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Abstract
This paper applies a quantum machine learning technique to predict mobile users' tra-
jectories in mobile wireless networks by using an approach called quantum reservoir
computing (QRC). Mobile users' trajectories prediction belongs to the task of temporal
information processing, and it is a mobility management problem that is essential for self‐
organising and autonomous 6G networks. Our aim is to accurately predict the future
positions of mobile users in wireless networks using QRC. To do so, the authors use a
real‐world time series dataset to model mobile users' trajectories. The QRC approach has
two components: reservoir computing (RC) and quantum computing (QC). In RC, the
training is more computational‐efficient than the training of simple recurrent neural
networks since, in RC, only the weights of the output layer are trainable. The internal part
of RC is what is called the reservoir. For the RC to perform well, the weights of the
reservoir should be chosen carefully to create highly complex and non‐linear dynamics.
The QC is used to create such dynamical reservoir that maps the input time series into
higher dimensional computational space composed of dynamical states. After obtaining
the high‐dimensional dynamical states, a simple linear regression is performed to train the
output weights and, thus, the prediction of the mobile users' trajectories can be per-
formed efficiently. In this study, we apply a QRC approach based on the Hamiltonian
time evolution of a quantum system. The authors simulate the time evolution using IBM
gate‐based quantum computers, and they show in the experimental results that the use of
QRC to predict the mobile users' trajectories with only a few qubits is efficient and can
outperform the classical approaches such as the long short‐term memory approach and
the echo‐state networks approach.

KEYWORD S
learning (artificial intelligence), quantum computing

1 | INTRODUCTION

One of the fundamental theories in physics is quantum me-
chanics, which is the foundation of all quantum physics such as
quantum chemistry, quantum technology and quantum infor-
mation science. Quantum mechanics describes the physical
properties of nature at the scale of atoms and subatomic
particles [1]. The phenomena of quantum mechanics such as
interference, superposition and entanglement can be exploited

to create a new paradigm of computation known as quantum
computing [2, 3]. Quantum computers are devices that
perform quantum computations [4] and are shown to have a
great potential of fast information processing. For example, the
mathematical problem of integer factorisation is shown to be
solved efficiently on a quantum computer despite the fact that
it is believed to be intractable on a classical computer [5].

In this study, we propose to use quantum mechanics to
solve the machine learning task of mobility prediction in
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mobile wireless networks. This task is nonlinear and belongs to
real‐world temporal information processing tasks such as time‐
dependent signal processing, stock‐market prediction, natural
language processing etc. The combination of quantum me-
chanics and machine learning can help solving these real‐world
temporal information processing tasks. The proposed machine
learning approach belongs to the reservoir computing (RC)
framework, which is inspired by how the brain processes in-
formation. Unlike complex recurrent neural networks (RNN)
where training is a complex procedure, the RC framework uses
the so‐called reservoir to project the input signals to a higher
dimensional space, thus producing a highly dynamical network
capable of emulating nonlinear and temporal information
processing systems. The reservoir is composed of hidden
nodes and visible nodes. The combination of both produces a
high‐dimensional signal. The training is performed only at the
output layer using simple regression analysis [6–8]. To perfectly
emulate non‐linear dynamical systems, the dynamics of the
reservoir must involve adequate nonlinearity and memory [9].
We apply a recently proposed quantum RC (QRC) framework
[10] to the prediction of user trajectory in mobile networks.
Mobility management is an important and challenging problem
in future 5G/6G networks. In fact, future communication
networks will need to provide advanced services for various
application areas including smart cities and epidemic preven-
tion [11, 12] with diverse requirements in terms of ultra‐low
latency, data rates and massive connectivity. For critical com-
munications and service delivery in particular, issues such as
disconnections or service level agreement (SLA) violations can
be problematic. A reactive mobility management approach fails
to perform well in highly dynamic networks [13, 14]. There-
fore, a proactive [14] mobility management algorithm is
required where the mobility patterns of the users can be pre-
dicted in advance.

1.1 | Related works

The prediction of user trajectory prediction in wireless net-
works is not a new topic and has been studied previously in
different works [15–20]. However, to the best of our knowl-
edge, no previous work applied quantum mechanics and ma-
chine learning to solve the challenging problem of trajectory
prediction in mobile wireless networks. Quantum mechanics
and machine learning have been proposed to solve machine
learning tasks such as classification and prediction [10, 21–27],
but they were not applied to a practical mobile wireless
network problem.

On the one hand, in Ref. [15], the authors proposed a
mobility prediction approach based on RNN. Precisely, the
authors proposed to use a gated recurrent unit (GRU) and a
long short‐term memory (LSTM) technique to predict the
global positioning system (GPS) coordinates of a mobile user;
taken from the Geolife dataset [28–30]. Their approaches were
initialised with a pre‐processing step to reduce the number of
points and thus the prediction complexity in the time series
data. In Ref. [16], the same authors proposed the same mobility

prediction approaches but using bidirectional analysis and
three different datasets: Geolife, open street map and T‐drive
trajectory. In Ref. [17], the authors studied two data‐driven
mobility prediction algorithms in vehicular networks and
measured how inaccurate their prediction accuracy was. To
overcome the imperfect mobility prediction problem, the au-
thors designed a new scheduling system to offload cellular
traffic to vehicular network and showed that prediction accu-
racy was improved. In Ref. [18], the authors proposed a
decentralised traffic management scheme to predict vehicle
trajectory. Each vehicle predicted its own trajectory by training
an LSTM model. The proposed approach used gossip learning
and iterative model averaging is used to build a global model.
The evaluation was based on urban vehicular network envi-
ronment where the dataset of the Luxembourg SUMO Traffic
scenario [31] was used. In Ref. [19], the authors proposed an
RNN‐based LSTM approach to predict vehicle trajectory using
a taxi dataset of 442 taxis running in Porto, Portugal. The re-
sults showed the effectiveness of the prediction with a pre-
diction performance higher than 89%. The improvement was
observed especially when more data are available prior to the
next prediction (prediction of the next cell). In Ref. [20], the
authors studied the problem of power control and trajectory
planning in unmanned aerial vehicle networks. The aim was to
maximise the sum rate while guaranteeing the rate requirement
of the users. First, an UAV placement algorithm was proposed
based on Q‐learning to position the UAVs. Then, using the real
data of the users collected from Twitter, the authors proposed
an echo‐state network (ESN) to predict the future position of
the users. Finally, a Q‐learning algorithm was proposed to
predict the UAV positions in future timesteps. The results
showed that as the size of the reservoir in ESN increases, the
prediction increases, and a sum rate gain of 17% was obtained.

On the other hand, in Ref. [21], the authors proposed a
QRC system where the dynamics of the reservoir evolve ac-
cording to Hamiltonian evolution in the fully connected
transverse field Ising (FC‐TFI) model. The authors studied the
memory capacity and the accuracy of the proposed QRC by
varying different parameters such as the inter‐spin interactions
of the FC‐TFI model and the time evolution scale. They
showed the existence of an optimal time evolution scale at
which the capacity of the QRC is maximised. Finally, they
applied their method on stock prediction data. In Ref. [23], the
authors aimed to overcome the random walk dilemma for
financial time series prediction using a quantum‐inspired
hybrid method. Their method used a qubit multilayer per-
ceptron (QuMLP) and a quantum‐inspired evolutionary algo-
rithm (QIEA). The QIEA was a search‐based algorithm that
trains the QuMLP to determine parameters like the maximum
number of time lags to represent the financial time series, the
number of units in the QuMLP hidden layer. Four time series
datasets were evaluated that correspond to the daily records of
Nasdaq stock market, and the results were shown to be su-
perior compared to classical MLP. In Ref. [25], the authors
proposed to use superconducting quantum computing devices
as the reservoir in a QRC system. They showed that the
inherent noise characterising nowadays quantum computers is
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advantageous and helped in providing dissipative dynamics
capable to learn a dynamical system and solve a temporal in-
formation processing task. The authors studied the prediction
of the non‐linear autoregressive moving average (NARMA)
time series as well as an experimental‐based classification
problem to classify three objects: one LEGO cube, one pol-
ylactic acid (PLA) cube and PLA sphere. The time series for
the classification problem were generated by the triboelectric
nanogenerator (TENG) sensor of a robotic gripper grabbing
the objects. In both the prediction and the classification
problems, the proposed gate based QRC approach showed a
higher performance than classical linear regression or classifi-
cation models. The authors concluded that a noisy quantum
device can potentially work as a reservoir computer, and
notably, that the undesirable quantum noise can be used as a
rich computation resource for machine learning tasks. In Ref.
[26], the authors proposed a hybrid quantum‐classical network
to classify non‐trivial datasets such as finance and MNIST data.
They discussed how their approach can have overfitting
problems as in the classical case and they propose different
regularisation techniques to solve the problem. In Ref. [27], the
authors discussed the use of the Harrow Hassidim Lloyd
(HHL) algorithm in the regression problem. They designed a 7
− qubit quantum circuit to solve a three‐variable regression
problem, using only elementary quantum gates. They imple-
mented the stochastic group leaders optimisation algorithm
(GLOA) and discussed on the advantages of using GLOA to
create low‐cost circuits for simulating the Hamiltonian. In Ref.
[10], the authors proposed to exploit the natural quantum
dynamics of ensemble systems to solve a temporal information
processing task using QRC. The proposed QRC framework
was shown to enable ensemble quantum systems to universally
emulate non‐linear dynamical systems including classical chaos.
The authors performed several numerical experiments for
quantum systems with 5−7 qubits and showed their superiority
in terms of computational capabilities compared to conven-
tional RNNs composed of 100−500 nodes.

1.2 | Contributions

‐ We applied the QRC approach to predict mobile trajectories
in wireless communications.

‐ We used the fully connected transverse field Ising (FC‐TFI)
to implement the QRC approach.

‐ We implemented the QRC approach by estimating the time
evolution of the Hamiltonian using IBM gate‐based quan-
tum simulators and computers.

‐ We compared the QRC approach to the classical benchmark
approaches, LSTM and ESN.

1.3 | Paper organisation

The rest of the paper is organised as follows: Section 2 first
introduces the basic concepts of quantum mechanics and then

describes the QRC framework used to predict user trajectory.
Section 3 describes classical state‐of‐the‐art solutions. Sec-
tion 4 describes the real‐world experimental setups and illus-
trates important results and conclusions. Finally, Section 5
draws some important conclusions.

2 | QUANTUM RESERVOIR
COMPUTING APPROACH

The idea of the proposed QRC framework is essentially based
on applying the FC‐TFI model introduced in Ref. [10, 21]. In
this framework, the dynamics of the recurrent part of the
network (the reservoir) are governed by the dynamics of rich
quantum mechanical systems. Before describing in depth, the
QRC framework, we start by introducing some basic concepts
about quantum computation and quantum information.

2.1 | Qubit state

Contrary to the classical bit—the minimum unit of informa-
tion in classical computing, the quantum bit (or simply qubit) is
the minimum unit of quantum information in quantum
computing. A qubit is a two‐state quantum‐mechanical system
such as the spin of the electron with the two states of spin‐up
and spin‐down. As opposed to a classical system in which a bit
is only in one state at a time, a qubit, based on the laws of
quantum mechanics, can be simultaneously in a coherent su-
perposition of the two states. Mathematically, a qubit is a
vector in a two‐dimensional complex vector space spanned by

the orthonormal basis 0
!
; 1
!

n o
. In quantum mechanics, the

vectors 0
!

and 1
!

of the basis 0
!
; 1
!

n o
are conventionally

written in the Dirac notation (or the bra‐ket notation) as |0〉
and |1〉, respectively. A pure qubit state can be in any coherent
superposition (linear combinations) of the two basis states |0〉
and |1〉, that is, a qubit can be written as [2]

jψ 〉¼αj0〉þ β j1〉; ð1Þ

where α and β are complex numbers that are called the
probability amplitudes. When a qubit is measured, analogously,
when a bit is read, the outcome of the measurement is state |0〉
with probability |α|2, and state |1〉 with probability |β|2.
Since the probabilities must sum to 1, the coefficients obey to
|α|2 + |β|2 = 1. In other words, the qubit's state must be
normalised to length 1. In summary, a qubit can be in a con-
tinuum of states between |0〉 and |1〉 until it is measured. An
n‐qubit quantum‐mechanical system is described by the tensor
product space of n two‐dimensional complex vector spaces.
That is, an n‐qubit quantum‐mechanical system has 2n

computational basis states jx1x2: : :xn〉 or equivalently |x1〉 ⊗ |
x2〉 ⊗ ⋅ ⋅ ⋅ ⊗|xn〉 where the notation ⊗ denotes the tensor
product and xi ∈ {0, 1} for all i ∈ {0, 1, …, n−1}. Another
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way to characterise a quantum‐mechanical system of n qubits is
with the density operator, denoted as ρ, which is a Hermitian
matrix of size 2n � 2n. The density matrix can be seen as a
statistical mixture of pure states of the quantum‐mechanical
system [2].

Given the state |ψ〉 describing a quantum mechanical
system, how does it change with time? The second postulate of
quantum mechanics answers this question. It states that the
evolution of a closed quantum system is described by a unitary
transformation. Mathematically, if the quantum state is |ψ (t1)〉
at time t1, then later t2, the state of the quantum system is given
by the following relation [2]:

jψ t2ð Þ 〉¼U t1; t2ð Þjψ t1ð Þ〉; ð2Þ

where U (t1, t2) is a unitary operator that depends only on t1
and t2. Based on the Schrödinger's equation and the second
postulate of quantum mechanics, we can obtain the following
equation for the unitary U (t1, t2):

U t1; t2ð Þ ¼ exp
iH t2 − t1ð Þ

ℏ

� �

; ð3Þ

where i denotes the imaginary unit and H is a fixed Hermitian
operator known as the Hamiltonian (a Hermitian matrix of size
2n � 2n) of the closed quantum‐mechanical system and ℏ is
Planck's constant. In general, for a closed quantum‐mechanical
system, the time evolution is given by a unitary operator
U = e−iHt or some Hermitian operator H (where the constant
ℏ is absorbed in the Hamiltonian H ). If the system is described
in terms of the density matrix ρ(t) at time t, then the time
evolution for a time interval τ is given by [2]

ρðt þ τÞ ¼ e−iHτρðtÞeiHτ: ð4Þ

2.2 | Qubit measurement

As discussed previously, a closed quantum‐mechanical system
evolves according to unitary evolution. When an external
physical system interacts with this closed system to perform a
measurement, the system is no longer closed. The third
postulate of quantum mechanics describes the effect of a
measurement on a quantum mechanical system by a set of
projective operators {Pm} such that

P

m
Pm ¼ I and

PmPn = δmnPm (where δmn is the Kronecker delta function).
The probability to obtain the measurement outcome m for the
state ρ is given by p(m) = Tr [Pmρ] where Tr [⋅] denotes the
trace of a matrix. The state after the measurement is given by
PmρPm/p(m), that is, the projective measurement modifies the
quantum‐mechanical system. By repeating the projective
measurements, after preparing the quantum state again, we can
calculate average values 〈O〉 = Tr [Oρ] of an observable given
by O¼

P

m
aðmÞPm according to its spectral decomposition,

where a(m), ∀m are the eigenvalues of O [2].

2.3 | Quantum reservoir dynamics

The nodes of the quantum reservoir network are given by the
orthogonal basis of the quantum states. This means that for n
qubits, we have 2n basis states. To be efficient, quantum
reservoir computing requires complex and bounded dynamics
and large network sizes [21]. It is known that these re-
quirements can be naturally met by interacting quantum‐
mechanical spin systems [21]. These spin systems have (i)
state space that scales exponentially with the number of spins
and (ii) complex dynamics governed by unitary operators.

In this study, we consider the extensively studied model
called the fully connected transverse field Ising (FC‐TFI)
model [10, 21]. The Hamiltonian of this model is given by

H ¼
X

i;j
Ji;jXiXj þ hiZi; ð5Þ

where Xi and Zi are the Pauli X and Z operators at qubit i, the
coefficient hi denotes the coupling to an external magnetic
field of qubit i and the coefficient Ji,j denotes the inter‐qubit
interactions. In the FC‐TFI model, all the qubits, as shown
in (5), interact with each other in the x‐direction and are
coupled to an external magnetic field in the z‐direction.

In the QRC framework, an input sequence of length T,
u (t)∈ {u0,u1,…,uT−1} where ui∈ [0, 1] is given by the trajectory
of a mobile user (i) is injected into the quantum reservoir
network, (ii) evolves according the quantum dynamics and then
(iii) is extracted as output to be analysed. The idea of the QRC
framework [10, 21] is to inject the input at time t, given by u(t),
through the first qubit by setting the state of this qubit to

�
�ψuðtÞ〉¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uðtÞ

p
j0〉þ

ffiffiffiffiffiffiffiffi
uðtÞ

p
j1〉; uðtÞ ∈ ½0; 1�: ð6Þ

The density matrix of the system is then given by

ρ¼
�
�
�ψuðtÞ 〉 〈ψuðtÞ

�
�
�⊗ Tr1 ½ρ�; ð7Þ

where Tr1 [ρ] denotes the partial trace operator over the first
qubit. In other words, the quantum state of the system is given
by the tensor product of the first qubit's state |ψu(t)〉〈ψu(t)| and
the remaining qubits' states Tr1 [ρ]. After injecting the input u
(t) into the first qubit, the quantum‐mechanical system con-
tinues evolving for a time τ according to the Schrödinger's
equation as discussed previously in (2) and (4). The dynamics
of the quantum reservoir is governed by (4) during the time τ
and the information that was encoded in the first qubit will
spread through the quantum reservoir. An illustrative example
of the QRC is given in Figure 1. It is clear from Figure 1 that
the QRC approach allows to project the input signal (the time
series corresponding to the mobile user trajectory) into a high‐
dimensional space and, from the dynamics of the reservoir,
extract outputs corresponding to the evolution of the Pauli‐Z
operator's average values of the selected qubits. Note that if the
input signal has length T and we inject into the reservoir
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the values of the signal one at a time at each time step τ, then
the simulation will take a total of Tτ times.

For the system to evolve for a time τ, one must apply the
evolution operator according to e−iHτρ (t)eiHτ. On a gate‐based
quantum computer, this can be achieved by applying the
Suzuki—Trotter decomposition [2] which states that the evo-
lution of an operator consisting in a sum of local operators for
a time τ can be expressed as the evolution for a time (τ/κ) of a
product of local operators, repeated κ times. In the limit of
κ → ∞, this formula is exact. More formally, if H ¼

Phi
i , then

e−iHτ ¼ e−i
Phiτ

i ¼ lim
n→∞

∏
i
e−ihiτ=κ

� �κ

. For finite values of κ,

the error made by this approximation is proportional to τ2/κ.
Since the Hamiltonian of our QRC system is based on the FC‐
TFI model, our task consists in implementing the evolution of
the two qubits interaction operator e−iJi;jXiXjτ=κ and the single
qubit operator e−ihiZiτ=κ . With the rotation gates defined by
RfX;ZgðθÞ ¼ e−i

θ
2 fX;Zg, we obtain:

e−
ihiZiτ

κ ¼ Rz
2hiτ

κ

� �

: ð8Þ

To obtain the evolution of the interaction term e−iJi;jXiXjτ=κ,
we note that the unitary operator e−iθ2ZZ is realised by the
sequence of gates shown in Figure 2 and that we have the
identity X = HZH where H corresponds to the Hadamard

gate. Thus, e−iJi;jXiXjτ=κ is realised, as shown in Figure 3, with
four Hadamard gates and the block given in Figure 2.

Figure 3 illustrates the basic idea of how to simulate the
time evolution of the Hamiltonian given in (5) with full
coupling between three qubits. Given the Hamiltonian H,
which is given by h (Z0 + Z1 + Z2) + J0,1X0X1 + J1,2X1X2 for
three qubits, we can use IBM gate‐based quantum computers
and implement the quantum circuit given in Figure 3 to esti-
mate the time evolution of the Hamiltonian.

The objective of the mobility trajectory prediction problem
is to find, using the QRC system and given the trajectory of a
mobile user u(t), a non‐linear function f(u(t)) such that the
prediction error (e.g., mean‐squared error) between f(u(t)) and
a target output uðtÞ (teacher output) is minimised. The role of
the QRC system is to emulate this non‐linear function and thus
produce a highly complex and non‐linear system capable of
predicting temporal input data. The output signal, xi(t), ob-
tained after measuring qubit i at each time t is used at the
output layer of the QRC system and combined with the
readout weights Wout to perform the prediction. This is done
using a simple linear regression model. Let x(t) denotes the
vector x1ðtÞ; : : :; xnðtÞ½ �⊤. After collecting enough pairs of
input‐output signals (u(t), x(t)) for each time t, we use a linear
regression technique to train the readout weight Wout of size
n + 1 where n is the number of qubits used, and the +1 is used
for the bias. This can be done simply using the Moore–Penrose
pseudo inverse, that is, we need to solve the following linear
system:

F I GURE 1 An example of a QR with 6 qubits shown with grey balls (one qubit is in blue colour to indicate the input qubit). Each qubit's state is given by
the corresponding arrow. An input signal (a time series) of length T is injected into one qubit at some initial time t and the system evolves for a time τ according
to the dynamics of the QR. After a time τ, a measurement is performed. By repeating this process multiple times for the same input signal, we obtain the average
spin values in the z‐direction of each spin (qubit). Note that if the input signal has length T and we inject into the reservoir the values of the signal one at a time
at each time step τ, then, the simulation will take a total of Tτ times.

F I GURE 2 Simulation of the time evolution of the Hamiltonian ZZ, that is, e−iZZt.
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u ¼ XW out ; ð9Þ

where u is the target signal of size T, the matrix X denotes the
modified output signals of the QR after adding the bias of size
T � (n + 1).

3 | CLASSICAL BENCHMARK
APPROACHES

3.1 | LSTM prediction

To compare the QRC approach, we implemented the well‐
known RNN‐based approach of LSTM [32]. RNN suffers
from the vanishing/exploding gradient problem in which long‐
term gradients that are back‐propagated can either vanish
(reach zero) or explode (reach infinity). LSTM was proposed to
deal particularly with the vanishing gradient problem. In the
LSTM approach, a RNN can keep track of long‐term de-
pendencies in the input sequences thanks to the use of feed-
back connections and special neural network units (which
allow information to persist). In LSTM, there is a key
component called the cell state to which information are added
or removed using other components called gates (e.g., forget
gate layer, input gate layer, etc.). Other details about the pro-
posed LSTM network are described in Section 4.

3.2 | ESN prediction

We compared the QRC approach to its classical counterpart,
the echo‐state network (ESN) [33]. In the ESN approach, a
RNN is also used but in the context of RC. The difference
between RNN and RC is that in the former the hidden layers
weights are optimised during training but in the latter, these
weights are randomly generated and thus are fixed during
training. In ESN, only the weights of the output layers are
trainable. The structure of the reservoir (i.e., the hidden layers)
should be constructed to generate highly complex dynamics so
that the training of the output weights reproduces with accu-
racy specific temporal patterns. An input signal will be injected

into the reservoir that will generate a high‐dimensional signal
using its internal reservoir states (its dynamics). Next, the high‐
dimensional signal is passed to the output layer for training.
Other details about the proposed ESN are also given in
Section 4.

4 | EXPERIMENTAL EVALUATION

In this section, we evaluate experimentally using a real‐world
dataset the performance of the QRC and compare it to the
LSTM and ESN approaches. Our experiments are imple-
mented in a simulation environment as well as in small‐scale
quantum computers as discussed in the sequel. We use a
GPS dataset called the Geolife dataset [15, 28–30] that contains
GPS trajectories of 182 mobile users, that is, it contains the
longitude and latitude of each mobile user. It was collected
between the year 2007 and the year 2012. Each mobile user in
the Geolife dataset has its own trajectory, meaning that the
length of each trajectory (the amount of data of available
points) varies from one user to another. Our objective is to
accurately predict future mobile user locations. We have
randomly chosen three users from this dataset, which are
indexed as user #1, user #153 and user #175 and we used their
trajectories as movement history to learn their mobility be-
haviours using the QRC approach and compared to the LSTM
and ESN approaches. Note that the LSTM and ESN ap-
proaches are not tuned to optimality. We only perform a grid
search method to select good LSTM and ESN parameters. The
aim is to illustrate how well can the QRC approach perform
compared to classical approaches.

To keep the prediction procedure simple (especially for the
QRC approach), we selected a part of each user's trajectory
that contains approximately 200 data points. Specifically, first,
for user #1, we selected the trajectory recorded between
24/10/2008 at 02:09:59 and 24/10/2008 at 02:47:06, which
contains 244 data points. Second, for user #153, we selected
the trajectory recorded between 22/08/2008 at 13:10:34 and
22/08/2008 at 13:14:04, which contains 211 data points.
Finally, for user #175, we selected the trajectory recorded
between 07/12/2007 at 23:07:44 and 08/12/2007 at 01:27:35,
which contains 194 data points. The time series data of these
three users are illustrated in Figures 4 and 5 in which the
former figure shows the latitude variable of the corresponding
user, while the latter figure shows its longitude variable. Note
that, working with very long user trajectories (thousands of
data points) is also interesting but more complex especially
using quantum computers. We keep the study of this inter-
esting challenge for our future work.

Our implementation is performed in the Python pro-
gramming language using a MacBook Pro with Apple M1 Pro
chip, an 8‐core CPU and a 16 GB RAM. Our implementation
is divided in two parts: a simulation‐based part and a real‐based
part. For the simulation (more details are given in Subsec-
tion 4.3), we used the Qiskit library, which is an open‐source
software developed by IBM Research [34] to allow working
with quantum computers at the level of circuits, pulses and

F I GURE 3 Quantum circuit realisation to calculate the exponential of
the FC‐TFI Hamiltonian with 3 qubits. The input is injected onto the first
qubit which is prepared in the state |0〉. Then, the time series data u(t) is
encoded in the first qubit using the single‐qubit rotation gate about the
Y‐axis, Ry (e(t)). Here, e (t) is chosen such that the state of the first qubit
will be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uðtÞ

p �
�0 〉þ

ffiffiffiffiffiffiffiffiffi
uðtÞ

p �
�1〉 just after the gate Ry (e(t)), that is,

eðtÞ ¼ 2 sin−1
ffiffiffiffiffiffiffiffiffi
uðtÞ

p
. We assume a full coupling between the qubits so that

each qubit interacts with all other qubits. The resulting quantum circuit can be
simplified but is kept as is for clarity.
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algorithms. For the real implementation, instead of accessing
the Qiskit Qasm simulator, we access IBM gate‐based quantum
computers through the cloud quantum computing service of
IBM Quantum Experience, and we execute our Python code
(more details on the used quantum computers are given in
Subsection 4.5).

In the sequel, first, we discuss the LSTM and the ESN
architectures. Then, we discuss the QRC architecture. Finally,
we present the results of the prediction.

4.1 | LSTM architecture and parameters

The Keras library in Python is used to implement the deep
learning architecture of LSTM. We used a sequential archi-
tecture with three layers, two LSTM layers and one dense layer.
The first LSTM layer implements 256 LSTM units with return
output sequences set to true (return the last output in the
output sequence). The next LSTM layer contains 128 LSTM
units with return output sequences set to false (return the full
sequence). The last layer is a dense layer, and it contains 2 units
where the best unit is always selected for prediction. Between

each layer there is a dropout of 0.2 that is added. The Ten-
sorFlow optimiser RMSprop is used for training with a learning
rate of 0.0001 and the mean‐squared error function as the loss
function. The training lasted for a period of 2000 epochs,
where a batch of size 32 is used. The prediction is made for the
last 30 timesteps of each time series and the remaining l − 30
are used for training (l denotes the length of each time series).
The training data are constructed using a sliding window of 70
timesteps, that is, we built a training data of 70 features.

4.2 | ESN architecture and parameters

We used the pyESN library [35] in Python. An ESN is created
in pyESN with one input unit, one output unit and 500
reservoir units. The spectral radius of the recurrent weight
matrix is set to 0.95 to guarantee the echo‐state property. A
sparsity of 0.1 is chosen, which represents the proportion of
the recurrent weights set to zero. A noise of 0.001 is added to
each neuron (used for regularisation). We perform a 2‐step
prediction for 15 timesteps; for a total length of 30 timesteps.

4.3 | QRC architecture and parameters

We used the Python library Qiskit [34] to implement the QRC
framework, and we used the Sci‐Kit learn library to perform
the prediction by using the linear regression. We implemented
a QRC system with 4 qubits with a magnetic coupling h = 0.5.
The Hamiltonian with a full interaction between the qubits is
assumed where every qubit interacts with all other qubits. The
inter‐qubit interaction coefficients Ji,j are chosen randomly by
using a beta distribution of parameters α = β = 0.9. The time
series data are injected into the QRC with a washout period of
70 timesteps to forget the dependence to the initial conditions.
The QRC is left evolving according to the Hamiltonian evo-
lution, and the gate‐based quantum circuits shown in Figure 3
are implemented in IBM quantum computers using the Qiskit
Qasm simulator. The quantum experiment is repeated 1024
times for each entry in the time series to obtain the average
values as outputs of the QRC. A training is then performed to
obtain the weight matrix Wout using the Moore–Penrose
pseudo inverse.

4.3.1 | Notes on the user of real quantum devices

We also implemented the QRC approach in the IBM real
quantum computer using five qubits. More details are given in
the sequel (see Subsection 4.5). Note that using quantum
computers with more qubits is a promising avenue for solving
more interesting and challenging mobility management prob-
lems in ITSs that we will study in the future. Our current work
will provide useful insights and important future research di-
rections and surely will contribute to the advancement of
knowledge. Further, our work can be used to evaluate other
complex quantum machine learning solutions.

F I GURE 4 Overview of the latitude variable for the three users.

F I GURE 5 Overview of the longitude variable for the three users.
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4.4 | Simulation results

First, we calculate, for each method, the mean squared er-
ror (MSE) between the 30‐step predicted output and the
original data. The MSE of all three methods are illustrated in
Tables 1–3. We can see that the QRC approach offers accurate
predictions for different time series variable (longitude vs.
latitude) and for different time series data (different users) even
though only 4 qubits were used. On the contrary, the RNN
approaches (either ESN or LSTM) used lots of neurons (256 in
LSTM and 500 in ESN) to only produce inferior results
compared to the QRC approach. One of the main ideas behind
using QRC was to take advantage of its capacity to produce a
complex dynamical system through the Hamiltonian evolution
and the high‐dimensional complex Hilbert space. Tables 1–3
show that indeed quantum computing can be used to pre-
dict, with low MSE, complex time series data. Note, however,
that the application of the QRC approach to more complicated
time series (longer or multivariate) is important and should be
analysed in our future work. It will be probably evident that for
more complex time series data, the number of qubits should be
increased and, thus, the trade‐off between performance in
terms of prediction and complexity in terms of time should be
analysed carefully for the QRC approach. In the next figures,
we visualise the 30‐step predictions produced by each method;
QRC, ESN and LSTM.

Figure 6 illustrates the prediction produced by the QRC
approach on the time series data of the three users for the
latitude variable. We can see that the prediction is very close to
the true trajectory data.

Figure 7 shows a visualisation of the prediction produced
by the QRC approach on the time series data of the three users
for the longitude variable. The QRC prediction is again very
accurate as the predicted signal is very close to that of the true
data. Despite the change of the time series variable, the QRC
can produce a good prediction for all users, which illustrate the
remarkable feature of the QRC system. When the time series is
like a straight line (the prediction for user #175 in Figure 7),
the prediction might not look smooth and perfect, but the

F I GURE 6 Quantum reservoir computing (QRC) 30‐steps prediction
of the latitude variable for the three users.

F I GURE 7 QRC 30‐steps prediction of the longitude variable for the
three users.

TABLE 1 Mean squared error for user #1.

Variables

Latitude Longitude

QRC 0.000131 0.0013

ESN 0.00302 0.00262

LSTM 0.00453 0.00771

Note: Bold values are used to indicate the best value (the smallest error) in each column.

TABLE 2 Mean square error for user #153.

Variables

Latitude Longitude

QRC 0.000213 0.00005

ESN 0.00069 0.000236

LSTM 0.00176 0.0038

Note: Bold values are used to indicate the best value (the smallest error) in each column.

TABLE 3 Mean square error for user #175.

Variables

Latitude Longitude

QRC 0.000043 0.000022

ESN 0.000376 0.000276

LSTM 0.000166 0.00004

Note: Bold values are used to indicate the best value (the smallest error) in each column.
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MSE is still very low. For this user, its original time series is
almost constant especially for the last 100 timesteps, which is
caused by an overfitting problem.

In Figures 8 and 9 we visualise the prediction produced by
the ESN approach on the time series data of the three users for
the latitude variable and the longitude variable, respectively.
The ESN approach produces also good prediction as the
predicted signals, and their corresponding true values are close
to each other. Further, the ESN approach produces similar
predictions compared to the QRC approach. Nonetheless, the
latter is better and has lower MSE as well. It is also true for the
ESN approach, as in the QRC approach, that the prediction
for the user #175 is more difficult than the remaining users.

In Figures 10 and 11 we visualise the prediction produced
by the LSTM approach on the time series data of the three

users for the latitude variable and the longitude variable
respectively. The LSTM prediction is the worst among all ap-
proaches. This was also observed in Tables 1–3, where the
MSE was the worst for the LSTM prediction for all users
(except for user #175).

4.5 | Real quantum implementation results

In this part, we obtain the QRC prediction of the longitude
time series variable for user #1 with a real quantum computer,
and we compared the result to the ESN and LSTM predictions.
We access IBM quantum computers through the provider ibm‐
q/open/main/that provides access to six real quantum com-
puters. We implement the QRC approach on the version 1.1.34

F I GURE 8 Echo‐state network (ESN) 30‐steps prediction of the
latitude variable for the three users.

F I GURE 9 Echo‐state network (ESN) 30‐steps prediction of the
longitude variable for the three users.

F I GURE 1 0 Long short‐term memory (LSTM) 30‐steps prediction of
the latitude variable for the three users.

F I GURE 1 1 Long short‐term memory (LSTM) 30‐steps prediction of
the longitude variable for the three users.
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of the ibmq‐quito 5‐qubits quantum computer that is equipped
with a processor of type Falcon r4T. Due to limited available
resources on IBM quantum computers, that is, only a
maximum of 20,000 shots and a maximum of 100 circuits are
permitted, we selected a small‐size time series to implement
the QRC approach. We selected the longitude of the user #1
recorded between 2008, 10−27 at 11:54:49 and 2008, 10−27 at
12:05:54, which contains 50 data points. We used 10 timesteps
for the washout period, and we performed a 5‐timesteps
prediction. Due to the natural quantum noise and gate errors,
we increased the number of shots to 4000 and we increased the
optimisation level to 3 to optimise the quantum circuits at the
expense of longer transpilation time.

We observe from Figure 12 that the LSTM prediction
produces very close performance to the QRC prediction, but
the latter is still better. Even though current real quantum
computers are not fault‐tolerant, we demonstrated that the
QRC prediction approach is able to produce satisfactory re-
sults in terms of MSE compared to the well‐known and most
used deep learning‐based prediction approaches such as the
LSTM and the ESN approaches. Note that the prediction is
done on small‐size time series and a more sophisticated
quantum prediction approach might be needed for more
complex time series. Despite this, the QRC approach is
appealing and worth considering in real‐world scenarios.

4.6 | Discussions

We observed through our analysis of the different results that
implementing the QRC approach on open‐access IBM quantum
experience is easy, especially for small‐size time series and when
the number of qubits is not large. However, for large‐size time
series or when the number of qubits is large, one needs more
resources in terms of time and computation. We observed that
more advanced quantum computers can forecast efficiently
more challenging and interesting time series machine learning
problems compared to their classical counterparts. Also, the
QRC approach is appealing to solve wireless networks machine

learning tasks such as the prediction and classification of time
series, for example, the prediction of wireless traffic, the pre-
diction of signal‐related measurements etc.

4.7 | Future works

In the future, it is worth investigating the QRC approach for
multivariate time series that have much longer length. It would
also be interesting to investigate the trade‐off between
complexity and performance of the QRC when using a higher
number of qubits. Another research axis that we intend to
pursue is hyper‐parameters optimisation. In the case of the
QRC, inter‐qubit interactions and evolution time should be
tuned to measure the accuracy of the trajectory prediction for
different memory capacities of the reservoir. To establish a fair
comparison between the quantum and the classical approaches,
the hyper‐parameters of the classical models should also be
optimised. Finally, the characterisation of the impact of the
quantum device's noise for time series of different length and
washout length will be the object of future research.

5 | CONCLUSIONS

In this study, we applied a quantum reservoir computing
(QRC) approach, proposed recently to predict time series data,
to the user mobility prediction problem in mobile wireless
networks. We used a real‐world GPS dataset with hundred
timesteps. The QRC approach exploited the rich dynamics of
quantum mechanics to produce a highly complex and
dynamical quantum system capable of highly producing accu-
rate prediction of GPS trajectories. The QRC approach was
compared to two classical approaches; the long‐short term
memory (LSTM) and the echo‐state network (ESN). Both
classical approaches are based on the recurrent neural network
framework. The ESN uses the reservoir computing technique
like the quantum one. The difference is that the quantum
technique constructs a quantum reservoir based on the quan-
tum mechanics, whereas the ESN constructs a classical reser-
voir based on random matrix generation. The quantum
reservoir used the time evolution of the fully connected
transverse field Ising Hamiltonian, and we showed how we can
produce this time evolution using quantum simulation with
gate‐based quantum circuits. We showed that the QRC
approach can produce the lowest prediction error in terms of
mean‐squared error compared to the LSTM and the ESN
approaches.
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