Table 4. Summary statistics for full CCD and central points.

D-Flow T-Funnel F,24h Rc,24h
[mm] [s] [MPa] [MPa]

Central points

Min 339.50 13.56 11.03 59.31
Max 348.00 14.98 12.29 62.17

Average 343.75 14.29 11.67 60.52
Std Dev 3.31 0.47 0.48 1.10
CV (%) 0.96% 3.31% 4.16% 1.81%

Full CCD

Min 168.00 6.91 9.43 48.92
Max 398.00 114.06 12.79 78.42

Average 323.31 22.39 11.17 61.61
Std Dev 48.97 21.63 0.77 6.24
CV (%) 15.15% 96.64% 6.93% 10.14%

Tables 5–7 report statistical summaries of the experimental results obtained for the
Full, Fractionated A, Fractionated B and Small CCDs, respectively, and the results for each
plan’s set of central points. The coefficients of variations obtained were similar to the Full
plan and predicted a suitable fit for the D-flow, t-funnel and Rc,24h. Moreover, the F,24h
coefficients of variation for the Fractionated and Small plans evaluated on the central points
decreased, and the coefficient of variation evaluated on the CCD increased, which indicates
a good fit for the F,24h response model.
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Table 5. Summary statistics for Fractionated A CCD.

D-Flow T-Funnel F,24h Rc,24h
[mm] [s] [MPa] [MPa]

Fractionated A Ci points

Min 339.50 13.77 11.28 59.31
Max 348.00 14.98 12.29 62.17

Average 343.42 14.425 11.88 60.73
Std Dev 3.84 0.43 0.34 1.20
CV (%) 1.12% 2.98% 2.88% 1.98%

Fractionated A CCD

Min 168.00 6.91 9.43 48.92
Max 398.00 114.06 12.79 78.42

Average 321.66 23.69 11.27 61.58
Std Dev 53.11 24.15 2.88 6.18
CV (%) 16.51% 101.92% 25.59% 10.04%

Table 6. Summary statistics for Fractionated B CCD.

D-Flow T-Funnel F,24h Rc,24h
[mm] [s] [MPa] [MPa]

Fractionated B Ci points

Min 339.50 13.56 11.03 59.31
Max 348.00 14.74 12.08 62.17

Average 342.92 14.27 11.55 60.36
Std Dev 3.46 0.41 0.48 1.04
CV (%) 1.01% 2.84% 4.17% 1.72%

Fractionated B CCD

Min 168.00 6.94 9.43 48.92
Max 398.00 79.63 12.11 78.42

Average 322.42 19.59 11.08 61.58
Std Dev 53.42 17.55 2.82 6.26
CV (%) 16.57% 89.59% 25.49% 10.17%

Table 7. Summary statistics for Small CCD.

D-Flow T-Funnel F,24h Rc,24h
[mm] [s] [Mpa] [Mpa]

Small Ci points

Min 339.50 13.77 11.28 59.31
Max 348.00 14.98 12.29 62.10

Average 343.90 14.43 11.88 60.44
Std Dev 4.08 0.48 0.38 1.09
CV (%) 1.19% 3.33% 3.22% 1.80%

Small CCD

Min 168.00 6.91 9.43 48.92
Max 398.00 79.63 12.79 78.42

Average 322.71 21.37 11.19 61.27
Std Dev 56.15 19.11 3.15 6.20
CV (%) 17.40% 89.43% 28.16% 10.11%

3.2. Model Fitting

Statistical regression models were fitted to the data for each CCD: Full, Fractioned A,
Fractioned B and Small (Table 2). Design-Expert software (Stat-Ease, Inc., Minneapolis, MN
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55413-2561, USA—Design-Expert® Software, version 13.0.9.0 64-bit; Serial Number 0964-
0841-3719-3394) was used to interpret the model graphically, fit an operating regression
analysis and ANOVA, support the analyses of the results for each response variable by
examining the summary plots of the data, and validate the model by checking the residuals
for trends and outliers, autocorrelations, leverage points, and violations of the statistical
assumption of the regression method. This methodology can be found in the literature,
e.g., [17], in more detail. The central composite design applied allows us to estimate a full
quadratic model as described in Equation (1).

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i + ∑

i<j
∑ βijXiXj + ε (1)

where Y is the response variable; Xi corresponds to the ith design variable considered;
the letter β is applied for the model parameters (β0 is the independent term, βi means the
linear effect of Xi, βii is the quadratic effect of Xi and βij is the linear-by-linear interaction
between Xi and Xj); and ε regards the fitting error. Multilinear regression analysis may
assess the model parameters (β0, βi, βij). In the sequence of the analysis, some of the terms
in Equation (1) may be considered as not significant.

The regression results when the Full CCD is used are presented in Table 8 for the
response variable D-flow, as an example, due to length limitations. For more details, see
reference [18]. To the best of our recollection, similarly to the previous research by [18],
here, all the axial points were excluded in the multiple fit of the D-flow regression model.
Thus, the quadratic model given by Eq. 1 was not able to explain the response outside the
hypercube space.

Table 8. Model fit results for D-flow and T-funnel—Full plan.

Full Fitting Model Action Mix Nr. Value Reason for Action

D-flow First action: exclude all
axial mixtures

CC1 168.00

High Cook’s distance as
well as high leverage points.

CC2 342.00

CC3 330.50

CC4 337.00

CC5 295.00

CC6 368.50

CCT 398.00

CC8 169.50

CC9 338.00

CC10 330.50

T-funnel

First action: apply
inverse transform - - Optimisation of properties

of residuals.

Second action: exclude
one factorial mixture F15 26.33 High Cook’s distance.

The regression model fit with Fractioned Plan A also presented some difficulties. A
couple of runs were excluded based on the normal plot of the residuals. In the case of
Fractioned Plan A for the D-flow, to reach a non-significant lack of fit, the mixtures CC1
(Std#16 Run), F17 (Std#8 Run) and CC7 (Std#22 Run) were excluded (see Figure 2). For
the T-funnel, after applying an inverse transformation, one axial mixture still had to be
excluded (see Figure 3). Table 9 summarises the actions undertaken for fitting the D-flow
and T-funnel models for Fractioned A.
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Table 9. Model fit results for D-flow and T-funnel—Fractioned Plan A.

Fractioned A Fitting Model Action Mix Nr. Value Reason for Action

D-flow

First action: exclude one
axial mixture CC1 168.00

Inappropriate normal plot;
Residual versus predicted
plot out of range.

Second action: exclude
one factorial mixture F17 330.00

Inappropriate normal plot;
Residual versus predicted
plot out of range;
High Cook’s distance and
high leverage point.

Third action: exclude
one axial mixture CC7 398.00

Inappropriate normal plot;
Residual versus predicted
plot out of range;
High Cook’s distance and
high leverage point.
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Table 9. Cont.

Fractioned A Fitting Model Action Mix Nr. Value Reason for Action

T-funnel

First action: apply an
inverse transformation - - Optimisation of properties

of residuals.

Second action: exclude
one axial mixture CC6 7.27

Inappropriate normal plot;
Residual versus predicted
plot out of range.

In the case of Fractioned Plan A for the T-funnel, in addition to the inverse trans-
formation, we excluded the sample CC6 (Std#21 Run—Figure 2), which was enough to
prevent the model from exhibiting a significant lack of fit. Figure 3 shows graphically the
T-funnel residuals versus the predicted values for Fractioned Plan A before excluding the
CC6 mixture.

In case of Fractioned Plan B for the D-flow, the other half of the Full Plan, to obtain
a non-significant lack of fit, two axial points were dismissed: CC1 (Std#17 Run) and CC7
(Std#23 Run) (see Figure 3). In addition, a power transform was applied to the data. Figure 4
presents the Cook’s distance before and after removing these two runs.
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The inverse square root transformation was necessary for the T-funnel to fit the model.
Table 10 describes the actions for fitting the D-flow and T-funnel models for Fractioned
Plan B.

Table 10. Model fit results for D-flow and T-funnel—Fractioned Plan B.

Fractioned B Fitting Model Action Mix Nr. Value Reason for Action

D-flow

First action: apply power
transformation - - Optimisation of properties of residual.

Second action: exclude one
axial mixture CC1 168.00

Normal plot show violation of normality of residuals;
Residual versus predicted plot out of range;
High Cook’s distance.

Third action: exclude one
axial mixture CC7 398.00

Inappropriate normal plot;
Residual versus predicted plot out of range;
High Cook’s distance and high leverage point.

T-funnel First action: apply inverse
square root transformation - - Significant lack of fit.
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Excluding runs one-by-one for the fitting models, the Small plan did not respond
suitably to the procedure. For this reason, all axial points for the Full plan were excluded as
initially proposed. For the T-funnel Small plan, only after applying the inverse transform,
as recommended for the Full plan, did the adjusted model have no significant lack of fit.

Tables 11 and 12 show the fitted models for the fresh properties (D-flow and T-funnel)
and mechanical properties (F,24h and Rc,24h), using the Full, Fractioned and Small Central
Composite designs previously described. The corresponding R2 and Predicted R2 values
are also included. The models for the mechanical properties used all the points of each plan.

Table 11. Fitted models obtained for fresh properties, D-flow and T-funnel for Full, Fractioned and
Small Central Composite designs (design variables in coded values).

D-Flow Response Models T-Funnel Response Models

Full Fractioned A Fractioned B Small Full Fractioned A Fractioned B Small

Model Terms D-Flow
[mm]

D-Flow
[mm]

D-Flow2

[mm]
D-Flow
[mm]

1/(T-Funnel)
[mm−1]

1/(T-Funnel)
[mm−1]

1/(T-Funnel)2

[mm−2]
1/(T-Funnel)

[mm−1]

Independent 343.75 338.36 1.18×108 343.9 0.0688 0.0684 1.7845 0.0683
Vw/Vc 8.92 4.5 5415.09 6.22 0.0115 0.0103 0.6005 0.012
Sp/p 4.58 NS 1681.59 5.69 0.005 0.0035 4.9076 0.0035
Vw/Vp 19.42 16.28 11 336.31 18.69 0.0248 0.0223 2.8959 0.0266
Vs/Vm −34.92 −37.37 −22 962.6 −34.7 −0.0302 −0.0325 1.4802 −0.0281
Vfs/Vs −1.42 NS −403.69 NS −0.0016 NS −0.1572 0.0003
(Vw/Vc) ×
(Vw/Vp) −5.36 NS −3375.31 NS NS NS −0.7822 NS

(Vw/Vc) ×
(Sp/p) −2.89 NS NS NS −0.002 NS NS 0.0047

(Vw/Vc) ×
(Vs/Vm) NS 4.51 2211.16 5.16 −0.0037 −0.0031 NS −0.0028

(Vw/Vp) ×
(Vs/Vm) 3.11 NS NS NS NS NS NS 0.003

(Vw/Vp) ×
(Vfs/Vs) 2.98 NS 1966.69 NS −0.0061 −0.007 NS −0.0111

(Sp/p) ×
(Vfs/Vs) 1.89 NS NS NS NS NS NS NS

(Sp/p) ×
(Vfs/Vs) NS NS NS NS NS NS NS 0.0055

(Sp/p) ×
(Vw/Vp) NS NS NS NS NS NS NS NS

(Vs/Vm) ×
(Vfs/Vs) NS NS −1415.59 NS NS NS 0.5101 NS

(Vw/Vc)2 −20.67 NS −2257.79 −19.79 −0.0017 NS −0.4979 −0.002
(Sp/p)2 NS NS 1038.64 NS NS NS NS NS
(Vw/Vp)2 NS NS −1037.04 NS 0.0011 NS −1.1401 0.0011
(Vs/Vm)2 NS −13.86 −5924.12 NS NS −0.0019 −3.0757 NS
(Vfs/Vs)2 NS NS −978.97 NS −0.0014 −0.0012 −0.1183 −0.0013

Error term (ε)
R2 0.9858 0.9830 0.9954 0.9885 0.9922 0.9944 0.9947 0.9975
Adj-R2 0.9802 0.9793 0.9910 0.9808 0.9897 0.9916 0.9912 0.9942
Predicted R2 0.9683 0.9720 0.9753 0.9506 0.9827 0.9847 0.9709 0.9794

NS: Non-significant term. The values in bold are the three most significant parameters and the underlined ones
are the most significant terms.

Table 12. Fitted models for mechanical properties F,24h and Rc,24h for Full, Fractioned and Small
Central Composite designs (design variables in coded values).

F,24h Response Models Rc,24h Response Models

Full Fractioned A Fractioned B Small Full Fractioned A Fractioned B Small

Model Terms F,24h
[MPa] F,24h [MPa] F,24h [MPa] F,24h

[MPa]
Rc,24h
[MPa] Rc,24h [MPa] Rc,24h [MPa] Rc,24h

[MPa]

Independent 11.43 11.91 11.32 11.24 60.65 60.69 60.61 60.66
Vw/Vc −0.4053 −0.4101 −0.3776 −0.4101 −6.170 −6.180 −6.180 −6.100
Sp/p NS −0.0106 NS NS NS NS NS −0.589
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Table 12. Cont.

F,24h Response Models Rc,24h Response Models

Full Fractioned A Fractioned B Small Full Fractioned A Fractioned B Small

Model Terms F,24h
[MPa] F,24h [MPa] F,24h [MPa] F,24h

[MPa]
Rc,24h
[MPa] Rc,24h [MPa] Rc,24h [MPa] Rc,24h

[MPa]

Vw/Vp −0.261 −0.342 −0.2399 −0.348 −1.190 −0.958 −1.020 −0.7771
Vs/Vm 0.2608 0.2502 0.241 0.309 0.2655 0.6255 NS 0.3624
Vfs/Vs NS −0.0781 NS NS −1.330 −1.200 −1.290 −1.020
(Vw/Vc) ×
(Sp/p) NS −0.181 NS NS NS NS NS NS

(Vw/Vp) ×
(Vs/Vm) 0.1826 NS NS NS NS NS NS NS

(Sp/p) ×
(Vw/Vp) NS −0.2173 NS NS NS NS NS NS

(Sp/p) ×
(Vs/Vm) NS NS NS NS NS NS NS 1.130

(Vs/Vm) ×
(Vfs/Vs) NS 0.2585 NS NS −0.4934 NS NS NS

(Vw/Vc)2 NS −0.1374 NS NS 0.5639 0.5323 0.5763 0.5661
(Sp/p)2 NS −0.0926 NS NS NS NS NS NS
(Vw/Vp)2 −0.1265 NS NS 0.5486 0.5169 0.5609 0.5508
(Vs/Vm)2 −0.2834 −0.3501 −0.2659 NS NS NS NS NS

Error term (ε)
R2 0.6619 0.9257 0.6395 0.5230 0.9588 0.9664 0.9465 0.9800
Adj-R2 0.6216 0.8732 0.5819 0.4514 0.9519 0.9583 0.9362 0.9706
Predicted R2 0.5671 0.7782 0.5031 0.2311 0.9326 0.9203 0.8896 0.9180

NS: Non-significant term. The values typed bold are the three most significant parameters and the underlined
ones are the most significant terms.

A high correlation between the response and the factors was found in the data pre-
sented in Table 12. The D-flow and T-funnel models demonstrated a strong influence of
the factor Vs/Vm and Vw/Vc. As expected, the F,24h and Rc,24h models confirmed the
strong influence of the factor Vw/Vc (the volume of water to the volume of cement) on the
strength of the cement-based mixtures. The models also showed the inversely proportional
influence of other factors containing sand, powder and water.

3.3. Model Validation

Fourteen extra mixes were proposed in Maia [13] to further validate the response mod-
els’ prediction capacity. The mixture proportions of the validation mixtures are presented in
the last lines of Table 2 (Vi). Vi mixtures were prepared and tested in the laboratory follow-
ing the same procedures [13]. The difference between the predicted and measured results
for the Fraction A, Fraction B, Full and Small plans are depicted as a box plot in Figure 5
(as percentages). Table 13 summarises the comparison between the obtained models.

From Figure 5, it can be said that the obtained models from the Fractionated A and B
CCDs have a good predictive capacity based on the discrepancies between the laboratory
results and the values predicted by the models. Furthermore, T-funnel had the largest range
of results for almost all plans, except for Fraction A, which had the largest range of results
for F,24h. The T-funnel Small plan obtained the largest differences between the predicted
and measured values (over 20%). The best results, in terms of having small amplitudes and
minor differences, were found for Rc,24h, followed by D-flow.

3.4. Discussion of Fitted Models Obtained

Tables 11 and 12 present the estimates of the model coefficients in coded values
and denote the relative effect of the different input parameters on each response. It is
well known that higher values indicate the higher influence of the design variable in the
response. We recall that for each model, the three most significant parameters are typed
in bold in Tables 11 and 12, and the most significant term is also underlined. A positive
coefficient means that the response (or transformed response) variable will increase if the
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given mixture parameter increases and vice versa. The results in Tables 11 and 12 clearly
show that Vs/Vm presented the strongest (negative) effect in the response in terms of
the fresh state properties D-flow and T-funnel, followed by the Vw/Vp, representing the
second strongest (positive) effect. Comparing the models of each CCD, it can be perceived
that the main significant factors are the same among them. For T-funnel, the three main
effects are the same.
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Concerning the mechanical properties, the strongest effect is that of Vw/Vc, which is
also a negative effect, as expected. By increasing the water content (Vw), the mechanical
performance decreases. Vw/Vp also has a significant effect on F,24h and Rc,24h in the
majority of the models. It can be noted that Vfs/Vs presents a significant negative effect on
the compressive strength at 24 h.

Table 13. Summary—predicted versus measured (laboratory test) values for different designs.

Full Fractioned A Fractioned B Small

D-flow

Only two results
predicted by the
model showed

differences
between 5% and
10%. The others
presented results

with differences of
less than 5%.

All results
predicted by the
model showed

discrepancies of
less than 5%.

All the results
predicted by the
model showed

discrepancies of
less than 5%.

Five results
showed

differences
between 5% and
10%. The others
presented results

with differences of
less than 5%.
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Table 13. Cont.

Full Fractioned A Fractioned B Small

T-funnel

Almost half of the
results showed
discrepancies

larger than 5%,
with 28% of the

results larger
than 10%.

Almost half of the
results showed
discrepancies

larger than 5%,
with 14% of the

results larger
than 10%.

Half of the results
showed

discrepancies
larger than 5%,
with 21% of the

results larger
than 10%.

The model with
the largest

discrepancy
between the

results—in value
and quantity; No
result showed a
difference of less

than 5%. A total of
78% of the results

showed
discrepancies

larger than 10%;
The model with a

larger range of
results.

F,24h

A total of 35% of
the results showed

discrepancies
larger than 10%.
The others were

less than 5%.

Almost half of the
results showed
discrepancies

larger than 5%,
with 35% of the

results larger
than 10%.

Over half of the
results showed
discrepancies

larger than 5%,
with 35% of the

results larger
than 10%.

Over half of the
results showed
discrepancies

larger than 5%,
with 35% of the

results larger
than 10%.

Rc,24h

All the model
results showed
discrepancies of

less than 5%.

All the model
results showed
discrepancies of

less than 5%.

All the model
results showed

discrepancies less
than 5%.

All the model
results showed

discrepancies less
than or equal

to 5.1%.

Given the analyses presented in Table 13 and taking into account the actions developed
to fit the statistics models, it can be seen that, among the designs studied, the fractioned
plans were the ones that represented a good compromise between the cost of experimenta-
tion and usefulness of the statistical model obtained. Among the analysed variables, the
compressive strength (Rc,24h) followed by the slump flow (D-flow) were the ones that
obtained the most accurate predictions.

4. Conclusions

To understand how the input parameters affect the response variables when designing
experiments, a systematic approach was used. The number of factors increase the number
of interactions between the parameters necessary for factor planning dramatically. Thus,
they also increase the possibilities that the interactions will not significantly influence the
response. Because of this, here, fractional planning was proposed and compared with
full planning for predicting self-compacting high-early-strength cement-based mortars’
properties, aiming to reduce time and resources in the mixture design. Therefore, the main
findings of the current work are as follows:

• For the experimentation results for the slump-flow diameter, T-funnel time, flexural
and compressive strength at 24 h, the response models were considered suitable to
describe self-compacting high-early-strength cement-based mortars’ properties over
the experimental region;

• For the slump-flow diameter and for the T-funnel time, the input parameter Vs/Vm
exhibited the strongest (negative) effect in all factorial designs—Full, Fractioned A,
Fractionated B and Small, followed by factor Vw/Vp;

• The regression models of the slump-flow diameter and T-funnel needed a transforma-
tion for the Fractionated B plan;
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• The quadratic factor (Vs/Vm)2 was found to have the main significant (negative) effect
on F,24h for the Full and Fractionated A and B designs, while for the Small design, it
was the factor Vw/Vp;

• The Vw/Vp was the second input parameter that most affected the Rc,24h with a
negative effect for the Full and Fractionated A and B designs, while for the Small
design, it was the interaction factor (Sp/p) × (Vs/Vm);

• Compared to the remaining factors, the changes in the Sp/p used in the present CCD
were small. Sp/p presented the lowest influence on the self-compacting high-early-
strength cement-based mortars’ properties compared to the other mixture parameters
for all the factorial designs evaluated.

• The models obtained from the Fractionated A and B plans have a good predictive
capacity based on the discrepancies between the experimental and predicted results.
The best estimated results were found for the Rc,24h response model, followed by D-flow.

Based on the aforementioned findings, the factorial plans seem to have potential
applications for high-performance self-compacting mortar design and optimisation and
can reduce the number of experiments as well as time and resources for experimentation.
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