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AIS Authentication Using Certificateless Cryptography

Axel Rousselot, Nora Cuppens a and Samra Bouakkaz
Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, Canada

Keywords: Authentication Protocol, Automatic Identification System (AIS), Certificateless Cryptography, Cybersecurity,
Digital Signature, Maritime System.

Abstract: The Automatic Identification System (AIS) is a maritime situational awareness system, designed as a collision
avoidance tool to increase security at sea. Widely accepted, its data is now used for various applications,
from maritime traffic predictions to the environmental effects of noise pollution. However, the AIS has been
designed without security in mind and does not embed any authentication strategy. Research has shown how
this lack of authentication could lead to disastrous consequences. Authentication AIS is thus an active research
field, but the constraints imposed by the AIS network require subtle protocol design and careful use of new
cryptographic technologies. This work proposes an authentication scheme for the AIS using the advantages of
certificateless cryptography. The scheme is backward-compatible with standard AIS versions. We evaluate the
performance and security of our proposed scheme through simulations and theoretical analysis. Our results
show that our scheme provides strong security guarantees and efficient performance, making it a promising
candidate for authenticating AIS signals in practice.

1 INTRODUCTION

Developed during the nineties to improve situational
awareness at sea, the AIS was so successful that in
2002, it was made mandatory by the International
Maritime Organisation (IMO) for ships of 300 or
more gross tons (GT), vessels carrying 150 people or
more, and commercial vessels of 65 feet and more.

AIS transmissions allow devices to transmit static
and dynamic data, including their Maritime Mobile
Service Identity (MMSI), location, or speed. Upon
reception, the data is overlaid on the Electronic Chart
Display Information System (ECDIS), giving the nav-
igation crew a good overview of the surroundings.
Over the past decade, AIS data has started to gain a
lot of interest in the maritime and scientific commu-
nities. The AIS data is aggregated and published in
real-time on public websites, and it is collected into
massive databases of global maritime traffic. This en-
abled scientists to forecast maritime traffic and vessel
trajectories (Last et al., 2014a), assess the sound ex-
posure of coastal species (Merchant et al., 2012), or
track oil spills (Schwehr and McGillivary, 2007).

Without considering security, the AIS has been
designed, leaving the AIS messages unauthenticated.
It was not an issue when spoofing radio signals was
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very costly, but the rise of relatively cheap Software-
Defined Radio (Balduzzi et al., 2014). As demon-
strated by Balduzzi et al. (Balduzzi et al., 2014), AIS
is vulnerable to numerous spoofing attacks that could
have disastrous consequences. In this paper, we pro-
vide an authentication extension to the AIS to mitigate
spoofing attacks. The remainder of this paper is orga-
nized as follows: Section 2 introduces the technical
background necessary to understand this work. Sec-
tion 3 then examines the related work as well as the
AIS’s existing authentication propositions. Section 4
exposes the architecture and the different phases of
our authentication proposition, and Section 5 shows
the proof of concept we implemented to conduct vari-
ous experiments and validate our proposition. Finally,
Section 6 presents our results, analyses our work’s
limitations, and explores future work possibilities.

2 TECHNICAL BACKGROUND

This section aims at providing sufficient technical
background about the AIS and CLC (Certificateless
Cryptography) to understand the different sections.
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2.1 Automatic Identification System

The AIS uses the two maritime reserved Very High
Frequency (VHF) channels 87B (161.975 MHz) and
88B (162.025 MHz). As described in Interna-
tional Telecommunication Union Recommendation
M.1371-5 (Series, 2014), each channel is divided into
1-minute long frames, and each frame is divided into
2250 26.67 ms long slots, allowing for the transmis-
sion of 256 bits at 9600 bauds. There are 27 differ-
ent types of AIS messages, each providing different
pieces of information. These types, along with their
purposes, are presented in Table 1. To be transmitted,

Table 1: All 27 types of AIS messages.
# Message name
1 Position report (scheduled)
2 Position report (assigned scheduled)
3 Position report (response to interrogation)
4 Base station report
5 Static and voyage-related data
6 Binary addressed message
7 Binary acknowledgment
8 Binary broadcast message
9 Standard SAR aircraft position report
10 UTC/date inquiry
11 UTC/date response
12 Addressed safety-related message
13 Safety-related acknowledgment
14 Safety-related broadcast message
15 Interrogation
16 Assignment mode command
17 DGNSS broadcast binary message
18 Standard Class B equipment position report
19 Extended Class B equipment position report
20 Data link management message
21 Aids-to-navigation report
22 Channel management
23 Group assignment command
24 Static data report
25 Single slot binary message
26 Multiple slot binary message
27 Position report for long-range applications

an AIS message can take up to five transmission slots
when sent by a class A sender, and up to three when
sent by a class B device. The figure shows the for-
matting of a type 1 AIS message. This message takes
only 168 bits, the maximum that can be transmitted
in a single emission slot. If the message is longer,
such as message type 8 in some cases, the formatting
is changed as shown in Figure 1. The AIS footer and
header are only sent once, allowing more data to be
transmitted than with two separated single-slot emis-
sions. The table shows how many bytes Message 8
embeds in its payload field across multiple slots (Se-
ries, 2014).

3 RELATED WORK

The security of AIS has been widely analyzed in mul-
tiple pieces of research. These studies identify the
lack of authentication as being the most critical AIS
vulnerability, allowing an attacker to easily perform

Figure 1: Multislot message AIS formatting example.

spoofing attacks, denial of service attacks, and hi-
jacking attacks. Over the past decade, various secu-
rity improvements have been proposed for the AIS.
The authors in (Hall et al., 2015) proposed a signa-
ture and encryption scheme based on pseudonyms to
provide AIS data confidentiality, anonymity, and au-
thenticity. However, the authors did not provide suf-
ficient details about the cryptographic solution they
used, how they intend to solve key distribution and
management, how much overhead the introduction
of their signatures produces, or how they intend to
make their solution retro-compatible. The authors in
(Su et al., 2017) suggested an authentication scheme
based on Rivest–Shamir–Adleman (RSA) signatures
along with Certificate Authorities (CA) to provide au-
thenticity to AIS messages. However, as pointed out
by the authors of (Goudossis and Katsikas, 2019),
RSA produces much larger signatures that can be
transmitted with AIS. More recently, the authors in
(Wimpenny et al., 2022) suggest using a CA-based
scheme and transmitting Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) signatures through the VHF
Data Exchange System (VDES), the AIS successor.
However, the VDES is still under heavy development
and is not expected to take over AIS soon. The au-
thors in (Goudosis and Katsikas, 2020) used Identity
Based Cryptography (IBC) to authenticate AIS mes-
sages. However, IBC is considered insecure because
it relies on the use of a trusted third party, known as
the private key generator (PKG), to generate private
keys for users based on their identities. This means
that the PKG has the ability to generate private keys
for any user, including themselves, and can therefore
impersonate any user (Xiong et al., 2016). Finally, the
author in (Nguyen, 2020) suggests using certificate-
less cryptography to provide AIS message authenti-
cation. The author highlights the benefits of using
certificateless cryptography over other forms of cryp-
tography but does not provide any implementation of
such a scheme.

Several solutions have already been proposed to
overcome the lack of authentication in AIS, but no
standard has been established. This may be because
these solutions are not fully implemented and do not
fulfill all requirements. To determine the appropriate
type of cryptography, the system’s constraints must

SECRYPT 2023 - 20th International Conference on Security and Cryptography

50



first be considered, especially the number of trans-
mission slots per minute. The size of the signature
is crucial for maintaining the network’s integrity, also
the infrastructure’s complexity and cost must be taken
into account. We decided not to use a PKI due to the
challenges involved in establishing the infrastructure
and transmitting costly certificate chains. Although
IBS has some advantages, the complex issue of public
key revocation and key escrow is too much to handle.
Instead, we chose to adopt CLS to sign AIS messages
since it generates smaller signatures, requires less re-
sources, and has lower computational costs (Du et al.,
2020).

4 THE AUTHENTICATION
PROTOCOL

This section describes our authentication proposition
for the AIS.

4.1 Security Issues

Attacks on AIS can affect six significant informa-
tion characteristics: confidentiality, integrity, avail-
ability, possession, authenticity, and utility. Confiden-
tiality involves keeping information secure; integrity
involves maintaining the accuracy of information; and
availability refers to the accessibility of information.
Possession refers to the loss of access to information
by authorized users; authenticity involves verifying
the identity of the sender; and utility refers to the use-
fulness of information to the user. After reviewing the
existing proposals, we concluded that a solution must
meet the following criteria:

• Backward compatibility: The introduction of a so-
lution must not change even partially the behavior
of former users or the current standard.

• Standard compliance: Solutions must meet cur-
rent standards such as NMEA-0183 and ITU-R
M. 1371-5 to avoid data transfer size restrictions.

• AIS bandwidth savings: Solutions must minimize
transmission of authentication information.

• Internet independence: The solution may still in-
volve ad-hoc internet access for devices that need
to check signatures since internet access is easily
available at the port.

The confidentiality of AIS data would make it too
risky for hacking and interfere with collision avoid-
ance, so we have not included it in these constraints.

4.2 Design Decisions

This section describes the design decisions developed
to create a protocol that meets the previously identi-
fied design constraints.

4.2.1 Signature Transmission

among the 27 types of AIS messages, three seem
suited for signature transmission. The type 6 mes-
sage, called a Binary Addressed Message, allows an
arbitrary binary payload to be sent to a target iden-
tified by its MMSI. Its payload has a maximum size
of 920 bits using 5 transmission slots, and 496 using
3 slots. Similar to type 6, the type 8 message (Bi-
nary Broadcast Message) allows a binary payload of
up to 952 bits to be broadcast to all devices in range.
Finally, message type 26 (Multiple Slot Binary Mes-
sage) can embed up to 1004 bits, but it is rarely used
in practice, and its use for very specific purposes may
cause compatibility issues. Thus, we decided to use
the type 8 AIS message to transmit our signatures.

4.2.2 Partial Signing

The number of emission slots necessary to transmit
a payload given its size using message 8 is given in
Table 2. We excluded the DAC and FID fields of the
message, as their usage is reserved for transmitting
the message and thus cannot be used for transmitting
a signature. To date, no CLC algorithm is able to gen-
erate signatures smaller than 41 bytes, so signatures
will take at least three emission slots.

Table 2: Given the size of the binary payload, the number of
slots used by message 8 to transmit it (excluding the DAC
and FID fields).

Number of slots Maximum binary data bytes
1 10
2 38
3 66
4 94
5 191

If we try to sign every message, the AIS traffic
will be approximately multiplied by four (given that
most messages are single slots), and this would cause
the AIS network to collapse pretty fast. Multiple solu-
tions have emerged from research to tackle this issue.
The authors of (Struck and Stoppe, 2021) proposed
to sign messages in batches. While solving the is-
sue, this solution may introduce potential reliability
problems. Indeed, it only takes one wrongly received
bit for the entire message batch to fail verification,
and AIS does not implement an error correction algo-
rithm to prevent that from happening. Another solu-
tion is to sign only a fraction of AIS messages. To
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that purpose, we divided AIS messages into two cat-
egories. Non-critical AIS messages are position re-
ports and static voyage data sent periodically. Those
messages should only be signed once for each Se mes-
sage sent by each AIS emitter, where Se is a security
parameter that must be determined. The other mes-
sages are considered critical, and should always be
signed. We identified messages of types 6 through
14, 16, 21, 22, 23, 25, 26, and 27 as critical. The
other ones are considered non-critical. The author of
(Last et al., 2014b) determined that non-critical mes-
sages represent about 97.35% of all AIS messages.
An analysis of an AIS sample available on the aishub
platform confirmed this number. If we assume that
most messages only use one emission slot (which is
usually the case for non-critical messages), then the
overload factor α is given by the equation 1, where
p is the proportion of non-critical messages and Se is
the security parameter.

α = 4−3p(1− 1
Se
) (1)

This means that if the AIS network load is Li before
authentication, the network load after signing is L f =
αLi, where the load ratio between used and unused
emission slots. Table 3 shows the final load L f given
Se and Li for p = 0.9735.

Table 3: Final AIS load given initial load and Se, for p =
0.9735. Red cells are above 100%.

Se
50 30 20 15 10 5

α

1,14 1,18 1,23 1,27 1,37 1,66
Li(%)

L f (%)

1 1,14 1,18 1,23 1,27 1,37 1,66
12 13,65 14,12 14,71 15,29 16,46 19,96
23 26,17 27,07 28,19 29,31 31,55 38,26
34 38,69 40,01 41,67 43,32 46,63 56,56
45 51,21 52,96 55,15 57,34 61,72 74,86
56 63,72 65,90 68,63 71,36 76,81 93,16
67 76,24 78,85 82,11 85,37 91,89 111,46
78 88,76 91,79 95,59 99,39 106,98 129,76
89 101,27 104,74 109,07 113,40 122,07 148,06
100 113,79 117,69 122,55 127,42 137,16 166,36

This table shows that a value of Se = 10 should
be suited for most cases, even though a very crowded
area should probably use a higher value to guarantee
AIS network integrity.

4.2.3 Signature and Message Linking

Since signatures are sent separately from their mes-
sages, we need to find a way to link a signature to its
message. We decided to compute a message identi-
fier for each message using the first four bytes of its
SHA-1 hash. This 4 bytes identifier is sent with each
signature. Thus, when a user receives a message, it
calculates its identifier and saves it in a buffer. Upon

receiving the corresponding signature, the user can re-
trieve the message and verify its authenticity.

4.2.4 Replay Attack Protection

To prevent replay attacks on our authentication
scheme, we include a 32-bit UNIX timestamp t in the
computation of a message’s signature σ, as shown in
Equation 2.

σ = sign(SHA1(m|t)) (2)

This timestamp will be sent along with the signature
and the message identifier to allow receivers to verify
that the signature has not been generated more than a
security threshold th before its reception.

4.2.5 Public Key Repository

A downside of CLC compared to IBC is that public
keys cannot be directly derived from a user’s identity
and thus have to be sent along with a signature. We al-
ready assessed that the AIS network was just flexible
enough to allow the sending of a few signatures, but
could not stand the systematic sending of public keys.
Therefore, we decided to use a public key repository,
maintained by the KGC. This public key repository
contains all the public keys of all registered users and
should be downloaded over the internet while ships
are in port. Thanks to the cryptographic properties of
CLC, this directory does not create a security hole.
Even if an attacker were to compromise and modify
it, he would not be able to impersonate a user by re-
placing a user’s key with his own or pretending to be
a legitimate user by inserting his public key.

4.3 Solution Architecture

Several actors are involved in our solution. They are
differentiated into two categories: the administrators,
who do not use the protocol directly but participate
in its operation, and the users of the protocol. The
administrators are divided as follows:

• The lead organization (LO) This entity acts as the
KGC’s administrative center. It verifies that re-
quests are correct and that an already-registered
MMSI is not the subject of new requests. As with
KGC, the LO creates partial keys for legitimate
users. It is also in charge of maintaining the pub-
lic key repository and the revocation list.

• Intermediate Organizations (IOs). These entities,
located in the various participating countries, are
intended to verify the legitimacy of registration re-
quests. Their role is to reduce the administrative
load of the LO. They must, under local legislation,
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verify the identity of the applicant. This role can
be played, for example, by Transport Canada in
Canada.

The users of the solution can be divided into three
categories:

• Transponders, which can transmit and receive AIS
signals, are the most common devices found on
ships.

• Transmitters are those devices that can only trans-
mit AIS signals. This category includes, for ex-
ample, buoys or MOBs. The signature check does
not affect these devices because they do not re-
ceive AIS signals.

• Receivers are devices that can only receive AIS
signals. This is the case, for example, with de-
vices installed on small boats because they are less
expensive than transponders. These devices are
not concerned with the signature part of the pro-
tocol because they cannot transmit. So they don’t
need to register with the administration to get a
key pair, but only to download the public directo-
ries to check the signatures.

The overall architecture of the solution is de-
scribed in Figure 2.

Figure 2: Overall architecture of the solution.

4.4 Operation Phases

This section details how the actors interact during
the different phases of the protocol. There are three
main phases. The initialization phase, the registration
phase, during which a user obtains his keys, and the
operational phase, during which a user interacts with
other users.

4.4.1 Requirements

For the proper functioning of the solution, we assume
the existence of the actors described in the previous
section. We also assume the existence of the follow-
ing means of communication between the actors:

• To enable administrative actions, users and the LO
in each country can communicate via email or a
governmental web platform.

• Users and the LO can communicate via a web
platform provided by the LO. This platform must
use the HTTPS protocol so that communications
are encrypted.

• Users can communicate with each other by radio,
following the AIS specifications.

4.4.2 Phase 0: Initialisation

During this phase, the LO generates the cryptographic
parameters of the system as described. First, q is
chosen to be an l-bit prime number, where l is the
system’s security parameter. G is an additive ellip-
tic curve group of order q, and P is a generator of
G. The LO chooses x ∈ Z∗q randomly and computes
Ppub = xP ∈ G. x is kept secret as the private master
key.n The LO chooses three distinct hash functions:
H1,H2,H3 : {0,1}∗ → Z∗q . The public parameters
params = {q,G,P,Ppub,H1,H2,H3} are published.

4.4.3 Phase 1: Registration

This phase is only to be performed by users who can
transmit (transmitters and transponders). For a user
A, the steps are as follows:

• Step 1.A. The user A completes the administrative
steps required for registration with their interme-
diary organization. These steps must verify the
identity of the user, as well as the legitimacy of
the request. They are specific to each country be-
cause they depend on local legislation.

• Step 1.B. The intermediary organization checks
the request, and if it is compliant, it allows A to
set up two-factor authentication on the LO’s web
platform. The request is forwarded to the LO.

• Step 1.C. The LO checks that no other request
with the MMSI has been made before , and then it
generates a partial key for A based on its identity
ID. To do this, the LO randomly chooses β ∈ Z∗q ,
and computes the same remark above about using
the same name β for several variables

– yID = βP ∈ G
– h1 = H1(ID,yID,P,Ppub) ∈ Z∗q ,
– dID = β+h1x ∈ Z∗q .

The partial key is then the couple DID =
(dID,yID). The partial key is made available to
A on the web platform, which he retrieves us-
ing the two-factor authentication initialized in step
1.B. All communications are encrypted using the
HTTPS standard.
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• Step 1.D. When user A obtains the partial key, he
configures his AIS transmitter with it. The device
calculates a public and a private key and presents
the public key to A. To compute its keys, the de-
vice randomly chooses vID ∈ Z∗q as its private key
and computes gID = vIDP. Its public key is then
PKID = (gID,yID).

• Step 1.E. User A, again applying two-factor au-
thentication, sends his public key to the LO. The
LO finally updates the user key directory with the
public key.

4.4.4 Phase 2: Operational Phase

This phase is divided into three parts. The initializa-
tion part requires an internet connection and is only
necessary for devices that can transmit. The send-
ing part describes how all transmitting devices should
sign messages. The receiving part describes how a
device receiving AIS messages should verify the sig-
natures.

Step 2.1: Initialization. During this step, devices
must have an internet connection. Two directories
are downloaded from a web interface provided by the
AIS. A public key directory is a dictionary that con-
tains MMSI → public key pairs. The revocation di-
rectory is a list of revoked public keys. This phase is
only necessary for devices that can receive AIS mes-
sages because the directories are only useful for mes-
sage verification.

Step 2.2: Emission. Only a fraction of the AIS
messages are signed to avoid overloading the AIS net-
work. The messages considered critical, which are al-
ways signed, are those of types 6 to 14, 16, 21, 22, 23,
25, 26, and 27. The other messages are classified as
non-critical and are signed only once for each Se mes-
sage, where Se is a system security parameter related
to the proportion of non-critically signed messages in
al pha by Equation (3).

Se =
1
α
−1 (3)

A message m must be signed if one of the three
following conditions is satisfied:

• The message is a critical one.

• m is the device’s first non-critical message since it
was turned on.

• At least Se non-critical messages were sent with-
out a signature.

When a message m needs to be signed, a digest is
first computed by applying the SHA-1 hash function
to the message m and the current 32-bit UNIX times-
tamp t, as described in Equation (4).

h = SHA1(m|t) (4)
Then, the device signs this digest thanks to the sign
algorithm described by (Du et al., 2020) in the fol-
lowing way: Given the digest to sign h, the user keys
DID, vID and PKID, the device computes the follow-
ing:

• k ∈ Z∗q randomly and δ = kP ∈ G,

• h2 = H2(h,δ, ID,PKID,Ppub) ∈ Z∗q ,

• h3 = H3(h,δ, ID,PKID,h2) ∈ Z∗q ,

• z = k−1(h2vID +h3dID)modq ∈ Z∗q .

The signature of h is then σ = (δ,z). The mes-
sage identifier IDm is calculated from the first four
bytes of the message digest using the equation (5). It
will allow users who receive the signature to link it to
the associated message since the message signature is
sent in a separate AIS message.

IDm = SHA1(m)[0 : 4] (5)
Finally, using a type 8 message, the user sends the

payload P = σ|IDm|t, with a size of 41+ 8+ 4 = 53
bytes, and thus using only three transmission slots.
The DAC used is 100, and the FID is 0.

Step 2.3: Reception. Received messages are di-
vided into four non-distinct categories (a message can
belong to none, one, or more categories):

• Critical messages. A critical message belongs to
the types mentioned in step 2.2.

• Signatures. A signature is a message of type 8,
having a DAC of 100 and an FID of 0.

• Public-key request. A public key request is a mes-
sage of type 6, having a DAC of 100 and an FID
of 1.

• Public key. A public key is a message of type 8,
having DAC 100 and FID 2.

The values of the DAC and FID fields adopted for
the protocol are arbitrary and will have to be standard-
ized when such a protocol is adopted.

The behavior of the receiving device varies ac-
cording to the categories to which the received mes-
sage belongs:

• Case 1: The message was automatically accepted.
A message is automatically accepted as a legiti-
mate one if it is non-critical, and the sender is au-
thenticated. A sender user is authenticated when a
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valid signature for a non-critical message has been
received from that sender less than Se non-critical
messages ago. The count of the different types of
messages received from different users is kept by
the receiving device.

• Case 2: A Message requiring a signature. If the
message is critical or the sender is not authenti-
cated, it must be saved until a valid signature is
obtained, with the 32-bit UNIX timestamp tr cor-
responding to the time of its reception.

• Case 3: Signature. On receiving a signature s =
σ|IDm|t, from an MMSI ID, signing a message m,
the device must first find the message m such that
IDm = SHA1(m)[0 : 4] and the MMSI of m is ID,
the MMSI that sent the signature s. If no message
exists, the signature is ignored. If several mes-
sages exist, the verification procedure is applied to
all of these messages. Then, the time between the
transmission and the reception of m is checked. If
the message m was received at tr, we must have
t ≤ tr and tr− t ≤ th, where th is a security param-
eter. If one of these conditions is not verified, the
message is rejected because the time between the
signature of the message and its reception is too
long. Finally, the signature is verified thanks to
the vr f y algorithm described by (Du et al., 2020)
as follows. Given an AIS message m, a signature
σ = (δ,z), the time stamp of the message t, the
identity of the sender ID, and the sender’s public
key PKID, the device computes

– h = SHA1(m|t)
– h1 = H1(ID,yID,P,PPub) ∈ Z∗q ,
– h2 = H2(h,δ, ID,PKID,Ppub) ∈ Z∗q ,
– h3 = H3(h,δ, ID,PKID,h2) ∈ Z∗q .

The message is accepted if zδ = h2gID +h3(yID +
h1Ppub).

Proof. Correctness: Verify Signature
zδ = k−1(h2vID +h3dID)kP
zδ = h2vIDP+h3dIDP
zδ = h2gID +h3(βP+h1xP)
zδ = h2gID +h3(yID +h1Ppub)

If the key PKID is not present in the directory, and
the device can send AIS messages, a public key
request is sent to ID using a type 6 message with a
value of 100, 1, and a zero payload. m′ and m are
set aside while waiting for ID’s response. If the
device cannot transmit, the signature and message
are ignored.

• Case 4: Public key request. If the device cannot
transmit, the message is simply ignored. Other-
wise, the device must verify that it is the object of

the request by comparing its MMSI with the value
of the ”recipient MMSI” field in the message. If
the MMSI matches, the public key is sent thanks
to a type 8 message with a DAC of 100 and an
FID of 2.

A sequence diagram of the sending of a message
and its signature by a user A is presented in Figure 3.
In this diagram, users A and B have keys (ska, pka)
and (skb, pkb), identities IDa and IDb, and are both
transponders. At t = t1, A sends the message m1. The
sending of A’s identity is not shown on the diagram
because its MMSI is sent in all AIS messages. On
receipt of m1 at t = tr, B internally calculates the mes-
sage identifier ID1 = SHA1(m1)[0 : 4] and stores the
message, its reception timestamp tr and its identifier
in a buffer. When B receives the message s, which
contains t1, σ the signature of SHA1(t1|m1) by A and
the identifier ID1, B finds the message m1 thanks to its
identifier. B requests A’s public key after the tempo-
ral checks because it does not have it in its directory.
Finally, A answers the request with its key pka, and B
can perform the signature verification of m1.

Figure 3: Authentication sequence diagram of message m1
sent by user A.

5 SECURITY ANALYSIS

This section demonstrates the proposed protocol’s se-
curity. Each phase of the protocol’s security is ana-
lyzed by considering an adversary who can intercept
and manipulate radio traffic.
Public Directory Security: Consider the case where
an attacker E, possessing an IDE identity and valid
keys (pE , sE ) generated by OL, succeeds in replacing
the public key pA of a user A in the directory with
his own. The attacker’s goal is to usurp the iden-
tity of A. To do this, E creates a message m con-
taining the MMSI IDE signs it, using his private key
sE : σ = sign(m,sE), and sends it to user B. B re-
ceives m and σ, and retrieves from the directory what
it thinks is A’s public key to verify the message. It
retrieves the pE key. The verification is carried out
as follows: verify (m,σ, pE , IDA). This verification
fails because the identity used to generate the pE key
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is not the same as the identity used in the verifica-
tion. Even if an attacker convinces other users to use
his public key for verification, he cannot sign a mes-
sage on behalf of someone. This feature is only found
in signatures without certificates. During the initial-
ization phase, the OL generates the public parame-
ters without any communication from the actors. The
cryptographic protocol proposed by (Du et al., 2020)
ensures the security of this phase.
Phase 1: Although the administrative steps in Phases
1.A and 1.B could be vulnerable to a social engineer-
ing attack where an attacker requests on behalf of an-
other legitimate user, this risk is generated by admin-
istrative steps that are not part of the protocol. in this
analysis, administrative steps are therefore assumed
to be secure. The cryptographic security of step 1.C
is equivalent to the security of the HTTPS protocol.
Indeed, if an attacker could decrypt the user’s partial
key, he could use this partial key to generate a valid
pair of keys. Two-factor authentication helps protect
this phase of the protocol against a phishing attack
where an attacker would send a fake partial key down-
load link to retrieve a user’s login password. During
step 1.D, the user generates his private key and pub-
lic key from his partial key. The cryptographic pro-
tocol proposed by (Du et al., 2020) ensures its secu-
rity. Finally, the security of step 1.E is ensured by the
HTTPS protocol and two-factor authentication. The
public key will be freely available to all users, so an
attacker who can eavesdrop on communications has
no advantage. Even if the attacker can modify the
traffic, he could at most do a temporary denial of ser-
vice against a single user, but this attack would be
very quickly noticed and easily remedied.
Phase 2: This paragraph studies the security of the
operational phase of the protocol. Two attacks are
studied, the replay attack and the key hijacking attack.
The replay attack scenario is as follows. An attacker
equipped with an SDR records a message m sent at
time t by a user A and his signature s = σ | t | IDm,
with σ = sign(SHA1(m | t),sA). Later, at a time
t′> th, the attacker transmits thanks to his SDRm′=m
and s′ = σ | t′ | IDh. Upon receipt of m′ and s′ at
time tr, user B first verifies that tr − t′ ≤ th. Then it
computes verify (σ,SHA1(m | t′), pA, IDA). This step
fails because the SHA1 function is collision resistant,
so SHA1(m | t) ̸= SHA1(m | t′). The attacker must
therefore send m′= m and s′= σ | t | IDh for the veri-
fication to succeed. In this case, the first test tr−t ≤ th
fails, and the message is rejected. It is therefore im-
possible for an attacker to replay a message m more
than th after it has been sent. The key hijacking attack
scenario is similar to the directory attack. Three le-
gitimate users, A, B, and E possess the identities and

public keys IDi and pi for i ∈ A,B,E, all three navi-
gate within the transmission range of each other. Ship
A sends a position report m accompanied by its sig-
nature s = σ | t | IDm. Vessel B does not have A’s
public key and sends a public key request as speci-
fied in the protocol. When A responds to the request
from pA, E scrambles the message using a powerful
antenna and an SDR and then immediately sends pE .
B expects to receive the key from A and modify its
directory by associating the key pE with the MMSI
IDA. Then, E created a false message m′ having as
MMSI IDA and its signature s′ = σ′ | t′ | IDm′, with
σ′ = sign(SHA1(m′ | t), pE). Upon receipt of these
messages, B retrieves the key pE , which he thinks is
A’s key, without his directory. In the same way, as
in the attack against the directory, the verification of
the signature has failed because the identity used to
generate the key for E is not the same as the identity
used for verification. An attacker cannot, therefore,
impersonate another user.

6 IMPLEMENTATION AND
EXPERIMENTS

This section details the proof of concept built to
demonstrate the feasibility of the solution. The first
part presents the material structure of the proof of
concept, and the second part details the choices made
regarding the code. Finally, the last part details the
results obtained thanks to this proof of concept.

6.1 Hardware

The messages are verified using a BeagleBone Black
rev3 board running on Linux Debian 11. This board
acts as an intermediary between the AIS receiver and
the computer displaying the received AIS messages.
This computer runs the ECIDS software TimeZero
to display the AIS information. The transmission of
the messages is done thanks to a HackerOne SDR.
The SDR is connected to a laptop computer running
Linux. The communications between the LO, the IOs,
and the users have been simulated thanks to a web
server running on Linux. Figure 4 schematizes the
architecture of the proof of concept.

Since the AIS receiver cannot transmit signals, the
communications are unidirectional. Therefore, it is
not possible to test the public key request. Using
an AIS transponder could have allowed an exchange
with the SDR, but such transponders emit very strong
radio signals. Therefore, a much heavier infrastruc-
ture, such as a faraday cage, would have been required
to prevent false signals from being emitted outside the
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Figure 4: Proof of concept architecture.

lab room. Since the SDR has a minimum transmission
power that does not carry the signals more than a few
meters, the problem does not arise in the current ar-
chitecture. In addition, a transponder is significantly
more expensive than an AIS receiver.

6.2 Implementation

6.2.1 Choice of Architecture

Because IOs’ role in the protocol is purely administra-
tive, they are ignored in this proof of concept. To ac-
commodate this change, the registration phase (phase
1) is ignored. Users send their registration requests
directly to the LO. Two-factor authentication is a se-
curity measure that is not simulated in the proof of
concept, as it is not relevant to prove the feasibility of
the protocol. Communications between the LO and
users are simply done through HTTP requests. Al-
though no free implementation of the signature pro-
tocol is available, it is possible to build one using the
PBC library. This library implements the mathemati-
cal elements necessary for the functioning of the cho-
sen CLS protocol. The Python version of this library,
PyPBC, is used to create two classes, which include
the following methods:

• KGC Class. The KGC class implements the
functions Initialization that generate public pa-
rameters and KGC master keys and Registration
that generates a partial key from an identity.

• User Class. This class contains functions Gen-
erateKeys for generating user keys from partial
keys, Sign for signing messages, and Verify for
verifying signatures.

The functions are implemented following the pro-
tocol described by (Du et al., 2020).

6.2.2 Initialization Phase

During the initialization phase, the LO runs the
functions GeneratePublicParam and MasterKeyGen.
Then, it launches a web server allowing communi-
cation with the users. This web server supports the
following requests:

• GET/params. Returns the public parameters of
the KGC.

• GET /public-keys. Returns a dictionary contain-
ing the public keys of registered users, associated
with their MMSI.

• GET /revocation. Returns a list of revoked public
keys.

• POST /register. Accepts an MMSI, and returns a
partial key calculated using PartialKeygen.

• POST /send pk. Accepts a user’s public key and
its MMSI, to update the public key directory.

6.2.3 Operational Phase

At startup, the device goes through its initialization
phase. If the user is not yet registered, it sends a
request to the KGC to register. Upon receiving the
partial key, the device generates its user key pair and
sends its public key to the LO to update the directory.
Then, the device makes two requests to the KGC to
retrieve the public and revocation key directories. If
the device can issue messages, it initiates the mes-
sage signing procedure detailed in Algorithm 1. The
sign every parameter designates the number of non-
critical messages that will not be signed after send-
ing a signed non-critical message. The number of un-
signed non-critical messages sent after a signed non-
critical message is stored in the variable unsigned.

Algorithm 1: Message Signing.

Require: : Sign every; // The number of non-critical messages that will
not be signed after sending a signed non-critical message/

Require: : unsigned ← ∞; // The number of unsigned non-critical messages
sent after a signed non-critical message
for m ∈ messages do

send(m);
if (is critical(m) or unsigned >= sign every) then

t← timestamp();
σ← sign(SHA1(m|t));
IDm ← SHA1(m)[0 : 4];
send(σ|t|IDm);
if not (is critical(m)) then

unsigned← 0;
end if

else if not (is critical(m) and unsigned < sign every) then
unsigned← unsigned+1;

end if
end for

If the device can receive messages, the message
verification procedure is described in Algorithm 2.
The three parameters of the algorithm are a dictionary
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of user public keys and a list of revoked keys, initial-
ized during the initialization phase, and a boolean de-
scribing the transmission capability of the device.

Algorithm 2: Message verification.
Require: : pk : mmsi→ public key
Require: : revocated keys // Revoked key list
Require: : can emit : bool // Describe the device’s transmission capability

bu f f er← Dict(); // Dictionary of user public keys
for m ∈ messages received do

sender← m.mmsi;
if not (is critical(m) and is authenticate(sender)) then

accept(m);
else if (is signature(m)) then

σ, t, IDm ← decompose(m);
if ((sender, IDm) /∈ bu f f er) then

continue;
end if
m, tr =buffer.pop(sender, IDm);
if not (t <= tr and tr − t < tl ) then

re ject(m);
end if
if not (sender ∈ pk and can emit) then

ask public key(sender);
end if
if veri f y(SHA1(m|t),σ, pk[sender],sender) then

accept(m);
if not (is critical(m)) then

authenticate(sender);
end if

else
re ject(m);

end if
else if (is public key(m)) then

update public keys(sender,m);
else if (is pk request(m) and can emit) then

send public key();
else

IDm = SHA1(m)[0 : 4];
bu f f er[(sender, IDm)] = (m, timestamp());

end if
end for

Accepted messages are transmitted to TimeZero
without modification. To improve visibility, messages
that are rejected, or that were received more than 20
seconds ago without a signature, are transmitted to
TimeZero with a type 5 message containing ”[UN-
SIGNED]” in place of the vessel name. Thus, these
messages will be visible on TimeZero, but the AIS
target will be designated as unsigned.

6.3 Experiments

The goals of the experiments are to verify that the im-
plemented system is functional, to evaluate the exper-
imental network overload to compare it to the theoret-
ical overload and to implement a key hijacking attack
to experimentally confirm the security of the protocol
against this attack.

6.3.1 Setup

To begin, the LO script is run on a remote server, fol-
lowed by client scripts executed on the BeagleBone
board in receive-only mode and on the computer con-
nected to the SDR in transmit mode. We can see in
Figure 5 from top to bottom, the output of the LO and
client scripts. On the screen of the LO at the top, we
see the initialization phase, which corresponds to the

generation of the cryptographic parameters. The fol-
lowing lines are the requests made by the users to reg-
ister. On the middle and bottom screens, we see the
clients making registration requests to the LO, gen-
erating their keys, and sending their public keys to
the LO. Finally, the clients retrieve the two directo-
ries provided by the LO.

Figure 5: Registration of the two users from the point of
view of the LO (top), the receiver (middle), and the trans-
mitter (bottom).

6.3.2 Solution Validation

The purpose of the first experiment is to ensure that
the system is operational. The client script on the
computer connected to the SDR transmits a series
of AIS messages corresponding to position reports
(type 1 messages) generated by NEMA Studio, a soft-
ware program that, among other things, generates AIS
messages. Figure 6 shows the screens of the trans-
mitting computer (a), the BeagleBone chart (b), and
the ECDIS (c). On the screen of the transmitter, the
messages sent can be seen, the signed messages are
preceded by the mention of ”signing”. On the Bea-
gleBone screen, accepted messages are displayed in
green. Finally, the AIS target is correctly displayed
on the ECDIS.

Figure 6: Sending of signed position reports (a), verifica-
tion and acceptance of messages (b) and corresponding AIS
target on ECDIS (c).

The experiment is then repeated, but an error is in-
troduced in the signatures. For this, a line of code is
added after the calculation of the signature to change
its last bit. We can see in Figure 7 that this time,
the messages are rejected by the BeagleBone and are
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displayed in red (a). On the screen of the ECDIS
(b), the target is displayed, but with the annotation
”[UNAUTH]”, indicating that the messages were re-
jected.

Figure 7: Signature verification fails (a), the AIS target is
tagged with ”UNAUTH]” (red circles) on the ECDIS (b).

6.3.3 Overhead Estimation

The second experiment aims at measuring the AIS
network overload induced by the solution, with differ-
ent values of the safety parameter Se defined in Equa-
tion 3. These measurements will allow us to validate
the theoretical results, and to estimate values of Se that
can be used in practice. To do this, we use a sample
of AIS messages from the aishub.net platform. This
sample consists of more than 85,000 AIS messages
from all over the world, sent over a period of 3 min-
utes. To measure the effect of introducing signatures,
Algorithm 3 is used to simulate the operation of the
protocol. Each message in the file is analyzed, and
a counter of radio slots is incremented according to
whether or not a signature is introduced.

Algorithm 3: Overhead estimation.
auth← HashMap();
sent← 0;
for (m ∈ messages) do

mmsi← m.mmsi;
if (is critical(m) or auth[mmsi]≥ Se) then

sent← sent +3;
if not (is critical(m)) then

auth[mmsi]← 0;
end if

else if not (is critical(m)) then
auth[mmsi]← auth[mmsi]+1;

end if
sent← sent + len(m);

end for

The algorithm is run for several values of the se-
curity parameter Se. The results are given in the table
4. The number of emission slots after adding the sig-
natures is computed for each value of Se, allowing a
comparison of the experimental overload and the the-
oretical overload given by Equation 6

overload = 3(1−0.9735(1− 1
Se
)) (6)

The significant differences between the theoret-

ical and experimental values can be explained by
the data sample used. The data is recorded over
a 3-minute window, but many non-critical messages
are broadcast over one minute or more. The sam-
ple used therefore induces an overrepresentation of
signed non-critical messages because these are the
first non-critical messages sent by a sender. The
theoretical overload is an average overload, reached
asymptotically. To solve this problem, we can re-
peat the sample so that the overload values reach their
asymptotic values. Repeating the sample makes the
data content inconsistent (ships will jump back and
forth, for example), but this content is not analyzed in
the experiment. The features that are useful to the ex-

Table 4: Experimental overload and theoretical overload as
a function of the safety parameter Se.

Se Experimental overload Theoretical overload
5 75.8% 66.3%

10 56.7% 37.2%
15 51.8% 27.4%
20 47.3% 22.6%

periment, i.e., message transmission frequencies, pro-
portions of different message types, and MMSIs asso-
ciated with the messages, are retained. This solution
could introduce biases since the measured values will
only be those corresponding to a three-minute sample,
and there is no guarantee that the communications do
not evolve after these three minutes. In addition, the
repeated sample does not model vessels leaving and
entering the AIS network. To determine how many
repetitions of the sample are needed to measure the
overloads, we can increase them gradually until the
value stabilizes. Figure 8 shows that at 10 or more
repetitions, the overload is stabilized. An identical
analysis for other values of Se shows similar results.
We choose 15 repetitions, to ensure that the measured
values are properly stabilized.

Figure 8: Experimental overload as a function of the num-
ber of repetitions of the sample for Se = 5.

Finally, Table 5 shows that the experimental re-
sults do not deviate by more than 10.3% from the the-
oretical values and that the experimental overloads are
always smaller than the theoretical values for the Se
used in the experiment.
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Table 5: Experimental and theoretical overload as a func-
tion of the safety parameter Se, with 12 sample repetitions.

Se Experimental overload Theoretical overload
5 56.0% 66.3%
10 35.9% 37.2%
15 26.7% 27.4%
20 22.7% 22.6%

This experimentation allows us to conclude that
the theoretical values of the overloads are quite accu-
rate and can be used to decide the value of Se to use
according to the situation.

6.3.4 Key Hijacking Simulation

The objective of the third experiment is to verify the
security of the protocol against a key hijacking attack.
We have chosen this attack because it allows us to
show the counter-intuitive properties of uncertificated
cryptography, which allows us to mathematically link
a key and an identity. The scenario of the attack is as
follows. Three legitimate ships A, B, and E, all regis-
tered with the KGC, are sailing in the same area. Ship
A does not have B’s public key. B sends a position re-
port message m1, with its signature s1 = σ1|t1|ID1.
Ship B does not have A’s public key, so it sends a
public key request to A. Equipped with a powerful
SDR, E scrambles A’s response and sends its public
key pE instead. The ship E then sends the message
m2, using A’s MMSI, but signing with its private key.
To simulate this situation, three clients A, B, and E,
with respective MMSIs of 111111111, 222222222,
and 333333333 are created and registered with the
LO. The B user key directory is manually modified to
contain the public key of E instead of that of A. This
method places the devices in the same state as after
a key hijacking described in the previous paragraph.
Then, E sends a message containing A’s MMSI that
he signs with his private key. In Figure inc FIGURE,
we can see that the message is rejected by B, despite
its directory being attacked by E. The protocol is re-
sistant to this attack.

Finally, we analyze the limitations of the work
that has been done and suggest areas for improve-
ment for future work. One of the AIS experiments did
not allow a definitive conclusion to be drawn due to a
lack of data. One possible solution is data simulation.
This task is complex because it is necessary to ensure
the quality of the simulated data so as not to intro-
duce bias into the experiments. The acceptance of the
authentication protocol requires further experiments,
such as deploying a proof of concept and studying
compatibility with current devices. AIS is a critical
maritime security asset, but ship computer systems
are complex and use many protocols. It would be in-
teresting to study the security of industrial protocols
used by ship control systems.

7 CONCLUSION

In this work, we have built and implemented a proto-
col that overcomes the biggest vulnerability of AIS:
the lack of authentication. We first identified the de-
sign constraints imposed by AIS, then we selected
technologies and an architecture based on these con-
straints. An estimation of the network overhead al-
lowed us to build a protocol that does not endanger
the stability of the AIS network. Finally, we imple-
mented this protocol on a microprocessor and carried
out a proper functioning test, an experimental estima-
tion of the overload induced by the introduction of
signatures, and the simulation of an attack to experi-
mentally show the security of the solution. The proof
of concept we developed showed that the solution is
realistic and works as expected.
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