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Abstract

Approximate computing is an alternative to further technological development, allowing faster-
performing circuits and saving energy consumption. It is viable to use in error-tolerant applica-
tions, such as neural networks and the most common image processing applications, that can tol-
erate non-significant calculation deviations. It can be performed in multiple different paradigms
and forms from the software and hardware domains. This work focuses on the hardware domain
and, more specifically, on the logical pruning of circuits and the discovery of circuits that perform
similar functions to arithmetic units. Adders and multipliers were chosen as the main focus of
the work developed, as they are two of the most vital circuits and the main ones used in neural
networks. After the literature review, several circuits of each type are chosen to be implemented
and tested in various use cases.

This work presents a simple neural network that uses approximate arithmetic units to perform
additions and multiplications. The power consumption and resources utilised, as well as the impact
they have on accuracy, are discussed. The modules are also tested before use in the neural network
by performing simple additions and multiplications and by calculating the internal product of two
vectors. Image processing applications are also tested by performing the sum of two images and a
Sobel filtering operation for edge detection. Synthesis and implementation are done using Vivado
2022.2, targeting the Zynq-7000 Field Programmable Gate Array (FPGA).
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Resumo

A computação aproximada é uma alternativa viável para o desenvolvimento tecnológico, per-
mitindo circuitos de desempenho mais rápido e poupando no consumo de energia. A sua utilização
é viável em aplicações tolerantes ao erro, como as redes neuronais e algoritmos de processamento
de imagem, que podem tolerar desvios de cálculo não significativos. Este tipo de computação pode
ser realizada em múltiplos paradigmas e de diferentes maneiras, tanto no domínio do software
como do hardware. Esta dissertação centra-se no domínio do hardware e, mais especificamente,
na redução lógica de circuitos e na descoberta de circuitos que desempenham funções semelhantes
às unidades aritméticas. Os somadores e multiplicadores foram escolhidos como o foco principal
do trabalho desenvolvido, uma vez que são dois dos circuitos mais vitais e os principais utiliza-
dos nas redes neuronais. Após revisão da literatura relevante, vários circuitos de cada uma destas
unidade aritméticas foram escolhidos para serem implementados e testados em vários casos de
uso.

Esta dissertação apresenta uma rede neuronal simples que utiliza unidades aritméticas aprox-
imadas para efetuar adições e multiplicações. O consumo de energia e os recursos utilizados,
bem como o impacto que têm na precisão, são discutidos. Os módulos são também testados antes
de serem utilizados na rede neural, efectuando adições e multiplicações simples e calculando o
produto interno de dois vectores. Usos em aplicações de processamento de imagem também são
testados, efectuando a soma de duas imagens e um filtro Sobel para deteção de arestas. A síntese
e a implementação são feitas com recurso ao Vivado 2022.2, com a "Field Programmable Gate
Array (FPGA)" Zynq-7000 como alvo.

ii



Agradecimentos

Gostaria de agradecer ao Professor João Canas Ferreira, pelo apoio prestado ao longo deste ano na
elaboração deste documento e do trabalho nele contido. Queria também agradecer à minha família,
em especial aos meus pais, que sempre acreditaram em mim e nas minhas capacidades. Agradeço
também a todos os que me apoiaram e ajudaram neste percurso académico, com menção especial
aos Cogumelos (vocês sabem quem são) e aos membros do NEEEC, companheiros de trabalho e
de festa.

Miguel Almeida

iii



“Queen Marika has high hopes for us.
That we continue to struggle, unto eternity...”

Sir Gideon Ofnir, The All-Knowing

iv



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Error Tolerant Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Carry Select Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Carry Look-Ahead Adder . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.4 Carry Based Approximate Adders . . . . . . . . . . . . . . . . . . . . . 10
2.4.5 Reverse Carry Propagate Full Adders . . . . . . . . . . . . . . . . . . . 12
2.4.6 Lower-Part-OR Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.7 Approximate Carry-Lookahead Adder . . . . . . . . . . . . . . . . . . . 14
2.4.8 Carry Speculative Adder . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.9 Variable Latency Carry Selection Adder . . . . . . . . . . . . . . . . . . 16
2.4.10 Error Tolerant Adder type IV . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.11 Bounded Error Approximate Adder . . . . . . . . . . . . . . . . . . . . 18
2.4.12 EvoApproxLib Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Dadda Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Wallace Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Approximate Compressors . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.4 High-Performance Approximate Multiplier . . . . . . . . . . . . . . . . 24
2.5.5 High-Performance Approximate Recursive Multipliers . . . . . . . . . . 25
2.5.6 Rounding Based Approximate Multiplier . . . . . . . . . . . . . . . . . 28
2.5.7 EvoApproxLib Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Fused Multiply Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Approximate Rounding and Truncation based MAC . . . . . . . . . . . 29
2.6.2 Approximate MAC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



CONTENTS vi

3 Arithmetic Unit Design 33
3.1 Adder Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Carry Based Approximate Adders . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Approximate Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Reverse Carry Propagate Adders . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Bounded Error Approximate Adder . . . . . . . . . . . . . . . . . . . . 36
3.1.5 EvoApproxLib Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Multiplication Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Recursive Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 High-Performance Approximate Multiplier . . . . . . . . . . . . . . . . 40
3.2.3 EvoApproxLib Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Vector Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Evaluation and Results 43
4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Implementation Target and Settings . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Synthesis and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Vector Product with Approximate Adders . . . . . . . . . . . . . . . . . 44
4.3.2 Vector Product with Approximate Multipliers . . . . . . . . . . . . . . . 46
4.3.3 Vector Product with Approximate Multipliers and Adders . . . . . . . . 51

4.4 Image Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Sobel Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusions and Future Work 65
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 67

A Synthesis and Implementation Result Tables 71
A.1 Vector Product using Approximate Adders . . . . . . . . . . . . . . . . . . . . . 71
A.2 Vector Product using Approximate Multipliers . . . . . . . . . . . . . . . . . . . 73
A.3 Vector Product Results with PowerOptimized_High Directive . . . . . . . . . . . 74
A.4 Vector Product Result with Approximate Multipliers and Adders . . . . . . . . . 75



List of Figures

2.1 Simple Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 4-bit Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 4-bit Carry Select Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 4-bit Carry Look-Ahead Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Carry Based approximate Adder1 logic circuit . . . . . . . . . . . . . . . . . . . 10
2.6 Carry Based approximate Adder4 logic circuit . . . . . . . . . . . . . . . . . . . 11
2.7 Reverse Carry Propagate Full Adder logic circuit . . . . . . . . . . . . . . . . . 12
2.8 Lower-Part-OR Adder structure . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Cascaded blocks of Approximate Carry-Lookahead Adder . . . . . . . . . . . . 15
2.10 Carry Speculative Adder Architecture . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Variable Latency Carry Selection Adder Implementation . . . . . . . . . . . . . 17
2.12 Error Tolerant Adder type IV Block Diagram . . . . . . . . . . . . . . . . . . . 18
2.13 Structure of the Bounded Error Approximate Adder . . . . . . . . . . . . . . . . 19
2.14 4-bit Wallace Multiplier Dot Representation . . . . . . . . . . . . . . . . . . . . 22
2.15 Conventional 4:2 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 Approximate 4:2 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.17 Approximate 4:2 Compressor using primitive gates . . . . . . . . . . . . . . . . 23
2.18 High-Performance Approximate Multiplier Computational Workflow . . . . . . . 25
2.19 Partial Product Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.20 4x4 Multiplier blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.21 Rounding Based Approximate Multiplier Block Diagram . . . . . . . . . . . . . 28
2.22 Approximate Rounding and Truncation based MAC Block Diagram . . . . . . . 29
2.23 Rounding Based Approximate Multiplier Block Diagram . . . . . . . . . . . . . 30

3.1 Error in the CBAA Type IV adder for unsigned numbers . . . . . . . . . . . . . 34
3.2 Error in the CBAA Type IV adder for signed numbers . . . . . . . . . . . . . . . 34
3.3 AFA 1-bit adder logic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 RA5 1-bit adder logic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 RA5 8-bit adder schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Vector Product circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Images used for the Image Sum experiment . . . . . . . . . . . . . . . . . . . . 55
4.2 Exact Results for the Image Sum experiment . . . . . . . . . . . . . . . . . . . . 55
4.3 Images obtained from the Image Sum experiment using different adders . . . . . 55
4.4 Example of difference image for the 0KG adder . . . . . . . . . . . . . . . . . . 56
4.5 Sobel Filter Exact Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Images obtained after applying Sobel Filter . . . . . . . . . . . . . . . . . . . . 59
4.7 Example of difference image for the 0KU adder . . . . . . . . . . . . . . . . . . 60

vii



List of Tables

2.1 Truth Table for Carry Based Approximate Adders . . . . . . . . . . . . . . . . . 11
2.2 CBAA Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Reverse Carry Propagate Full Adder Truth Table . . . . . . . . . . . . . . . . . . 13
2.4 Reverse Carry Propagation Full Adder Performance . . . . . . . . . . . . . . . . 13
2.5 Acceptance Probabilities of 32 Bit ETAIV with varying Minimum Acceptance

Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Error metrics for different sub adder sizes of 16 and 32-bit Bounded Error Ap-

proximate Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Approximate 4:2 Compressor Truth Tables . . . . . . . . . . . . . . . . . . . . . 24
2.8 NOR Based Approximate Half Adder Truth Table . . . . . . . . . . . . . . . . . 26
2.9 NOR Based Approximate Full Adder Truth Table . . . . . . . . . . . . . . . . . 27

3.1 AFA 1-bit adder Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Mean Relative Error for the 8, 16, 24, 32, 48 and 64-bit RA4 and RA5 adders . . 36
3.3 Mean Relative Error for the 8, 16, 24, 32, 48 and 64-bit BEAD adders . . . . . . 37
3.4 Mean Relative Error for the 8-bit EvoApproxLib adders . . . . . . . . . . . . . . 38
3.5 Mean Relative Error for the 16-bit EvoApproxLib adders . . . . . . . . . . . . . 38
3.6 Mean Relative Error for the three 8-bit Ax Multipliers . . . . . . . . . . . . . . . 39
3.7 Mean Relative Error for 16-bit Ax Multipliers . . . . . . . . . . . . . . . . . . . 39
3.8 Mean Relative Error for the 8-bit EvoApproxLib multipliers . . . . . . . . . . . 41
3.9 Mean Relative Error for the 16-bit EvoApproxLib multipliers . . . . . . . . . . . 41

4.1 Vector Product Results for 16-bit adders with one multiplier . . . . . . . . . . . 45
4.2 Vector Product results for 8-bit multipliers . . . . . . . . . . . . . . . . . . . . . 47
4.3 Vector Product results for 16-bit multipliers . . . . . . . . . . . . . . . . . . . . 48
4.4 Vector Product results for 8-bit multipliers using AreaOptimized_High directive . 50
4.5 Vector Product results for 16-bit multipliers using AreaOptimized_High directive 50
4.6 Vector Product Results using DSPs for 16-bit multipliers . . . . . . . . . . . . . 51
4.7 Vector Product results for 8-bit inputs with four multipliers . . . . . . . . . . . . 52
4.8 Vector Product results for 16-bit inputs with four multipliers . . . . . . . . . . . 53
4.9 Image Sum Image Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.10 Image Sum Area and Power Results . . . . . . . . . . . . . . . . . . . . . . . . 58
4.11 Image Sum Area and Power with eight adders . . . . . . . . . . . . . . . . . . . 58
4.12 Sobel Filter Image Difference for adders with variable bit width . . . . . . . . . 60
4.13 Sobel Filter Image Difference for 8-bit adders . . . . . . . . . . . . . . . . . . . 60
4.14 Sobel Filter Image Difference for 16-bit adders . . . . . . . . . . . . . . . . . . 60
4.15 Neural Network Area and Power Results for Approximate Adders . . . . . . . . 63
4.16 Neural Network Area and Power Results for Approximate Multipliers . . . . . . 64

viii



LIST OF TABLES ix

A.1 Vector Product Results for 16-bit Adders with two simultaneous operations . . . 71
A.2 Vector Product Results for 16-bit Adders with four simultaneous operations . . . 72
A.3 Vector Product Results for 32-bit Adders with one simultaneous operation . . . . 72
A.4 Vector Product Results for 32-bit Adders with two simultaneous operations . . . 72
A.5 Vector Product Results for 32-bit Adders with four simultaneous operations . . . 72
A.6 Vector Product Results for 48-bit Adders with one simultaneous operation . . . . 72
A.7 Vector Product Results for 48-bit Adders with two simultaneous operations . . . 72
A.8 Vector Product Results for 64-bit Adders with one simultaneous operation . . . . 72
A.9 Vector Product Results for 64-bit Adders with two simultaneous operations . . . 73
A.10 Vector Product Results for 8-bit Multipliers with one simultaneous operation . . . 73
A.11 Vector Product Results for 8-bit Multipliers with two simultaneous operations . . 73
A.12 Vector Product Results for 16-bit Multipliers with two simultaneous operations . 73
A.13 Vector Product Results for 16-bit Multipliers with four simultaneous operations . 74
A.14 Vector Product Results for 8-bit Multipliers using PowerOptimized_High Directive 74
A.15 Vector Product Results for 16-bit Multipliers using PowerOptimized_High Directive 74
A.16 Vector Product Results for 8-bit inputs with one multiplier . . . . . . . . . . . . 75
A.17 Vector Product Results for 8-bit inputs with two multipliers . . . . . . . . . . . . 75
A.18 Vector Product Results for 16-bit inputs with one multiplier . . . . . . . . . . . . 75
A.19 Vector Product Results for 16-bit inputs with two multipliers . . . . . . . . . . . 75



Symbols and Abbreviations

ACLA Approximate Carry-Lookahead Adder

AFA Approximate Full Adder

AMACU Approximate MAC Unit

AP Acceptance Probability

ART-MAC Approximate Rounding and Truncation based MAC

BEAD Bounded Error Approximate Adder

BRAM Block Random Access Memory

CBA1 Carry Based Approximate Adder type I

CBA4 Carry Based Approximate Adder type IV

CBAA Carry Based Approximate Adder

CGP Cartesian Genetic Programming

CJU Carry Judge Unit

CLA Carry Look-Ahead Adder

CORDIC Coordinate Rotation Digital Computer

CSA Carry Select Adder

CSPA Carry Speculative Adder

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

ECU Exact Carry Unit

ECT Error Correction Term

ER Error Rate

ETAIV Error Tolerant Adder type IV

FA Full Adder

FF Flip Flop

x



Symbols and Abbreviations xi

FFT Fast Fourier Transform

FMA Fused Multiply-Add

FPGA Field Programmable Gate Array

HA Half Adder

HPAM High-Performance Approximate Multiplier

HPARM High-Performance Approximate Recursive Multipliers

ISA Instruction Set Architectures

LOA Lower-part-OR Adder

LPL Lower Part Length

LSB Least Significant Bit

LUT Look-Up Table

MAA Minimum Acceptable Accuracy

MAC Multiply and Accumulation

MED Mean Error Distance

MRE Mean Relative Error

MRED Mean Relative Error Distance

MSB Most Significant Bit

MSE Mean Square Error

NMED Normalized Mean Error Distance

OOC Out-of-Context

PSNR Peak Signal-to-Noise Ratio

RCA Ripple Carry Adder

RCPFA Reverse Carry Propagate Full Adder

RED Relative Error Distance

RoBA Rounding Based Approximate Multiplier

SAIF Switching Activity Interchange Format

SRAM Static Random Access Memory

VLCSA Variable Latency Carry Selection Adder

WL Word Length



Chapter 1

Introduction

1.1 Context

To meet the ever more challenging technical demands, technological products nowadays have to

perform better and consume less power, two requirements that typically conflict with each other. In

the technological domain, these requirements are translated into the need for circuits that perform

more functionalities in less area while operating at faster clock frequencies and consuming less

power.

Creating circuits that meet the new technological requirements so far has been achieved by

scaling down the transistor and supply voltage. This technology scaling is summarised by the

famous Moore’s Law [1], which states that the number of transistors in a microchip will double

roughly every two years (being later restated to be every eighteen months), and to Dennard’s

Scaling [2], that states that with each new transistor generation the transistor length, capacitance

and supply voltage is 1√
2

of the previous one, the area and power consumption is half and the

frequency is
√

2 of the previous generation. However, as both these statements tend towards an

end, due to the rise of production costs per transistor (effectively annulling Moore’s law) and

due to the increase in power consumption and effect of minor parameter variations and leakage

currents, new alternatives to technology scaling need to be found and researched to continue to

increase performance while maintaining or reducing power consumption.

Specific applications, like neural networks and image processing algorithms, can tolerate mi-

nor errors and deviations in their calculations and intermediate values while still obtaining the

correct and desired results and maintaining high performance, making them error-tolerant and re-

silient. For example, if an image processing algorithm does not output the correct pixel value for

every pixel, the calculated values are close to the correct value. In that case, there may not exist a

loss of functionality or information. Similarly, suppose the calculations in the different layers of a

neural network do not lead to the exact result. However, these approximations do not significantly

affect the neural network’s accuracy. In that case, there are no losses in making these approxima-

tions. Therefore, performing these approximations to save resources and energy or obtain higher

performances may be desirable.

1



Introduction 2

Machine Learning algorithms are resource intensive and power-hungry, requiring an ever-

increasing amount of energy and space to obtain their results. This problem escalates as Neural

Networks with more Neurons and Layers are created in order to achieve higher accuracies or

obtain solutions to more complex problems. Using inexact computations that do not significantly

affect the results but can save on the used resources and lower power consumption significantly

becomes an attractive approach to use these algorithms in Low Power applications, such as IoT

devices.

Approximating or “inexactly computing and processing data in order to save power and achieve

high performance, while maintaining results at an acceptable accuracy for use” is known as ap-

proximate computing [3]. It is considered one of the few approaches that can drastically reduce

power consumption, possibly by an order of magnitude. This can be achieved by carefully control-

ling or inducing small errors after careful previous analysis, ensuring the possibility of measuring

the error tolerance and quality of the approximation, usually on the least significant part of the

hardware or algorithms, not to compromise the accuracy of the obtained results.

Even though extensive research is being done in approximate computing, some challenges still

need to be addressed. Error analysis is typically based on metrics related to the specific application

and use case, so no general error analysis method is available. Due to the immense diversity of

use cases and techniques, error management becomes daunting without a general error analysis

method. In most cases, error analysis of systems is based on simulations and iterative processes

that may miss specific edge cases and are not generalisable. Extensive verification and testing

of the implemented solutions are needed to guarantee that the results generated are acceptable.

As such, verification and testing methodologies must be developed to detect critical faults that

significantly affect the accuracy of results. Another aspect to pay close attention to is the reliability

of an approximate system, as environmental variations and ageing may affect the systems in an

undesirable way, leading to a shorter product lifespan and faster result deterioration than their

exact counterparts [3].

Approximate computing can be done on different levels ranging from software to hardware.

At the software and algorithm levels, we can apply precision scaling, reducing the operand bit-

width to save computational and storage resources, skipping loop iterations can be used to reduce

computation times, and energy-aware compiler options can be used to reduce power consumption.

At a higher level, skipping tasks or sampling data instead of processing it can also be used to

save power and resources while obtaining the desired results. Approximations can be made on

devices, circuits and architectures at the hardware level. Possible approaches include voltage

scaling, where higher supply voltages are used on critical sections of circuits to ensure accuracy

while the supply voltage for the least significant parts is carefully reduced, and logic reduction

or pruning, where the approximations are made by carefully removing parts of the logic circuit

to consume fewer resources and obtain results faster, without compromising the accuracy of said

results. Due to voltage scaling having high implementation cost due to the complex control of

the supply voltages required, most approximate circuits are designed based on the logic pruning

and reduction method, as it is easier to control and implement. This method has tested different
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logic unit designs, like the adder and multiplier, and more complex algorithm implementations,

like the Coordinate Rotation Digital Computer (CORDIC) and the Fast Fourier Transform (FFT)

algorithms. Another vital part of a computer system is memory. As such, approximate memory has

been studied as an option to reduce power consumption, using techniques like reducing the refresh

rate for Dynamic Random Access Memory (DRAM) for non-critical data, reducing the supply

voltage in Static Random Access Memory (SRAM), and using inexact read/write operations for

non-volatile memories. At a higher hardware level, approximate architectures have been studied

for accelerating specific workloads. Examples are quality-programmable extended Instruction Set

Architectures (ISA), reduced precision floating-point units and fixed-point units [3]. All these

approaches follow significance-based criteria, where, in order not to negatively impact the results’

reliability, the higher significance bits and circuits are either not approximated or suffer from only

slight changes.

1.2 Objectives

As referred to in Section 1.1, there are many possible approaches and targets to approximate.

However, not all of them are worked on during this dissertation. The work developed focuses on

logic pruning and resource usage reduction in arithmetic units for machine learning applications.

These include low-power adders, multipliers, and other units, such as Fused Multiply-Add (FMA)

units designed at the gate level. They are used to create a small prototype implementation of

a simple inference accelerator for digital neural to evaluate performance and accuracy in a real

application. This prototype implementation is performed in an Field Programmable Gate Array

(FPGA) to permit changing the unit being used frequently, allowing the test of multiple units. All

units are characterised by their maximum clock frequency in the circuit, the occupied resources

and the power consumption.

1.3 Document Structure

This document is divided into five chapters.

Chapter 2 presents the relevant concepts involved in this work, some exact circuits for some

arithmetic units and functions and some approximate variations and approaches. The results re-

ported and presented by the literature are compared and discussed to select the circuits to be

implemented and the design flow to follow.

Chapter 3 presents the developed work during the dissertation. Firstly, the chosen arithmetic

unit designs to be implemented are characterised by a single operation to perform a pre-selection

in terms of accuracy. The methodology used in designing and testing them is also described in this

chapter. Afterwards, a simple circuit for testing a simple use case is presented, making parallelisms

to neural network inference.

Chapter 4 details the implementation target and the settings used during the synthesis, place

and route process. It also has the results of the final vector product circuit, the accuracy obtained
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using different approximate arithmetic units and the predicted power consumption and resource

consumption. Finally, it also presents the performance of the created modules in different appli-

cations, showcasing other use cases and scenarios.

Lastly, Chapter 5 concludes the document, presenting a general overview and outlining possi-

ble future work to be developed in the field.



Chapter 2

State of the Art

2.1 Introduction

This chapter contextualises the problem further and presents and discusses several key aspects

necessary for the development of the dissertation, like detailing examples of error-tolerant appli-

cations. The state-of-the-art circuit designs for different arithmetic units are also discussed and

reviewed based on different authors’ proposals and developed work. Some exact designs are also

shown to contextualise the designs being discussed. The main advantages, benefits and problems

of each circuit are also presented, mainly regarding resource usage or power consumption. Lastly,

some topics and key takeaways are highlighted in a small summary to close the chapter.

2.2 Error Tolerant Applications

As mentioned in section 1.1, some applications can tolerate deviations in their calculations and

procedures without compromising the results produced due to their resilience to error nature. This

resilience comes from not needing the exact output value to obtain the desired output or small

parameter and value changes in the outputs not producing a noticeable change in quality; that is,

there is low result degradation. As mentioned in section 1.1 with some simple use cases, two

examples of this type of application are Neural Networks and Image Processing algorithms.

2.2.1 Neural Networks

Neural networks are computational models inspired by the complex interconnectedness of the hu-

man brain. They consist of interconnected artificial neurons organised into layers, allowing them

to extract meaningful patterns and make predictions from a dataset (Figure 2.1). One remarkable

characteristic of neural networks is their inherent error tolerance, which allows them to handle

noisy or imperfect data and still provide reliable outputs. This means neural networks can effec-

tively learn from data with slight errors or inaccuracies.

This error tolerance is obtained through the learning process and the architecture of neural

networks. The learning process allows the networks to adapt to the data and overcome errors in

5
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the training set. The architecture of the network further enhances it. The interconnected layers

distribute the computational load, preventing errors in individual components from significantly

affecting the overall output. As such, using approximate arithmetic units in neural networks can be

a promising approach to reducing these models’ resource usage and power consumption without

compromising their accuracy.

Figure 2.1: Simple Neural Network

2.2.2 Image Processing

Image processing algorithms, such as filters and other operations that apply kernel operations to

an image, are error tolerant by nature, as a slight deviation of the output value of the pixel will not

produce a visibly noticeable difference in the image and will usually not propagate to other stages

of the processing algorithm.

In their simplest form, these operations consist of simple additions of a neighbouring pixel

region the operation is being applied to, coupled with a check to verify that the corresponding

output does not exceed the maximum value, usually 255. This output saturation deals with any

possible overflows that might occur.

More complex kernel operations and filters apply weights to each of the neighbour pixels,

usually powers of two. This can be achieved by shifting the values appropriately or being a sim-

ple signal change that does not require additional arithmetic units. As such, image processing

algorithms and applications effectively test the performance and the errors introduced using ap-

proximate adders.

2.3 Error Metrics

In order to evaluate the performance of the different approximate arithmetic units, several er-

ror metrics are used to quantify the error introduced by the approximate circuits. These metrics

are used to compare the results produced by the approximate circuits with the exact results pro-

duced by the exact circuits. Different metrics are used depending on the application and the
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desired results. The most common metrics are the Error Rate (ER), Mean Error Distance (MED),

Normalized Mean Error Distance (NMED), Relative Error Distance (RED), Mean Relative Error

Distance (MRED), Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Image

Difference.

ER is simply the percentage of cases where the obtained result differs from the exact result,

being counted as an error. This error can be of small or large magnitude, so this metric cannot be

used in isolation.

MED is the average absolute difference between the obtained and accurate results. NMED

normalises this metric to make possible comparisons between different input ranges. Equations

2.1 and 2.2 show how these metrics are obtained.

MED =
1
N

N

∑
i=0

|Reali −Approximatei| (2.1)

NMED =
1

N ×MAX

N

∑
i=0

|Reali −Approximatei| (2.2)

RED and MRED are relative distance metrics. They incorporate the scale of the result into the

calculation to give a better idea of the scale of the errors obtained. They can be obtained following

equations 2.3 and 2.4.

RED =
N

∑
i=0

|Reali −Approximatei|
|Reali|

(2.3)

MRED =
1
N

N

∑
i=0

|Reali −Approximatei|
|Reali|

(2.4)

MSE is also sometimes used as an error metric in approximate computing. By squaring the

difference between the obtained result and the actual value, cases where the ER is low, but the

error magnitude is high will have a high MSE. This metric is used mainly on image processing

applications and can be determined using equation 2.5, where m and n are the sizes of the images.

MSE =
1

m×n

m−1

∑
0

n−1

∑
0

[
Real(i, j)−Appr(i, j)

]2 (2.5)

For image processing applications, PSNR and Image Difference are commonly used metrics. The

first one is defined using the MSE and is obtained by using a logarithm, as described in equation

2.6, where MAX represents the maximum pixel value, which for greyscale images is 255. The

second one, image difference, can be calculated in a variety of different ways, from simply calcu-

lating the differences between image pixels to obtaining the average root-mean-square of the pixel

differences of the precise and approximate outputs (Equation 2.7).
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PSNR = 10× log10

(MAX2

MSE

)
(2.6)

ImgDi f f =
√

MSE (2.7)

The state-of-the-art designs for the different arithmetic units also use other error metrics de-

pending on the application and desired comparison points. These metrics will be detailed in the

subsection they are mentioned.

Not all of these metrics are used to evaluate the performance of every approximate circuit,

as some are more suited to specific applications and use cases. Due to this, a direct comparison

between different approximate circuits is not always possible, as the metrics used to evaluate them

are not the same and sometimes are even defined differently, as seen in the following sections.

2.4 Adders

Adders are the building blocks of most operations. They are simple circuits that sum two numbers,

producing a result with the same length in bits and a possible extra bit as carry.

2.4.1 Ripple Carry Adder

The Ripple Carry Adder (RCA) is the simplest multi-bit adder (Figure 2.2). It consists of a chain of

full adders, where the carry output of each adder is connected to the carry input of the next adder.

Each adder in the chain receives two input numbers and a carry. The last adder produces the carry

output in addition to the sum bit. The RCA is the slowest adder, as the carry propagation has to

go through the entire chain of adders. The RCA is also the adder that uses the least resources, as

it only uses full adders [4].

Figure 2.2: 4-bit Ripple Carry Adder from [5]

2.4.2 Carry Select Adder

The Carry Select Adder (CSA) is a parallel adder that consists of two RCAs and a multiplexer

(Figure 2.3). The two RCAs receive the two input numbers and produce two possible results, one

with a carry of 0 and another with a carry of 1. The multiplexer selects the correct result based
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on the carry input. The CSA is faster than the RCA, as the carry propagation is split between the

two RCAs. However, the CSA uses more resources than the RCA, as it uses two RCAs and a

multiplexer [4].

Figure 2.3: 4-bit Carry Select Adder from [4]

2.4.3 Carry Look-Ahead Adder

The Carry Look-Ahead Adder (CLA) is a parallel adder that consists of a chain of full adders

and a set of logic gates that are responsible for generating and propagating the carry inputs(Figure

2.4). The CLA is faster than the CSA, as the carry propagation is split between the logic gates

and the full adders. However, the CLA uses more resources than the RCA and has a higher power

consumption, as it uses a chain of full adders and a set of logic gates [4].

Figure 2.4: 4-bit Carry Look-Ahead Adder from [5]

The propagate and generate logic gates are obtained based on Equations 2.8 to 2.12.
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P(i) = A(i) xor B(i) (2.8)

G(i) = A(i) and B(i) (2.9)

S(i) = P(i) xor C(i) (2.10)

C(1) = G(0) or (P(0) and C(0)) (2.11)

C(2) = G(1) or (P(1) and G(0)) or (P(1) and (P(0) and C(0))) (2.12)

2.4.4 Carry Based Approximate Adders

In order to decrease area and power consumption, the Carry Based Approximate Adder (CBAA)

alters the conventional exact Full Adder (FA), removing gates to save resources, leading to errors

in the obtained result. Several implementations of CBAA exist, but type I and type IV should

be mentioned, as the former leads to the lowest power consumption and the latter to the highest

accuracy results.

Type I

The single bit Carry Based Approximate Adder type I (CBA1) [6] is obtained using one AND

gate, one OR gate and a single inverter gate as shown in Figure 2.5. The expressions to obtain the

carry and the sum bits are simple to obtain (Equations 2.13 and 2.14 from [6]).

Carry1 = (a.b)+ c (2.13)

Sum1 = carry1 (2.14)

Figure 2.5: Carry Based approximate Adder1 logic circuit from [6]

Type IV

The single bit Carry Based Approximate Adder type IV (CBA4) [6] is obtained using three AND

gates, two OR gates and a single inverter gate as shown in Figure 2.6. This configuration leads to

no errors in the carry bit generated. The boolean expressions to obtain the carry and sum bits are

expressed in Equations 2.15 and 2.16 from [6].



2.4 Adders 11

Carry4 = a.b+b.c+ c.a (2.15)

Sum4 = carry4 (2.16)

Figure 2.6: Carry Based approximate Adder4 logic circuit from [6]

Analysis

Analysing the logic circuits for each of these configurations, it is possible to construct the truth

table for all input possibilities, as seen in Table 2.1. A simple analysis of this truth table shows

that when both inputs are 0 and there is no carry, the sum output is 1. This is the primary source of

error for these adders and is present in both configurations. When chaining these adders to create a

multi-bit adder, this error makes it so that using unsigned numbers of lower magnitude, but with a

high bit width will lead to drastically inaccurate results. The most extreme case for this is adding 0

with 0, which results in the maximum value representable for the specific bit width. Using signed

numbers with two’s complement, these errors are less significant, as shown in Table 2.2.

Table 2.1: Truth Table for Carry Based Approximate Adders adapted from [6]

Approximate Outputs
Inputs

Accurate
Outputs CBA1 CBA4

A B Cin Sum Cout Sum Cout Sum Cout
0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 0 1
1 1 1 1 1 0 1 0 1

When the bit width increases, the error introduced by these circuits lowers. Both approxi-

mate circuits reduce the used area and the consumed power significantly, according to the tests

performed by Ramasamy et al. [6]. However, the CBA4 does not obtain any significant speed

improvements, even being slower than the conventional adder for higher bit widths.
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Table 2.2: CBAA Performance Comparison adapted from [6]

Bit Width Type Delay (ns) Area (µm) Power(µW) Error (%)

16
Conventional 1.45 684.15 1940 0

CBAA - Type I 0.86 262.61 60.79 6.2
CBAA - Type 4 1.37 403.50 503.14 3.2

32
Conventional 2.52 1368.15 2880 0

CBAA - Type I 1.69 525.08 94.72 4
CBAA - Type 4 2.52 806.87 1010 2

64
Conventional 4.61 2736.27 7760 0

CBAA - Type I 3.46 1049.97 159.14 1.2
CBAA - Type 4 4.91 1613.56 2050 0.062

128
Conventional 8.87 5472.29 15540 0

CBAA - Type I 6.78 2099.85 290.88 0.005
CBAA - Type 4 9.52 3227.02 4070 0.002

2.4.5 Reverse Carry Propagate Full Adders

Reverse Carry Propagate Full Adder (RCPFA) are “a group of adders where the carry is propa-

gated in reverse order to eliminate the dependency of output generation on preceding lower carry

bits” [7]. Reversing the carry propagation order provides two advantages: accelerating the Most

Significant Bit (MSB) outputs and reversing the error propagation, spreading the error through the

Least Significant Bit (LSB).

Reverse adders take one more input signal than normal FAs, Fi, generated from an auxiliary

prediction function that uses Ai−1 and/or Bi−1 as inputs, to generate outputs sum (Si) and carry (Ci)

bits when (Si - Ci = 0). Equation 2.17 represents the Reverse adder operation [7].

Si −Ci = Ai +Bi −2Ci+1 (2.17)

There are different implementations of RCPFAs, but only one will be focused on in detail in

this subsection. That is the RA4 implementation from [7]. In this circuit (Figure 2.7), the extra

input Fi+1 is generated through a NAND gate of the two input bits and the sum and carry bits can

be obtained through Equations 2.18 and 2.19.

Figure 2.7: Reverse Carry Propagate Full Adder logic circuit from [7]
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Ci = Fi (2.18)

Si = ((Ai nor Bi) or Ci+1) nand Fi (2.19)

Following these equations, we can construct the truth table for this logic circuit, shown in

Table 2.3

Table 2.3: Reverse Carry Propagate Full Adder Truth Table from [7]

Ai Bi Ci+1 Fi Si Ci Fi+1

1 1 x 1 1 1 1
1 1 1 0 0 0 1
1 1 0 0 1 0 1
1 0 x 1 1 1 0
1 0 1 0 0 0 0
1 0 0 0 1 0 0
0 1 x 1 1 1 0
0 1 1 0 0 0 0
0 1 0 0 1 0 0
0 0 x 1 1 1 0
0 0 x 0 0 0 0

The 1-bit adder design was characterised by Singh et al. by the delay to get each output,

power consumption and area used, and these values were compared to the exact 1-bit FA. Table

2.4 shows these values, including the delays for generating Sum (Si), Carry (Ci), and Auxiliary-

signal(Fi). The design shows profound benefits when compared with the exact FA design in all

aspects evaluated.

The design was then tested by making a 32-bit approximate adder using the design for the 21

LSBs and calculating the outputs for 250000 random inputs, and the MED and the MRED were

evaluated. In both of these metrics, the design had a relatively high value, meaning that the circuit

introduces a substantial amount of error that could lead to a more significant loss of information

or data quality than desired.

Table 2.4: RCPFA Performance adapted from [7]

Adder Ts (ps) Tc (ps) Tf (ps) Power (nW) Area (µm2)
FA 475 374 0 63.98 5.1

RCPFA 310 200 223 34.49 2.7

2.4.6 Lower-Part-OR Adder

The Lower-part-OR Adder (LOA) divides a p-bit adder into two smaller sub-adders, one with m

bits and the other with n bits [8]. One of these sub-adders is a precise adder that accurately com-

putes the upper part of the MSBs. The other one comprises OR gates that obtain an approximate
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result for the p LSBs. An extra AND gate generates the carry input for the precise adder in the

MSB. This helps consider the carries from the lower to upper parts of the LOA adder to decrease

imprecision. For a LOA with a constant Word Length (WL) higher Lower Part Length (LPL) val-

ues decrease the area, delay, and power consumption of the LOA while at the same time increasing

its imprecision [8].

Figure 2.8: Lower-Part-OR Adder structure from [8]

The error probability of a LOA is given by Equation 2.20 and shows that in a LOA, the error

is independent of the WL, depending only on the LPL. From the equation, it is also possible to

understand that the error probability of this circuit increases rapidly as more bit adders are replaced

with bitwise OR gates. However, the magnitude of these errors is contained to the values shown

in Equations 2.21 and 2.22. An essential feature of the LOA is that it has a nearly unbiased and

symmetric output error range [8], which means chaining these adders will not cause a considerable

error accumulation.

Pe = 1−
(3

4

)LPL
(2.20)

MAXLOA = 2LPL−1 −1 (2.21)

MINLOA = −2LPL−1 (2.22)

2.4.7 Approximate Carry-Lookahead Adder

The Approximate Carry-Lookahead Adder (ACLA) architecture, illustrated in Figure 2.9, adds

two n-bit binary numbers by dividing them into n/k blocks, where k is the size of each block.

Each block is fed an input of k bits from an n-bit binary number [9]. The adder’s block structure

includes three units: an Exact Carry Unit (ECU), a Carry Judge Unit (CJU), and a Sub Adder,

as well as an OR gate. As an approximate parallel adder, each of the n/k blocks in the proposed

adder does not rely on the previous blocks to calculate Cout . Only the Cout from the previous block

is used as the Cin for calculating the block sum. The ECU generates the CECU , while the CJU

predicts the CCJU for its respective block, which is then fed into an OR gate along with the CECU .

The overall equation for Cout can be written as shown in equation 2.23.

Cout =CECU +CCJU (2.23)
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Figure 2.9: Cascaded blocks of Approximate Carry-Lookahead Adder from [9]

The ECU in Figure 2.9 uses only the three most significant bits of the given block size of k

bits, as they have the highest likelihood of contributing to Cout = 1. The ECU employs the Carry-

Lookahead Adder principle to compute the CECU , as the CLA has a low delay in transmitting the

carry.

Using equations 2.24 and 2.25, we can calculate the CECU for the given block:

Pi = Ai ⊕Bi (2.24)

Gi = Ai.Bi (2.25)

CECU = G0 +P0.G1 +P0.P1.G2 (2.26)

Equation 2.26 presents the CECU equation using the 3 MSBs of the block. The adder’s accuracy

can be adjusted by increasing or decreasing the most significant bits used to calculate the CECU .

The CJU estimates or predicts whether the carry is generated by less significant bits than the

upper three bits. It does this by multiplying the carry generation term of bits less significant than

the upper three bits with the carry propagation term of the block’s upper two most significant bits.

An Error Correction Term (ECT) will also be multiplied along with the carry generation term to

check whether the third most significant bit of the block propagates the generated carry.

Since ACLA was made considering the high area and power consumption of CLA, it is op-

timised to use less area and resources. As such, it occupies less area than the CLA, and because

it does not use all bits to calculate the carry in most configurations, it also consumes less power.

Regarding delay, ACLA is significantly faster than the CLA. This is due to the parallel compu-

tation by the two blocks CJU and ECU. However, ACLA is slower than some state-of-the-art

approximate adders as it has one extra unit, the CJU, which increases its delay to improve result

accuracy.
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2.4.8 Carry Speculative Adder

The Carry Speculative Adder (CSPA) (Figure 2.10) contains block adders and carry predictor

circuits. Each block adder has size x. An n-bit CSPA has m = n
x block adders and (m− 1) carry

predictor circuits [10]. Each predictor circuit predicts the carry-out bit of a corresponding block

adder. Each block adder has three main components: a carry generator, a sum generator and a

multiplexer. The carry generator produces carry signals that can be used in the sum generator.

The sum generator calculates the partial sum bits of the block adder. Finally, the multiplexer uses

the previous carry predictor output as a selector to select one of the signals generated by the carry

generator to be used in the sum generator.

Figure 2.10: Carry Speculative Adder Architecture from [10]

To speed up the carry and sum bits calculation, a modified FA can be used that uses extra

logic gates in order to obtain the carry output in two logic stages (as opposed to the three stages

a regular FA). However, opting for this implementation leads to higher power consumption. In

order to reduce hardware complexity and area overhead, the CSPA carry predictor circuit uses

only the input bits near the MSB to predict the carry-out bit of a block adder. This is because the

probability that a carry-out bit depends on the k previous bit positions is 1/2k, meaning that the

input bits near the LSB have a low probability of affecting the carry-out bit.

Analysis of the occupied area and circuit delay made in [10] show that the CSPA is better than

other approximate speculative adders in these aspects, occupying approximately 10% less area

and having lower critical path delay. Analysis of errors shows that this design has higher error

rates than other speculative adders. However, the error significance (MRED) of the CSPA is low,

causing results to still be within acceptable ranges.

2.4.9 Variable Latency Carry Selection Adder

The distribution of inputs affects the performance of speculative and variable latency adders.

Mathematical distributions are often employed to predict or emulate the practical inputs. In prac-

tice, smaller numbers tend to appear more frequently than large ones. A non-trivial portion of

carry chains is as long as the adder size for signed Gaussian inputs. These long carry chains
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significantly increase the error rate of the speculative addition. As such, creating approximate

models considering the type of inputs is essential, as the circuit can be made to perform better

specifically on said inputs. In the case of signed Gaussian inputs, the Variable Latency Carry

Selection Adder (VLCSA) proposed in [11] (Figure 2.11) is an example of how a circuit can be

created having in mind the use case it will have.

Figure 2.11: Variable Latency Carry Selection Adder Implementation from [11]

The VLCSA attempts to speculate when very long carry chains will occur, which in 2’s com-

plement signed numbers usually occurs when adding a small positive number with a small negative

number where the MSB position is affected. Two error detection signals exist to detect these sce-

narios: ERR0 and ERR1. These signals can be defined according to Equations 2.27 and 2.28,

where Pi is a propagate signal from the ith adder and Gi is the generate signal from the ith adder

[11].

ERR0 =
⌈ n

k ⌉−2

∑
i=0

Pi+1
k−1:0Gi

k−1:0 (2.27)

ERR1 =
⌈ n

k ⌉−2

∑
i=0

Pi+1
k−1:0Pi

k−1:0 (2.28)

If ERR0 = 1 and ERR1 = 0, a long carry chain occurred and did not incur errors and the

correct result is in signal S∗,1. In the case where both signals are equal to 1, a carry chain starts and

ends before reaching the MSB position, and error detection recognises this as an error. Finally, if

ERR0 = 0, the speculative result is correct and found in signal S∗,0. If an error is detected, an error

recovery circuit gives the correct result by using intermediate results and an accurate adder. This

circuit adds area overhead and has a higher delay, but it helps improve the accuracy of the results.

These error signals are selectors in a final multiplexer to select the correct result, as seen in Figure

2.11.

To estimate the error rates of VLCSA, Monte Carlo simulations for 1 million 2’s complement

Gaussian inputs were performed [11]. For the Gaussian distribution, the mean is µ = 0, and the

standard deviation is σ = 2n, where n is the adder width. By varying the window size of the

speculative adder, accuracies of up to 99.99% were obtained. However, due to the implementation
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of the error recovery mechanism that allows for these high accuracies, the area occupied by the

adder and the delay increases significantly, so relaxing the accuracy requirements is necessary to

achieve significant improvements in these aspects.

2.4.10 Error Tolerant Adder type IV

The Error Tolerant Adder type IV (ETAIV) uses a 2-to-1 multiplexer (MUX2) to break carry

chains into two stages and use two Carry Generators, type I and II, to generate the carry bits. As

illustrated in Figure 2.12, an N-bit ETAIV adder is divided into N
X blocks of size X [12].

Figure 2.12: Error Tolerant Adder type IV Block Diagram from [12]

Both Carry Generator types have X bits and perform their functions simultaneously, calculat-

ing the carry outputs with X bits accuracy. The greater the number of bits considered, the higher

the chances of calculating the correct carry. However, considering more bits lead to an increase in

the time needed to calculate the carry. The type II Carry Generators calculate the carry assuming

an input of either ’0’ or ’1’. The MUX2 selects the correct carry based on the value calculated

from the type I Carry Generator, selecting the same as this select signal to be used as input in

the following sum generator block. This allows for faster operation while maintaining the correct

carry signal.

To implement ETAIV, the block size X must be chosen to guarantee accurate results but main-

tain a low power wastage and high performance. To help in this process, Zhu et al. [12] used two

parameters: Minimum Acceptable Accuracy (MAA) and Acceptance Probability (AP). MAA is a

minimum accuracy threshold results need to pass to be called acceptable, and AP is the probability

that the adder has higher accuracy than the MAA.

In order to test the accuracy of the ETAIV, simulations were conducted using random 32-bit

inputs for various MAAs and the corresponding APs. The results can be found in Table 2.5, and it

can be verified that using a block size of 4 bits leads to acceptable accuracies.

2.4.11 Bounded Error Approximate Adder

The Bounded Error Approximate Adder (BEAD) structure divides a w-bit adder into M sub-adder

segments, each with l = w
M bits. Each segment’s last FA is modified to compensate for a possible
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Table 2.5: APs of 32 Bit ETAIV with varying MAAs adapted from [12]

Number of Bits per block
MAA (%) X = 1 X = 2 X = 4 X = 8 X = 16

100 0.0430 0.4136 0.9136 0.9985 1.0
99 0.6466 0.8848 0.9917 1.0 1.0
95 0.7101 0.9214 0.9981 1.0 1.0
90 0.7374 0.9249 1.0 1.0 1.0

wrong carry propagation to the next block [13]. The structure for this implementation can be seen

in Figure 2.13.

Figure 2.13: Structure of the Bounded Error Approximate Adder from [13]

Unlike other approximate segmented adders that rely on carry prediction schemes to achieve

faster accurate results, the BEAD aims to improve the accuracy of its calculations directly in the

sum calculation at stages where the critical path is shortened. The equations to obtain the carry

predict and approximate sum signals of the ith sub-adder block are shown in Equations 2.29 and

2.30, where Ai
l−1 and Bi

l−1 are operand bits and Gi is the generate signal of the last FA of the ith

sub-adder block [13].

Ci = Gi (2.29)

Si
apx = Ai

l−1 +Bi
l−1 (2.30)

In order to test the accuracy of the design, relative error distance-based metrics were used,

namely the MRED, the NMED and the maximum RED. To calculate these metrics, Khaksari et al.

[13] applied 10 million uniform random numbers followed by another 10 million log-uniformly

distributed random numbers to cover an extensive range of inputs. These metrics are summarised

in Table 2.6 for the 16 and 32-bit adder configurations, using three different values of l, the sub-

adder size.

Compared with other segmented adder configurations, the MRED and NMED of the BEAD

are significantly smaller, leading to about a 40% improvement. Larger sub-adder block sizes lead

to a higher accuracy adder and a more minor speed increase. Additionally, the maximum RED
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never exceeds 21% in the worst-case scenario, achieving results below 5% when using 8-bit sub-

adders.

Table 2.6: Error metrics for different sub adder sizes of 16 and 32-bit BEADs adapted from [13]

Block Size
16 bit 32 bit

%MRED %NMED %REDmax %MRED %NMED %REDmax

2 4.3 4.0 ×10−2 21 3.7 3.4 ×10−2 21
4 1.4 1.1 ×10−2 21 1.1 0.9 ×10−2 12
8 0.2 0.2 ×10−2 0.5 0.1 0.08 ×10−2 4.9

To study the power, delay and area this adder configuration occupied, the authors of [13]

synthesised and compiled it using advanced technology. Configurations using the 8-bit sub-adder

blocks are more efficient, and ones using 2-bit sub-adder blocks have the worst results, on average.

All configurations achieve a better power-delay-area product than the CLA adder.

2.4.12 EvoApproxLib Adders

The EvoApproxLib library [14] is a collection of hardware and software models of approximate

circuits that are designed to be easily used in arbitrary applications. It contains C, Matlab and

Verilog descriptions of different circuits generated using multi-objective Cartesian genetic pro-

gramming.

Cartesian Genetic Programming (CGP) is a form of automatic evolution of computer programs

and other computational structures using ideas inspired by Darwin’s theory of evolution by natural

selection. It uses directed acyclic graphs represented in a two-dimensional grid to achieve these

results, unlike traditional genetic programming, where the solution is represented as a tree [15].

The CGP approach utilises a set of processing nodes (gates) arranged in c columns and r

rows to represent a target circuit. Each node can perform one function. Connections between the

elements give rise to a functional circuit.

As such, each gate can be connected to the output of a gate placed in previous columns or

to one of the circuit inputs. The algorithm has a user-defined parameter that can set how many

columns back a gate can connect to. For example, if this parameter is 1, the input of a node in

column x can only be connected to an arbitrary output of a node in column x− 1 or one of the

circuit’s inputs.

The first population is randomly generated and evaluated at the beginning of evolution. In or-

der to create a new population, the chromosome of the highest-scored candidate circuit is selected

as the new parent, and by applying a point mutation, offspring are generated in the count needed

to fill up the rising population. The steps of the evolution loop are repeated in the next generations

until either a circuit is found whose output fulfils the criteria specified or a maximal generation

count is reached [16].

The highest-scored candidate is calculated based on fitness functions. These can be as sim-

ple as the number of correct bits on the output or more complex like the mean error distance

represented in equation 2.31.
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f it =
k

∑
j=1

|y( j)− t( j)| (2.31)

The examples above and early implementations only had one objective to optimise with the

algorithm, error. However, other possible objectives can be considered, defining multi-objective

Cartesian Genetic Programming.

In multi-objective optimisation, the Pareto front or Pareto curve is the set of all Pareto efficient

solutions. These solutions are ones where there is no possibility of improving one parameter

without worsening the others. It allows one to analyse only a specific optimal subset of solutions

and make unbiased decisions between different trade-offs [17].

Various strategies can be used for multi-objective Genetic Programming. One of them is the

Non-dominated Sorting Genetic Algorithm II. This selection algorithm arranges all the individuals

within the population into a series of Pareto fronts. It promotes widespread results on the primary

fronts and avoids filling the population with closely-clustered individuals, thus maintaining diverse

solutions.

The primary fitness measure for each circuit evaluated is the circuit functionality; circuits that

are not functionally correct are not evaluated further and are omitted. For circuits that pass this

test, four fitness scores are calculated equally weighted within the fitness calculation [17]. These

four objectives are:

• number of logic gates used;

• number of transistors used;

• longest gate-level path length between input and output;

• longest approximated delay between input and output

After performing these algorithms, the resulting circuits are presented in a public Github repos-

itory that contains different bit-width signed and unsigned adders, grouped by Pareto curve opti-

misation considered [14].

2.5 Multipliers

Multipliers are digital circuits used to perform the multiplication of two numbers. They are essen-

tial to many applications, including signal processing, computer graphics, and scientific comput-

ing.

Multipliers typically have three main stages: the partial product generation stage, the partial

product accumulation stage, and the final addition stage. In the partial product generation stage,

the multiplier generates the partial products for each multiplicand bit. In the partial product accu-

mulation stage, the partial products are accumulated and aligned to form the final product. Finally,

the final result is formed by adding the accumulated partial products in the final addition stage.

Approximate multipliers usually focus on approximating only one of these stages.



State of the Art 22

This section will introduce two exact architectures and the most relevant approximate ap-

proaches to multiplier design. They will compare their benefits in speed and area and their losses

in precision and accuracy.

2.5.1 Dadda Multiplier

The Dadda Multiplier is a tree multiplier that implements the addition of partial products very

efficiently using full adders and half adders [18]. The partial products are generated using AND

gates on the necessary input bits. Compressors can also be used to optimise the process further.

The main advantage of this multiplier configuration is that it reduces the logic in each multiplier

layer to the minimum possible, leading to lower power consumption than other exact multipliers.

2.5.2 Wallace Multiplier

The Wallace Multiplier is one of the most efficient tree multipliers frequently used in micropro-

cessor circuits [19]. They are mainly used when performing multiplication with a low delay is

desired. The algorithm for this multiplier consists of generating the partial products; using adders

to add groups of partial products, generating carries that will be rippled to the next column; and

proceeding to group the outputs of these adders with the remaining partial products.

The dot representation of an example of this architecture is shown in Figure 2.14, where ’.’

indicates partial products and ’o’ indicates generated carries.

Figure 2.14: 4-bit Wallace Multiplier Dot Representation from [19]

2.5.3 Approximate Compressors

One of the most common approaches to approximate multiplication is to create approximate com-

pressors to speed up the partial product accumulation stage. These compressors can be used in

Tree Multipliers to speed up their operation effectively. A conventional four-input, two-output

compressor is implemented using two FAs, as seen in Figure 2.15.
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Figure 2.15: Conventional 4:2 Compressor from [20]

Different approaches have been used to create approximate compressors depending on the

application and constraints. In the case of Lin and Lin [21], the proposed compressor maintains

most of the logic of an exact 4:2 compressor, replacing only one XOR gate with a multiplexer

(Figure 2.16), while in the case of Krishna et al. [22] most logic is simplified, using only AND

and OR gates, as well as a multiplexer to obtain the results (Figure 2.17). Both compressors count

the number of inputs that are logic value ’1’ and, as such, always fail when all four inputs are

’1’, as it only uses two bits to represent the result, which happens with a probability of 1
256 , since

the probability of a partial product being ’1’ is 1
4 . The circuit results for both compressors can be

found in Table 2.7, where the {Carry,S} bit pair gives the number of logic ’1’ inputs, and incorrect

results appear in red.

Figure 2.16: Approximate 4:2 Compressor proposed by [21]

Figure 2.17: Approximate 4:2 Compressor proposed by [22]

As it is possible to see in Table 2.7, the second design has a higher error rate, outputting an

incorrect value in 3
16 ths of cases. However, as it does not use XOR gates, this design’s delay and
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Table 2.7: Approximate 4:2 Compressor Truth Tables adapted from [21], [22]

Lin and Lin Krishna et al
A B C D Carry S Carry S
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1
0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 1
1 1 0 0 1 0 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 0 1 1

circuit area are better, leading to it being used in applications that require faster results and may

tolerate higher error rates.

2.5.4 High-Performance Approximate Multiplier

Most approximate multipliers only apply approximation strategies in one of the three main stages

that compose a multiplier circuit. However, the High-Performance Approximate Multiplier (HPAM)

applies them to two stages, the partial product accumulation stage and the final addition stage [23].

The workflow of the HPAM can be seen in Figure 2.18.

As seen in the figure, the HPAM truncates the LSB partial products to speed up the accumula-

tion stage and uses a combination of exact and approximate adders, namely a segmented version

of the RCA, to compute the final sum. Following the directive that less significant sections of the

circuit should be approximated first, this approximate adder is only applied in the LSBs to main-

tain reasonable accuracy. The partial products are first rearranged in the HPAM to make them look

like an upper triangular matrix in the figure. This is done to save the number of resources used in

the compression stage.

In the final multiplication stage, the segmented RCA attempts to speed up the calculation

process by cutting the carry chain and calculating the result in blocks simultaneously, leading to a

lower accuracy result.

In order to test the performance and measure the accuracy of the 8-bit HPAM, Pandey et al.

[23] synthesised the design and tested 106 random cases to obtain standard error metrics, namely

the MRED. The tests performed showed that, on average, the HPAM is 48.06% more accurate
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Figure 2.18: High-Performance Approximate Multiplier Computational Workflow from [23]

than other existing designs and has a 21.42% lower power-delay product. This means the HPAM

can produce high-accuracy results while improving power consumption.

2.5.5 High-Performance Approximate Recursive Multipliers

The High-Performance Approximate Recursive Multipliers (HPARM) [24] are multipliers that

achieve higher bit width implementations based on lower bit width ones. The most straightfor-

ward implementation is a 4-bit version. This multiplier performs approximations by altering the

structure of the partial product tree based on bit probabilities and using approximate half adders

and full adders for the compression and final addition stages.

One of the first simplifications is to use propagate-and-generate terms to reduce the probability

of the occurrence of a 1 in specific locations in the partial product tree. The propagate (e) and gen-

erate (f) terms can be obtained based on equations 2.32 and 2.33, where c and d are the operands

and k and l are bit positions.

ek,l = ck.dl + cl.dk (2.32)

fk,l = (ck.dl).(cl.dk) (2.33)

The f term has a probability of 1
16 (assuming a uniform distribution of inputs) of being 1,

while the e term has 7
16 . A probabilistic analysis performed on the resulting partial product tree

demonstrates that columns 2, 3 and 4, represented by these new terms, perform better. Further

analysis reveals that the probability of 2 f terms being one is negligible. Therefore, for column 3,

one bit can be reduced by performing an OR operation. For columns 2 and 4, the generate element
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can be approximated to 0s with no significant impact on the accuracy. A simple comparison

between the original PP array and the final one proposed can be seen in figure 2.19.

Figure 2.19: Partial Product Tree proposed in [24]

Approximate adders are used in this partial product tree in order to obtain the final result. The

half-adder is used in the maximum number of scenarios possible to decrease the resources used.

NOR-Based Approximate Half Adder

Waris et al. [24] present two approximate half-adder designs of variable accuracy, denoted as

NxHA1 and NxHA2. These use NOR gates instead of XOR gates to reduce delay and area. For

both designs, the differences between the exact and approximate outputs can be seen in table 2.8.

The equations that describe these half-adders are equations 2.34 and 2.35.

Table 2.8: NOR Based Approximate Half Adder Truth Table based on [24]

Input Exact NxHA1 NxHA2
A B C S C S C S
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0
1 1 1 0 1 0 1 0

SumNxHA1 = a+b

CarryNxHA1 = a
(2.34)

SumNxHA2 = a+b

CarryNxHA2 = a.b
(2.35)

NOR-Based Approximate Full Adder

A full adder based on NOR gates is also proposed by Waris et al. [24]. It uses three NOR gates

and one NOT gate. As the carry affects the next bit (making it a more significant error), effort was

focused on getting the maximum number of correct cases for this output. The truth table for this

block is shown in table 2.9, and its behaviour can be summarised in equation 2.36.
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Table 2.9: NOR Based Approximate Full Adder Truth Table based on [24]

Input Exact NxFA
A B Cin Cout S Cout S
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 1 1 1 0

SumNxFA = a+b+ c

CarryNxFA = a+b+ c
(2.36)

4X4 Block Multiplier

Two variants, the more approximated (MxA) and less approximated (LxA) 4×4 block multipliers,

are implemented according to the scheme in figure 2.20. The main difference between the designs

is that the MxA uses the first half adder design while the LxA uses the second one. They also

differ in the way the S3 bit is generated. Due to this, the LxA achieves better accuracy than MxA

while consuming more power.

Figure 2.20: 4x4 Multiplier blocks proposed in [24]

Higher Bit Width Multipliers

In order to implement bigger multipliers, a recursive partitioning approach is used, attempting

to achieve a faster implementation. With it, four 4× 4 modules are used to implement an 8× 8

multiplier. This allows the smaller modules to obtain intermediate results simultaneously, speeding

up the calculation of the final result.

Due to this modular nature, different combinations of the MxA, LxA and exact blocks can be

used depending on the desired results.
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2.5.6 Rounding Based Approximate Multiplier

The main idea behind the Rounding Based Approximate Multiplier (RoBA) is to use the ease of

operation when the inputs are powers of 2. The multiplication of A and B is given by Equation

2.37, where Ar and Br are the rounded inputs.

A×B = (Ar −A)× (Br −B)+Ar ×B+Br ×A−Ar ×Br (2.37)

As the rounded inputs are powers of 2, implementing the last three terms can be performed

using shift operations, saving resources. The first term, however, is more complex to implement.

Since the impact of this term in the final result is typically tiny, [25] proposes to omit it to simplify

the process, making the operation require only shifts and additions/subtractions.

For this implementation to work, it is first required to determine the nearest rounded values

of A and B to a power of 2. If both possibilities lead to similar approximations, the larger power

should be chosen, as it leads to a smaller implementation rounding circuit [25]. The approach

developed in RoBA only works for positive inputs, as negative numbers represented in 2’s com-

plement cannot be rounded to a power of two like positive numbers. In order to fix this, [25]

proposes to use a signal detector to determine the sign of the result and perform the operation with

the absolute value of both inputs. The block diagram for this circuit can be seen in Figure 2.21.

Figure 2.21: Rounding Based Approximate Multiplier Block Diagram from [25]

The inaccuracies of this multiplier come from the omission of one of the terms from the accu-

rate multiplication in Equation 2.37. As such, the error can be determined according to Equation

2.38. The maximum value this error can take is 11% [25].

error(A,B) =
(Ar −A)(Br −B)

AB
(2.38)

2.5.7 EvoApproxLib Multipliers

Similarly to the adders described in subsection 2.4.12, Cartesian Genetic Programming can also

be used to implement approximate multipliers. The process is similar, with changes to initial

conditions and the number of gates used, as multipliers are more complex circuits than adders.

Since the fitness function uses the exact computation to determine the MED, there is no need to

alter it further.

The public GitHub repository mentioned in 2.4.12 also contains multipliers with different bit

widths. For neural networks, the required multipliers are N ×N, that is, with both inputs having

the same bit width, but there are also N ×M multipliers available [14].
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2.6 Fused Multiply Add

FMA units are digital circuits used to perform multiplication and addition in a single operation.

They are an essential part of many applications, including digital signal processing. FMA units

are implemented using several architectures for the multiplier and the adder sections, the most

common of which is the Carry Save Adder based FMA.

FMA, or Multiply and Accumulation (MAC), units have several advantages over separate mul-

tiplication and addition units. They can save on area and power consumption, as they require fewer

components than separate units. They also have the potential to reduce latency, as multiplication

and addition can be performed in parallel. However, FMA units also have some trade-offs. They

may be more complex to design and have a higher error rate than separate units.

The Carry Save Adder based FMA architecture consists of a series of full adders and carry save

adders used to perform multiplication and addition. It is a typical architecture due to its simplicity

and low cost. However, due to the limited precision of the carry-save adders, it may have a higher

error rate.

The following subsections discuss three different approximate FMA approaches, their benefits

and trade-offs in accuracy, resources and power consumption.

2.6.1 Approximate Rounding and Truncation based MAC

The Approximate Rounding and Truncation based MAC (ART-MAC) proposed in [26] uses input

preprocessing to identify the truncation points and rounding that lead to the maximum efficiency

configuration. It also uses a clever approach to rounding so that the loss of accuracy caused by

truncation is as mitigated as possible. This is done by modifying the LSB of the truncated inputs.

The n-bit ART-MAC consists of three components (Figure 2.22), an n-bit approximate multi-

plier, a (2n + G)-bit accurate adder, and a (2n + G)-bits accumulation register, where G stands for

the number of guard bits. The guard bits exist to protect from overflow [26].

Figure 2.22: ART-MAC Block Diagram from [26]
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The computational workflow of the approximate multiplier can be seen in Figure 2.23. In

it, the inputs are divided into two parts, XH and XL, where XH are the p MSBs, and XL are the

remaining n− p bits. After this division, XL is subdivided into two equal size parts, XLL and XLH ,

to simplify implementing truncation and rounding. XLL are truncated while XLH is rounded. This

rounding is done by using an OR gate with the MSB of XLL and the LSB of XLH . Once the rounding

and truncation of the input operands are done, their size reduces by ⌊(n− p)/2⌋ bits, simplifying

the circuits.

Figure 2.23: Rounding Based Approximate Multiplier Block Diagram from [26]

After generating the product through the approximate multiplier, the (2n + G)-bits value stored

in the accumulator register is added to the obtained product, and finally, the accumulator register

is updated.

The ART-MAC designs were tested using 106 iterations of 10 random inputs in order to obtain

the error rate, MED, MRED. The tests performed by [26] showed that the ART-MAC consumes

35.35% less power and provides a significant speed-up when compared to a conventional MAC

unit. On average, the proposed design has 7.44% lesser on-chip area and 13.4% lesser power-

delay-product (PDP) when compared to other existing state-of-the-art designs.

2.6.2 Approximate MAC Unit

The Approximate MAC Unit (AMACU) uses an approximate FA to accumulate the multiplier

partial products [27]. This approximate FA adder calculates the Approximate Sum (AS) and the

Approximate Carry (AC) according to Equations 2.39 and 2.40.

AS = A+B+C (2.39)

AC = any of the inputs (2.40)

Carefully choosing the input bit to be the carry can lead to obtaining the correct result 6
8 =

0.75 = 75% of the times, and the AS is correct 5
8 = 0.625 = 62.5% of the times.
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Instead of combining a multiplier and an adder in order to implement a MAC unit, the AMACU

takes advantage of the partial product reduction mechanism present in tree multipliers and incor-

porates the approximate FA for accumulation. In the process, LSBs are truncated, and exact adders

are used to calculate the MSBs, reducing the magnitude of the errors and ensuring accurate results.

The unsigned 8-bit AMACU was tested using 20000 sets of randomly generated inputs to

measure error metrics and implemented using Verilog HDL to obtain accurate performance anal-

ysis. The test performed by [27] showed that the AMACU has a low delay and minimal power

consumption when compared to other equivalent designs, having a lower power-delay product and

area-power product.

2.7 Benchmarking

As stated in section 1.1, one of the main challenges of approximate computing is the lack of stan-

dardised error testing cases to evaluate and compare different designs. It is a complex procedure

to develop standardised loads and benchmarks to run tests of different approximate computing

techniques on its various applications and use cases. The AxBench [28] is one of many efforts in

creating these benchmarks. It includes different testing scripts and circuits on some of the most

common loads where approximate computing can benefit used resources or power consumption.

This test suite can benchmark CPU, GPU and hardware implementations. For hardware, the in-

cluded tests are:

• Brent-Kung 32-bit adder, a parallel form of a CLA;

• Kogge-Stone 32-bit adder, another parallel form of a CLA;

• Wallace Tree multiplier

• Inversek2j, computing the inverse kinematics of a 2-joint robot arm;

• Forwardk2j, performing the direct kinematics of a 2-joint robot arm;

• FIR filter;

• Sobel edge filter;

• K-means clustering algorithm;

• Neural Network that approximates the Sobel filter.

Each of these benchmarks requires different inputs and produces different results. The kine-

matics tests need integer numbers, RGB images, or even fixed point non-integer numbers. As such,

AxBench provides three different-sized datasets for each application. For image applications, the

small input dataset consists of ten different 512×512 pixel images, the medium-sized dataset ten
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different 1024×1024 pixel images and the large-sized dataset ten different 2048×2048 pixel im-

ages. In the other applications, the small, medium, and large-sized input datasets include 212, 218,

and 224 data points [28].

Not all of these benchmarks will be used to test the modules developed during this dissertation,

as they are either adders and multipliers themselves, do not use these arithmetic units or require

different types of inputs, namely floating point integers. As such, the Sobel edge filter, and the

K-means clustering algorithm were selected to be used. The neural network that approximates the

Sobel filter would also be selected, as it is the closest scenario to what is the purpose of what is

being developed. However, the hardware implementation did not function properly due to the lack

of weights and problems with module interconnections.

For evaluating the results obtained by these benchmarks, three different metrics are used de-

pending on the application: average relative error, miss rate, and image difference. However, the

hardware applications only use average relative error and image difference.



Chapter 3

Arithmetic Unit Design

This Chapter will present the different implemented arithmetic units and simulation results for

the stand-alone modules developed to understand the proposed solutions used in the final design

and implementation. This implementation is also presented schematically in its section, where

different considerations are considered, and the reasoning for the choices made is exposed. Firstly,

the various adder circuits are presented, followed by the multiplier circuits. Finally, a simple

implementation of the vector product is exposed as a simple example of operation.

3.1 Adder Circuits

This section presents the implemented adder circuits during this dissertation and the results from

simulation and testing the modules on single additions of two numbers. Some designs have vari-

able bit width through a parameter, while others have a fixed width of 8 or 16 bits.

The implemented designs were chosen based on a combination of different criteria: low error

rate, promising performance results in the article they were described, and simplicity of implemen-

tation, among a few others. While rare, designs with available hardware descriptions in Verilog

were preferred to maximise the number of circuits implemented and tested.

3.1.1 Carry Based Approximate Adders

The first approximate adder design implemented was the CBAA [6]. As mentioned in section

2.4.4, this adder changes the typical FA structure to save resources and improve performance.

Type I and Type IV designs mentioned in this section were implemented using Verilog. After

developing the modules, the 1-bit adders were tested using a simple testbench to verify that both

designs were correctly implemented. The results of this simple verification step matched the values

derived from equations 2.13 to 2.16, displaying that the Verilog code did not have any errors.

After this verification, simple 8-bit adder modules were created by chaining the 1-bit adders.

In this module, the carry output from each adder is the carry input of the next one, precisely like

the RCA structure. To test this module, a testbench that tested the adder for all possible input

combinations (216) was created, and the circuit was simulated using Icarus Verilog. Very early on

33
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in the simulation, it was noticed that the Mean Relative Error (MRE) or MRED of both types was

very large, surpassing 100%. This is because, as mentioned in section 2.4.4 during the analysis

of the truth tables, these adders are often in a position where the inputs are all 0 or all 1, which

are the cases where the error exists. One case where this happens can be seen in figure 3.1, where

adding 4-bit representations of 0 and 1 gives the output of 1111, which is 15 considering unsigned

numbers. In the case of signed addition, this would be -1, which is also relatively far from the

correct result.

0 0 0 0
+ 0 0 0 1

1 1 1 1

Figure 3.1: Error in the CBAA Type IV adder for unsigned numbers

However, unlike what is mentioned in section 2.4.4, these significant errors are not exclusive

to unsigned numbers, appearing in the case of signed addition. Figure 3.2 shows an example of

this, where the addition of 1111 (-1) and 1001 (-7) gives the result of 0000, assuming that the

result is truncated to 4 bits. Even considering the carry output, the result obtained is -16, double

the correct result, -8.

1 1 1 1
+ 1 0 0 1
1 0 0 0 0

Figure 3.2: Error in the CBAA Type IV adder for signed numbers

Given these results on a multi-bit adder, it was decided that this design would not be used in

the final implementation, as the error is too large to be acceptable, especially when using unsigned

numbers. A possible solution to limit the scale of the errors is to only use the approximate adder

on some LSB of the inputs and use the exact adder on the remaining MSB. This would limit the

error to the LSB of the inputs, which would be acceptable for some applications. However, this

solution was not implemented, as the CBAA was not used in the final implementation.

3.1.2 Approximate Full Adder

The second implemented adder was the Approximate Full Adder (AFA) [29]. This design uses

OR, AND gates and an inverter to approximate the FA structure. Two types are proposed in [29]

and cascaded in alternate order to form a higher bit adder. These implementations can be seen in

figure 3.3.

Similarly to the CBAA, firstly, a 1-bit design was created in Verilog and tested to check all

possible result combinations. The results of this test can be seen in table 3.1.

The results of the 1-bit implementation immediately demonstrated that this adder was not very

accurate, with both types getting the wrong result in 2 out of the eight possible combinations.
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Figure 3.3: AFA 1-bit adder logic circuits

Table 3.1: AFA 1-bit adder Truth Table

Inputs Exact Type 1 Type 2
a b c s cout s cout s cout
0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 1 0
1 1 1 1 1 0 1 1 1

To create the higher-bit adders, the two types were cascaded by alternating the two designs,

starting with Type 2, in order to try to decrease the error propagation. This architecture was

implemented in Verilog and tested using a testbench that tested all possible input combinations

using Icarus Verilog. Once again, the results were not as expected, with the MRE being higher

than 30%, which, while lower than the CBAA, is still too high to be acceptable. As such, this

design was also not used in the final implementation.

3.1.3 Reverse Carry Propagate Adders

As the previous two designs showcased, using approximations of a FA to replace all the adders

leads to high error rates and undesirable edge cases with large MRE. In light of this, the next

approximation of the FA, the RCPFA [7], is only used in a portion of the operation. To be more

precise, half the bits of the adder are calculated using the approximate FA and the other half using

the exact approach. Two designs, one mentioned in section 2.4.5 and another one not mentioned,

were implemented and tested. These are the RA4 (Figure 2.7) and the RA5 (Figure 3.4).

Once again, the first step was to ensure that the 1-bit adder implementations matched the

expected results presented[7]. This was done using a testbench that tested all possible input com-

binations, and the results matched the expected ones. After this confirmation, 8,16,24,32,48 and

64-bit implementations were created and tested using all possible inputs for the 8-bit adders and
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Figure 3.4: RA5 1-bit adder logic circuit

1 million random test cases for all the others. An example schematic of the 8-bit implementation

can be seen in figure 3.5.

Figure 3.5: RA5 8-bit adder schematic

The MRED presented in the article by Singh et al. [7] for these implementations uses the

approximate full adders in 21 bits for a 32-bit implementation. Since the design tested here uses

this adder in only 16 bits, the MRED is expected to be lower than the one presented in the article.

Table 3.2 confirms these expectations.

Table 3.2: Mean Relative Error for the 8, 16, 24, 32, 48 and 64-bit RA4 and RA5 adders

Adder
Mean Relative Error (MRE)

8 16 24 32 48 64
RA4 0.3763 0.0069 0.0004 2.774E-05 1.063E-07 3.251E-10
RA5 0.4160 0.0066 0.0004 2.567E-05 1.001E-07 7.215E-11

As the table shows, the designs yield highly accurate results, especially in higher bit widths,

which is expected since the maximum possible relative error decreases. Given this favourable

outcome, both designs were chosen to be further tested in the vector product implementation.

3.1.4 Bounded Error Approximate Adder

Unlike the previously implemented adders, where consecutive FAs were replaced by their approx-

imate versions, the BEAD replaces only the MSB of an adder block. This block consists simply

of a section of a larger size adder. This separation in smaller blocks of an adder circuit removes

latency and carry dependence from the primary circuit, as the carry propagation from the LSB to

the MSB is the critical path. However, removing the carry propagation from the MSB to the LSB

would lead to a significant error.
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To solve this and bind the error to a specific size, the BEAD uses a modified FA at the MSB

of each block (Figure 2.13). This, together with some more logic, allows the error to be bounded

so that it does not exceed a particular desired value.

As mentioned in section 2.4.11, the size of the sub-adder block, as well as the number of

bits used for the estimation of a wrong carry, affect the accuracy of the adder. As such, various

combinations of these parameters were tested, leading to the choice of a block size of 8 bits (4 bits

if the total adder length is 8 bits) and a number of prediction bits of three.

Similarly to the other adders, the modified FA was implemented and tested for all input com-

binations first to ensure no errors were committed in the implementation in Verilog. After this, 8,

16, 24, 32, 48 and 64-bit implementations of this architecture were implemented and tested using

1 million random inputs. The results of these tests can be seen in table 3.3.

Table 3.3: Mean Relative Error for the 8, 16, 24, 32, 48 and 64-bit BEAD adders

Adder
Mean Relative Error (MRE)

8 16 24 32 48 64
BEAD 0.3991 0.0076 0.0077 0.0077 0.0076 0.0077

Comparing the results obtained with the ones presented in the article [13], it is possible to

see that the MRED is higher across the board. This may be due to the number of bits used to

determine whether the modified approximate result should be used. However, the error is still

bounded and relatively low. As such, this design was chosen to be further tested in the vector

product implementation.

One possible disadvantage of this design is that the maximum error can happen closer to the

MSB, which can be a problem for specific applications where this error can accumulate and spread

to the higher exact MSBs in fewer operations.

3.1.5 EvoApproxLib Adders

Section 2.4.12 mentions that the EvoApproxLib library consists of hardware and software models

of approximate circuits designed to be easily used in arbitrary applications. As such, the library

contains many different approximate adders and their hardware descriptions in Verilog. These

adders are grouped based on different Pareto curves, relating different error metrics with the cir-

cuit’s power consumption.

The most common error metric used in the reviewed literature is the MRE, and as such, the

unsigned adders that are part of the Pareto curve for this metric were chosen to be implemented

and tested. A further selection of the designs was performed, by removing designs that had 0.00%

MRE, as they were assumed to give similar results to the exact implementations. Cases where

the MRE was higher than 10% were also removed, as they were considered too inaccurate. It is

important to note that the library only provides 8, 12 and 16-bit adder implementations, so any

other bit width adder had to be implemented by either cascading the adders (with appropriate

changes to the inputs) or by adding exact FAs to calculate the MSBs.
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After these selection steps, six 8-bit adders and eight 16-bit adders were left. They were

implemented in Verilog and tested using all possible input combinations in the case of the 8-bit

circuits and 1 million random values for the 16-bit ones. The MRE values obtained are presented

in tables 3.4 and 3.5, comparing them with the reported values given by the creators of the circuit

library.

Table 3.4: Mean Relative Error for the 8-bit EvoApproxLib adders

Adder 3RE 6K6 6P8 6PT 6QU 108
MRE 0.0924 0.0094 0.0040 0.0014 0.0208 0.0428

Reported MRE 0.0924 0.0094 0.0040 0.0014 0.0208 0.0428

Table 3.5: Mean Relative Error for the 16-bit EvoApproxLib adders

Adder 0GX 0HE 0KG 0KU 0NT 0RH 0SD 110
MRE 0.0008 0.0059 0.0220 0.0975 2.161E-04 0.0027 0.1787 8.490E-05

Reported MRE 0.0002 0.0016 0.0055 0.0249 5.400E-05 0.0007 0.0452 1.700E-05

Since the circuits were chosen based on a Pareto curve with the MRE metric, the results should

not differ from those presented in the library. In the case of the 8-bit adders, where all possible

combinations were tested, the values match perfectly, which leads to believe that the differences in

the 16-bit adders are due to the random test cases used. However, the values obtained are still close

to the ones presented, even though they tend always to be higher. As such, all designs were chosen

to be further tested in the vector product implementation, despite concerns with the high MRE of

the 0KU and 0SD 16-bit adders. This choice was made because since the circuits are generated

using genetic programming (CGP) it is difficult to predict how the circuit will be implemented in

a FPGA. As such, the circuits may still perform well.

3.2 Multiplication Circuits

In this next section, the implemented multiplication modules are detailed and discussed, as well

as the simulation results of simple multiplications to obtain simple error metrics, like the MRE.

The choice of the multiplier circuits was based on several criteria, namely the results presented

in the literature, the availability of already implemented modules, and logic diagrams representing

the adder tree.

Despite being the most common approach to approximating multiplication, not many approx-

imate compressors were implemented. This is due to the difficulty of choosing only one circuit to

implement. If multiple were to be implemented, further exploration of the possible combinations

would lead to a complex and lengthy process that would prove to be too time-consuming to meet

the objectives of this dissertation.

The implemented modules use 4, 8 and 16-bit inputs, resulting in 8,16 and 32-bit outputs. The

use of recursive multiplication can obtain other larger sizes, something that was done, for example,

on subsection 3.2.1.
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3.2.1 Recursive Multipliers

The first multiplier circuit tested and implemented was the recursive multiplier in [24]. This

multiplier uses a recursive approach to multiplication, where the inputs are divided into smaller

parts and multiplied recursively. The results of these multiplications are then added together to

obtain the final result.

The building block for this recursive multiplication is a 4×4 multiplier. After the partial prod-

uct generation stage, some clever manipulations of the partial product tree (described in subsection

2.5.5) are performed for only one final addition stage to be required to obtain the output. To aid in

this addition, approximate NOR-based adders are used. The truth tables for these implementations

can be found in tables 2.8 and 2.9, present in subsection 2.5.5.

Similarly to the procedure performed in previous sections, these adders were implemented

using Verilog and tested to ensure that their outputs matched the literature. Afterwards, the two

proposed variants, the MxA (more approximated) and the LxA (less approximated) 4× 4 multi-

pliers (Figure 2.20), were implemented. Together with exact multipliers, these modules can then

be used to implement larger multipliers recursively. As such, for an 8×8 multiplier, the literature

proposes three different designs: the Ax1, Ax2 and Ax3.

The Ax1 multiplier uses three 4×4 exact multiplication blocks and the MxA block to calculate

the LSBs. It is the most accurate implementation, as it uses primarily accurate blocks. The Ax2

multiplier uses two exact blocks, one MxA and one LxA block. Finally, the Ax3 multiplier uses

one exact block to calculate the MSBs and then 2 LxAs and one MxA.

These three designs were implemented in Verilog and tested using all possible input combina-

tions. The results of these tests can be seen in table 3.6.

Table 3.6: Mean Relative Error for the three 8-bit Ax Multipliers

Mult Ax1 Ax2 Ax3
MRE 0.0048 0.0377 0.0708

As expected by their configuration, the MRE of the multipliers increases as the number of

approximate blocks increases. The results vary slightly from the ones presented in the article [24],

but not significantly, so they can be considered acceptable.

In order to implement higher order multipliers, these 8-bit implementations can be combined

similarly to the 4×4 multipliers. As such, the Ax0233, Ax0333, Ax1233 and Ax3333 multipliers

were implemented and tested. The numbers in the names represent the 8-bit multiplier used, with

0 being an exact implementation, from the MSB to the LSB. In order to obtain the MRE of these

circuits, a testbench containing 1 million random inputs was created. The results of these tests can

be seen in table 3.7.

Table 3.7: Mean Relative Error for 16-bit Ax Multipliers

Mult Ax0233 Ax0333 Ax1233 Ax3333
MRE 0.0015 0.0017 0.0056 0.0697
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Similarly to the adders, the MRE decreases when the bit width increases. As such, more

approximate implementations can be used without significantly increasing error. The Ax1233,

despite being composed of only approximate 8-bit blocks, obtains an accuracy similar to the Ax1

8-bit multiplier, composed of 3 exact blocks. The error of the Ax3333 is the highest, which is

expected, as it only uses the most approximated 8-bit design. It should not be used as a 16-bit

multiplier, but it can be helpful as a building block for larger multipliers.

3.2.2 High-Performance Approximate Multiplier

The second multiplier design implemented was the HPAM [23]. This design performs approxima-

tions in two main multiplier stages: partial product tree reduction and final addition. By truncating

the LSBs in the partial products, the number of calculations required to obtain the final result is

reduced. However, this truncation leads to a loss of accuracy, as the final bits of the result will

always be 0. In the final addition stage, a segmented RCA is used to add the non-truncated LSBs.

This approximated adder was the first module to be implemented and tested in Verilog to

ensure correct results. The multiplier module was implemented using FAs and Half Adder (HA)

for the partial product reduction stage, according to the diagram presented in the article [23]. The

module was then tested using all possible input combinations, obtaining a MRE of 1.438E − 02,

which matches the results presented in the article.

Unfortunately, this implementation is only possible for 8-bit input numbers, and there are few

uses in the vector product tests. Implementing larger multipliers using the recursive multiplier

technique is possible, but this was not done due to time constraints.

3.2.3 EvoApproxLib Multipliers

Similarly to the adder case, the EvoApproxLib presented in section 2.5.7 also contains Verilog

files with the hardware descriptions of different multipliers grouped in different Pareto Curves.

Again, in the same light as the adders, the selection for the multipliers was circuits belonging

to the MRE vs Power curve, in which this metric was lower than 10%. For cases where both

inputs have the same number of bits (N ×N), the library provides eight and 16-bit unsigned adder

implementations. After the pre-selection performed above, four 8-bit and eight 16-bit candidate

circuits remained.

Like the adders from this library, the Verilog implementations for these circuits were tested by

multiplying two input numbers. All possible inputs were tested for the 8-bit ones, while for the

16-bit ones, 100 thousand random inputs were used. This reduction in the number of test cases

was made to speed up the process, as the multipliers are composed of numerous 2-input logic gates

and performing 1 million tests with all of them would take several days. The results of these tests

can be seen in tables 3.8 and 3.9.

As it is possible to observe in the tables, the results obtained are very close to the ones pre-

sented in the library. In general, except for the 2NDH multiplier, the MRE of the 8-bit configu-

rations is lower than 1%, which is an excellent result. Three of the 16-bit designs also present an
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Table 3.8: Mean Relative Error for the 8-bit EvoApproxLib multipliers

Mult 2NDH 12YX XFM ZDF
MRE 0.0499 0.0002 0.0081 0.0013

Reported MRE 0.0503 0.0002 0.0082 0.0013

Table 3.9: Mean Relative Error for the 16-bit EvoApproxLib multipliers

Mult 1UG 2KD 3CF 3H1 3PM 5A2 7QP HDT
MRE 0.0133 5.883E-05 5.314E-08 3.007E-07 4.575E-06 0.0016 2.319E-05 0.0915

Reported MRE 0.0134 6.700E-05 4.400E-08 3.800E-07 3.400E-06 0.0017 2.400E-05 0.0915

extremely low MRE, which might mean there are few possible gains in other metrics, like power

consumption, for these designs.

3.3 Vector Product

This section describes the Vector Product circuit implementation in greater detail. In order to

test the circuit designs on a more straightforward problem that would still be significant for the

problem to solve, an implementation of a circuit that performs the internal product of two vectors

was made.

This internal product calculation performs multiplications and additions similarly to the cal-

culations performed in a Neural Network node, where the node inputs can be seen as one of the

vectors and the different weights can be seen as the other vector. As such, it was considered an

excellent simple implementation that would allow us to test the performance of the arithmetic unit

modules before moving to tests using a Neural Network implemented in hardware. These simi-

larities are also a reason to believe that the gains obtained by using approximate circuits in this

implementation will be similar to the ones obtained in a Neural Network.

The vector product module comprises three main blocks: a multiplier, an adder and an accu-

mulator. The multiplier receives two inputs from each vector and outputs the product of these two

values with their combined bit width. This value is then added to the accumulator, which stores the

sum of all the products. This process is repeated every clock cycle until all values in the vectors

have been multiplied and added to the accumulator. The final value in the accumulator is then the

result of the vector product. Considering constraints with reading and writing to memory and data

transfer limitations, multiple multipliers can be used in parallel to speed up the process, requiring

an adder tree to combine the results outputted by the multipliers. This adder tree is then connected

to the accumulator, storing the final result. The maximum number of multipliers that can be used

in parallel is limited by the maximum number of bits that can be transferred in a single clock cycle

and the number of inputs that can be read from memory in a single clock cycle.

Due to these limitations, the implemented modules use different parameters to create the ap-

propriate circuit. The parameters are the input bit width, the number of multipliers used in parallel

and the size of the input vectors. The first one can be 8, 16, 24 or 32, and it determines the size of
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the modules used and limits the number of multipliers used in parallel. This number can be 1, 2 or

4. The size of the input vectors determines how long the circuit will run and can be any power of

2 or multiple of the number of multipliers. Various values were tested, but the one that ended up

being used was 32. This value was chosen to consider the possible range of inputs used in order

not to cause overflow in the adders or accumulators. A simplified circuit version can be seen in

figure 3.6, using two multipliers in parallel.

Figure 3.6: Vector Product circuit

The vector product module that implements this operation instantiates the multiplier, adder

and accumulator modules and the necessary interconnections between them. In order to control

the operation of the circuit, a simple state machine is constructed that provides the correct inputs

to the multipliers and determines the start and end of the operation using the appropriate control

signals.



Chapter 4

Evaluation and Results

In this chapter, the main results are presented and discussed. The modules described in the pre-

vious chapter were used to build more complex modules that perform various operations, namely

the internal product of two vectors calculation mentioned in section 3.3, the sum of two images,

the application of a Sobel edge filter to a picture and a simple Neural Network implementation

to predict handwritten digits. The modules were tested using different adders and multipliers and

were synthesised using Vivado 2022.2.

4.1 Simulation

Before moving into module synthesis for the FPGA, the behaviour of the Verilog modules for

different implementations was tested using Icarus Verilog to simulate. This was done to quickly

obtain result accuracy predictions for many inputs and pre-emptively remove adders or multipliers

with poor performance (more than 15% MRE) from the synthesis process. The tests were per-

formed for 50 thousand random inputs. The range of these inputs differs in each case, depending

on the function being tested and will be specified in the respective section of the use case. The

results obtained from the simulation are presented in the tables of the respective sections in this

chapter, as well as in Appendix A, under the column "Relative Error".

4.2 Implementation Target and Settings

As mentioned in the introduction for this chapter, Vivado 2022.2 was the software chosen to per-

form the synthesis and implementation of the modules. As such, a project was created targetting

the Zedboard (Zynq-7000) FPGA. This choice was made based on the available board selection

in Vivado, as it is a relatively small board in terms of resources, where savings in used resources

may mean the possibility of implementing more complex modules that were previously unable to

fit. It was also chosen because it is a board available at FEUP, and previous experience with the

board existed from other curricular units.

43
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Several settings were changed in Vivado for the Simulation and Synthesis processes, while the

Implementation process was left with the default settings. For Simulation, all signals were logged

in order to make it simpler to detect errors, and the Switching Activity Interchange Format (SAIF)

file was enabled in order to be able to obtain more accurate power consumption estimations. This

file also logged all signals used in the implemented modules.

In the case of Synthesis settings, the goal was to disable as many optimisations as possible

because it was assumed that these would skew the results in favour of the exact implementations

of the arithmetic units. As such, Digital Signal Processing (DSP) blocks were disabled, as multi-

pliers implemented using them would perform immensely better. The resource-sharing option was

turned off, and the keep_equvalent_registers was turned on to minimise hardware simplification

that would compress or remove modules. The first solution to prevent these simplifications was

to use an Out-of-Context (OOC) synthesis flow. This flow would guarantee that none of the adder

and multiplier modules would be simplified, as they would be synthesised separately from the rest

of the design. However, this flow was not used because Vivado uses default synthesis settings for

OOC synthesis, which are not the same as the ones used in the main synthesis flow and would

cause 16-bit or higher multipliers to be implemented in the DSP blocks. As such, the OOC flow

was not used. In the tests for the multipliers, DSP blocks were re-enabled temporarily to test if the

assumption that they would benefit the exact implementations was correct. The results of these

tests are presented in subsection 4.3.2.

4.3 Synthesis and Implementation

This section presents the Synthesis and Implementation results for the vector product module.

These include accuracy, power consumption, clock frequency and used resources (represented

through Look-Up Table (LUT) and Flip Flop (FF) counts). In order to determine the power con-

sumption, a Post-Implementation Timing Simulation of the module was performed, where 100

random pairs of vectors are generated, and the module performs the internal vector product calcu-

lation for each pair in a row. Due to the switching activity being saved in the SAIF file, the power

report presented after this simulation, while not 100% accurate, will be a good approximation of

the module’s power consumption. The clock frequency was obtained by combining the timing

report after implementation with several implementations with stricter clock constraints.

Firstly, implementations with only approximate adders will be discussed, followed by ones

with approximate multipliers. Lastly, the designs considered to have the best results will be used

to perform tests where both circuits are approximated.

4.3.1 Vector Product with Approximate Adders

As mentioned previously, adders were the first approximated circuits used. Using a module param-

eter, the exact adder was replaced with inexact designs. Using a combination of bash, Python and

tcl scripts, the designs were synthesised and simulated to obtain the maximum clock frequency,
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the used resources and the power consumption. This process was repeated multiple times for dif-

ferent input bit widths (8, 16, 24 and 32 bits) and different numbers of parallel multipliers (1, 2

and 4), to see the impacts of the input size and parallelisation. Not all of these combinations were

used, considering limitations on data transfers on a single clock cycle and the maximum number

of inputs/outputs possible of the FPGA, which are 200. As such, the 24 and 32-bit input imple-

mentations were not run using four parallel multipliers, as they would exceed these limitations.

To simplify the result presentation, only a small portion of the result tables are presented here

in this subsection. The tables for the remaining cases can be seen in Appendix A.1.

Table 4.1: Vector Product Results for 16-bit adders with one multiplier

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 10 0.0000 0.109 0.104 0.005 122 83 1.855
RA4 10 0.0244 0.109 0.104 0.005 121 83 1.850
RA5 9 0.0245 0.108 0.104 0.004 113 67 1.256

BEAD 11 0.1047 0.109 0.104 0.005 126 83 1.875
0GX 8 0.0016 0.111 0.104 0.007 135 79 2.604
0HE 8 0.0107 0.109 0.104 0.005 125 76 1.765
0KG 8 0.0501 0.108 0.104 0.004 120 75 1.380
0KU - 0.4098 - - - - - -
0NT 8 0.0026 0.111 0.104 0.007 136 81 2.653
0RH 8 0.0057 0.109 0.104 0.005 125 78 1.795
0SD - 0.9191 - - - - - -
110 9 0.0003 0.111 0.104 0.007 134 82 2.660

Table 4.1 presents the results for the simplest scenario, using 8-bit inputs to the vector prod-

uct module and using only one multiplier. As the adder is used after multiplication, the adder bit

width is double the inputs, so 16-bit adders are used. Two key aspects immediately are noticed

glancing at the table; the first is that 0KU and 0SD adders have no implementation results. This

is because after running the simulation using Icarus Verilog mentioned in section 4.1, the relative

error of the internal product calculation was too high, being 40% for the 0KU and a staggering

91% for the 0SD. With errors this high, the result degradation caused by using these modules

would outweigh any possible gain in the other parameters. As such, they were not synthesised.

The second key aspect is that Static Power consumption represents a significant portion of the

total power consumption. This type of consumption is inherent to the FPGA, as to be reconfig-

urable, the interconnections are done with the help of extra transistors that have leakage currents

that accumulate. This problem is especially significant in smaller designs, like the 8-bit input 1

multiplier vector product module, where the static power consumption represents upwards of 90%

of total power consumption.

Another slight problem is the sensibility of the Vivado power reports. While the report can

detect smaller consumptions, the minimum presented power is 0.001 W. This is not much of a

problem in more extensive designs, as power consumptions rise closer to the Watts. However,

for minor cases like the one presented in table 4.1, this representation accuracy can lead to all

approximate adders having virtually the same power consumption and the possibility of minor

inaccuracies existing due to rounding.
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With respect to the relative error, the majority of the nine designs implemented have errors be-

tween 1 and 5%. The BEAD is the worst-performing implemented adder in this metric, achieving

close to 10.5% error. On the positive side, the 110 adder achieved the results closest to the exact

values, with 0.026% relative error.

As for power consumption, as mentioned earlier, all designs have small dynamic power con-

sumption, and rounding errors in the main contributors to these values (clock, logic, I/O and

signals) can explain the differences between most of them. However, the 0GX, the 0NT and the

110 adders performed the worst in this metric, with 40% more consumption than the exact adder.

As for resources utilised, most adders, except for the RA4, RA5 and 0KG adders, used more

LUTs than the exact implementation. This can be explained by the use of specialised structures

for carry propagation, which are better utilised by the exact implementation. All adders use the

same or fewer FFs as the exact one, with special mention to the RA5 that uses the least, using 80%

of the FFs.

Lastly, when it comes to clock period and frequency, the exact adder worked at 100 MHz. The

only adder that performed worse than this was the BEAD, with a period of 11ns, corresponding to

roughly 91 MHz. The RA4 obtained the same frequency as the exact implementation. The RA5

and 110 adders could operate with a period of 9ns (frequency of 111 MHz) while the remaining

adders with 8ns (frequency of 125 MHz). The main limitation to going any faster is multiplication,

not addition.

A simple metric to represent the power-area product was created to select the best possible

designs for the implementation with both arithmetic units approximated. This metric is simply

the dynamic power consumption multiplied by the sum of LUTs and three times the FFs. This

factor of 3 was chosen based on the proportion of FFs used in the designs after all syntheses were

performed to balance saving resources of both types. Following this metric, the best designs are

RA5 and 0KG. Coupling this metric with the relative error obtained for each adder and the maxi-

mum clock frequency, the 0HE was also chosen. This choice might not seem to make much sense

according to table 4.1, as the 0RH adder presents similar results to the 0HE in clock, power and

resources while having 10× lower relative error, but when the number of parallel multipliers is

increased (as possible to see in tables A.1 and A.2), the 0HE adder becomes more advantageous

as it uses slightly fewer resources and has lower power consumption than the 0RH. The increase

in the number of parallel multipliers also affects the accuracy of the internal product calculation.

As the number of parallel multipliers rises, the relative error increases. This is due to using ap-

proximate adders to implement a small adder tree after multiplication. In this adder tree, the

errors accumulate differently as the number of multipliers increases. While the inputs never cause

overflow using exact arithmetic due to precise input scaling, no overflow protection exists in the

approximate modules that can overflow from accumulated errors.

4.3.2 Vector Product with Approximate Multipliers

After obtaining the results for approximate adders, the adder module was set to the exact adder

to test the approximate multipliers. Similarly to the adder case, the multiplier was altered using
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a module parameter, and a combination of bash, Python and tcl scripts was used to obtain the

results. Since the circuits obtained are more complex and higher bit width multipliers require

recursive multipliers for most of the modules tested, only 8 and 16-bit inputs were used, meaning

both configurations could be synthesised with 1, 2 or 4 parallel multiplications.

Much like the adder case, only one synthesis case is presented for the 8 and 16-bit multipliers

to simplify the result presentation. All other cases can be consulted in Appendix A.2.

Table 4.2: Vector Product results for 8-bit multipliers

Mult Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 12 0.0000 0.121 0.105 0.016 378 129 12.24
Ax1 13 0.0043 0.118 0.105 0.013 373 129 9.88
Ax2 12 0.0507 0.118 0.105 0.013 360 129 9.711
Ax3 13 0.1029 0.115 0.105 0.01 340 129 7.27

HPAM 11 0.0575 0.121 0.105 0.016 397 129 12.544
2NDH 11 0.0820 0.109 0.104 0.005 256 129 3.215
12YX 12 0.0005 0.123 0.105 0.018 445 129 14.976
XFM 12 0.0056 0.116 0.105 0.011 380 129 8.437
ZDF 12 0.0013 0.121 0.105 0.016 428 129 13.04

Table 4.2 contains the results for the internal product of two vectors using 8-bit multipliers and

performing four simultaneous multiplications. Once again, static power consumption represents a

large majority of total power consumption, hovering around 80 to 85%.

The relative error of the modules is higher than the tests performed in Section 3.2 due to ac-

cumulation from repetitive calculations. Unlike the adders, the relative error stayed constant with

the number of simultaneous multiplications, which aligns with the explanation given in the previ-

ous subsection for the increase when approximate adders are used. The 8-bit multiplier with the

lowest relative error is the 12YX, achieving 0.052%. On the other hand, the Ax3 multiplier regis-

tered the most significant error, at 10%. This result was expected, especially after the simulations

performed on simple multiplications.

All multipliers use the same number of FFs. This is because FF usage primarily depends on

the adder implementation from the accumulation unit. LUT-wise, four of the eight multipliers

use more resources than the exact implementation. They are the HPAM, the 12YX, the XFM

and the ZDF multipliers. In the case of HPAM, this resource usage can be explained by the fact

that the compression tree was manually built in the hardware description. As such, any possible

optimisations the FPGA could have used for implementation of the FAs and HAs that compose

it are discarded. In the other cases, the extra resources can be related to the limitations of the

CGP algorithm used, where the number of 2-input gates is pre-defined. As such, after the FPGA

optimises the exact implementation, fewer LUTs are required to describe the circuit’s behaviour.

The multiplier that uses the fewest resources is the 2NDH using 68% of the LUTs of the exact

implementation. It also is one of the multipliers with the highest error rate.

The 2NDH has the lowest dynamic power consumption by far, having less than 1
3 of the con-

sumption. On the other end of the spectrum, the 12YX has the highest power consumption, even

higher than the exact multiplier. This can be explained by the larger number of resources required

to implement this multiplier.
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Multiplying the dynamic consumption by the used resources similarly to what was performed

for the adders, it is possible to see that the 2NDH has a significant lead in this metric. However,

the high relative error raises whether this multiplier will lead to high result degradation. This is

also the case for the second multiplier according to this metric, the Ax3. As such, combining these

metrics, the XFM multiplier is the most likely to obtain good results in a neural network.

The minimum clock period for the exact multiplier is 12ns, corresponding to 83 MHz. Half

of the implemented modules achieved this same result. The Ax1 and Ax3 multipliers could only

go to 77 MHz. In the first one, the high amount of exact blocks paired with the additions required

to complete the result caused this increase in delay, while in the second one, the use of two less

approximate submodules might lead to inefficiencies in the optimisation process of the FPGA.

Achieving a maximum clock frequency of 91 MHz, the HPAM and 2NDH perform better than the

exact counterpart. It is important to note that using more multipliers in parallel leads to decreased

clock frequency. This is due to two factors: the first one is the increase in the number of adders

required to obtain the result, and the second one is the need for more interconnections and routing

of signals to feed the inputs to the multipliers.

Table 4.3: Vector Product results for 16-bit multipliers

Mult Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 13 0.0000 0.12 0.105 0.015 351 131 11.16

Ax0233 14 0.0028 0.119 0.105 0.014 341 131 10.276
Ax0333 13 0.0030 0.122 0.105 0.017 341 131 12.478
Ax1233 15 0.0040 0.119 0.105 0.014 333 131 10.164
Ax3333 14 0.1026 0.119 0.105 0.014 329 131 10.108

1UG 12 0.0311 0.109 0.104 0.005 142 119 2.495
2KD 13 1.807E-05 0.129 0.105 0.024 385 131 18.672
3CF 13 7.099E-09 0.147 0.105 0.042 502 131 37.59
3H1 14 3.475E-08 0.144 0.105 0.039 490 131 34.437
3PM 14 4.099E-07 0.138 0.105 0.033 463 131 28.248
5A2 12 0.0013 0.115 0.105 0.01 270 129 6.57
7QP 14 8.674E-06 0.13 0.105 0.025 391 131 19.6
HDT 14 0.1226 0.107 0.104 0.003 93 111 1.278

Table 4.3 contains the results for the internal product calculation using 16-bit multipliers and

only performing one multiplication at a time. As with every other case, static power consumption

represents most of the total power consumption.

The relative error of most modules used for the 16-bit multiplication was low, below 1%. There

are only three exceptions: the Ax3333, the 1UG and the HDT multipliers. The inaccuracy of the

first design was already expected, as mentioned at the end of subsection 3.2.1. The relative error

of the other two multipliers was also high in the tests performing a single multiplication between

two numbers. Furthermore, the error accumulation natural to the calculations performed in this

module increased the MRE. The 16-bit adders also contain the design with the lowest MRE, the

3CF.

In operation frequency, only two modules performed better than the exact approach, the 1UG

and the 5A2, achieving frequencies up to 83 MHz compared to the 77 MHz achieved by the exact

multiplier. All other modules performed similarly or worse than it, with the worst one being the
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Ax1233 multiplier, capping at 67 MHz. These values can be explained by the implementation

of the exact multiplier chosen by the FPGA being an extremely efficient design instead of a con-

ventional tree multiplier. Another possible explanation is that the inexact multipliers do not take

advantage of optimisations provided by using a FPGA or by the logical expressions not being well

translated to the blocks used.

As for used resources, the most inexact EvoApproxLib multipliers stand out from the rest,

requiring less LUTs and FFs to be implemented. In the case of the 1UG, less than half of the

LUTs are used, while the HDT uses less than one-third. The 5A2 comes next regarding used

resources, using 270 LUTs and 129 FFs. It is the third and last adder to use fewer FFs than the

exact module. All others use the same amount, 131. The Ax recursive multipliers provide small

saves in resource usage, ranging from 2.8% with the Ax0233 to 6.3% with the Ax3333. The price

to pay for the highly accurate results presented by the other multipliers is, unfortunately, the need

for more resources than the exact circuit.

Dynamic power consumption follows the same trend as resource utilisation, with 1UG, HDT

and 5A2 having significantly lower consumptions than the exact scenario. The HDT multiplier has

the lowest value, with only 3mW, one-fifth of the exact module. On the other end of the spectrum,

the 3CF multiplier uses almost three times more dynamic power than the accurate one.

Similarly to the previous tests, a metric for the power-area product was calculated to deter-

mine possible practical circuits to implement in a scenario where both the adder and the multiplier

modules were approximated. Despite the higher error rate, the HDT and 1UG performed fantasti-

cally in this metric and were selected for use. The 5A2 and the Ax1233 were also chosen as more

accurate alternatives in the case the error accumulated by the other two modules caused the results

to be unusable.

Synthesis Directives

As previously mentioned, almost all 16-bit multipliers used more resources than the exact imple-

mentation. Optimisation strategies and directives were used during the synthesis process to study

possible extra optimisations that could lead to decreases in used resources and power consumption.

Two directives were tested, AreaOptimized_High and PowerOptimized_High. The synthesis, im-

plementation and simulation to obtain power results were rerun using these directives. Tables 4.4

and 4.5 present the results for the AreaOptimized_High directive. The results for the PowerOpti-

mized_High directive were highly similar, being identical in most cases and differing in one LUT

or one mW in power consumption at most, so the tables for these runs are available in Appendix

A.3, as the conclusions obtained are the same.

Table 4.4 can only be adequately interpreted with the default directive run table, table 4.2.

Comparing these two tables, it is possible to see that the maximum operation frequency of the

circuit decreased as the period increased by one or two nanoseconds.

The resources used for all designs decreased, and only the 12YX multiplier used more re-

sources than the exact implementation. The decrease happened exclusively to the LUTs, and the
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Table 4.4: Vector Product results for 8-bit multipliers using AreaOptimized_High directive

Multiplier Clock (ns) Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 13 0.116 0.105 0.011 360 129 8.217
Ax1 14 0.115 0.105 0.01 346 129 7.33
Ax2 12 0.113 0.104 0.009 330 129 6.453
Ax3 13 0.113 0.104 0.009 318 129 6.345

HPAM 13 0.114 0.105 0.009 346 121 6.381
2NDH 12 0.11 0.104 0.006 245 129 3.792
12YX 13 0.116 0.105 0.011 366 129 8.283
XFM 14 0.112 0.104 0.008 320 129 5.656
ZDF 14 0.116 0.105 0.011 360 129 8.217

variation is design-dependent, varying from 4.3% in the 2NDH to 17.8% in the 12YX module. Dy-

namic power consumption also decreased by about one-third for most designs. The only exception

is the 2NDH multiplier, whose power consumption increased by 1mW. However, this design is still

the most energy-efficient one.

Table 4.5: Vector Product results for 16-bit multipliers using AreaOptimized_High directive

Multiplier Clock (ns) Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 18 0.166 0.105 0.061 1270 225 118.645

Ax0233 18 0.163 0.105 0.058 1206 225 109.098
Ax0333 18 0.165 0.105 0.06 1194 225 112.14
Ax1233 18 0.162 0.105 0.057 1169 225 105.108
Ax3333 18 0.162 0.105 0.057 1132 225 102.999

1UG 16 0.117 0.105 0.012 418 149 10.38
2KD 20 0.187 0.106 0.081 1165 223 148.554
3CF 20 0.223 0.106 0.117 1581 225 263.952
3H1 20 0.22 0.106 0.114 1536 225 252.054
3PM 20 0.197 0.106 0.091 1379 225 186.914
5A2 17 0.131 0.105 0.026 796 201 36.374
7QP 20 0.189 0.106 0.083 1275 223 161.352
HDT 11 0.108 0.104 0.004 225 105 2.16

Comparing with the default directive synthesis results presented in table A.13, it is possible to

conclude that the dynamic power consumption in all designs decreased by between 25% and 35%,

even in the HDT multiplier that already had a small dynamic power consumption of 6mW.

The maximum operation frequency varied very differently according to the design. In the

case of 1UG, it maintained the same value in both synthesis scenarios; in the Exact and the HDT

modules, the minimum operation period decreased by two and one nanoseconds with the AreaOp-

timized_High directive, respectively. All other multipliers performed worse, requiring a clock

frequency as low as 50 MHz.

As for used resources, the synthesis with the directive decreases the usage of both LUTs and

FFs, unlike the 8-bit multiplier case. The FF reductions occurred for the 1UG, 2KD, 5A2, 7QP

and HDT designs and ranged from a less than 1% decrease for 2KD and 7QP to 27.6% in the HDT

design. Regarding the LUTs, the synthesis was more advantageous for approximate designs, as

the exact multiplier only used 2.4% less of this resource.
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DSP Usage

In section 4.2, it is mentioned that in the synthesis settings, the use of DSP blocks was disabled as

the multiplication being implemented in them was believed to be heavily beneficial for the exact

design. To test this hypothesis, these blocks were enabled, and the process was rerun. Table 4.6

contains the results for this run, using 16-bit multipliers and four parallel operations.

Table 4.6: Vector Product Results using DSPs for 16-bit multipliers

Multiplier Total Power (W) Static (W) Dynamic (W) LUT FF DSP
Dynamic*(LUT+
+3FF+100DSP)

Exact 0.11 0.104 0.006 36 65 5 4.386
Ax1233 0.163 0.105 0.058 1220 225 0 109.91

1UG 0.117 0.105 0.012 445 149 0 10.704
2KD 0.186 0.106 0.08 1285 223 0 156.32
3CF 0.228 0.106 0.122 1647 225 0 283.284
3H1 0.224 0.106 0.118 1670 225 0 276.71
3PM 0.211 0.106 0.105 1645 225 0 243.6
5A2 0.134 0.105 0.029 911 201 0 43.906
7QP 0.195 0.106 0.089 1410 223 0 185.031
HDT 0.109 0.104 0.005 240 105 0 2.775

As expected, the use of DSP blocks only benefitted the exact multiplication, as the only circuit

the FPGA recognises that can be implemented using these blocks. The accurate multipliers in the

Ax multipliers smaller submodules are not implemented in the DSPs due to their size. The FPGA

only implements 16×16 multipliers or larger in them, requiring an extra flag to implement 8×8

or 4× 4 multipliers. This flag is required because the gains in speed by using these blocks are

offset by the need to move data to these blocks and back to the circuit. It is considered that for

these smaller multiplier sizes, the negatives outweigh the benefits.

The exact implementation using DSP blocks performs a lot better than its counterpart that

does not. The comparison can be made between this table and table A.13. Using five blocks,

the use of LUT and FF is cut dramatically, and power consumption is lowered. The number of

LUTs decreases by 97% and the number of FFs by 71%. The dynamic power consumption also

decreases from 82mW to just 6mW. The maximum clock frequency also more than doubles.

This leads to the conclusion that no approximate multiplier implementation can beat the effi-

ciency of exact multipliers implemented on a FPGA with DSP blocks available.

4.3.3 Vector Product with Approximate Multipliers and Adders

After performing synthesis and implementation with approximate adder modules and approxi-

mate multiplier modules, the best implementations mentioned in the previous subsections were

selected based on a combination of relative error, power-area product and maximum operation

frequency/minimum operation period. After this choice, synthesis and implementation of the vec-

tor product module were run using both approximate arithmetic units. To do this, two parameters

were used in the hardware description of the module, one for each circuit type. With the help of
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Python, bash and tcl scripts, the results were obtained and are presented in tables 4.7 and 4.8 for 8

and 16-bit inputs, respectively. In an attempt to use the largest circuit possible, both runs use four

parallel multipliers.

Table 4.7: Vector Product results for 8-bit inputs with four multipliers

Mult Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact Exact 12 0.0000 0.121 0.105 0.016 378 129 12.24
2NDH 0HE 11 0.0759 0.109 0.104 0.005 216 122 2.91
2NDH 0KG 12 0.1209 0.108 0.104 0.004 192 107 2.052
2NDH RA5 11 0.2549 0.108 0.104 0.004 206 105 2.084
XFM 0HE 14 0.0385 0.115 0.105 0.01 304 122 6.7
XFM 0KG 13 0.0867 0.111 0.104 0.007 284 118 4.466
XFM RA5 13 0.0841 0.11 0.104 0.006 300 113 3.834

HPAM 0HE 12 0.0527 0.116 0.105 0.011 360 122 7.986
HPAM 0KG 13 0.1022 0.11 0.104 0.006 314 118 4.008
HPAM RA5 12 0.1917 0.11 0.104 0.006 360 113 4.194

Ax1 0HE 14 0.0116 0.118 0.105 0.013 332 122 9.074
Ax1 0KG 14 0.0468 0.111 0.104 0.007 323 118 4.739
Ax1 RA5 14 0.0987 0.111 0.104 0.007 330 113 4.683

For 8-bit inputs, the multiplier modules were the 2NDH, the XFM, the HPAM and the Ax1.

The 16-bit adders chosen were the 0HE, the 0KG and the RA5. Icarus Verilog simulations were run

for 50000 random vectors with 32 numbers each, between 0 and 32, to avoid overflow. The MRE

of each combination of adder and multiplier were taken. All MRE were between 1% from the

Ax1-0HE pair and 25% from the 2NDH-RA5 pair. The 0HE adder presented the lowest relative

error when combined with different multipliers. The 2NDH multiplier had the highest relative

error of the multipliers when combined with different approximate adders.

Regarding power consumption, once again and maintaining the theme, static power consump-

tion represents most of the total power. All pairings obtain lower values than the exact implemen-

tation regarding the dynamic power consumption. This is to be expected, as all designs with higher

consumption were excluded from this test. The lowest power consumption came from using the

2NDH multiplier, as all three pairs have the lowest consumption. Regarding adders, the 0HE adder

uses more power than the other two designs, going from marginally using more when paired with

the 2NDH multiplier to consuming almost double the power when paired with the HPAM or the

Ax1 modules.

Seven of the 12 pairs achieve lower maximum operation frequency than the exact module.

All pairs that include the Ax1 multiplier achieve the lowest maximum frequency, at roughly 71

MHz. This is because the Ax1 module uses a lot of exact multiplier submodules and 12-bit adders

to obtain its result, which takes longer than other multipliers. The two pairs faster than the exact

implementation are the 2NDH-0HE and the 2NDH-RA5. They achieve 91 MHz as their maximum

operational frequency.

Finally, for resource utilisation, all designs achieve significant savings when compared to the

exact implementation in both LUTs and FFs. Once again, the 2NDH multiplier is the multiplier

that uses the least amount of resources, with its combo with the RA5 adder achieving the lowest

amount with 46% less LUTs and 19% less FFs. On the other end of the spectrum, the HPAM and
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Ax1 multipliers lead to the highest resource utilisation, which is close to 10% less than the exact

implementation.

Calculating the power-area product designs using the 2NDH multiplier is the clear winner in

that metric. However, these cases’ MRE is also the highest, so there is a trade-off between the

accuracy and the power consumption/area utilised.

Ultimately, the pair chosen for implementation will depend on the use case required, the crite-

ria utilised, and the application requirements. If the objective is to get the lowest possible power

consumption, the 2NDH-0KG pair could be used. If it is operation frequency, the 2NDH-0HE

one could be used instead. If strict accuracy requirements exist, the Ax1-0HE pair could be used,

among other uses. Different combos can solve different problems, depending on what is valued

more.

Table 4.8: Vector Product results for 16-bit inputs with four multipliers

Mult Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact Exact 20 0.0000 0.188 0.106 0.082 1301 225 162.032
1UG RA5 16 0.0320 0.118 0.105 0.013 440 145 11.375
2KD RA5 18 0.0004 0.161 0.105 0.056 1227 193 101.136
5A2 RA5 17 0.0018 0.135 0.105 0.03 893 185 43.44
HDT RA5 12 0.1237 0.109 0.104 0.005 260 111 2.965

Ax1233 RA5 19 0.0041 0.139 0.105 0.034 1140 193 58.446

As 32-bit adder implementations do not exist in the EvoApproxLib and no tests have been

performed on chaining the adders to obtain a higher bit width adder, the only one used in the 16-

bit input implementation was the RA5. The multipliers chosen were the 1UG, 2KD, 5A2, HDT

and Ax1233, for reasons mentioned in subsection 4.3.2.

With the exception of the HDT-RA5 pairing, all pairs of modules showed a MRE below 10%.

The accuracy concerns with using the HDT multiplier existed since the tests with only approximate

multipliers. However, the power consumption and resource utilisation benefits were too big to

dismiss this multiplier for this test. The MRE of the 2KD-RA5 pair was especially good, being

only 0.04%.

Regarding resource utilisation, all pairs used fewer resources than the exact implementation.

The 2KD and Ax1233 saved the least amount of resources, while the HDT-RA5 pair achieved the

lowest utilisation, with 80% less LUTs and 49% less FFs than the exact module. This resource-

saving is massive, so this would be the pair to use if the goal of using approximate computing was

only to save resources.

For power consumption, as per usual, static power is the majority of total consumption. The

HDT multiplier’s immense power-saving capabilities are shown once again here, as the module

has a dynamic power consumption of only 5mW, around 6% of the dynamic power consumption

of the exact implementation. All pairs of modules perform better in this metric as well. The worst-

performing pair, the 2KD-RA5 pair, has a dynamic power consumption of 56mW, which is still

32% less power consumption.

All pairs can achieve a higher operation frequency than the original exact implementation.

This could operate at a maximum of 50 MHz. The various module pairs improve differently on
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this frequency, going from the Ax1233-RA5 with 53 MHz to the HDT-RA5 pair with 83 MHz.

The faster operation frequency enables the possibility of obtaining the results faster for the internal

product of two vectors, indirectly leading to lower total power consumption as the static power

consumption, which is the majority of total power, decreases.

In the case where accuracy requirements rule out the usage of the HDT multiplier module,

two other pairs can be used, the 1UG-RA5 and the 5A2-RA5. These two modules have worse

maximum operating frequencies, dynamic power consumptions and resource utilisations than the

HDT-RA5 pair but provided lower MRE and better accuracy, allowing for the use of approximate

computing in uses where the accuracy requirements are stricter than 10% in the case of the 1UG,

or than 1% in the case of the 5A2.

4.4 Image Sum

After performing tests using the vector product module, it was decided to test the arithmetic units

in other scenarios where result degradation would have a clear noticeable impact beyond the nu-

merical error. As such, two simple image processing applications were developed and tested: the

Image Sum and the Sobel filter. This section presents the results obtained for the Image Sum

application.

The image sum application is a straightforward algorithm that takes two images and sums them

together pixel by pixel. It has no practical use, but it is an example where errors in the process

have apparent visual effects on the result when they are large enough. This simple circuit can be

achieved using only one adder that sums up one pixel each clock cycle.

The images used for this experiment are shown in Figure 4.1. The first image is the Lena

image, a standard image used in image processing. The second is a landscape image, and the third

is a cat image. These images were resized to be the same size and then converted to greyscale.

In greyscale, each pixel is represented using an 8-bit number, so the possible values range from

0 to 255, where 0 is black and 255 is white. Adding two values while maintaining the ability to

observe the result in an image means that either a saturation post-addition needs to be performed

or changes to the input values need to be performed to prevent overflow. The first approach would

lead to images that generally have high pixel values, appearing two bright, so a simple solution

to the problem was to divide all input numbers by two by performing a right shift. This would

guarantee that the result would never overflow using exact addition.

Since three images were chosen to be used, the images were added in three different scenarios.

The first scenario is the sum of the cat and the landscape images (Figure 4.2a), the second scenario

is the sum of the cat and the Lena images (Figure 4.2b), and the third scenario is the sum of the

landscape and the Lena images (Figure 4.2c).

The module that performs the image sum was implemented using Verilog, using a parameter

to change the adder being used to operate. This parameter was changed using a Python script that

rewrote the appropriate lines in the hardware description files. After performing the synthesis and

implementation and obtaining the resource utilisation and power consumption, another Python
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(a) Lena (b) Landscape (c) Cat

Figure 4.1: Images used for the Image Sum experiment

(a) Sum of cat and landscape
(Scenario 1)

(b) Sum of cat and Lena (Sce-
nario 2)

(c) Sum of landscape and Lena
(Scenario 3)

Figure 4.2: Exact Results for the Image Sum experiment

script would better reconstruct the output using the output from the module to visualise the impact

of the approximation on the image. Figure 4.3 has two examples of these images, one using the

110 adder and another from the 0KG adder, both from the EvoApproxLib. The second adder’s

result is subpar, making it unable to extract useful information from the operation. One important

thing to note is that, even though the inputs were altered so that overflow never happened in the

exact scenario, some approximate modules still led to overflow cases, making the addition of a

saturation step at the end of the operation, where any value above 255 would become 255. In

some cases, this led to drastic changes, where a large portion of the results was between 255 and

300.

(a) Scenario 1 results using the 110 adder (b) Scenario 1 results using the 0KG adder

Figure 4.3: Images obtained from the Image Sum experiment using different adders
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In an effort to better visualise the error each module committed, a simple function was added

to the Python script in order to create the difference image between the exact result from figure

4.2 and the results obtained from the approximate adders (Figure 4.3). This image is obtained by

obtaining the absolute difference between each pixel from these two images. An example from one

of the previous adders, the 0KG, can be seen in Figure 4.4. If the results are perfect, this image

will appear primarily black, as the differences are low. When the differences are considerable,

this difference image can look like the result image, while usually, it is just almost random noise.

These differences are primarily due to the nature of the errors of the adder, which are not studied

in depth due to time constraints and the use of only the MRE error metric.

Figure 4.4: Example of difference image for the 0KG adder

After running all three scenarios with all adders, the image difference metric (defined in section

2.3) was calculated for all cases. The geometric mean of these three scenarios was also calculated.

These values can be seen in table 4.9. Results below 5, like those obtained from the 6K6, 6P8,

6PT, 0NT and 110 adders, are acceptable results, which are very close to the exact image and

differences are only noticed upon close inspection. At the ten mark, the quality of the images

obtained is degraded to a point where it is no longer acceptable. At 50 and above, the image does

not resemble the correct result and is considered terrible. As such, adders 0HE, 0KG, 0KU and

0SD have too much of a loss for any gains in area and power to compensate for it. It is important

to note that the inputs and outputs are 8-bit, so 16-bit adders might perform worse, as the errors

they commit might be more significant for lower inputs, being balanced by more accurate MSB

calculations, which do not happen in this scenario.

The power consumption and area used by these circuits can be seen in table 4.10. As with the

vector product case, the static power consumption is a significant part of the total power consump-

tion, sometimes being more than 80%. Once again, this is due to the characteristics of a FPGA and

the way interconnections are performed. Of the remaining dynamic power consumption, the great

majority of it comes from I/O operations, as the module performs one addition per pair of inputs,

and the images used were 256× 256, meaning that summing two images requires changing the

inputs 65536 times. All the adders were implemented using only LUTs. Unlike the vector product

implementation, the RA5 adder uses more LUTs than the exact adder. As expected, the modules
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Table 4.9: Image Sum Image Difference

Adder
Image Difference

Scenario 1 Scenario 2 Scenario 3 Geometric Mean
Exact 0.000 0.000 0.000 0.000
RA4 6.697 7.307 7.111 7.034
RA5 7.343 7.440 7.164 7.315
3RE 19.662 19.457 23.597 20.822
6K6 2.493 2.513 2.493 2.500
6P8 1.231 1.224 1.226 1.227
6PT 0.501 0.501 0.497 0.500
6QU 5.324 5.363 5.458 5.381
108 13.041 11.069 12.153 12.060
0GX 10.608 10.641 9.680 10.300
0HE 59.129 54.473 61.494 58.292
0KG 89.972 87.979 92.997 90.293
0KU 104.718 111.159 108.373 108.051
0NT 3.347 3.334 3.325 3.335
0RH 37.268 35.451 33.625 35.417
0SD 88.156 85.242 91.679 88.320
110 1.226 1.226 1.220 1.224

with the highest error and image difference use the lowest amount of LUTs, with three modules

even using none. In these cases, Vivado optimises the circuit to directly connect some bits of the

inputs to an output, immediately connecting bits that are always considered 0 to ground.

To better understand if this is not a mistake, the image sum module was altered in order to

use eight adders simultaneously, parallelising the operation and using more resources. The results

for these synthesis attempts can be found in table 4.11. As it is possible to observe in the table,

the area usage increased by 8×, and the adders previously mentioned continue to be implemented

using no LUTs.

4.5 Sobel Filter

The second image process application implemented was a Sobel filter. This filter is used in edge

detection algorithms, and its results are images where edges and transitions are emphasised. It

consists of applying two kernels to determine gradients, one for the horizontal values and one for

the vertical values. These are then combined to form one single image. The application of a kernel

to an image is a simple convolution process. An example of an image after applying the Sobel

filter can be seen in Figure 4.5.

The Verilog modules for this operation are part of the benchmarking suite AxBench [28] (Sec-

tion 2.7) and is one of the two planned circuits to be used from this suite, the other being the

K-means clustering algorithm. After some simple adjustments to the modules provided so that a

parameter could define the adders to be used, the modules were ready for testing.
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Table 4.10: Image Sum Area and Power Results

Adder LUTs Static Power (W) Total Power (W)
Exact 7 0.105 0.132
RA4 7 0.105 0.119
RA5 10 0.105 0.123
0GX 2 0.104 0.109
0HE 0 0.104 0.106
0KG 0 0.104 0.106
0KU 1 0.104 0.105
0NT 4 0.104 0.114
0RH 1 0.104 0.109
0SD 0 0.104 0.109
110 6 0.105 0.124
3RE 1 0.104 0.110
6K6 6 0.105 0.115
6P8 7 0.105 0.121
6PT 7 0.105 0.126
6QU 5 0.104 0.111
108 5 0.104 0.111

Table 4.11: Image Sum Area and Power with eight adders

Adder LUTs Static Power (W) Total Power (W)
Exact 56 0.106 0.188
RA4 56 0.105 0.149
RA5 80 0.105 0.167
0GX 16 0.105 0.124
0HE 0 0.104 0.107
0KG 0 0.104 0.107
0KU 8 0.104 0.109
0NT 32 0.105 0.139
0RH 8 0.105 0.121
0SD 0 0.105 0.116
110 48 0.105 0.163
3RE 8 0.105 0.125
6K6 48 0.105 0.143
6P8 56 0.105 0.155
6PT 56 0.105 0.166
6QU 40 0.105 0.132
108 40 0.105 0.128

The hardware description for the Sobel operation uses different bit width adders, ranging from

8 to 11 bits. However, most adders being tested do not have implementations for these widths.

As such, simple wrapper modules were created that could work with any bit width and would

appropriately adapt the input number to be used in an 8 or 16-bit adder. In the 8-bit case, the

MSBs were calculated using exact adders, which reduces error magnitude. For the 16-bit case,
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Figure 4.5: Sobel Filter Exact Result

the inputs were padded using 0s until they could be used in the adders. Due to these different

implementations, the adders are grouped into three distinct options: 8-bit, 16-bit, and variable

width.

In order to obtain the image difference metric, a simulation using Icarus Verilog was per-

formed. Afterwards, using simple Python scripts, the images were reconstructed from the outputs

of the modules. In most cases, the error appeared as a difference in the result pixel intensity,

as the image shape could still be confirmed, albeit sometimes with some difficulty. Two images

containing the results can be seen in Figures 4.6a and 4.6b.

(a) Sobel Filter 0KU Result (b) Sobel Filter 6PT Result

Figure 4.6: Images obtained after applying Sobel Filter

Similarly to the image sum scenario, the difference image was obtained by performing the

absolute difference between the exact result and the values obtained from the approximate mod-

ules being tested. For most cases where the error is significant enough for this image not to be

completely black, the original image can be perceived without much distortion, further confirming

that the differences happen mostly in intensity. Figure 4.7 shows the difference image for the 0KU

adder, which is almost the intended result image, showcasing how poorly this adder performs this

operation.
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Figure 4.7: Example of difference image for the 0KU adder

After creating the difference image, obtaining the image difference metric is trivial by per-

forming the square root of the mean square error of the values in this image. The obtained values

are shown in tables 4.12 to 4.14.

Table 4.12: Sobel Filter Image Difference for adders with variable bit width

Adder Exact RA4 RA5
ImgDiff 0.000 34.250 47.277

Table 4.13: Sobel Filter Image Difference for 8-bit adders

Adder Exact 3RE 6K6 6P8 6PT 6QU 108
ImgDiff 0.000 37.463 7.786 3.328 1.290 17.686 36.257

Table 4.14: Sobel Filter Image Difference for 16-bit adders

Adder Exact 0GX 0HE 0KG 0KU 0NT 0RH 0SD 110
ImgDiff 0.000 20.662 84.883 126.660 135.783 9.147 119.456 125.457 2.061

Comparing these image difference metrics with the ones obtained in the image sum test sce-

nario, it is possible to see that for the Sobel operation, the metric is worse for all modules, with

significant changes for the ones that had medium values previously (between 5 and 50). Only three

adders, the 8-bit 6P8 and 6PT, and the 16-bit 110 obtained values lower than five in this metric.

Not even calculating the MSBs using exact adders caused this trend to shift in the 8-bit adders.

The increase in the image metric difference can be explained by the simple fact that, unlike

the image sum operation, the Sobel filter does not consist of only one addition, and as such, errors

can accumulate, causing the result to deviate further.

Unfortunately, due to this application not being the main focus of the dissertation and the time

constraints, synthesis and implementation were not performed for the Sobel filter operation, so

there are no values for the power consumption and the used resources.
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Earlier in this section, it was mentioned that the K-means clustering algorithm from the

AxBench benchmarking suite would also be used and implemented. However, simulations per-

formed using it could not obtain any meaningful result, as the hardware description module does

not output any values. Since there is no user manual or guide to troubleshoot the problems cor-

rectly, and time constraints were already a concern, it was chosen not to use this benchmark.

4.6 Neural Network

To fulfil the objectives outlined in Section 1.2, namely the implementation of a simple inference

accelerator for digital neural, it is necessary to choose and implement an adequate Neural Network.

As the implementation of said network is not the primary goal of the dissertation but only a means

to demonstrate the effectiveness and performance of the implemented designs, a complex problem

should not be used. As such, the MNIST database of handwritten digits, whose problem to be

solved is the correct identification of greyscale handwritten digits, was chosen as the problem to

solve.

This database comprises 70000 28× 28 greyscale images divided into two datasets. Sixty

thousand compose the training set, and the remaining 10000 the testing set. The images are also

labelled with the correct digit they represent, which can be used during training for backpropaga-

tion and testing to determine the accuracy achieved by the model.

The implemented network should be simple and not occupy an extensive area, as it will be

implemented in a FPGA. Due to this, a simple approach to the network, composed only of fully

connected layers and with few nodes and layers, was chosen as the target implementation.

Having defined the target network, a software version was implemented using PyTorch, a

well-known Python library for machine learning applications. This version used an input layer

of size 784 (28× 28), which required reshaping of the inputs but would simplify the hardware

implementation, and two hidden layers with 30 nodes each between this layer and the ten-node

output layer, where each output would represent the likelihood of the input being each of the digits

from 0 to 9. After training and evaluation, the accuracy achieved by this model was 94.46%.

These results are obtained using floating-point 32-bit numbers, the default assumed by Py-

Torch. However, the arithmetic units to be designed and implemented operate with integer num-

bers (or fixed point, which can be done using integer operations, taking into account some consid-

erations with the number of bits that represent the fractional part of the number), so this network

had to be quantised. In this way, the network weights and biases would be converted to 8-bit

integers between 0 and 255, and calculations in the layers would be performed using integers,

allowing the use of the modules designed. It would also benefit from using fewer Block Random

Access Memory (BRAM) of the FPGA, allowing for more efficient hardware implementation.

To quantise the network, the Quantization API from PyTorch was used. After that, a new test

was performed to check if the quantisation operation significantly impacted the network’s perfor-

mance. An accuracy of 94.22% was achieved, proving that the operation did not affect the results

significantly.
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The weights and biases from this implementation were saved to be possible to use them for the

hardware implementation using Verilog. A pre-made implementation was preferred to creating

one from scratch, as that would have taken a long time. As such, an implementation under the

MIT Licence was found and used.

The Neural Network module, zyNet, contains a simple, fully connected network of 784 input

nodes, and three hidden layers, the first two with 30 nodes and the last with 10 nodes and 10

output nodes. The module also contains AXI interface for data transfers and a submodule to

determine the maximum value to guess the correct output. The activation function for the nodes

can be set to Sigmoid or ReLU. The latter was chosen as the Sigmoid implementation required a

table of possible values to generate, representing another challenge. While the ReLU has slightly

worse accuracy results in the tests performed by the author of the hardware descriptions, Vipin

Kizheppatt, the structure is easier to implement.

The weights and biases previously saved are used to create memory implementation files that

will initialise the BRAM of the FPGA with the correct values. In order to test the accuracy of

the module, 100 test cases were chosen to be used as inputs to the neural network. This number

is relatively low compared to the maximum number of possible test cases, 10000. However, it is

enough to determine if there is a significant loss of network accuracy when approximate arithmetic

units are introduced.

After some changes to the modules in order to be able to use parameters to change the adder

and multiplier circuit being used, as well as the creation of modules that would allow the use of the

8-bit adders by chaining two together to create a 16-bit adder, synthesis and implementation were

performed. However, due to turning off the DSP blocks and other synthesis options, the resources

used to implement the network exceeded the targeted FPGA capacity. To solve this problem,

a new project was created targetting a different FPGA of the same family, the Artix-7, while

trying to maintain the maximum amount of similarities, such as the speed grade. The new project

targeted the XC7A200T, which was capable of handling the neural network and more in terms

of resources. Unfortunately, the Post-Implementation Timing Simulations required to accurately

determine power consumption would not run in the time left for the project. To solve this, the

synthesis setting that forced to keep equivalent registers was disabled, and the resource-sharing

option was turned back on, drastically reducing the resources used and allowing Post-Synthesis

Functional Simulations to be run on time. Because of these setting changes, the synthesis could

now be performed on the Zedboard (Zynq-7000) again.

With these setbacks now solved, the synthesis and implementation process was performed for

the neural network and the post-implementation simulation to obtain the power consumption. The

results of this process for adders are presented in table 4.15 while table 4.16 contains the results

for the multipliers.

Performing an analysis of the obtained accuracy for the 100 test cases, it is possible to see that

only six adders out of 16 could maintain network accuracy. All the other ones lead to no matter

the input image, the predicted digit being always the same, being 6 for the RA5, 3 for the 0KG, 1

for the 6QU and 0 for all others.
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Table 4.15: Neural Network Area and Power Results for Approximate Adders

Adder LUTs FFs Static Power (W) Total Power (W) Accuracy (%)
Exact 25023 9657 0.132 0.204 91
RA4 24717 9657 0.132 0.203 91
RA5 26871 9657 0.132 0.210 11
0GX 24599 8937 0.132 0.203 90
0HE 23401 8537 0.132 0.202 86
0KG 22513 8137 0.132 0.199 17
0KU 21579 7382 0.132 0.199 8
0NT 24188 8920 0.132 0.204 88
0RH 23320 8360 0.132 0.202 88
0SD 20435 6885 0.132 0.198 8
110 25179 9497 0.132 0.206 91
3RE 20431 8062 0.132 0.201 8
6K6 24036 8681 0.132 0.202 8
6P8 25897 9177 0.132 0.205 8
6PT 26399 9417 0.132 0.205 8
6QU 22695 7942 0.132 0.199 2
108 22592 8428 0.132 0.199 8

Out of the six adders where the model did not lose the ability to predict different digits, the

RA4 and the 110 adders obtained the same accuracy as the exact implementation, 91%. The 0GX

adder obtained 90%, getting only one more case wrong. The 0NT and 0RH adders achieved a

prediction accuracy of 88%, while the 0HE got 86%.

These results are surprising, as some of the adders that got above 80% did not perform very

well in other applications. This is the case of the 0HE adder, which resulted in the bottom half

of adders in image processing applications. At the other end of the spectrum, the RA5 adder that

showed promising results during vector product, even better than the RA4, performed terribly in

the neural network. Similarly, the 6K6, 6P8 and 6PT 8-bit adders predicted the same digit for all

cases, even though they were the most accurate in the image sum and Sobel filter tests.

These discrepancies may be due to the large number of computations performed in the neural

network that allow errors to accumulate. This causes wild result variations in cases where the error

profile of the adder is not balanced, leading to a loss of model accuracy.

Regarding power consumption, all cases had the same static power consumption that repre-

sented around 65% of total power. The 0RH and the 0HE have the lowest dynamic power con-

sumption of the six adders. However, the 0RH uses fewer resources in both LUTs and FFs while

having 2% more accuracy, making it a better adder for this network if the goal is the lowest power

consumption possible.

As Table 4.16 shows, all approximate multipliers caused the network only to predict 0 for

all the 100 test cases. It was hypothesised that this could be caused by two factors. The first

one was the required changes to the network to use the approximate multipliers. These changes

sometimes lead to needing one more clock cycle to perform calculations, which is not accounted
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Table 4.16: Neural Network Area and Power Results for Approximate Multipliers

Multiplier LUTs FFs Static Power (W) Total Power (W) Accuracy (%)
Exact 25023 9657 0.132 0.204 91

Ax0233 28323 10014 0.132 0.211 8
Ax0333 27984 10012 0.132 0.211 8
Ax1233 27989 10019 0.132 0.210 8
Ax3333 26873 10006 0.132 0.207 8

1UG 11727 6437 0.132 0.176 8
2KD 29861 9506 0.132 0.211 8
3CF 37548 9845 0.132 0.226 8
3H1 36975 9913 0.132 0.227 8
3PM 36169 9660 0.132 0.230 8
5A2 21445 8402 0.132 0.195 8
7QP 30942 9599 0.132 0.216 8
HDT 7300 4965 0.132 0.166 8

for in the control signal circuitry. However, this was ruled out as a cause because performing exact

multiplication through the same changes used for approximate multipliers led to obtaining the

same result as the original network. The second reason is that both inputs are cast to signed values

before being multiplied, even though the result goes to an unsigned register. However, this makes

it so that Vivado interprets the multiplication as a signed multiplication, while all approximate

modules perform unsigned multiplication. This leads to incorrect results. A possible solution

to this is to use the unsigned multipliers with double the input width, extending the signals of

the inputs, and after the multiplication is done, use only the least significant half of the result.

Since the multipliers have a fixed width, this process would need to be achieved through recursive

multiplication, leading to a rise in used resources and consumption. Another solution would be to

use signed multipliers, which would need to be tested and go through all the steps mentioned in

the previous Chapter and this one.

Since the accuracy is unreliable, the power and area analysis cannot be performed only on

the modules that obtained satisfactory results. However, with the current setup, more resources

would need to be used to obtain the actual accuracy values, making the exact multiplier always

need fewer resources and consume less power. This is already the case for 9 of the 12 designs,

except for 1UG, the 5A2 and the HDT multipliers. The results presented in subsection 4.3.2 show

that the 1UG and the HDT multipliers introduce a more significant error than the 5A2. They also

do use much fewer resources and have the lowest power consumption of them as well. With the

HDT multiplier using 1
3 of the LUTs and 1

2 of the FFs, as well as having half the dynamic power

consumption.
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Conclusions and Future Work

To conclude, the use of approximate computing, more specifically through approximate arithmetic

units, leads to gains in area and power consumption while sacrificing accurate results. Depending

on the use case, these gains can be variable and the choice of circuit to use needs to be made

considering application requirements. In the case of a small, fully connected neural network, it is

shown that even adders with similar performance for single additions can lead to vastly different

results for the model’s accuracy. In the studied implementation, the power consumption reduction

was barely noticeable, largely due to the high static power consumption values.

Unfortunately, the network accuracy results when multipliers were so poor due to a problem

with implementation and not because of the approximate modules themselves. Because of it, no

conclusions can be drawn regarding the modules that can be used for the implemented network and

how they affect the model’s accuracy. Only general resource and power consumption conclusions

can be made, which may not be valid due to the modules affecting the network’s accuracy. Unfor-

tunately, due to time constraints, it was not possible to solve this problem on time, but solving it

and obtaining the correct results is a top priority for the future.

Implementing the arithmetic units and testing them in a FPGA, while allowing for a more

extensive test of solutions, proved to have some consequences on the results obtained. The major

ones are the excessive static power consumption and the use of specialised structures to opti-

mise the implementation. High static power consumption is inherent to the FPGA structure and

represented more than 50% of total consumption, reaching upwards of 90% for the more straight-

forward scenarios. This caused total power consumption to be an unreliable metric to verify if the

implemented modules achieved significant savings in power, and the dynamic power consumption

had to be used instead. Regarding specialised structures, like DSPs, it was proven that approxi-

mate designs do not benefit from most of them, giving an edge to the exact implementations. If

they are available, the choice to use them with exact implementations will, most of the time, be

the most resource and power-efficient option. Other specialised structures, like carry chains, can

be partially used by approximate designs, so the differences are not as significant for adder imple-

mentations. However, the presence of these structures may lead to a unit design with them in mind

and trying to optimise them. Some designs specifically targeting FPGA implementation exist, but

65
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they were not studied as it was believed they would not be comparable to the presented designs.

As seen throughout chapter 4, approximate designs’ accuracy varies wildly depending on the

use case. This is because different applications use different amounts of calculations, chain them

in different ways, and use different input ranges, among other differences. As such, no definitive

approximate module can be used for all applications. Even in similar use cases, such as the internal

product of two vectors calculation and the operations in a node in a neural network, the results can

be different, as was proven for the adder case. With this, it is safe to assume that if the network

configuration changes significantly, for example, if a convolutional neural network is used instead,

the most appropriate approximate module will change again. This changing nature of the best

module to use for each application is tied to the spread of errors in the module, which needs to be

further studied in order to be able to predict what application type a module suits best.

5.1 Future Work

As briefly mentioned earlier, further developments could be made to improve and build upon

the results presented. The first and most important one would be to solve the implementation

problems that led to poor results for the use of approximate multipliers in the neural network

application. Further testing could also be done using this neural network configuration, combining

both approximate arithmetic units or using different bit widths, which would require obtaining new

weights and biases. Similar tests could also be done to approximate signed multipliers to compare

them with the unsigned ones implemented in this dissertation. Lastly, in an attempt to remove

the large static power consumption, the better-performing circuits could be implemented in an

application-specific integrated circuit (ASIC) using the appropriate software and synthesis flow.
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Appendix A

Synthesis and Implementation Result
Tables

This Appendix displays the Synthesis and Implementation Results for the scenarios not present

in Section 4.3. The cases these tables present are discussed in this section, but the tables are not

included in the main text to simplify reading the document. The conclusions drawn from these

tables are mostly the same as those drawn from the tables in Section 4.3, with notable exceptions

mentioned in that section.

A.1 Vector Product using Approximate Adders

Table A.1: Vector Product Results for 16-bit Adders with two simultaneous operations

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 11 0.0000 0.111 0.104 0.007 216 114 3.906
RA4 11 0.0245 0.111 0.104 0.007 214 114 3.892
RA5 11 0.0245 0.109 0.104 0.005 198 98 2.460

BEAD 12 0.1041 0.116 0.105 0.011 236 114 6.358
0GX 10 0.0017 0.117 0.105 0.012 218 110 6.576
0HE 10 0.0107 0.112 0.104 0.008 218 107 4.312
0KG 10 0.0513 0.111 0.104 0.007 203 103 3.584
0KU - 0.4154 - - - - - -
0NT 11 0.0026 0.119 0.105 0.014 237 112 8.022
0RH 11 0.0215 0.115 0.105 0.01 205 109 5.320
0SD - 0.9193 - - - - - -
110 11 0.0003 0.115 0.105 0.01 240 113 5.790
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Table A.2: Vector Product Results for 16-bit Adders with four simultaneous operations

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 12 0.0000 0.121 0.105 0.016 378 129 12.240
RA4 12 0.0248 0.117 0.105 0.012 372 129 9.108
RA5 12 0.0245 0.113 0.104 0.009 341 113 6.120

BEAD 13 0.1041 0.132 0.105 0.027 414 129 21.627
0GX 12 0.0017 0.131 0.105 0.026 378 125 19.578
0HE 12 0.0107 0.122 0.105 0.017 356 122 12.274
0KG 12 0.0513 0.113 0.104 0.009 340 118 6.246
0KU - 0.4154 - - - - - -
0NT 12 0.0026 0.14 0.105 0.035 420 127 28.035
0RH 12 0.0215 0.124 0.105 0.019 354 124 13.794
0SD - 0.9193 - - - - - -
110 12 0.0003 0.141 0.105 0.036 433 128 29.412

Table A.3: Vector Product Results for 32-bit Adders with one simultaneous operation

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 13 0.0000 0.12 0.105 0.015 351 131 11.160
RA5 13 8.189E-05 0.118 0.105 0.013 333 99 8.190

BEAD 12 0.1038 0.131 0.105 0.026 402 131 20.670

Table A.4: Vector Product Results for 32-bit Adders with two simultaneous operations

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 16 0.0000 0.145 0.105 0.04 682 178 48.640
RA5 14 8.189E-05 0.133 0.105 0.028 649 146 30.436

BEAD 15 0.1032 0.171 0.105 0.066 744 178 84.348

Table A.5: Vector Product Results for 32-bit Adders with four simultaneous operations

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 16 0.0000 0.188 0.106 0.082 1301 225 162.032
RA5 16 8.189E-05 0.153 0.105 0.048 1221 193 86.400

BEAD 17 0.1032 0.267 0.107 0.16 1454 225 340.640

Table A.6: Vector Product Results for 48-bit Adders with one simultaneous operation

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 16 0.0000 0.159 0.105 0.054 713 203 71.388
RA5 16 5.128E-06 0.148 0.105 0.043 687 155 49.536

BEAD 17 0.1038 0.17 0.105 0.065 752 203 88.465

Table A.7: Vector Product Results for 48-bit Adders with two simultaneous operations

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 18 0.0000 0.204 0.106 0.098 1403 290 222.754
RA5 18 1.903E-06 0.189 0.106 0.083 1354 242 172.640

BEAD 19 0.1032 0.272 0.107 0.165 1460 290 384.450

Table A.8: Vector Product Results for 64-bit Adders with one simultaneous operation

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 19 0.0000 0.197 0.106 0.091 1310 261 190.463
RA5 19 1.248E-09 0.195 0.106 0.089 1275 197 166.074

BEAD 20 0.1038 0.245 0.106 0.139 1344 261 295.653
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Table A.9: Vector Product Results for 64-bit Adders with two simultaneous operations

Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 21 0.0000 0.294 0.107 0.187 2588 374 693.770
RA5 21 1.248E-09 0.254 0.107 0.147 2521 310 507.297

BEAD 22 0.1032 0.473 0.11 0.363 2656 374 1371.414

A.2 Vector Product using Approximate Multipliers

Table A.10: Vector Product Results for 8-bit Multipliers with one simultaneous operation

Mult Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 10 0.0000 0.109 0.104 0.005 122 83 1.855
Ax1 10 0.0043 0.108 0.104 0.004 121 83 1.48
Ax2 10 0.0506 0.108 0.104 0.004 118 83 1.468
Ax3 10 0.1029 0.108 0.104 0.004 113 83 1.448

HPAM 8 0.0575 0.108 0.104 0.004 126 83 1.5
2NDH 8 0.0820 0.108 0.104 0.004 91 83 1.36
12YX 8 0.0005 0.11 0.104 0.006 152 83 2.406
XFM 8 0.0056 0.108 0.104 0.004 130 83 1.516
ZDF 8 0.0013 0.11 0.104 0.006 146 83 2.37

Table A.11: Vector Product Results for 8-bit Multipliers with two simultaneous operations

Mult Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 11 0.0000 0.111 0.104 0.007 216 114 3.906
Ax1 12 0.0043 0.111 0.104 0.007 216 114 3.906
Ax2 11 0.0507 0.11 0.104 0.006 208 114 3.3
Ax3 11 0.1029 0.11 0.104 0.006 198 114 3.24

HPAM 9 0.0575 0.111 0.104 0.007 227 114 3.983
2NDH 9 0.0820 0.108 0.104 0.004 156 114 1.992
12YX 10 0.0005 0.114 0.105 0.009 264 114 5.454
XFM 10 0.0056 0.111 0.104 0.007 221 114 3.941
ZDF 10 0.0013 0.111 0.104 0.007 250 114 4.144

Table A.12: Vector Product Results for 16-bit Multipliers with two simultaneous operations

Mult Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 16 0.0000 0.145 0.105 0.04 682 178 48.64
1UG 13 0.0311 0.116 0.105 0.011 268 154 8.03
2KD 16 1.807E-05 0.148 0.105 0.043 685 178 52.417
3CF 16 7.099E-09 0.175 0.105 0.07 933 178 102.69
3H1 16 3.475E-08 0.183 0.106 0.077 934 178 113.036
3PM 16 4.099E-07 0.173 0.105 0.068 881 178 96.22
5A2 15 0.0013 0.126 0.105 0.021 511 174 21.693
7QP 16 8.674E-06 0.156 0.105 0.051 755 178 65.739
HDT 11 0.1226 0.109 0.104 0.005 168 138 2.91
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Table A.13: Vector Product Results for 16-bit Multipliers with four simultaneous operations

Mult Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 20 0.0000 0.188 0.106 0.082 1301 225 162.032
1UG 16 0.0311 0.121 0.105 0.016 475 177 16.096
2KD 18 1.807E-05 0.2 0.106 0.094 1313 225 186.872
3CF 18 7.099E-09 0.244 0.106 0.138 1766 225 336.858
3H1 18 3.475E-08 0.242 0.106 0.136 1721 225 325.856
3PM 18 4.099E-07 0.22 0.106 0.114 1623 225 261.972
5A2 16 0.0013 0.144 0.105 0.039 913 217 60.996
7QP 16 8.674E-06 0.209 0.106 0.103 1441 225 217.948
HDT 12 0.1226 0.11 0.104 0.006 290 145 4.35

A.3 Vector Product Results with PowerOptimized_High Directive

Table A.14: Vector Product Results for 8-bit Multipliers using PowerOptimized_High Directive

Mult Clock(ns) Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 14 0.115 0.105 0.01 360 129 7.47
Ax1 15 0.115 0.105 0.01 346 129 7.33
Ax2 13 0.113 0.104 0.009 330 129 6.453
Ax3 14 0.113 0.104 0.009 318 129 6.345

HPAM 14 0.114 0.105 0.009 346 121 6.381
2NDH 12 0.11 0.104 0.006 245 129 3.792
12YX 14 0.116 0.105 0.011 366 129 8.283
XFM 14 0.112 0.104 0.008 320 129 5.656
ZDF 14 0.116 0.105 0.011 360 129 8.217

Table A.15: Vector Product Results for 16-bit Multipliers using PowerOptimized_High Directive

Mult Clock(ns) Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact 18 0.166 0.105 0.061 1270 225 118.645

Ax0233 18 0.163 0.105 0.058 1206 225 109.098
Ax0333 18 0.165 0.105 0.06 1194 225 112.14
Ax1233 18 0.162 0.105 0.057 1169 225 105.108
Ax3333 18 0.162 0.105 0.057 1132 225 102.999

1UG 16 0.117 0.105 0.012 418 149 10.38
2KD 20 0.187 0.106 0.081 1165 223 148.554
3CF 20 0.222 0.106 0.116 1581 225 261.696
3H1 20 0.22 0.106 0.114 1536 225 252.054
3PM 20 0.1538 0.106 0.0478 1379 225 98.1812
5A2 17 0.132 0.105 0.027 796 201 37.773
7QP 20 0.189 0.106 0.083 1275 223 161.352
HDT 11 0.108 0.104 0.004 222 105 2.148
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A.4 Vector Product Result with Approximate Multipliers and Adders

Table A.16: Vector Product Results for 8-bit inputs with one multiplier

Mult Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact Exact 10 0.0000 0.109 0.104 0.005 122 83 1.855
2NDH 0HE 8 0.0759 0.107 0.104 0.003 82 76 0.93
2NDH 0KG 8 0.1209 0.106 0.104 0.002 78 73 0.594
2NDH RA5 7 0.3003 0.106 0.104 0.002 79 65 0.548
XFM 0HE 8 0.0384 0.108 0.104 0.004 115 76 1.372
XFM 0KG 8 0.0842 0.108 0.104 0.004 114 75 1.356
XFM RA5 8 0.1789 0.107 0.104 0.003 113 67 0.942

HPAM 0HE 8 0.0529 0.109 0.104 0.005 120 75 1.725
HPAM 0KG 8 0.1022 0.107 0.104 0.003 120 72 1.008
HPAM RA5 7 0.2052 0.107 0.104 0.003 119 67 0.96

Ax1 0HE 9 0.0116 0.108 0.104 0.004 115 76 1.372
Ax1 0KG 9 0.0464 0.107 0.104 0.003 113 75 1.014
Ax1 RA5 9 0.1389 0.107 0.104 0.003 112 67 0.939

Table A.17: Vector Product Results for 8-bit inputs with two multipliers

Mult Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact Exact 11 0.0000 0.111 0.104 0.007 216 114 3.906
2NDH 0HE 10 0.0760 0.108 0.104 0.004 136 107 1.828
2NDH 0KG 10 0.1209 0.106 0.104 0.002 126 98 0.84
2NDH RA5 10 0.2526 0.107 0.104 0.003 132 94 1.242
XFM 0HE 13 0.0386 0.109 0.104 0.005 180 107 2.505
XFM 0KG 12 0.0867 0.108 0.104 0.004 172 103 1.924
XFM RA5 11 0.1037 0.108 0.104 0.004 178 98 1.888

HPAM 0HE 11 0.0529 0.111 0.104 0.007 208 107 3.703
HPAM 0KG 12 0.1022 0.108 0.104 0.004 192 103 2.004
HPAM RA5 10 0.1735 0.108 0.104 0.004 208 98 2.008

Ax1 0HE 13 0.0116 0.111 0.104 0.007 194 107 3.605
Ax1 0KG 13 0.0468 0.109 0.104 0.005 190 103 2.495
Ax1 RA5 12 0.0915 0.108 0.104 0.004 194 98 1.952

Table A.18: Vector Product Results for 16-bit inputs with one multiplier

Mult Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact Exact 13 0.0000 0.12 0.105 0.015 351 131 11.16
1UG RA5 11 0.0319 0.108 0.104 0.004 138 87 1.596
2KD RA5 13 0.0006 0.124 0.105 0.019 363 99 12.54
5A2 RA5 13 0.0018 0.116 0.105 0.011 252 97 5.973
HDT RA5 7 0.1236 0.106 0.104 0.002 98 77 0.658

Ax1233 RA5 13 0.0042 0.116 0.105 0.011 318 99 6.765

Table A.19: Vector Product Results for 16-bit inputs with two multipliers

Mult Adder Clock (ns) Relative Error Total Power (W) Static (W) Dynamic (W) LUT FF Dynamic*(LUT+3FF)
Exact Exact 16 0.0000 0.145 0.105 0.04 682 178 48.64
1UG RA5 14 0.0319 0.11 0.104 0.006 248 122 3.684
2KD RA5 16 0.0003 0.131 0.105 0.026 641 146 28.054
5A2 RA5 14 0.0017 0.12 0.105 0.015 473 142 13.485
HDT RA5 10 0.1237 0.107 0.104 0.003 158 104 1.41

Ax1233 RA5 16 0.0041 0.121 0.105 0.016 598 146 16.576
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