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INTRODUCTION 
 

Ovarian cancer (OC) is the eighth-leading cause of 

cancer-related deaths amongst women. In 2018, over 

295,000 new cases, and 180,000 deaths were OC-
associated [1]. Invasive epithelial ovarian cancer (EOC) 

is classified in five prevalent subtypes that originate 

from both secretory epithelial cells of the distal 

fallopian tube or from the ovarian epithelium and other 

tissues [2–7]. Mutational analysis of EOC samples has 

subdivided the serous OC in type I (less aggressive 

tumors, including low-grade serous, endometrioid, 

mucinous, and clear cells carcinomas, mutated for 

KRAS, BRAF and PI3K) and type II (highly aggressive 

tumors characterized by TP53 mutation [8–13], and 

high incidence of double-strand DNA break repair 
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ABSTRACT 
 

cDNA microarray data conducted by our group revealed overexpression of CXCL2 and CXCL8 in ovarian cancer 
(OC) microenvironment. Herein, we have proven that the chemokine receptor, CXCR2, is a pivotal molecule in 
re-sensitizing OC to cisplatin, and its inhibition decreases cell proliferation, viability, tumor size in cisplatin-
resistant cells, as well as reversed the overexpression of mesenchymal epithelium transition markers. 
Altogether, our study indicates a central effect of CXCR2 in preventing tumor progression, due to acquisition of 
cisplatin chemoresistant phenotype by tumor cells, and patients’ high lethality rate. We found that the 
overexpression of CXCR2 by OC cells is persistent and anomalously confined to the cellular nuclei, thus pointing 
to an urge in developing highly lipophilic molecules that promptly permeate cells, bind to and inhibit nuclear 
CXCR2 to fight OC, instead of relying on the high-cost genetic engineered cells. 
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pathways [13–16]. EOC features justify, at least 

partially, the initial satisfactory response to platin and 

taxane derivate compounds therapy. Nonetheless, 

approximately 80% of the patients experience disease 

recurrence due to chemoresistance [17]. 

 

Chemokines secreted in tumor microenvironment 

(TME), as CXCL2 and CXCL8, correlate to 

chemoresistance [18–21]. In agreement, cDNA 

microarray data obtained from NAC-1 knockdown 

(KD) in high grade serous ovarian cancer (HGSOC) 

cells, a molecule crucial for the disease development 

and progression, revealed CXCL2 and CXCL8 

secretion [18]. Moreover, these chemokines exert 

autocrine effect on OC cells by binding to CXCR2 and 

promoting chemoresistance (manuscript in preparation). 

CXCR2 activation is associated with cell proliferation, 

angiogenesis, metastasis and chemoresistance in 

melanoma, colon, lung and ovarian cancers [19–24]. 

 

Herein, we have shown that CXCR2 is crucial for the 

acquisition of cisplatin chemoresistant phenotype by 

OC cells, hence introducing a novel potential target 

against OC. 

 

RESULTS 
 

OC pan resistant ACRP cells were generated from 

the parental sensitive lineage A2780 

 

ACRP cells were generated from its parental 

counterpart A2780 lineage, following chronic exposure 

to cisplatin (1µM to 10 µM). MTT method was used to 

estimate IC50 for cisplatin, paclitaxel and doxorubicin 

that were 3.64-fold (p<0.005) (Figure 1A), 77.27-fold 

(p<0.001) (Figure 1B), and 21.42-fold (p<0.001) 

(Figure 1C) higher in ACRP than in A2780, 

respectively, thus proving that the ACRP has emerged 

as a pan-resistant lineage. Cross-resistance to 

antineoplastic drugs, as observed in our in vitro study 

model, supports the need to elucidate the mechanisms 

of chemoresistance acquisition by OC cells and 

chemotherapy failure. 

 

CXCR2 is overexpressed and modulates the 

expression of CXCL2 and CXCL8 in ACRP cells 

 

Our previous data from cDNA microarray assays 

following NAC-1 KD in HGSOC cells [18] 

demonstrated that CXCL2 and CXCL8 are secreted in 

TME and can be correlated to chemoresistance 

(manuscript in preparation). We investigated this novel 

mechanism possibly underlying cisplatin resistance in 

EOC clinics. qRT-PCR experiments were run to 

evaluate CXCR2, CXCL2 and CXCL8 expression in 

ACRP cells. Our results revealed overexpression of 

CXCR2 in ACRP when compared to A2780 by 2.3-fold 

(p=0.034) (Figure 2A). Then, we downregulated the 

expression of CXCR2 in A2780 (p=0.0246) and in 

ACRP (p=0.001) by approximately 50% when 

compared to the negative control (NC) cells (Figure 

2B). Further exploring the impact of CXCR2 expression 

in OC chemoresistance, we found that ACRP CXCR2 

KD cells expressed 2.5-fold less CXCL2 (p=0.0362) 

(Figure 2C), and 6.5-fold less CXCL8 in comparison to 

NC cells (p=0.0025) (Figure 2D). Expression of 

CXCL2 and CXCL8 was not significantly modified in 

A2780 CXCR2 KD. Altogether, our results suggest the 

occurrence of an intricate CXCL2/CXCL8-CXCR2 axis 

in the modulation of cisplatin sensitivity by OC cells, 

thus corroborating with an important role of TME and a 

potential autocrine effect of CXCL2/CXCL8 on 

CXCR2 expressed by tumor cells. 

 

CXCR2 comprises nuclear expression in OC cells 

 

Motivated by the aforementioned results, we decided to 

characterize the expression of CXCR2 in OC cells with 

regard to its cellular localization. To do so, we 

conducted immunofluorescence experiments with 

A2780 and ACRP, NC and CXCR2 KD (Figure 3, left 

column; nuclei stained with DAPI; blue). Treatment of 

cells with anti-CXCR2 antibody (red) revealed the 

overexpression of CXCR2 by ACRP in comparison 

with A2780 (middle column, Figure 3). CXCR2 was 

confined to the nuclei of A2780 and ACRP NC (Figure 

3, right column). Nuclei expression of CXCR2 was 

sustained exclusively in ACRP CXCR2 KD (Figure 3, 

right column). Although the biological relevance of our 

observation remains unclear, it is imperative to point 

that chemoresistance to cisplatin is likely caused or 

aggravated by the sustained anomalous expression of 

CXCR2 in OC cells nuclei. In any event, we, herein, 

introduce a novel mechanism contributing to cisplatin 

chemoresistance in OC cells. 

 

CXCR2 overexpression correlates to patients’ low 

overall survival with primary EOC 

 

Secretion of CXCL2 and CXCL8 in the conditioned 

medium of ACRP potentially act autocrinally on 

CXCR2 expressed by OC cells (manuscript in 

preparation). To evaluate the correlation between the 

expression of CXCR2 and EOC patients’ OS (overall 

survival), data from 370 patients diagnosed with 

primary EOC were obtained from TCGA database 

(Figure 4). Overexpression of CXCR2 was detected in 

74.32% of the patients. EOC patients whose tumor cells 

expressed high levels of CXCR2 had lower OS 
compared with the cases expressing low levels of 

CXCR2 (n=0.035) (Figure 4A). No significant 

statistical differences were observed in OS of patients 
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Figure 1. Generation of a pan-resistant ovarian cancer (OC) cells (ACRP) from its parental sensitive counterpart (A2780). 
(A) ACRP is 3.64-fold more resistant to cisplatin (1.5uM - 100uM) than A2780. (B) ACRP is 77.27-fold more resistant to paclitaxel (1 nM - 
10 μM) than A2780. (C) ACRP is 21.42-fold more resistant to doxorubicin (0.1uM - 100uM) than A2780. Estimated IC50 for drugs in 
tested lineages were calculated by MTT assay, following 24h of cells treatment with each drug within the aforementioned conc entration 
ranges of drugs, which correlate to their circulating concentration in EOC patients. Results are expressed as percentage of c ontrol 
(untreated cells) as mean ± SD. Statistical analyses of the results were done by two-way ANOVA followed by Bonferroni post- test. 
*p<0.01, **p<0.005, ***p<0.001. N=3. 
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with EOC cells expressing low (n=109) or high 

(n=261) levels of CXCL2 (p=0.18) neither low 

(n=102) or high (n=268) levels of CXCL8 (p=0.95) 

(Figure 4B, 4C). Nonetheless, 70.54% and 72.43% of 

EOC cells overexpressed CXCL2 and CXCL8, 

respectively. Our results suggest that EOC cells can 

potentially secret CXCL2 and CXCL8 to TME that act 

autocrinally on tumor cells CXCR2, conferring the 

poor prognosis of the disease that is inferred by low 

patients’ OS. We postulate that CXCR2 emerges as a 

prognostic marker and a potential therapeutic target of 

EOC. 

 

 
 

Figure 2. CXCR2 is overexpressed and modulates the expression of CXCL2 and CXCL8 in ACRP cells and CXCR2 KD. Transcript 
expression of CXCR2, CXCL2 and CXCL8 was investigated by qRT-PCR, following the protocol described in Material and Methods session, in 
both wild-type and CXCR2 KD (siRNA CXCR2, 10µM) A2780 and ACRP OC cells. (A) ACRP expressed 2.3-fold more CXCR2 than A2780 
(#p=0.0342). (B) CXCR2 KD lead to lower expression of CXCR2 in both cell lines, however 1.3-fold less in ACRP (***p=0.001) than in A2780 
(*0.0246). (C) CXCL2 expression was 2.5-fold lower in ACRP CXCR2 KD than in ACRP NC (+p=0.0362). (D) CXCL8 expression decreased by 6.5-
fold comparing ACRP CXCR2 KD to ACRP NC (**p=0.0025). Differential gene expression was presented as relative expression of each gene of 
interest compared to control, after normalization by the expression of the housekeeping gene GAPDH and calculated by the 2-ΔΔCt method. 
Data were analyzed by unpaired t-Student test (p<0.05). N=3. 
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CXCR2 enhances OC cell proliferation and cellular 

viability 

 

To further explore the relevance of CXCR2 expression in 

OC cells with and without cisplatin resistance, we 

analysed proliferation and cellular viability in CXCR2 

KD cells. BrdU assay revealed that in both A2780 and 

ACRP, CXCR2 KD led to a significant decrease in cell 

proliferation, of approximately 2.0-fold and 3.5-fold, 

respectively (Figure 5A–5C) (p<0.05). Treatment of cells 

with SB225002, which is a CXCR2 inhibitor, also 

resulted in decreased proliferation in both cell lines 

(about 50% reduction; p<0.05). Cell proliferation was 

lower in ACRP vs. A2780 in all events, thus supporting 

the role of CXCR2 in OC progression with regard to 

chemoresistance. Next, we performed clonogenic assays 

to evaluate OC cellular viability (Figure 6A, 6B) in 

CXCR2 KD cells. A2780 sensitivity vs. ACRP resistance 

to cisplatin was confirmed. ACRP CXCR2 KD were 

more sensitive than A2780 KD (p<0.001). There was a 

synergistic effect in loss of cell viability when CXCR2 

KD cells were treated with cisplatin (A2780 p<0.001; 

ACRP p<0.01) or cisplatin and SB225002 (A2780 

p<0.001; ACRP p<0.01), these data being more 

prominent in ACRP cells. These findings indicate that 

CXCR2 plays a central role in the acquisition of cisplatin 

chemoresistant phenotype by OC cells. 

 

CXCR2 promotes in vivo OC tumor growth, 

angiogenesis and tumor invasion 

 

Investigation of the role of CXCR2 on OC tumor 

growth (TG) and angiogenesis was assessed by the 

chicken embryo chorioallantoic membrane (CAM) 

method. Tumor size was measured at E10 egg 

inoculated with A2780 or ACRP, NC and CXCR2 KD. 

When compared to A2780, TG was higher in ACRP. 

Moreover, CXCR2 KD prevented TG in ACRP (Figure 

7A, 7B). There were no differences amongst cells with 

regard to angiogenesis and invasion (Figure 7A–7C). 

Statistic significant differences were not observed 

probably due to the number of replicates performed. 

However, our results point to a potential biological 

importance of CXCR2 in cisplatin resistant OC cells, 

inferred by continuous TG, which is partially, but 

significantly, reversed by CXCR2 KD. 

 

 
 

Figure 3. CXCR2 comprises persistent nuclei anomalous expression cisplatin resistant OC cells. Immunofluorescence assays were 

performed to investigate cellular localization of CXCR2 expression in OC cells. CXCR2 antibody (red) whereas cellular nuclei were stained with 
DAPI (blue); images where further merged to facilitate cellular localization analysis. Cells were plated at same density (left column of Figure). 
As previously demonstrated, CXCR2 was overexpressed in ACRP cells in comparison with A2780 cells (middle column of Figure). N=3. Images 
were acquired under 10x magnification. 
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Figure 4. CXCR2 overexpression correlates to patients’ low overall survival carrying primary EOC . Data from 370 patients 
diagnosed with serous EOC were obtained from TCGA database for in silico analysis of patients’ overall survival (OS) in relation with the 
chemokines of interest expression by cancer cells, using the Kaplan-Meier statistical method. (A) Correlation of EOC patients, which 
tumor cells express low (n=95) or high (n=275) levels of CXCR2 to patients’ OS. Note that patients that carry EOC expressing high levels of 
CXCR2 had lower overall survival rate in comparison to the ones with low levels of the chemokines receptor (p=0.035). Moreover, 
overexpression of CXCR2 was identified in 74.32% of the studied patients. (B) Correlation of EOC patients, which tumor cells express low 
(n=109) or high (n=261) levels of CXCL2 to patients’ overall survival. No significant difference were observed with regard to  CXCL2 
expression by cancer cells and patients’ overall survival rate (p=0.18). However, overexpression of CXCL2 was seen in 70.54% of patients. 
(C) Correlation of EOC patients, which tumor cells express low (n=102) or high (n=268) levels of CXCL8 to patient’s overall survival. No 
significant differences were observed confronting CXCL8 expression by cancer cells to patients’ overall survival rate (p=0.95). 
Nonetheless, overexpression of CXCL8 was detected in 72.43% of patients. Long rank test was performed to analyse statistical difference 
amongst the parameters investigated. 
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Figure 5. CXCR2 enhances OC cell proliferation. BrdU immunofluorescence assays were conducted to investigate the role of CXCR2 on 

OC cell proliferation. In brief, cells were plated at the same density and fixed, as previously reported. Antibody against the marker of cell 
proliferation, BrdU, was conjugated with PE (red), whereas cells nuclei were stained with DAPI (blue). Finally, both staining conditions were 
merged for better visualization of the studied phenomenon. (A) A2780 cells were either transfected with empty vector for control (NC), 
siRNA CXCR2 (10µM) or treated with the CXCR2 antagonist SB225002 (1ug/ml). (B) ACRP cells were either transfected with empty vector for 
control (NC), siRNA CXCR2 (10µM) or treated with the CXCR2 antagonist SB225002 (1ug/ml). (C) BrdU positive rate, indicating cell 
proliferation under each specified experimental condition. Note that cell proliferation decreased significantly both in the KD models and 
under treatment of cells with SB225002. Cell proliferation was remarkably lower in ACRP cells vs. A2780 cells in all events. Figure is of a 
representative experiment. Data was analyzed by one-way ANOVA. *p<0.05. N=3. Imagines were acquired in 10x magnification. 
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Silencing CXCR2 expression reduces EMT marker 

proteins SLUG and SNAIL in ACRP and seems to 

modulate PI3K/AKT/mTOR, but not MEK/ERK, 

pathway 

 

Studies published so far have associated CXCR2 

expression in cancer cells to the epithelial-mesenchymal 

transition (EMT) phenotype [25, 26]. Thus, we 

questioned whether this could also contribute to 

CXCR2-induced chemoresistance to cisplatin in OC 

cells. We analyzed protein expression of EMT markers 

as Snail, Slug and β-Catenin, and noted an increase in 

the expression of Snail and Slug in ACRP, which is 

reversed by CXCR2 KD (Figure 8B–8D). These data 

 

 
 

Figure 6. CXCR2 is a pivotal molecule in OC cellular viability. Clonogenic assays were run to evaluate the role of CXCR2 on OC cellular 
viability under the follow experimental conditions: i) cells transfected with empty vector (10µM), NC, control; ii) cells transfected with siRNA 
CXCR2 (10µM) to get the KD models; iii) cells that received cisplatin (5uM); iv) CXCR2 KD cells + cisplatin (5uM); v) cells treated with the 
CXCR2 antagonist SB225002 (1ug/ml); vi) cells that received combined therapy containing cisplatin (5uM) and SB225002 (1ug/ml). 150 cells of 
each lineage were plated on 6-well plates. Colonies were stained with crystal violet at D10. (A) Representative figure of the stained plate. The 
experiment confirmed A2780 sensitivity vs. ACRP resistance to cisplatin. A2780 CXCR2 KD cells were more viable than ACRP CXCR2 KD cells. 
Moreover, ACRP was more sensitive to SB225002 than A2780. On both cells, there was additive effects with the combined treatment 
containing cisplatin and siRNA against CXCR2 or cisplatin and SB225002. (B) Graphic representation of the percentage of colonies formed 
under each experimental condition, clearly reflecting Figure 5A. This experimental approach has proven the pivotal role of CXCR2 in the 
acquisition of cisplatin chemoresistant phenotype by OC cells. Data were analyzed by two-way ANOVA followed by Bonferroni post-test. 
*p<0.05, **p<0.01, ***p<0.001. N=3. 
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suggest that EMT is likely involved in CXCR2-

dependent cisplatin chemoresistance in OC cells. These 

results were not observed when cells were treated with 

SB225002. In contrast, inhibition of CXCR2 did not 

significantly modulate vimentin nor reversed β-catenin 

expression in our study model (Figure 8D, 8E). We 

hypothesize that there might be a CXCR2-SNAIL-

SLUG axis contributing to the CXCR2 role in cisplatin 

chemoresistance in OC cells. We, then, argued if 

silencing CXCR2 expression could modulate the 

classical carcinogenic signaling pathways PI3K/ 

AKT/mTOR and MEK/ERK, leading to an observation 

of a biological tendency to decrease the expression  

of p-AKT (0.5-fold) in ACRP CXCR2 KD but not  

in A2780 KD (p=0.07 and p=0.09, respectively)  

(Figure 8F, 8G). 

 

DISCUSSION 
 

In this study, we created an OC in vitro model of pan-

resistant cells to cisplatin, paclitaxel and doxorubicin, 

thus reproducing a major challenge in fighting OC, 

which is recurrence of aggressive and lethal disease due 

to cisplatin chemoresistance. We further demonstrated 

that resistant cells depend on CXCR2 for survival  

and aggressiveness, at least partially through an EMT 

phenotype. 

 

We aimed to elucidate the contribution of TME  

on chemoresistance motivated by our previous 

observations that ACRP cells secret CXCL2 and 

CXCL8 to their conditioned medium that ultimately 

modulate the fate of OC (manuscript in preparation). 

The present results suggest an autocrine effect of 

CXCL2/CXCL8 through CXCR2 expressed by OC 

cells. CXCL2 and CXCL8 have been correlated to 

cancer cells chemoresistance, migration, angiogenesis 

and progression in melanoma, colon and ovary cancers 

[19, 20, 27–29]. As previously mentioned, CXCL2 and 

CXCL8 depend on their specific binding to CXCR2 to 

elicit their cellular functions, a membrane receptor that  

has been detected in endothelial cells, infiltrating 

 

 
 

Figure 7. CXCR2 promotes in vivo OC tumor growth (TG), angiogenesis and tumor invasion. In vivo investigation of the role of 

CXCR2 on tumor growth, invasion and angiogenesis in OC was assessed by chicken embryo chorioallantoic membrane (CAM) method. (A) The 
number of new vessels formation with diameter lower than 20μm growing radially towards the ring area was counted in a blind fashion 
manner. No differences were noted between the lineages under the referred experimental condition. (B) Tumor size was measured at E10 
egg inoculation with A2780 and ACRP OC cells, as: i) NC; ii) siRNA CXCR2 KD cells. Statistic significant difference were not observed probably 
due to number of replicates performed. However, when compared to A2780, TG was higher in ACRP than in A2780 cells. Moreover, CXCR2 
KD prevented TG in later. The overall mortality rate for embryos/eggs was as expected (~10%). (C) The figure is also of a distinct invasion 
patterns between NC and CXCR2 KD ACRP and A2780 cells. 
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neutrophils, and tumor-associated macrophages, which 

also suggests an important regulatory role within the 

TME [30]. 

 

ACRP overexpresses CXCR2 in comparison to A2780. 

CXCR2 KD models were confirmed by the decrease  

of CXCR2 expression in both lineages when compared 

NC cells, being the effect more prominent in ACRP 

CXCR2 KD than in A2780 CXCR2 KD. The 

expression of CXCL2 and CXCL8 was significantly 

decreased in ACRP CXCR2 KD when compared to 

ACRP NC, but similar results were not observed in 

A2780. These results point to the occurrence of  

an intricate CXCR2/CXCL2-CXCL8 axis possibly 

modulating cisplatin resistance in OC and thus 

supporting the hypothesis of a role of the TME and a 

potential autocrine effect of chemokines on CXCR2 

expressed by tumor cells. 

 

Motivated by our results, we then questioned whether 

the cellular localization of CXCR2 could be altered in 

OC cells. Surprisingly, CXCR2 expression, which was 

significantly higher in ACRP than in A2780, was 

restricted to cellular nuclei instead of trafficking to the 

 

 
 

Figure 8. Silencing CXCR2 expression reduces EMT marker proteins SLUG and SNAIL in ACRP and seems to modulate 
PI3K/AKT/mTOR, but not MEK/ERK, pathway. Western blot assays were performed to investigate the expression of EMT marker 
proteins in ACRP and A2780 lines, as follow: i) CN cells (10; II) siRNA CXCR2 KD cells; iii) cells treated with SB225002. 50µ of protein  
were loaded into SDS-PAGE gels, proteins were separated by electrophoresis and blotted with the primary antibodies of interest.  
(A) Representative figure of the blots performed for each marker and different treatments, (B) SNAIL protein expression was significantly 
decreased in ACRP CXCR2 KD cells vs. ACRP wild type, but not in A2780 cells. (C) SLUG protein expression was significantly lower in ACRP 
CXCR2 KD cells with comparison to its wild-type counterpart, however not in A2780 cells. (D) β-Catenin and (E) Vimentin did not present 
significant statistical difference amongst the conditions studied. Moreover, when we seek to correlate pro-carcinogenic signaling pathways 
related to CXCR2, no statistic significant difference were noted both in (F) pAKT/AKT and (G) pERK/ERK pathways. It is worth note to 
address the biologic tendency of the CXCR2 KD models, but not the treatment of cells with SB225002, to inactivate PI3K/AKT/mTOR, but 
not MEK/ERK pathway (p= 0.7 and p=0.09 in ACRP and A2780, respectively). Data were analysed by two-way ANOVA followed the 
Bonferroni post- test. β-actin was used as a normalization control of the experiments. *p<0.022, **p<0.005. N=3. 
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OC cells membrane. Although further studies are 

needed to elucidate the biological function of our 

findings, it is, at least to our knowledge, a novel 

observation. Nonetheless, recent data from the 

literatures cannot be neglected. DEK, an endogenous 

chromatin-binding factor that regulates hematopoiesis, 

can bind to CXCR2 and sequestrate it to the cellular 

nucleus. We hypothesized that binding of DEK to 

CXCR2 may, at least partially, justify the persistent 

nuclear expression of CXCR2 in the nuclei of OC cells, 

as DEK exerts its function in cellular nuclei in a 

CXCR2-dependent manner [31]. 

 

Overexpression of CXCR2 was previously associated 

with early recurrence of OC [24, 32]. In this study, 

information from 370 patients diagnosed with primary 

EOC was obtained from the TCGA database. Patients’ 

OS was opposed to CXCR2 overexpression in EOC 

cells, clearly demonstrating that CXCR2 is a marker of 

the disease poor prognosis. Similar experiments were 

run in intrahepatic, lung, cholangiocellular, pancreas, 

kidney, breast and colon cancer samples, also correlating 

poor disease prognosis to CXCR2 overexpression by 

cancer cells [22, 33–35]. 

 

Cell proliferation was lower in ACRP CXCR2 KD and 

in A2780 CXCR2 KD rather than when they were 

treated with SB225002, thus corroborating with the 

differential effects of CXCR2 KD and SB225002 

treatment in OC cells and supporting the need to 

develop CXCR2 inhibitors that permeate cellular 

membrane to reach its target in cellular nuclei. The 

effect of CXCR2 on cell proliferation was shown in 

melanoma [36, 37] ovary [24] and prostate cancers  

[38, 39]. We found that A2780 was more sensitive to 

cisplatin than ACRP CXCR2 KD. Cellular viability of 

ACRP CXCR2 KD was lower than that of A2780. Our 

data show the greater effect of gene silencing than 

pharmacological intervention in ACRP, which suggest 

that resistant cells likely present intracellular expression 

of CXCR2, as proven in this work. Furthermore, cell 

viability decreased when CXCR2 was inhibited by 

SB225002 or CXCR2 KD in monotherapy. Moreover, 

there was synergy of these treatment approaches with 

cisplatin in both cell lines, being the effect more 

eminent in ACRP than A2780. A study conducted in 

OC demonstrated the synergic effect of the combined 

therapy containing sorafenib and SB225002 in 

inhibiting cell proliferation and angiogenesis [40]. In 

HGSOC cells SKOV3, CXCR2 KD comprised secretive 

activity of CXCL1 and CXCL8 [24] and, likewise our 

results, led to decreased cell viability, suggesting that 

silencing CXCR2 expression suppressed OC 
tumorigenicity in vivo and in vitro. Metastatic breast 

cancer cells can be re-sensitized to paclitaxel and 

doxorubicin by CXCR2 KD [41], as CXCR2 blockade 

was correlated to increased overall therapeutic response 

to antineoplastic substances, possibly due to lower TG 

and metastasis indexes [33, 41]. Significant inhibition 

of progression of CXCR2-negative metastatic lung 

cancer treated with paclitaxel was observed [33]. These 

findings are in agreement with ours through which 

CXCR2 emerge as a novel molecule orchestrating 

sensitivity of cancer cells to chemotherapy. Furthermore, 

CXCR2 arises as an unprecedented target to fight cancer 

in the adjuvant setting by overcoming chemotherapy 

resistance [33]. 

 

CXCR2-induced cell proliferation seems mediated by 

PI3K/AKT/mTOR and MEK/ERK pathways, which 

modulate cell cycle, apoptosis and angiogenesis, as well 

as the secretion of chemokines (as CXCL8) and 

cytokines (as seen for IL6) [Reviewed in 42]. The 

chemokine-regulated pathways led to cell adhesion, 

migration, chemotaxis, changes in cell morphology and 

regulation or activation of integrin [43, 44]. In our study 

model, though we did not find significant difference, 

one might suggest a biological tendency of CXCR2 to 

activate PI3K/AKT/mTOR, but not MEK/ERK pathway 

in OC cells. 

 

Another important aspect to address is whether CXCR2 

affects TG, angiogenesis and invasion of OC cells. 

CXCR2 stimulated TG, invasion and metastasis in 

murine KRAS/p53-mutant lung adenocarcinoma cell 

line [22]. In contrast, CXCR2 seems to induce TG in an 

angiogenesis-independent fashion in ACRP, however 

not in A2780. Further experiments are necessary to 

confirm this hypothesis. 

 

EMT has been implicated as a key process involved in 

tumor invasion and metastasis, affecting characteristics 

such as stemness, apoptosis and immune system [45]. 

Snail, an EMT marker, promoted CXCR2 ligand-

dependent tumor progression in lung cancer [46]. 

Moreover, EMT was directly related to chemoresistance 

[47–49]. Our results showed overexpression of EMT 

markers, such as Snail and Slug, in ACRP vs. A2780. 

We reported that ACRP overexpressed Snail, Slug and 

β-catenin. Nevertheless, only overexpression of Snail 

and Slug were reversed in ACRP CXCR2 KD. Snail is a 

transcriptional repressor of E-cadherin and induces 

trafficking of myeloid-derived suppressor cells via 

upregulation of CXCR2. In silico analysis of EOC data 

obtained from TCGA database indicated that Snail is 

correlated with the secretion of CXCL2/CXCL8 to 

TME [49, 50], thus revealing that Snail has multiple 

important functions, including modulation of the 

immune system and EMT. 
 

In conclusion, our study proves that CXCR2 is retained 

in the nucleus of OC cells that acquired cisplatin 
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resistant phenotype, being correlated with poor 

prognosis of the disease and its high mortality rate in 

patients. In addition, CXCR2 is associated with tumor 

proliferation and growth in OC resistant cells, showing 

its role in disease chemoresistant phenotype acquisition 

and progression. Thus, effective strategies through the 

synthesis of highly lipophilic analogous molecules of 

the prototype CXCR2 competitive inhibitor SB225002 

can inhibit CXCR2 carcinogenic role in OC, in an 

economical and clinical viable fashion. In any event, 

we, herein, introduce a novel mechanism that 

contributes to chemoresistance of OC cells to cisplatin. 

 

Our study has proven that the inhibition of CXCR2 

pathway may not only lead to OC antitumor properties 

but may also act as a chemosensitizer of tumor cells to 

cisplatin. In summary, our results present innovative 

strategy to treat pan-chemoresistant OC, by inhibiting 

the persistent and anomalous nuclear overexpression of 

CXCR2 in cisplatin resistant disease, therefore, opening 

a novel avenue to combat this still highly deadly 

disease. 

 

MATERIALS AND METHODS 
 

Cell lines and culture conditions 

 

Pan-resistant ACRP cells were generated from its 

parental counterpart A2780 lineage, following chronic 

exposure to cisplatin (1µM to 10 µM). Chemoresistance 

was verified by the MTT method [51] through the 

calculation of estimated IC50 of cisplatin, paclitaxel and 

doxorubicin. Lineages were cultured in complete DMEM 

medium (Invitrogen) supplemented with FBS 10%(v/v), 

penicillin/streptomycin1%(w/v), amphotericin1%(w/v), 

at 37° C in atmosphere of 5% CO2. 

 

Generation of CXCR2 KD cells 

 

CXCR2 gene expression was silenced using small 

interfering siRNACXCR2 plasmid (10 µM), 5µl of 

lipofectamine 2000 in 125µl of Opti-MEM® Reduced-

Serum Medium, as manufacturer suggestion (Invitrogen). 

Control experiments were run in parallel, using Stealth 

RNAi siRNA Negative Control Duplex (10µM) 

(Invitrogen). CXCR2 was also pharmacologically 

inhibited by SB225002 (1ug/mL) (Abcam) diluted in 

0.001%(v/v) dimethylsulfoxide (DMSO). 

 

RNA extraction and real-time reverse transcription 

polymerase chain reaction (qRT-PCR) 

 

RNA was extracted using TRIzol (Invitrogen), following 

the manufacturer instructions. cDNA was obtained by 

SuperScript First-Strand Synthesis System (Invitrogen; 

manufacturer protocol). For quantitative q-RT-PCR 

reactions, 50ng cDNA were amplified in SYBR Green 

PCR Master Mix (Applied Biosystems). Gene 

expression was annotated as 2-ΔΔC, using ABI Prism 

7500 Fast System software (Applied Biosystems). 

Amplification conditions were 95° C for DNA 

denaturation, melting temperature 58° C and 72° C for 

DNA extension; 40 cycles. Primers were: CXCR2: 

F3’TTGCAACCCAGGTCAGAAGTT5’ (10µm), R3’C 

AGCTGTGACCTGCTGTTATT5’ (10µm);  

GAPDH: F3’CAGCCTCAAGATCATCAGCA5’ 

(10µm), R3’ACAGTCTTCTGGGTGGCAGT5’ 

(10µm) (Invitrogen). 

 

Clonogenic assay 

 

CXCR-modulated cell viability was investigated in 

CXCR2 KD cells or lineages treated SB225002 

(1µg/mL) (150 cells/well). Cells were harvested at D10 

cisplatin treatment (5µM). Colony formation was 

analysed by crystal violet staining [52]. Experimental 

controls were done using empty siRNA plasmids or 

wells containing only DMSO 0.001%(v/v). 

 

Western blot 

 

EMT markers, PI3K/AKT/mTOR and MEK/ERK 

signalling pathways elements were analysed by 

Western blot. Total proteins were extracted from cells 

using RIPA buffer (NaCl 1%w/v, sodium 

deoxycholate 0.5%w/v, SDS 0.1%w/v), Tris (50mM; 

pH 8.00). 30µg of protein were applied to 10%(w/v) 

polyacrylamide gels, separated by SDS-PAGE 

electrophoresis, then transferred to PVDF membranes 

(Millipore, USA). Membranes were blocked with skim 

milk 5%(w/v) or BSA 5%(w/v) for 30 minutes, then 

incubated overnight with primary antibody (1:1000) at 

4° C. Anti-β-actin (1:4000) was used as internal 

control for semi-quantitative analysis. After incubation 

with secondary antibody (60 minutes), at room 

temperature (RT), blots were revealed with ECL 

reagent (manufacturer protocol) (GE). Protein 

expression was analysed by Lab software 6.1 version 

for Windows (Bio Rad). 

 

Immunofluorescence 

 

Cells were fixed on glass slides with methanol 

20%(v/v), embedded in HCL 2M for 30 minutes at RT, 

incubated with anti-BrdU (1:10) or anti-CXCR2 (1:200) 

(Abcam) for 60 minutes at RT, then incubated with 

Alexa Fluor 494 goat anti-mouse or Alexa Fluor 494 

goat anti-rabbit secondary antibodies (1:100) 

(Invitrogen) for 60 minutes, at RT, in the dark. Cells 
nuclei were stained with DAPI (1:10) (Thermo Fisher) 

for 15 minutes at RT. Images were acquired in Zeiss Z1 

apotome microscope (LEICA) at 10x magnification. 
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Chicken embryo chorioallantoic membrane (CAM) 

angiogenesis and tumor growth assay 

 

Chicken embryo chorioallantoic membrane (CAM) 

method was used to evaluate angiogenesis and tumor 

growth (TG) [53, 54]. Fertilized Gallus gallus eggs 

were incubated horizontally at 37.8° C in a humidified 

atmosphere (embryonic day; E). On E3, a square 

window was opened on the shell after removal of 2-

2.5mL of albumen. Window was sealed and eggs were 

returned to incubator. At E10, 106 cells were placed into 

a 3 mm silicon ring, under sterile conditions, on top of 

growing CAM. Eggs were re-sealed and returned to 

incubator for 4 days. After removing the ring, CAM 

was excised from embryos, photographed under 

stereoscope at 20x magnification (Olympus, SZX16 

coupled with DP71 camera). The number of new 

vessels (less than 20 µm diameter) growing radially 

towards the ring area was counted in a blind fashion 

manner, as well as the observation of tumor growth and 

invasion. 

 

Survival analysis 

 

In silico analysis was performed to correlate EOC 

patients’ overall survival rate (OS) with CXCR2 

expression from 370 patients diagnosed with primary 

EOC were extract from The Cancer Genome Atlas 

Program (TCGA Computational Tools) [55]. 

 

Statistical analysis 

 

Results are presented as mean ± SD. Statistical 

significance was calculated by unpaired t-Student test, 

one-way ANOVA or two-way ANOVA followed 

Bonferroni post-hoc test, as indicated in Figure legends 

(GraphPad Prism software version 5.00 for Windows). 

In silico patients’ OS analysis was expressed as Kaplan-

Meier curves. p<0.05 was considered for statistical 

significance. 

 

Abbreviations 
 

EOC: Epithelial Ovarian Cancer; HGSOC: High Grade 

Serous Ovarian Cancer; KD: Knockdown; EMT: 

Epithelial-mesenchymal transition; NC: Negative 

Control; OC: Ovarian cancer; TME: tumor 

microenvironment; OS: Overall Survival; TG: Tumor 

growth; CAM: Chicken embryo chorioallantoic 

membrane. 
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