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Abstract 

Prediction of electricity peak demand is an integral part in any electrical utility. Many models 

were previously proposed for prediction, ranging from short-term, intermediate to long-term 

prediction. Prediction of electricity peak demand is crucial in avoiding unneeded expenses to 

upgrade the electrical power supply. It is a continuous process that is still in need of study and 

improvement. University of Northern Iowa is an educational institution with 10,380 

undergraduate students, 66% of whom reside in university housing and 59% of the total electricity 

demand is purchased from Cedar Falls utilities. The university utilizes a model based on 

computerized live reading of previous demand that undergoes continuous short-term, intermediate 

and long-term prediction. The model has succeeded in reducing peak demand. The purpose of the 

present research is to review the currently used modeling system at UNI, and to test the impact of 

temperature, humidity, and time variables on peak demand prediction through a Multiple Linear 

Regression (MLR) short-term model. The MLR model was tested three times, including in each 

different number of variables, ranging from two to four, with most significant results occurring 

when four weather and time variables were used. 
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Introduction 

Electrical utilities experience fluctuations in the amount of energy needed by the 

customers. These fluctuations depend on several factors, such as business hours of commercial or 

industrial customers and weather conditions. Generally speaking, peak demand is a period of 

strong consumer demand. This is met by peak load, a period when electrical energy is expected to 

be provided over a sustained period at a significantly higher than average level of supply. Peak 

demand may occur for a utility on a daily, monthly, or seasonal basis. Individual customers may 

have individual peak demands. The peak demand affects the size of generators, transmission lines, 

transformers and circuit breakers (Brown, 2009). 

If the peak demand exceeds the maximum power that a utility can generate, it leads to 

power outage. The customers are instructed to decrease their use to a non-peak level during the 

peak load period. Encouraging the customer to use less energy during high demand hours is called 

Demand Side Management (DSM). This does not decrease the total energy consumption, but 

reduces the need for investing in new transmission networks or power plants. 

Prediction of daily peak demand is very important for decision making in the electricity 

sector. Decision making in this sector needs planning, but this planning is under condition of 

uncertainty. The demand of electricity is the basis for power system planning, power security and 

supply reliability. This involves finding the optimal day to day operation of a power plant and even 

strategic planning for capacity expansion. Therefore, it is important to estimate or project the peak 

demand in order to avoid the costly consequences of underestimation or overestimation (Di Cosmo 

et al, 2014). 
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A. Statement of the Problem 

Prediction of energy consumption is an integral part of the work of an energy facility. 

There are several factors that interplay to give the energy demand at a certain point in time, 

especially consumer habits and weather conditions. Proper planning depends on scientific 

prediction. This is the goal of the Physical Power Plant in University of Northern Iowa, being a 

utility that supplies 41 % of offices and residential electricity services on a continuous basis, with 

the remaining 59%, being purchased from the utility of Cedar Falls (University of Northern Iowa 

Website, 2015). The present model utilized by the university has succeeded in predicting and 

reducing peak demand to reach a minimum billing requirement. Reviewing of this model and 

studying the effect of other variables in a prediction is warranted as continuous improvement and 

planning is needed in order not to exceed the purchased power limit from the utility. 

B. Statement of Purpose 

The purpose of this research paper is to review the mechanism and outcome of electricity 

demand forecast implemented at University of Northern Iowa, and to study the significance of 

temperature and humidity factors, on demand prediction using Multiple Linear Regression (MLR). 

-
C. Statement of Need/Justification 

The justification for the proposed research is the importance of the electricity demand 

forecast in supplying electricity economically and efficiently to the university facilities through 

the university's power plant. It may help to keep the electricity billing prices at a minimum level, 

as the university purchases 59% of the electricity demand from Cedar Falls local utility. 
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D. Research Questions to be answered 

1) Does the currently used electricity demand forecast model in the University of Northern 

Iowa reduce the peak demand significantly? 

2) What is the significance of the use of a short-term MLR Model, utilizing from two to 

four variables; including humidity, temperature, duration of study of input factors, and 

type of day (weekday); on electricity demand prediction in UNI? 

Literature Review 

Electricity-supply planning requires efficient management of existing power systems and 

optimization of the decisions concerning additional capacity. Demand prediction is an important 

aspect in the development of any model for electricity planning. The form of the demand depends 

on the type of planning and accuracy that is required; hence it can be represented as an annual 

demand (GW), a peak demand (MW), or load duration curves occurring daily, weekly or annually 

(Taylor et al., 2006). 

Since the electricity market has also been deregulated dating from the l 990's (Joskow, 

2008), thus offering the customer the choice of his/her energy supplier, the need for electrical 

demand forecasting has become more evident. Load prediction allows for effective regulation of 

energy supply. Scientific prediction may require the use of software programs and modeling. 

For electricity demand forecasting, physical-technical economic (PTE) models 

have been largely used. In creating a model, a hypothesis is drawn about the causal factors and 

the outcome of their interaction. It is often beneficial to design the model so that it can be 

manipulated computationally. This may require the feedback to be applied by sequential repetition 
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of a hierarchical set of data that represent the system. There are different frameworks of theories 

and models, each tackling a single or multiple sets of factors influencing energy use. These factors 

may be related to economics, engineering, sociology, anthropology, and psychology. 

Models for electricity demand forecast include the classical and functional time-series 

methods, which focus on future expectations of electricity use based on previous values. Classical 

models include neural networks, and regression methods. Functional time series models have 

recently gained momentum by including the effect of electricity demand on electricity spot pricing 

(Liebel, 2013), even for the short-term minute-by-minute demand (Shang, 2013). Buys et al. 

(2015) have created a model to represent the complex multi-factorial relationship between energy 

demand and supply. They stressed on the importance of including multiple factors that affect the 

supply-demand framework of the electricity system, and to include human behavior not just 

technical factors. One factor might affect the others, whether the studied factor was physical

technical, economical, or social. They used system dynamic modeling in order to study the 

interacting elements within a complex system. 

Sigauke and Chikobvu (2010) have used a multivariate regress10n model for daily 

-
prediction of electrical power use, called Multivariate Adaptive Regression Splines (MARS). This 

model focused on an important weather factor that leads to variable electricity use, which is 

temperature. Yang (2012) has discussed the use of demand modeling in forecasting peak demand 

in Korea. Verster et al. (2013) have used a modeling of the electricity use on the same day of the 

week in South Africa by using Generalized Paretto-type distribution in predicting excess electricity 

demand. Nark (2015) suggested using energy management platforms for commercial buildings 

that consume about 40% of the total energy in the U.S. The companies would understand how the 

energy is being used in order to plan for periods of peak demand. 

111

4 



Customers have been encouraged to cooperate during periods of high demand. Fenrick 

(2014) have surveyed the customer cooperation attitude in the peak demand period when a 

dynamic pricing program was used. Simshauser and Downer (2012) have reported on dynamic 

pricing in Australia. The United States Government Accountability Office (GAO) has reported on 

the customer response to 'demand response activities', when the customer was asked to reduce 

electricity use in peak periods. Di Cosmo et al. (2014) have also discussed the customer response 

in Ireland, when a variable tariff based on Time-of Use pricing was used to reduce consumption 

during peak demand. 

Consumers are making irrational decisions regarding electricity use. Understanding of all 

technical and social factors that affect electricity at demand time is required. Peak demand is 

important to study because it has been growing much faster than average demand in a manner that 

challenges utilities to supply electricity need in a cost-effective way. Attempts to change 

consumers' electricity use behaviors have incorporated in complex socio-technical models 

(Crosbie, 2006). 

Supply must equal demand at all times, and failure to do this results in power outages and 

-
load shedding causing some customers to lose supply, which is a challenge to industry. In extreme 

cases, electricity network could be destabilized leading to widespread blackouts. 

Up till the present, there is no definite predictive tool or intervention. This is to be expected 

as electricity exists within a very complex network formed of many components interacting at the 

same time, thus it is difficult to be represented by a simple explanation (Buys et al., 2015). Even 

factors like weather and human behavior are liable to change and cannot be present in the same 

month, season, or year, in the form of a replica of what occurred previously. 
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Models differ in selected duration of study for input factors, the type of factors whether 

single or multiple, and the duration of forecast. The multiple factors models are more related to 

what happens in reality from interaction between several factors at any given point in time to give 

the outcome of energy use at this point. Regarding the duration of prediction of energy use, models 

are divided into: short-term load forecasting (STLF), medium-term load forecasting (MTLF), and 

long-term load forecasting (LTLF). The duration of LTLF is longer than one year, while there 

were several definitions of short-term period, versus medium-term. For example, Feinberg & 

Genethliou (2005) defined STLF duration as one hour to one week, MTLF as one week to one 

year; while Asian et al. (2011) described STLF duration as half an hour to one week, MTLF as 

one day to several months. El-Naggar et al. (2007), on the other hand, identified L TLF as one to 

ten years ahead at monthly and yearly values, and STLF as one day to one month ahead hourly 

and daily values. Rothe et al. (2009) described STLF as minutes to several hours ahead. 

Short-term Load Forecast (STLF) 

Accurate prediction of daily peak demand helps to create a consistent and reliable supply 

schedules during peak periods. The accurate short term daily forecasts will enable effective load 

shifting between transmission substations, scheduling of startup times of peak stations, and load 

flow analysis. 

STLF models are needed in unit commitment, maintenance and economic dispatch 

problems (El-Naggar et al., 2007). These predictions are required as inputs to scheduling 

algorithms for the generation and transmission of electricity load forecasts. They help in 

determining which devices to operate in a given period, so as to minimize costs and secure demand 

even when local failures may occur in the system (Rothe et al., 2009). That is why these types of 
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forecasts are important. They are generally more frequently used than the medium and the long

term types of models. 

Some prediction techniques take into consideration only one factor of change (univariate), 

while others take multiple factors (multivariate). Univariate and multivariate models are used in 

short-term prediction. Taylor et al. (2006) reported that in shorter lead times, a univariate model 

is sufficient, especially if the lead time is less than 6 hours. That was the recommendation in places 

where there is lack of readily available weather forecasts as in Brazil. On the other hand, Rothe et 

al. (2009) used a mutivariable regression, namely MLR, characterized by being in common use 

due to its flexibility. The authors predicted the coming hour demand of electricity; after using 

weather data (temperature, wind, and cloud cover) in 3 readings (current, previous one, and 

previous 2 hours). 

Taylor et al. (2006) compared four sophisticated methods for prediction of electricity 

demand. Two of them were widely applied; the seasonal Autoregressive Integrated Moving 

Average (ARIMA) and the neural network. Two double seasonal exponential smoothing and the 

Prinicipal Component Analysis (PCA) were newly designed and specifically used for high 

-
frequency load series. Electrical demand data were taken hourly and half-hourly to show weekly 

and daily seasonal patterns. The exponential smoothing method was proved to be successful, 

besides being the easiest and simplest to implement out of the four methods. 

In both Taylor et al. and Rothe et al., the weather variables were investigated. The 

prediction was done on daily and weekly patterns and on hourly pattern in the latter. Weather 

related variation is certainly critical in predicting electricity demand for lead times below or 

beyond a day-ahead. 
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Weather is defined as the atmospheric conditions existing over a short period in a particular 

location. It is usually hard to predict and can vary significantly even over a short period. Climate 

also varies in time: seasonally, annually and on a decadal basis. Weather variability is short-term 

and, climate variability is long-term. Both have a major impact on the generation, transmission 

and demand for electricity. 

Electricity demand depends on parameters such as changes in ambient temperature, wind 

speed, humidity, precipitation and cloud cover. Every hour demand depends on these important 

dynamic parameters, temperature, wind speed, and cloud cover; more than others. Future 

electricity demand is also forecasted using previous demand. Many variables can be used in 

electricity forecasting using MLR, but error factor is from 8 to 10 %. Computing the error factor 

between forecasted demand and actual demand and applying correction accordingly to the results 

of electrical forecasting by MLR method reduced error to 1 to 3% (Rothe et al., 2009). 

Tuaimah and Abdul Abass (2014) also used the MLR method for short-term load 

forecasting (up till 24 hours) of the Iraqi Power Plant. MLR method is suitable for offline 

forecasting, as it requires many external variables that cannot be introduced in online algorithm. 

Two different models were used, one for summer and one for winter. The errors that the authors 

faced in implementation ofload forecasting stemmed from modeling error, errors in the system as 

load shedding and irregular intervals, and errors of temperature forecast. 

Medium-Term Load Forecast (MTLF) 

Medium-term forecasting that covers a span of up to one year is an important category in 

electric load forecasting that serves outage, maintenance planning, and load switching operation. 

Abu-Shikhah et al. (2011) used multivariable regression on hourly readings of the previous year's 
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loads, to predict hourly demands of the coming year. Thus, the peak electrical demands that are 

expected to be reached in the coming year are predicted. The authors investigated three regression 

models: the linear, the polynominal, and the exponential power on the Jordanian power system. 

Results have shown that the performance of the three models was close with 90% accuracy. 

Long-term Load Forecast (LTLF) 

Long-term load forecasting is applied in expansion planning, inter-tie tariff setting, and 

long-term capital investment return problems. Since the time horizon for long-term forecasting 

could extend to several years, difficulties arise from uncertain nature of forecasting process over a 

planning period of this length. There is a large number of influential factors that characterize and 

either directly or indirectly affect the underlying forecasting process; most of which are uncertain 

and uncontrollable (El-Naggar et al., 2007). 

Many classic approaches have been proposed and applied to long-term load forecasting to 

estimate model parameters, including static and dynamic state estimation techniques (Tripathy, 

1997; Beccali et al. 2014). Least error square (LES) technique has been the most widely used 

conventional static estimation technique and has been the preferred technique for optimum 

-
estimation in general. Some limitations, however, are associated with this approach; as for 

example, when the data set is contaminated with bad measurements, the estimates would be 

inaccurate unless a large number of data points are used. Al-Hamadi and Soliman (2005) proposed 

a static method based on noniterative least absolute value technique, which has the advantage of 

detecting bad data. 

For dynamic techniques, Kalman Filtering and the least absolute value filtering algorithms; 

are powerful examples. The dynamic filters are recursive algorithms. This is unlike static 
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approaches, where the whole set of data is used to obtain the optimal solution. In recursive filters, 

the estimates are updated using each new measurement. Dynamic filters are well suited to on-line 

digital processing as data are processed recursively. They had been used extensively in estimation 

problems for dynamic systems (Amjady, 2001). 

Dynamic filters are suitable where measurements change with time. Methods based on 

artificial intelligence such as artificial neural networks (ANN) and expert systems have been also 

used with promising results (Kandil et al., 2001). Support vector machine (SVM) has proven to be 

an attractive tool for load forecasting. SVM is a form of machine learning method which is 

developed from statistical learning theory. Like ANN, the SVM has the problem of network 

parameter selection (Singh & Singh, 2001). 

Heuristic search methods like genetic algorithms (GA) were also used in electrical load 

forecasting; based on the mechanism of natural selection and natural genetics (Senjyu et al., 200 l ). 

Hybrid methods using ANN, GA, SVM were also proposed (Hsu & Chen, 2003). 

Most of the demand forecasting is done through programs that are specifically designed to 

make data analysis and demand forecast easy. Those programs consume less time to calculate the 

data, make decision making faster and more efficient. One example of a program that is used for 

such prediction is IBM - SPSS (Field, 2013). 
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Research Methods 

The research activities followed the following steps: 

1. Review and study of the forecasting technique implemented at the University of 

Northern Iowa (UNI); 

2. Study the peak demand management at UNI; 

3. Investigate the significance of short-term prediction, using temperature, humidity, 

duration of study of input factors, and type of day (weekday/weekend) as variables in 

MLRmodel 

I. Prediction Methods currently used at UNI 

UNI uses a program from Schneider Electric that is connected to all the electric meters 

operating at the university, and displays their readings. The readings show power parameters, like 

active power, apparent power, power factor, frequencies, etc. This program shows two types of 

forecast, The Sliding Window Demand, and The Trending and Forecasting (Schneider Electric 

Reference Guide, 2009). 

a) Sliding Window Demand 

The Sliding Window Demand module (SWD), as shown in Figure 1, computes the demand 

values by using the sliding window averaging ( or rolling interval) technique. It divides the demand 

interval ipto subintervals, and the demand is measured electronically based on the average load 

level over the most recent set of subintervals. The module can be internally or externally 

synchronized. External synchronization requires the use of a digital input module as a sync pulse. 

The module automatically predicts the value that each sliding window demand parameter will 

attain when updated at the start of the next interval. 
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Sliding Window SWinDemand ■ 

Demand Module 
PredDemand ■ 

■ Source 
Time Left ■ 

ct Enable Interval End A 
A Sync D 
A Reset 

Figure I: Sliding Window Demand Module, obtained/ram Schneider Electric Reference Guide (2009) 

Source 
Input 

Length defined by Sub lntvl setup register 
• (in this case, 5 minutes) 

~ 

I 

I I Avg = 3.0 Avg = -4 .3 Avg = -4 .5 Avg = 3.1 Avg = 3.9 Avg = -4.7 

I I 

I I I ----------------------------+ Time 
1 :25 1 :30 1 :35 1 :40 1 :45 1 :50 1 :55 2:00 2:05 

..,_ Number of sub-intervals defined by .....,._ 
#Sublntvls setup register (in this case, 6) 

Figure 2: Sliding Window Demand Calculation, obtained/ram Schneider Electric Reference Guide (2009) 

SWinDemand is a numeric register that contains the accumu~~ted sliding window demand. 

Figure 2 illustrates how the SWD module calculates the value in the SWinDemand output register. 

The average demand for each of the six previous subintervals is calculated and these values are 

averaged across the number of subintervals (specified by the subintervals setup register). For 

example, the value in the SWinDemand output register from 2:00 to 2:05 is: 



3.0 + 4.3 + 4.5 + 3.1 + 3.9 + 4.7 

6 
= 3.92 

The SWD module predicts changes in demand based on the following formula: 

(Thermal Avg x Time Left in subinterval) + (Accumulated Value in Period) + (Prev SWD x (# of subintervals - 1) x subinterval length) 

Total Sliding Window Demand Period 

The module automatically calculates the Thermal Average value used in the above formula. 

The Thermal Average starts at O when the Sliding Window Demand module powers up, and gets 

calculated every second based on the following formula: 

Thermal Avg x (PredBase - 1) + Source 
Thermal Avg= d 

Pre Base 

100 - PredResp 
Where PredBase = ----- x Sublntvl 

100 

The rate at which the Thermal Average responds to demand changes depends directly on 

the sensitivity of the demand prediction, which is programmed into the Pred Resp setup register. 

Pred Resp specifies the speed of the predicted demand response. It ranges is from O (slowest 

prediction) to 99 (fastest prediction). It is recommended to have a value between 70 and 99 for 

reasonably fast response. 

b) The Trending and Forecasting 

The Trending and Forecasting module is capable of recording and analysis of long-term 

changes in data, allowing for forecast of demand values in order to better manage things such as 

demand charges and time-of-use billing rates. Trend analysis is also useful for predictive 

maintenance, by revealing changes in load and power quality. 
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Average, minimum, maximum and standard deviation of the data that resemble actual 

electricity use, are logged for the source at the intervals of every hour for the last 24 hours, every 

day for the last month, every week for the last 8 weeks, and every month for the last 12 months. 

These data are used to graph trends and calculate forecasted values. 

Below is an overview of how the trending data are accumulated: 

• At the end of a I-second interval, the present value of the source is added to a 

running sum of the current minute. The value is only added if it is valid; it is valid 

as long as the source input is not N/ A for that I-second interval. 

• At the end of a I-minute interval, the values accumulated within the last 60 seconds 

are averaged if there are more than 30 valid samples ( at least 50% of the samples 

were valid during the 60 second interval). This average is then included with the I

minute averages for the most recent 60 minutes. The 1- second data is then reset. 

• At the end of the hourly, daily, weekly and monthly intervals, the averages 

accumulated within that interval are averaged. This average is then included with 

the existing averages for the interval; for example, the hourly average is added to a 

data structure containing averages for the last 24 hours. The interval average is only 

valid if at least 50% of the values used to calculate the average are valid. For 

example, 30 or more minute values must have been valid for an hourly average to 

be valid and added. 

• An algorithm is used to calculate forecasted values for the next four intervals; for 

example the next four hours if it is an hourly graph. 
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2. Peak Demand Management at UNI 

Figure 3 shows the electrical actual peak values yearly for the past 18 years. The yearly 

peak demand usually occurs at the end of August or at the beginning of September, when the 

University starts the New Year and the weather is still hot. Due to the weather and the academic 

considerations, students would be consuming a lot of electricity, besides the daily use of other 

electronic devices such as computers, laptops, televisions, hair dryer, etc. 

C 
z 
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~ 9.25 9•2 ... 

9 
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--Megawatt 

11.25 

New focus to manage 
electrical peak. 

10. 21 

FY97 FY98 FY99 FY00 FY0l FY02 FY03 FY04 FY0S FY06 FY07 FY0S FY09 FYl0 FYll FY12 FY13 FY14 FY15 

YEARS 

Figure 3: University of Northern Iowa Electrical Peak Demands - Old and New Management (Energy Management Department 

Documents) 

Every year, the demand of UNI for electricity is set between late August and October, and 

the charge for this demand is paid monthly throughout the whole year. The level of demand 



establishes the billing rate. That is why UNI started to take in consideration yearly peak demands 

starting from 2009. The university seeks the help of students to reduce electricity use during time 

of predicted peaks. After 2009, it is evident that the peak demands took on a decreasing pattern 

nearly every year. 

3. Short-term Prediction using MLR Model from IBM-SPSS 

Multiple Linear Regression (MLR) model from IBM-SPSS, was chosen as the program to 

use for the prediction in this research. SPSS software is a widely used program for statistical 

analysis in social science. It is also used by market researchers, health researchers, survey 

companies, government, education researchers, marketing organizations, data miners, and others. 

In addition to statistical analysis, data management ( case selection, file reshaping, creating derived 

data) and data documentation (a metadata dictionary was stored in the datafile) are features of the 

base software (Field, 2013). 

4. Overview of the Modeling Procedure 

The factors that were taken into consideration to be studied were temperature, humidity, 

duration of study of input factors (1 to 24 hours), and type of day (weekday/weekend). The process 

-
of data investigation extended from June 1 to June 14, 2015. The data were collected manually. 

Data were collected on a daily basis as the main load in the university consistently occurs during 

working hours. 

Three models were created depending on which factors were included in each model. First 

model included the humidity and the temperature. Second model included the time, the humidity 

and the temperature; while the third model included the pervious factors in addition the type of the 
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day. The goal was to check which factors affected the electrical demand significantly, in order to 

create the most suitable model for peak demand prediction. 

Results 

The multivariate MLR short-term models yielded the following results depending on the number 

and type of variables used in each model form. 

• First Model: 

In the first model, the variables that were used were the humidity and the temperature. The goal 

was to see the significance of the variables on the total power demand. 

Table 1: First Model Variables 

Model Variables Entered Variables Removed Method 

1 HumidityPct, Temp Fb Enter 

a. Dependent Variable: Total (KW) 

b. Independent Variables: humidity, temperature 

Table 1 shows the variables that were used in this attempt. 

Ill 1
1 



Table 2: First Model Summary 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 

1 .606a .367 .364 659.649 

a. Predictors: (Constant), HumidityPct, Temp F 

This table shows what % of variability in the dependent variable is accounted for by all of the 

independent variables together (it's a multiple R-square). 

Table 3: Analysis of Variance (ANOVA3) 

1 

Model Sum of Squares Df Mean Square F Sig. 

Regression 95896615.231 2 47948307.615 110.191 .ooob 

Residual 165351832.706 380 435136.402 

Total 261248447.937 382 

a. Depend~nt Variable: Total (KW) 

b. Predictors: (Constant), HumidityPct, Temp F 

Table 3 shows an F-test to determine whether the model is a good fit for the data. 

According to this p-value, temperature and humidity have a significant effect on the results of 

prediction. 
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Table 4: First Model Coefficients3 

Unstandardized Coefficients 
Standardized 

Model 
Coefficients 

T Sig. 

B Std. Error Beta 

(Constant) 3463.615 505.044 6.858 .000 

1 TempF 50.859 5.256 .553 9.677 .000 

HumidityPct -3.129 2.457 -.073 -1.273 .204 

a. Dependent Variable: Total (KW) 

The beta coefficients (P) are shown-one to go with each predictor. The "unstandardized 

coefficients" are used because the constant [beta zero] is included. Based on this table, the equation 

for the regression line is: 

Y = f31X1 + /32X2 + ••• + /3 

Y = S0.859(Temp F) - 3.129(HumidityPct) + 3463.615 

In this model, the temperature is shown to be significant, but the humidity is not. 

• Second Model: 

In the second model, the duration of study of input factors was added up to the other variables. 

This Time variable extended from 1 to 24 hours. The goal was to see test the significance of the 

model after adding this variable. 
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Table 5: Second Model Variables 

Model Variables Entered Variables Removed Method 

1 Time (CDT? Enter 

2 HumidityPct, Temp Fb Enter 

a. Dependent Variable: Total (KW) 

b. All requested variables entered. 

Table 6: Second Model Summary 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 

1 .362a .131 .129 771.901 

2 .617b .381 .376 653.062 

a. Predictors: (Constant), Time (CDT) 

b. Predictors: (Constant), Time (CDT), HumidityPct, Temp 
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Table 7:ANOVA3 

Model Sum of Squares Df Mean Square F Sig. 

I Regression 34236514.985 1 34236514.985 57.460 .ooob 

Residual 227011932.953 381 595831.845 

Total 261248447.937 382 

2 Regression 99608594.806 3 33202864.935 77.851 .oooc 

Residual 161639853.132 379 426490.378 

Total 261248447.937 382 

a. Dependent Variable: Total (KW) 

b. Predictors: (Constant), Time (CDT) 

c. Predictors: (Constant), Time (CDT), HumidityPct, Temp F 
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Table 8: Second Model Coefficients3 

Unstandardized Coefficients 
Standardized 

Model 
Coefficients 

T Sig. 

B Std. Error Beta 

(Constant) 6235.901 81.411 76.598 .000 

1 
Time (CDT) 43.292 5.711 .362 7.580 .000 

(Constant) 3457.396 500.006 6.915 .000 

Time (CDT) 15.760 5.342 .132 2.950 .003 
2 

TempF 47.205 5.348 .513 8.826 .000 

Humidity Pct -2.237 2.452 -.052 -.912 .362 

a. Dependent Variable: Total (KW) 

In second model, results show that humidity is not significant, but the temperature and the time 

are significant. 

• Third Model: 

In the third Model, the weekend variable is added up to the variables. The goal is to see if adding 

-
this variable would affect the total significance of all the variables. 
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Table 9: Third Model Variables 

Model Variables Entered Variables Removed Method 

1 WeekDayb Enter 

2 Time (CDT? Enter 

Stepwise (Criteria: 

Probability-of-F-to-

3 TempF enter <= .050, 

Probability-of-F-to-

remove >= .100). 

Stepwise (Criteria: 

Probability-of-F-to-

4 Humidity Pct enter<= .050, 

Probability-of-F-to-

remove >= .100). 

a. Dependent Variable: Total (KW) 

b. Independent Variables: humidity, temperature, 

time, weekday. 
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Table 10: Third Model Summary 

Model R R Square Adjusted R Square 

I .384a .148 .145 

2 .529b .279 .276 

3 .756c .571 .568 

4 .761d .579 .575 

a. Predictors: (Constant), WeekDay 

b. Predictors: (Constant), WeekDay, Time (CDT) 

c. Predictors: (Constant), WeekDay, Time (CDT), Temp F 

d. Predictors: (Constant), WeekDay, Time (CDT), Temp F, 

Humidity Pct 

Std. Error of the 
Estimate 

764.493 

703.853 

543.558 

539.145 
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Table 11: Third Model ANOVA3 

Model 
Sum of 

df 
Squares 

Mean Square F Sig. 

Regression 38573289.616 1 38573289.616 65.999 .ooob 

1 Residual 222675158.321 381 584449.234 

Total 261248447.937 382 

Regression 72993022.610 2 36496511.305 73.669 .oooc 

2 Residual 188255425.327 380 495409.014 

Total 261248447.937 382 

Regression 149271059.837 3 49757019.946 168.408 .oood 

3 Residual 111977388.101 379 295454.850 

Total 261248447.937 382 

Regression 151372567.516 4 3 7843141.879 130.190 .oooe 

4 Residual 109875880.422 378 290676.932 

Total 261248447.937 382 

a. Dependent Variable: Total (KW) 

b. Predictors: (Constant), WeekDay 

c. Predictors: (Constant), WeekDay, Time (CDT) 

d. Predictors: (Constant), WeekDay, Time (CDT), Temp F 

e. Predictors: (Constant), WeekDay, Time (CDT), Temp F, HumidityPct 
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Table 12: Third Model Coefficients3 

Unstandardized Coefficients 
Standardized 

Model Coefficients T 

B Std. Error Beta 

(Constant) 6227.031 78.026 79.807 
1 

WeekDay 732.261 90.136 .384 8.124 

(Constant) 5684.435 96.943 58.637 

2 
WeekDay 734.001 82.986 .385 8.845 

Time (CDT) 43.408 5.208 .363 8.335 

(Constant) 2160.482 231.745 9.323 

WeekDay 838.094 64.414 .440 13.011 
3 

Time (CDT) 14.106 4.416 .118 3.194 

TempF 54.826 3.412 .596 16.068 

(Constant) 1125.784 448.242 2.512 

WeekDay 888.388 66.572 .466 13.345 

4 
Time (CDT) 15.495 4.410 .130 3.513 

TempF 63.096 4.573 .686 13.797 

Humidity Pct 5.670 2.109 .132 2.689 

a. Dependent Variable: Total (KW) 

Y = 888.388(WeekDay) + 15.495(Time (CDT))+ 63.096(Temp F) 

+ S.670(HumidityPct) + 1125.784 

In this m9del, all the variables were significant. 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.002 

.000 

.012 

.000 

.000 

.000 

.007 

Figure 4 shows the two forecast methods, IBM-SPSS and UNI Sliding Window Forecast, in 

comparison to the actual power values. It is evident that the UNI forecasting aligns closely with 

the actual values. Although IBM-SPSS is a less sophisticated method of forecasting with a manual 

collection of data, yet the values in the figure show a close pattern to the actual power data. 

Ill 2
6 



9000 

8000 

7000 

6000 

- 5000 
~ 
:::-=: 
- 4000 

3000 

2000 

1000 

0 

Forecast Comparison 
- Total KW - IBM-SPSS - UNI Sliding Window 

., 

1 3 s 7 9 r1131s111921232s212931333537394143454749s1s3sss7S96163656769717375777981 

(HOURS} 

Figure 4: Predicted Values of IBM-SPSS and UNI Sliding Window in comparison to the Actual Total Power Values 

Data Analysis 

The weather variables, temperature and humidity, were included in the MLR short-term 

IBM-SPSS model as the importance of these factors in prediction was stressed in previous articles. 

Fahad and Arbab (2015) have stressed on the importance of weather as an independent variable in 

electricity peak demand forecasting. Temperature is a weather factor that can alter the conductivity 

of the transmission lines; besides having a significant correlation with electrical demand whether 

in summer or in winter. Humidity has no effect on the real temperature, but can intensify the feeling 

of severity of hot temperature, leading to more use of cooling appliances. 
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The use of multiple variables in short-term electricity prediction adds value to the 

significance of the prediction model. It resembles more the complex nature of many factors 

interplaying to ultimately give the actual electricity demand. In the current MLR model, the 

variables of humidity, temperature, duration of study of these variables, and the type of day were 

included in the model and yielded best results in comparison to the use of only two variables. 

Conclusions 

The following could be concluded from the present study: 

• The live extraction of data used by the University of Northern Iowa proved to be 

less time consuming and with less error factor compared to the manual extraction 

of data used in the current MLR model. 

• The humidity factor was the least significant factor in the short-term MLR model. 

• Including more variables, weather and time related, in short-term prediction models 

yields better significance in prediction results. 
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Appendix 

Table l: IBM-SPSS Multiple Linear Regression Data with Predicted Values 

PredictedValue 
JuneDay TimeCDT TempF Humidity Pct TotalKW Week:Day 

(KW) 

1 1 50.0 77 5314 1 5621.06 

1 2 48.9 77 5308 1 5567.15 

1 3 46.9 80 5171 1 5473.46 

l 4 45.0 82 4934 l 5380.41 

1 5 46.0 79 4897 1 5441.99 

1 6 44.1 82 5065 1 5354.62 

1 7 48.0 83 5533 1 5621.86 

1 8 52.0 71 6313 1 5821.69 

1 9 55.9 57 6769 1 6003.88 -

1 10 59.0 51 7026 1 6180.96 

1 11 62.1 44 7331 1 6352.36 

1 ~ 12 63.0 41 7369 1 6407.63 

1 13 66.0 42 7294 1 6618.08 

1 14 66.2 46 7308 1 6668.88 

1 15 69.8 40 7165 l 6877.50 

1 16 71.1 41 7242 1 6980.69 
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1 17 71.1 36 7254 1 6967.83 

1 18 70.0 36 7042 1 6913.92 

1 19 69.8 38 6798 1 6928.14 

l 20 64.9 45 6458 1 6674.15 

1 21 60.1 55 6330 1 6443.49 

I 22 57.9 60 6301 1 6348.52 

I 23 55.9 60 6162 1 6237.82 

1 24 55.9 60 5839 I 6253.32 

2 1 55.9 60 5702 1 5896.93 

2 2 55.0 62 5630 1 5866.98 

2 3 53.1 69 5535 1 5802.28 

2 4 53.1 71 5340 1 5829.12 

2 5 54.0 72 5270 1 5907.07 

2 6 50.0 86 5452 1 5749.56 

2 7 54.0 80 5848 1 5983.42 

2 8 - 55.9 77 6445 1 6101.79 

2 9 61.0 75 6775 1 6427.73 

2 10 64.9 70 7310 1 6660.95 

2 11 66.0 65 7385 1 6717.50 

2 12 68.0 61 7384 1 6836.51 

2 13 69.8 60 7477 1 6959.91 

2 14 70.0 57 7524 1 6971.01 
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2 15 72.0 53 7545 1 7090.02 

2 16 73.9 48 7394 1 7197.05 

2 17 73.9 48 7480 1 7212.54 

2 18 73.9 48 7294 1 7228.04 

2 19 71.1 51 7047 1 7083.87 

2 20 69.1 57 6538 1 7007.20 

2 21 66.9 61 6429 1 6906.56 

2 22 64.0 70 6461 1 6790.11 

2 23 62.1 75 6426 1 6714.07 

2 24 61.0 78 6083 1 6677.17 

3 1 60.1 78 5798 1 6264.00 

3 2 60.1 78 5725 1 6279.49 

3 3 59.0 83 5815 1 6253.93 

3 4 59.0 83 5450 1 6269.43 

3 5 59.0 83 5649 1 6284.92 

3 6 - 59.0 83 5923 1 6300.42 

3 7 61.0 81 6295 1 6430.76 

3 8 63.0 78 6788 1 6555.44 

3 9 64.0 75 7118 1 6617.02 

3 10 66.9 73 7341 1 6804.15 

3 11 72.0 66 7479 1 7101.75 

3 12 75.0 62 7599 1 7283.85 
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3 13 78.1 60 7704 1 7483.60 

3 14 77.0 60 7717 1 7429.69 

3 15 80.1 58 7664 1 7629.45 

3 16 79.0 58 7840 1 7575.54 

3 17 79.0 60 7748 1 7602.37 

3 18 78.1 60 7421 1 7561.08 

3 19 78.1 58 7304 1 7565.23 

3 20 75.9 62 6813 1 7464.60 

3 21 73.9 66 6652 1 7376.58 

3 22 71.1 73 6792 1 7255.10 

3 23 68.0 87 6462 1 7154.38 

3 24 64.9 93 6137 1 7008.29 

4 1 64.9 90 5982 1 6634.90 

4 2 62.1 96 5913 1 6507.74 

4 3 62.1 93 5793 1 6506.23 

4 4 - 60.8 94 5875 1 6445.37 

4 5 57.9 93 5775 1 6272.22 

4 6 57.9 93 5872 1 6287.71 

4 7 62.1 96 6473 1 6585.22 

4 8 64.9 90 7026 1 6743.36 

4 9 70.0 81 7509 1 7029.62 

4 10 73.9 73 7643 1 7245.83 
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4 11 77.0 62 7941 1 7394.55 

4 12 79.0 58 7999 1 7513.56 

4 13 81.0 56 7928 1 7643.90 

4 14 81.0 58 7837 1 7670.74 

4 15 82.0 54 7700 1 7726.65 

4 16 84.2 48 7743 1 7846.94 

4 17 84.0 49 7807 1 7855.48 

4 18 84.0 53 7568 1 7893.66 

4 19 79.0 58 7446 1 7622.02 

4 20 75.9 62 6984 1 7464.60 

4 21 73.0 68 6977 1 7331.14 

4 22 71.6 69 6806 1 7263.97 

4 23 69.1 78 6707 1 7172.75 

4 24 68.0 81 6306 1 7135.85 

5 1 66.9 84 6024 1 6727.07 

5 2 - 64.9 87 6085 1 6633.38 

5 3 64.0 90 5996 1 6609.10 

5 4 64.9 87 5899 1 6664.37 

5 5 63.0 90 5824 1 6577.00 

5 6 62.1 93 6126 1 6552.71 

5 7 66.0 87 6616 1 6780.26 

5 8 69.1 78 6996 1 6940.33 
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5 9 72.0 71 7628 1 7099.11 

5 IO 75.2 61 7759 1 7259.81 

5 11 77.0 56 7958 1 7360.53 

5 12 79.0 54 7803 1 7490.88 

5 13 80.1 50 7714 1 7553.10 

5 14 81.0 49 7728 1 7619.71 

5 15 79.0 50 7719 1 7514.68 

5 16 80.6 48 7811 1 7619.79 

5 17 82.9 46 7719 1 7769.07 

5 18 80.1 54 7292 1 7653.25 

5 19 78.1 58 6923 1 7565.23 

5 20 73.9 62 6494 1 7338.41 

5 21 70.0 71 6500 1 7158.86 

5 22 69.1 70 6592 1 7111.90 

5 23 66.9 76 6485 1 7022.60 

5 24 - 64.9 75 6151 1 6906.23 

6 1 62.1 78 5860 0 5501.80 

6 2 61.0 78 5836 0 5447.89 

6 3 59.0 83 5830 0 5365.54 

6 4 57.2 88 5768 0 5295.82 

6 5 57.9 87 5704 0 5349.81 

6 6 57.9 84 5781 0 5348.29 

111

38 



6 7 59.0 75 5839 0 5382.16 

6 8 62.1 72 5886 0 5576.25 

6 9 63.0 70 5919 0 5637.19 

6 10 66.9 66 5827 0 5876.08 

6 11 69.1 63 5921 0 6013.37 

6 12 72.0 59 6091 0 6189.17 

6 13 73.9 57 6198 0 6313.20 

6 14 73.9 59 6227 0 6340.04 

6 15 75.9 56 6304 0 6464.72 

6 16 77.0 56 6372 0 6549.62 

6 17 77.0 54 6433 0 6553.77 

6 18 75.9 58 6443 0 6522.54 

6 19 75.0 57 6362 0 6475.58 

6 20 75.0 60 6008 0 6508.08 

6 21 73.0 61 6025 0 6403.06 

6 22 - 72.0 66 6251 0 6383.81 

6 23 71.1 70 6366 0 6365.19 

6 24 70.0 73 6222 0 6328.29 

7 1 70.0 76 5845 0 5988.92 

7 2 70.0 78 6059 0 6015.75 

7 3 68.0 93 6023 0 5990.11 

7 4 66.0 93 5961 0 5879.41 
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7 5 66.9 90 5983 0 5934.68 

7 6 66.0 93 5961 0 5910.40 

7 7 66.9 90 5940 0 5965.67 

7 8 70.0 84 5863 0 6142.74 

7 9 70.0 84 5925 0 6158.24 

7 10 75.9 71 5926 0 6472.29 

7 11 79.0 64 5870 0 6643.69 

7 12 79.0 69 5966 0 6687.54 

7 13 81.0 65 6568 0 6806.55 

7 14 82.0 58 6577 0 6845.45 

7 15 84.0 49 6607 0 6936.10 

7 16 82.9 41 6596 0 6836.83 

7 17 82.9 46 6631 0 6880.68 

7 18 82.0 42 6527 0 6816.71 

7 19 75.0 60 6699 0 6492.59 

7 20 - 73.9 62 6580 0 6450.02 

7 21 72.0 66 6589 0 6368.31 

7 22 71.6 60 6495 0 6324.55 

7 23 69.1 70 6464 0 6239.00 

7 24 66.0 78 6303 0 6104.26 

8 1 64.9 81 5962 1 6583.87 

8 2 64.9 78 6017 1 6582.35 
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8 3 63.0 81 5866 1 6494.98 

8 4 61.0 90 5900 1 6435.31 

8 5 61.0 93 5741 1 6467.81 

8 6 59.0 93 6131 1 6357.12 

8 7 64.0 90 6709 1 6671.08 

8 8 68.0 76 7326 1 6859.58 

8 9 71.1 68 7929 1 7025.31 

8 10 73.4 65 8139 1 7168.92 

8 11 77.0 56 8181 1 7360.53 

8 12 78.8 47 8268 1 7438.57 

8 13 80.1 42 8087 1 7507.74 

8 14 82.0 41 7922 1 7637.44 

8 15 82.0 41 7854 1 7652.94 

8 16 82.9 38 8205 I 7708.21 

8 17 82.9 38 8069 1 7723.71 

8 18 - 82.4 39 7777 1 7713.32 

8 19 80.1 39 7441 I 7583.70 

8 20 77.0 43 6982 1 7426.27 

8 21 73.9 48 6815 1 7274.52 

8 22 71.6 57 6708 1 7195.93 

8 23 66.0 73 6678 I 6948.80 

8 24 63.0 84 6357 1 6837.38 
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9 1 61.0 87 6020 1 6371.81 

9 2 60.1 90 5958 1 6347.53 

9 3 59.0 90 5843 1 6293.62 

9 4 57.9 93 5814 1 6256.72 

9 5 57.9 93 5736 1 6272.22 

9 6 57.9 90 6193 1 6270.70 

9 7 62.1 90 6753 1 6551.20 

9 8 70.0 68 7130 1 6940.41 

9 9 75.9 58 7716 1 7271.47 

9 10 82.0 44 7975 1 7592.47 

9 11 87.1 36 8152 1 7884.40 

9 12 89.1 32 8176 1 8003.41 

9 13 91.0 30 8197 1 8127.44 

9 14 91.9 30 8153 1 8199.72 

9 15 93.9 29 8146 1 8335.74 

9 16 - 93.2 28 8098 1 8301.40 

9 17 93.2 28 8202 1 8316.89 

9 18 93.0 28 7958 1 8319.77 

9 19 91.0 32 7586 1 8231.75 

9 20 87.1 36 7246 l 8023.85 

9 21 84.9 41 6889 1 7928.89 

9 22 82.4 48 6950 I 7826.33 
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9 23 81.0 49 6743 1 7759.16 

9 24 81.0 50 6438 1 7780.33 

10 1 79.0 54 6197 1 7320.43 

10 2 75.9 62 6143 1 7185.69 

10 3 78.1 58 6020 1 7317.31 

10 4 75.9 62 5936 1 7216.68 

10 5 71.1 70 5973 1 6974.67 

10 6 66.0 84 6357 1 6747.76 

10 7 72.0 71 6783 1 7068.12 

10 8 73.9 66 7397 1 7175.15 

10 9 77.0 58 7955 1 7340.88 

10 10 79.0 50 8079 1 7437.21 

10 11 82.0 35 8170 1 7556.94 

10 12 82.9 32 8360 1 7612.21 

10 13 82.9 34 8232 1 7639.05 

10 14 - 84.9 34 8300 1 7780.73 

10 15 86.0 35 8414 1 7871.30 

10 16 87.8 31 8133 1 7977.69 

10 17 87.1 33 7891 1 7960.36 

10 18 86.0 32 7707 1 7900.78 

10 19 84.0 34 7618 1 7801.42 

10 20 81.0 42 6956 1 7672.99 
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10 21 75.0 51 6798 1 7360.94 

10 22 71.1 59 6821 1 7175.72 

10 23 69.1 61 6695 1 7076.36 

10 24 71.1 55 6369 1 7184.03 

11 1 69.8 56 6004 1 6751.29 

11 2 69.1 61 6093 1 6750.97 

11 3 68.0 63 5951 1 6708.40 

11 4 64.9 78 5939 1 6613.34 

11 5 64.0 84 5885 1 6606.07 

11 6 62.1 93 6135 1 6552.71 

11 7 62.1 93 6820 1 6568.21 

11 8 61.0 97 7276 1 6536.98 

11 9 63.0 90 7772 1 6638.98 

11 10 64.4 88 7934 1 6731.46 

11 11 64.0 90 8186 1 6733.06 

11 12 - 64.9 90 8115 1 6805.34 

11 13 64.0 93 7991 1 6781.06 

11 14 64.9 93 8049 1 6853.34 

11 15 66.0 90 7942 1 6921.23 

11 16 66.2 88 8117 1 6938.01 

11 17 66.9 87 7955 1 6992.00 

11 18 66.0 96 7620 1 7001.74 
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11 19 66.9 97 7540 1 7079.69 

11 20 66.0 96 7058 1 7032.73 

11 21 64.9 97 7056 1 6984.49 

11 22 64.0 96 6833 1 6937.53 

11 23 64.0 93 6623 1 6936.01 

11 24 63.0 97 6337 1 6911.09 

12 1 62.1 96 6029 1 6492.25 

12 2 62.1 93 6125 1 6490.73 

12 3 61.0 97 5929 1 6459.50 

12 4 60.1 93 5934 1 6395.53 

12 5 59.0 96 5919 1 6358.63 

12 6 60.1 93 6232 1 6426.52 

12 7 60.1 93 6703 1 6442.02 

12 8 59.0 96 7145 1 6405.12 

12 9 60.1 93 7605 1 6473.01 

12 10 - 61.0 90 7495 1 6528.28 

12 11 62.1 86 7789 1 6590.50 

12 12 64.9 84 7688 1 6771.32 

12 13 64.9 81 7746 1 . 6769.81 

12 14 64.0 84 7620 1 6745.53 

12 15 64.9 81 7537 1 6800.80 

12 16 66.0 81 7607 1 6885.70 
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12 17 64.9 84 7382 1 6848.80 

12 18 64.0 87 7134 1 6824.52 

12 19 64.0 87 6716 1 6840.01 

12 20 64.0 87 6431 1 6855.51 

12 21 63.0 90 6464 1 6824.92 

12 22 63.0 93 6464 1 6857.42 

12 23 63.0 97 6406 1 6895.60 

12 24 63.0 97 6227 1 6911.09 

13 1 63.0 93 5829 0 5643.64 

13 2 62.1 96 5946 0 5619.36 

13 3 62.1 100 5830 0 5657.53 

13 4 62.1 100 5837 0 5673.03 

13 5 63.0 97 5870 0 5728.30 

13 6 63.0 100 5904 0 5760.80 

13 7 63.0 100 5966 0 5776.30 

13 8 - 64.0 100 6252 0 5854.89 

13 9 66.9 93 6295 0 6013.67 

13 10 66.9 90 6467 0 6012.16 

13 11 69.1 84 6422 0 6132.44 

13 12 70.0 81 6459 0 6187.71 

13 13 72.0 76 6553 0 6301.05 

13 14 73.0 71 6540 0 6351.29 
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13 15 73.9 68 6519 0 6406.56 

13 16 75.2 65 6500 0 6487.07 

13 17 73.0 71 6581 0 6397.78 

13 18 73.0 73 6604 0 6424.61 

13 19 73.0 76 6553 0 6457.12 

13 20 72.0 76 6218 0 6409.52 

13 21 71.1 81 6238 0 6396.57 

13 22 66.2 94 6421 0 6176.61 

13 23 66.9 93 6438 0 6230.60 

13 24 66.9 93 6254 0 6246.10 

14 1 64.9 97 6046 0 5786.20 

14 2 66.9 93 5985 0 5905.21 

14 3 66.9 93 5989 0 5920.70 

14 4 66.0 96 6003 0 5896.42 

14 5 66.0 96 5956 0 5911.92 

14 6 - 64.9 97 6022 0 5863.67 

14 7 66.0 96 5877 0 5942.91 

14 8 71.1 87 5952 0 6229.16 

14 9 72.0 84 6035 0 6284.43 

14 10 75.0 73 6008 0 6426.84 

14 11 77.0 66 6001 0 6528.84 

14 12 78.1 60 6124 0 6579.72 
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14 13 79.0 60 6364 0 6652.00 

14 14 80.1 62 6593 0 6748.24 

14 15 80.1 64 6637 0 6775.08 

14 16 82.0 62 6722 0 6899.12 

14 17 82.0 62 6640 0 6914.61 

14 18 79.0 74 6711 0 6808.86 

14 19 80.1 71 6682 0 6876.75 

14 20 79.0 74 6773 0 6839.85 

14 21 77.0 76 6641 0 6740.49 

14 22 75.2 83 6813 0 6682.10 

14 23 73.0 87 6723 0 6581.47 

14 24 72.0 93 6571 0 6567.89 

Table 2: University of Northern Iowa Sliding Window Forecast 

UNI Sliding Window 
JuneDay TimeCDT Total(KW) 

forcast (KW) 

11 15 7942 7982.592 

11 16 8117 8145.651 

11 17 7955 7931.269 

11 18 7620 7623.328 
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11 19 7540 7524.734 

11 20 7058 7038.541 

11 21 7056 7023.576 

11 22 6833 6882.583 

11 23 6623 6654.635 

11 24 6337 6321.964 

12 1 6029 6092.955 

12 2 6125 6120.905 

12 3 5929 5970.071 

12 4 5934 5966.123 

12 5 5919 5883.809 

12 6 6232 6178.448 

12 7 6703 6728.501 

12 8 7145 7097.719 

12 9 7605 7566.847 

12 10 7495 7518.093 
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12 11 7789 7722.854 

12 12 7688 7635.585 

12 13 7746 7683.657 

12 14 7620 7686.957 

12 15 7537 7550.972 

12 16 7607 7609.95 

12 17 7382 7384.666 

12 18 7134 7126.577 

12 19 6716 6730.732 

12 20 6431 6416.092 

12 21 6464 6433.485 

12 22 6464 6459.475 

12 23 6406 6367.585 

12 24 6227 6234.985 

13 1 5829 5931.114 

13 2 5946 5886.086 

111 so 



13 3 5830 5822.598 

13 4 5837 5872.394 

13 5 5870 5849.008 

13 6 5904 5881.465 

13 7 5966 5972.426 

13 8 6252 6211.055 

13 9 6295 6307.017 

13 10 6467 6454.701 

13 11 6422 6423.939 

13 12 6459 6435.241 

13 13 6553 6550.627 

13 14 6540 6561.706 

13 15 6519 6480.117 

13 16 6500 6479.599 

13 17 6581 6552.082 

13 18 6604 6624.781 
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13 19 6553 6533.006 

13 20 6218 6273.85 

13 21 6238 6245.873 

13 22 6421 6412.179 

13 23 6438 6403.239 

13 24 6254 6250.262 

14 1 6046 6073.633 

14 2 5985 5968.331 

14 3 5989 6028.858 

14 4 6003 6030.588 

14 5 5956 5906.153 

- 14 6 6022 6019.953 

14 7 5877 5868.248 

14 8 5952 5940.628 

14 9 6035 6121.261 

14 10 6008 6070.006 
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14 11 6001 5970.223 

14 12 6124 6184.652 

14 13 6364 6419.145 

14 14 6593 6602.67 

14 15 6637 6676.948 

14 16 6722 6699.687 

14 17 6640 6647.255 

14 18 6711 6671.899 

14 19 6682 6702.597 

14 20 6773 6785.703 

14 21 6641 6627.546 

14 22 6813 6762.253 

14 23 6723 6738.748 

14 24 6571 6543.543 
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