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Abstract

Among numerical techniques used to facilitate the analysis of biochemical reac-
tions, we can use the method of moments to directly approximate statistics such as
the mean numbers of molecules. The method is computationally viable in time and
memory, compared to solving the chemical master equation (CME) which is notori-
ously expensive. In this study, we apply the method of moments to a chemical sys-
tem with a constant rate representing a vascular endothelial growth factor (VEGF)
model, as well as another system with time-dependent propensities representing the
susceptible, infected, and recovered (SIR) model with periodic contact rate. We
assess the accuracy of the method using comparisons with approximations obtained
by the stochastic simulation algorithm (SSA) and the chemical Langevin equation
(CLE). The VEGF model is of interest because of the role of VEGF in the growth
of cancer and other inflammatory diseases and the potential use of anti-VEGF ther-
apies in the treatment of cancer. The SIR model is a popular epidemiological model
used in studying the spread of various infectious diseases in a population.

1 Introduction

A chemically reacting system that is both well-stirred and at thermal equilibrium
may be viewed as a complex system of particles. In such a system, the particles
are molecules (or macromolecules) that can bind or unbind when they randomly
collide, triggering the creation, transformation, or destruction of those molecules.
Usually in practice, systems are made up of large large quantities of molecules,
permitting to track their concentrations through a set of deterministic, nonlinear or-
dinary different equations (ODEs), commonly referred to as reaction rate equations
(RREs).
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Of interest to us in this study are the particular contexts, such as within the con-
fine of a biochemical cell, where molecules are only present in small quantities,
and where it is more appropriate to retain the fundamentally discrete and stochastic
nature of the biochemical processes. Gillespie [6] has demonstrated that the under-
lying dynamical system in such contexts can be modeled by a continuous-time, dis-
crete state, Markov chain, for which the evolution of the associated probability mass
function is governed by the so-called chemical master equation (CME). The reader
may also see a very readable overview in the tutorial of Higham [11]. Although
originally developed to model simple chemical systems, the same framework has
since been successfully applied to more complicated biochemical systems [?], de-
spite the fact that some of the assumptions are no longer strictly satisfied – for
example in a living cell, the mixture is far from being perfectly homogeneous.

Unfortunately, the CME is difficult to solve, even though it has wide applica-
tion in biological systems, ecological and pharmacokinetics networks to name a
few [10, 9, 14]. Much work has gone into the stochastic simulation of biological
system especially in the studying of chemical dynamics [16]. A flagship Monte
Carlo method is Gillespie’s stochastic simulation algorithm (SSA) [6], which is an
exact method of generating sample paths whose (marginal) probability distribution
is the solution to the CME [8]. Significant effort has been dedicated over the years
to improve the SSA as it can be extremely slow due to the many realizations that
need to be averaged to get more accurate approximations of the probability dis-
tribution. A few of such improvements include the tau-leaping [3], or slow-scale
SSA [2]. Other methods are finite state projection (FSP) [15], adaptive lumping
of states [4]. Our manuscript gives a background on the CME in the next section
before discussing the moment method and other computational aspects in the fol-
lowing sections.

2 Chemical Master Equation

Assuming the biological system being modeled has N species, say {S1, . . . , SN},
the dynamical state of the system is defined as the number of copies of each species.
Thus at time t, let x(t) = (x1(t), . . . , xN(t))T be the state vector of nonnegative
integers representing the populations, i.e., xi is the number of copies of species Si.
Each possible configuration of the system defines a distinct vector and so must be
interpreted as a state in the Markov chain, thereby defining the state space, which for
this class of models, may always be identified with just theN -dimensional lattice of
points with nonnegative integer coordinates. But not all configurations are possible
(the lattice has “holes” due to reachability issues as illustrated soon).

Species interact via M ≥ 1 possible chemical reaction channels {R1, . . . , RM},
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each of the generic form

R : c1S1 + · · ·+ cNSN
κ−→ b1S1 + · · ·+ bNSN , (1)

where κ is the reaction rate and the ci and bi are, respectively, the coefficients of the
reactants and products.

Transitions between states occur when (and only when) a reaction occurs. For
a general reaction of the form (1), there is an associated stoichiometric vector ν =
(b1− c1, . . . , bN − cN)T sized as the state vector and defining how the state changes
when the reaction occurs. The components of the stoichiometric vector are integers,
recording the increase or decrease in the number of copies of each species after the
associated reaction occurs. Specifically, if the system is in state x and reaction j
occurs, then the system transitions to state x+νj , mimicking a random walk in the
N -dimensional lattice. But if x+ νj causes a component to become negative, such
a reaction cannot happen, suggesting intuitively a “hole” in the lattice as hinted
earlier, or formally the notion of reachability in the Markov chain.

As a way of illustrating this background section, suppose we are given a system
with three chemical species, Su, Sv and Sw, that undergo the reaction

Su + Sv
κ1−→ Sw (2)

The associated stoichiometric vector has−1 in the uth and vth components, and +1
in the wth component and is zero elsewhere.

Typically in biological settings only a handful of reaction channels frequently
arise. In particular, as well as reaction (2) just mentioned, birth (or immigration),
death (or decay), and dimerization are other common forms. Birth is of the form

∅ κ2−→ Su (3)

where an instance of a species Su is gained. The associated stoichiometric vector

ν = (0, . . . , 0,+1, 0, . . . , 0)T

has +1 in the uth component and is zero elsewhere. Death is the reverse of birth.
Dimerization is when two molecules of the same species, called monomers, com-
bine to form a dimer. The chemical reaction is written as

2Su
κ3−→ Sv (4)

where Su is the monomer and Sv is the dimer. The associated stoichiometric vector

ν = (0, . . . , 0,−2, 0, . . . , 0,+1, 0, . . . , 0)T
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has −2 in the uth component, and +1 in the vth component and is zero elsewhere.
It remains only to specify the probability of different kinds of transitions be-

tween states, i.e., the relative likelihood of the various reactions. Associated with
each state is a set of M propensities, α1(x), . . . , αM(x), that determine the relative
chance of each reaction occurring if the system is in state x. The propensities are
defined by the requirement that, given x(t) = x, then αj(x)dt is the probability of
reaction j occurring in the next infinitesimal time interval [t, t+ dt), where the de-
pendence on time has now been made explicit. The propensities are state-dependent
and have a functional form defined by the stoichiometry of the reaction. For a gen-
eral reaction (1) under the classic model of mass-action kinetics, the propensity,
when in state x, is a scaled product of binomial terms:

α(x) = κ

(
x1

c1

)(
x2

c2

)
. . .

(
xN
cN

)
. (5)

Note that (5) does not depend on the products, and the scaling κ is indicative to
the fact that not all collisions of the appropriate reactants necessarily result in a
reaction. In the case where κ is time-dependent, so too will be the propensities,
thus adding a further complexity to the problem.

Assuming the initial probability distribution at t = 0 is known, Let P (x, t) be
the probability of being in state x at time t, it has been shown to satisfy

∂P (x, t)

∂t
=

M∑
j=1

αj(x− νj)P (x− νj, t)− P (x, t)
M∑
j=1

αj(x) (6)

Equation (6) is what is formally known as the CME, and it can be rewritten as a
system of linear ODEs in matrix form:{

p′(t) = Ap(t) t ∈ [0, tf ]

p(0) = p0 initial condition.
(7)

where the state space has been explicitly enumerated, and the probability vector p =
(p1, p2, . . .)

T is indexed by the states, i.e., pi = P (xi, t) with a state xi identified
just by its index i in the enumeration. The entries of the transition matrixA = [αi,j]
are populated with the propensities of transitioning between states j and i. As there
are impossible transitions due to unreachability between states, the corresponding
entries are zeros, and because there are many of them in practice, A is a large
sparse matrix. In the case of constant rates and given an initial probability vector
p0 representing the initial condition of the biochemical system, the exact solution
at time t is:

p(t) = etAp0 (8)
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Naive methods cannot be employed to solve the CME due to the large size of
the matrix, or when there are time-dependent rates.

3 Chemical Langevin Equation

The Chemical Langevin equation (CLE) is a set of coupled, nonlinear stochastic dif-
ferential equations (SDEs) [16] which describes the time evolution of the molecule
numbers of each species. The CLE method simulate the stochastic dynamics of
chemical systems as it factors in noise, hence, the probability density result to the
Fokker-Planck equation, which approximate the chemical master equation solu-
tion [17]. The concept, derivation and accuracy of the CLE method in comparison
to the SSA and other methods in solving the master equation has been extensively
explored in literature [7, 12, 5].

As noted in [16], one of the major setbacks of CLE is that it can break down for
systems with small numbers in molecules due to the problem of evaluating square
roots of negative quantities.

Denoting the amount of species i at time t by a real-valued random variable
xi(t). for a dynamical system with chemical master equation (6), the chemical
Langevin equation [7] is derived thus:

x(t+ τ) = x(t) + τ
M∑
j=1

νjαj(x(t)) +
√
τ

M∑
j=1

νj

√
αj(x(t))Zj (9)

where, Zj depict independent normal random variables drawn in (0, 1), x(t) is the
state vector in RN at time t and τ is the leap time.

4 Method of Moments

As in section 2, let P (x, t) be the probability of being in state x at time t. The mean
or first-order moment associated to xi is defined as

µi = E[xi] =
∑
x

xiP (x, t)

but that definition involves knowing P (x, t), which involves the onerous task of
solving the CME. The method of moments seeks a work around by multiplying the
CME (6) by xi and summing over all reachable states x = (x1, x2, ..., xN)T

∑
x

xi
∂P (x, t)

∂t
=

∑
x

[ M∑
j=1

xiαj(x− νj)P (x− νj, t)− xiP (x, t)
M∑
j=1

αj(x)
]
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Following the derivation in [13], it comes

dE[xi]

dt
=
∑
x

M∑
j=1

νj,iαj(x)P (x, t)

dE[(xi − µi)(xj − µj)]
dt

=
M∑
k=1

(
νk,iE[(xj − µj)αk(x)] + νk,jE[(xi − µi)αk(x)] + νk,iνk,jE[αk(x)]

)
The equation associated to the second-order moment is derived thus:

∂µi
∂t

=
∑
j

νj,i

[
αj(µ) +

1

2

∑
l,k

∂2αj(µ)

∂xl∂xk
Clk

]

∂Cij
∂t

=
∑
k

[
νk,iνk,jαk(µ) +

∑
l

∂αj(µ)

∂xl

(
νk,iCjl + νk,jCil

)
+

1

2

∑
l,k

∂2αj(µ)

∂xl∂xk

(
νk,iνk,jClk + νk,iCjlk + νk,jCilk

)]

where µi and Cij are the mean and covariance respectively. Cilk is the third-order
moment of xi, xl, and xk. Since, the ith moment equation depends on (i + 1)th

moment, hence the third-order moment is expressed in terms of the first and second
order moment using appropriate moment closure technique.

5 Numerical Tests

5.1 Constant Reaction Rate:Vascular Endothelial Growth Factor (VEGF) Model

The vascular endothelial growth factor (VEGF) receptor model is a system that
describes the events that lead to angiogenesis, the process where new blood vessels
are generated from vasculature following the release of growth factors from the
surrounding tissue. Growth factors are special types of cytokines, and endothelial
cells possess specific receptors, namely the VEGF receptor, to which these growth
factors bind.
The model species are represented with U, B, X and L, where U is an unbound
receptor, B is a bound receptor, X is an oligomer (a molecular complex containing

6
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Figure 1: Single realisation of the VEGF model with SSA

Figure 2: 1000 realisations of the VEGF model with the mean numbers of molecule

Figure 3: Mean numbers of molecules of the VEGF model generated with the method of
moments

7
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Reaction Channels Propensity

U + L kon−−→ B kon[L][U ]

B
koff−−→ U + L koff [B]

U + B
kXon−−→ X kXon∆2[U ][B]

4R2

X
kXoff−−→ U +B kXoff [X]

Table 1: Reaction Channels and Propensity of VEGF Receptor Model. The Parameters[1]
are kon = 1.0 × 10−5, koff = 1.0 × 10−3, kXon = 2.304 × 103, kXoff = 1.0 × 10−3,∆ =

2.5× 10−9, R = 3.0× 10−6, L = 1000

Figure 4: A comparison of the mean number of molecules of the VEGF model using the
SSA, CLE and method of moments

few repeating structural units) of receptors and ligand (a molecule that binds to
another larger molecule). In this model, L depicts the concentration of free ligand.

Using the initial condition [U,B,X] = [50, 0, 0]. The vascular endothelial
growth factor (VEGF) receptor model is simulated using the parameters from [1].
Figure 1 shows one realization of the stochastic simulation algorithm (SSA) execu-
tion of the model,multiple realisations of the model with the average(mean) number
of molecules with respect to time is shown in figure 2.
Figure 3 shows the mean numbers of molecules of U(t), B(t), X(t) by method of
moment. Figure 4 shows the mean copy number of VEGF receptors from the three
methods under consideration: the Stochastic simulation algorithm (SSA), chemical
Langevin equation (CLE), and moment method. It can be seen that the results de-
rived using the moment method agrees with the results obtained using the stochastic
simulation algorithm and chemical Langevin equation; that is the moment method

8
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Figure 5: Mean population of the SIR model generated with the method of moments

gives an efficient approximation of the chemical master equation.

5.2 Time-dependent Reaction Rate:SIR Epidemic Model

We considered a three species SIR epidemic model with periodic rate reaction with
Susceptible(S), Infected(I) and Recovered(R) population, the reaction channels are
given below:

Reaction Channels Propensity

S + I k1−→ 2I k1[S][I]

I k2−→ R k2[I]

R k3−→ S k3[R]

S k4−→ ∅ k4[S]

I k5−→ ∅ k5[I]

R k6−→ ∅ k6[R]

Table 2: Reaction Channels and Propensity of the SIR model. The Parameters[19] are
k1 = 0.003f(t), k2 = 0.02, k3 = 0.007, k4 = 0.002, k5 = 0.05, k6 = 0.002

The interaction between the susceptible population and the infected population
was modeled with a periodic contact rate f(t) = (1 + 0.6 sin(πt/3)).
In order to compare the different approaches (SSA, CLE and moments) for the [S
I R] population states, we computed with the initial population [200 10 0] over [0
10](years) timeframe.

Figures 5 and 6 shows the mean population of S(t), I(t), R(t) by method of
moment and multiple realisations for the SIR model with average population (mean
population) respectively. As can be seen in Figure 7, the mean population of the

9
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Figure 6: 100 realisations of the SIR Epidemic model with the mean population

Figure 7: Comparison of the mean population in SIR using the SSA, CLE and moments

periodic epidemic model derived using the moment method agrees with the results
obtained using the SSA and CLE; that is the moment method gives an efficient
approximation of the chemical master equation.

6 Conclusion

A comparative analysis was carried out on three different methods for approximat-
ing the CME solution, namely the SSA, the CLE and the method of moments. The
three methods were applied to dynamical systems with constant and and time de-
pendent rates. This work further lend credence to the accuracy and efficiency of the
method of moments as a good approximation method for the CME. The method of
moment is computationally less demanding (in time and storage) when compared
to the SSA and CLE. The setback of the method of moment is the dependence of
the resulting moment equation on higher order moments, this can be overcome by
using appropriate moment closure method, which involves writing the higher or-
der moments in terms of lower order moments. The presented results agree with
literature on the solution of the chemical systems.
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APENDIX

6.1 Moment Equation for SIR Model

Below is the moment equation generated from the SIR Epidemic model with pe-
riodic rate,using MomentClosure on Julia [18], the output has been restructured
and re-written for readability purpose where µ100, µ010, µ001 represents the means,
µ200, µ020, µ002 represents the variances for the susceptible, infected and recovered
population respectively, while the covariance for the SIR populations, i.eCOV (S, I) =
µ110, COV (S,R) = µ101, COV (I, S) = µ011

dµ100

dt
=k3µ001 − k4µ100 − k1µ110 − 0.6k1µ110 sin

(
2πt

6

)
dµ010

dt
=k1µ110 + 0.6k1µ110 sin

(
2πt

6

)
− k5µ010 − k2µ010

dµ001

dt
=k2µ010 − k6µ001 − k3µ001
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dµ200

dt
=k1µ110 + k3µ001 + k4µ100 + 2k3µ101 + 0.6k1µ110 sin

(
2πt

6

)
+ 4k1µ

2
100µ010

+ 2.4k1µ
2
100µ010 sin

(
2πt

6

)
− 2k4µ200 − 2k1µ010µ200 − 4k1µ100µ110

− 1.2k1µ010µ200 sin

(
2πt

6

)
− 2.4k1µ100µ110 sin

(
2πt

6

)
dµ110

dt
=k3µ011 + k1µ010µ200 + 2k1µ

2
010µ100 + 2k1µ100µ110 + 1.2k1µ

2
010µ100 sin

(
2πt

6

)
+ 0.6k1µ010µ200 sin

(
2πt

6

)
+ 1.2k1µ100µ110 sin

(
2πt

6

)
− k5µ110

− k1µ110 − k2µ110 − k4µ110 − k1µ020µ100 − 0.6k1µ110 sin

(
2πt

6

)
− 2k1µ

2
100µ010

− 2k1µ010µ110 − 0.6k1µ020µ100 sin

(
2πt

6

)
− 1.2k1µ

2
100µ010 sin

(
2πt

6

)
− 1.2k1µ010µ110 sin

(
2πt

6

)
dµ101

dt
=k3µ002 + k2µ110 + 2k1µ001µ010µ100 + 1.2k1µ001µ010µ100 sin

(
2πt

6

)
− k6µ101 − k3µ001

− k3µ101 − k4µ101 − k1µ010µ101 − k1µ001µ110 − k1µ011µ100 − 0.6k1µ001µ110 sin

(
2πt

6

)
− 0.6k1µ011µ100 sin

(
2πt

6

)
− 0.6k1µ010µ101 sin

(
2πt

6

)
dµ020

dt
=k5µ010 + k2µ010 + k1µ110 + 2k1µ020µ100 + 4k1µ010µ110 + 0.6k1µ110 sin

(
2πt

6

)
+ 2.4k1µ010µ110 sin

(
2πt

6

)
+ 1.2k1µ020µ100 sin

(
2πt

6

)
− 2k5µ020

− 2k2µ020 − 4k1µ
2
010µ100 − 2.4k1µ

2
010µ100 sin

(
2πt

6

)
dµ011

dt
=k2µ020 + k1µ010µ101 + k1µ001µ110 + k1µ011µ100 + 0.6k1µ001µ110 sin

(
2πt

6

)
+ 0.6k1µ011µ100 sin

(
2πt

6

)
+ 0.6k1µ010µ101 sin

(
2πt

6

)
− k2µ010 − k5µ011

− k6µ011 − k2µ011 − k3µ011 − 2k1µ001µ010µ100 − 1.2k1µ001µ010µ100 sin

(
2πt

6

)
dµ002

dt
=k6µ001 + k3µ001 + k2µ010 + 2k2µ011 − 2k6µ002 − 2k3µ002
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6.2 Moment Equation for VEGF Model

Using MomentClosure package on Julia [18], the equations for the method of mo-
ments generated from the vascular endothelial growth factor(VEGF) model are
shown below. In this model, the concentration of free ligand is L is set up as a
placeholder molecule, hence the four subscripts in the solutions

dµ1000

dt
=koffµ0010 + kXoffµ0001 − konµ1100 − 0.25kXon∆2R−2µ1010

dµ0100

dt
=koffµ0010 − konµ1100

dµ0010

dt
=konµ1100 + kXoffµ0001 − koffµ0010 − 0.25kXon∆2R−2µ1010

dµ0001

dt
=0.25kXon∆2R−2µ1010 − kXoffµ0001

dµ2000

dt
=koffµ0010 + konµ1100 + kXoffµ0001 + 2koffµ1010 + 2kXoffµ1001 + 4konµ

2
1000µ0100

+ kXon∆2R−2µ2
1000µ0010 + 0.25kXon∆2R−2µ1010 − 2konµ0100µ2000 − 4konµ1000µ1100

− kXon∆2R−2µ1000µ1010 − 0.5kXon∆2R−2µ0010µ2000

dµ1100

dt
=koffµ0010 + kXoffµ0101 + konµ1100 + koffµ0110 + koffµ1010 + 2konµ

2
1000µ0100 + 2konµ

2
0100µ1000

+ 0.5kXon∆2R−2µ0010µ0100µ1000 − konµ0100µ2000 − konµ0200µ1000 − 2konµ0100µ1100

− 2konµ1000µ1100 − 0.25kXon∆2R−2µ0010µ1100 − 0.25kXon∆2R−2µ0100µ1010

− 0.25kXon∆2R−2µ0110µ1000

dµ1010

dt
=kXoffµ0001 + kXoffµ0011 + koffµ0020 + kXoffµ1001 + konµ0100µ2000 + 2konµ1000µ1100

+ 2konµ0010µ0100µ1000 + 0.25kXon∆2R−2µ1010 + 0.5kXon∆2R−2µ2
1000µ0010

+ 0.5kXon∆2R−2µ2
0010µ1000 − koffµ0010 − koffµ1010 − konµ1100 − 2konµ

2
1000µ0100

− konµ0100µ1010 − konµ0110µ1000 − konµ0010µ1100 − 0.25kXon∆2R−2µ0010µ2000

− 0.25kXon∆2R−2µ0020µ1000 − 0.5kXon∆2R−2µ0010µ1010 − 0.5kXon∆2R−2µ1000µ1010
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dµ1001

dt
=koffµ0011 + kXoffµ0002 + 2konµ0001µ0100µ1000 + 0.5kXon∆2R−2µ1000µ1010

+ 0.25kXon∆2R−2µ0010µ2000 + 0.5kXon∆2R−2µ0001µ0010µ1000 − kXoffµ0001 − kXoffµ1001

− konµ0001µ1100 − konµ0101µ1000 − konµ0100µ1001 − 0.25kXon∆2R−2µ1010

− 0.25kXon∆2R−2µ0010µ1001 − 0.25kXon∆2R−2µ0011µ1000 − 0.5kXon∆2R−2µ2
1000µ0010

− 0.25kXon∆2R−2µ0001µ1010

dµ0200

dt
=konµ1100 + koffµ0010 + 2koffµ0110 + 4konµ

2
0100µ1000 − 2konµ0200µ1000 − 4konµ0100µ1100

dµ0110

dt
=koffµ0020 + kXoffµ0101 + konµ0200µ1000 + 2konµ0100µ1100 + 2konµ0010µ0100µ1000

+ 0.5kXon∆2R−2µ0010µ0100µ1000 − koffµ0010 − konµ1100 − koffµ0110 − konµ0100µ1010

− konµ0110µ1000 − 2konµ
2
0100µ1000 − konµ0010µ1100 − 0.25kXon∆2R−2µ0010µ1100

− 0.25kXon∆2R−2µ0100µ1010 − 0.25kXon∆2R−2µ0110µ1000

dµ0101

dt
=koffµ0011 + 2konµ0001µ0100µ1000 + 0.25kXon∆2R−2µ0010µ1100 + 0.25kXon∆2R−2µ0100µ1010

+ 0.25kXon∆2R−2µ0110µ1000 − kXoffµ0101 − konµ0101µ1000 − konµ0001µ1100 − konµ0100µ1001

− 0.5kXon∆2R−2µ0010µ0100µ1000

dµ0020

dt
=koffµ0010 + konµ1100 + kXoffµ0001 + 2kXoffµ0011 + 2konµ0100µ1010

+ 2konµ0110µ1000 + 2konµ0010µ1100 + kXon∆2R−2µ2
0010µ1000

+ 0.25kXon∆2R−2µ1010 − 2koffµ0020 − 4konµ0010µ0100µ1000 − kXon∆2R−2µ0010µ1010

− 0.5kXon∆2R−2µ0020µ1000

dµ0011

dt
=kXoffµ0002 + konµ0001µ1100 + konµ0101µ1000 + konµ0100µ1001 + 0.25kXon∆2R−2µ0020µ1000

+ 0.5kXon∆2R−2µ0010µ1010 + 0.5kXon∆2R−2µ0001µ0010µ1000 − koffµ0011 − kXoffµ0001

− kXoffµ0011 − 2konµ0001µ0100µ1000 − 0.25kXon∆2R−2µ1010 − 0.25kXon∆2R−2µ0011µ1000

− 0.25kXon∆2R−2µ0010µ1001 − 0.25kXon∆2R−2µ0001µ1010 − 0.5kXon∆2R−2µ2
0010µ1000

dµ0002

dt
=kXoffµ0001 + 0.25kXon∆2R−2µ1010 + 0.5kXon∆2R−2µ0011µ1000 + 0.5kXon∆2R−2µ0010µ1001

+ 0.5kXon∆2R−2µ0001µ1010 − 2kXoffµ0002 − kXon∆2b−2µ0001µ0010µ1000
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