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Abstract

Agricultural activities can result in the contamination of surface runoff with pathogens, pesti-

cides, and nutrients. These pollutants can enter surface water bodies in two ways: by direct

discharge into surface waters or by infiltration and recharge into groundwater, followed by

release to surface waters. Lack of financial resources makes risk assessment through anal-

ysis of drinking water pollutants challenging for drinking water suppliers. Inability to identify

agricultural lands with a high-risk level and implement action measures might lead to public

health issues. As a result, it is essential to identify hazards and conduct risk assessments

even with limited data. This study proposes a risk assessment model for agricultural activi-

ties based on available data and integrating various types of knowledge, including expert

and literature knowledge, to estimate the levels of hazard and risk that different agricultural

activities could pose to the quality of withdrawal waters. To accomplish this, we built a

Bayesian network with continuous and discrete inputs capturing raw water quality and land

use upstream of drinking water intakes (DWIs). This probabilistic model integrates the DWI

vulnerability, threat exposure, and threats from agricultural activities, including animal and

crop production inventoried in drainage basins. The probabilistic dependencies between

model nodes are established through a novel adaptation of a mixed aggregation method.

The mixed aggregation method, a traditional approach used in ecological assessments fol-

lowing a deterministic framework, involves using fixed assumptions and parameters to esti-

mate ecological outcomes in a specific case without considering inherent randomness and

uncertainty within the system. After validation, this probabilistic model was used for four

water intakes in a heavily urbanized watershed with agricultural activities in the south of

Quebec, Canada. The findings imply that this methodology can assist stakeholders direct

their efforts and investments on at-risk locations by identifying agricultural areas that can

potentially pose a risk to DWIs.
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1. Introduction

Agricultural practices are significant sources of chemical and microbial pollution to surface

waters [1–5], posing a threat to public health. Runoff from agricultural fields and infiltration

into groundwater leads to the transport of pesticides and nutrients into receiving waters [6].

The potential for contamination of surface waters depends on the type, quantity, adsorption,

and absorption capacity of applied pesticides, nitrogen and phosphorus [7–9]. In addition, soil

characteristics [10], rainfall rates [11–13], and agricultural management practices [14–16] are

essential factors that determine the susceptibility of runoff to contamination. An increase in

nutrient levels from animal and crop production can contribute to the proliferation of cyano-

bacteria in drinking water sources [17–20]. Some cyanobacteria blooms can release toxins that

pose challenges in terms of drinking water safety [21–26]. Animal excrements and manure are

also a source of microbial contamination in surface waters [27–30]. Factors influencing the

survival and transport of pathogens in water resources include: water temperature, pH, biotic

interactions, manure types and characteristics, and farm management practices [31].

Risk assessments can raise awareness of the threats posed by agricultural contamination to

drinking water sources. Several methods to assess the risks associated with agricultural activities are

available. In recent years, many risk assessment techniques have used deterministic modeling

approaches focused on ecological, ecotoxicological, and human health issues [3, 32–37]. Determin-

istic modeling is costly, requires extensive calibration, and needs a large amount of site-specific data

on water quality and hydrodynamics. The central problem with this approach is that it cannot be

implemented by all drinking water suppliers due to a lack of financial resources and data. On the

other hand, the deterministic approach could lead to an erroneous risk management decision, as it

evaluates the impact of only one risk scenario at a time. Some of these limitations can be addressed

using a probabilistic approach that simultaneously considers many risk assessment factors, such as

various threat exposure scenarios, uncertainty of the different input variables, as well as uncertainty

in the relationship between the parameters defining the system and the risk magnitude [38].

Bayesian networks (BN) are a valuable tool for conducting a probabilistic risk evaluation

under uncertainty, and integrating different types of knowledge, such as quantitative and quali-

tative data, expert opinion, and prior experiences [39]. BNs have been extensively applied in dif-

ferent fields, such as in the fields of ecological risk assessment [40–43], human health risk

assessment [40–44], climate change risk assessment [45], disaster risk assessment [46, 47], water

quality and treatment [48, 49], best management practices of non-point source pollution [50],

and water resource management [51]. To the best of our knowledge, these approaches have not

been applied to vulnerability assessments of drinking water sources in agricultural watersheds.

The aim of this study was to develop a probabilistic model that decision-makers could use

to swiftly identify animal and crop production areas that generate high chemical and microbial

risks at DWIs. Our specific objectives were to: (1) develop a BN that combines the three com-

ponents of risk assessment: hazard, exposure, and vulnerability; (2) test the applicability of

existing methods used to define the conditional independence relationship among variables

constituting BNs for drinking water risk assessments; (3) develop a novel method to define an

efficient Bayes independence of the input variables for water resource risk assessments; (4)

assess the probability distribution of the overall hazard of agricultural activities to pinpoint the

drainage basins that require more detailed investigation for source water protection.

2. Materials and methods

2.1 Study area

The study was conducted for four DWIs, serving a population of approximately 440,000, draw-

ing water from a river in Southern Quebec, Canada (Fig 1). Drinking water intakes 1 (DWI_1)
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and 4 (DWI_4) are located in the most upstream and downstream sections of the river, respec-

tively. DWI_2 and DWI_3 are located in the middle of the river reach. This river drains a lake

fed by the Ottawa River, as described in Jalliffier-Verne et al. [52]. The Ottawa River receives

runoff from the largest (146,300 km2) watershed in Eastern Canada, and its average discharge

is around 1,950 m3/s [53]. This watershed is dominated by forests (75%) of which 40% is dense

mixed wood. Agricultural activities take place over 6% of this watershed surface area. The adja-

cent watersheds that have a local influence on the 42-km long river that supplies the DWIs of

this study cover an area of 1,008 km2. This area is zoned as follows: 30% agricultural, 28.69%

urban, 20.63% forest land.

Delineating protection zones is a critical step to assess non-point source pollution risks to

drinking water sources, reduce the risk of contamination, and support drinking water safety.

In this study, the delineation of immediate and intermediate protection areas was carried out

to specify the land area that contributes water to the drinking water supply. The immediate

protection area is a zone close to a DWI where pollution sources are deemed of concern and

where contaminants may be readily found in the raw water with minimal dilution [54]. The

intermediate protection area is a different zone where the travel time to the DWI is too short

to allow intervention in the case of an accidental spill or a spike in contaminant concentration

[54].

In Quebec, provincial regulation requires the delineation of surface water protection zones

using a fixed distance approach [54]. This approach comprises only a strip of land on both

sides of a river and does not include land surfaces whose relief leads to the drainage of land,

lakes, and streams upstream of the river under study. For more information on regulatory

methods for delineating surface water protection areas, see the S1 Text. To control diffuse

Fig 1. Study site. The sources of the mapped data are as follows: (1) drinking water intakes was acquired from

municipal partners, (2) land use data was supplied by the Ministère des Affaires municipals et de l’Habitation of

Quebec (MAMH), and (3) the base map utilized was created in the “ArcGIS” software program using the “Basemap”

function whose shapefile is noted “World Topographic Map”.

https://doi.org/10.1371/journal.pwat.0000073.g001
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pollution, it is necessary to consider the drained non-point source pollution lands upstream of

the tributary outlets included in the protection zones of the DWI. Therefore, this study devel-

ops an improved methodology of delineation based on levels 1 and 2 sub-watersheds. Level 1

sub-watersheds are the large watersheds whose outlet is the study site river. Level 2 sub-water-

sheds are those that drain into level 1 sub-watersheds and have the river in level 1 sub-water-

sheds as their outlet.

The geographic information system software (ArcGIS) was used to delineate the protection

zones using the following data layers: location of DWIs, topological hydrographic network

lines, and high-water mark. The immediate protection zone was delimited within 50 m down-

stream and 500 m upstream of the water intake as required by Quebec regulation [54]. This

area includes any surface water, portions of tributaries, and a 10-m strip of land measured

from the high-water mark. Surface and water portions of tributaries were also included in the

intermediate protection zone and incorporate a 120-m strip of land measured from the high-

water mark. This protection zone was delimited within 50 m downstream and 10 km upstream

of the DWI [54]. This delineation was used to identify all level 1 and 2 sub-watersheds with

outlets within the boundaries of these protection zones and to include them in the study site.

Every sub-watershed selected is a drainage basin (DB) (S1 Fig). We define a drainage basin as

a territory including a set of parcels used for one or more anthropogenic activities presenting a

source of diffuse pollution and whose drained water is discharged into a watercourse through

an outlet. Each drainage basin presents a potential source of microbial and/or chemical con-

tamination to the studied DWIs.

2.2 Bayesian network framework

A probabilistic and spatial risk assessment of agricultural activities impacting DWIs was per-

formed at a regional scale using a BN and ArcGIS. The risk assessment framework was built to

integrate the three components of risks: hazard, vulnerability, and exposure (Fig 2).

A BN is a hierarchical representation and a probabilistic graphical model representing a

relationship between a range of variables. Every single variable is represented as a node, and

relationships between variables are presented by arcs defined by conditional dependencies

[55]. This directed, acyclic graph allows the modeling of various uncertain events, facts, and

systems [56]. More definitions of BN can be found in other studies [38, 47, 50, 57–60]. Bayes-

ian networks are also known as conditional probability networks, casual probability networks,

probabilistic networks, belief networks, Bayesian belief networks, or Bayesian reliability

networks.

In this study, the BN was developed using the software Netica 6.09 (Norsys Software Corp),

applying the Bayes’ theorem [61]. This software is an appropriate tool for creating, changing,

and saving networks, as reviewed by Uusitalo [39].

2.2.1 Defining the nodes. The first step to structure the BN model was defining a set of

random variables (nodes) and their states, which can be discrete or continuous. Discrete vari-

ables have a limited set of fixed values or states that they can take. Continuous variables are

classified as real numbers since they may have any value within a certain range [62]. Continu-

ous variables were discretized by breaking them up into intervals by assigning thresholds to

define each interval. Input nodes are labeled “parent” nodes, and “child” nodes have input con-

nections from one or more parent nodes [40, 58].

The determination of the critical nodes constituting the BN was carried out based on the

problem and the objective of the study, which considers the DWI as the main subject of the

risk assessment from agricultural activities. These nodes were chosen to represent all compo-

nents of the risk assessment model based on the interaction of vulnerability to microbiological

PLOS WATER Bayesian network and agricultural risk assessment
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contamination (VMC), vulnerability to chemical contamination (VCC), vulnerability to water

scarcity (VWS), exposure (EXP), and probability of hazard (PH). In the Working Group II

(WGII) sixth assessment report from Intergovernmental Panel on Climate Change [63], the

hazard is described in terms of the potential occurrence of the chemical and microbial contam-

inants that may cause degradation of water resource. The exposure depends on the presence of

DWI in locations that could be adversely affected. The vulnerability is evaluated as the propen-

sity or predisposition of the DWI to be adversely affected.

In this study, the intrinsic vulnerability of the intake was assessed by examining the sensitiv-

ity of the raw water to potential pollutants and the physical characteristics of the intake. Three

key variables were used to assess the vulnerability to microbiological contamination of water

intakes: (i) the geometric mean of Escherichia coli concentrations (GMEC) was used to present

the central tendency of the microbial contamination indicator while being robust to extreme

values; (ii) the 99th percentile of E. coli concentrations (PKEC) was used to account for the

peaks of microbial contamination that are usually responsible for waterborne diseases [64];

and (iii) the seasonal variability of microbial contamination (SVMC) that was calculated based

on a consecutive disparity index that estimates the variability of E. coli concentrations while

considering the order of their chronological distribution, and without being independent of

the data set’s average [65]. All variables were calculated for the four seasons of the year [66]

(Winter, Spring, Summer, and Autumn) to study microbial contamination distribution and

evaluate the sensitivity to seasonal variations.

Fig 2. Risk assessment process.

https://doi.org/10.1371/journal.pwat.0000073.g002
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Assessment of the vulnerability to chemical contamination was carried out based on the

total phosphorus in raw water, which is routinely analyzed at drinking water treatment plants

in Quebec. As data for other chemicals, such as nitrate and nitrogen, were not available, the

vulnerability to chemical contamination was also estimated by analyzing the land use of activi-

ties that may release chemical contaminants in the immediate and intermediate DWIs’ protec-

tion zones. Raw water quality data available over a period of five years (January 2013 to

December 2017) was used to assess the microbiological and chemical vulnerability of DWIs as

required by Water Withdrawal and Protection Regulation [54].

The results of the vulnerability to water scarcity from the Levesque [67] study were used to

assess vulnerability based on (i) the water levels in the studied river, which depend on the

physical characteristics of the DWI and (ii) the water demand assigned to each catchment.

The exposure was estimated based on the location of the outlet of each drainage basin in

relation to the intake and its protection areas. This node allows assessing the non-point source

pollution exposure pathways to the raw water supply.

The probability of hazard was estimated based on the proportion of the drainage basins

occupied by crop and animal production activities. Crop classes and animal classes were used

as input variables to estimate surface water contamination levels by pesticides and microbial

contaminants.

The final node presents the overall risk probability distribution across three possible states

(low, medium, and high) of agricultural activities occupying a watershed located upstream of a

DWI by combining vulnerability, exposure, and hazard as outlined below.

The input variables, their states, and the discretization methods are described in Table 1.

Once the nodes were set up, links (dependencies) between them were defined using condi-

tional probability tables (CPTs) (Section 2.3.2). Finally, the values for each input parameter

were computed using the data associated with the study site to produce a probability distribu-

tion for each state associated with the nodes.

The determination of states for the remaining nodes and directed links was accomplished

based on scientific knowledge (the literature), the Quebec regulations, and the availability of

data in provincial and federal databases. The choice of nodes was discussed with experts and

stakeholders to provide a suitable BN, rectify, refine, and fill the potential gaps associated with

the variables and their status.

2.2.2 Filling the CPTs. Filling the CPTs of the Bayesian network is the most challenging

step in setting up the framework. To accomplish this step, different known methods were

tested: (i) expert judgment [38, 58, 59], (ii) the interpolation method [88], and (iii) the Cain

method [89, 90]. Methods that did not generate reliable outcomes in terms of probabilities

were rejected under the expert decision.

It was challenging to estimate the quantity of chemical and microbiological contaminants

released during agricultural production activities, as well as their diffusion, dispersion, and

advection into the DWIs. Thus, employing expert judgment and scientific knowledge from the

literature were the best methods for determining the conditional distribution of the quantities

of pollutants that may be released in the immediate and intermediate protection zones. The

exposure to pollutants released by upstream agricultural activities was also assessed using this

method. In these situations, completing the CPTs was based on experts’ judgments and their

interpretation by the extensive research team (rather than through formal interviews). This is

due to the nature of the project: experts’ judgments were interpreted throughout four years of

work on a collaborative project between six municipal partners, a watershed organization, and

a research team at Polytechnique Montreal. Thus, the probabilities for each status of each child

node were elucidated through discussion meetings with researchers, professionals, and munic-

ipal water stakeholders and were enhanced by scientific knowledge.

PLOS WATER Bayesian network and agricultural risk assessment
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Table 1. Summary of input variables’ properties.

Parent node Risk

component

State discretization methodology States (from lowest to

highest level)

Data source

Name Description Type of

discretization

DBA Drainage basin (DB) area Continuous Hazard Statutes were defined based on

percentiles of the area of 4723 sub-

watersheds (level 2) in Quebec.

0 to 5 Km2 / 5 to 12 km2 /

12 to 45 km2 / > = 45

km2

Quebec portal of

knowledge on water

[68]

PPCO Plant production cover Continuous Hazard Statutes were defined based on

Water Withdrawal and Protection

Regulation (WWPR) (schedule IV)

[54]: land use-based method for

assessing water vulnerability.

0 to 20% / 20 to 50% / >

= 50%

Mapping of land use in

the St. Lawrence

Lowlands [69]

APCO Animal production cover Continuous Hazard 0 to 20% / 20 to 50% / >

= 50%

Data are provided by

theMinistère des
Affaires municipales et
de l’Habitation of

Quebec (MAMH).

CPC Crop production classes Discrete Hazard Environmental impacts depend on

the crop class. The statutes were

specified based on the data layer

available in the ministry database

(Minstère de l’environnement et de
la lutte contre les changements
climatiques (MELCC)), and their

classification was made based on

the following references: Beaudin

et al. [70], Michaud et al. [71],

Gasser et al. [72], Giroux [73], and

Giroux [74].

No crop production /

Non-cultivated

agricultural area /

Undefined culture /

Specialized culture /

Perennial culture /

Annual crop

Quebec land use [75]

APC Animal production classes Discrete Hazard Animal manure is a source of

microbial contamination for

surface waters and contains

pathogens. These pathogens are

specific to the types of animals

from which manure is derived.

The statutes were specified based

on the data layer available in the

MAMH database, and their

classification was made based on

the following references: Soupir

et al. [76], Jaffrezic et al. [77],

Lalancette et al. [78], and Haack

et al. [79]

No animal production /

Class VII(2) / Classes V(3)-

VI(4) / Classes II(5)- III(6)-

IV(7) / Class I(8)

Data are provided by

MAMH.

PZ Protection zone Discrete Exposure Statutes were defined based on

WWPR (Art. 70, 72, and 74) [54]:

protection zone delineation.

Extended protection zone

/ Intermediate protection

zone / Immediate

protection zone

Data are provided by

the watershed

organization.

GMEC_X(1) Geometric mean of E. coli
concentrations

Continuous Vulnerability Statutes were defined based on the

regulation of the drinking water

quality [80], and the development

of an index of bacteriological and

physicochemical quality (IQBP)

[81].

0 to 15 CFU/100 ml

15 to 150 CFU/100 ml

> = 150 CFU/100 ml

Raw water quality data

are provided by

drinking water

treatment plants

managers.
PKEC_ X(1) 99th percentile of E. coli

concentrations

Continuous Vulnerability 0 to 200 CFU/100 ml

200 to 2000 CFU/100 ml

> = 2000 CFU/100 ml

SVMC_X(1) Seasonal variability of

microbial contamination

Continuous Vulnerability Statutes were defined based on the

results of the index of seasonal

variability to microbial

contamination developed by

Kammoun et al. [65].

0 to 1 / 1 to 1.5 / > = 1.5

VWS Vulnerability to water

scarcity

Discrete Vulnerability Statutes were defined based on the

water scarcity vulnerability index

developed by Leveque [67].

Low / Medium / High Leveque [67] study

(Continued)
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However, it is challenging to ensure that the definition of probability distributions of several

tables is coherent with each other rather than using simply the judgment of experts. This is

mostly because experts lack the rigid regularity of machines [88, 91]. During a long process,

boredom and fatigue are enough to introduce errors, uncertainties, and a lack of standardiza-

tion in the distributions.

One solution would be to standardize the method of obtaining probabilistic information

from the experts by providing a much smaller selection of probability distributions. Therefore,

the interpolation method was used to obtain the remaining probability distributions in a rea-

sonable time [88]. This method requires assigning a weight to each parent node to quantify the

relative strength of its influence over the child node. This step was done based on expert judg-

ment. The sum of the weights must equal one. Then, conditional probability distribution

(CPD) elicitation was done for three cases: when all parents nodes are in extreme states

(high and low states) and medium states. The determination of the probability distribution for

the remaining combinations of the various parents’ states was done by interpolation. This

method was allied to all CPTs of the Bayesian network. However, it was deemed to be not ade-

quate for our study because an examination of the probability distributions revealed that the

resulting probabilities were inconsistent. It was difficult to maintain consistency between the

probability distributions, especially in cases where a parent node’s state was highly different

from the one used for interpolation. In this instance, this method does not account for the

influence of variation bias in the interpolation. Therefore, the interpolation method was not

pursued further.

The Cain method was also tested. It involves determining CPDs for cases where the rela-

tionships between the parent nodes are known; these obtained conditional probability distri-

butions are termed anchor CPDs. Anchors were defined according to the number of parents

and the number of statuses associated with each parent. The distribution of missing condi-

tional probabilities was derived by interpolating those corresponding to the anchor CPDs and

using interpolation factors. The latter were calculated using the CPDs at anchors. Interpolation

Table 1. (Continued)

Parent node Risk

component

State discretization methodology States (from lowest to

highest level)

Data source

Name Description Type of

discretization

PKTP 99th percentile of total

phosphorus concentrations

Continuous Vulnerability Statutes were defined based on the

WWPR [54], and the development

of an index of bacteriological and

physicochemical quality (IQBP)

[81].

0 to 50 μg/l

50 to 100 μg/l /

> = 100 μg/l

Raw water quality data

are provided by

drinking water

treatment plants

managers.
MTP Median of total

phosphorus concentrations

Continuous Vulnerability 0 to 30 μg/l

30 to 50 μg/l

> = 50 μg/l

AIMPZ Area of immediate

protection zone

Continuous Vulnerability Statutes were defined on the basis

of the WWPR [54].

0 to 1km2 / 1 to 5 km2 / Drinking water intakes

vulnerability

assessment reports

[82–87]
AINPZ Area of intermediate

protection zone

Continuous Vulnerability 0 to 10 km2 / 10 to 30 km2

/ > = 30 km2

PIMPA /

PINPA

Percentage of the

immediate/ intermediate

protection zone used for

activities that may release

chemical contaminants

Discrete Vulnerability No / 0 to 20% / 20 to 50%

/ > = 50%

Land use data are

provided by MAMH.

(1)X refers to season: Winter/ Spring/ Summer/ Autumn
(2) Class VII: other types of animal production/ experimental farm/ other agricultural activities; (3) Class VI: apiculture; (4) Class V: poultry and egg production; (5) Class

IV: sheep and goat farming; (6) Class III: pig farming; (7) Class II: equine farming; (8) Class I: beef farming/ dairy cattle/ grazing land and pasture

https://doi.org/10.1371/journal.pwat.0000073.t001
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factors of a parent node were calculated for each change from one state to another to quantify

the positive to negative state reduction. The processes of defining anchors and calculating

interpolation factors are explained in more details in Cain [89] and Mkrtchyan et al. [90].

Only two CPTs, relating to crop and animal activity levels, were completed using the Cain

approach because this method is applicable for CPTs in which the effect of the parent state on

the child state has a constant direction: the increase in the area occupied by animal and crop

production activities results in an increase in the level of agricultural activities in the drainage

basin. The results of filling in the probability tables for the other child nodes were judged to be

unacceptable since the interpolation is dependent on the number of favourable and unfavour-

able states for the child state of interest. As a result, there will be the same probability distribu-

tions for different child nodes even though the parent nodes have varying degrees of influence

on them [92].

Therefore, a novel approach to filling CPTs was developed that combines a mixed aggrega-

tion method [93] with expert judgment. The mixed aggregation was used to aggregate indica-

tors in the ecological assessments field using a deterministic approach [93]. It was adapted to

be applied in the case of a probabilistic approach and for water resource assessment. First, the

different state of each parent node (Pn) was standardized to a common scale from 0 (best possi-

ble state) to 1 (worst possible state). Second, the assignment of weights (Wn) for each parent

node (Pn) was performed to reflect its importance relative to the child node. Third, causal

dependencies were performed with aggregation. In this step, additive and maximal aggrega-

tion were combined (Eqs (1), (2), (3), (4), (5)). Additive aggregation (fadd) compensates for the

poor status of a parent node by other nodes with a good status. On the other hand, maximal

aggregation (fmax) leads to pessimistic results since only the parent node with the worst status

is considered. The combination of the additive and maximal aggregation allows for some com-

pensation while penalizing the very poor state to not neglect an impact that requires more

attention to protect water resources.

fadd� maxðP1; P2; . . . ; PnÞ ¼ a faddðP1; P2; . . . ; PnÞ þ ð1 � aÞfmaxðP1; P2; . . . ; PnÞ ð1Þ

Where:

faddðP1; P2; . . . ; PnÞ ¼
Xn

i¼1
Wi Pi ¼W1 P1 þW2 P2 þ � � � þWn Pn ð2Þ

Xn

i¼1
Wi ¼ 1 ð3Þ

fmaxðP1; P2; . . . ; PnÞ ¼ maxðP1; P2; . . . ; PnÞ ð4Þ

aþ ð1 � aÞ ¼ 1 ð5Þ

α and (1-α) were chosen according to the relative importance to be given to each aggregation

method. The more alpha tends to 0, the more the maximum aggregation is emphasized. Other-

wise, additive aggregation tends to be prioritized.

The most favorable weight (Wn) set of parent nodes and aggregation method was deter-

mined by performing a calibration that requires knowledge and experience and by building on

previous work [82–87] conducted to assess the potential risk of agricultural activities on water

resources using a deterministic approach. This step was performed by analyzing the outputs

resulting from each possible combination of/ andWn. After validating the most appropriate

variables and depending on the number of parent nodes, a 2D or 3D graph was generated to

extract the CPDs. These data were used to fill the CPTs. The weights selection and graph
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generation process were codified in R (V.1.1.456, RStudio, Inc.). S1 Table presents an example

of CPT associated with the “Global Risk Level (GRL)” node that was determined by combining

three parent nodes: probability of hazard (PH), exposure (EXP), and DWI vulnerability level

(DWIVL). All probability distributions were calculated based on the 3D graph (S2 Fig) gener-

ated by combining all possible cases related to the parent nodes.

Table 2 shows the methods applied to fill 18 CPTs. This table also lists the methods that

were tested out but were rejected because of unreliable outcomes as explained above.

2.2.3 Sensitivity analysis. A sensitivity analysis was performed to quantify the magnitude

of the sensitivity of the changes that occur in the endpoint probabilities when the parent nodes

are changed and to identify which of the variables are most relevant [40, 60]. This analysis is

necessary to understand where more information is needed to reduce uncertainty.

Table 2. Overview of the CPTs filling methods.

Child node Parent node Weight of

parent node

α Nominated CPTs filling

method

Tested and rejected CPTs

filling methodsName Description Risk

component

CAL Crop activities level Hazard PPCO

DBA

NA(*) NA Cain method • Expert judgment

• Interpolation method

• Mixed aggregation method

combined to expert judgment
AAL Animal activities level Hazard APCO

DBA

CRIM Contaminants that could be released

in the immediate protection zone

Vulnerability PIMPA

AIMPZ

NA NA Expert judgment • Cain method

• Interpolation method

• Mixed aggregation method

combined to expert judgment
CRIN Contaminants that could be released

in the intermediate protection zone

Vulnerability PINPA

AINPZ

EXP Exposure Exposure PZ

CAH Crops activities hazard Hazard CAL

CPC

0.9

0.1

1 Mixed aggregation method

combined to expert

judgment

• Interpolation method

• Mixed aggregation method

APH Animal production hazard Hazard AAL

APC

0.9

0.1

1

PH Probability of hazard Hazard APH

CAH

0.6

0.4

1

MQRW_

(x)(**)
Microbiological quality of raw water Vulnerability PKEC_(x)

GMEC_(x)

SVMC_(x)

0.5

0.4

0.1

0.8

VMC Vulnerability to microbiological

contamination

Vulnerability MQRW_W

MQRW_SP

MQRW_S

MQRW_A

0.25

0.25

0.25

0.25

0.5

RWQLTP Raw water quality level for total

phosphorus

Vulnerability PKTP

MTP

0.2

0.8

0.7

CVLU Chemical vulnerability level based

on land use

Vulnerability CRIM

CRIN

0.7

0.3

0

VCC Vulnerability to chemical

contamination

Vulnerability RWQLTP

CVLU

0.8

0.2

0.7

DWIVL DWI vulnerability level Vulnerability VMC

VWS

VCC

0.4

0.4

0.2

0.4

GRL Global risk level Risk PH

DWIVL

EXP

0.8

0.1

0.1

1

(*) Not applicable
(**) x refers to season: winter/ Spring/ Summer/ Autumn

https://doi.org/10.1371/journal.pwat.0000073.t002
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This sensitivity analysis was executed by calculating the mutual information (I) between

two discrete variables X and Y [94]:

I X;Yð Þ ¼ H Xð Þ � H XjYð Þ ¼
X

x�X

X

y�Y
pðx; yÞlog2

pðx; yÞ
pðxÞpðyÞ

ð6Þ

where the sum is over all states x and y of variables X and Y, respectively, H(X) is the entropy

reduction of X before any new finding, H(X|Y) is the conditional entropy of X at given Y. In

the case of computing the I between continuous random variables, the double sum has to be

replaced by a double integral.

Entropy reduction refers to how much a target node’s entropy is decreased when the values

of its parent nodes are held constant [95–97]. The amount of this entropy reduction is used to

gauge how much the parent nodes, also known as findings nodes, influence the target node.

Entropy is determined using the probabilities given to the potential states of the target node. It

is a measure of uncertainty or randomness associated with the distribution of probabilities in a

system. According to this theory, the target node is thought to be more affected by nodes with

higher entropy reduction than nodes with lower entropy reduction [95–97].

These measures of entropy reduction and mutual information between various variables

and a given endpoint node were conducted with the “sensitivity to finding” command in the

Netica software.

3. Results

3.1 Bayesian network model

The developed BN model integrates 43 nodes (Fig 3) and 1326 conditional probabilities. The

nodes constituting this BN are described in Tables 1 and 2. The probabilities associated with

Fig 3. Bayesian network structure for assessing drinking water intake contamination risk from agricultural

activities. The parent nodes in gray are associated with input variables that define the properties of a specific drainage

basin and variables related to a selected intake.

https://doi.org/10.1371/journal.pwat.0000073.g003
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each node whose sum is equal to 100% are shown on the right side of the status window of the

detailed BN (S3 Fig). Grey nodes represent the input variables.

3.2 DWIs vulnerability

The findings related to the vulnerability nodes, which are a component of risk, are presented

in this section. As illustrated in Fig 4, more than 60% of DWIs were extremely vulnerable. This

is most likely because these intakes are in a highly urbanised watershed with agricultural activ-

ity (section 2.1). The vulnerability of source water to microbiological contamination was noted

at the four intakes. The seasonal variation in microbial contamination of raw water was inves-

tigated (S4 Fig), and our results revealed that all intakes were associated with medium to high

probability distributions for all seasons. The probabilities describing poor water quality could

be due to the transport of microbial contaminants during the late winter and early spring

snowmelt period, but also during episodes of heavy rainfall in the summer, and autumn as

demonstrated by Sylvestre et al. [29].

DWI_3 and DWI_4 were highly vulnerable to chemical contamination (82.3% and 72.2%

probability in the high state, respectively) (Fig 4) as a result of total phosphorus leading to

lower quality of the raw water. In addition, a significant area of the intermediate zone of

DWI_3 was occupied by anthropogenic activities that may release chemical contaminants (S5

Fig). DWI_1 and DWI_2 were moderately vulnerable to chemical contamination (55.2% and

65% probability in the medium state, respectively). They were also influenced by the land use

upstream of the intakes, as illustrated in S5 Fig.

3.3 Probability of the hazard

The findings related to the hazard nodes, which represent another risk component, are pre-

sented in this section (Eq 1). The protection area and drainage basin delineation results

showed that the study site includes 25 DBs that discharge within the boundaries of the

Fig 4. The probability distribution of different categories of vulnerability (global, microbiological contamination, chemical

contamination, and scarcity) for all drinking water intakes (DWIs).

https://doi.org/10.1371/journal.pwat.0000073.g004
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intermediate protection zones of the four DWIs. The immediate protection areas of all intakes

and seven drainage basins (DB_1, DB_3, DB_5, DB_16, DB_17, DB_21, and DB_22) were not

occupied by agricultural activities, so they do not constitute a risk from agriculture to water

quality at DWIs. The remaining drainage basins and their occupancy by animal and crop pro-

duction activities are shown in the S6–S14 Figs. The minimum areas of crop and animal pro-

duction activities were 0.08 km2 (in DB_20) and 0.03 km2 (in DB_12 and DB_18),

respectively, while the DB_8 has the greatest area covered by these activities. The crop activities

were spread over 3488.26 km2, and the animal activities were occupied by 3177.22 km2 of this

DB. The total area occupying all the DBs upstream of all the DWIs were 8278 km2 in crop pro-

duction activities and 7830 km2 in animal activities.

Fig 5 shows the probability distributions of the overall hazard (PH), the crop activity hazard

(CAH), and the animal production hazard (APH) for each DB. The probability of hazard was

at high level in DB_8, DB_10 and DB_23 (81.7%, 96.6% and 81.6% probability in the high

state, respectively). This outcome is due to the area occupied by agricultural activities and the

type of production that presents the greatest hazard to water quality: class I for animal produc-

tion and annual crop for vegetable production. The probability of hazard was moderate in

DB_6, where 51.1% was in the medium state. For DB_2, DB_7, DB_15, and DB_24, the proba-

bility of hazard was ranged between low and medium levels with close percentages (for exam-

ple, 48.7% and 49.6% probability in low and medium states, respectively for DB_2). The

remaining DBs were all characterised by low hazard probabilities level, which averaged 63.6%.

3.4 Global risk

This section reports the global risk results, which drive from the combination of hazard, vul-

nerability, and exposure. The overall risk from crop and animal activities was relatively high in

three drainage basins (DB_8, DB_10, DB_23) whose outlets were located upstream of these

DWIs: DWI_2, DWI_3, and DWI_4 (Fig 6). Their probabilities of being in high status vary

between 81.9% and 95.5%. Another five DBs (DB_2, DB_6, DB_7, DB_15, and DB_24) repre-

sented a moderate overall risk with probabilities ranging from 55.6% to 60.9% (Fig 6). Eight

DBs (DB_4, DB_11, DB_12, DB_13, DB_14, DB_18, DB_19, and DB_25) were associated with

Fig 5. Bar plots for BN sub-model assessing the probability distribution of overall hazard, crop activity hazard,

and animal production hazard within the drainage basins.

https://doi.org/10.1371/journal.pwat.0000073.g005
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a low global risk with probabilities that are almost equal between the low and medium status,

and with a variance in probabilities that does not exceed 10%. DB_9 and DB_20 were associ-

ated with low global risks with probabilities ranging from 54.8 to 67.4% in the low status.

The crops activities hazard (CAH), animal production hazard (APH), exposure (EXP),

DWI vulnerability level (DWIVL), vulnerability to microbiological contamination (VMC),

and vulnerability to chemical contamination (VCC) are the nodes of interest in this study, so

they were selected as findings nodes. Subsequently, the sensitivity for the endpoint "Global

Risk Level (GRL)" in every DB occupied by agricultural activities was calculated and analyzed

as explained in section 2.3.3. Results of this analysis (Fig 7) showed that the developed model

was most sensitive to the crops activities hazard (CAH) (from 17.8 to 29.5% variance

Fig 7. Results of sensitivity of the « Global risk level » variable.

https://doi.org/10.1371/journal.pwat.0000073.g007

Fig 6. Global risk distribution for all drainage basins upstream four DWIs.

https://doi.org/10.1371/journal.pwat.0000073.g006
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reduction) and the animal production hazard (APH) (from 6.54 to 25.6%) for all DWIs. This

model was also moderately influenced by the exposure node (from 2.5 to 4.13%), especially for

the cases of the drainage basins that were slightly occupied by a single type of production activ-

ity, either crop or animal, such as BD_9 and BD_20 that are located upstream DWI_2, DWI_3

and DWI_4.

4. Discussion

The probability of DWIs contamination by agricultural activities was assessed using a probabi-

listic approach in this study. The proposed Bayesian model generates a probabilistic estimation

of the DWIs vulnerability level, crop and animal production activities hazard, the exposure,

and the overall risk associated with each drainage basin occupied by agricultural activities.

One of the strengths of this model is the ability to embed different types of data in the same

system. For example, to fill the input variables, water quality and land use data were used, and

the outputs of other studies (vulnerability to water scarcity) can be included. The discretization

of all nodes constituting this model allows for more efficient and effective communication

with stakeholders on the components of the risk assessment, the interpretation of risks, and

the preparation of action plans, since the terminology and statuses of nodes are based on regu-

latory criteria and lexicons already used in the provincial databases. The graphical model can

be used as a communication tool between scientists, municipal officials, government profes-

sionals, and members of a watershed organization. It could also be a simple approach for

farmer organizations that support surface water pollution reduction to convey potential risks

to their members. The acyclic graph facilitates understanding and collaboration among multi-

disciplinary members, thus increasing the impact in the decision-making process, as discussed

in Stritih et al. [98] and Laurila-Pant et al. [99].

In testing several methods to fill CPTs, it was concluded that the chosen methodology can

significantly influence the final output of the risk assessment. The additive aggregation was

applied through the mixed aggregation by choosing α = 1 to fill CPTs related to child nodes of

crops activities hazard (CAH), animal production hazard (APH), probability of hazard (PH),

and global risk level (GRL). This method is suitable for cases that do not require emphasizing

the pessimism bias. For instance, a high level of crop activity (CAL node) may not represent a

high hazard (CAH node) in the case where most of the area is covered (CPC node) by unde-

fined crops or non-cultivated land. In another case, the worst-case bias was emphasized by set-

ting α to 0, which applied to the case of assessing vulnerability to chemical contaminants based

on land use (CVLU node) in immediate (CRIM node) and intermediate protection zone

(CRIN node). This means that the maximum aggregation is applied to penalize the worst of

inputs to protect the water resource against the highest hazard to water quality. However, for

the rest of the cases, combining both types of aggregation (additive and maximal) was done

due to the evaluation of complementary variables, such as the case of chemical and microbio-

logical water quality assessment based on raw water quality analysis. The mixed aggregation

method enables the inclusion of inter-correlation between parent nodes, resulting in a risk

assessment that is more unbiased and objective compared to other methods. Our case study

also revealed that the weight assigned to each parent node might reflect its relative significance

and reliance on its respective child node.

As shown in Fig 6 and maps of agricultural activities (from S6–S14 Figs), medium level risk

probability dominates for DBs that were slightly occupied by agricultural activities. This was

due to the high DWIs vulnerability, and the location of the outlets of the DBs at a distance that

does not exceed 10 km upstream from these intakes. This implies that even though the hazard

probability is not so significant, the vulnerability of the intake and the exposure of the threat
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could be the factors contributing to a higher risk level (medium to high). Therefore, all nodes

in the model are essential for assessing the risk of agricultural activities. As a result, across a

basic network graph, this Bayesian model gives a clearer understanding of the relative relation-

ship and interaction between all variables [100, 101]. As anticipated, results proved that the BN

could be applied to water resource risk assessment with the same efficiency as environmental

risk assessment [38]. The developed model provides a transparent and systematic way to char-

acterize risk through uncertainty. It reveals all risk states with their estimated probabilities.

The sensitivity analysis results showed that, in order to improve the global risk estimation,

it is most impactful to focus more on the CAH, APH, and EXP since they are linked to the

highest entropy reduction. For this purpose, the use of data regarding pesticides (types, quanti-

ties, method of application and frequency), animal production, and characteristics of the

receiving environment (soil type, hydrodynamics of the river, etc.) are beneficial to have a

more accurate assessment. These data are not available in provincial databases. To bridge this

data gap, targeted analysis are thus needed. Such models are suitable for determining the

catchment areas that could potentially result in the highest risk to water intakes. This simple

model is handy for authorities and stakeholders to estimate the level of risk on a regional and

provincial scale with commonly available data. Therefore, this model is considered a jump-

start for stakeholders to channel their efforts and investments properly to the most appropriate

target for contamination mitigation efforts. This risk assessment model may benefit from an

upgrade over time by including variables that define the modeling of microbial pathogens and

chemical contaminants after rain discharge. As shown by Haack et al. [79], Soupir et al. [76],

and Jaffrezic et al. [77], water bodies were most sensitive to livestock-derived fecal and chemi-

cal marker inputs after rainfall, and bacteria concentrations frequently exceed standards for

primary contact.

Discussion of the risk analysis outcomes with stakeholders requires recognizing uncertain-

ties resulting from the lack of data, inaccuracies in laboratory measurements for raw water

quality monitoring, gaps in the knowledge, and inexactness of geographic data. Nevertheless,

as Uusitalo [39] pointed out, the advantage of the BN is that it incorporates uncertainty explic-

itly and naturally through the probability distribution.

As expected, this model has a limitation concerning its validation since it is not readily pos-

sible to perform a quantitative validation. This limitation is in accordance with the findings

discussed in reviews by Kaikkonen et al. [38] and Phan et al. [51], which also exhibited the

same issue. For this reason, in this study, a qualitative model validation was performed by

examining the outcomes of many scenarios in comparison to the regulatory vulnerability anal-

yses. Results were consistent; however, the BN approach provides more context for risk levels

and an approach to provide an aggregated and global assessment of DWI vulnerability.

This model is a potential tool for source water managers to easily apply since it is based on

readily available input data and raw water analyses commonly required by drinking water

quality regulations [80], which specify standards for all water systems designated for human

use throughout the province of Quebec. Consequently, it is simple to apply this Bayesian

model throughout Quebec by modifying the input values in the model to generate probabilistic

results regarding the risk posed by agricultural activities upstream of DWIs. In this case, all

model components, including parent and child nodes and their probabilistic connections, are

not subject to modification. This Bayesian model can also be applied to other study sites on a

larger scale (national and international scale) if all the data defining the input nodes are avail-

able. As mentioned by Dorner et al. [50], the Bayesian network has the advantage of being

used rapidly to investigate outputs under various scenarios. This evidence holds when applying

the same Bayesian model that has already been developed. It is crucial to highlight that the

groundwork for developing this model, including the generation of CPTs, took a substantial
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amount of time and effort. If the necessary data is unavailable for other study sites, adjustments

must be made to the model design based on the existing data. As part of these adjustments, it

is necessary to decide on the appropriate nodes to use as input to the model while considering

the targeted region’s regulations. This decision should be made based on the data available,

especially those that describe the agricultural activities inventoried at the research site and the

quality of surface water at the DWI. The adjustments would also include defining the condi-

tional probability distributions that characterize the probabilistic links of the new nodes added

with their child nodes, despite applying the identical CPTs filling approaches described in sec-

tion 2.2.2. At this scale, the involvement of experts is a must for the qualitative validation of the

model.

5. Conclusions

This study used the Bayesian network (BN) to assess the risk of agricultural activities for four

DWIs that draw their water across a river in the south of Quebec, Canada. The findings have

led us to conclude that:

• The Bayesian model allowed for the combination and manipulation of data in various for-

mats (numerical, statistical, and geographical data) into a consistent methodology for water

resource risk assessment for drinking water supplies.

• The interactions between all risk components (the vulnerability of drinking water intake, the

exposure to the threat, and the probability of hazard) and their combined uncertainties can

be quantified in a single model. Stakeholders and agricultural organizations may utilize this

probabilistic reasoning tool to grasp the causal relationships between variables, allowing

them to identify the key factors that demand special attention due to their large impacts on

the outcomes.

• The end-user can fill data gaps in the model by referencing expert knowledge. The explicit

identification of data gaps and sensitivity analyses facilitates the prioritization of future data

collection needs. Furthermore, the model can serve as a basis for integrating local knowledge

from various stakeholders in the watershed.

• The mixed aggregation method (fadd-max) combined with expert judgment is a simple and

straightforward way for populating conditional probability tables, and it is suitable for con-

sidering parent-child dependencies. The correlation between the parent nodes is also consid-

ered, making the evaluation accurate based on expert judgment. The weights allocated to the

additive (fadd) and maximum (fmax) aggregation allow for a more focused examination of the

influence factor in the field of water resource protection. This is a crucial characteristic when

the effect of parent nodes functioning concurrently is considered. This method is useful for

filling CPTs semi-automatically to help experts calculate reasonable probabilities when data

are not available.

• The model developed in this paper is the first element of a risk assessment cycle. This Bayes-

ian model proved successful in identifying drainage basins occupied by agricultural activities

that may pose a medium to high risk of contamination of drinking water intakes. These find-

ings can assist managers and authorities in developing targeted sampling programs for

microbiological and chemical testing of surface water while reducing costs and prioritizing

drainage basins associated with a high level of risk. The analysis results should constitute the

input variables of this Bayesian network while incorporating new nodes and updating it to

better pinpoint the source of risk.
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• The availability of the data describing the input nodes determines how easily the model may

be exported to different water resource risk assessment scenarios. If the data are readily avail-

able and suitable for the Bayesian model, the established CPTs in this study can be applied

without adjustments. Nevertheless, developing new CPTs would require a lot of time and

effort if a new Bayesian network had to be constructed to accommodate other types of input

nodes. It is at least plausible to use the same approach of generating conditional probabilities

outlined in this study, as it is relevant to the field of water resource protection.

From a water resource protection perspective, in an urban and agricultural watershed, this

research is expected to serve as a basis for future studies on assessing microbial risk from com-

bined sewer overflows (CSOs) using a probabilistic approach.
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bec. Révue Génial. 2020.

66. Government of Canada. When do the seasons start? Canada: Government of Canada; 2021 [15

December 2021]. Available from: https://nrc.canada.ca/en/certifications-evaluations-standards/

canadas-official-time/3-when-do-seasons-start.

67. Leveque B. Analyse des vulnérabilités des prises d’eau potable de la rivière des Mille-Îles (Québec)
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et de soya– 2015 à 2017. Québec: Ministère de l’Environnement et de la Lutte contre les change-

ments climatiques, Direction générale du suivi de l’état de l’environnement; 2019.

75. Government of Quebec. Land use Canada2017 [15 December 2021]. Available from: https://www.

donneesquebec.ca/recherche/fr/dataset/utilisation-du-territoire.

76. Soupir ML, Mostaghimi S, Yagow ER, Hagedorn C, Vaughan DH. Transport of fecal bacteria from

poultry litter and cattle manures applied to pastureland. Water Air Soil Poll. 2006; 169(1–4):125–36.

77. Jaffrezic A, Jarde E, Pourcher AM, Gourmelon M, Caprais MP, Heddadj D, et al. Microbial and chemi-

cal markers: runoff transfer in animal manure-amended soils. J Environ Qual. 2011; 40(3):959–68.

https://doi.org/10.2134/jeq2010.0355 PMID: 21546682

78. Lalancette C, Genereux M, Mailly J, Servais P, Cote C, Michaud A, et al. Total and infectious Crypto-

sporidium oocyst and total Giardia cyst concentrations from distinct agricultural and urban contamina-

tion sources in Eastern Canada. J Water Health. 2012; 10(1):147–60. https://doi.org/10.2166/wh.

2011.049 PMID: 22361710

79. Haack SK, Duris JW, Kolpin DW, Focazio MJ, Meyer MT, Johnson HE, et al. Contamination with bac-

terial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Sci

Total Environ. 2016; 563–564:340–50. https://doi.org/10.1016/j.scitotenv.2016.04.087 PMID:

27139306

80. Government of Quebec. Regulation respecting the quality of drinking water-Q-2, r. 40 (Environment

Quality Act). Updated to June 1, 2022 ed. Quebec: Quebec Official Publisher; 2012. p. 68.
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nérabilité de la source pour les prélèvements d’eau de surface no. X0008104-1 et X0008104-2. Mon-
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