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Abstract: In recent years, cybersecurity has attracted significant interest due to the
rapid growth of the Internet of Things (IoT) and the widespread development of
computer infrastructure and systems. It is thus becoming particularly necessary to
identify cyber-attacks or irregularities in the system and develop an efficient intru-
sion detection framework that is integral to security. Researchers have worked on
developing intrusion detection models that depend on machine learning (ML)
methods to address these security problems. An intelligent intrusion detection
device powered by data can exploit artificial intelligence (AI), and especially
ML, techniques. Accordingly, we propose in this article an intrusion detection
model based on a Real-Time Sequential Deep Extreme Learning Machine Cyber-
security Intrusion Detection System (RTS-DELM-CSIDS) security model. The
proposed model initially determines the rating of security aspects contributing
to their significance and then develops a comprehensive intrusion detection frame-
work focused on the essential characteristics. Furthermore, we investigated the
feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset
evaluations and calculating accuracy parameters to validate. The experimental
findings demonstrate that the RTS-DELM-CSIDS framework outperforms con-
ventional algorithms. Furthermore, the proposed approach has not only research
significance but also practical significance.

Keywords: Security; DELM; intrusion detection system; machine learning

1 Introduction

Across various areas, such as social networking, online banking, and web browsing, the number of
Internet users worldwide continues to grow and reach new heights. The increase in Internet usage is
associated with an increase in cyberattacks, which poses a danger to the cybersecurity of the
organizations. The primary reason for this is the growth of the Internet of Things (IoT) [1]. Cyber threats
can result in irretrievable network disruption and economic difficulties. Such cyber threats can also
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accompany a denial-of-service (DoS), device ransomware, or inappropriate approach [2,3]. Data suggests
that a previous ransomware attack triggered a massive loss to several companies involving banking,
education, resources, and colleges [4].

Throughout today’s web-enabled communities, the increasing availability of network access enhances
cyber-related violations. This rise is incentivizing organizations, which are trying to prevent illegal
activities, to resolve network protection concerns. Cybersecurity architecture comprises a network
protection framework and a computer security system [5]. While numerous technologies, including
firewalls and cryptography, are configured to manage cyber-attacks on the Internet, a new intrusion
detection system (IDS) is likely to withstand cyber threats on a computer network [6]. Traditional
methods, such as firewalls, cannot withstand threats effectively [7,8].

An IDS detects harmful cyber-attack actions on a system while tracking and reviewing everyday
operations in a system and the information structure to recognize security vulnerabilities and challenges.
The need for information security has recently increased, requiring safety from various forms of cyber-
attacks. An IDS often aims to track, monitor, and classify unwanted device activities such as illegal entry,
alteration, or disruption [9,10]. Identifying different types of cyber threats and irregularities in a system
and creating an efficient IDS integral to ongoing network security to ensure the protection of a device are
critical. Consequently, the key objective of an IDS is to identify various forms of unauthorized network
interaction and application systems used for early detection. Intrusion monitoring devices capture and
archive network data in a server that can be further used for an analytical review of the network.

An IDS can vary in classification, depending upon the nature of implementation. The primary forms of
IDSs include host-based and network-based systems with specific computer systems linked to complex
systems. A host-based IDS is focused on a separate device and monitors critical operating system records
for unusual or harmful incidents, limited to detecting and analyzing harmful content [11]. In contrast, the
program analyzes and monitors the network infrastructure in a network IDS for unauthorized activity.
Furthermore, well-established variations focusing on the detection method include signature-based and
anomaly-related detection, which the global technology research community has investigated for several
years [12].

For detecting subsequent threats, conventional techniques use a process characterized by a signature-
based IDS. For example, the system perceives a byte series in system activity, established forms, or
malware clusters as a signature. The antivirus program uses these template styles as a signature to
identify attacks by comparing them. These signature-based IDSs can capture identified threats efficiently;
nevertheless, identifying new unseen threats that use a recognized signature where no mechanism is
visible is challenging [13]. In contrast, an anomaly-based IDS analyses the system’s activity and
discovers correlations, generates a data-driven framework for monitoring typical behavior, and identifies
exceptions in the event of abnormalities. The anomaly-based IDS have the largest advantage over a
signature-based IDS for tracking actions to manipulate existing and unknown flaws or cyber-attacks. The
anomaly-based IDS can also yield false detection concentrations recognizing previously unknown device
activities as abnormalities. Therefore, an efficient detection method focused on machine learning (ML) is
required to mitigate these problems, which is the motivation for this work.

Predictive protection models must be developed to examine various trends of cyber-attacks and forecast
the risks that can be applied to create an intelligent IDS that leverages cybersecurity data. The nature of
artificial intelligence (AI) approaches, which can learn from a security database, are suitable for this task
[14]. Therefore, in this research, we minimize security issues and propose an efficient data-driven
intrusion detection framework in the field of cybersecurity. In this article, we propose an intrusion
detection framework focused on a Real-Time Sequential Deep Extreme Learning Machine Cybersecurity
Intrusion Detection System (RTS-DELM-CSIDS), which mitigates the above problems.
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A comprehensive IDS is required because conventional approaches use a signature-based methodology
to identify unique arrangements. One approach is to use the latest technologies, such as RTS-DELM-CSIDS,
to evaluate data flows and identify intrusions and attack patterns. Hence, it is essential to manage smart
blockchain-based applications by developing robust and versatile algorithms to process such a vast
quantity of data. ML, an AI framework, involves machines for training, reasoning, and behaving without
human intervention. The goal of ML is to create an effective algorithm to take data from the input,
generate a prediction, and change the outputs by statistical analysis. ML may process a significant
amount of information and make decisions guided by evidence.

In our method, we initially considered the classification of protection features given their significance in
the framework. We subsequently developed an RTS-DELM-CSIDS security framework grounded on the
selected core characteristics. After the development of the framework using training security information,
we authenticated the framework using assessment outcomes. This method is not only successful in
forecasting precision for unknown datasets by eliminating redundancy in simulation but also mitigates the
framework’s computational complexity by limiting the dimensions of the feature when constructing the
corresponding structure. The outline of the efforts of the research are as follows:

� Identify the significance of high-dimensional safety features in an RTS-DELM-CSIDS.

� Formulate an IDS focused on the RTS-DELM-CSIDS security system.

� Consider the rating of security protocols based on their significance and construct a simplified model
based on the specified core characteristics.

� Develop the proposed RTS-DELM-CSIDS framework for detecting intrusions on anomaly-based ML
approaches to counter and track new attacks.

� Implement an innovative strategy for updating the learning model based on the feedback in the
proposed RTS-DELM-CSIDS framework to raise the number of false warnings over a period.

� Decrease the risk of repeated false alerts with identical data in an efficient manner.

� Evaluate the efficacy of the proposed RTS-DELM-CSIDS framework for cyber intrusion detection.

The remainder of the paper is organized as follows. Section 2 briefly describes the related work. Section 3
elaborates on the mathematical modeling of the proposed system model. Section 4 presents the simulation
results and discussion. Finally, Section 5 concludes the contributions and achievements of this study.

2 Related Work

Intrusion monitoring devices capture and archive network data in a server that can be further used for an
analytical review of the network. Network analysis tools are built to examine vast amounts of network traffic
data and information such as routers, network servers, and adapters. The key advantages of smart cities are
increased protection, wellness, higher-quality education and living standards, efficient use of resources,
improved management of the environment and habitats, a sustainable economy, and more jobs. Whereas
the central concept of smart cities has existed for roughly ten years, it has been predicted to change city
life drastically since it was first introduced with the emergence of essential facilitators, such as the IoT.
Gogoi et al. [15] conducted a research study reviewing numerous current solutions to ML and the
potential to identify threats in information on Internet traffic using unsupervised and supervised teaching
methods. Peddabachigari et al. [16] incorporate support vector machine (SVM) and decision tree
architectures for malware detection. Abbas et al. [17] proposed that a smart city is a sophisticated society
in which diverse elements, such as people, the environment, sovereignty, democracy, and the economy,
are interconnected in an intelligent network.

Diverse data mining (DM) and ML methods are used to identify sequences of security incidents to
develop quality judgments [6]. An intrusion detection program is usually used to recognize suspicious
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cyber-attack actions on a system when tracking and analyzing the everyday processes in a network or
operating device to identify safety vulnerabilities or attacks [18]. This framework considers an established
signature and has seen widespread acceptance and business success recently. Its methodology monitors
network activity and identifies behavioral trends for risks by examining the related security information.

The anomaly-based method, in contrast, has an advantage over the signature-based approach to track
invisible threats, such as the potential to recognize hidden or zero-day attacks [10]. Reducing the false
positive level of an IDS should be a significant concern [12]. Within the field of cybersecurity, a range of
work has been conducted for the potential to detect and deter cyber threats or breaches. Signature-based
network intrusion detection is a popular method used in the cyber-industry [13]. The key downside of the
anomaly-based approach is that it could generate substantial false alarm levels because it can identify
undiscovered system operations as anomalies. However, an efficient detection method focused on ML is
required to mitigate such problems.

Ganin et al. [1] proposed a comprehensive explanation of the functions of intrusion detection methods
for ML. Buczak et al. [10] investigated cybersecurity intrusion detection methods for ML and DM. ML
applications have drawn significant attention. Namdev et al. [19] proposed a detailed description using
ML emphasis on Internet traffic classification. Bkassiny et al. [20] researched several complex knowledge
complications in cognitive-radio networks (CRNs) and analyzed present ML-based solutions. Methods to
address problems in wireless sensor networks with ML were examined in [21]. Wang et al. [22]
developed state-of-the-art techniques to formulate heterogeneous networks in AI and discussed future
research problems. Klaine et al. [23] investigated a useful classification and comparison of ML systems
and their explanations in mobile networks. Fadlullah et al. [24] explored the use of ML methods to
enhance network traffic management. Hodo et al. [25] concentrated on ML-based IDSs. Zhou et al. [26]
emphasized the use of ML and cognitive radiation expertise to improve wireless-to-network spectrum use
and energy efficiency. Abadeh et al. [27] suggested a complementary genetic area analysis algorithm to
identify disruptive actions.

In contrast to the previous studies, we present in this investigation an RTS-DELM-CSIDS security
framework. The proposed framework first captures the classification of security issues based on their
significance. It then constructs a generic architecture for detecting intrusions centered on the identified
significant characteristics to address the known problems.

3 System Model

This section elaborates on the development of the proposed IDS using anomaly-based ML methods. The
proposed RTS-DELM-CSIDS framework uses an innovative strategy to mitigate the number of fake alerts
over the period. It is achieved by accessing human expert feedback and modifying the learning model
based on that information. This approach efficiently decreases the risk of repeated false alerts with
identical data. Nonetheless, the proposed RTS-DELM-CSIDS can consider all unsupervised and
supervised learning methods. Consequently, in the training process, there is no need for label information.
Given that the percentage of traffic segments is the only necessary prior information, the proposed
approach supports identifying the correct labels for unlabeled details. It also suggests adjustments in
instances where conventional approaches classify the training samples through human experts.

The suggested IDS offer a scheme for simplifying the assessment of human safety experts’ decisions.
Accordingly, the framework can identify irregularities based on predetermined observations. Therefore,
with supervised feature learning, the program has the potential to spot human mistakes while marking the
data and proposing corrections. Moreover, the framework can identify new traffic segments using a
scoring scheme. The suggested intrusion detection solution offers a rapidly-updating framework that
identifies the adaptability dilemma of existing approaches. One use of the proposed framework is to

1788 CMC, 2021, vol.66, no.2



upgrade the learning framework based on current information and novel forms of attacks with minimal
computational cost.

Fig. 1 describes the proposed RTS-DELM-CSIDS methodology applied to the NSL-KDD dataset.
Intrusion detection is performed by two modules:

� A labeled information collection trains a learning model in the preprocessing layer to detect attacks.

� A novel attack detection method detects new threats in specific periods after RTS-DELM-CSIDS
implementation.

3.1 Exploring Security Dataset

In this study, we use the publicly accessible intrusion dataset from Kaggle, which consists of two types:
regular and attack [28]. Tab. 1 presents all the security protocols comprising their value categories. The NSL-
KDD dataset is a revamped version of KDD 99, which has many improvements relative to the initial KDD 99
dataset [29]. The NSL-KDD dataset includes 41 features per record. Tab. 2 presents a full overview
of the features.

Furthermore, each instance has a label indicating its traffic type—either regular or malicious traffic. The
open attack groups for the NSL-KDD data belong to one of four major classes [28]: DoS, Remote to Local

Figure 1: Proposed framework of RTS-DELM-CSIDS
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(R2L), User-to-Root (U2R), and probe. All types of attacks include multiple sample attacks in the
information collection. The complete list of threats is presented in Tab. 1

3.2 Deep Extreme Learning Machine (DELM)

Fig. 2 illustrates the Deep Extreme Learning Machine (DELM) framework, which has several hidden
layers, hidden neurons, and activation functions of multiple types to produce an optimal cybersecurity

Table 1: NSL-KDD dataset attacks description [28]

DoS Probe R2L U2R

back, land, neptune, pod,
smurf, teardrop,
processtable, udpstorm,
mailbomb, apache2

ipsweep,
nmap, saint,
mscan,
portsweep,
satan

spy, warezclient, guesspassword,
ftp_write, imap, multihop,
named, phf, snmpgetattack,
warezmaster, xlock, xsnoop,
httptunnel, sendmail,

bufferoverflow,
loadmodule, perl,
snmpguess, sqlattack,
xterm, rootkit, ps, worm

Table 2: Dataset structure [28]

Sr. No. Features Form of value Sr. No. Features Form of value

1 duration Integer 22 is_guest_login Integer

2 protocol_type Nominal 23 count Integer

3 service Nominal 24 srv_count Integer

4 flag Nominal 25 serror_rate Float

5 src_bytes Integer 26 srv_serror_rate Float

6 dst_bytes Integer 27 rerror _rate Float

7 land Integer 28 srv_rerror_rate Float

8 wrong_fragment Integer 29 same_srv_rate Float

9 urgent Integer 30 diff _srv_rate Float

10 hot Integer 31 srv_diff_host_rate Float

11 num_failed_logins Integer 32 dst_host_count Float

12 root_shell Integer 33 dst_host_srv_count Float

13 num_compromised Integer 34 dst_host_same_srv_rate Float

14 roots_hell Integer 35 dst_host_diff_srv_rate Float

15 su_attempted Integer 36 dst_host_same_src_port_rate Float

16 num_root Integer 37 dst_host_srv_diff_port_rate Float

17 num_file_creations Integer 38 ddst_host _serror_rate Float

18 num_shells Integer 39 dst-_host_srv_serror_rate Float

19 num_access_files Integer 40 dst_host_rerror_rate Float

20 num_outbound_cmds Integer 41 dst_host_srv_rerror_rate Float

21 Is_host_login Integer
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framework. The proposed framework consists of three layers: data collection, preprocessing, and application.
The application layer includes two sub-layers: one for prediction and one for evaluation. The exploratory
studies acquire actual information from sensors. The data collection layer uses the collected sensor data
as inputs. Various cleanup processes of data and inspection methods are applied in the preprocessing
layer to remove irregularities from the actual data. The application layer implements the DELM
framework to optimize cybersecurity for any malicious or intrusive activity.

The DELM approach applies to multiple intrusion detection applications. A considerable number of sensor
measurements is usually necessary to preserve the precision of the required detection. The DELM mitigates
numerous network builder problems, such as network security and connectivity concerns. Given that
sending and processing data consumes 80 percent of the network’s energy, data reduction and feature
extraction techniques can minimize processing and further prolong the network’s lifespan. With high
computational and memory demands, commonly used compression strategies may contribute to increased
energy consumption. The DELM framework adjusts the data compression performance threshold within
networks. Consequently, cybersecurity requires real-time networking approaches, including protection,
schedules, tracking, clustering nodes, aggregating data, identification of faults, and data integrity. The
DELM framework enhances the capacity of cybersecurity to respond to their surroundings’ complex behavior.

A DELM can be configured in different fields to forecast health problems, energy consumption, and
transport and traffic management [30,31]. Conventional artificial neural network (ANN) architectures
require several measures and sluggish learning cycles and can overwrite the learning system [32]. The
concept of an extreme learning machine is defined by [33], which is typically a feedforward neural
network; this indicates that input passes only one direction over a set of layers. Nonetheless, we have also
used the backpropagation approach in this predictive model during the training process, where data flows
backward through the network. In backpropagation, the neural network adjusts weights to attain a high
precision at a minimal error rate. The weights are constant during the validation stage, which imports the
qualified model and predicts the real data. The DELM framework consists of an input layer, several
hidden layers, and one output layer. After training of the system is complete, the trained model is

Figure 2: Systemic model of a DELM [30]
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exported to the cloud for online use during the validation phase. Fig. 2 indicates the definition of the DELM
in a hierarchical form, where m denotes nodes in the input layer, l denotes nodes in the hidden layer, and T
denotes nodes in the output layer. The mean squared error (MSE) is observed in the evaluation layer to
optimize cybersecurity.

Huang et al. [33] demonstrated an extreme learning machine (ELM) for the training of single-hidden-
layer feedforward neural networks. In contrast, a DELM uses many current learning strategies (e.g.,
backpropagation) when arbitrarily initializing input weights; it only changes output weights in one
iterative process without changing the input weights, thus offering a quick and comprehensive ability to
learn. The DELM methodology operates as follows. Assume we have multiple hidden-layer feedforward
neural networks with n hidden layer neurons and a training dataset of N records ðэi; fiÞ, in which
ðэi 2 SdÞ and fi 2 Sc. The outcome of these multiple hidden layer feedforward neural networks is:

Xn
j¼1

γj¥ðpjэi þ pjÞ; i 2 ½1;N � (1)

where pj and aj are learning variables, cj is node output at weight j, and ¥ : S ! S is the activation function.

An ideal rapprochement of a multiple-hidden-layer feed forward neural network with zero error
illustrates that with discrete intervals pj and aj there occurs cj such that;

Xn
j¼1

γj¥ðpjэi þ ajÞ ¼ fi; i 2 ½1;N � (2)

which can be represented as

Qc ¼ F (3)

where

Q ¼

¥ðp131 þ a1Þ
..
.

..

.

¥ðp13N þ a1Þ

. . .

¥ðpn31 þ anÞ
..
.

..

.

¥ðpn3N þ anÞ

2
6664

3
7775 (4)

and

c ¼ cT1 . . . c
T
n

� �T
; F ¼ fT1 . . . f

T
N

� �T
: (5)

When the number of observations is greater than the number of hidden-layer neurons, the outcome value
weights can be determined using the following equation:

c ¼ Q�1F (6)

and Q�1 is the inverse of matrix Q. A DELM is, therefore, a computationally economical system of study.

3.3 Real-Time Sequential Deep Extreme Learning Machine (RTS-DELM)

The DELM is a batch learning framework. We address instances in which information is received in
sequential order by proposing a Real-Time Sequential DELM (RTS-DELM). Upon the creation of new
information, the RTS-DELM upgrades the framework as a series of learning algorithms, without requiring
previously trained data.
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RTS-DELM comprises two initial and sequential stages of learning. Initially, the framework trains with
N0 different observations, and, based on these observations, the hidden layer performance matrix Q0 is
developed. For DELM and RTS-DELM, N0 should be equal to or less than the number of hidden layer
neurons n, such that the level (Q0) is equivalent to or greater than n. The framework can be sequence-
updated on the introduction of new information following the initial phase.

Suppose that fðэi; f iÞgN0
i¼1 is the given training dataset at the earliest stage, Q0 and c0 are the hidden layer

performance matrices, and the weights of the DELM output layer are as follows:

Q0 ¼

¥ðp131 þ a1Þ
..
.

..

.

¥ðp13N0 þ a1Þ

. . .

¥ðpn31 þ anÞ
..
.

..

.

¥ðpn3N0 þ anÞ

2
6664

3
7775 (7)

c0 ¼ V0Q
T
0F0 (8)

where V0 ¼ fT1 Q0

� ��1
and F0 ¼ fT1 …fTN0

� �T
:

After the initial stage, the creation of kþ 1ð Þth of records with Nkþ1 number of records may create the
partially hidden layer performance matrix as

Qkþ1 ¼

¥ðp13
ð
Pk
j¼0

NjÞþ1
þ a1Þ

..

.

..

.

¥ðp13
ð
Pk
j¼0

NjÞþ1
þ a1Þ

. . .

¥ðpn3
ð
Pk
j¼0

NjÞþ1
þ anÞ

..

.

..

.

¥ðpn3
ð
Pk
j¼0

NjÞþ1
þ anÞ

2
6666666664

3
7777777775

(9)

and performance weights can be modified using the following equation:

gkþ1 ¼ gk þ Vkþ1Q
T
kþ1ðFkþ1 � Qkþ1gkÞ (10)

with

Vkþ1 ¼ Vk þ VkQ
T
kþ1 IþQkþ1VkQ

T
kþ1

� ��1
Qkþ1Vk (11)

The back propagation method involves weight configuration, feed forward propagation, backward
error propagation, and a distinguish ability update. An activation function such as g xð Þ = sigmoid is
present in the hidden layer on each neuron. This approach designs the sigmoid input function and the
DELM hidden layer:

E ¼ 1

2

X
j
sj � wpj

� �
2 (12)

sj = Desired output

wpj = calculated output
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Eq. (12) specifies a back propagation error, which can be measured by dividing the square sum from the
required output by 2. The adjustment in weight is required to mitigate the common error. The weight change
levels for the output layer are defined by Eq. (13) as:

DHl¼6
i;j / � @R

@Hl¼6 (13)

i ¼ 1; 2; 3 . . . 10 no:of neuronsð Þ
and j ¼ Layer of Output Value

Eq. (14) illustrate the weight update and how the biases occur between the hidden layer and inputs.

Hl
i;n tð Þ ¼ Hl

i;n t þ 1ð Þ þ �Hl
i;j (14)

4 Results and Discussion

In this study, we implement an RTS-DELM methodology on a dataset [28]. The data were divided up
randomly into 70% training (103,962 samples) and 30% validation (44,554 samples). Data were processed in
advance to delete information irregularities and mitigate information from errors. The RTS-DELM-CSIDS
attempts to identify any malicious action or intrusion in various hidden layers (including hidden neurons)
and activation functions. Moreover, we evaluated a specific number of neurons in hidden layers in a
network and also implemented numerous forms of active functions. In this investigation, we evaluated the
RTS-DELM-CSIDS to accurately predict the efficiency of this system. We calculated the output with the
counterpart algorithms of the RTS-DELM-CSIDS algorithm using multiple statistical measures, as
described in Eq. (15) through Eq. (18).

Within this analysis, we assess the efficacy of the experiments conducted by the current RTS-DELM-
CSIDS. The two widely used intrusion detection assessment measures are Detection Rate and False
Positive Rate:

Miss rate ¼
P2

k¼0
Wk

�
Rj 6¼k

� �
P2

k¼0 Rkð Þ ;where j ¼ 0; 1; 2 (15)

Accuracy ¼
P2

k¼0
Wk=Rk

� �
P2

k¼0 Rkð Þ (16)

Detection Rate ¼ Number of Intrusions Detection

Total Number of Infused Intrusions
(17)

False Positive Rate ¼ Generic number of trends categorized as intrusions

The overall number of standard patterns
(18)

In Eqs. (15), (16), W symbolizes the predictive outcome value of RTS-DELM-CSIDS and R expresses
the real outcome value. W0 and R0 denote normal (no attack) in the predictive and actual outputs,
respectively. W1 and R1 denote an attack in the predictive and actual outputs, respectively. The Wk=Rk
indicates that projected and real outcome values are similar. Likewise, Wk

�
Rj 6¼k

denotes error, where
predictive and real outcome values vary.

Tab. 3 illustrates the proposed RTS-DELM-CSIDS for the prediction of intrusion detection during the
training phase. A total of 103,962 samples were used during training, divided into 53,937 and
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50,025 samples for normal and attacks, respectively; 52,198 samples belong to a normal class, in which no
attack was found, and these samples were correctly predicted. Moreover, 1,739 samples were recorded as
incorrect predictions, demonstrating that an attack was detected while, in reality, no attack occurred.
Similarly, 50,025 samples were taken for attack found, for which the attack was correctly predicted for
47,835 samples; in contrast, 2,190 samples were incorrect predictions because they were found to be
normal while, in reality, an attack occurred.

Tab. 4 depicts the proposed RTS-DELM-CSIDS for the prediction of intrusion detection during the
validation phase. A total of 44,554 samples were used during validation, which is further divided into
23,116 and 21,438 samples for normal and attacks, respectively. Moreover, 21,837 samples of the normal
class were correctly predicted, while 1,279 samples exhibit incorrect prediction of an attack while, in
reality, no attack occurred. Similarly, 21,438 samples were taken for attack found, for which the attack
was correctly predicted for 19,478 samples; in contrast, 1,960 samples were incorrect predictions because
they were found to be normal while, in reality, an attack occurred.

Tab. 5 depicts the proposed RTS-DELM-CSIDS system model performance in terms of accuracy and
miss rate during the training and validation phase. The proposed RTS-DELM-CSIDS system model had a
96.22% and 3.78% accuracy and miss rate during training, respectively. Moreover, during the validation
phase, the proposed RTS-DELM-CSIDS system model had a 92.73% accuracy and a 7.27% miss rate.

Table 3: Training of the proposed RTS-DELM-CSIDS security model during the prediction of network traffic

Proposed RTS-DELM-CSIDS Security Model (70% of Sample Data in Training)

Type Total No of Samples
(N = 103962)

Result (Output)
(W0, W1)

Input Expected Output
(R0, R1)

W0

(Normal)
W1

(Attack)

R0 = 53937
Normal

52198 1739

R1 = 50025
Attack

2190 47835

Table 4: Validation of the proposed RTS-DELM-CSIDS security model during the prediction of network traffic

Proposed RTS-DELM-CSIDS Security Model (30% of Sample Data in Validation)

Type Total No of Samples
(N = 44554)

Result (Output)
(W0, W1)

Input Expected Output
(R0, R1)

W0

(Normal)
W1

(Attack)

R0 = 23116
Normal

21837 1279

R1 = 21438
Attack

1960 19478
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We contrasted the efficiency of our solution to the current NSL-KDD dataset approaches. As illustrated
in Fig. 3, with a lower error rate, the proposed system achieves considerably higher precision. The proposed
RTS-DELM-CSIDS technique is superior to other models in terms of accuracy, such as a self-organizing map
(SOM) [34], ANN-based IDS [35], and generative adversarial networks (GANs) [36]. The RTS-DELM-
CSIDS outperformed the NSL-KDD dataset. The precision of the SOM [34] is much lower than other
ML algorithms. In [34], the authors proposed a SOM, in which the investigators obtained 75.5%
accuracy. In [35], the authors proposed ANN-based IDS, in which the investigators obtained 81.2%
accuracy. In [36], the authors proposed GANs, in which the investigators obtained 86.5% accuracy. The
proposed RTS-DELM-CSIDS framework accuracy is 96.22% and higher in terms of accuracy compared
with the existing techniques. The proposed RTS-DELM-CSIDS framework outperforms current methods
significantly based on statistical values. Thus, the proposed RTS-DELM-CSIDS framework is a viable
option as a smart solution for network security.

5 Conclusions

In this article, we have proposed an RTS-DELM-CSIDS security model. We presented safety
characteristics based on their values. Moreover, we developed a generalized intrusion detection model
focused on the identified critical characteristics to ensure forecasting accuracy and efficiency for unknown
datasets and reduce computational complexity. We then tested the efficacy of our RTS-DELM-CSIDS
framework by performing a sequence of dataset experiments. Specific methodological approaches were
used to determine the feasibility of the suggested approach. The measured data indicate that the proposed

Table 5: Performance evaluation of proposed RTS-DELM-CSIDS during validation and training

Process Accuracy Miss Rate

Training 96.22% 3.78%

Validation 92.73% 7.27%

Figure 3: Comparison results of the proposed RTS-DELM-IDS with literature
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RTS-DELM-CSIDS approach is much higher in accuracy compared with other algorithms. The proposed
RTS-DELM-CSIDS security model produces impressive outcomes. The proposed technique exhibits
96.22% and 92.73% accuracy during training and validation, respectively. We also contrasted the findings
of the RTS-DELM-CSIDS framework with many conventional mainstream approaches to evaluate the
efficacy of the associated security framework.
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