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ABSTRACT 

Aouar, Lynda. An adaptive deep learning for causal inference based on support points with 

high-dimensional data. Published Doctor of Philosophy dissertation, University of 

Northern Colorado, 2023.  

 

 

The Sample splitting method in semiparametric statistics could introduce inconsistency in 

inference and estimation. Thus, to make adaptive learning based on observational data and 

establish valid learning that helps in the estimation and inference of the parameters and 

hyperparameters using double machine learning, this study introduces an efficient sample 

splitting technique for causal inference in the semiparametric framework, in other words, the 

support points sample splitting( SPSS), a subsampling method based on the energy distance 

concept is employed for causal inference under double machine learning paradigm. 

This work is based on the idea that the support points sample splitting (SPSS) is an optimal 

representative point of the data in a random sample versus the counterpart of random splitting, 

which implies that the support points sample splitting is an optimal sub-representation of the 

underlying data generating distribution. To my best knowledge, the conceptual foundation of the 

support points-based sample splitting is a cutting-edge method of subsampling and the best 

representation of a full big data set in the sense that the unit structural information of the 

underlying distribution via the traditional random data splitting is most likely not preserved.  

Three estimators were applied for double/debiased machine learning causal inference a paradigm 

that estimates the causal treatment effect from observational data based on machine learning 

algorithms with the support points sample splitting (SPSS). This study is 
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considering Support Vector Machine (SVM) and Deep Learning (DL) as the predictive 

estimators. A comparative study is conducted between the SVM and DL with the support points 

technique to the benchmark results of Chernozhukov et al. (2018) that used instead, the random 

forest, the neural network, and the regression trees with random k-fold cross-fitting technique. 

An ensemble machine learning algorithm is proposed that is a hybrid of the super learner 

and the deep learning with the support points splitting to compare it to the results of 

Chernozhukov et al. (2018). Finally, a socio-economic real-world dataset, for the 401(k)-pension 

plan, is used to investigate and evaluate the proposed methods to those in Chernozhukov et al. 

(2018). 

The result of this study was under 162 simulations, shows that the three proposed models 

converge, support vector machine (SVM) with support points sample splitting (SPSS) under 

double machine learning (DML), the deep learning (DL) with support points sample splitting 

under double machine learning (DML), and the hybrid of super learning (SL) and deep learning 

with support points sample splitting under double machine learning. However, the performance 

of the three models differs. 

The first model, support vector machine (SVM) with support points sample splitting 

(SPSS) under double machine learning (DML) has the lowest performance compared to the other 

two models. In terms of the quality of the causal estimators, it has a higher MSE and 

inconsistency of the simulation results on all three data dimension levels, low-high-dimensional 

(p = 20,50,80), moderate-high-dimensional (p = 100, 200, 500), and big-high-dimensional p = 

(1000, 2000, 5000). The two other models, deep learning (DL) with support points sample 

splitting under double machine learning (DML), and the hybrid of super learning (SL) and deep 

learning with support points sample splitting under double machine learning have produced a 
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competing performance and results in terms of the best estimation compared to the two other 

methods. The first model was time efficient to estimate the causal inference compared to the 

third one. But the third model was better performing in terms of the estimation quality by 

producing the lowest MSE compared to the other two models. 

The results of this research are consistent with the recent development of machine 

learning. The support vector machine learning has been introduced in the previous century, and it 

looks like it is no longer showing efficiency and quality estimation with the recent emerging 

double machine learning. However, cutting-edge methods such as deep learning and super 

learner have shown superior performance in the estimation of the causal double machine learning 

target estimator, and efficiency in the time of computation.  
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CHAPTER I 

INTRODUCTION 

In the context of estimating the treatment effect from observational data, economists, 

statisticians, and social scientists have been developing models to estimate the effect of the target 

policy parameter. Firpo (2007) has introduced a doubly staged method to estimate the quantile 

treatment effect, which is based on estimating initially the nuisance parameter and then the 

estimation of the quantile variable of interest. However, this method has shown a limitation in 

the cases where there is a high dimensional confounder, and in the case in which the sample size 

is much smaller than the number of the nuisance variables (p >> N).  

Chernozhukov et al. (2018) have been developing a Double/Debiased Machine Learning 

method as an extension to Firpo's (2007) work and built upon the work of Belloni et al. (2012), 

Belloni et al. (2014), Chernozhukov et al. (2015), and Belloni et al. (2017). Double/debiased 

machine learning is a two-step causal inference with observational data for estimating the 

average treatment effect. A two-staged bias correction is adopted in this method (Chernozhukov 

et al., 2022) by using the Neyman orthogonalization and moment score function to undertake the 

regularization bias of the target estimator (Klosin, 2021). Sample splitting as a cross-fitting 

technique overcomes the bias introduced by the model overfitting dilemma (Bach et al., 2022). 

The Neyman orthogonality delivers an estimation of √ n-rates to the target parameter and allows 

an asymptotic normal distribution convergence (Lewis & Syrgkanis, 2021).  

This study is focused on statistical adaptive learning (AL), a concept used to adapt the 

statistical model to the data distribution in semiparametric framework (Bickel et al., 2000; 
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Chambaz et al., 2016, Van der Laan et al., 2004). In high dimensional settings, we need the 

adaptive learning tools to help for data reduction by retaining the original data features (Vakayil 

& Joseph, 2022). The support point sample splitting (SPSS) method is implemented as it is an 

optimal adaptation to the data distribution versus the random splitting (Mak & Joseph, 2018). 

This research takes into consideration the conditional independence (CIA) instead of the 

independence assumption (Knaus, 2021). The learning approach considered is the double 

machine learning (DML) for causal inference (Chernozhukov et al., 2018). Figure 1 summarizes 

the work map of this study as follows, 

 

Figure 1 

 

Study Work Map 
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Identification of Double Machine Learning for 

Semiparametric Causal Inference 

 

This study specializes in the double machine learning model, the partial linear regression, 

and considers it as the identified model for the causal effect of the treatment variable T. The 

model could be described as follows, (Chernozhukov et al., 2018), 

𝑌 = 𝑇𝛽0 + 𝑔0(𝐗) + 𝑈, 𝔼[ 𝑈 ∣ 𝐗, 𝑇 ] = 0, 

𝑇 = 𝑚0(𝐗) + 𝑉, 𝔼[ 𝑉 ∣ 𝐗 ] = 0, 

where Y is the response variable, 𝑿 = (𝑋1,..., 𝑋p) is the covariate vector, and T is the target 

treatment variable. The confounder 𝑿 affects the outcome Y as well as the treatment effect 

variable 𝑇 through the functional parameters 𝑔0(. ) and 𝑚0(. )respectively. 𝛽0 is the parameter 

about the causal effect of T. 𝑈 and 𝑉 are the disturbances. 

Consider 휂0 = (𝑔0(. ), 𝑚0(. ) ) the nuisance parameter, whose dimension is higher than the 

sample size, N. Under these conditions the traditional assumption that the sample size, N, is 

larger than the P fails to be met. 

Double Machine Learning Estimator 

Definition and Construction 

 

Chernozhukov et al. (2018) have defined two methods to construct the estimators of 

double machine learning. The following are assumptions for the model construction, 

1. 휂0 is the true value of the nuisance parameter 휂 ∈ 𝒩.  

2. The true causal parameter 𝛽0 of the target parameter 𝛽 ∈ Θ ⊆ ℝd𝛽  satisfies the 

moment criteria:  

𝐸𝑃[𝜓(𝑍; 𝛽0, 휂0)] = 0. 

3. (𝑍𝑖)𝑖=1
𝑁  is the iid random sample from the distribution of 𝑍.  
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4. Z is a random element in the measurable space (𝒵,  𝒜𝒵) that has probability 

measure 𝑃 ∈ 𝒫𝑁 . 

5. The vector of the known Neyman orthogonal score functions  𝜓 =

(𝜓1, … , 𝜓d𝛽
)

′

 ,  such that   𝜓𝑗 , j={1,…, d𝛽} is a function defined on 𝒵 × Θ × 𝒩 

and map on ℝ, and are measurable if assigning Θ and 𝒩 with their Borel 𝜎-fields. 

6. Θ  is a non-empty subset from ℝd𝛽.  

Definition 1 

Consider (𝐼𝑘)𝑘=1
𝐾 , a K-fold random partition of a sample of 𝑁 cases. Let the complement 

set 𝐼𝑘
𝑐 for each 𝐼𝑘( with a size n= N/K) where k∈{1,…, K} be:   𝐼𝑘

𝑐 = {1, … , 𝑁} ∖ 𝐼𝑘. Consider the 

fold 𝐼𝑘 has a size n = N/K. For each k∈{1, …, 𝐾},  

1. Construct the machine learning estimator 휂̀0,𝑘 , 

휂̀0,𝑘 = 휂̀0((𝑍𝑖)𝑖∈𝐼𝑘
𝑐). 

2. Taking 𝐸𝑛,𝑘[𝜓(𝑊)] = 𝑛−1∑𝑖∈𝐼𝑘
 𝜓(𝑊𝑖) as the expectation of the 𝑘𝑡ℎ fold, 

calculate the 𝑘𝑡ℎ target parameter estimator �̀�0,𝑘 that satisfies,  

𝔼𝑛,𝑘[𝜓(𝑍; �̀�0,𝑘, 휂̀0,𝑘] = 0. 

3. Construct the final target estimator that is a combination of the k estimators, 

called the DML1 estimator as follows,  

�̀�0 =
1

𝐾
∑  𝐾

𝑘=1 �̀�0,𝑘. 

4. Alternatively, in the second step, directly calculate the target estimator without 

any further steps. In this case, it is the DML2 estimator, which is defined as 

follows: 

1

𝐾
∑  𝐾

𝑘=1 𝐸𝑛,𝑘[𝜓(𝑍; �̀�0, 휂̂0,𝑘)] = 0. 
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Motivation 

Many works after the established work of Chernozhukov et al. (2018) have emerged. 

Such as in Guo et al. (2022) have developed what is called doubly debiased Lasso, a causal 

estimation model from observational data considering the existence of high dimensional 

unobserved covariates. They have handled the correction of the bias arising from both the high 

dimensionality and hidden nuisance variables. 

To my best knowledge, there is no study from the literature that has employed SVM, DL, 

and Super Learner for debiased machine learning with support points sample splitting. SVM and 

DL have been chosen in this study because they are known for their effectiveness in tuning the 

hyperparameter. The hybrid methods of double machine learning and causal inference are 

nowadays a cutting-edge area in the practice and methodological studies (Knaus, 2021)  

This research aims to develop a support points-based DML, that makes an intelligent 

learning of observational data. The second purpose of this study is to compare the proposed 

frameworks of the estimation of the average treatment effect (ATE) in structural causal models 

using the DML paradigm to the original work of DML introduced in the literature 

(Chernozhukov et al., 2018). An investigation of the performance of the three methods, support 

vector machine (SVM), deep learning (DL), and super learner (SL) with the support points 

sample splitting (SPSS) method compared to the k-fold sample splitting utilized in 

Chernozhukov et al. (2018). To my best knowledge, this method suggests models that consist of 

hybrid methods that are different from the literature and from what has been studied in the past.  

Ju et al. (2018) have applied various kinds of deep neural networks (DNN) assigned with 

different layers of depth for each learner along with the super learner (SL) method. A research 

paper has created a combined algorithm developed from deep neural networks and super learner 
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methods (Young et al., 2018). J. Yang et al. (2020) have studied double machine learning with 

support vector machine (SVM) and k-fold cross-validation. A research study has been conducted 

by Kebonye (2021) using a combination of the two methods, support points sample splitting 

(SPSS) and support vector machine (SVM). Varaku (2021) has applied the mixture of double 

machine learning (DML) with deep neural networks (DL). A causal effect framework (Heiler & 

Knaus, 2022) has applied double machine learning, deep learning, and k-fold cross-validation. A 

research paper has combined double machine learning (DML) with support points sample 

splitting (Agboola & Yu, 2023). A dissertation study that has used double machine learning 

(DML) joined with the super learner (Alanazi, 2022).  

None of those works has handled the double machine learning (DML) framework using 

support vector machine (SVM), deep learning (DL), and super learner (SL) with the support 

points sample splitting (SPSS) all together in one study. Double machine learning (DML) with 

support points sample splitting.  

Research Questions 

The following are the research questions and sub-questions:  

Q1 How does double machine learning (DML) using support vector machine (SVM) 

and support points sample splitting (SPSS) perform compared to the DML used in 

the work of Chernozhukov, et al. (2018)? 

 

Q1a How does DML using support vector machine (SVM) and support points 

splitting (SPSS) perform in the simulation? 

 

Q1b How does DML using support vector machine (SVM) and support points 

sample splitting (SPSS) perform compared to the DML used in the work 

of Chernozhukov, et al. (2018) in the real-world data? 

 

Q2 How does DML using deep learning (DL) and support points splitting sample 

(SPSS) perform compared to the DML used with the work of Chernozhukov, et 

al. (2018)? 
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Q2a How does DML using deep learning (DL) and support points sample 

splitting (SPSS) perform with simulated data? 

 

Q2b How does DML using deep learning (DL) and support points sample 

splitting (SPSS) perform compared to the DML used in the work of 

Chernozhukov, et al. (2018) with the real-world data? 

 

Q3 How does DML using Super Learner (SL) based on deep learning (DL) and 

support points sample splitting (SPSS) perform compared to the ensemble used in 

the work of Chernozhukov, et al. (2018)? 

 

Q3a How does DML using Super Learner (SL) based on the deep learning 

(DL) and support points sample splitting (SPSS) perform with simulated 

data? 

 

Q3b How does DML using Super Learner (SL) based on deep learning (DL) 

and support points sample splitting (SPSS) perform compared to the 

ensemble used in the work of Chernozhukov, et al. (2018) with real-world 

data? 

 

Organization of the Dissertation 

The study is divided into five chapters. In Chapter 1, a general introduction of the support 

point splitting idea applied for the semiparametric causal inference with observational data is 

presented. The motivation behind the study and the research questions are stated. Chapter II 

introduces the semiparametric models, the sample splitting for cross-validation, and the causal 

inference for observational data. In Chapter III, the methodology of this dissertation is described, 

which consists of the heuristic theoretical framework of the support points splitting. An 

introduction of the dissertation models, which is a hybrid of the support points splitting, and the 

following methods: the support vector machine (SVM), deep learning (DL), and super learner 

(SL). A detailed simulation plan is presented along with the intended real-world data. Chapter IV 

presents the results of the simulation and investigation of real-world data 401(k) plans and 

pension accounts. Chapter V contains the conclusion of the dissertation, the research limitations, 

and suggested future work as an extension to this research.  
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Concepts Definitions 

A hyperparameter is a parameter that could be learned from data or set beforehand. The machine 

learning process tunes the hyperparameter by searching for the optimal value that could 

deliver the best performance of the model.  

Adaptive Learning (AL) is a statistical technique that can adapt to the data distribution by 

adjusting the parameters of the algorithm based on the data information and data patterns. 

Specifically, this is a very useful technique in high-dimensional data reduction.  

Cross Validation (CV) is a resampling technique that uses various parts of the sample to train a 

model and test its performance.  

Double/debiased machine learning (DML) is a two-step causal inference with observational data 

for estimating the average treatment effect. A two-staged bias correction by using the 

Neyman orthogonalization to undertake the regularization bias of the target estimator. 

Sample splitting as a cross-fitting technique overcomes the bias introduced by the model 

overfitting.  

High-Dimensional Data (HD) is data that could have the number of variables (p) much higher 

than the sample size, N, that is p >> N.  

Nonparametric Model is a statistical model that has infinite-dimensional parameters, or a 

distribution free model.  

Parametric Models is a statistical model that has finite-dimensional parameters. 

Sample splitting is a method used to partition the original data into different portions to use them 

for cross-validation.  
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Semiparametric model is a model that is a combination of two components, parametric and 

nonparametric models. They could tolerate less rigorous assumptions on the nuisance 

parameters and keep the parametric rigorous assumptions of the target parameter. 

Support Points Sample Splitting (SPSS) is a sample splitting for cross-validation method that 

delivers the best representation of the original distribution. 
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CHAPTER II 

LITERATURE REVIEW 

This section introduces the concept of sample splitting and cross-validation, the causal 

inference for observational data, double/debiased machine learning (DML), the semiparametric 

models, and the Reproducing Kernels Hilbert Space (RKHS). 

Sample Splitting and Cross-Validation 

Sample splitting is a technique that is used to divide the sample data into three subgroups: 

the training, the testing, and the validation subsamples (Picard & Berk, 1990; Snee, 1977) to 

build the model and assess its prediction accuracy.  

Data splitting for cross-validation is a very crucial stage in the machine learning 

paradigm as it facilitates parameter estimation, model building, model performance evaluation, 

and the hyperparameters tuning for model selection. It overcomes the underfitting and overfitting 

challenges, the issues that the machine learning techniques could suffer from if the researcher 

does not take into consideration the sample splitting. For instance, in double machine learning, if 

the estimation of the target causal parameter and the nuisance parameter is run without 

considering the sample splitting, it could most likely introduce a bias in the estimators induced 

by either underfitting or overfitting (Chernozhukov et al., 2018). 

A further sample splitting use is for solving the difficulties of the significance tests. The 

data have been subsampled into two subgroups, one applied for the hypothesis test and the other 

for the significance assessment (Cox, 1975). However, the target of this study is sample splitting 

for cross-validation. However, cross-validation operates a comparison between suggested models 
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to decide the optimal one that will be adapted to the data to predict the performance of this 

chosen model for future data (Yadav & Shukla, 2016). An important component that the 

researcher should take into consideration is that the quality of the estimation and the inference 

results will be impacted by the choice of sample-splitting techniques (Meng et al., 2020).  

Another challenge that could arise from the practice of sample splitting is holding small 

data for developing the model, which leads to a poor prediction for future observations. Or, in 

contrast, reserving small data for the validation stage could deteriorate the model evaluation 

performance. So, a trade-off between the training set size and the validation set size is crucial to 

ensure an effective subsampling framework (Picard & Berk, 1990). In most cases, the subsample 

splitting methods are applied under the randomization concept, which will suffer from the 

consistency of the data analysis results, and different findings from the same model are caused 

by the randomization of the sample splitting (Cox, 1975; Shao, 1997; Y, Yang, 2007). 

 Other alternatives could be used for sample splitting such as PRESS and bootstrapping 

methods, which train all the available data for model development and create a simulated dataset 

for the assessment stage. Even these methods could have a good advantage in the context when 

the true distribution is difficult to discern, they suffer from time inefficiency, and when model 

selection needs the researcher's decision. Kennard and Stone (1969) have suggested the 

DUPLEX algorithm, for splitting the sample into prediction and estimation subgroups when time 

is not a variable in the data.  

However, sample splitting-based cross-validation is not a new concept; it has taken the 

attention of the scholar from earlier decades. Stone (1974) stated that cross-validation consists of 

splitting the data, either in a “controlled “or “uncontrolled” method, into two subsamples, the 

first one for the statistical estimation and the choice of the predictors; the second will be used for 
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the prediction’s comparison to the first subsample. The very detailed definition of cross-

validation using sample splitting could be owed to Mosteller and Tukey (1968).  

Herzberg (1969) stated theoretical foundations and empirical examples of applying cross-

validation for the measurement of the model accuracy. From a more practical perspective, a 

study of criminology by F. H. Simon (1971) used cross-validation in the model creation. In an 

educational research setting, Larson (1931) deployed random sample splitting for cross-

validation to study correlation and relationship. 

From Observational Data to 

Causation Inference 

 

The following work is based on Pearl (1995, 2009) and Yao et al. (2021). Pearl's (1995) 

claims that the idea of using causal explanation, based on the graphical models of the 

nonparametric structural equations, stems from the econometrics studies of Frisch (1938) and H. 

A. Simon (1953). In many cases, the causation is mistakenly considered a correlational 

relationship. However, the correlation describes an association relationship between variables 

when there is a trend to either increase or decrease. The causation goes a step ahead; it defines a 

cause-effect between variables, when not only the trend is considered but the change in the 

conditions of the cause will lead to a change in the effect.  

The causation relationship could be deduced effectively based on the experimental 

designs or the randomized controlled trials. However, in most cases, these studies are not 

feasible, for instance, due to an unethical issue, financial cost considerations, or being too time-

consuming.  

For these reasons, considerable attention is shifting to observational data. However, this 

shift also has challenges in terms of defining the causal effect when the cases have not been 

randomly assigned to the treatment or because there are no control and treatment groups. To 
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solve these problems of deducing a causal effect from observational data, models have been 

developed for these concerns, the Structural Causal Model (SCM), and the Neyman-Rubin 

Potential outcome framework. This study is concentrating on the SCM.  

Identification of the Causal Model 

Any causal model will be identifiable with the following fundamental components, the 

unit, the treatment, the observed output, the potential output, and the counterfactual. Also, three 

types of variables are defined to help identify the causal effect, the pre-treatment variables, the 

post-treatment variables, and the treatment effect variables.  

The unit is the primary individual case considered in the research. The treatment is the 

target action of the research deployed on the unit in the study. The observed output is the 

outcome variable that has been depicted on the unit after it received the treatment. The potential 

output is the possible outcomes that could have happened if the unit would undertake the 

treatment. The counterfactual output is the other outcomes seen on the unit taking another 

treatment that is different from the actual treatment (or not taking any treatment), where the pre-

treatment variables and the post-treatment variables are the variables that are not impacted by the 

treatment and those impacted by the treatment, respectively. 

The treatment effect is the measurement that quantifies the causal effect of the treatment 

on the unit of the study. For instance, an example is defined when the treatment is binary, and it 

could be extended to different cases easily for more than two potential outcomes. The treatment 

effect for the whole research population is called the Average Treatment Effect (ATE), which is 

calculated based on the Y(𝑊 = 1) and Y(𝑊 = 0), the potential outcomes of the causal model 

identification. For this specific example, they are the treated and control groups' outputs. So, the 

Average Treatment Effect (ATE) is defined as follows, 
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 ATE = 𝔼[Y(𝑊 = 1) − Y(𝑊 = 0)] 

The following Figure 2 describes the Directed Acyclic Graph (DAG), proposed by Pearl 

(2009) to identify the causal effect of the variable Z on the outcome Y given a confounder X that 

affects both Z and Y.  

Figure 2 

 

Directed Acyclic Graph (DAG) of the Causal Relationship. 

 

 

 

 

 

 

 

 

 

 

Machine Learning Methods in the 

Causality Framework 

 

Recently, causal inference has received wide attention from a variety of applications, 

such as, in econometrics, social sciences, and medical sciences when they are shifting the 

inference about the casual effect from the costly experimental design in terms of time and ethical 

issues to observational data. Furthermore, the use of machine learning methods has helped 

develop causal models from observational data.  

The machine learning tools, such as artificial neural networks (ANN), ensembles, and 

super learner (Van Der Laan et al., 2007) could deliver a more adaptive estimation and superior 

prediction behavior than the classical methods due to their high performance compared to the 

traditional methods. The machine learning techniques can account for the confounder covariates 
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effects separately, which deploy the estimation of treatment effect in the causal inference model 

more effectively.  

Moreover, machine learning tools could handle high dimensional data where the numbers 

of the covariates are way larger than the sample size, a characteristic that the statistician couldn't 

enjoy and have been able to perform a decade ago.  

Double Machine Learning Characteristics 

This section provides the characteristics of double machine learning founded on the 

theoretical background and proofs from the work of Chernozhukov et al. (2018), Bach et al. 

(2021), and Belloni et al. (2017). The construction of the confidence regions of the DML 

estimators, the variance estimator of the DML causal target parameter, the semiparametric 

efficiency, the uniformly valid confidence interval of the scaler parameter of DML, and the 

inference in the partially linear regression model with DML are introduced. All under the 

identification model of the partial linear regression of the semiparametric causal framework,  

𝑌 = 𝑇𝛽0 + 𝑔0(𝐗) + 𝑈, 𝔼[ 𝑈 ∣ 𝐗, 𝐷 ] = 0, 

𝑇 = 𝑚0(𝐗) + 𝑉, 𝔼[ 𝑉 ∣ 𝐗 ] = 0. 

The Construction of the Confidence Regions of the 

Double Machine Learning Estimators 

 

Two theorems are introduced to help build the confidence regions of the Double Machine 

Learning estimator (DML1 or DML2). The first theorem emphasizes the asymptotic normality 

property of the estimator. The second theorem identifies the variance estimator. Before that, the 

following assumptions for this theorem are set up. Assumption 3 is required to make sure that the 

score functions are Neyman orthogonal or approximately orthogonal, and mild smoothness. 

Assumption 3 is also about the quality of the nuisance parameter estimator and the score function 

regularity condition. 
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Assumption 1 

Approximate Neyman Orthogonality and Linear Scores: Suppose the scores functions are 

linear as follows,  

𝜓(𝑧; 𝛽, 휂) = 𝜓𝑎(𝑧; 휂)𝛽 + 𝜓𝑏(𝑧; 휂),   for all  𝑧 ∈ 𝒵,  𝛽 ∈ Θ, 휂 ∈ 𝑇 . 

Let {𝒫𝑁}𝑁≥1 a sequence of probability sets distributions 𝑃 of 𝑍 on 𝒵. Consider {Δ𝑁}𝑁≥1 

and {𝛿𝑁}𝑁≥1 be two convergent sequences that tend to zero and are both sequences of positive 

constant. The constants 𝑐0, 𝑐1, s , K ( fold size), q, are positive, 𝑤ℎ𝑒𝑟𝑒 𝑐0 ≤ 𝑐1,  𝐾 ≥ 2 ,  𝑞 > 2 . 

Then  

∀ 𝑁 ≥ 3 , ∀ 𝑃 ∈ 𝒫𝑁 , the true parameter 𝛽0 satisfies, 

𝐸𝑃𝜓(𝑊; 𝛽0, 휂0)[휂 − 휂0] = 0. 

And 

the matrix  𝐽0  ℎ𝑎𝑠 singular values ∈ [𝑐0 , 𝑐1], 

𝐽0: = 𝐸𝑃[𝜓𝑎(𝑍; 휂0)]. 

Also, the score function 𝜓 holds the Neyman orthogonality. Or the score function 𝜓 obeys at 

(𝛽0, 휂0) the Neyman near-orthogonality condition 𝜆𝑁 with respect to 휂 such that,  

𝜆𝑁: = sup
𝜂∈𝒯𝑁

 ∥∥∂𝜂𝐸𝑃𝜓(𝑍; 𝛽0, 휂0)[휂 − 휂0]∥∥ ≤ 𝛿𝑁𝑁−1/2, 

where the function 𝐸𝑃[𝜓(𝑊; 휃, 휂)] with respect to 휂 is twice Gateaux-differentiable on 𝑇.  

Assumption 2 

The Quality of the Nuisance Parameter Estimator and the Score Regularity: the nuisance 

parameter estimator convergence rates ∀ 𝑁 ≥ 3 , ∀ 𝑃 ∈ 𝒫𝑁 , thus, the moment conditions are 

satisfied, 
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𝑚𝑁 ∶= sup
𝜂∈𝒯𝑁

 (𝐸𝑃[∥∥𝜓(𝑍; 𝛽0, 휂)∥∥
𝑞
])

1/𝑞
≤ 𝑐1 ,

  

𝑚𝑁
′ ∶= sup

𝜂∈𝒯𝑁

 (𝐸𝑃[∥∥𝜓𝑎(𝑍; 휂)∥∥
𝑞
])

1/𝑞
≤ 𝑐1

. 

Suppose a random fold I ⊂ [𝑁] = {1, . . . , 𝑁} of size 𝑛 = 𝑁/𝐾, and 𝒯𝑁 is the realization set of 

the nuisance parameter, thus,  

P [ 휂̀0 = 휂̀0((𝑊𝑖)𝑖∈𝐼𝑐) ∈ 𝒯𝑁] ≤ 1 − Δ𝑁. 

And the eigenvalues of the following matrix are bounded by 𝑐0, In other words, the score 

function 𝜓 has a non-degenerate variance, 

𝐸𝑃[𝜓(Z; 𝛽0, 휂0)𝜓(Z; 𝛽0, 휂0)′]. 

Also, the next inequalities are satisfied at rates 𝜆𝑁
′  , 𝑟𝑁, 𝑟𝑁

′ , respectively,  

𝜆𝑁
′ : = sup

𝑟∈(0,1),𝜂∈𝒯𝑁

 ∥∥∂𝑟
2𝐸𝑃[𝜓(𝑍; 𝛽0, 휂0 + 𝑟(휂 − 휂0))]∥∥ ≤ 𝛿𝑁/√𝑁 

 

𝑟𝑁          : = sup
𝜂∈𝒯𝑁

 ∥∥𝐸𝑃[𝜓𝑎(𝑍; 휂)] − 𝐸𝑃[𝜓𝑎(𝑍; 휂0)]∥∥ ≤ 𝛿𝑁, 

𝑟𝑁
′ ∶= sup

𝜂∈𝒯𝑁

 (𝐸𝑃[∥∥𝜓(𝑍; 𝛽0, 휂) − 𝜓(𝑍; 𝛽0, 휂0)∥∥
2
])

1/2
≤ 𝛿𝑁, 

which means that under the assumption 4, and for a chosen value of 휀𝑁 such that,  

 ∥∥휂̀0 − 휂∥∥𝑇
≲ 휀𝑁 in the realization set  𝒯𝑁 , and take  𝜆𝑁

′ ≲ 휀𝑁
2 ,    𝑟𝑁 ≲ 휀𝑁,     𝑟𝑁

′ ≲ 휀𝑁 ,   then when 

considering a special case where 𝜆𝑁
′ = 𝑜(𝑁−1/2) it will follow that 휀𝑁 = 𝑜(𝑁−1/4). Thus, the 

nuisance parameter estimator 휂̀0 has 𝑁−1/4 rate of convergence. 

The Asymptotic Normality of the Double Machine 

Learning Causal Target Estimator 

 

The following theorem shows that the estimator, �̀�0, based on the orthogonal scores, will 

reach a convergence of √𝑁 rate and will have normal distribution approximately. This 

distributional approximation and concentration rate are both maintained uniformly in 𝒫𝑁 ,   
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where, 𝒫𝑁 is an expanding class of probability measures, ( 𝑃𝑁) 𝑁≥1 is a sequence of probability 

distributions such that for each N,  𝑃𝑁  ∈  𝒫𝑁 , and 𝑃 is varying over  𝒫𝑁 . 

Theorem 1 

Under assumption 1 and assumption 2, ∀ 𝑁, let 𝛿𝑁 ≥ 1/√𝑁 . The DML1 estimator 

�̀�0 ( and the DML2) has the asymptotic normality distribution property with a root- 𝑁 

convergence, 

√𝑁𝜎−1(�̀�0 − 𝛽0) =
1

√𝑁
∑  𝑁

𝑖=1 𝜓(𝑍𝑖) + 𝑂𝑃(𝜌𝑁)
𝑑
→ 𝑁(0, 1𝑑), 

where the approximate variance is  

𝜎2: = 𝐽0
−1𝐸𝑃[𝜓(𝑍; 𝛽0, 휂0)𝜓(𝑊; 𝛽0, 휂0)′](𝐽0

−1)′. 

And the influence function in this case will be defined by 

�⃐� (⋅): = −𝜎−1𝐽0
−1𝜓(⋅, 𝛽0, 휂0). 

The remainder 𝜌𝑁 satisfies 

𝜌𝑁: = 𝑁−1/2 + 𝑟𝑁 + 𝑟𝑁
′ + 𝑁1/2𝜆𝑁 + 𝑁1/2𝜆𝑁

′ ≲ 𝛿𝑁 . 

The Variance of the Double Machine Learning 

Causal Target Parameter Estimator 

 

Theorem 2 

Under the criteria of assumption 1 and assumption 2, ∀ 𝑁 , let 𝛿𝑁 ≥ 𝑁−[(1−2/𝑞)∧1/2]. 

Then the asymptotic variance matrix of the √𝑁(�̀�0 − 𝛽0) is 

�̀�2 = 𝐽0
−1 1

𝐾
∑  𝐾

𝑘=1 𝐸𝑛,𝑘 [𝜓(𝑍 ; �̀�0, 휂̀0,𝑘)𝜓(𝑍 ; �̀�0, 휂̀0,𝑘)
′′
] (𝐽0

−1)
′
, 

where 

𝐽0 =
1

𝐾
∑  𝐾

𝑘=1 𝐸𝑛,𝑘[𝜓𝑎(𝑍 ; 휂̀0,𝑘)]. 

And  
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�̀�2 = 𝜎2 + 𝑂𝑃(𝜚𝑁),   

𝜚𝑁: =  𝑁−[(1−2/𝑞)∧1/2] + 𝑟𝑁 + 𝑟𝑁
′ ≲ 𝛿𝑁, 

which allows to substitute 𝜎2 by  �̀�2 with a remainder,  

𝜌𝑁 = 𝑁−[(1−2/𝑞)∧1/2] + 𝑟𝑁 + 𝑟𝑁
′ + 𝑁1/2𝜆𝑁 + 𝑁1/2𝜆𝑁

′ . 

Semiparametric Efficiency 

Corollary 1 

In general conditions, the semiparametric efficiency of the target estimator is not met, 

however, special cases exist. Under a semiparametric paradigm (Van der Laan & McKeague, 

1998), and if theorem 1 is met, and if the estimator, �̀�0, is efficient based on the score function 𝜓 

at specific 𝑃 ∈  𝒫 ⊂  𝒫𝑁 , where, 𝒫𝑁 is an expanding class of probability measures, ( 𝑃𝑁) 𝑁≥1 is 

a sequence of probability distributions such that  𝑃𝑁  ∈  𝒫𝑁 , 𝑃 is varying over  𝒫𝑁 , and 𝒫 is the 

model, then the variance 𝜎0
2 of �̀�0 attains the bounds of the semiparametric efficiency at 𝑃 

relative to 𝒫.  

Confidence Interval of Scaler Parameter Estimator 

of Double Machine Learning 

 

Corollary 2 

Uniformly Valid Confidence Interval of Scaler Parameter estimator of DML: If the 

theorem 2 holds, then for some vectors ℓ𝑑𝛽×1, the constructed confidence interval for the scaler 

parameter ℓ′𝛽0 will be as follows: 

CI: = (ℓ′�̀�0 ± Φ−1(1 − 𝛼/2)√ℓ′�̂�2ℓ/𝑁), 

that satisfies: 

sup
𝑃∈𝒫𝑁

 |Pr𝑃 (ℓ′𝛽0 ∈ CI) − (1 − 𝛼)| → 0, 

which means that ∀ {𝑃𝑁} ∈ 𝒫𝑁, then the confidence interval obeys also,  
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Pr𝑃𝑁
 (ℓ′𝛽0 ∈ CI) → (1 − 𝛼) . 

Thus, the confidence interval is uniformly valid. So, for instance, if 𝜖𝑁 → 0,  then,  

sup
𝑃∈𝒫𝑁

 |Pr𝑃 (ℓ′𝛽0 ∈ CI) − (1 − 𝛼)| ≤ |Pr𝑃𝑁
 (ℓ′𝛽0 ∈ CI) − (1 − 𝛼)| + 𝜖𝑁 → 0 . 

Semiparametric Methods 

Semiparametric methods are the methods developed for a class of statistical models that 

have the parametric and the nonparametric components by adopting assumptions that fully define 

the distribution (Kosorok, 2009). However, semiparametric models still require minimum 

structure (Max & Zang, 2019). Specifically, a statistical model is a class of probability measures 

{Ρ, P ∈  𝒫} on a sample space 𝜒 (Kosorok, 2006). Assume that Ρ is indexed by a parameter 

space Θ, for each θ ∈ Θ, Pθ  is specified such that Ρ = {𝑃𝜃,   휃 ∈  Θ }. Thus, the statistical model 

Ρ which is indexed by θ ∈ Θ is considered parametric if  Θ ⊆ ℝ𝑘 , the Euclidean space of k-

dimensional for a positive integer k (Bickel et al., 2006). And it is a nonparametric model if the 

space of the parameters Θ ⊆ H, where H is an infinite-dimensional space. The statistical models 

are defined as semiparametric models {𝑃𝜃,𝜂 ∶  휃 ∈  Θ, 휂 ∈  H } if they have one or more finite-

dimensional parameter constituents θ ∈ Θ, and one or more infinite-dimensional parameter 

elements 휂 ∈  H , where H is a space of functions 휃 ∈   Θ ⊆ ℝ𝑘 is the parameter of interest, and 

휂 ∈  H is the infinite-dimensional nuisance parameter (Bickel et al., 2000; Kosorok, 2006).  

 For instance, assume the semiparametric regression model 𝑌 =  βΖ +  𝜖, where β is the 

k-dimensional Euclidean space parameter defining the parametric statistical components in the 

model (Kosorok, 2006). With infinite-dimensional space of all joint functions of (Ζ, 𝜖) with 

𝐸[𝜖/𝑍] =  0 , and E[𝜖2 /Z] =  0< k <∞, almost surely (Kosorok, 2006).  

The parametric methods are completely defined in the parameter space (Müller et al., 

2004). The fitted model is estimated and explained under restricted parametric assumptions such 

https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Infinite-dimensional_vector_space
https://en.wikipedia.org/wiki/Infinite-dimensional_vector_space
https://en.wikipedia.org/wiki/Infinite-dimensional_vector_space
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as normality, homogeneity of variance, and independent errors. If those assumptions are not met, 

where in the real-world data they are most likely going to collapse (Hollander et al., 2015), 

relying in this case on the parametric inference, results will be misrepresentative and inconsistent 

(Müller et al., 2004). An alternative such as the nonparametric models could be considered, as 

they provide fewer constrictive assumptions and they tolerate the studied data to adapt the shape 

of the function accordingly (Rodriguez-Poo & Soberón, 2017). However, in those models, some 

challenges could be encountered even with this appealing flexibility (Rodriguez-Poo & Soberón, 

2017). First, the problem of the models’ interpretability complexity could appear due to the curse 

of the dimensionality that comes from the high-dimensional regressors in the nonparametric 

settings (Wolfgang et al., 2004). Second, the estimator from the unknown function could have a 

higher variance (Rodriguez-Poo & Soberón, 2017). These problems were a motivation to adopt a 

dimension reduction with a parametric model along with keeping the flexible characteristic of 

the nonparametric components (Wolfgang et al., 2004). The developed framework is a 

semiparametric model, a combination of the two former models. By that, the advantage of the 

uncomplicated model’s interpretability from the parametric part and the advantage of lessened 

assumptions from the nonparametric counterpart (Wolfgang et al., 2004). Moreover, even when 

there is a nonparametric component that tends to have a slow rate of convergence, the acquired 

estimators from the parametric components display the √N consistency, the same as if the model 

is entirely parametric (Robinson, 1988; Speckman, 1988). 

The semiparametric models could be described in terms of the tangent space concept 

(Pfanzagl & Wefelmeyer, 1982). That could produce infinite score functions, where the root of 

those densities is in Hilbert space. 
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Reproducing Kernels Hilbert Space 

This research study's working space is mapped on the Reproducing Kernels Hilbert Space 

(RKHS), a space that is based on the kernel methods that map the data into high dimensional 

feature space using the inner products. The reason for the wide use of the kernel’s methods in 

machine learning is for their computational efficiency, dealing with the high dimensionality of 

data, and the integration of prior information. Also, the kernel framework provides an appealing 

result due to their interpretability and simplicity (Marron, 1994). Practically, the positive definite 

kernels are the basis for the learning in the feature space and for the machine learning estimation 

framework by finding functional solutions in the reproducing kernel Hilbert space (RKHS). 

Those functions are defined on the domain of the empirical data and mapped using kernels to 

high dimensional space that is more representative of the data features (Hofmann et al., 2008; W. 

Zhang et al., 2010).  

Suppose we have empirical data { (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} ∈ 𝒳 × 𝒴. Let us define the 

following functions 𝑘 and 𝜙 as follows (Hofmann et al., 2008; Schölkopf, 2000): 

𝑘: 𝒳 × 𝒳 → ℝ,   

(𝑥, 𝑥′) ↦ 𝑘(𝑥, 𝑥′), 

and  

 𝜙: 𝒳 → ℋ, 

and  

𝑥 ↦  𝜙(𝑥), 

such that 

𝑘(𝑥, 𝑥′) = ⟨𝜙(𝑥), 𝜙(𝑥′)⟩, 
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Where K is called the kernel function, Φ is the features map function, 𝐹 is some high-

dimensional feature space.  

Based on the work of Hofmann et al. (2008) and W. Zhang et al. (2010), the following is 

the definitions of the reproducible kernel (R.K) and the reproducing kernel Hilbert space 

(RKHS), followed by a display of the kernel matrix definition and its positive definite matrix 

characteristics (PDK). Those definitions are descriptions and are a necessary background to 

introduce the theorems of the Mercer’s Kernels and their relationship with the kernels being 

positive definite and the reproducing kernel Hilbert space (RKHS). 

Definition 2 

Reproducible Kernels: The function 𝑘: 𝒳 × 𝒳 → ℝ is a reproducible kernel (R.K) of a 

Hilbert space ℋ, if the following conditions are met 

1. ∀𝑥, 𝑘𝑥(𝑦) = 𝑘(𝑦, 𝑥) 

2. ∀𝑥 ∈ Ω, and ∀𝑓 ∈ ℋ,  𝑓(𝑥) =< 𝑓, 𝐾𝑥 > 

3. Given a Hilbert space  ℋ, then 

ℋ = span {𝐾𝑥(⋅) ∣ 𝑥 ∈ Ω̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} , 

which means that the Hilbert space  ℋ is spanned by 𝐾: 𝒳 × 𝒳 → ℝ. 

Noting that a reproducible kernel (R.K) holds the characteristics of building new complex 

reproducible kernels (R.K) based on products and sums of simpler reproducible kernels. 

Definition 3 

Reproducing Kernel Hilbert Space: Let ℋ be a Hilbert space of function 𝑓: 𝒳 → ℝ, 

where 𝒳 ⊆ ℝ𝑑 . Then ℋ is a reproducing kernel Hilbert space (RKHS) if the function 

  𝑘: 𝒳 × 𝒳 → ℝ satisfies the conditions stated above.  
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Definition 4 

Gram Matrix: Let a function 𝑘: 𝒳 × 𝒳 → ℝ be a kernel function with input 

(𝑥1, 𝑥2, … , 𝑥n ). The following n × n matrix is called a Gram matrix or a kernel matrix of k with 

respect to (𝑥1, 𝑥2, … , 𝑥n )  , 

K := ( k( 𝑥i , 𝑥j))ij 

Definition 5 

Positive Definite Kernel: Let the function 𝑘: 𝒳 × 𝒳 → ℝ  with input (𝑥1, 𝑥2, … , 𝑥n ) be a 

kernel function, where the corresponding kernel matrix (Gram matrix) is positive definite matrix 

as follows as, 

∀𝑐i  ∈ℝ,   ∑ 𝑐i 𝑐j𝑖,𝑗 𝐾ij  ≥ 0, 

Then we call the function 𝑘: 𝒳 × 𝒳 → ℝ as positive definite kernel (PDK).  

Theorem 3 

Let 𝑘: 𝒳 × 𝒳 → ℝ be a kernel function. 𝐾 is called a Mercer kernel iff 𝐾 is a positive 

definite kernel (PDK). 

Theorem 4 

 Let  𝑘: 𝒳 × 𝒳 → ℝ  be a kernel function.  𝐾 is a Mercer kernel iff there exists a 

reproducible kernel Hilbert space (RKHS) ℋ with reproducible kernel 𝐾. 

According to Schölkopf and Smola (2018), the kernels set K enjoy both properties of a 

convex cone set and a closed set under pointwise convergence as follows. 

Proposition 1 

 Sums of Kernels: Let K be the set of the kernels. For each 𝑘1 and 𝑘2 and 𝛼1, 𝛼2 ≥ 0, 

then 𝛼1𝑘1 + 𝛼2𝑘2 is a kernel. Which means that K is a convex set.  
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Proposition 2 

 Limits of Kernels:  Let K be the set of kernels. Consider 𝑘1, 𝑘2,…, 𝑘n, be kernels from 

the set K. If 

𝑘(𝑥, 𝑥′): = lim𝑛→∞  𝑘𝑛(𝑥, 𝑥′) exists for all 𝑥, 𝑥′, 

then 𝑘 is a kernel, which means that K is closed set under pointwise convergence. 

The examination of the literature review has indicated the importance of causal inference 

in observational studies and how the current research direction in causal inference is 

collaborating with machine learning methods.  

Because using machine learning procedures will help address the curse of the 

dimensionality that our era is witnessing as the big data era, which will help deliver a quality 

causal estimator compared to the counterpart of the traditional methods where they collapse in 

front of the high dimensionality of the covariates. The previous studies also denoted the 

importance of the choice of sample splitting in the process of statistical estimation or statistical 

inference. 

Based on this literature review, this research proposes a new causal inference model that 

has not been studied before, using double machine (DML) learning tools such as support vector 

machines (SVM), deep learning (DL), and super learner (SL), along with the support points 

sample splitting (SPSS).  
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CHAPTER III 

METHODOLOGY 

This chapter is dedicated to investigating the performance of the methods, super vector 

machine (SVM) with double machine learning (DML) using support points sample splitting 

(SPSS), deep learning (DL) with double machine learning (DML) using support points sample 

spitting, and hybrid of super learner and deep learning with the double machine learning using 

support points ample splitting. First, the optimal data splitting method, the support points 

subsampling, is introduced. The theoretical foundation is presented to show that this technique is 

an optimal splitting for the sample. To the best knowledge of the researcher, this could be 

considered as a new addition to the body of knowledge and a state-of-art sample splitting method 

that could best represent the sample. Second, the models under study are presented, to which the 

machine learning estimators are applied: Support vector machine and deep learning. Third, a new 

ensemble method is introduced that is a hybrid of the super learner, deep learning, and support 

points splitting. Fourth, the double machine learning for causal inference is described 

(Chernozhukov et al., 2018) with the sample splitting technique to construct the target estimator 

after the estimation of the nuisances. Finally, the chapter is concluded with the simulation 

scheme, and the empirical socio-economics example is used as a demonstration, of the 401(k) 

plan, a dataset used to estimate the effect of the eligibility of this plan on the financial assets.
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Support Points Sample Splitting 

This section starts by introducing the sample splitting with the support points. The 

following definition and assumptions are customized to this study (Joseph &Vakayil, 2021; 

Székely & Rizzo, 2013).  

Definition 6 

Support-Points Sample Splitting: Suppose that a sample unit data structure 

𝑆 = {(𝑼𝑖  , 𝑌𝑖) }𝑖=1
𝑁   that consists of the predictor 𝑼 = (T, X) of dimension p, where T is the 

causal target (treatment) variable, and response Y. The aim is to perform the sample splitting 

with the support points method and divide the data into two mutually exclusive and disjoint sets 

of 𝒮, a training set 𝒮1  and test set 𝒮2  such that N = n𝑡𝑟𝑎𝑖𝑛 + n𝑡𝑒𝑠𝑡 = card (𝒮1) + card(𝒮2),  

𝒮  = 𝒮1 ∪ 𝒮2  ,  (𝒮1)𝑐 = 𝒮2 . 

Assumption 3 

Assume that the samples come from a distribution 𝐺,  and they are independent and 

identically distributed, that is:  

(𝑼𝑖  , 𝑌𝑖) ∼
𝑖𝑖𝑑

𝐺, 𝑖 = 1, … , 𝑁. 

Assumption 4 

Let 𝐻(𝐔;  𝜽) be the adaptive predictor from the dataset, 𝜽 is the parameter vector to be 

estimated from the loss function 𝐿 (𝑌, 𝐻 (𝐔;  𝜽)). Take the loss function as the squared or 

absolute error loss, or the negative predictor log-likelihood. The wish is that the adaptive 

predictor 𝐻 (𝐔;  𝜽) is near to the true predictor E (Y | U) under some specific 𝜽. So, take the 

training sample to train multiple predictive models and then test their performance. The unknown 

vector parameter could be estimated by, 

�̂� = argmin
𝜽

1

𝑛train 

∑  
𝑛train 

𝑖=1 𝐿 (𝑌𝑖
train , 𝐻(𝐔i

train ;  𝜽)). 
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Given the training dataset,  

(𝐔i
train , 𝑌𝑖

train ) ∼ 𝐺, 𝑖 = 1, … , 𝑛train . 

The performance of the models could be evaluated by calculating the generalization error (Hastie 

et al., 2009), 

ℰ = 𝐸𝐔,𝑌{𝐿(𝑌, 𝐻(𝐔; �̂�)) ∣ 𝒮train } . 

And given that the testing dataset is from, 

(𝐔𝑖
test , 𝑌𝑖

test ) ∼ 𝐺, 𝑖 = 1, … , 𝑛test , 

estimate this error from the testing set 𝒮test  , 

ℰ̂ =
1

𝑛test 

∑  

𝑛test 

𝑖=1

𝐿 (𝑌𝑖
test , 𝐻(U𝑖

test ; �̂�)) . 

Thus, the estimation ℰ̂ will be a Monte Carlo (MC) estimator which decreases at a rate of 

𝒪(1/√𝑁𝑡𝑒𝑠𝑡). However, Mak and Joseph (2018) introduced the support points method for 

sample splitting with a Quasi-Monte Carlo (QMC) sample. This method could improve the 

estimation of ℰ with a faster convergence rate of 𝒪(1/𝑁test ). Furthermore, it could be applied on 

a sample from a general distribution not only limited to the uniform distribution (Niederreiter, 

1992). 

The Energy Distance 

Definition 7 

Assume 𝐕 = ( 𝐔, 𝑌) is a continuous variable. The energy distance between the empirical 

distribution of points 𝐯𝟏, 𝐯𝟐, . . ., 𝐯𝒏 and the distribution G(V) is described as follows, 

𝐸𝐷 =
2

𝑛
∑  𝑛

𝑖=1 𝔼∥∥𝐯𝑖 − 𝐕∥∥2
−

1

𝑛2
∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 ∥∥𝐯𝑖 − 𝐯𝑗∥∥2

− 𝔼∥𝐕 − 𝐕′∥2 ,  
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where ∥. ∥2 is the Euclidean distance. 𝐕, 𝐕′are both distributed as the distribution G. And all the 

expectation has been taken with respect to G taking into consideration that all variables should 

be standardized with mean zero and the unit standard deviation to calculate the Euclidean 

distance. Mak and Joseph (2018) have noted that the energy distance will be small in the case 

𝐯𝟏, 𝐯𝟐, . . ., 𝐯𝒏 are close to G. So, they have expressed the minimizer of the energy distance to be 

the support points definition as follows,  

{𝐯𝑖
∗}𝑖=1

𝑛 ∈ argmin
𝐯𝟏,𝐯𝟐,...,𝐯𝒏

𝐸𝐷 = argmin
𝐯𝟏,𝐯𝟐,...,𝐯𝒏

{
2

𝑛
∑  

𝑖=1

𝔼∥∥𝐯𝑖 − 𝐕∥∥2
−

1

𝑛2
∑  

𝑖=1

∑  

𝑗=1

∥∥𝐯𝑖 − 𝐯𝑗∥∥2
}  

The Support Points Sample Splitting: 

An Optimal Adaptive Learning 

 

First, one of the characteristics of the support points is that the expectation in the support 

points equation could be substituted with the Monte Carlo average that is computed from 

𝑆 = {(𝑼𝑖  , 𝑌𝑖) }𝑖=1
𝑁 , the sample set of interest (Joseph & Vakayil, 2021). This substitution is 

designed to solve the difficulty of not having the exact distribution of G, which makes the 

support points a flexible data adaptive technique. Thus, the updated formula of the support points 

will be, 

{𝐯𝑖
∗}𝑖=1

𝑛 ∈ argmin
𝐯𝟏,𝐯𝟐,...,𝐯𝒏

{
2

𝑛𝑁
∑  

𝑛

𝑖=1

∑  

𝑁

𝑗=1

∥∥𝐯𝑖 − 𝐕𝑗∥∥2
−

1

𝑛2
∑  

𝑛

𝑖=1

∑  

𝑛

𝑗=1

∥∥𝐯𝑖 − 𝐯𝑗∥∥2
}  . 

Second, the support points method is regarded as the best n points set that could represent 

the data distribution G based on the energy distance criteria (Mak & Joseph, 2018). It 

outperforms the other points splitting techniques such as the principal points method defined by 

Flury (1990), and MSE-rep method introduced by Fang and Wang (1994). Precisely, the support 

points converge in distribution to G, which makes it as a QCM sample for G. where the two 

other methods do not have this property.  
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The idea that the support points sample splitting is an optimal adaptive subsample to a 

dataset is addressed in this section and that is well-representative of the underlying distribution 

of this dataset. In the following, consider the work in some probability measure space ( Ω, ℱ, 𝑃). 

Lemma 1 

Consider a sequence {Xj}j=1
n  of random variables (R.V.’s) and a subsequence {Sij} of 

support points with the distribution function (DF)  𝐺𝑛 such that: 

𝐗n ∼ 𝐺𝑛 , 

𝐒n ∼ 𝐺𝑛 , 

 𝐗 ∼ 𝐺. 

Suppose 𝜑𝑛(𝑡) and  𝜑(t) are the characteristic functions of  𝐒n and 𝐗  respectively. If    

lim
𝑛→∞

𝜑𝑛(t) =  𝜑(t) , 

then  

𝐒𝑛 →
𝑑

𝐗 . 

Proof 

This lemma could be verified using Halley’s theorem and the Cramér-Lévy theorem. 

Proposition 3 

The Existence of a Convergent Subsequence: Consider  {Xj}j=1
n  a sequence of R.V.’s of 

sample where  𝐗n →
𝑑

𝐗. Thus, there exists a subsequence {Sij} such that  𝐒𝑛 →
𝑑

𝐗, which means 

that  𝜑𝑛(𝑡)  →  𝜑(t), and one of these subsequences is the support points subsequence. 

Proof 

Halley’s theorem could be used to certify the existence of such subsequences. The 

following theorem1, theorem 2, theorem 3, and theorem 4, show that one of these subsequences 

is the support points subsample that satisfies the conditions of this proposition. 
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Theorem 5 

Assume {Sij} is a sequence of independent and identically distributed (iid) support points-

based R. V.’s. Allow  �̌�𝑛, 𝐺 indicate the empirical distribution function (EDF) and limiting 

distribution function respectively (DF) with the corresponding characteristic functions 

φ̌n(t), 𝜑(t),  then 

𝑙𝑖𝑚
𝑛→∞

 φ̌n(t)     =     𝜑(t) , 

and  

𝑙𝑖𝑚
𝑛→∞

 E [  |φ̌n(t)     −  𝜑(t) )|2 ] = 0 . 

Proof 

Given the EDF   �̌�𝑛 (𝑥) =
1

𝑛
 ∑  n

k=1 I(Xk ≤ x), then by the Glinvenko-Cantelli Lemma, 

the following holds, 

 𝑠𝑢𝑝
𝐱

 |�̌�𝑛(𝑥) −  𝐺(x) | → 0 

 ⟹    �̌�𝑛 (𝑥) →  𝐺(x) .  

By the Cramér- Lévy theorem, it be deduced that,   

𝑙𝑖𝑚
𝑛→∞

  φ̌n(t) =  𝜑(t), on any finite |t | ∈  𝑇     (*). 

Also,  

 |𝑒𝑖 𝑥𝑡|  ≤  1 

⟹ |φ̌n(t)|   ≤ 1 

⟹   |φ̌n(t) −  𝜑(t) |2   ≤ 𝑐 ,   𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . 

As the  |φ̌n(t)   −  𝜑(t) |2 is bounded, then by the Portmanteau theorem, the equation (*) will be 

as follows,  

𝑙𝑖𝑚
𝑛→∞

 E  [ | φ̌n(t)  −  𝜑(t) )|2] = 0. 
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Theorem 6 

 Assume {Sij} is a sequence of independent and identically distributed (iid) support 

points-based R. V.’s. Allow  �̌�𝑛 , 𝐺  to indicate the empirical distribution function (EDF) and the 

limiting distribution function respectively (DF) with the corresponding characteristic 

functions  φ̌n(t) , 𝜑(t). Let 𝐸𝑑(�̌�𝑛  , 𝐺  ) is the energy distance. Thus, the following holds: 

𝑙𝑖𝑚
𝑛→∞

 𝐸 [  𝐸𝑑 (�̌�𝑛  , 𝐺  )] = 0, 

where the definition of the energy distance is defined by Székely and Rizzo (2013), 

𝐸𝑑(�̌�𝑛, 𝐺 ) =
1

𝐾𝑝
∫   

 |φ̌n(t)  − 𝜑(𝑡) )|2

∥𝑡∥2
𝑝+1  𝑑𝑡, 

where  

K𝑝 =  
𝜋𝑝+1

Γ(
𝑝+1

2
)
 . 

Proof 

The energy distance definition is as follows: 

𝐸𝑑(�̌�𝑛   , 𝐺 ) =
1

𝐾𝑝
∫

 |φ̌n(t)  − 𝜑(𝑡) )|2

∥𝑡∥2
𝑝+1  𝑑𝑡, 

where 𝐸𝑑(�̌�𝑛  , 𝐺 ) <  ∞ (Székely & Rizzo, 2013)  

⟹ 𝐸 {  𝐸𝑑(�̌�𝑛  , 𝐺 )} =  𝐸 {    
1

𝐾𝑝 
∫

 | φ̌n(t)− 𝜑(𝑡) )|2

∥𝑡∥2
𝑝+1  𝑑𝑡    }. 

By Fubini theorem 

𝐸 {  𝐸𝑑(�̌�𝑛  , 𝐺 )} =    
1

𝐾𝑝 
∫

𝐸[|φ̌n(t)  −  𝜑(𝑡) )|2]

∥ 𝑡 ∥2
𝑝+1  𝑑𝑡. 
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That implies the following by the dominated convergence theorem (DCT)   

𝑙𝑖𝑚
𝑛→∞

 𝐸 {  𝐸𝑑(�̌�𝑛  , 𝐺 )} =  𝑙𝑖𝑚
𝑛→∞

   
1

𝐾𝑝 
∫

𝐸[|φ̌n(t)  −  𝜑(𝑡) )|2]

∥ 𝑡 ∥2
𝑝+1  𝑑𝑡 

                                           =    
1

𝐾𝑝 
∫   𝑙𝑖𝑚

𝑛→∞

𝐸[|φ̌n(t)  −  𝜑(𝑡) )|2]

∥ 𝑡 ∥2
𝑝+1  𝑑𝑡   . 

By theorem 5,  

                                                              𝑙𝑖𝑚
𝑛→∞

 E[|φ̌n(t)  −  𝜑(t) )|2] = 0. 

Thus,  

𝑙𝑖𝑚
𝑛→∞

 𝐸 [  𝐸𝑑(�̌�𝑛  , 𝐺 )]  =  0 . 

Theorem 7 

Assume {Sij} is a sequence of independent and identically distributed (iid) support points-

based R.V.’s. Allow 𝐺𝑛,  �̌�𝑛 , 𝐺 indicate the cumulative distribution function (CDF), the 

empirical distribution function (EDF) and the limiting distribution function (DF) respectively. 

Consider the corresponding characteristic functions 𝜑𝑛(𝑡), φ̌n(t), 𝜑(t) ,  and the 𝐸𝑑(𝐺𝑛 , 𝐺 ) be 

the energy distance.  Thus, the following holds: 

𝑙𝑖𝑚
𝑛→∞

  𝜑𝑛(𝑡) =  𝜑(t). 

Proof 

From Mak and Joseph (2018), the energy distance satisfies the following property: 

 0 ≤ 𝐸𝑑(𝐺𝑛, 𝐺  ) ≤ 𝐸 [𝐸𝑑(�̌�𝑛  , 𝐺  )]. 

And from theorem 6,  

𝑙𝑖𝑚
𝑛→∞

 𝐸 [  𝐸𝑑(�̌�𝑛  , 𝐺 )]  =  0. 
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Thus, 

0 ≤ 𝐸𝑑(𝐺𝑛, 𝐺  ) ≤ 𝑙𝑖𝑚
𝑛→∞

 𝐸 [  𝐸𝑑(�̌�𝑛  , 𝐺 )]  =  0 

⟹ 𝐸𝑑(𝐺𝑛, 𝐺  ) = 0 .  …(i) 

By the definition of the energy distance, 

𝐸𝑑(𝐺𝑛  , 𝐺 ) =
1

𝐾𝑝
∫

 |𝜑𝑛(𝑡) −  𝜑(𝑡) )|2

∥ 𝑡 ∥2
𝑝+1  𝑑𝑡 

⟹ 𝑙𝑖𝑚
𝑛→∞

 𝐸𝑑(𝐺𝑛  , 𝐺 ) =  𝑙𝑖𝑚
𝑛→∞

 
1

𝐾𝑝
∫

 |  𝜑𝑛(𝑡)− 𝜑(𝑡) )|2

∥𝑡∥2
𝑝+1  𝑑𝑡. 

By the dominated convergence theorem, the following holds,   

𝑙𝑖𝑚
𝑛→∞

 𝐸𝑑(𝐺𝑛  , 𝐺 ) =   
1

𝐾𝑝
∫ 𝑙𝑖𝑚

𝑛→∞

 |  𝜑𝑛(𝑡) −  𝜑(𝑡) )|2

∥ 𝑡 ∥2
𝑝+1  𝑑𝑡.     (𝑖𝑖) 

From (i) and (ii) that implies,  

𝑙𝑖𝑚
𝑛→∞

 [|𝜑𝑛(𝑡)  −  𝜑(t) )|2] = 0. 

Then 

𝑙𝑖𝑚
𝑛→∞

  𝜑𝑛(𝑡) =  𝜑(t). 

Theorem 8 

 Let the sequences {Xj}j=1
n , {Sij}   be the sample and the support points-based subsample 

of random variables (R.V.’s) respectively, such that, 

𝐗n ∼ 𝐺𝑛 , 

𝐗n →
𝑑

𝐗 ∼ 𝐺 , 

𝐒n ∼ 𝐺𝑛. 

Thus, 

𝐒n →
𝑑

𝐗 ∼ 𝐺. 
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Proof 

From proposition 1, theorem 1, theorem 2, and theorem 3, previously introduced, it could 

be concluded that the {Sij} , the sequence of random variables of the support points satisfies, 

𝑙𝑖𝑚
𝑛→∞

  𝜑𝑛(𝑡) =  𝜑(t). 

Thus, by lemma 1 that implies: 

𝐒n →
𝑑

𝐗 ∼ 𝐺. 

Corollary 3 

Let {Xj}j=1
n , {Sij}  Sequences of the sample and the support points subsample respectively 

of random variables (R.V.’s) such that,   

𝐗n ∼ 𝐺𝑛 , 

𝐗n →
𝑑

𝐗 ∼ 𝐺 , 

and 

 𝐒n ∼ 𝐺𝑛. 

Suppose 𝑓  is continuous functions such that 𝑓: ( Ω, ℱ, 𝑃) → ℝ , thus 

𝑓 (𝐒n) →
𝑑

𝑓(𝐗).  

Proof 

This corollary could be proved using theorem 4 and the continuous mapping theorem. 

Corollary 4 

Suppose the sequence {Xj}j=1
n , {Sij} of random variables (R.V.’s) of the  

sample and the support points subsample, respectively, such that   

𝐗n ∼ 𝐺𝑛 , 

𝐗n →
𝑑

𝐗 ∼ 𝐺 , 
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and 

 𝐒n ∼ 𝐺𝑛. 

Suppose  𝑓 is continuous and bounded function such that 𝑓: ( Ω, ℱ, 𝑃) → ℝ, thus 

𝑙𝑖𝑚
𝑛→∞

 𝐸 [ 𝐟 (𝐒n)] 
     

=  𝐄 [ 𝐟 (𝐗) ]. 

Proof 

This corollary could be proved using the portmanteau theorem. 

Comparison Between the Support Points Sample 

Splitting and Random Splitting  

 

Joseph and Vakayil (2021) have stated that the application of the support points for 

splitting the dataset into training and testing subsets has shown an optimal result versus the 

counterpart method of the random splitting. Empirically, consider taking the training set larger 

than the testing set, so, it will be more computationally efficient to create the testing set first. By 

implementing the equation stated earlier and taking n = 𝑁𝑡𝑒𝑠𝑡, thus,  

{𝐯𝑖
∗}𝑖=1

𝑛 ∈ Argmin
𝐯𝟏,𝐯𝟐,...,𝐯𝒏

{
2

𝑛𝑁
∑  𝑛

𝑖=1 ∑  𝑁
𝑗=1 ∥∥𝐯𝑖 − 𝐕𝑗∥∥2

−
1

𝑛2
∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 ∥∥𝐯𝑖 − 𝐯𝑗∥∥2

}. 

From the following Figure 3, observe the visualization of the testing set of both support 

points sample splitting and random splitting, where the support points splitting set is noticeably 

more representative of the original dataset than the random sample splitting set, which will 

deliver a much better estimation and inference accuracy (Székely & Rizzo, 2013). 
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Figure 3 

 

Empirical Comparison Between the Random and Support Points-Based Splitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Validation Sets are Optimal with Support 

Points Sample Splitting 

 

Definition 8 

The Optimal Validation Set: Let {𝐯𝑖
∗}𝑖=𝐍𝑡𝑒𝑠𝑡+ 1

𝑛  be the validation set and let {𝐯𝑖
∗}𝑖=1

𝐍𝑡𝑒𝑠𝑡   be 

the testing set such that 𝐍𝑣𝑎𝑙𝑖 +  𝐍𝑡𝑒𝑠𝑡 = 𝑛. Thus, the identification of an optimal validation 

points set that are away from the testing set, by using the support points technique based on the 

energy distance (Joseph & Vakayil, 2021) will be as follows,  

{𝐯𝑖
∗}𝑖=𝑵𝑡𝑒𝑠𝑡+ 1

𝑛 ∈ argmin
𝐯𝐍𝑡𝑒𝑠𝑡 ,...,𝐯𝒏∈ 𝑫

{
2

𝑛𝑁
∑  n

i=𝐍test+ 1 ∑  𝑁
𝑗=1 ∥∥𝐯𝑖 − 𝐕𝑗∥∥2

−
1

𝑛2
∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 ∥∥𝐯𝑖 − 𝐯𝑗∥∥2

}. 

This support points splitting could be used as an optimal method for data splitting in a 

specific situation (Vakayil & Joseph, 2022), such as where the hyper parameter estimation is 

needed (Joseph & Vakayil, 2021). The semiparametric causal inference with double machine 

learning models requires the estimation of the nuisance parameters where they are counted as 

hyperparameters, and in applications they are typically high dimensional. Thus, applying the 
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support points splitting will be more useful for the double machine learning estimation of the 

nuisance parameters than the random technique.  

Taking into consideration that machine learning techniques such as, SVM, DL, Lasso, 

regression trees, and random forests are more efficient machine learning techniques in estimating 

the hyperparameter, this study adopt the SVM and DL as the methods for the causal inference in 

the double machine learning settings.  

Two optimal characteristics of the validation’s points set could be depicted using support 

points splitting. First, note that the importance of the validation set comes from their role to be 

used in estimating the hyperparameters. As the empirical examples shows, the validation sets 

using the support splitting do not intercept with the testing sets as much as in the random 

splitting because of the second term in the energy distance optimization 
1

𝑛2
∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 ∥∥𝐯𝑖 − 𝐯𝑗∥∥2

  

that attest that the validation set points are distant from the testing points set.  Thus, the bias that 

could arise from testing the model from a subset that is near to the training/validation sets is 

handled better with the support points splitting than the random splitting.  

Second, the validation sets, shown in squares, obtained from the support points splitting, 

are optimal in the representation of the original data than the validation sets generated from 

random splitting validation, which will ensure a better estimation of the hyperparameters of the 

nuisance parameters in this framework of the semiparametric causal double machine learning. 

That means that the support points splitting method is more adaptive learning than the 

counterpart of random splitting.   

Figure 4 shows the optimal characteristics of the validation points set using support 

points versus the random sample. The validation and testing sets are in squares and in circles 

respectively, from Joseph and Vakayil (2021). 
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Figure 4 

 

The Validation Points Set Using Support Points Versus the Random Sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Support Vector Machine 

Smola and Schölkopf (2004) developed the support vector machine (SVM) for regression 

based on VC theory (Vapnik, 1982, 1995; Vapnik & Chervonenki, 1974), which is a theoretical 

foundation that initially introduced the support vector machine, a method that is considered as 

kernel-based (Che & Wang, 2014).  

In this framework, consider the data defined by  𝒟 = {(x𝑖, 𝑦𝑖) (𝐱𝒊, 𝑦𝑖) ∈ ℝd × ℝ}, and 

Let F (x,  𝒘) be the estimated distribution function that is parameterized by 𝒘,  where �̂� quantify 

the error between F (x,  �̂�), and G(x) the true distribution function. 

Definition 9 

 The Support Vector Machine: The support vector machine (SVM) has a good application 

in economics in terms of restricting the tolerable amount in investments. However, The SVM is a 

model with 휀- support vector, a  휀 – radius cylinder that allows the utmost value between the 

fitted line and the data. In other words, 휀 −support vector identifies a loss function that equals to 
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zero if the fitted value is within the 휀-radius cylinder (Drucker et al., 1997; Smola & Schölkopf, 

2004; Vapnik, 1995) as follows, 

ℒ = {

|𝑦𝑖 − 𝐹2(𝒙𝑖, �̀�)| − 휀, 𝑖𝑓    |𝑦𝑖 − 𝐹2(𝒙𝑖, �̀�)| − 휀 > 0
 

𝑜𝑟
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

The Lagrange method is used to find the minimization solution value to the loss function  

ℒ =
1

2
∥ 𝑤 ∥2+ 𝐶 ∑  

𝑘

𝑖=1

  (𝜉𝑖 + 𝜉𝑖
∗) − ∑  

𝑘

𝑖=1

  (휂𝑖𝜉𝑖 + 휂𝑖
∗𝜉𝑖

∗)  −    𝛼𝑖(휀 + 𝜉𝑖 − 𝑦𝑖 + ⟨𝑤, 𝑥𝑖⟩ + 𝑏) 

 

− ∑  ℓ
𝑖=1  𝛼𝑖

∗(휀 + 𝜉𝑖
∗ + 𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏), 

where:  휂𝑖
∗, 휂𝑖 , 𝛼𝑖

∗, 𝛼𝑖 are Lagrange multipliers,  𝜉𝑖
∗, 𝜉𝑖  are slack variables (Cortes & Vapnik, 

1995). After the Lagrange problem is solved (Smola & Schölkopf, 2004), then,  

𝑤 = ∑  ℓ
𝑖=1 (𝛼𝑖 − 𝛼𝑖

∗)𝑥𝑖, 

which is the expansion equation of the support vector machine. To summarize the concept of the 

support vector machine (SVM) for regression based on Smola and Schölkopf (2004), Figure 5 

illustrate this work geometrically as follows,   

 

Figure 5 

 

Illustration of Support Vector Machine 
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Deep Learning 

Definition 10 

Deep Learning:  The following description and definitions are based on the work of A. 

Zhang et al. (2023) and Goodfellow et al. (2016).  

Deep learning is an artificial intelligence framework based on a multilayer perceptron 

(MLP) model; an advanced supervised learning paradigm composed of neurons organized in a 

couple of layers. Each neuron of a layer is linked to the previous and the next layer neurons to 

form a multiple layer’s neural network architecture. This is different from the simple neural 

network that is composed of only one single layer. Figure 6 illustrates an example of a deep 

learning diagram, which has more than one hidden layer (Two layers), an input layer, and an 

output layer. In construct, Figure 7 illustrates a shallow deep learning or a neural network that 

has only one hidden layer, an input layer, and an output layer. 

 

Figure 6 

 

Deep Learning Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.amazon.com/Ian-Goodfellow/e/B01MQGN8N0/ref=dp_byline_cont_book_1
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Figure 7 

 

Neural Networks diagram,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep learning has offered a good result to many problems in observational data 

compared to the counterpart of simple neural network learning such as in the speech recognition 

and the image processing fields. It is based on the feedforward learning flow, a learning chain 

that starts from an input 𝐗 ∈ ℝ𝑛×𝑑  to an output 𝐘 ∈ ℝ𝑛×𝑦 through multiple hidden layers, 

conceptually, through a combination of functions. For instance, suppose there are three hidden 

layers of depth in the following deep learning model, thus, three functions would be defined in 

this structure, g(1) , g(2), and 𝑔(3)  such that they represent layer 1, layer 2, and layer 3 

respectively. This chain structure could be defined as the functional composition, 

𝑔(3) ∘ 𝑔(2) ∘  𝑔(1) =  𝑔(3)((𝑔(2)( 𝑔(1)))). 

In the deep learning model introduced earlier, the output equations of each hidden layers 

are defined as follows, where 𝐖(i) ∈ ℝ𝑑×ℓ𝑖 , 𝐛(i) ∈ ℝ𝑑×𝑞𝑖      are each layer weights, and the bias 

of each layer respectively, 

𝐋(1) =  𝑿 

𝐋(2) = 𝐋(1)𝐖(2) + 𝐛(2), 
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𝐋(3) = 𝐋(2)𝐖(3) + 𝐛(3), 

𝐋(4) = 𝐋(3)𝐖(4) + 𝐛(4), 

𝒀 = 𝐋(5) = 𝐋(4)𝐖(5) + 𝐛(5). 

Thus, by substituting and performing the functional combination definition,   

⟹ 𝒀 = (𝐋(3)𝐖(4) + 𝐛(4))𝐖(5) + 𝐛(5) 

⟹ 𝒀 = [(𝐋(2)𝐖(3) + 𝐛(3))𝐖(4) + 𝐛(4)]𝐖(5) + 𝐛(5) 

⟹ 𝒀 = {[(𝐋(1)𝐖(2) + 𝐛(2) )𝐖(3) + 𝐛(3)]𝐖(4) + 𝐛(4)}𝐖(5) + 𝐛(5) 

⟹ 𝒀 = 𝐋(1)𝐖 + 𝐛 

⟹ 𝒀 = 𝐗𝐖 + 𝐛, 

where the total weight of the output is:  

W=  𝐖(1) 𝐖(2)𝐖(3) 𝐖(4)𝐖(5) . 

And the total bias of the output is:  

b =   𝐛(2) 𝐖(3)𝐖(5) + 𝐛(3)𝐖(4)𝐖(5) + 𝐛(4)𝐖(5) + 𝐛(5) . 

The relationship between the layers was linear in the previous example. In general, a key 

ingredient is needed in the deep learning model structure, a nonlinear function that is called an 

activation function 𝒜(ℓ𝑖), ℓ𝑖 ∈ { 1, . . . , ℓ𝑖},  which link each two sequential layers as follows,  

𝐋(1) = 𝒜(1)𝑿 = 𝑿, 

𝐋(2) =  𝒜(2) ( 𝐋(1)𝐖(2) + 𝐛(2) ), 

𝐋(3) =  𝒜(3) ( 𝐋(2)𝐖(3) + 𝐛(3)), 

𝐋(4) = 𝒜(4) ( 𝐋(3)𝐖(4) + 𝐛(4)), 

𝒀 = 𝒜(5) ( 𝐋(4)𝐖(5) + 𝐛(5)). 
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Super Learner 

Super Learner is considered an ensemble method. Ensemble learning methods are a 

combination of multiple-based learners to train them and make predictions using specific 

procedures (Ju et al., 2018). Researchers in different fields have demonstrated increased interest 

in the ensemble's methods due to their high performance in the prediction of empirical data. Such 

as applying the ensemble method in an online learning study (Benkeser et al., 2018), mortality 

prediction study (Chambaz et al., 2016), and precision medicine study (Wyss et al., 2018).  

For instance, boosting, bagging, and stacking are examples of ensemble learning 

techniques. The boosting ensemble method takes care of the weak learner and boosts its 

performance (Freund & Schapire, 1996). 

Conversely, bagging ensemble methods take care of the strongest algorithm to minimize 

its variance by applying the bootstrap aggregation (Breiman, 1996). Stacking is the linear 

combination of all learners (Wolpert, 1992).  

Van der Laan et al. (2007) has extended the work of stacking from Wolpert (1992) to 

introduce what is called a super learner, which implements cross-validation and minimizes the 

validation risk to produce an optimal prediction based on the collection of an ensemble of 

learners which also has superior performance than to those learners individually.  

It is an ensemble that estimates the performance of multiple algorithms through the cross-

validation method, which has a result that is as good as the best-performing algorithm in the 

combination.  

Super learner generates weights for each learner in the ensemble that is an optimal 

average based on their performance (Van Der Laan & Dudoit 2003; Van Der Laan et al., 2007). 
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Accepted the changes Accepted the changes have summarized the super learner algorithm in the 

following steps, 

1. Split data into 𝑘 blocks. 

2. Fit all 𝑀 methods on blocks, leaving out one block. 

3. On each block, calculate for each method the mean squared error (MSE). 

4. Repeat  (𝑘 − 1) times in steps 2 and 3. 

5. leave out one block 𝑗 = 2,3, … , 𝑘  for each repetition. 

6. Choose the method with the lowest MSE through the blocks. 

According to Van der Laan et al. (2007), if each learner 𝐿𝑘(𝑛) ( k= 1,..., K(n))  from a 

collection of learners Ψ̀𝑘 is considered as an algorithm on the empirical distributions, then, a 

function could be defined mapping the empirical probability distributions  𝑃𝑛 to a function of 

covariates Ψ̀𝑘(𝑃𝑛),  

𝐿𝑘 ∶   𝑃𝑛 → Ψ̀𝑘(𝑃𝑛), 

where  

Ψ is the parameter space, 

then, the super learner is defined:  

Ψ̀(𝑃𝑛) ≡ Ψ̀�̀�(𝑃𝑛)(𝑃𝑛) 

where  

�̀�(𝑃𝑛) is the selector that selects the optimal learner to minimize the cross-validation risk, 

thus, 

�̀�(𝑃𝑛) ≡ arg min
𝑘

 𝐸𝐵𝑛
∑  

𝑖,𝐵𝑛(𝑖)=1

(𝑌𝑖 − Ψ̀𝑘(𝑃𝑛,𝐵𝑛

0 )(𝑋𝑖))
2

, 

where 
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𝑃𝑛,𝐵𝑛

0  is the empirical probability distribution of the validation set, 

𝑃𝑛,𝐵𝑛

1  is the empirical probability distribution of the training set, 

𝐵𝑛 ∈ {0,1}𝑛 is a random binary vector to define the split of validation and training learning. 

{𝑖: 𝐵𝑛(𝑖) = 0}, and {𝑖: 𝐵𝑛(𝑖) = 1}, are the validation and training samples.  

Van der Laan et al. (2007) define the following theorem to demonstrate that the super 

learner performs as best as the oracle selector up to the second order. So, the super learner is 

counted as the optimal learner under the conditions: 𝐿𝑘(𝑛) learners is polynomial in the sample 

size(n) and under the following assumptions. 

Assumption 5 

The loss function should be uniformly bounded. ∃ 𝑆1 < ∞ , so that  

sup
𝜓∈Ψ

 sup
𝑂

 |𝐿(𝑂, 𝜓) − 𝐿(𝑂, 𝜓0)| ≤ 𝑆1, 

where 

𝐿(𝑂, 𝜓) = (𝑌 − 𝜓(𝑋))2  is the loss function, 

Ψ(𝑃0) = 𝜓0  is the parameter. 

Assumption 6 

The variance of the 𝜓0−  centered loss function 𝐿(𝑂, 𝜓) − 𝐿(𝑂, 𝜓0) can be bounded by its 

expectation uniformly in 𝜓. 

Theorem 9 

Under assumptions 5 and assumption 6, let p be the proportion of observations in the 

validation sample, specify  {�̀�𝑘 = Ψ̀𝑘(𝑃𝑛), 𝑘 = 1, … , 𝐾(𝑛)} as the set of 𝐾(𝑛) estimators, where 

the true parameter is defined as follows, 

𝜓0 = arg min𝜓∈Ψ  ∫ 𝐿(𝑜, 𝜓)𝑑𝑃0(𝑜) 
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outline the difference of risk between parameter 𝜓0 and the candidate estimator 𝜓 as follows, 

𝑑0(𝜓, 𝜓0) ≡ 𝐸𝑃0
{𝐿(𝑂, 𝜓) − 𝐿(𝑂, 𝜓0)},  

thus, for any 𝜆,  the finite sample inequality is: 

𝐸𝑑0(Ψ̀�̀�(𝑃𝑛)(𝑃𝑛,𝐵𝑛

0 ), 𝜓0) ≤ (1 + 2𝜆)𝐸𝑑0(Ψ̀�̀�(𝑃𝑛)(𝑃𝑛,𝐵𝑛

0 ), 𝜓0) + 2𝐶(𝜆)
1+log (𝐾(𝑛))

𝑛𝑝
, 

where 

Ψ is a parameter space,  

 P [ Ψ̀𝑘(𝑃𝑛) ∈ Ψ ] = 1,  

�̀�(𝑃𝑛) ≡ arg min𝑘  𝐸𝐵𝑛
∫ 𝐿 (𝑜, Ψ̀𝑘(𝑃𝑛,𝐵𝑛

0 )) 𝑑𝑃0(𝑜) , is the comparable oracle selector, and 

�̀�(𝑃𝑛) ≡ arg min𝑘  𝐸𝐵𝑛
∫ 𝐿 (𝑜, Ψ̀𝑘(𝑃𝑛,𝐵𝑛

0 )) 𝑑𝑃𝑛,𝐵𝑛

1 (𝑜) , is the cross-validation selector. 

A Hybrid Method of Super Learner and 

Deep Learning with Support Points 

 

The study proposes a super learner (SL) ensemble that is an ensemble model which is a 

hybrid of the deep neural network, the super learner ensemble for double debiased machine 

learning, and Support Points Splitting.  

This section started to describe the deep learning paradigm and how its machine learning 

algorithm performs. Secondly, the super learner ensemble has been defined and its algorithm. 

Now, the new hybrid ensemble is introduced, a super learner ensemble model which is a hybrid 

of the deep neural network learning and the super learner ensemble. This method is used as 

machine learning to estimate the causal target parameter in the double debiased machine learning 

framework.  
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Double Machine Learning Inference in the 

Partially Linear Regression Model 

 

Before stating the inference results of the partially linear regression (PLR) model, the 

assumptions required to oblige the regularity conditions to be met are formulated as follows, 

Assumption 7 

Regularity Conditions: Under the partial Linear Regression model, given 𝒫  is the 

collection of probability laws 𝑃 for the  𝑍 = (𝑌, 𝐷, 𝑋), suppose a random fold I ⊂ [𝑁] =

{1, . . . , 𝑁} of   size  𝑛 = 𝑁/𝐾, then the nuisance parameter 휂̀0 = 휂̀0((𝑍𝑖)𝑖∈𝐼𝑐)  satisfies, 

P [∀ 𝑛 ≥ 1 / ∥∥휂̀0 − 휂0∥∥𝑃,𝑞
≤ 𝐶 ∧ ∥∥휂̀0 − 휂0∥∥𝑃,2

≤ 𝛿𝑁]    ≥  1 − Δ𝑁 . 

For the case, the score function is, 

𝜓(𝑍; 𝛽, 휂): = {𝑌 − 𝐷𝛽 − 𝑔(𝑋)}(𝐷 − 𝑚(𝑋)),  휂 = (𝑔, 𝑚), 

then the nuisance will obey the following equation, 

휂̀0 = (�̀�0, �̀�0), ∥∥�̀�0 − 𝑚0∥∥𝑃,2
×∥ �̀�0 − 𝑔0 ∥𝑃,2≤ 𝛿𝑁𝑁−1/2. 

And for the case of the score function is defined by,  

𝜓(𝑍; 𝛽, 휂): = {𝑌 − ℓ(𝑋) − 𝛽(𝐷 − 𝑚(𝑋))}(𝐷 − 𝑚(𝑋)),  휂 = (ℓ, 𝑚),  

the nuisance will obey the following equation,   

휂̀0 = (ℓ̀0, �̀�0), ∥∥�̀�0 − 𝑚0∥∥𝑃,2
× (∥∥�̀�0 − 𝑚0∥∥𝑃,2

+ ∥∥ℓ̀0 − ℓ0∥∥𝑃,2
) ≤ 𝛿𝑁𝑁−1/2. 

And the disturbance terms  𝑈 𝑎𝑛𝑑  𝑉,  the response variable Y, the covariate X, and the target 

parameter D satisfies the following,  

∥∥𝐸𝑃[𝑈2 ∣ 𝑋]∥∥𝑃,∞
≤ 𝐶, 

∥∥𝐸𝑃[𝑉2 ∣ 𝑋]∥∥𝑃,∞
≤ 𝐶 , 

∥ 𝑌 ∥𝑃,𝑞 +∥ 𝐷 ∥𝑃,𝑞≤ 𝐶, 
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and  

∥ 𝑈𝑉 ∥𝑃,2≥ 𝑐2, 

𝐸𝑃[𝑉2] ≥ c. 

Theorem 10 

Under assumption 7. The estimator  �̀�0 (either DML1 or DML2) will satisfy, 

𝜎−1√𝑁 (�̀�0 − 𝛽0)
𝑑
→ 𝑁(0,1), 

which is derived from the following score function,  

𝜓(𝑍; 𝛽, 휂): = {𝑌 − 𝑇𝛽 − 𝑔(𝑋)}(𝑇 − 𝑚(𝑋)),  휂 = (𝑔, 𝑚). 

Or, from  

𝜓(𝑍; 𝛽, 휂): = {𝑌 − ℓ(𝑋) − 𝛽(𝑇 − 𝑚(𝑋))}(𝑇 − 𝑚(𝑋)),  휂 = (ℓ, 𝑚), 

where 𝜎2  is defined by,  

𝜎2 = (𝐸𝑃[𝑉2])−1𝐸𝑃[𝑉2𝑈2](𝐸𝑃[𝑉2])−1. 

And the Confidence Region (CR) are valid uniformly asymptotically,  

lim
𝑁→∞

  sup
𝑃∈𝒫

  |𝑃𝑟𝑃( 𝛽0 ∈ [�̀�0 ± Φ−1(1 − 𝛼/2)�̀�/√𝑁]) − (1 − 𝛼)| = 0. 

Simulation Scheme 

Based on Chernozhukov et al. (2018), the sample size and the number of covariates that 

have been applied in their study were of N = 500, 1000, with numbers of covariates chosen as of 

p = 20. This simulation extends this scheme to more cases, such as N = 100 (relatively low 

sample size), and p = (20, 50, 80, 100), p = (200, 300, 500), and p = (1000, 2000, 3000) for 

larger covariates size. Under these cases, two scenarios are introduced. Consider the true value of 

the average treatment effect is to  𝛽0 = 0.5, under the partial linear regression model. 
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𝑌 = 𝑇𝛽0 + 𝑔0(𝐗) + 𝑈, 𝔼[ 𝑈 ∣ 𝐗, 𝐷 ] = 0, 

𝑇 = 𝑚0(𝐗) + 𝑉, 𝔼[ 𝑉 ∣ 𝐗 ] = 0. 

And the nuisance parameters are (Bach et al., 2021) 

𝑔0(𝑥𝑖) =
exp (𝑥𝑖)

1+exp (𝑥𝑖)
+

1

4
𝑥𝑖, 

𝑚0(𝑥𝑖) = 𝑥𝑖 +
1

4

exp (𝑥𝑖)

1+exp (𝑥𝑖)
   .

  

Scenario 1 

Consider the simulation studies introduced in Farbmacher et al. (2020), Bach et al. 

(2021), and Chernozhukov et al. (2018) 

𝑥𝑖 ∼ 𝒩(0, Σ),  Σ𝑘𝑗 = 0.5|𝑗−𝑘|, 

(
𝑈
𝑉

) ∼ 𝒩 (0, (
1 0.3

0.3 1
)). 

Scenario 2 

The following scenario is from Chernozhukov et al. (2018) and Bach et al. (2021)   

The error terms are,  

휁𝑖 ∼ 𝒩(0,1), 

𝑣𝑖 ∼ 𝒩(0,1), 

with the covariates 

𝑥𝑖 ∼ 𝒩(0, Σ),  Σ𝑘𝑗 = 0.7|𝑗−𝑘|. 

The following is Table 1 that summarizes the planned simulation scheme with the 

scenarios and the cases. It shows 54 cases for each of the three Research Questions which will be 

a total of 162 simulation cases.   
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Table 1 

 

Simulation Scheme Plan 

 

Levels of 

High 

Dimensional 

Data 

Low-High-Dimensional (LHD) Moderate-High-Dimensional (MHD) Big-High-Dimensional (BHD) 

Number of 

Covariates (p) 

20 50 80 100 200 500 1000 2000 5000 

Sample Size 

(N) 

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 

Scenario 1  C
ase1
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C
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C
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C
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How to Answer the Research Questions 

First, to answer the Research Question 1a and Research Question 2a, a simulation study 

is conducted with detailed scheme cases and scenarios that have been shown previously. 

Additionally, a comparative study is run between this study methods of each research question to 

the methods applied in the work of Chernozhukov et al. (2018). 

Second, for the Research Question 1b and Research Question 2b, the benchmark study is 

conducted between the study application of the DML with SVM and support points sample 

splitting (SPSS), and the application of DML using DL and support points sample splitting 

compared to the Chernozhukov et al. (2018) methods, where they have used random splitting and 

the machine learning techniques, random forest, boosting, and neural network.  

Third, for Research Question 3, the hybrid method of double machine learning (DML), 

super learner (SL), and deep learning (DL) deployed with support points sample splitting (SPSS) 

to estimate the average treatment effect is compared with the Chernozhukov et al. (2018) 

ensemble. 

Finally, as a benchmark, the socio-economics real-world data, the 401(k) eligibility, and 

selection that has been applied in the paper by Chernozhukov et al. (2018) are used to compare 

this research methods.  

This example has been intentionally chosen, as it touches the economic and social 

situations of the US participants, and this simulation wants to contribute to this study to detect 

the causal effect of 401(k) eligibility and selection. Implementing the causal inference from the 

observational data with the three machine learning techniques will help the decision-makers take 

informed decision making. 
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CHAPTER IV 

RESULTS 

This chapter answers the research questions stated in Chapter I. It presents the results of 

the simulation study and the real data analysis described in Chapter III. To capture the 

performance of the causal inference in the double machine framework for the semiparametric 

approach, the two scenarios described in the simulation scheme are implemented to compare the 

three models of the partial linear regression. The first scenario is having a data generation with 

uncorrelated covariance, while the second scenario allows a correlated covariance. For each 

scenario, three levels of the high dimensional data setting are adopted: low-high-dimensional, 

moderate-high-dimensional, and big-high-dimensional. The performance of the models is 

applied to the real data to explore and compare the results. For each research question, there are 

two parts, the first addresses the simulation performance of the models, and the second 

undertakes the application of the three models to the empirical example of real data. I start with 

the exploration of the simulation results of each question and conclude with the second part of 

the real data analysis.  

In this simulation, there are 3 different sample sizes, 100, 500, and 1000. For each sample 

size, there will be 9 covariates sizes categorized as follows, 20, 50, 80, 100, 200, 500, 1000, 

2000, 5000. And two scenarios for correlated and uncorrelated errors. This is 54 simulations for 

each of the 3 research questions, which is making it 162 simulations.  

The covariates sizes are categorized into three levels to assist in the performance 

comparison between the cases of the simulations, low-high-dimensional (LHD) for p = (20, 50, 
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80), moderate-high-dimensional (MHD) for p = (100, 200, 500), and big-high-dimensional 

(BHD) for p = (1000, 2000, 5000).  

Those simulations are being operated using both the personal computers and the high-

performance computing cluster (HPC), which has assisted to make an informative performance 

comparison between the two computing paradigms and serves as a reference for future 

replication. The personal computers were operated with different cores ranging from 4-20 cores, 

where the high-performance computing cluster (HPC) was run through both standard and 

parallelization computing.  

The identification model considered in this research framework is based on partial linear 

regression in the semiparametric approach. Noting that to infer the low dimensional causal 

treatment effect in the three models of this study, the semiparametric nuisance function g(x), 

m(x) is defined as high dimensional. The identification model is prescribed in two equations. The 

first equation accounts for the variation of the causal treatment effect T in the presence of the 

nuisance parameter 𝑔0(𝐗). Where the propensity equation regresses the variation of the 

covariates on the treatment effect T: 

𝑌 = 𝑇𝛽0 + 𝑔0(𝐗) + 𝑈, 𝔼[ 𝑈 ∣ 𝐗, 𝐷 ] = 0, 

𝑇 = 𝑚0(𝐗) + 𝑉, 𝔼[ 𝑉 ∣ 𝐗 ] = 0. 

∀ i ∈ {1, … , 𝑁}, the nuisance parameters are,  

  𝑔0(𝑥𝑖) =
exp (𝑥𝑖)

1+exp (𝑥𝑖)
+

1

4
𝑥𝑖,  

𝑚0(𝑥𝑖) = 𝑥𝑖 +
1

4

exp (𝑥𝑖)

1+exp (𝑥𝑖)
   .

  

 



55 

 

Simulation Study Scenarios 

Each Research Questions part (a) is answered under a simulation study for two scenarios 

settings, they are defined as follows: 

Scenario 1 

The covariate is:  

𝑥𝑖 ∼ 𝒩(0, Σ), 

Toeplitz:  Σ𝑘𝑗 = 0.7|𝑗−𝑘|, 

and the error are:  

𝜇𝑖 ∼ 𝒩(0,1), 

𝑣𝑖 ∼ 𝒩(0,1). 

Scenario 2 

The covariate is: 

𝑥𝑖 ∼ 𝒩(0, Σ),  

Toeplitz:  Σ𝑘𝑗 = 0.5|𝑗−𝑘|, 

and the error are:  

(
𝑈
𝑉

) ∼ 𝒩 (0, (
1 0.3

0.3 1
)). 

Organization of the Simulation Tables and Graphs 

The simulation results are organized in tables and graphs that show the different sample 

sizes, different covariates sizes, and under the two scenarios (correlated and uncorrelated errors). 

The first 6 tables are for answering Research Question 1, the support vector machine (SVM) 

under double machine learning (DML) with support point sample splitting (SPSS) model. The 

next 6 tables are for answering Research Question 2, the deep learning (DL) under double 

machine learning (DML) with support point sample splitting (SPSS) model. The last 6 tables are 



56 

 

for answering Research Question 3, the hybrid of super learner and deep learning (SDL) under 

double machine learning (DML) with support point sample splitting (SPSS) model. A summary 

tables shows a comparison of the best MSE, and best time efficiency for the three methods, 

SVM, DL, and SDL under DML framework and (SPSS) cross validation method.   

All those tables and graphs will consider the three covariates’ levels, low-high-

dimensional data (LHD), moderate-high-dimensional data (MHD), and big-high-dimensional 

(BHD), and will distinguish each level simulation results separately both on tables and graphs. 

Simulation Results of Research Question 1 

The Research Question 1a mentioned in Chapter I and elaborated more in Chapter III is 

as follows:  

Q1a How does DML using support vector machine (SVM) and support points sample 

splitting (SPSS) perform in the simulation. 

 

To compare the performance of the simulations results when varying the nuisance 

parameters' high dimensionality, three levels are considered, low-high-dimensional data when p 

= (20, 50, 80), moderate-high-dimensional data when p = (100, 200, 500) for, and big-high-

dimensional data when p = (1000, 2000, 5000). The sample size for each simulation is N = (100, 

500, 1000). The simulation results for different simulated data under Scenarios 1 and 2 are 

presented in the order mentioned above for this Research Question 1. 

Results of Research Question 1 

Simulations for Low-High- 

Dimensional Data 

 

The results of the simulation study for low-high-dimensional data when p = (20, 50, 80) 

are displayed for Scenario 1, under the Research Question 1 concerning support vector machine 

model (SVM; see Table 2). The computational time for the low-high-dimensional data for 
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Scenario 1 was increased accordingly to the increase of the sample size N and the increase of the 

data dimension size p.  

 

Table 2 

 

Simulation Results of Research Question 1 for Scenario 1 with Low-High-Dimensional Data, 

When p = (20, 50, 80) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.0150 0.0882 0.0089 0.0080 4.8092 

  500 0.0158 0.0382 0.0018 0.0017 18.7706 

1000 -0.0004 0.0294 0.0009 0.0009 65.6771 

p = 50 

  100 0.2118 0.0657 0.0222 0.0492 5.5384 

  500 0.1901 0.0360 0.0087 0.0374 41.2833 

1000 0.1283  0.0256 0.0041 0.0171 147.055 

p = 80 

  100 0.2210 0.0721 0.0233 0.0541 6.2527 

  500 0.1616 0.0349 0.0073 0.0273 66.0967 

1000 0.2008 0.0232 0.0064 0.0409 223.6176 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using PC’s. 

Observe that in Table 2 for the case of p = 50, the bias was decreasing when the sample 

size of N = (100, 500, 1000) was increasing. But in the two cases of p = (20, 80) the bias was 

fluctuating when the sample sizes changed. The SE and SE-adjusted values were both following 

the same pattern of decreasing in all cases of covariates size p = (20, 50, 80) when the sample 

sizes were increasing N = (100, 500, 1000). The MSE values were decreasing in the case 
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covariates size is p = 50 for the increase of N = (100, 500, 1000) and fluctuating for p = (20, 80). 

Also, it has reached the lowest value of 0.0009 for the p = 20 and N = 1000. 

 

The results of the simulation study for low-high-dimensional data under Research 

Question 1 for support vector machine (SVM) model, when p = (20, 50, 80), for different sample 

sizes N = (100, 500, 1000) under Scenario 2 when the errors are correlated, are displayed in 

Table 3.  

 

Table 3 

 

Simulation Results of Research Question 1 for Scenario 2 with Low-High-Dimensional Data, 

When p = (20, 50, 80)  

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.2644 0.0876 0.0279 0.0776 0.1908 

  500 0.2653 0.0398 0.0120 0.072 20.1448 

1000 0.3251 0.0276 0.0103 0.1064 67.1507 

p = 50 

  100 0.2919 0.0706 0.030 0.0902 6.1776 

  500 0.2914 0.0310 0.0131 0.0859 36.2619 

1000 0.2863 0.0222 0.0091 0.0825 137.4567 

p = 80 

  100 0.3289 0.0594 0.0334 0.1117 12.8976 

  500 0.2921 0.0284 0.0131 0.0861 103.7343 

1000 0.3166 0.0209 0.010 0.1006 520.7393 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using PC’s.  

It shows that both Bias and MSE were decreasing in the case of p = 50 and fluctuated in  

p = (20, 80) when the sample size N = (100, 500, 1000) increased. The SE and SE-adjusted were 
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decreasing in all cases of p = (20, 50, 80) under the increase of the sample size N = (100, 500, 

1000). The MSE reached the lowest value of 0.072 for the N = 500 and p = 20. Also, for 

Scenario 2 in the low-high-dimensional data settings, the computational time was increased 

accordingly to the sample size N and the increase of the dimension size p.  

Observe from Scenario 1 and Scenario 2 that the best causal estimator was for MSE value 

of 0.0009 for p = 20 and N = 1000 in Scenario 1 when the errors are uncorrelated compared to 

Scenario 2 when the errors are correlated. The changing trend in both scenarios was almost 

identical only in the case of the MSE p = 80 and N = 100 in Scenario 1 witnessed a decrease of 

MSE as the sample sizes increased but in Scenario 2, they fluctuated. 

Results of Research Question 1 

Simulations for Moderate- 

High-Dimensional Data 

 

The results of the simulation study for Research Question 1 concerning the support vector 

machine (SVM) model, in moderate-high-dimensional (MHD) data where p = (100, 200, 500), 

for each sample size N = (100, 500, 1000), under Scenario 1, are displayed in Table 4.  

It shows that in Scenario 1, both SE and SE-adjusted values were decreasing in the three 

different covariate size cases when the sample size N = (100, 500, 1000) was decreasing. But 

both Bias and MSE were fluctuating in terms of the sample size increase, only for the case of  

p = 200 there was a decrease of the MSE. The MSE reached the lowest value of 0.0192 for  

p = 200 and N = 500. The computing time in Scenario 1 was increasing in terms of the increase 

of the sample sizes under this case of moderate-high-dimensional data under Research Question 

1. All the simulations of this scenario were conducted using high-performance computing instead 

of the personnel computer considering the high covariates dimensions and high sample size.  
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Table 4 

 

Simulation Results of Research Question 1 for Scenario 1 with Moderate-High-Dimensional 

Data when p = (100, 200, 500) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 100 

  100 0.2049 0.0706 0.0217 0.0470 10.4183 

  500 0.1495 0.0325 0.0068 0.0234 22.916 

1000 0.1785 0.0234 0.0057 0.0324 55.3211 

p = 200 

  100 0.1818 0.0743 0.0196 0.0386 7.7703 

  500 0.1343 0.0342 0.0062 0.01920 23.7825 

1000 0.1976 0.0204 0.0062 0.0394 86.0439 

p = 500 

  100 0.2284 0.0729 0.0240 0.0575 13.8357 

  500 0.1467 0.0309 0.0067 0.0224 42.6681 

1000 0.1673 0.0221 0.0053 0.0285 130.3802 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using the high-performance 

computing (HPC). 

The results of the simulation study for Research Question 1 concerning the support vector 

machine (SVM) model, in moderate-high-dimensional (MHD) data where p = (100, 200, 500), 

for each sample size N = (100, 500, 1000), under Scenario 2, are displayed in Table 5.  

It shows that in Scenario 2, Bias, SE, and SE-adjusted were fluctuating in all the covariate 

sizes p = (100, 200, 500) in terms of the increase of the sample size N = (100, 500, 1000). The 

MSE fluctuated in p = 100 but decreased in both cases p = 200 and p = 500. The MSE reached 

the lowest value of 0.0511 for p = 200 and N = 100. The computing time in Scenario 1 was 

increasing in terms of the increase of the sample sizes. under this case of moderate-high-
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dimensional data under Research Question 1. All the simulations of this scenario were conducted 

using high-performance computing instead of the personnel computer considering the high 

covariates dimensions and high sample size.  

 

Table 5 

 

Simulation Results of Research Question 1 for Scenario 2 with Moderate-High-Dimensional 

Data When p = (100, 200, 500) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 100 

  100 0.2881 0.0606 0.0294 0.0867 6.2908 

  500 0.3148 0.0296 0.0141 0.1000 21.6552 

1000 0.2773 0.0223 0.0088 0.0774 68.7314 

p = 200 

  100 0.2179 0.0601 0.0226 0.0511 6.9184 

  500 0.2668 0.0317 0.0120 0.0722 34.0644 

1000 0.2961 0.0228 0.0094 0.0882 101.6353 

p = 500 

  100 0.2794 0.0793 0.0290 0.0843 8.9469 

  500 0.2861 0.0331 0.0128 0.0829 42.1077 

1000 0.2857 0.0214 0.0091 0.0821 129.4497 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using high-performance 

computing (HPC). 

Observe that the best causal estimator was for an MSE value of 0.0192 for p = 200 and  

N = 500 in Scenario 1 when the errors are uncorrelated compared to Scenario 2 when the errors 

are correlated. The changing trend in both scenarios was almost identical, only Scenario 1 

produced a decreased SE and SE-adjusted compared to Scenario 2 where both fluctuated.  
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Results of Research Question 1 

Simulations for Big-High- 

Dimensional Data 

 

The results of the simulation study for Research Question 1 concerning the support vector 

machine (SVM) model, in big-high-dimensional (BHD) data where p = (1000, 2000, 5000), for 

each sample size N = (100, 500, 1000), under Scenario 1, are displayed in Table 6.  

It shows Scenario 1 for the case of big-high-dimensional data under research question 1. 

Both SE and SE-adjusted values were decreasing in the three different covariate size cases when 

the sample size N = (100, 500, 1000) was decreasing. But both Bias and MSE were fluctuating 

when the sample size increased. The MSE reached the lowest value of 0.0126 for p = 1000 and N 

= 100. The computing time in Scenario 1 was increasing in terms of the increase of the sample 

sizes. All the simulations of this scenario were conducted using high-performance computing 

instead of the personnel computer considering the high covariates dimensions and high sample 

size.  
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Table 6 

 

Simulation Results of Research Question 1 for Scenario 1 with Big-High-Dimensional Data 

When p = (1000, 2000, 5000) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 1000 

  100 0.0965 0.0573 0.0112 0.0126 15.1813 

  500 0.1615 0.0318 0.0074 0.0271 82.3944 

1000 0.1246 0.0235 0.0040 0.0161 257.2423 

p = 2000 

  100 0.1405 0.0663 0.0155 0.0241 49.631 

  500 0.1800 0.0315 0.0082 0.0334 158.3181 

1000 0.1894 0.0229 0.0060 0.0364 568.4668 

p = 5000 

  100 0.1962 0.0705 0.0209 0.0435 140.748 

  500 0.1960 0.0331 0.0089 0.0395 505.7694 

1000 0.1764 0.0252 0.0056 0.0318 1579.582 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. The simulations were conducted using the high-performance 

computing (HPC). 

The results of the simulation study for Research Question 1 concerning the support vector 

machine (SVM) model, in big-high-dimensional (BHD) data where p = (1000, 2000, 5000), for 

each sample size N = (100, 500, 1000), under Scenario 2, are displayed in Table 7.  
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Table 7 

 

Simulation Results of Research Question 1 for Scenario 2 with Big-High-Dimensional Data 

When p = (1000, 2000, 5000) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 1000 

  100 0.3047 0.0675 0.0312 0.0974 14.876 

  500 0.2898 0.0281 0.0130 0.0848 151.3939 

1000 0.2932 0.0216 0.0092 0.0864 253.2519 

p = 2000 

  100 0.1715 0.0519 0.0179 0.0321 29.2644 

  500 0.3046 0.0314 0.0136 0.0938 160.0492 

1000 0.2978 0.0233 0.0094 0.0892 578.5523 

p = 5000 

  100 0.2335 0.0701 0.0244 0.0594 143.0843 

  500 0.3226 0.0324 0.0145 0.1051 511.9322 

1000 0.2895 0.0225 0.0092 0.0843 1575.188 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. The simulations were conducted using the high-performance 

computing (HPC). 

It shows that in Scenario 2 both SE and SE-adjusted values were decreasing in the three 

different covariate size cases when the sample size was increasing N = (100, 500, 1000). But 

both Bias and MSE were fluctuating as the sample size increased. The MSE reached the lowest 

value of 0.0321 for p = 2000 and N = 100. The computing time in Scenario 2 was increasing in 

terms of the increase of the sample sizes. All the simulations of this scenario were conducted 

using high-performance computing instead of the personnel computer considering the high 

covariates dimensions and high sample size.  
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Observe that the best causal estimator was for MSE = of 0.0126 for p = 1000 and  

N = 1000 in Scenario 1 when the errors are uncorrelated compared to Scenario 2 when the errors 

are correlated. The change trend behavior in both scenarios was almost identical. 

Simulation Result of Research Question 2 

The Research Question 2a mentioned in Chapter I and elaborated more in Chapter III is 

as follows:  

Q2a How does DML using deep learning (DL) and support points sample splitting 

(SPSS) perform in the simulation. 

 

To compare the performance of the simulations results when varying the nuisance 

parameters' high dimensionality, three levels are considered, low-high-dimensional data when  

p = (20, 50, 80), moderate-high-dimensional data when p = (100, 200, 500) for, and big-high-

dimensional data when p = (1000, 2000, 5000). The sample size for each simulation is  

N = (100, 500, 1000). The simulation results for different simulated data under Scenarios 1 and 2 

are presented in the order mentioned above for this Research Question 2. 

Results of Research Question 2 

Simulations for Low-High- 

Dimensional Data 

 

The results of the simulation study for Research Question 2 concerning the deep learning 

model (DL) model, in low-high-dimensional (LHD) data where p = (20, 50, 80), for each sample 

size N = (100, 500, 1000), under Scenario 1, are displayed in Table 8.  

It shows the results under the deep learning (DL) model with support point sample 

splitting (SPSS) technique for double machine learning Scenario 1 SE, SE-adjusted, and MSE 

were decreasing in all the covariate sizes p = (100, 200, 500) in terms of the increase of the 

sample size N = (100, 500, 1000). The Bias decreased when p = 80 as the sample size changed 

from N = 50 to N = 80 but fluctuated when p = 20. The MSE reached the lowest value of 0.0293 
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for p = 20 and N = 1000. The computing time in Scenario 1 under this case of low-high-

dimensional for Research Question 2 was increasing in terms of the increase of the sample sizes.  

 

Table 8 

 

Simulation Results of Research Question 2 for Scenario 1 with Low-High-Dimensional Data 

When p = (20, 50, 80) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.1769 0.0779 0.0193 0.0374 1.5285 

  500 0.1730 0.0350 0.0079 0.0311 40.1626 

1000 0.1694 0.0247 0.0054 0.0293 280.8999 

p = 50 

  100 0.1716 0.0774 0.0188 0.0354 2.3883 

  500 0.1704 0.0352 0.0078 0.0303 37.8766 

1000 0.1722 0.0247 0.0055 0.0303 125.0593 

p = 80 

  100 0.1795 0.0782 0.0196 0.0383 6.0845 

  500 0.1755 0.0351 0.0080 0.0320 178.9186 

1000 0.1702 0.0247 0.0054 0.0296 207.3817 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using PC’s. 

The results of the simulation study for Research Question 2 concerning the deep learning 

model (DL) model, in low-high-dimensional (LHD) data where p = (20, 50, 80), for each sample 

size N = (100, 500, 1000), under Scenario 2, are displayed in Table 9.  

It shows that in Scenario 2, Bias fluctuated. SE, SE-adjusted, and MSE were decreasing in 

all covariate sizes p= (100, 200, 500) in terms of the increase of the sample size N= (100, 500, 

1000), but the MSE fluctuated for the case of p=80. The MSE reached the lowest value of 0.0844 
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for p= 20, N= 1000, and p=80 with N= 500. The computing time in Scenario 1 was increasing in 

terms of the increase of the sample sizes. All the simulations of this scenario were conducted 

using a personnel computer. 

 

Table 9 

 

Simulation Results of Research Question 2 for Scenario 2 with Low-High-Dimensional Data 

When p = (20, 50, 80) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.2879 0.0833 0.0300 0.0898 1.6569 

  500 0.2923 0.0382 0.0132 0.0869 32.5974 

1000 0.2894 0.0268 0.0092 0.0844 122.6058 

p = 50 

  100 0.2982 0.0836 0.0310 0.0959 5.8937 

  500 0.2896 0.0382 0.0131 0.0853 356.0577 

1000 0.2905 0.0268 0.0092 0.0851 126.3175 

p = 80 

  100 0.3002 0.0855 0.0311 0.0974 3.9705 

  500 0.2881 0.0377 0.0130 0.0844 33.6272 

1000 0.2908 0.0268 0.0092 0.0853 199.5886 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. The simulations were conducted on PC’s. 

Observe that the best causal estimator from table 8 and table 9 under low-high-

dimensional data estimator was for MSE value of 0.0293 for p= 200 and N= 1000 in Scenario 1 

when the errors are uncorrelated compared to Scenario 2 when the errors are correlated. The 

changing trend in both scenarios was almost identical, only Scenario 1 produced a decreased SE 

and SE-adj compared to Scenario 2 where both fluctuated.  
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Results of Research Question 2 

Simulations for Moderate- 

High-Dimensional Data 

 

The results of the simulation study for Research Question 2 concerning the deep learning 

model (DL) model, in moderate-high-dimensional (MHD) data where p = (100, 200, 500), for 

each sample size N = (100, 500, 1000), under Scenario 1, are displayed in Table 10.  

 

Table 10 

 

Simulation Results of Research Question 2 for Scenario 1 with Moderate-High-Dimensional 

Data When p = (100, 200, 500) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p =100 

100 0.1731 0.0775 0.0187 0.036 4.1952 

500 0.173 0.0349 0.0079 0.0311 8.7394 

1000 0.1701 0.0248 0.0054 0.0296 24.4785 

p =200 

100 0.1771 0.0783 0.0192 0.0375 3.1304 

500 0.1692 0.0349 0.0077 0.0299 15.0348 

1000 0.1712 0.0247 0.0055 0.0299 43.3119 

p =500 

100 0.1762 0.0791 0.0191 0.0373 6.8924 

500 0.1719 0.0351 0.0078 0.0308 35.6161 

1000 0.1703 0.0248 0.0054 0.0296 109.1765 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time is the 

running time of computing. These simulations were conducted using the high-performance 

computing (HPC). 

It shows that in Scenario 1 under Research Question 2 for big-high-dimensional data, 

Bias, SE, and SE-adjusted, and MSE decreased for all covariate sizes p = (100, 200, 500) in 
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terms of the increase of the sample size N = (100, 500, 1000). The MSE reached the lowest value 

of 0.0296 for p = 500 and N = 1000 and p =100 and N = 1000. The computing time in Scenario 

2 was increasing in terms of the increase of the sample sizes. All the simulations of this scenario 

were conducted using high-performance computing instead of the personnel computer 

considering the high covariates dimensions and high sample size.  

The results of the simulation study for Research Question 2 concerning the deep learning 

model (DL) model, in moderate-high-dimensional (MHD) data where p = (100, 200, 500), for 

each sample size N = (100, 500, 1000), under Scenario 2, are displayed in Table 11. 

It shows that in Scenario 2 under Research Question 2 for big-high-dimensional data, 

Bias, SE, and SE-adjusted, and MSE decreased for all covariate sizes p = (100, 200, 500) in 

terms of the increase of the sample size N = (100, 500, 1000). The MSE reached the lowest value 

of 0.0839 for p = 500 and N = 1000. The computing time in Scenario 2 was increasing in terms 

of the increase of the sample sizes. All the simulations of this scenario were conducted using 

high-performance computing instead of the personnel computer considering the high covariates 

dimensions and high sample size.  

Observe that the best causal estimator was for MSE value of 0.0296 for p = 500 and  

N = 1000 for p = 500 and N = 500 in Scenario 1 when the errors are uncorrelated compared to 

Scenario 2 when the errors are correlated. The changing trend in both scenarios was identical.  
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Table 11 

 

Simulation Results of Research Question 2 for Scenario 2 with Moderate-High-Dimensional 

Data When p = (100, 200, 500) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p =100 

  100 0.2936 0.0846 0.0305 0.0933 3.9972 

  500 0.2927 0.0380 0.0132 0.0871 8.691 

1000 0.2898 0.0268 0.0092 0.0847 27.2387 

p =200 

  100 0.2996 0.0845 0.0311 0.0969 3.1202 

  500 0.2908 0.0378 0.0131 0.0860 19.7233 

1000 0.2903 0.0269 0.0092 0.0850 43.7439 

p =500 

  100 0.3013 0.0845 0.0312 0.0979 12.4327 

  500 0.2928 0.0380 0.0132 0.0872 35.3807 

1000 0.2885 0.0269 0.0092 0.0839 109.6356 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time is the 

running time of computing. The simulations were conducted using the high-performance 

computing (HPC). 

Results of Research Question 2 

Simulations for Big-High- 

Dimensional Data 

 

The results of the simulation study for Research Question 2 concerning the deep learning 

model (DL) model, in big-high-dimensional (BHD) data where p = (1000, 2000, 5000), for each 

sample size N = (100, 500, 1000), under Scenario 1, are displayed in Table 12.  
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Table 12 

 

Simulation Results of Research Question 2 for Scenario 1 with Big-High-Dimensional Data 

When p = (1000, 2000, 5000) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 1000 

  100 0.1867 0.0782 0.0204 0.041 10.7405 

  500 0.1763 0.0352 0.0080 0.0323 67.0095 

1000 0.1713 0.0248 0.0055 0.0300 221.0456 

p = 2000 

 100 0.1782 0.0783 0.0194 0.0379 23.6871 

  500 0.1747 0.0352 0.0080 0.0318 139.5206 

1000 0.1693 0.0247 0.0054 0.0293 500.3704 

p = 5000 

  100 0.1792 0.0779 0.0195 0.0382 94.3971 

  500 0.1731 0.0349 0.0079 0.0312 493.4778 

1000 0.1718 0.0248 0.0055 0.0301 1430.124 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted on the high-performance 

computing (HPC). 

It shows that in Scenario 1 under Research Question 2 for big-high-dimensional data, 

Bias, SE, and SE-adjusted, and MSE decreased for all covariate sizes p = (100, 200, 500) in 

terms of the increase of the sample size N = (100, 500, 1000). The MSE reached the lowest value 

of 0.0293 4 for p = 2000 and N = 1000. The computing time in Scenario 1 was increasing in 

terms of the increase of the sample sizes. All the simulations of this scenario were conducted 

using high-performance computing instead of the personnel computer considering the high 

covariates dimensions and high sample size.  
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The results of the simulation study for Research Question 2 concerning the deep learning 

model (DL) model, in big-high-dimensional (BHD) data where p = (1000, 2000, 5000), for each 

sample size N = (100, 500, 1000), under Scenario 2, are displayed in Table 13.  

 

Table 13 

 

Simulation Results of Research Question 2 for Scenario 2 with Big-High-Dimensional Data 

When p = (1000, 2000, 5000) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 1000 

  100 0.2987 0.0834 0.0311 0.0962 10.8812 

  500 0.2936 0.0381 0.0132 0.0877 64.2134 

1000 0.2904 0.0269 0.0092 0.0850 218.7591 

p = 2000 

 100 0.3074 0.0843 0.0319 0.1016 25.2808 

  500 0.2955 0.0381 0.0133 0.0888 140.8162 

1000 0.2894 0.0268 0.0092 0.0844 502.6168 

p = 5000 

  100 0.3023 0.0835 0.0313 0.0984 98.7331 

  500 0.2954 0.0381 0.0133 0.0887 500.0961 

1000 0.2887 0.0267 0.0092 0.0841 1477.899 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. The simulations were conducted using the high-performance 

computing (HPC). 

It shows that in Scenario 2 under Research Question 2 for big-high-dimensional data, 

Bias, SE, and SE-adjusted, and MSE also decreased for all covariate sizes p = (100, 200, 500) in 

terms of the increase of the sample size N = (100, 500, 1000). The MSE reached the lowest value 

of 0.0841 for cases p = 5000 and N = 1000. The computing time in Scenario 1 was increasing in 



73 

 

terms of the increase of the sample sizes. All the simulations of this scenario were conducted 

using high-performance computing instead of the personnel computer considering the high 

covariates dimensions and high sample size.  

Observe that the best causal estimator was for an MSE value of 0.0293 for p = 2000 and 

N = 1000 in Scenario 1 when the errors are uncorrelated compared to Scenario 2 when the errors 

are correlated. The changing trend in both scenarios was identical.  

Simulation Result of Research Question 3 

The Research Question 3a mentioned in Chapter I and elaborated more in Chapter III is 

as follows:  

Q3a How does DML using a hybrid model with the super learner and deep learning 

with support points sample splitting (SPSS) perform in the simulation. 

 

To compare the performance of the simulations results when varying the nuisance 

parameters' high dimensionality, three levels are considered, low-high-dimensional data when  

p = (20, 50, 80), moderate-high-dimensional data when p = (100, 200, 500), and in big-high-

dimensional data when p = (1000, 2000, 5000). The sample size for each simulation is  

N = (100, 500, 1000). The simulation results for different simulated data under Scenarios 1 and 2 

are presented in the order mentioned above for this Research Question 3. 

Results of Research Question 3 

Simulations for Low-High- 

Dimensional Data 

 

The results of the simulation study for Research Question 3 concerning the hybrid model 

of super learner and deep learning (SDL), in low-high-dimensional (LHD) data where p = (20, 

50, 80), for each sample size N = (100, 500, 1000), under Scenario 1, are displayed in Table 14.  

It shows that in Scenario 1 of Research Question 3, Bias, and SE-adjusted were 

fluctuating in a couple of the covariate size p = (20, 50, 80) as the sample size increases N = 
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(100, 500, 1000). The MSE and the SE decreased for all covariate sizes. The MSE reached the 

lowest value of 0.0008 for p = 80 and N = 1000. The computing time in Scenario 1 was 

increasing in terms of the increase of the sample sizes. under this case of low-high-dimensional 

data under Research Question 3. 

 

Table 14 

 

Simulation Results of Research Question 3 for Scenario 1 with Low-High-Dimensional Data 

When p = (20, 50, 80) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.029 0.0751 0.0097 0.0065 82.8915 

  500 -0.0179 0.0338 0.0019 0.0015 117.4088 

1000 -0.0249 0.0240 0.0011 0.0012 234.6404 

p = 50 

  100 0.0547 0.0749 0.0105 0.0086 78.4494 

  500 -0.0094 0.0337 0.0019 0.0012 172.9981 

1000 -0.0189 0.0239 0.001 0.0009 453.1429 

p = 80 

  100 0.0529 0.0759 0.0102 0.0086 85.5482 

  500 -0.004 0.0338 0.0019 0.0012 1872.9109 

1000 -0.016 0.0239 0.0010 0.0008 677.2905 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using PCs. 

The results of the simulation study for Research Question 3 concerning the hybrid model 

of super learner and deep learning (SDL), in low-high-dimensional (LHD) data where p = (20, 

50, 80), for each sample size N = (100, 500, 1000), under Scenario 2, are displayed in Table 15.  
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Table 15 

 

Simulation Results of Research Question 3 for Scenario 2 with Low-High-Dimensional Data 

When p = (20, 50, 80) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.1739 0.0776 0.0191 0.0363 76.6939 

  500 0.1259 0.0348 0.0058 0.0171 111.9249 

1000 0.1138 0.0246 0.0037 0.0136 229.4855 

p = 50 

  100 0.1985 0.0786 0.0213 0.0456 78.835 

  500 0.1299 0.0348 0.006 0.0181 173.805 

1000 0.1173 0.0245 0.0038 0.0144 454.5324 

p = 80 

  100 0.2141 0.0797 0.0228 0.0522 89.4091 

  500 0.1330 0.0347 0.0061 0.0189 306.3423 

1000 0.1195 0.0246 0.0039 0.0149 662.765 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using PC’s. 

It shows that in Scenario 2 for Research Question 3 under the case of low-high-

dimensional data, where p = (20, 50, 80), Bias, SE, and SE-adjusted, MSE decreased in all the 

covariate size p = (100, 200, 500) in terms of the increase of the sample size N = (100, 500, 

1000). The MSE reached the lowest value of 0.01361 for p = 200 and N = 1000.  

Observe that the best causal estimator was for an MSE value of 0.0008 for p = 80 and  

N = 1000 in Scenario 1 when the errors are uncorrelated compared to Scenario 2 when the errors 

are correlated. The change trend behavior of MSE and SE was identical in both scenarios but 

different in both bias SE-adjusted. The computing time in both scenarios was increasing in terms 

of the increase of the sample sizes. 
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Results of Research Question 3 

Simulations for Moderate- 

High-Dimensional Data 

 

The results of the simulation study for Research Question 3 concerning the hybrid model 

of super learner and deep learning (SDL), in moderate-high-dimensional (MHD) data where 

 p = = (100, 200, 500), for each sample size N = (100, 500, 1000), under Scenario 1, are shown 

in Table 16. 

 

Table 16 

 

Simulation Results of Research Question 3 for Scenario 1 with Moderate-High-Dimensional 

Data When p = (100, 200, 500) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 20 

  100 0.0667 0.0743 0.0108 0.0100 93.6581 

  500 -0.0053 0.0336 0.0018 0.0012 120.6646 

1000 -0.0152 0.0239 0.0010 0.0008 136.0735 

p = 50 

100 0.0758 0.0749 0.0113 0.0114 80.1428 

500 -0.0011 0.0335 0.0018 0.0011 130.3356 

1000 -0.0133 0.0238 0.0010 0.0007 244.8391 

p = 80 

100 0.0843 0.0761 0.0120 0.0129 85.8635 

500 0.0043 0.0334 0.0019 0.0011 175.2444 

1000 -0.0107 0.0238 0.0009 0.0007 241.7942 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using the high-performance 

computing (HPC).  
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It shows that in Scenario 1 for Research Question 3 under the case of moderate-high-

dimensional data, where p = (100, 200, 500), SE, and SE-adjusted, MSE decreased in all the 

covariate size p = (100, 200, 500) in terms of the increase of the sample size N = (100, 500, 

1000). Only the Bias fluctuated. The MSE reached the lowest value of 0.0007 for p = 200 with  

N = 1000 and p =500 with N = 1000.  

The results of the simulation study for Research Question 3 concerning the hybrid model 

of super learner and deep learning (SDL), in moderate-high-dimensional (MHD) data where p = 

(100, 200, 500), for sample size N = (100, 500, 1000), in Scenario 2, are shown in Table 17.  

It shows that in Scenario 2 for Research Question 3 under the case of moderate-high-

dimensional data, where p = (100, 200, 500), Bias, SE, and SE-adjusted, MSE decreased in all 

the covariate size p = (100, 200, 500) in terms of the increase of the sample size N = (100, 500, 

1000). The MSE reached the lowest value of 0.015 for p = 100 with N = 1000. 

Observe that the best causal estimator for Research Question 3 deep learning (DL) model 

under the case of moderate-high-dimensional data was in Scenario 1 with a value of 0.0007 for  

p = 200 with N = 1000, and p =500 with N = 1000 when the errors are uncorrelated compared to 

Scenario 2 when the errors are correlated. The change trend behavior of MSE and SE. Standard 

error-adjusted (SE-adjusted) was identical in both scenarios but different in Bias. The computing 

time in both scenarios was increasing in terms of the increase of the sample sizes. 
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Table 17 

 

Simulation Results of Research Question 3 for Scenario 2 with Moderate-High-Dimensional 

Data When p = (100, 200, 500) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 100 

  100 0.2234 0.0802 0.0238 0.0563 77.2179 

  500 0.1374 0.0346 0.0063 0.0201 116.3234 

1000 0.1201 0.0246 0.0039 0.015 171.6015 

p = 200 

  100 0.2369 0.0789 0.0251 0.0624 117.0373 

  500 0.1390 0.0351 0.0064 0.0206 169.5755 

1000 0.1234 0.0244 0.004 0.0158 211.5309 

p = 500 

  100 0.2485 0.0801 0.0262 0.0682 86.5252 

  500 0.1418 0.0348 0.0065 0.0213 134.612 

1000 0.1264 0.0244 0.0041 0.0166 244.7366 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using the high-performance 

computing (HPC). 

Results of Research Question 3 

Simulations for Big-High- 

Dimensional Data 

 

The results of the simulation study for Research Question 3 concerning the hybrid model 

of super learner and deep learning (SDL), in big-high-dimensional (BHD) data where p = (1000, 

2000, 5000), for each sample size N = (100, 500, 1000), in Scenario 1, are shown in Table 18. 

It shows that in Scenario 1 for Research Question 3 under the case of big-high-

dimensional data, where p = (1000, 2000, 5000), SE, SE-adjusted, and MSE decreased in all the 

covariate size p = (100, 200, 500) in terms of the increase of the sample size N = (100, 500, 



79 

 

1000), where the bias fluctuated. The MSE reached the lowest value of 0.0006 for p = 1000 with 

N = 1000, p =2000 with N = 1000, and p = 5000 with N = 1000.  

 

Table 18 

 

Simulation Results of Research Question 3 for Scenario 1 with Big-High-Dimensional Data 

When p = (1000, 2000, 5000) 

 

Scenario 1  N Bias SE 

SE- 

adjusted MSE Time  

p = 1000 

  100 0.1088 0.0773 0.0135 0.0178 99.0878 

  500 0.0058 0.0333 0.0018 0.0011 188.4077 

1000 -0.007 0.0237 0.0009 0.0006 385.9213 

p = 2000 

  100 0.1109 0.0762 0.0136 0.0181 141.0441 

  500 0.0127 0.0333 0.0019 0.0013 304.3408 

1000 -0.0038 0.0237 0.0009 0.0006 704.1351 

p = 5000 

  100 0.1225 0.0772 0.0146 0.0210 402.0184 

  500 0.0135 0.0332 0.0018 0.0013 915.3463 

1000 0.0015 0.0237 0.0009 0.0006 1984.354 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using the high-performance 

computing (HPC). 

The results of the simulation study for Research Question 3 concerning the hybrid model 

of super learner and deep learning (SDL), in big-high-dimensional (BHD) data where p = (1000, 

2000, 5000), for each sample size N = (100, 500, 1000), in Scenario 2, are shown in Table 19. 
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Table 19 

 

Simulation Results of Research Question 3 for Scenario 2 with Big-High-Dimensional Data 

When p = (1000, 2000, 5000) 

 

Scenario 2  N Bias SE 

SE- 

adjusted MSE Time  

p = 1000 

  100 0.2509 0.0808 0.0263 0.0695 100.9268 

  500 0.1508 0.0344 0.0069 0.0239 211.6720 

1000 0.1304 0.0246 0.0042 0.0176 403.7650 

p = 2000 

  100 0.2597 0.0813 0.0273 0.0741 160.6140 

  500 0.1544 0.0343 0.0071 0.025 307.7292 

1000 0.1351 0.0244 0.0043 0.0188 710.9581 

p = 5000 

  100 0.2668 0.0823 0.0279 0.0780 453.629 

  500 0.1594 0.0345 0.0073 0.0266 897.9079 

1000 0.1394 0.0244 0.0045 0.0200 1970.1150 

Note. The number of replications is 500, N = sample sizes of (100, 500, 1000), Time = the 

running time of computing. These simulations were conducted using the high-performance 

computing (HPC). 

It shows that in Scenario 2, SE and SE-adjusted decreased in all the covariate size p = 

(100, 200, 500) in terms of the increase of the sample size N = (100, 500, 1000). The Bias and 

MSE fluctuated. The MSE reached the lowest value of 0.0176 for p = 1000 and N = 1000.  

Observe that the best causal estimator was for MSE value of 0.0006 for p = 1000 with  

N = 1000, and p = 2000 with N = 1000, in Scenario 1 when the errors are uncorrelated compared 

to Scenario 2 when the errors are correlated. The changing trend in both scenarios was almost 

identical. The computing time in Scenario 1 was increasing in terms of the increase of the sample 

sizes.  
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Figure 8 displays the MSE in Research Question 1 under the support vector machine 

(SVM) model, for Scenario 1 and Scenario 2 in the case of low-high-dimensional data when p = 

(20, 50, 80).  

Observe that the mean square error (MSE) was small for p is small but gets higher once p 

is larger for both scenarios.   

 

Figure 8 

 

Comparison of Mean Square Error in Low-High-Dimensional Data for Support Vector Machine 

Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows the comparison of MSE in Research Question 1 under the support vector 

machine (SVM) model, for Scenario 1 and Scenario 2 in the case of moderate-high-dimensional 

data when p = (100, 200, 500). 

Observe that the mean square error (MSE) was fluctuating as the covariates size changes 

for both scenarios.   
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Figure 9 

 

Comparison of Mean Square Error in Moderate-High-Dimensional Data for Support Vector 

Machine Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 shows the comparison of the MSE in Research Question 1 under the support 

vector machine (SVM) model, for Scenario 1 and Scenario 2 in the case of big-high-dimensional 

data when p = (1000, 2000, 5000). 

Observe that the mean square error (MSE) was fluctuating also as the covariates size 

changes for both scenarios.   
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Figure 10 

 

Comparison of Mean Square Error in Big-High-Dimensional Data for Support Vector Machine 

Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following are graphs that show the mean square error in the model of deep learning 

machine (DL) under the three high dimensional data levels, low-high-dimensional, moderate-

high-dimensional, and big-high-dimensional. 

Figure 11 displays the comparison of the mean square error (MSE) in Research Question 

2 under deep learning model (DL), for Scenario 1 and Scenario 2 in the case of low-high-

dimensional data when p = (20, 50, 80).  

Observe that the mean square error (MSE) was quite stable when the covariates size 

changes, for both scenarios.   
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Figure 11 

 

Comparison of Mean Square Error in Low-High-Dimensional Data for Deep Learning Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 displays the comparison of mean square error (MSE) in Research Question 2 

for Scenario 1 and Scenario 2, under deep learning model (DL), in  the case of moderate-high-

dimensional data when p = (100, 200, 500).  

Observe that the mean square error (MSE) was quite stable when the covariates size 

changes, for both scenarios.   
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Figure 12 

 

Comparison of Mean Square Error in Moderate-High-Dimensional Data for Deep Learning 

Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 displays the comparison of the mean square error (MSE) in Research Question 

2, under deep learning model (DL), for Scenario 1 and Scenario 2 in the case of big-high-

dimensional data when p = (1000, 2000, 5000).  

Observe that the mean square error (MSE) was quite stable when the covariates size 

changes, for both scenarios. 

  



86 

 

Figure 13 

 

Comparison of Mean Square Error in Big-High-Dimensional Data for Deep Learning Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following are graphs that show the mean square error in the model of super deep 

learning (SDL), the hybrid model of super learner and deep learning, under the three high 

dimensional data levels, low-high-dimensional, moderate-high-dimensional, and big-high-

dimensional.  

Figure 14 shows the comparison of the MSE in Research Question 3, under the hybrid 

model of super learner and deep learning (SDL), for Scenario 1 and Scenario 2 in the case of 

low-high-dimensional data when p = (20, 50, 80).  

 Observe that the mean square error (MSE) was quite stable when the covariates size 

changes for Scenario 1 but was increasing when the covariate size increases in Scenario 2. 
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Figure 14 

 

Comparison of Mean Square Error in Low-High-Dimensional Data for Super Deep Learning 

Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 displays the comparison of MSE in Research Question 3, under the hybrid 

model of super learner and deep learning (SDL), for Scenario 1 and Scenario 2 in the case of 

moderate-high-dimensional data when p = (100, 200, 500). 

Observe that the mean square error (MSE) was quite stable when the covariates size 

changes for Scenario 1 but was increasing when the covariate size increases in Scenario 2. 
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Figure 15 

 

Comparison of Mean Square Error in Moderate-High-Dimensional Data for Super Deep 

Learning Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 shows the comparison of the MSE in Research Question 3, under the hybrid 

model of super learner and deep learning (SDL), for Scenario 1 and Scenario 2 in the case of big-

high-dimensional data when p = (1000, 2000, 5000).  

Observe that the mean square error (MSE) was quite stable when the covariates size 

changes for Scenario 1 but was increasing when the covariate size increases in Scenario 2. 
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Figure 16 

 

Comparison of Mean Square Error in Big-High-Dimensional Data for Super Deep Learning 

Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following are summaries of the comparisons of the mean square error values, and the 

simulations time, cross the three models, support vector machine (SVM), deep learning (DL), the 

hybrid of super learner and deep learning (SDL). Under the three high dimensional data levels, 

low-high-dimensional (LHD), moderate-high-dimensional (MHD), and big-high-dimensional 

(BHD).  

Observe that Table 20 shows that the best MSE was under SDL method with MSE = 

0.0006 in BHD data, MSE = 0.0007 under MHD data, and MSE = 0.0008 under LHD data, 

followed by SVM method with MSE = 0.009 for LHD.  
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Table 20 

 

Mean Square Error Comparison for the Three Methods (Support Vector Machine, Deep 

Learning, and Super Deep Learning) Under the Three Data Levels for Scenario 1 and Scenario 

2 

 

 High Dimensional Data Levels Scenarios SVM DL SDL 

MSE 

Low-High-Dimensional (LHD) 

S1 0.0009 0.0293 0.0008 

S2 0.072 0.0844 0.0136 

Moderate-High-Dimensional (MHD) 

S1 0.0192 0.0296 0.0007 

S2 0.0511 0.0839 0.0150 

Big-High-Dimensional (BHD) 

S1 0.0126 0.0293 0.0006 

S2 0.0321 0.0841 0.0176 

Note. DL = deep learning model SDL = hybrid of super learner and deep learning model, SVM = 

support vector machine model. 

Table 21 shows that the lowest total computational duration was under DL method in 

moderate-high-dimensional and big-high-dimensional data, and in Scenario 2 for low-

dimensional data. In the case of low-high-dimensional data Scenario 1, the SVM has delivered a 

better time efficiency.  
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Table 21 

 

Time of Computation Comparison for the Three Models (Support Vector Machine, Deep 

Learning, and Super Deep Learning) Under the Three Data Levels Sor Scenario 1 and Scenario 

2 

 

 High Dimensional Data Levels Scenarios SVM DL SDL 

Time 

(Minutes) 

Low-High-Dimensional (LHD) 

S1 579.1006 880.3000 3775.281 

S2 904.7537 882.3153 2183.793 

Moderate-High-Dimensional (MHD) 

S1 393.1361 250.5752 1308.616 

S2 419.7998 263.9633 1329.160 

Big-High-Dimensional (BHD) 

S1 3342.152 2969.632 5025.568 

S2 3417.592 3039.296 5217.317 

Note. DL = deep learning method, SDL = the hybrid of super learner and deep learning method, SVM is support 

vector machine method, Time = the running time for simulation. 

The figures below show the comparison between the three models, Support Vector 

Machine (SVM), Deep Learning (DL), and Super Deep Learning (SDL), under the three data 

levels for Scenario 1 and Scenario 2 in terms of mean square error (MSE) and time of 

computation. 

Figure 17 shows the values of the mean square error comparison under low-high-

dimensional data (LHD), which is when the covariates sizes are p = (20, 50, 80), cross the three 

models, support vector machine (SVM), deep learning (DL), and the hybrid of super learner and 

deep learning (SDL). The lowest mean square error was in super deep leaning (SDL)model for 

both scenarios, compared to the other two models, support vector machine (SVM), and deep 

Learning (DL). However, the support vector machine has shown a low mean square error too in 

Scenario 1, when the error is uncorrelated. 
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Figure 17 

 

Mean Square Error Comparison for the Three Models Under Low-High-Dimensional Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 shows the values of the mean square error comparison under moderate-high-

dimensional data (MHD), which is when the covariates sizes are p = (100, 200, 500), cross the 

three models, support vector machine (SVM), deep learning (DL), and the hybrid of super 

learner and deep learning (SDL). The lowest mean square error was in super deep leaning (SDL) 

model for both scenarios, compared to the other two models, support vector machine, and deep 

Learning. 
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Figure 18 

 

Mean Square Error Comparison for the Three Methods Under Moderate-High-Dimensional 

Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 shows the values of the mean square error comparison under big-high-

dimensional data (BHD), which is when covariates are sizes p = (1000, 2000, 5000), cross the 

three models, support vector machine (SVM), deep learning, and the hybrid of super learner and 

deep learning. The lowest mean square error was in super deep leaning (SDL) model for both 

scenarios, compared to the other two models, support vector machine (SVM), and deep Learning 

(DL). Which is the same observation for in Figure 18 for moderate-high-dimensional data. 
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Figure 19 

 

Mean Square Error Comparison for the Three Methods Under Big-High-Dimensional Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 shows the time of computation comparison under low-high-dimensional data 

(LHD), which is when covariates are sizes are p = (20, 50, 80), cross the three models, support 

vector machine, deep learning, and the hybrid of super learner and deep learning. The most 

efficient time of computation was in deep leaning (DL) model for both scenarios, compared to 

the other two models, support vector machine (SVM), and super deep Learning (SDL).  
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Figure 20 

 

Time Comparison for the Three Methods Under Low-High-Dimensional Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 shows the time of computation comparison under moderate-high-dimensional 

data (MHD), which is when the covariates are sizes are p = (100, 200, 500), cross the three 

models, support vector machine, deep learning, and the hybrid of super learner and deep 

learning. The most efficient time of computation was in deep leaning (DL) model for both 

scenarios, compared to the other two models, support vector machine (SVM), and super deep 

Learning (SDL), which is the same observation for in Figure 20 for low-high-dimensional data. 
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Figure 21 

 

Time Comparison for the Three Methods Under Moderate-High-Dimensional Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 shows the time of computation comparison under big-high-dimensional data 

(BHD), which is when the covariates are sizes are p = (1000, 2000, 5000), cross the three 

models, support vector machine, deep learning, and the hybrid of super learner and deep 

learning. The most efficient time of computation was in deep leaning (DL) model for both 

scenarios, compared to the other two models, support vector machine (SVM), and super deep 

Learning (SDL). Which is the same observation for in Figure 20, Figure 21, for low-high-

dimensional and moderate-high-dimensional data, respectively. 
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Figure 22 

 

Time Comparison for the Three Methods Under Big-High-Dimensional Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real Data Analysis 

 The real data used is the 401k plan. This is pension accounts sponsored by employers’ 

data that consists of 11 variables. employer offers 401(k), net total financial assets, age of 

participants, income, family size, years of education, individual has defined benefit pension, 

marital status. individual participates in IRA plan, homeowner, two-earner household. The goal 

is to determine the effect of the eligibility of the plan on the accumulated assets. 

 The data has been analyzed using these research methods, support vector machine (SVM) 

with double machine learning and support points splitting (SPSS), deep learning (DL) with 

double machine learning and support point sample splitting, and the hybrid method (SDL) of 

super learner (SL) with double machine learning and support point sample splitting. A 
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comparison to the literature work of Chernozhukov et al. (2018) using Lasso and k-fold sample 

splitting. The data analysis has adopted the normalization of the variables for the sake of 

simplifying the results and accommodating the support points sample splitting requirement for 

normalization.  

 Table 22 shows the real data of (401) k analysis results and comparison after the 

normalization of the variables. The literature work of Chernozhukov et al. (2018) used here is the 

lasso method with double machine learning (DML) and k-fold sample splitting. I compare it to 

this research methods, the method of support vector machine (SVM) with double machine 

learning and support points splitting (SPSS), deep learning with double machine learning and 

support point sample silting, and with the hybrid method (SDL) of super learner (SL) with 

double machine learning and support point sample splitting.  

The comparison shows that the lowest time of computation is under the hybrid method 

super deep learning (SDL) with 0.0429 followed by the deep learning method (DL) with 1.1610. 

The best estimation was under the lowest SE= 0.0006 with the support vector machine method 

(SVM) followed by the deep learning method (DL), where SE= 0.0056. 
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Table 22 

 

Comparison of Real Data Analysis Between the Literature Method and Support Vector Machine, 

Deep Learning, and Super Deep Learning Methods 

 

 

Chernozhukov et al. 

(2018) Method This Research Methods 

 Lasso-DML-K Fold 
SVM-DML-

SPSS 
DL-DML-SPSS SDL-DML-SPSS 

Estimator 0.0030 0.0056 0.0095 0.0063 

SE 0.0071 0.0006 0.0056 0.0065 

Time 

(Seconds) 
3.4870 28.7207 1.1610 0.0429 

Note. DL-DML-SPSS is the deep learning (DL) with double machine learning and support 

point sample splitting, SDL-DML-SPSS = the hybrid method of super learner with double 

machine learning and support point sample splitting, SVM-DML-SPSS = the support vector 

machine (SVM) with double machine learning (DML) and support points splitting method.  
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CHAPTER V 

CONCLUSION 

 This study contributed to the body of knowledge by adding a new understanding of  

performance exploration of the three models of causal inference under double/ debiased machine 

learning framework using support points sample splitting (SPSS) instead of random splitting. 

The best-performing model that produced the best estimation of the double machine learning 

causal effect with lowest mean square error (MSE) was the super deep learning (SDL), the hybrid 

model of the two learners, super learner (SL), and the deep learning (DL) using the support 

points sample splitting (SPSS), under both scenarios when data errors were correlated or 

uncorrelated, and in the three levels of the high dimensional data, low-high-dimensional data 

(LHD), the moderate -high-dimensional (MHD), and in big-high-dimensional (BHD), compared 

to the two other models. 

 But the deep learning model (DL) for double machine learning (DML) with support 

point sample splitting (SPSS) was the best in terms of simulation time efficiency, under both data 

scenarios, and for the three levels of the high dimensional data, the low-high-dimensional 

(LHD), the moderate-high-dimensional (MHD), and in big-high-dimensional (BHD). The 

support vector machine in the double machine learning framework using the support points 

sample splitting with high dimensional data settings was not performing well either in estimating 

the treatment effect of the causal double machine learning estimation (CML) or in the simulation 

time compared to two other models. 
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However, the SVM has shown a good estimation in low dimensional data framework for 

Scenario 1 and in low dimensional real data of 401(k), but it hasn’t outperformed the hybrid 

model of super learner and deep learning (SDL) on the simulation study under moderate-high-

dimensional (MHD), and in big-high-dimensional (BHD). 

 Based on this conclusion, I recommend using the super deep learning (SDL) model if the 

user is targeting to get a result that is optimum in terms of the quality of the treatment effect of 

the causal double machine learning (CML). However, if the users want to get time-efficient 

results from the statistical data analysis using causal double machine learning with support points 

sample splitting (SPSS), then the deep learning method will be the best option. 

This study does not recommend leaving behind advanced machine learning methods such as 

super learner (SL) and deep learning (DL) and using the support vector machine. As the latter 

algorithm did not show better performance compared to the two former ones either in terms of 

the quality of the causal double machine learning (CML) treatment effect estimation or in terms 

of the time efficiency of the computation. 

Limitations 

 Machine learning algorithms are based on the artificial intelligence paradigm, so to 

perform effectively it needs high computing hardware. Finding high-performing computing 

hardware was expensive and a limitation of this study due to the costly machines that can 

guarantee the high computing performance which the machine learning algorithms require. So, to 

assuage this challenge and limitation, I have used the Rocky Mountain Advanced Computing 

Consortium (RMACC) provided by the University of Colorado Boulder (UCB). I recognized that 

using the high-performance computing from RMACC demanded new skills to develop, to learn, 

and to master which required an investment in both time and effort.  
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Future Work 

 Based on the limitation I have encountered in terms of the computational high-

performance needs, I would recommend a future work about this perspective, how to make this 

high-end hardware easily reachable for common use. Or making the machine learning algorithms 

less computationally intensive by developing specific computing machines to manage that.  

 The causal inference from observational data is gaining popularity recently due to the 

strong inference that can produce and because of the strong result, we can get from the 

relationship between the cause-effect compared to only the prediction. So, developing this area 

will contribute not only to the statistics field but also to the applied sciences, such as health 

sciences, social sciences, and economic science, yet, I have found limited resources to handle 

causal inference in observational data. Furthermore, developing the causal double machine 

learning field is becoming a need, and developing its theory from what has been studied so far is 

crucial.  

Also, as this work is based on the conditional independence assumption (CIA), future 

work could explore the case when this assumption is not met which will require the artificial 

intelligence (AI) approach. 

Finally, I will recommend along with the development of computational resources and 

elaborating more on the theory of causal double machine learning (CML), developing statistical 

practices, such as developing new models and new methods that can produce a better 

performance in terms of the quality of the treatment effect and in terms of the computational time 

efficiency.  
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