Binghamton University

The Open Repository @ Binghamton (The ORB)

Research Days Posters 2023

Division of Research

2023

Effects of Sudden Removal of High Social Enrichment upon Monoamine Levels in Cortical and Subcortical Structures of the Rat Brain

Rachel Lichtenstein Binghamton University--SUNY

Spencer Feehan Binghamton University--SUNY

Hailey Robson Binghamton University--SUNY

Follow this and additional works at: https://orb.binghamton.edu/research_days_posters_2023

Recommended Citation

Lichtenstein, Rachel; Feehan, Spencer; and Robson, Hailey, "Effects of Sudden Removal of High Social Enrichment upon Monoamine Levels in Cortical and Subcortical Structures of the Rat Brain" (2023). *Research Days Posters 2023*. 52.

https://orb.binghamton.edu/research_days_posters_2023/52

This Book is brought to you for free and open access by the Division of Research at The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Research Days Posters 2023 by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact ORB@binghamton.edu.

Effects of Sudden Removal of High Social Enrichment upon Monoamine Levels in Cortical and Subcortical Structures of Rat Brain

Spencer Feehan, Rachel Lichtenstein, Hailey Robson, Dr. Deborah S. Kreiss

Background

- Objective: investigate the effects of removal of high social enrichment upon monoamine neurotransmitter levels in cortico-basal ganglia-thalamic circuitry
- Intention: model the sudden loss of social enrichment experienced during the COVID-19 pandemic
- High enrichment: larger cages with multiple toys, human handling, and playdates with 12 same sex non-cagemates
- Neurochemical evaluation: norepinephrine (NE), dopamine (DA), and serotonin (5-HT) were targeted because abnormalities of these neurotransmitters within cortical and subcortical structures underlie psychological disorders

Methods

 Subjects and Enrichment 28 male, 28 female Sprague-Dawley rats Day 34 to 76: all rats experienced high enrichment 4 times a week Day 77 to 106: experimental rats experienced reduction to standard enrichment, whereas control rats experienced continued high social enrichment
 Tissue Extraction Post-mortem bilateral punches obtained on Day 10 from PFC, MC, ACC, OFC, AMY, HYPO, HIPPO, L¹ MT, DS, & VS¹ Punches homogenized² and centrifuged Supernatants extracted and plated
 High Performance Liquid Chromatography (HPLC) Analysis Supernatants analyzed for NE, DA, 5-HT levels^{2,3,4}
 Data Analysis SPSS used for 2-Factor ANOVA analysis of data Two-tailed Student's t-tests used for pairwise comparisons (p<0.05) Data is expressed as mean ± 1 standard error of the mean (SEM) Outliers (± 2.0 standard deviations) eliminated

STATE UNIVERSITY OF NEW YORK

BINGHAMION

UNIVERSITY

Neurotransmitter Levels

5-HT OFC

Male Control

5-HT DS

5-HT VS

5-HT HYPO

Summary of Results

Change in Neurotransmitter Levels							
Monoamines	NE		DA		5-HT		
Sex	М	F	М	F	М	F	
PFC	↓			Ł	♦		
MC	↓	↓	↓		♦	¥	
OFC	↓		↓			¥	
ACC					↓	$\mathbf{\hat{\Lambda}}$	
LT	↓	↓		↓			
МТ			↓			¥	
HYPO	$\mathbf{\hat{\Lambda}}$	↓				¥	
DS	$\mathbf{\Lambda}$	↓			↓	$\mathbf{\hat{T}}$	
VS		↓			↓		
HIPPO			¥				
AMY				¥			

Table 1: change in neurotransmitter levels of experimental rats (underwent removal of enrichment) compared to control rats (underwent continued enrichment).

Conclusions

Removal of enrichment <u>decreased</u> monoamine levels in cortico-basal ganglia-thalamic circuits in both males and females:

Cortical structures: PFC, MC, & OFC
Subcortical structures: LT, MT, & VS

Sex influenced the effects of removal of enrichment:

 In ACC, 5-HT in males decreased, but increased in females

In HYPO, NE in males increased, but decreased in females

In DS, NE in males increased, but decreased in females

In DS, 5-HT in males decreased, but increased in females

Increased understanding of neurochemical changes induced by removal of enrichment will facilitate development of better therapeutic strategies for those experiencing a loss of social enrichment.

References

1. Paxinos G and Watson C (1986) <u>The Rat Brain in Stereotaxic Coordinates</u>. Academic Press, New York.

2. Bishop C, George JA, Buchta W, Goldenberg AA, Mohamed M, Dickinson SO, Eissa S, and Eskow Jaunarajs KL (2012) Serotonin transporter inhibition attenuates L-DOPA-induced dyskinesia without compromising L-DOPA efficacy in hemi-parkinsonian rats. *European Journal of Neuroscience*. 36:2839-2848

3. HTEC-500, Amuzainc.com

4. EPC-700 Envision software, Amuzainc.com

Acknowledgements

Binghamton University First-year Research Immersion Program
First-year Research Immersion Neuro Stream Cohort 8 (class of 2025)
Spring/Fall 2022 Teaching Assistants for PSYC 345/364
Sofia Figueroa and Laura Barlow did brain punches over summer
Laboratory Animal Resource Staff at Binghamton University