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ABSTRACT 

 

Thapa, Kritika. The Effect of Parceling on the Measurement Invariance of US Students’ Trends 

in International Mathematics and Science Study (TIMSS) 2015 Math Attitude Scores. 

Published Doctor of Philosophy dissertation, University of Northern Colorado, 2023. 

 

Measurement invariance is crucial for making valid comparisons across different groups 

(Kline, 2016; Vandenberg, 2002). To address the challenges associated with invariance testing 

such as large sample size requirements, the complexity of the model, etc., applied researchers 

have incorporated parcels. Parcels have been shown to alleviate skewness, improve reliability, 

reduce the number of indicators, and produce a more stable solution (Bandalos & Finney, 2001; 

Matsunaga et al., 2021; Nasser & Takahashi, 2003). Despite these benefits, limited 

methodological research has been conducted on the effects of parcels on tests of measurement 

invariance. This dissertation investigated the effects of different total sample sizes, types of 

indicator variables (including indicator variable techniques), and ratio of group sample sizes on 

tests of measurement invariance between gender and race. Empirical data from eighth-grade U.S. 

students' responses on four different math attitude subscales using a Likert-type rating scale from 

TIMSS 2015 were used to build a CFA model (Tang & Averett, 2018). The study found that 

using a smaller number of items as indicators with the highest factor loadings can better assess 

measurement invariance tests, providing a middle way for applied researchers to conduct tests of 

measurement invariance without the need for extremely large sample sizes or the use of parcels. 

Furthermore, the study found that item-based models detected a lack of invariance better than 

parcel-based models. Three-item indicator models provided stronger evidence of configural 
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invariance than nine-item indicator and parcel-based models, with all three-item indicator models 

exhibiting full configural invariance. Higher CFI and TLI values and lower chi-square and 

SRMR values supported the use of three-item indicator models in tests of configural invariance. 

Three-item indicator models-based analyses were found to be better at identifying items with 

significant differences in factor loadings than parcel-based analyses. These findings provide 

researchers with a way to conduct tests of measurement invariance without requiring extremely 

large sample sizes and address the challenges associated with testing measurement invariance, 

making it more accessible for applied researchers. However, further research is required to 

determine the optimal number of items with highest factor loadings to use as indicators that can 

improve and facilitate the testing of measurement invariance for applied researchers.
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CHAPTER I 

INTRODUCTION TO THE STUDY 

Innumerable research studies have compared groups of people on various traits by using 

a variety of different instruments. In conducting such comparative studies, it is important to 

accurately detect and account for differences between groups. However, not every researcher 

who compares group differences verifies that the trait being measured is the same for each group. 

Measurement invariance is the process of examining whether the same trait is being measured 

across different groups or conditions, which is essential for valid group comparisons (Kline, 

2016; Vandenberg, 2002). For example, if different groups perceive items on the same measure 

differently, does it make sense to compare group differences? Research on measurement 

invariance posits that the answer is no; it is necessary for researchers to make sure that the same 

trait of interest is being measured between groups before making any cross-group comparisons 

(Meredith, 1993; Putnick & Bornstein, 2016; Schmitt & Kuljanin, 2008; Vandenberg & Lance, 

2000). The presence of measurement invariance confirms that a given trait is measured 

equivalently across different groups, which helps researchers to make sound and meaningful 

between-group comparisons, such as when testing mean differences (Chiesi et al., 2016; 

Vandenberg & Lance, 2000).  

Several conditions have been shown to affect accuracy of tests of measurement 

invariance, such as sample size, the complexity of the model being used (number of observed 

variables, estimated factors), and distributional characteristics of the data such as normality, 

skewness, and kurtosis (Putnick & Bornstein, 2016). As more latent variables are estimated in
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the model, and more groups are being compared, larger sample size is needed to run tests of 

measurement invariance (De Roover et al., 2014; Putnick & Bornstein, 2016). To simplify 

complex models without having to lose information through item elimination and the need to use 

larger sample size, several applied researchers have implemented use of parcels (Bandalos & 

Finney, 2001; Matsunaga, 2008; Nasser & Takahashi, 2003).  

 Parceling is a measurement practice that is particularly exercised by applied structural 

equation modeling (SEM) researchers to reduce the large number of observed variables (often, 

survey or test items) in the absence of meaningful subscales (Bandalos & Finney, 2001; Little et 

al., 2002). Parcels allow researchers to obtain stable solutions with smaller sample sizes than 

originally required (Matsunaga, 2008). Research has shown application of parcels to be both 

favorable and unfavorable in SEM (Bandalos & Finney, 2001; Little et al., 2002; Marsh et al., 

1998; Matsunaga, 2008). Arguments in favor of parcels, advocate parcels reduce the number of 

parameters in the model and improve the fit of the model (Little et al., 2002; Matsunaga, 2008). 

Those who argue against the use of parceling reason that parcels mask some sources of model 

misspecification and yield biased parameter estimates (Bandalos & Finney, 2001; Little et al., 

2002; Matsunaga, 2008). Despite frequent application of parceling, little methodological 

research has examined the impact of parcels on tests of measurement invariance. There is only 

one study that has examined the effect of parcels on tests of measurement invariance (Meade & 

Kroustalis, 2006). In their study, Meade and Kroustalis (2006) used a two-factor model with two 

balanced groups with similar factor loadings in each parcel and warned against using parcels, 

claiming it masks a lack of measurement invariance. Although it is recommended to compare 

tests of latent mean differences while comparing group differences to test whether or not the 



3 

 

 

 

mean level of the construct is invariant between the groups (Cheung & Rensvold, 2002), Meade 

and Kroustalis did not examine the test of latent means between the two groups that they used. 

Assessing Measurement Invariance 

Yoon and Millsap (2007) defined measurement invariance as the situation where the 

association between observable variables and underlying latent variables remains unaffected by 

an individual's group membership. This concept is represented in Equation 1.1, which defines 

measurement invariance as the conditional probability of observed variables (X) given the vector 

of latent variables (W), independent of group membership (G) (Yoon & Millsap, 2007).  

                                     𝑃(𝑋| 𝑊, 𝐺) = 𝑃 (𝑋|𝑊)                                                            (1.1) 

Establishing measurement invariance is essential for assessing group differences, whether 

by simple between-group means tests or complex structural models (Jiang et al., 2017; van de 

Schoot et al., 2015). Item response theory (IRT) and confirmatory factor analysis (CFA) are 

commonly used statistical methods to assess measurement invariance (Kim & Yoon, 2011; 

Schmitt & Ali, 2015). CFA is a statistical procedure used for testing how well measured 

variables correspond to a smaller number of constructs, whereas IRT focuses on modeling the 

connection between item characteristics and individual responses (Kline, 2016). Researchers use 

their prior knowledge or literature to specify the number of constructs that can be formed in CFA 

(Kline, 2016). More details about IRT and CFA are provided in Chapter 2. Researchers 

commonly use multiple groups confirmatory factor analysis (CFA) to detect measurement 

invariance, relying on various fit indices as evidence that measurement invariance exists (Putnick 

& Bornstein, 2016). These fit indices include the likelihood ratio chi-square, root mean squared 

error of approximation (RMSEA; Steiger, 1989), standardized root mean square residual 

(SRMR; Bentler, 1995), comparative fit index (CFI; Bentler, 1990), and Tucker-Lewis index 
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(TLI; Tucker & Lewis, 1973). However, research on the performance of these fit indices has 

mainly focused on testing invariance with only two groups. The cutoff values of these fit indices 

based on two balanced groups may not provide similar power and Type I error control when 

applied to invariance testing with more than two unbalanced groups. Therefore, more 

information about using fit indices in invariance analysis needs to be collected before applying 

these cutoff values to more than two groups (Meade et al., 2008). Only one study, by Rutkowski 

and Svetina (2014), has emphasized the performance of fit statistics and indices in measurement 

invariance for more than two groups and varied sample size. Additionally, although aggregate 

scores and item parcels are sometimes used instead of individual items, they have not received 

much attention in relation to tests of measurement invariance. 

Parceling 

 Parcels are groups of individual items on a scale that are combined to form a single 

score. They differ from subscale scores which are created by averaging scores on related items, 

and total scores which are created by summing scores on all items in a scale (Bandalos & Finney, 

2001). Parcels help researchers to simplify complex models and reduce the number of parameters 

without having to lose information through item elimination (Matsunaga, 2008; Nasser & 

Takahashi, 2003). By reducing the number of parameters through item aggregation, parceling 

allows researchers to obtain stable solutions with smaller sample size than originally required 

(Matsunaga, 2008). Rushton et al. (1983) posited aggregate scores are more representative of the 

latent construct than individual items and are more statistically reliable than individual item 

scores. Rushton et al. used published data to demonstrate that constructs formed by aggregating 

items were theoretically more coherent than those that used individual items.  
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Traditional SEM (structural equation modeling) and factor analysis based on the 

maximum likelihood (ML) method to estimate parameters and evaluate model fit assume data to 

be continuous and normally distributed (Bandalos, 2008; Nasser & Takahashi, 2003). However, 

this assumption often gets violated while analyzing ordered categorical items (such as those 

obtained from Likert-type rating scales) and, it has been found that including many variables 

leads ML to provide unreliable inference (Nasser & Takahashi, 2003). Parceling helps to 

leverage these issues by linearizing discrete and non-normally distributed data sets, for example, 

from personality and attitude measurements (Bandalos & Finney, 2001; Nasser & Takahashi, 

2003). In her simulation study, Bandalos (2002) found that parceling allowed even severely non-

normal data to behave almost normally. 

SEM researchers have opposing views about parcels. While some advocate their use, 

others consider parceling as a dubious practice which distorts reality and caution against using it 

(Bandalos & Finney, 2001; Little et al., 2002). For an empiricist, parceling invites subjective bias 

on data analysis by failing to represent the many sources of variance (such as systematic and 

random error variance) and undermines the empirical process of dimension reduction techniques 

commonly exercised in modeling multivariate data (Little et al., 2002). Item-level data have 

lower reliability, lower communality, a greater likelihood of distributional violations, different 

intervals (fewer, larger, or less equal scale points), and explain less unique factor variance than 

parcels (Bandalos & Finney, 2001; Hau & Marsh, 2004; Little et al., 2002; MacCallum et al., 

1999). Researchers also argue that from a psychometric perspective, parcels are preferred over 

items as parcels are more parsimonious (reduce the parameters needed to define a construct), 

improve the fit of the model, have fewer chances of correlated residuals, and reduce sampling 

error (Little et al., 2002; MacCallum et al., 1999; Matsunaga, 2008).  
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Despite yielding a more parsimonious result and potentially improving score reliability, 

parceling decreases the degrees of freedom of the model, which reduces the ways to test the 

model (Bandalos & Finney, 2001). Parcels improve the fit of the model by canceling out random 

and systematic error, regardless of whether the fitted model is correctly specified or not and 

regardless of whether the fitted model misrepresents the reality of data (Little et al., 2002; 

Matsunaga, 2008). Parceling may improve the fit of the model by masking some sources of 

model misspecification and yield biased parameter estimates. However, it is important to note 

that it should not be used solely to improve the fit of the model (Bandalos & Finney, 2001). 

Although parceling helps to produce better fitting models via parsimonious parameters, a multi-

item solution better assesses a latent construct than a parceled solution (Marsh et al., 1998). On 

the contrary, pragmatists contend that identifying every single source of variance in every single 

item on a prior basis is impossible. Hence, they view the aggregation technique used in 

constructing parcels as a model building process based on investigator justification; if the 

researcher’s reasoning is compelling and does not transgress the truth, parceling can be sensible 

(Little et al., 2002). 

Despite the frequent use of parceling, little research has examined its impact on tests of 

measurement invariance, with only one study, conducted by Meade and Kroustalis (2006), in this 

area. Based on findings from their study, the authors cautioned against using parcels as parcels 

may conceal a lack of measurement invariance. They argued that the choice of parceling method 

is not crucial when testing invariance, but the choice of parceling method has been shown to 

affect important properties such as communality and power of MI tests (Meade & Kroustalis, 

2006). Despite useful insights provided by Meade and Kroustalis, their study was limited in 

scope as they only used one parceling technique (i.e., parceled items based on factor loadings) to 
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examine a two-factor model by comparing only two groups with equal sample sizes ranging from 

100 to 500 per group. Additionally, Meade and Kroustalis did not examine the test of latent mean 

differences between the two groups that they used, despite its being recommended as a technique 

for comparing group differences on mean levels of the construct between groups (Cheung & 

Rensvold, 2002). Several applied researchers have used parcels in applied measurement 

invariance studies (Chiesi et al., 2016; Molenaar & Borsboom, 2013; Rocha & Chelladurai, 

2012). However, since they work with real data and have two or more groups (balanced or 

unbalanced), further methodological research is needed to investigate the use of parcels in testing 

measurement invariance for more than two groups, uneven sample sizes, varying total sample 

sizes, parcels with different numbers of items, and models other than two-factor models, using 

empirical data.  

Statement of the Problem 

Extensive methodological research has been conducted on factors that affect the accuracy 

of invariance analysis (De Roover et al., 2014; Putnick & Bornstein, 2016). Previous studies 

have identified factors such as sample size, the complexity of the model being used (number of 

observed variables, estimated factors), and distributional characteristics of the data that can affect 

the accuracy of invariance analysis (Putnick & Bornstein, 2016); however, the impact of 

different types of parceling techniques on the accuracy of invariance analysis remains unclear. 

One aspect of measurement invariance testing that has received relatively little attention has been 

the use of item parcels when conducting multiple groups CFA. Applied researchers use parcels 

while conducting tests of measurement invariance in cross-sectional as well as longitudinal 

contexts to reduce a large number of indicators (Anderson et al., 2005; Luo et al., 2020; Tyrell et 

al., 2019; Widaman et al., 2010). Researchers have examined the effect of using parcels on 
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confirmatory factor analysis with real as well as simulated data (Meade & Kroustalis, 2006; 

Nasser & Wisenbaker, 2003; Rocha & Chelladurai, 2012). However, there is limited research on 

the impact of parcels on tests of measurement invariance between groups, with only one study, 

which was conducted by Meade and Kroustalis (2006). As described earlier in this chapter, the 

study by Meade and Kroustalis examined a two-factor model and compared two balanced groups 

with sample sizes ranging from 100 to 500 per group. Their study also used only one type of 

parceling technique, which included four parcels with four items per parcel, to test measurement 

invariance. While Meade and Kroustalis offered valuable insights into conducting tests of 

invariance between two balanced groups, it is important to note that applied researchers often 

work with more than two groups that are frequently unbalanced (French & Finch, 2006). The fit 

indices commonly used for tests of measurement invariance via multiple groups CFA may 

correctly detect non-invariance between groups with equal sample size but may be unable to 

detect non-invariance between groups with large or unequal sample size difference (French & 

Finch, 2006; Yoon & Lai, 2018). Simulation studies that considered unbalanced group size in 

tests of measurement invariance reported that as the sample size discrepancy between two groups 

became more unequal, the power to detect non-invariance dropped substantially (Chen, 2007; 

Yoon & Lai, 2018). Despite the knowledge that unequal group sizes may decrease the power to 

detect non-invariance, it is unclear if the improvement in reliability due to parceling would offset 

this effect. Moreover, Meade and Kroustalis did not provide any guidance regarding fit indices 

criteria when testing measurement invariance with parcel-level indicators. As such, applied 

researchers often use the same criteria for item-level indicators, which may not be suitable for 

parcels. Additionally, Meade and Kroustalis did not test for latent mean differences, which is 

essential for meaningful comparisons between groups being tested.  
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Hence, there is a need for additional research that examines the effect of parcels on tests 

of measurement invariance between two or more unbalanced groups, in CFA models which may 

not adhere to a two-factor structure and may use varying parceling strategies. Additionally, there 

is a need for research that investigates the performance of fit indices while conducting invariance 

tests and tests of latent mean differences based on parceled indicator variables. Through the 

current study, I hoped to learn the association between different indicator variable techniques and 

tests of measurement invariance, including tests of latent means, and to identify the conditions 

under which parcels versus item-level indicator variables could improve or impair the results of 

invariance tests.  

Parceling is a common data reduction technique in many fields including psychology, 

education, and social sciences, but it could introduce bias and reduce the validity of the 

measurement, particularly in testing measurement invariance (Meade & Kroustalis, 2006). 

Examining the interplay of parceling and invariance analysis can help researchers to make 

informed decisions about the appropriate use of indicator variable techniques and to avoid 

potential sources of bias in their analyses. By identifying the conditions under which parcels are 

related to results of invariance analysis, researchers can improve the accuracy and validity of 

their measurements and provide more reliable and interpretable results in their studies. 

Rationale of the Study  

Applied researchers in several fields such as psychology, sports education, et cetera, have 

used parcels in testing invariance between groups to simplify and improve the fit of their models 

(Aguayo et al., 2019; Contractor et al., 2017; Fronczyk, 2019; Giné et al., 2017; Matsunaga et 

al., 2021). Bandalos and Finney (2001) found that parcels significantly improved the fit of CFA 

models. While applying parcels, applied researchers often use the same criteria designed for 
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item-level indicators to assess invariance of parceled data; however, most methodological 

research on the criteria of fit of CFA models has been based on item-level indicators but the 

criteria that are designed for item-level data may not work well for parcel-level data. The 

research on the combination of invariance testing and parcel-level indicators is limited. In their 

simulation study, as discussed above, Meade and Kroustalis (2006) considered one type of 

parceling strategy and used four parcels with four items per parcel between two balanced groups 

of a two-factor CFA model. It is unclear how their findings would extend to more complex 

scenarios, such as groups with varying total sample sizes, unbalanced group sizes, alternative 

parceling methods, more than two groups, and tests of latent mean differences. As the criteria of 

assessing invariance tests are mostly limited to research based on two groups, more information 

about fit indices used for assessing measurement invariance needs to be gathered before 

extending these criteria to more than two groups (Meade et al., 2008; Putnick & Bornstein, 

2016). Hence, it would be beneficial to understand if and how tests of measurement invariance, 

including tests of latent means, would differ based on different indicator variable techniques, 

different group sizes and numbers of groups, varying number of factors, and unbalanced groups.  

Purpose of the Study 

The purpose of this study was to examine the combined association between different 

types of indicator variables, including parceling strategies, total and group sample sizes, and 

number of groups on tests of measurement invariance between groups (based on gender and 

race) in a confirmatory factor analysis model of an empirical dataset. I considered five types of 

indicator variable strategies: no parceling (three items versus nine items as indicators), parceling 

based on factor loadings, parceling based on skewness of items, and random parceling. I used the 

2015 eighth grade U.S. students’ non-restricted public-use data published by Trends in 
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International Mathematics and Science Study (TIMSS) to answer my research questions (Tang & 

Averett, 2018). I used seven different sample sizes (300, 400, 450, 600, 900, 1,200, 1,500) across 

three different ratios of group sample sizes (1:1, 1:1.5, 1:2) for race and gender invariance 

comparisons, for each type of indicator variable strategy to examine if the tests of measurement 

invariance differ. Gender and race represent grouping variables with two and three groups, 

respectively, to evaluate invariance results associated with the number of groups being 

compared. Justification for these sample sizes, ratios of group sizes, choice of gender (girls and 

boys) and race (White, Hispanic, and Others) as the grouping variables, and types of indicator 

variables, including indicator variable techniques, is provided in Chapter 3. 

Research Questions 

This study addressed the following research questions: 

Q1  Do the means of and results based on the fit statistics (chi-square, CFI, RMSEA, 

SRMR, TLI) of the configural invariance test in a confirmatory factor analysis 

model differ by type of indicator variable technique, total sample size, and ratio of 

group sample sizes, across groups (gender and race)? 

 

Q2  Do the means of and results based on the incremental fit statistics (∆CFI, 

∆RMSEA, ∆SRMR, ∆TLI, and chi-square difference test) of the metric invariance 

test in a confirmatory factor analysis model differ by type of indicator variable 

technique, total sample size, and ratio of group sample sizes, across groups 

(gender and race)? 

 

Q3 Do the means of and results based on the incremental fit statistics (∆CFI, 

∆RMSEA, ∆SRMR, ∆TLI, and chi-square difference test) of the scalar invariance 

test in a confirmatory factor analysis model differ by type of indicator variable 

technique, total sample size, and ratio of group sample sizes, across groups 

(gender and race)? 

 

Q4  Do the means of and results based on the incremental fit statistics (∆CFI, 

∆RMSEA, ∆SRMR, ∆TLI, and chi-square difference test) of the residual 

invariance test in a confirmatory factor analysis model differ by type of indicator 

variable technique, total sample size, and ratio of group sample sizes, across 

groups (gender and race)? 
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Q5  Are there significant latent means differences between groups (gender, race) in 

terms of indicator variable technique, total sample size, and ratio of group sample 

sizes? 

 

Significance of the Study 

My purpose for this study was to provide some insight about how the combination of 

different indicator variable techniques and sample sizes function in explaining tests of 

measurement invariance between groups with “real-life” data. I hope to help applied researchers 

who use parcels to conduct tests of measurement invariance between groups based on real data. 

Unlike simulation studies, working with real data is messy and prone to several issues such as 

unbalanced groups, small sample size, clustering of data, issues of using sampling weights, and 

so forth. While this dissertation study did not capture all possible issues faced by real-life data, it 

addressed issues of comparing more than two groups as well as issues of unbalanced groups. 

Despite the limitations of the non-experimental research design, my study provides guidance to 

applied researchers on using indicator variable techniques to conduct tests of measurement 

invariance between groups based on applied data, particularly for those facing challenges such as 

unbalanced groups, small sample sizes, data clustering, and the use of sampling weights.  

Limitations and Delimitations of the Study 

Just as in any study, this study has its own limitations. The most serious limitation of this 

study is the use of real data. While simulated data would allow us to find the true parameter 

estimates and examine Type I and II error, as well as parameter estimate bias, working with real 

data makes it impossible to discuss any potential parameter estimate or standard error bias, or 

Type I or Type II error rates. Moreover, because this study was based on a non-experimental 

research design, findings from the study cannot be used to infer cause and effect relations. The 

other limitation of this study is that the estimates that are produced from TIMSS data are subject 
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to non-sampling and sampling errors. Non-sampling errors can occur due to mistakes made while 

collecting and processing data such as coverage limitations, nonresponse bias, and measurement 

error. Sampling errors occur when data are collected from a sample within a population rather 

than conducting analyses on the whole population (Data limitations, n.d.).  

Chapter Summary 

In this chapter, I set the stage for my research by starting with group comparison and 

discussing concepts related to measurement, measurement invariance, and parceling. I presented 

the rationale, purpose, along with research questions that guided this study, significance, and 

limitations of the study.  

In the next chapter, Chapter 2, I discuss measurement invariance in greater detail, 

including a brief historical review of measurement invariance and the various levels of 

measurement invariance as deemed appropriate for the current study. Additionally, I present a 

literature review of parceling and discuss the effect of parceling on tests of measurement 

invariance. In Chapter 3, I present the methodology I used for the study. In Chapter 4, I present 

the results which provide answers to the research questions. Moving on to Chapter 5, I draw 

conclusions based on these results and highlight their significance and potential implications for 

future research and practical applications. Moreover, I discuss the limitations of the study and 

provide insights into areas for future research to build upon the current findings.  
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CHAPTER II 

REVIEW OF THE LITERATURE 

In this chapter, I discuss general measurement concepts, including classical test theory as 

well as item response theory, followed by the confirmatory factor analysis approach to 

conducting tests of measurement invariance before providing details of measurement invariance 

and its different levels from a factor analysis perspective. Then I present the current approaches 

to testing and detecting measurement invariance by discussing the standard ways of assessing 

model fit and tests of measurement invariance. Next, I synthesize relevant literature on parceling 

and ways to assess the fit of models with parcels and discuss the effect of parceling on 

measurement invariance.  

Measurement  

Measurement is a way of enumerating objects or events based on some pre-established 

rules (Bandalos, 2018). It helps to assign numerals to subjective characteristics, such as attitudes, 

to individuals, organizations, events, or objects to create measurement scales (Treiblmaier & 

Filzmoser, 2009; Vandenberg & Lance, 2000). Compared to physical objects it is complex to 

measure mental attributes simply because measurement of such traits is subjective and prone to 

error. Social scientists devise observational measurement instruments such as surveys to define 

and measure a construct (a theoretical entity that aims to explain behaviors or characteristics of 

people; Bandalos, 2018). However, the accuracy of these instruments can be influenced by 

various factors, such as who takes the survey and how it is administered, and so forth (Bandalos, 

2018). To minimize measurement error and obtain the most accurate measures of a construct,
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measurement theory emphasizes the development of instruments that yield scores with as little 

error as possible (Bandalos, 2018). Developers of these instruments should strive to minimize 

both systematic and random measurement error (Bandalos, 2018; Remler & Van Ryzin, 2011). 

Further, researchers assess the validity and reliability of scores produced from an instrument to 

ensure if the instrument represents the true construct it is supposed to measure, if the scores 

support appropriate inferences obtained from responding to the instrument, and how consistently 

the scores do so (Bandalos, 2018; Remler & Van Ryzin, 2011). Readers interested to learn more 

about validity and reliability of measurement scores can find more information in Bandalos 

(2018). Traditionally, test developers used classical test theory (CTT) to develop and assess tests 

(Hays et al., 2006; Sijtsma & Junker, 2006). Since 1968, there has been a shift among some test 

developers from using CTT to adopting IRT instead (Sijtsma & Junker, 2006). 

Classical Test Theory 

CTT, which was propounded by Spearman (1904), considers an individual’s observed 

score as a combination of his/her true score and measurement error. CTT strives to manage 

measurement error, allowing the observed score to accurately reflect an individual’s true score 

(Bandalos, 2018; Sijtsma & Junker, 2006). CTT assumes that the raw score (X) obtained by an 

individual is comprised of a true score (T) and a random error score (E) as seen in Equation 2.1. 

The true score of an individual is theoretically derived by averaging the scores that the person 

would obtain on the same with an infinite number of attempts. CTT seeks to effectively reduce 

random error (E) so that the raw score reflects more of the true score (T).  

                                             𝑋 = 𝑇 + 𝐸                                                                        (2.1) 

However, observed test scores and true test scores as well as characteristics of the scores, 

including item difficulty and item discrimination, based on CTT are group- and test-dependent 
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such that the item difficulty relies on the sample of respondents and individuals’ ability estimates 

rely on the items on the test (Hays et al., 2006).  

Item Response Theory  

IRT offers several advantages over CTT (Hays et al., 2006). Unlike CTT, IRT can 

estimate an individual's true score without relying solely on the total number of correct items. 

Another advantage is that IRT is not dependent on the specific test or group being examined, 

allowing for the examination of item characteristics and test-takers' abilities independently 

(Bandalos, 2018). By attending to the difficulty level of each item and differentiating items based 

on difficulty, IRT helps to evaluate each test taker's ability (Bandalos, 2018; Hays et al., 2006). 

This focus on item difficulty and test-taker ability makes IRT unique from CTT. Tailored tests 

such as the computer-adaptive versions of the GRE and SAT use IRT to assess test takers' 

abilities. IRT is concerned with examinees' item and test performance and how these 

performances relate to the abilities being measured by the items in the test. 

The item response theory (IRT) approach is a statistical modeling technique that assumes 

a log-linear relationship between an individual's underlying trait and their observed responses 

(Schmitt & Ali, 2015). This approach assumes that items are invariant across subgroups of 

individuals when the relationship between the underlying trait and the probability of a correct 

response is the same. The graded response model (GRM) is a widely used IRT model that is 

typically employed for analyzing ordinal response data. Such data have response categories with 

a natural ordering, but the distances between categories may not be equal. The GRM model 

shows the probability that an examinee with a given latent trait will respond to an item with a 

particular category based on item discrimination and difficulty parameters (Meade & 

Lautenschlager, 2004). GRM is not the only IRT model that can handle ordinal responses. Other 
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models, such as the Rasch rating scale and partial credit models, are also commonly used with 

ordinal data (Embretson & Reise, 2000). 

The item discrimination parameter in the GRM is measured by the slope of the item 

response function, while the item difficulty parameter is measured by the horizontal inflection 

point of the item response function for each item threshold (Newsom, 2021). Equation 2.2 

describes the probability that an examinee with a given latent trait will respond to an item with 

category k using the GRM. 

                             𝑃𝑖𝑘(𝜃𝑠) =
𝑒𝑎𝑖(𝜃𝑠−𝑏𝑖𝑘+1)−𝑒𝑎𝑖(𝜃𝑠−𝑏𝑖𝑘)

(1+𝑒𝑎𝑖(𝜃𝑠−𝑏𝑖𝑘))(1+𝑒𝑎𝑖(𝜃𝑠−𝑏𝑖𝑘−1))
                                       (2.2) 

In Equation 2.2, s represents an examinee, θ represents a latent trait, i denotes an item, k 

represents a category, a indicates item discrimination, and b denotes item difficulty. The item 

difficulty parameter corresponds to the inflection point on the item response function, which 

represents the point at which an examinee with a latent trait level equal to the item's difficulty 

will have a 50% probability of getting the item correct (Newsom, 2021). The item difficulty 

parameter functions as an intercept that indicates the location on the latent trait that corresponds 

to an item's difficulty level (Hoffman, 2018). IRT, like CRT, tests only one latent trait at a time. 

In contrast, CFA provides a more flexible framework to evaluate multiple latent traits 

simultaneously (Vandenberg & Morelli, 2016).  

Confirmatory Factor Analysis  

The ordinary CFA model assumes a linear relationship between the expected trait (latent 

variable) and individuals’ responses. CFA allows the comparison of multiple latent traits at the 

same time but IRT and classical measurement theory only permit the test of a single latent trait at 

a time (Vandenberg & Morelli, 2016). The CFA model examines the relationship between latent 

factor (or variables) scores (𝜉𝑖) and observed scores (or observed variables; 𝑋𝑖𝑗) by using a linear 
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model (Equation 2.3). An example of observed scores includes items on a survey or an 

instrument. In Equation 2.3, 𝜏𝑗, 𝜆𝑜, and 휀𝑖𝑗 represent the intercept, factor loadings, and unique 

score or measurement residuals, respectively (Kim & Yoon, 2011). The factor loadings signify 

the strength of relationship between each item and each factor. The intercept represents the 

expected value when the value of the latent variable and residuals are equal to zero. The intercept 

can be used in comparing latent mean differences between groups (Chen, 2007). The 

measurement residuals indicate part of the observed variable that is not captured by the latent 

variable. The measurement residuals are comprised of systematic (e.g., error in the instrument 

calibration, reading level of the items, etc.) and random (e.g., interpretation by the respondent, 

the weather, etc.) error variances.   

                                                      𝑋𝑖𝑗 = 𝜏𝑗 + 𝜆𝑗𝜉𝑖 + 휀𝑖𝑗                                                       (2.3) 

While the IRT model uses probabilities to ascertain the relationship (see Equation 2.2) 

and assumes the relationship follows a logistic model, CFA models assume a linear relationship 

between the latent factor scores and continuous observed scores (Kim & Yoon, 2011; Schmitt & 

Ali, 2015).  

The CFA model involves the specification and testing of relationships between 

observable and unobservable (latent) factors by examining the correlations or covariances among 

the observed variables. In a CFA model, items or other types of observed indicators that make up 

the construct “load” on or correlate with a latent (unobserved) factor to signify the construct 

(Kline, 2016; Putnick & Bornstein, 2016). CFA allows researchers to specify the number of 

latent variables given a pool of items (or other types of observed indicator variables), indicate 

which latent variables are correlated with one another, and specify which items (or observed 

indicators) correspond with which factor. The CFA model allows researchers to test competing 
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models. For instance, in the case of nested models, we can test different models to identify which 

model fits significantly better. As CFA is based on a theory testing approach, it lets us look at 

tests of fit, evaluate the model’s consistency with the data, and look at different criteria used to 

assess fit of the model (Bollen, 1989; Kline, 2016).  

The CFA model is fundamental in running most SEM models and as mentioned above, 

conducting CFA provides a test of fit for the factor model. Testing the fit of the measurement 

model is the primary step of assessing the measurement quality of latent constructs used in SEM. 

The fit of the model is computed by comparing the observed covariance matrix (based on our 

data) with the model-based covariance matrix (based on the parameters of the model). The fit of 

the model suggests whether the model does a good job of accounting for the relationships among 

the variables in the observed data. If the model fits well then it indicates that the model does a 

good job of capturing the data. If the model does not fit well then it means that important 

relationships might have been left out. Both global and component model fit indices are used to 

determine how well the model fits the data.  

The global fit addresses how well the model fits the data overall. Examples of global fit 

indices are root mean squared error of approximation (RMSEA; Steiger, 1989), standardized root 

mean square residual (SRMR; Bentler, 1995), comparative fit index (CFI; Bentler, 1990) 

Tucker-Lewis index (TLI; Tucker & Lewis, 1973), and many others. On the other hand, 

component fit examines the plausibility of the model components, such as factor loadings and 

factor correlations, which are parameter estimates taken as a whole (Kline, 2016).  
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Standard Mechanisms for 

Assessing Model Fit in  

Confirmatory Factor 

Analysis  

As noted above, researchers examine the overall fit of a model by assessing how well 

their model fits the observed data (Kline, 2016; Sharma et al., 2012). Researchers have classified 

global fit indices as absolute and incremental fit indices (Chen, 2007; Hu & Bentler, 1999; 

Meade et al., 2008; Tanaka, 1993). The absolute fit indices evaluate the fit of a model by 

comparing the tested model against a perfectly fitting model. Examples of several popular 

absolute fit indices include the likelihood ratio 𝜒2 test, the 𝜒2: 𝑑𝑓(degrees of freedom) ratio, 

RMSEA, and standardized root mean square residual (SRMR; Bentler, 1995; Meade et al., 

2008). The incremental (or relative) fit indices evaluate the fit of the tested model by comparing 

it with some baseline such as an independent null model or an alternative, hypothesized model. 

Examples of incremental fit indices encompass the TLI and CFI. 

Early CFA researchers used the chi square (𝜒2) test as the primary method to assess the 

overall fit of the model. The null hypothesis of the 𝜒2 indicates that the model fits the data 

(Kline, 2016), i.e., there is no difference between the predicted model and the observed data. 

However, the 𝜒2 is sensitive to sample size (Cheung & Rensvold, 2002; De Roover et al., 2014; 

French & Finch, 2006; Iacobucci, 2010; Kline, 2016; Milfont & Fischer, 2010). As the sample 

size gets larger (more than 200), even a trivial discrepancy between the observed and model-

based covariance matrix will produce a statistically significant 𝜒2, suggesting poor overall model 

fit. The 𝜒2 amplifies with larger sample sizes and will often show statistical significance (poor 

fit) even with modest sample sizes (Iacobucci, 2010). Similarly, when using the 𝜒2 in the context 

of invariance testing, as sample size increases, differences in the measurement properties of 

scores across the groups, such as factor loadings, may lead to a significant value of 𝜒2 (rejecting 
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the null hypothesis of measurement invariance), leading to an excessively conservative 

invariance test (Chen, 2007; Cheung & Lau, 200; French & Finch, 2006; Meade et al., 2008). 

Due to the high sensitivity of the 𝜒2 as an index in evaluating model fit and measurement 

invariance, numerous alternative fit indices have been developed since the 1980s (Bentler & 

Bonett, 1980).  

Out of all the fit indices such as CFI, TLI, RMSEA, and SRMR, only the 𝜒2 and RMSEA 

have known sampling distributions, which makes them more appealing to researchers; however, 

the sensitivity of the 𝜒2 to sample size has caused researchers to adopt alternative fit indices such 

as CFI, TLI, RMSEA, and SRMR (and their combinations) to evaluate and report overall model 

fit (Chen et al., 2008; Cheung & Rensvold, 2002; DiStefano & Morgan, 2014; French & Finch, 

2006; Kline, 2016; Meade et al., 2008; Milfont & Fischer, 2010; Putnick & Bornstein, 2016; 

Sharma et al., 2012; Vandenberg & Lance, 2000). Below, I detail some of the alternative fit 

indices that have been recommended for testing overall model fit which I used to test the initial 

model and tests of configural invariance in the current study.  

Comparative Fit Index 

The comparative fit index (CFI; Bentler, 1990) is an incremental normed fit index, which 

ranges from 0 to 1, with higher values signifying better model fit (Cangur & Ercan, 2015). The 

CFI is among the most popular fit indices used by SEM researchers (Kenny et al., 2015). The 

CFI measures the relative improvement in model fit from a baseline model to the hypothesized 

model (Shi et al., 2019). CFI, as defined in Equation 2.4, is calculated using the chi-square test 

statistics of the baseline model (represented by χ𝐵
2 ) and its degrees of freedom( 𝑣𝐵 ), as well the 

chi-square test statistics of the target model (represented by χ𝑖
2) and its degrees of freedom 

(represented by 𝑣𝑖 ) (Cangur & Ercan, 2015; Kline, 2016).  
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                                         𝐶𝐹𝐼 = 1 −
max [(χ𝐵

2 −𝑣𝐵),0]

max [(χ𝐵
2 −𝑣𝐵),(χ𝑖

2−𝑣𝑖),0]
                                                       (2.4)  

CFI is comparatively unaffected by sample size (Chen, 2007) compared with other fit 

indices and performs better even when small sample size is used (Cangur & Ercan, 2015, p. 159), 

though Tanaka (1993) classified the CFI to be dependent on sample size. Existing research 

identifies CFI ≥ .95 as a cutoff of good model fit (Cheung & Rensvold, 2002; Hu & Bentler, 

1999; Meade et al., 2008; Shi et al., 2019).  

Tucker-Lewis Index 

Unlike the CFI, the Tucker-Lewis index (TLI; Tucker & Lewis, 1973), is an incremental 

non-normed fit index that has a possible range of values that may be less than 0 or exceed 1, with 

values closer to 1 indicating good fit (Cangur & Ercan, 2015; Kline, 2016). TLI is defined in 

Equation 2.5 as: 

                                            𝑇𝐿𝐼 =

𝜒2
𝑖

𝑣𝑖
−

𝜒2
𝐵

𝑣𝐵

𝜒2
𝑖

𝑣𝑖
−1

                                                                   (2.5) 

where 𝜒2
𝐵

 and 𝑣𝐵  represent the chi-square test statistics and degrees of freedom, respectively for 

the baseline model, while 𝜒2
𝑖
 and 𝑣𝑖 represent the same values for the targe model (Cangur & 

Ercan, 2015). The TLI measures relative decrement in model misfit per the degrees of freedom 

between the target and baseline model. Researchers identify TLI ≥ .95 as a criterion for good fit 

(Cheung & Rensvold, 2002; Hu & Bentler, 1999; Meade et al., 2008; Shi et al., 2019). The 

highlight of TLI is that it has not been found to be substantially affected by sample size (Cangur 

& Ercan, 2015). 
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Standardized Root Mean Squared  

Residual 

The standardized root mean squared residual (SRMR; Bentler, 1995) is an absolute fit 

index designed to measure the average residuals between the model-implied and observed 

covariance matrices standardized to a correlation metric (Chen, 2007). SRMR, shown in 

Equation 2.6, is defined as: 

                                     𝑆𝑅𝑀𝑅 = √
∑ ∑ [

(𝑠𝑖𝑗−�̂�𝑖𝑗)

𝑠𝑖𝑖𝑠𝑗𝑗
]

2

𝑖
𝑗=1

𝑝
𝑖=1

𝑝(𝑝+1)

2

                                                 (2.6) 

where 𝑠𝑖𝑗 indicates an element of the sample covariance matrix, S, and �̂�𝑖𝑗 is an element of the 

model-implied covariance matrix, and 𝑝 indicates the number of observed variables (Cangur & 

Ercan, 2015; Schermelleh-Engel et al., 2003). SRMR less than .05 has been identified as an 

indicator of a good fit model, while values between .05 and less than .10 as indicators of an 

acceptable model (Cangur & Ercan, 2015; Hu & Bentler, 1999; Kline, 2016; Schermelleh-Engel 

et al., 2003). Since SRMR is more sensitive than other fit indices to factor covariance 

misspecification, it is advised to use different values of SRMR in testing non-invariance of 

intercepts or residual variances (Chen, 2007). Although SRMR is appealing to use because of its 

relative independence from sample size (Chen, 2007), Cangur and Ercan (2015) caution against 

using SRMR in model fit research, claiming it to be highly sensitive to estimation technique and 

sample size. 

Root Mean Square Error of  

Approximation 

The root mean squared error of approximation (RMSEA; Steiger, 1989) is an absolute fit 

index that measures the difference between the observed covariance matrix and the model-

implied covariance matrix per degree of freedom (Cangur & Ercan, 2015; Chen, 2007). RMSEA 
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is predominantly used by SEM researchers and is the second most popular of the fit indices after 

CFI (Kenny et al., 2015). RMSEA is defined in Equation 2.7 as: 

                            𝑅𝑀𝑆𝐸𝐴 = √max {[[
𝐹(𝑆,∑ �̂�)

𝑣
−

1

𝑛−1
] , 0]}                                          (2.7) 

where 𝑚𝑎𝑥 represents the maximum value of the values inside the inner brackets and 0, ∑ 𝜃 is 

the hypothesized model (i.e., model-based) covariance matrix, S is the sample covariance matrix, 

𝐹(𝑆, ∑ 𝜃) indicates the minimum of the fit function, 𝑣 represents the degrees of freedom, and 𝑛 

indicates the sample size (Cangur & Ercan, 2015; Schermelleh-Engel et al., 2003). In RMSEA, 

values closer to 0 represent a good fit. Browne and Cudeck (1993) recommended a value less 

than or equal to .05 as a good fit whereas the values between .05 and .08 as an adequate fit, 

values between .08 and .10 as mediocre fit, and values greater than .10 as non-acceptable fit 

(Cangur & Ercan, 2015; Schermelleh-Engel et al., 2003). Hu and Bentler (1999) recommended 

RMSEA values smaller than .06 as a cutoff criterion for a good fit. Research on the sensitivity of 

RMSEA to sample size is mixed, with the effects of sample size appearing to depend on model 

complexity. For example, Breivik and Olsson (2001) found RMSEA is sensitive to model 

complexity in smaller samples. Similarly, Cangur and Ercan (2015) showed RMSEA estimates 

fit more accurately for large sample sizes compared to small sample sizes, (Cangur & Ercan, 

2015). In contrast, Schermelleh-Engel et al.’s(2003) results suggested RMSEA favors 

parsimonious models and is relatively independent of sample size.  

 More information about fit and fit indices can be found in Tanaka (1993). Pairing the CFI 

and SRMR was recommended by Hu and Bentler (1999) in evaluating CFA measurement 

models, reasoning that CFI is “most sensitive to mis-specified pattern coefficients, whereas the 

SRMR seemed to be most sensitive to mis-specified factor covariances” (Kline, 2016, p. 277). 
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Both CFI and SRMR are independent of sample sizes and perform well regardless of small 

sample size, but RMSEA may over-reject a true model in the presence of small sample sizes 

(Chen, 2007). In the context of large sample size, Cangur and Ercan (2015) found chi-square, 

RMSEA, and CFI to be independent from sample size, but SRMR and TLI to be dependent on 

sample size.  

Criteria for Evaluating Model  

Fit Indices 

 The need for identifying adequate cutoff criteria for fit indices based on model conditions 

such as model misspecification, sample size, model complexity, and violation of the normality 

and independence of observations assumptions has garnered much attention (Cheung & 

Rensvold, 2002; Hu & Bentler, 1999). Hu and Bentler recommended cutoff values close to .95 

for TLI and CFI in combination with SRMR of .08 and RMSEA of .06 to evaluate model fit for 

sample size of at least 250. Hu and Bentler also suggested a combination of SRMR ≤ .06 with 

RMSEA ≤ .05 as indicators of good fit. Although Hu and Bentler stressed that their cutoffs were 

bound to their simulation conditions, their cutoff values are often considered as benchmark 

values across all types of models, until recently when more researchers demonstrated fit statistics 

as being sensitive to different factors such as model misspecification, model complexities, and 

factor loading structures (Heene et al., 2012; Marsh et al., 2004; Sivo et al., 2006).  

 Although researchers have identified criteria of reasonable fit for different fit indices, the 

cutoffs are subjective; hence they need to be used in combination with different fit indices to 

assess the fit of the model (Chen et al., 2008). Researchers also have begun to combine different 

fit indices and criteria of fit indices in assessing tests of measurement invariance (Kline, 2016). I 

discuss these criteria after I address measurement invariance and its different types of tests.  



26 

 

 

 

Measurement Invariance  

A large amount of research has been conducted on measurement invariance in the past 50 

years. Since the late 1960s, researchers such as Byrne et al. (1989); Jöreskog (1971); Meredith 

(1993); Putnick and Bornstein (2016), and Widaman and Reise (1997) have conceptualized 

measurement invariance and emphasized its crucial role in comparing groups. Jöreskog (1971) 

highlighted the importance of testing equivalence of factor structures and schematized 

procedures to conduct multiple-group confirmatory factor analysis. Meredith (1993) provided a 

conceptual framework from which to meditate issues of measurement invariance, mathematically 

defined measurement invariance and factorial invariance, and demonstrated conditions under 

which measurement and factorial invariance could occur. Kline (2016) reported that researchers 

mostly test invariance when they are concerned about the lack of invariance in measuring group 

differences. Steenkamp and Baumgartner (1998) emphasized that although validation of 

measurement invariance was crucial for scientific inference, cross-national research in 

behavioral sciences often lacked evidence of measurement invariance, leading to untrustworthy 

conclusions. Measurement invariance has been classified into many types, which are detailed in 

the following section.  

Levels of Measurement Invariance 

The statistical techniques to test measurement invariance received momentum in the 20th 

century. With respect to the CFA approach, some researchers have classified measurement 

equivalence\invariance (ME\I) into four major types: configural invariance, metric invariance, 

scalar invariance, and residual invariance (Putnick & Bornstein, 2016; Steenkamp & 

Baumgartner, 1998); however, not all researchers restrict themselves to only these terms and 

types of measurement invariance (Vandenberg & Lance, 2000). In a comprehensive review of 
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CFA-based applied studies from the 1980s to 1990s (see Table 2.1), Vandenberg and Lance 

(2000) expanded Steenkamp and Baumgartner's measurement invariance classification within the 

factor analysis perspective by introducing four additional layers. Vandenberg and Lance (2000) 

found no existing studies which recommended applying all eight steps of measurement 

invariance testing as outlined in Table 2.1. Although 88% of the studies reviewed by Vandenberg 

and Lance tested for configural invariance, only 12% of the studies tested for scalar invariance. 

Vandenberg and Morelli (2016) claimed that testing invariance of the observed covariance 

matrix (Vandenberg and Lance’s step 1) is not necessary as this test is not an omnibus test as 

originally considered by Vandenberg and Lance. Putnick and Bornstein (2016) reported that 

contemporary guidelines omit the test of invariant covariance matrices as this is rarely practiced 

by researchers.  
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Table 2.1 

Steps of Measurement Invariance According to Vandenberg and Lance (2000) 

 
Steps Invariance Tests Explanation 

1 Covariance matrices or omnibus test of equality 

of covariance matrices 

Tests whether the variance/covariance matrices are the 

same for each group 

2 Configural invariance or invariance of form Tests whether the same factor structure is plausible for 

each group 

3 Metric invariance or equality of factor loadings Tests whether the factor loading values are equivalent 

across groups 

4 Scalar invariance or equality of intercepts for 

continuous and thresholds for ordinal 

indicators 

Tests whether the same intercept values for continuous 

indicators and threshold values for ordinal indicators 

are tenable across groups 

5 Residual invariance or equality of error 

variances/covariances 

Tests whether the same error variances and covariances 

are tenable for each item or indicator variable between 

groups 

6 Factor variance invariance Tests whether the same factor variance holds for each 

group 

7 Factor covariance invariance Tests whether the same factor covariance holds for each 

group 

8 Factor mean (or latent mean) invariance Tests whether the same factor mean holds for each 

group 

 

 

Schmitt and Kuljanin (2008) identified 75 research studies published between 2000 and 

2007 that tested measurement invariance. Their findings revealed a rising awareness among 

researchers regarding the importance of establishing measurement invariance, leading to an 

increased number of studies that assessed both configural and metric invariance. In addition, they 

found a huge increment in the number of studies testing for scalar invariance from Vandenberg 

and Lance’s (2000) review. Putnick and Bornstein (2016) reviewed articles from 2013 to 2014 

and found more studies incorporating scalar and metric invariance than Schmitt and Kuljanin 
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(2008) reported. Putnick and Bornstein found some studies which incorporated scalar and 

residual invariance tests in their studies but witnessed that different studies implemented 

different levels of restrictive invariance tests.  

Establishing Latent Covariances  

and Testing Latent Means 

Establishing invariance of latent covariances (step 7) is important for CFA models with 

two or more latent variables, as having invariant latent covariances across groups would indicate 

that the construct is operating the same way for different groups (Cheung & Rensvold, 2002; 

Little, 1997). However, equivalence of factor variances and covariances does not need to be 

tested prior to conducting tests of mean differences, as “factor variances and covariances are not 

assumed to be invariant across groups when testing latent mean equivalence” (Cheung & Lau, 

2012, p.168). After passing configural, metric, and scalar invariance tests, researchers may 

decide to compare latent means (step 8) across groups if they are interested (Cheung & Lau, 

2012; Putnick & Bornstein, 2016). The test of latent means involves testing whether the “mean 

level of each construct is the same across groups” (Cheung & Rensvold, 2002, p. 236). The non-

equivalence of latent factor means indicates that the groups have different levels of attitudes 

towards a construct. For instance, if we were to test males and females’ “happy” state of mind by 

using a set of survey items, then the significance of the test of latent means would indicate that 

males and females have different attitudes towards a happy state of mind. It is important to 

establish equivalence of factor loadings and intercepts (or thresholds for ordinal indicators) if the 

researcher is interested in testing for latent mean differences. The test of latent means would then 

be used in lieu of analysis of variance (ANOVA) or multivariate analysis of variance 

(MANOVA; Hancock et al., 2000). 
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In the following paragraphs, I detail and provide examples for four types of tests of 

measurement invariance within the CFA framework: configural, metric, scalar, and residual 

invariance that were listed above.  

Configural Invariance 

Various researchers have referred to configural invariance by different names including 

the baseline model, a test of equality of factor structure, equal number of factors and factor 

patterns, invariant number of factors, test of form, pattern invariance, factorial similarity, and so 

on (Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). Configural invariance is the most 

basic level of invariance: the invariance of form. It examines if the factorial structure (pattern of 

free and fixed loadings of a CFA model) is equivalent in each group. It is established when 

observed indicator variables or item responses “load” on the same latent variable (construct) 

across multiple groups (Vandenberg & Lance, 2000). Invariance at the configural level indicates 

that the basic configuration of the constructs is similar across different groups. For instance, 

Figures 2.1 and 2.2 illustrate an example of configural invariance and non-invariance between 

groups, respectively, for state of mood.  

In Figure 2.1, “happy mood” represents the latent variable that we wish to compare 

across two or more groups. A happy mood is comprised of five subscales: peaceful, creative, 

hopeful, thankful, and perceptive. Each of the five subscales can be measured by aggregating 

scores within each subscale, and each score included in the aggregate scores is based on a set of 

self-administered Likert-type scale items (1 = disagree to 5 = agree) with larger values 

indicating more positive attitude. These subscales represent the observed variables which are 

used to measure the unobservable latent variable, “happy mood.” Further, 𝜆𝑖 represents the factor 

loadings for the indicator variables, 𝜏𝑖 represents the item intercepts, and 𝛿𝑖 represents a 
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combination of measurement error and unique variance associated with the observed 𝑋 measures 

(peaceful, creative, etc.). 

 

Figure 2.1 

Configural Invariance 

 

 
 

 

Figure 2.2 

Configural Non-invariance 

 

 
 

 

As seen in Figure 2.1, configural invariance is met when the same pattern of factor 

loading holds for each group in the study. Both groups show that happy mood constitutes 
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“peaceful,” “creative,” “hopeful,” “thankful,” and “perceptive.” However, if different groups 

exhibit different patterns of factor loadings on the latent factor, “happy mood” (as seen in Figure 

2.2) then configural invariance has not been met. Figure 2.2 suggests that the two different 

groups perceive “happy mood” differently. We can see that while Group 1 illustrates that happy 

mood is comprised of five subscale scores, Group 2 illustrates that happy mood includes four of 

the five subscale scores but excludes “perceptive.”  

Configural invariance does not require the equality of parameter estimates such as item 

loadings, intercepts, or residual variances across groups (Muthén & Asparouhov, 2018). In other 

words, configural invariance does not examine if the values of 𝜆𝑖, 𝜏𝑖, and 𝛿𝑖 are similar between 

groups. If configural invariance is not met, then measurement invariance does not hold at any 

subsequent level, and leads researchers to either redefine the construct, modify the model, or 

assume that the groups perceive the construct differently and discontinue invariance testing (as 

well as any means comparisons) between groups (Kline, 2016; Putnick & Bornstein, 2016). 

Configural invariance may fail when the participants find the construct very abstract to 

comprehend owing to their different cultures or developmental levels. Other factors such as 

unclarity of the language, translation errors, data collection problems, etc. could also lead to 

configural non-invariance (Cheung & Rensvold, 2002). In a bottom-up approach (starting with a 

less restrictive form of invariance and slowly imposing invariance of more parameters if 

invariance exists at the previous level), if configural invariance is satisfied, then researchers 

proceed with testing metric invariance where they test the equivalence of the items’ factor 

loadings (𝜆𝑖; Putnick & Bornstein, 2016).  

Vandenberg and Lance (2000) witnessed that most researchers agreed on establishing 

configural invariance (their step 2) as a necessary condition and a baseline model for any 
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subsequent tests, but they did not agree on the sequence of tests beyond configural invariance. 

Based on the literature, configural and metric invariance (Vandenberg and Lance’s steps 2 and 3) 

remain critical in assessing invariance between groups even though their absence does not have 

as much practical impact as originally thought (Schmitt & Ali, 2015; Vandenberg & Morelli, 

2016). 

Metric Invariance 

Metric invariance is only performed when scores from a measure have configural 

invariance, i.e., the same pattern of factor loadings applies across groups (Sharma et al., 2012). 

Metric invariance is also called a test of equality of scaling units, metric comparability, factor 

loading invariance, weak invariance, and full measurement invariance (Putnick & Bornstein, 

2016; Vandenberg & Lance, 2000). Metric invariance tests if each group responds to the items in 

the same way (Cheung & Rensvold, 2002; Kline, 2016; Milfont & Fischer, 2010; Putnick & 

Bornstein, 2016). Metric invariance requires the magnitude and direction of the factor loadings 

or the slope of the linear function (𝜆𝑖) on the specific scale items to be the same across groups. 

Lack of metric invariance indicates that at least one of the factors or a subset of items have 

different meaning across different groups (Gregorich, 2006; Kline, 2016; Sharma et al., 2012). In 

particular, the absence of metric invariance suggests that the differences in the observed mean do 

not correspond with the differences in the actual means of the construct (Sharma et al., 2012). 

Metric invariance can be tested by constraining all factor loadings (𝜆𝑖) to be equal across 

groups in a confirmatory factor analysis framework (Gregorich, 2006; Kline, 2016; Milfont & 

Fischer, 2010; Putnick & Bornstein, 2016). Besides constraining the factor loadings to be equal, 

metric invariance in a multi-sample CFA can also be assessed by comparing the model fit of a 

configurally invariant model with the fit of metrically invariant model to determine if restricting 
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the loadings to be equal across groups results in a statistically significant decrement in fit. If 

there is any significant decrement of fit, it indicates that the equal factor loadings hypothesis is 

not supported (Gregorich, 2006).  

If metric invariance is not met, it indicates that at least one of the factor loadings is not 

equivalent across groups, which suggests that the common factors have different meaning across 

different groups of the underlying construct (Milfont & Fischer, 2010). In my example of “happy 

mood” in Figure 2.3, we see that both groups show similar factor loadings on the latent factor 

“happy mood” indicating that metric invariance has been met, meaning the relationship between 

happy mood and each subscale is the same across different groups. However, in Figure 2.4, we 

see although all the factor loadings across two groups are similar on each of the four subscales 

(peaceful, creative, hopeful, and thankful), the factor loadings on “perceptive” are very 

dissimilar, suggesting that metric invariance has not been met. Figure 2.4 suggests that different 

groups perceive the relationship between “perceptive” and “happy mood” differently.  

 

Figure 2.3 

Metric Invariance 
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Figure 2.4 

Metric Non-invariance 

 
 

 

Under metric non-invariance researchers can either 1) investigate the source of 

nonequivalence by testing the removal of factor loading constraints (for example, by allowing 

one or more factor loadings to be estimated separately for each group) until the model is partially 

invariant; 2) remove items with noninvariant loadings and retest configural and metric 

invariance; or 3) assume that the groups perceive the construct differently and discontinue 

invariance testing and any subsequent testing of group mean differences (Putnick & Bornstein, 

2016). In terms of a bottom-up approach to testing measurement invariance, if metric invariance 

is met fully or partially then the researchers continue with testing scalar invariance.  

Scalar Invariance 

Scalar invariance is also addressed as strong invariance (Putnick & Bornstein, 2016; 

Vandenberg & Lance, 2000). Scalar invariance suggests that the mean of the construct holds the 

same meaning for different groups. Scalar invariance refers to the equivalence of the underlying 

metric as indicated by similarity of item intercepts (for continuous data) or item thresholds for 

rating scale response categories (for ordinal data) over groups (Kline, 2016). Tests of item 

intercepts (𝑐𝑖) are also the test of item means, and are the minimum invariance needed to make 
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meaningful interpretation of group mean contrasts. Scalar invariance is tested by forcing item 

intercepts (𝑐𝑖) to be equivalent across groups (see Figures 2.5 and 2.6) and then comparing the 

model fit with the model for which intercepts are not constrained to be invariant. If there is a 

significant decrement in fit, it suggests a lack of scalar invariance.  

Meeting scalar invariance implies that “individuals who have the same score on the 

construct would obtain the same score on the observed variable regardless of group membership” 

(Milfont & Fischer, 2010, p. 115). For item-level indicators based on rating scale data, scalar 

invariance, which requires equivalence of item thresholds, would suggest that respondents are 

using the item response categories in the same way. In Figure 2.5 we see that both groups have 

similar intercepts, suggesting that scalar invariance has been met. However, in Figure 2.6, we see 

that the intercepts of “thankful” are different for different groups. The intercept of group 1 is 3.1 

whereas the intercept of group 2 is .8 for “thankful,” suggesting lack of scalar invariance.  

 

Figure 2.5 

Scalar Invariance 
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Figure 2.6 

Scalar Non-invariance 

  

 

As shown in Figure 2.6, if scalar invariance is not met then the researchers can either 1) 

investigate the source of invariance by sequentially removing item intercept constraints until 

partial invariance is met; 2) remove items with noninvariant intercepts and retest configural, 

metric, and scalar invariance, or 3) assume that the groups perceive the construct differently and 

discontinue invariance testing and subsequent between-group means testing (Putnick & 

Bornstein, 2016). Scalar invariance is a prerequisite in comparing latent means as it indicates that 

the operational definition of the measurement scales remains intact across groups (Cheung & 

Lau, 2012; Cheung & Rensvold, 2002). Vandenberg and Morelli (2016) indicated that scalar 

invariance (Vandenberg and Lance’s proposed steps 4) is reliant on the researcher’s end game. 

Through a Monte Carlo simulation, Steinmetz (2013) showed that scalar non-invariance caused 

severe misinterpretation of true mean differences between groups, but metric non-invariance 

only led to a trivial effect on mean differences between latent factors.  

Latent Means  

Once scalar invariance is met, a test of latent mean differences can be used to compare 

group differences. The test of latent means helps to ascertain if the mean level of the construct is 



38 

 

 

 

invariant between different groups (Cheung & Rensvold, 2002), analogous to conducting an 

ANOVA or MANOVA. While testing for latent mean differences between groups, one of the 

groups is used as a reference group (by setting its mean to zero to identify the model) and 

compared with the mean of the other group. For instance, we can compare differences in mean 

happiness between males and females by constraining the mean of males to zero, and by 

comparing the value of zero to the estimated mean of the females. The null hypothesis of the 

tests of latent mean differences indicates the means of the groups do not differ. Rejection of the 

null hypothesis suggests a difference between groups in terms of the construct mean 

(Vandenberg & Lance, 2000). 

 Compared to t-test, ANOVA, and MANOVA, the test of latent means accounts for the 

random error of observed variables that comprise latent variables by segregating true score 

variance from error variance (Hancock et al., 2000). The test of latent means is not a necessary 

test; for those who conduct this test, it is usually because comparing means across two or more 

groups is of substantive interest where the other invariance tests are conducted to determine if it 

is legitimate to conduct substantive analyses such as comparing group means or conducting 

regression analysis (Jiang et al., 2017; van de Schoot et al., 2015). Establishing partial metric and 

scalar invariance is a necessary prerequisite for meaningful comparison of latent means in SEM, 

as it ensures consistent measurement of the latent variables across different groups (Cheung & 

Lau, 2012; Steenkamp & Baumgartner, 1998).Vandenberg and Lance (2000) mentioned that 

testing for residual invariance before testing latent means is not necessary as latent means are 

“theoretically perfectly reliable, and thus testing the invariance of uniqueness terms before 

testing latent mean differences gains nothing” (p. 57).  
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Some authors differentiate between “strict” and “strong” factorial invariance. Strong 

invariance requires that both metric and scalar invariance be met, whereas strict invariance adds 

the requirement of residual invariance, which refers to equal error variances/covariances (Kline, 

2016). 

Residual Invariance 

Residual invariance is also referred to as invariance of uniqueness, invariant disturbance 

covariance structures, equivalence of error structure, strict invariance, invariant error variances, 

equality of reliabilities, and so on (Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). 

Residual invariance is present if the same error variance is tenable for each observed indicator 

variable (or the same error covariances for each pair of items/indicators are equivalent) between 

groups (Milfont & Fischer, 2010; Putnick & Bornstein, 2016). Residual invariance can be tested 

by constraining all error variances to be equal across groups (Milfont & Fischer, 2010). Presence 

of residual non-invariance indicates that at least one item’s residual is different across groups, or 

that error covariances for pairs of items differ across groups, which suggests that at least one of 

the items has different measurement error between groups. Residual invariance is not required 

when comparing latent means since, as mentioned above, “measurement errors are accounted for 

when estimating other parameters with SEM” (Cheung & Lau, 2012, p.168).  

In the example above of the state of mood, 𝛿𝑖 represents the measurement error plus 

unique variance of each observed indicator variable. If both groups have similar 𝛿𝑖 as seen in 

Figure 2.7, we can say that residual invariance has been met. If the groups have dissimilar error 

variances as seen in Figure 2.8, then residual invariance has not been met. We can see that the 

error variance of “creative” differs for groups 1 and 2 in Figure 2.8. While the non-invariance of 

factor loadings stresses that the indicator contributes to the latent variable to the same degree 
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across the groups, the non-invariance of residual invariance suggests that at least one of the 

indicators has different measurement error across groups (Cheung & Lau, 2012; Putnick & 

Bornstein, 2016).  

 

Figure 2.7 

Residual Invariance 

 
 

 

Figure 2.8 

Residual Non-invariance 
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If residual invariance fails then researchers can either investigate the source of invariance 

by sequentially removing indicator residual constraints until partial invariance is met or assume 

that the groups perceive the construct differently and discontinue invariance testing (Putnick & 

Bornstein, 2016). Here, removing indicator residual constraints means not requiring all 𝛿𝑖 to be 

equal for each indicator variable across groups. Invariance tests about residual invariance 

(Vandenberg and Lance’s step 5) may be unnecessary unless the researchers are interested in 

examining item uniqueness or testing consistency of measurement error across groups on latent 

variables or individual items (Schmitt & Kuljanin, 2008; Vandenberg & Morelli, 2016). 

Consequence of Lack of Invariance 

In the above paragraphs I have discussed different types of measurement invariance and 

testing invariance. But what if measurement invariance is not met? What are the consequences of 

a lack of invariance? Often, we create an instrument for one cultural group and then use it for 

other groups. Whenever we compare scale scores (such as happiness) across various groups of 

people, we assume that the scale measures the same constructs regardless of group membership. 

If our underlying assumption is not true then comparison of groups is not meaningful (Chen, 

2008; Geiser, 2010). In the absence of measurement invariance, there is “no clear basis for 

drawing inferences from the scores” (Kline, 2016, p. 396). Hence, comparing groups on a 

construct is meaningless in the absence of measurement invariance. When two or more groups 

have less overlap regarding the meaning of constructs due to cultural differences, translation 

issues, etc., lack of invariance of factor loadings and intercepts can occur (Chen, 2008).  

 Lack of invariance of factor loadings led to bias (overestimation and underestimation) of 

regression slopes and means in Chen’s (2008) simulation study. The nature of bias of regression 

slopes and means, whether over or underestimated, relied on proportion of non-invariant items 
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and ratio of sample size of the reference versus focal group. Similarly, lower item thresholds in 

the focal group when ignored, led to overestimated factor means and regression coefficients in 

the focal group and underestimated factor means and regression coefficients in the reference 

group. Lack of intercept invariance and differences in the ratio of sample sizes between groups 

can also lead to biased estimates of factor means. The nature of bias relies on the direction of 

intercept differences. For instance, higher intercepts in the reference group than the focal group 

have led the factor means to overestimate latent means in the reference group and underestimate 

them in the focal group (Chen, 2008).  

The inclusion and omission of different types of invariance tests differ from one article to 

another (Schmitt & Kuljanin, 2008; Vandenberg & Lance, 2000). While some authors were 

content with only metric and scalar invariance (Cheung & Lau, 2012) others included more 

stringent conditions and required tests of factor variances/covariances and error 

variances/covariances as a necessary condition to conduct tests of mean differences across 

groups, such as based on ANOVA or t-tests (Schmitt & Kuljanin, 2008; Vandenberg & Lance, 

2000; Vandenberg & Morelli, 2016). Although most researchers agree on specific procedures for 

conducting various tests of measurement invariance, they disagree on the set of tests and the 

sequence of tests in establishing measurement invariance (Vandenberg & Lance, 2000). For 

example, Widaman and Reise (1997) used empirical data to test configural, metric, scalar, and 

strict invariance followed with tests of factor variance-covariance invariance and factor mean 

differences in studying attitudes and behaviors related to substance abuse between males and 

females. Chen (2007) posited that since tests of invariant variances and covariances are often 

difficult to attain in practice, most researchers only test for configural, metric, scalar, and 

residual invariance. Configural invariance and at least partial metric invariance must be 
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established for subsequent statistical tests to be meaningful (Vandenberg, 2002). At least partial 

metric invariance should also be established before conducting tests of scalar invariance. 

Similarly, scalar invariance needs to be attained before testing invariance of latent means and 

residual variances (Schmitt & Kuljanin, 2008; Vandenberg, 2002). Attaining invariance of 

residuals is not necessary if the goal of the researcher is to compare differences in latent means 

between groups (Schmitt & Kuljanin, 2008). Likewise, equivalence of factor variances and 

covariances does not need to be tested prior to conducting tests of mean differences, as “factor 

variances and covariances are not assumed to be invariant across groups when testing latent 

mean equivalence” (Cheung & Lau, 2012, p. 168). 

In addition, several researchers have implemented tests of partial measurement invariance 

when full or strict sequential measurement invariance was not feasible (Vandenberg & Lance, 

2000). A factor is said to be partially metric-invariant if most of the factor’s loadings are 

invariant across populations (Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). Based on 

the results from a Monte Carlo simulation study, Steinmetz (2013) showed that while metric 

non-invariance had minimal effect on mean differences of a latent variable, scalar non-invariance 

had grave impact on the interpretation of mean differences. Attaining partial invariance is not 

enough while working with composite scores since “even one unequal intercept can have a 

substantial impact on the composite score” (Steinmetz, 2013, p. 10).  

 Researchers use certain techniques to detect lack of measurement invariance within a 

CFA framework. The following section details the standard practices that are being exercised in 

deducing lack of measurement invariance. 
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Approaches to Testing Measurement Invariance 

To assess tests of measurement invariance, researchers have exercised two main 

approaches: top-down and bottom-up approaches while comparing groups. In a bottom-up 

approach (which was described above), the researchers start with configural invariance (or other 

less restrictive forms of invariance) and slowly impose invariance constraints on more 

parameters, one group of parameters at a time, such that the next level of invariance will only be 

tested if invariance exists at the previous level (Muthén & Asparouhov, 2018). For instance, if 

scalar invariance (Vandenberg and Lance’s step 4) is met, researchers can continue by testing 

residual invariance (step 5), which tests the equivalence of item residuals of metric and scalar 

invariant items. In a top-down approach, researchers start with full invariance (for example, 

scalar or residual invariance) and slowly relax the invariance of parameters, one at a time until 

they arrive at configural invariance (Vandenberg and Lance’s step 1; Muthén & Asparouhov, 

2018). 

Regardless of top-down and bottom-up approach, researchers have commonly used 

maximum likelihood estimation within a CFA framework (Sass et al., 2014) to determine the 

difference in the overall fit between two nested models. In testing nested models, the parameters 

in one model are freely estimated for both groups versus the other model where some parameters 

are constrained to be the same for both groups (Cheung & Rensvold, 2002; De Roover et al., 

2014; Little, 1997; Vandenberg & Lance, 2000). Since maximum likelihood estimation assumes 

normality and may not be appropriate for invariance testing on models with categorical or 

ordinal observed indicator variables. Instead, robust methods such as weighted least square 

means and variance adjusted (WLSMV; Muthén and Muthén, 1998-2017) can be used for more 

accurate estimates (Asparouhov & Muthén, 2021; Li, 2016; Meredith, 1993). 
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The difference in 𝜒2 values between the constrained and unconstrained model is used to 

assess if the constrained (and more parsimonious) model does not fit significantly worse than the 

unconstrained model (Cheung & Lau, 2012; French & Finch, 2006; Little, 1997). If the overall 

fit of the constrained model is worse than the fit of the less constrained model, then the 

parameter(s) fail the measurement invariance test (Cheung & Rensvold, 2002). As an alternative 

to the 𝜒2 difference test, Little (1997) proposed four criteria in evaluating relative fit indices of 

two nested models: (a) the overall model fit should be acceptable (TLI ≥ .95); (b) the difference 

in values of alternative fit indices between a constrained and unconstrained model should be 

negligible, (c) indices of local misfit such as fitted residuals and modification indices need to be 

uniformly and unsystematically distributed with respect to the constrained parameters; and (d) 

the accepted, constrained model is substantively more parsimonious and meaningful than the 

unconstrained model. 

In addition to the traditional measurement invariance testing based on multiple groups 

CFA, multilevel CFA, Bayesian method of estimation, alignment optimization, and multilevel 

factor mixture modeling can be used to test measurement invariance across many groups (Greiff 

& Scherer, 2018; Kim et al., 2017). Multilevel CFA considers groups (such as classrooms, 

clinics, etc.) as random and formulates a single measurement model by attending to the within-

group covariance matrix and between-group covariance matrix (Greiff & Scherer, 2018; Kim et 

al., 2017). Multilevel factor mixture modeling is “entailed for individuals nested within groups 

and latent classes should be specified for groups at the between level” (Kim et al., 2017, p. 527). 

Bayesian approximate measurement invariance (BAMI) allows researchers to incorporate 

uncertainty in parameter estimates such as factor loadings and intercepts between groups via a 

distribution of plausible values through resampling techniques, and incorporation of prior 
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knowledge on parameters. Compared to non-Bayesian techniques, BAMI allows researchers to 

have “wiggle-room” on model parameters across groups (Kim et al., 2017). Alignment 

optimization utilizes a configural invariance model to estimate an optimal set of group-specific 

measurement parameters and then allows model parameters to vary across groups by using the 

configural model to minimize non-invariance (Greiff & Scherer, 2018; Kim et al., 2017; Muthén 

& Asparouhov, 2018). These five approaches serve different needs and researchers need to adopt 

approach(es) that best serve their needs (Greiff & Scherer, 2018; Kim et al., 2017; Muthén & 

Asparouhov, 2018). As I am limiting my dissertation to use of standard multiple groups CFA 

invariance testing approaches, additional discussion of these alternative invariance testing 

approaches is beyond the scope of the current study. I urge readers to review Kim et al. (2017) to 

learn more about these five approaches.  

Greiff and Scherer (2018) reviewed studies published in the European Journal of 

Psychological Assessment from 1995 to 2017. They found that the multi-group CFA technique 

was the most widely used method, accounting for 70% of total usage among the five listed 

techniques for testing measurement invariance. Alternatively, differential item functioning (DIF) 

approaches or models based on item response theory can help supplement findings of multi-

group CFA techniques (Greiff & Scherer, 2018).  

Differential Item Functioning 

In the IRT framework, lack of measurement invariance is known as differential item 

functioning (DIF). In the IRT (Item response theory) framework, when an item behaves 

differently for different groups of test-takers, even though they possess the same level of the 

construct being measured, it is known as DIF. DIF can occur when an item presents different 
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levels of difficulty for one group compared to another, indicating that the item does not measure 

the same construct for all groups and therefore lacks invariance between the groups. 

The same ideas of measurement invariance in a CFA framework apply to DIF analysis, 

but with different terminology (Hoffman, 2018). In DIF analysis, measurement invariance is 

equivalent to non-DIF, meaning that the item parameters are the same across groups or time. On 

the other hand, measurement non-invariance, which is equivalent to DIF, refers to the presence 

of systematic differences in the item parameters across groups or time. DIF involves a similar 

process of constraining parameter estimates to be equal across groups or time except the 

parameters of items that are being tested (Meade & Lautenschlager, 2004). 

In DIF analysis, item discrimination and location parameters are used to compare 

examinee groups simultaneously for each item one at a time. IRT is closely aligned with the 

factor analysis model in its parameters. For example, the intercept in CFA is analogous to the 

IRT item difficulty parameter and the factor loading is analogous to the item discrimination 

parameter in IRT (Teresi, 2006) IRT models provide item parameters, such as item 

discrimination and difficulty, that can be used to make group comparisons, which can be used in 

DIF analysis (Stark et al., 2006). In IRT, item discrimination refers to the slope of the line at the 

item difficulty location. It represents the relative ability of the item to distinguish between 

individuals of high and low levels of the underlying trait. Item difficulty, on the other hand, 

refers to the amount of the underlying trait needed to have a 50/50 chance of giving a higher 

response to the item. It represents the level of the underlying trait at which the item is equally 

likely to be answered correctly or incorrectly (or for rating scale items, to endorse or not to 

endorse). Together, item discrimination and difficulty parameters provide a powerful tool for 

comparing examinee groups on each item one at a time, which is the main goal of DIF analysis 
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(Hoffman, 2018; Newsom, 2021). In CFA, metric and scalar invariance are typically tested 

separately by constraining factor loadings and intercepts across groups or time. However, in DIF 

analysis, both metric and scalar invariance are typically tested at once by comparing item 

discrimination and difficulty parameters across groups or time. This is because DIF analysis is 

focused on comparing examinees' abilities to respond correctly to items (or endorse rating scale 

options) across groups or time, and the item discrimination and difficulty parameters are used to 

quantify this comparison. So, in DIF analysis both metric and scalar invariance are tested 

simultaneously (Stark et al., 2006).  

Current Practices of Invariance Testing 

There is an increasing awareness amongst researchers, especially in psychological and 

developmental research, in establishing measurement invariance before comparing parameter 

estimates, such as means, between different groups (Cheung & Rensvold, 2002; Gregorich, 

2006; Greiff & Scherer, 2018; Putnick & Bornstein, 2016; Sharma et al., 2012). Much of this 

awareness could be due to the increasing number of methodologists, especially those conducting 

research within the structural equation modeling framework, who have signaled the significance 

of measurement invariance testing but suggest more research on measurement invariance is 

needed (Putnick & Bornstein, 2016). Measurement invariance testing has become more popular 

these days and an increasing number of researchers are endeavoring to incorporate it in their 

CFA (De Roover et al., 2014; Schmitt & Kuljanin, 2008).  

The major methodological issues concerning the implementation of measurement 

invariance testing are: the scale of item responses (continuous or categorical), the number of 

latent variables, the type of measurement model (correlated or nested factor models), the number 

of groups (within cross-sectional designs) or time-points (for longitudinal designs), the number 
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and order of tests needed to establish measurement invariance, criteria exercised to evaluate 

model fit, partial invariance, and the requirement to have large sample sizes (De Roover et al., 

2014; French & Finch, 2006; Greiff & Scherer, 2018; Putnick & Bornstein, 2016).  

The requirement of large sample size, varying criteria to evaluate model fit, number of 

groups being compared, and complexity of the model are the reasons that researchers are 

avoiding testing measurement invariance even though research shows that a lack of invariance 

can produce biased tests of mean differences and regression coefficients (De Roover et al., 2014; 

French & Finch, 2006; Putnick & Bornstein, 2016). 

As mentioned above, the chi-square difference test, ∆𝜒2, between nested models is one 

way to assess if there is any difference between the constrained and unconstrained models in the 

CFA framework; however, ∆𝜒2 has its own issue with sample size (Cheung & Lau, 2012; French 

& Finch, 2006; Little, 1997). For instance, ∆𝜒2 may suggest lack of invariance when sample size 

is large, which is problematic given that tests of measurement invariance require large sample 

sizes (Little, 1997). To accommodate this issue of sensitivity to large sample size, researchers 

have recommended using alternative fit indices (AFIs) to establish measurement invariance by 

claiming that the changes in alternative fit indices (∆AFIs) are less sensitive to sample size than 

𝜒2 tests (Chen, 2007; Cheung & Lau, 2012; Cheung & Rensvold, 2002; Meade et al., 2008; 

Putnick & Bornstein, 2016). Unlike the 𝜒2 difference test, ∆AFIs do not have known underlying 

distributions; hence, ∆AFIs cannot provide hypothesis tests of the tested models (Jin, 2020). Just 

like the change in ∆𝜒2, the change in alternative fit indices (∆AFIs) is defined as  

                                        ∆AFI = AFI𝑐 − AFI𝑢𝑐                                                           (2.8) 

where AFI𝑐 and AFI𝑢𝑐 represent the values of the selected AFIs for the constrained and 

unconstrained model, respectively (Cheung & Rensvold, 2002). The alternative fit indices such 
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as Akaike’ information criterion (AIC; Akaike, 1987), incremental fit index (IFI; Bollen, 1989), 

relative noncentrality index (RNI; McDonald & Marsh, 1990), McDonald’s noncentrality index 

(Mc; McDonald, 1989), expected value of the cross-validation index (ECVI; Browne & Cudeck, 

1993), normed fit index (NFI; Bentler & Bonett, 1980), relative fit index (RFI: Bollen, 1989), 

Tucker-Lewis index (TLI), SRMR, comparative fit index (CFI; Bentler, 1990), root mean 

squared error of approximation (RMSEA), and gamma hat (Steiger, 1989) have all been used in 

computing differences between constrained and unconstrained models in invariance testing. 

There has been no consensus amongst researchers regarding the best fit indices and cutoff values 

of alternative fit indices (Putnick & Bornstein, 2016). 

Cheung and Rensvold (2002) conducted Monte Carlo simulations on 20 different ∆AFIs 

to evaluate the invariance between two groups by using ML estimation and found ∆CFI, ∆gamma 

hat, and ∆Mc to be relatively robust to minimal errors of approximation in invariance testing. 

Meade et al. (2008) as well as Chen (2007) found ∆gamma hat to be highly correlated with ∆CFI 

and recommended choosing ∆CFI over ∆gamma hat due to ∆CFI’s popularity. Cheung and 

Rensvold found no effect of factor loadings, factor variances, or factor correlations on any of the 

AFIs for the configural invariance of the base model. However, they found all ∆AFIs except 

∆RMSEA to be very sensitive to the complexity of models such as number of items, number of 

factors, and the interaction of numbers of items and factors between two groups (Cheung & 

Rensvold, 2002).  Chen (2007) recommended using ∆RMSEA over ∆Mc claiming that 

∆RMSEA outperformed ∆Mc. Meade et al. reported that ∆RMSEA provided unique information 

compared with other ∆AFIs but cautioned researchers against reporting it due to its poor 

performance and instability. 
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French and Finch (2006) compared the power (correct identification of non-invariance) 

and Type I error (false identification of non-invariance) rates between the 𝜒2 difference test and 

∆CFI under different conditions such as sample size, number of factors, number of indicators per 

factor, and the distribution of observed variables to determine the accuracy of the criteria (alpha 

of .01 and .05) in determining a lack of invariance. French and Finch found sample size and 

number of indicators per factor as major influencers of the power of chi-square difference tests, 

with more participants (N > 300) and greater numbers of indicators per factor (more than three) 

yielding greater power in detecting a lack of invariance (French & Finch, 2006). For indicators 

that were normally distributed and when ML estimation was used, the 𝜒2 difference criterion of 

 = .05 offered better control over Type I error rate and relatively higher power across all 

situations than ∆CFI. A chi square difference test criterion of  = .01 had similar control of Type 

I error but lower power than the .05 criterion. In the case of ∆CFI, several conditions such as 

models with two factors, sample size of 300, and three-indicators per factor inflated the Type I 

error rate (French & Finch, 2006).   

In terms of criteria of detecting a lack of invariance, Cheung and Rensvold (2002) 

suggested using ∆CFI ≤ − .01, ∆gamma hat < −.001, and ∆Mc < − .020 as the best indicators 

in support of MI. For smaller and unequal sample sizes (N ≤ 300 total or per group), Chen 

(2007) recommended a ∆CFI ≤ −.005 and ∆RMSEA ≥ .010 paired with ∆SRMR ≥.025 (for 

metric non-invariance) and ≥.025 (for scalar or residual non-invariance). These cutoff values 

were recommended to be used to indicate non-invariance. For larger sample size (N > 300 per 

group), Chen suggested a ∆CFI ≤ −.01 and ∆RMSEA ≥ .015 paired with ∆SRMR ≥ .030 (for 

metric invariance testing) and .01 (for scalar or residual invariance testing) to detect non-

invariance. Out of all these indices, Chen identified ∆CFI as the main criterion after finding 
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RMSEA and SRMR prone to over-rejecting an invariant model for smaller sample sizes while 

testing scalar invariance. In general, a cutoff value of ∆TLI ≤ .01 has been used to assess metric 

and scalar non-invariance for all levels of sample size (Chen, 2007; Cheung & Rensvold, 2002; 

Jin, 2020). Meade et al. (2008) recommended a cutoff of value of −.002 for ∆CFI and suggested 

various cutoff values for ∆Mc conditional upon sample sizes, number of items, and factors in the 

model (a detailed list of cutoff values can be found in their paper). The criteria identified by 

Cheung and Rensvold and Meade et al., which were based on two groups, are too stringent when 

many groups are involved (Kim et al., 2017; Rutkowski & Svetina, 2014). Rutkowski and 

Svetina (2014) reported that cutoffs of ∆CFI < −.02 and ∆RMSEA > .03 were most appropriate 

in testing metric invariance with larger numbers of groups (larger than 10) and cutoffs of ∆CFI < 

−.01 and ∆RMSEA > .01 were most appropriate in testing scalar invariance for larger sample 

sizes (N > 600 per group). Meade et al. encouraged researchers to report ∆CFI and ∆Mc to a 

minimum of three decimal places while testing measurement invariance. Through simulation 

study, Jin (2020) found that ∆CFI = .01 and ∆TLI = .01 showed some sensitivity to metric non-

invariance but were unable to identify scalar non-invariance. Likewise, ∆RMSEA = .015 could 

detect metric non-invariance but was insensitive to scalar non-invariance across different sample 

size (N = 500 and 1,000) and group mean difference (equal\unequal), types of items 

(dichotomous, polytomous), and cross loading (small, medium, large). The ∆RMSEA tends to 

over-reject correct models when sample size gets smaller (N < 100; Cheung & Rensvold, 2002; 

Putnick & Bornstein, 2016) and number of factors increase (Iacobucci, 2010). The ∆SRMR is 

not sensitive to violation of scalar invariance when metric invariance holds as SRMR does not 

consider any difference due to mean structure (Yoon & Lai, 2018). Although different 

researchers have identified different cutoffs, there is no consensus amongst researchers about the 
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cutoff values for ∆AFIs under all conditions (Putnick & Bornstein, 2016). As these cutoff values 

of ∆AFIs were created based of CFA models with continuous indicators, these values need to be 

used with caution for polytomous and ordinal data (Jin, 2020; Sass et al., 2014).  

Although Cheung and Rensvold’s (2002) recommendations about alternative fit indices 

along with their criteria were extremely helpful, they were all based on perfect measurement 

invariance with 96 combinations of sample sizes and model parameters, with one estimation 

technique (ML), and multivariate normality assumed; hence the identified cutoffs may be 

inappropriate for all conditions and may not be accurate for detecting a lack of invariance. 

Further, the cutoffs offered by Cheung and Rensvold as well as Meade et al. (2008) are based on 

two groups. The cutoff values based on two groups may not provide similar power when applied 

to invariance testing with more than two groups; hence, more information about ∆AFIs needs to 

be collected before applying these cutoff values to more than two groups (Meade et al., 2008). 

Similarly, model complexity, including different levels of aggregation of indicator variables 

(such as item-level versus construct-level) or varying quantities of indicator variables per latent 

construct may demand different cutoff values (Cheung & Lau, 2012; Cheung & Rensvold, 2002; 

French & Finch, 2006).  

Further, Meade et al. (2008) found ∆AFIs to be adequate for moderate (n = 400 per 

group) to large sample size, with sample sizes greater than 200 per group having reasonable 

power in detecting lack of invariance (Meade et al., 2008). Lack of invariance exists when the 

results of likelihood ratio tests as well as AFIs indicate lack of invariance; however, if likelihood 

ratio tests are statistically significant but the AFIs do not indicate presence of non-invariance and 

sample sizes are greater than 200 per group, then it is possible that the differences between 

groups are trivial and further analysis can proceed. Depending on whether different ∆AFIs 
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provide mixed results and where the mixed invariance results occur, researchers need to use their 

own judgement to decide if their substantive between-groups comparisons are warranted (Meade 

et al., 2008).  

In addition, ∆AFIs, such as ∆CFI and ∆𝜒2 have been found to be less powerful in 

detecting non-invariance when the groups have unequal sample sizes as larger groups will exert 

greater influence in estimating parameters of the constrained model (Cheung & Lau, 2012). 

Measurement invariance tests that utilize ∆CFI, ∆RMSEA, ∆SRMR, and ∆χ2 have less power in 

detecting violations of invariance when the groups have unequal sample size (Chen, 2007; 

Cheung & Lau, 2012; Yoon & Lai, 2018). Invariance tests that rely on ∆SRMR are prone to 

committing Type I error (false rejection of invariance) whenever the sample size is small (Chen, 

2007). Measurement invariance tests that exercise ∆RMSEA and ∆SRMR have more cases of 

Type II error (failing to find violations of invariance) when the group sizes are unequal or small, 

and the pattern of non-invariance is uniform (Chen, 2007).  

Meanwhile, different estimation procedures such as ML, robust maximum likelihood 

(MLR; Yuan & Bentler, 2000), and weighted least squares mean and variance adjusted 

(WLSMV; Muthén and Muthén, 1998-2017) have been used for different types of data to 

examine the utility of the cutoff values for the various AFIs in assessing tests of measurement 

invariance in the Mplus software (Koziol & Bovaird, 2018). The WLSMV estimator is designed 

for ordered categorical observed data and does not require distributional assumptions (Kline, 

2016; Li, 2016). In a simulation study comparing the performance of MLR and WLSMV, Li 

(2016) found that despite the number of response categories, WLSMV performed better and 

produced more accurate estimates of factor loadings than MLR across different sample sizes. 

The standard errors were found to be slightly biased (positive or negative) for MLR as well as 
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WLSMV, but MLR outperformed WLSMV in estimating standard errors for smaller sample size 

and nonnormal latent distributions (Li, 2016). According to Li (2016), both MLR and WLSMV 

were effective in controlling Type I error rates with chi-square test statistics across most 

conditions when the sample size was over 500. In situations where dichotomous observed 

variables items were used, the power of WLSMV to detect group differences is relatively low 

(French & Finch, 2006).  

Sass et al. (2014) compared the performance of chi-square difference tests between ML, 

MLR, and WLSMV while assessing metric and scalar invariance of a multi-group single factor 

model and found MLR to have lower Type I error differences. Sass et al. reported that for 

correctly specified models, ∆chi-square and ∆AFI did not vary much across estimators. Sass et 

al. warned against using ∆AFI with WLSMV for misspecified models as the mean ∆AFIs were 

different than for other estimation procedures and detected non-invariant models for mis-

specified models (under WLSMV) when in fact the models were invariant under ML and MLR. 

Koziol and Bovaird’s (2018) simulation study tested configural and metric non-invariance of 

multi-groups by altering the sample size, magnitude of factor loadings, and distribution of 

response items within a CFA framework and used chi-square and likelihood ratio difference 

statistics. Koziol and Bovaird found that the chi-square test for configural invariance in MLR 

and WLSMV showed more controlled Type I error rates and had greater power in detecting 

model misspecification than ML. While testing metric invariance, ML fluctuated across response 

distributions and strength of factor loadings, whereas MLR performed better in terms of Type I 

error rate for smaller sample size and large factor loadings, and WLSMV was too liberal for 

smaller sample size (Koziol & Bovaird, 2018).  
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Parceling 

In Chapter 1, I introduced the concept and practice of parceling. In the following 

sections, I present techniques used in constructing parcels, assessing fit of parcels, and the 

impact of using parcels on measurement invariance.  

The Practice of Parceling  

Parcels are indicators used in CFA and structural equation modeling (SEM) that are 

created by combining two or more item responses through summing or averaging (Meade & 

Kroustalis, 2006). Each item response is assigned to only one parcel, which is then used as an 

indicator of a latent variable (Bandalos & Finney, 2001; Matsunaga, 2008; Nasser & Takahashi, 

2003). Parceled indicators are continuous scales based on the responses of the original items, and 

the way in which parcels are created affects the scale properties of the resulting indicator. For 

example, if two items are summed, each measured on a five-point Likert scale (1 to 5), the 

resulting parceled indicator would have a nine-point scale (ranging from 2 to 10), with the 

distances between each scale point representing a smaller proportion of the cumulative 

distribution of scores than the distances between scale points in the original item-level score 

(Little et al., 2002). If two items are averaged, each measured on a five-point Likert scale (1 to 

5), the resulting parceled indicator would have a continuous scale ranging from 1 to 5, but with 

the scale points closer together than those of the individual items. 

Despite the longstanding popularity of parceling among applied researchers in education, 

psychology, and marketing since the 1950s, most studies lack sufficient information regarding 

the process and rationale behind the creation of parcels (Bandalos & Finney, 2001; Nasser & 

Takahashi, 2003). Before applying parcels, it is pertinent to prescreen the dimensionality of a set 

of items using exploratory factor analysis with an oblique rotation across diverse subgroups of 
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participants in a sample (Little et al., 2002); however, only a few studies that used parceling 

techniques reported the dimensionality of items prior to parceling. In their study covering the 

period from 1989 to 2001, Bandalos and Finney (2001) found that only 32.3% of published 

studies included a discussion on item dimensionality. This involved either conducting factor 

analysis or referencing dimensionality findings from previous studies before implementing 

parceling techniques. 

Between 1989 and 2001, Bandalos and Finney (2001) found that approximately 19.6% of 

studies employing SEM or CFA utilized parceling techniques in their research. Out of those 

studies, 29% credited parceling for their increased reliability and stable parameter estimates, and 

8% implemented parcels due to their more normally distributed and continuous distributions over 

individual items. Therefore, while parceling has been widely used in applied research, 

researchers should be cautious when using this technique and should report in detail how and 

why they created parcels in their studies.  

Techniques of Parceling 

Researchers have employed a range of strategies for creating item parcels, with one 

influential approach proposed by Cattell (1974). Cattell's method involves parceling items based 

on their coefficients of congruence within dimensions derived from exploratory factor analysis. 

Cattell’s technique is suitable if the researcher seeks to obtain indicators with higher 

communalities as this method helps to keep the item-level factor structure intact (Bandalos & 

Finney, 2001; Nasser & Takahashi, 2003). Kishton and Widaman (1994) proposed two strategies 

to create item parcels: (1) constructing internally consistent unidimensional parcels and (2) 

constructing domain representative parcels. If the items to be parceled were from a 

unidimensional construct, Kishton and Widaman suggested randomly assigning items into 
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parcels for the construct, assessing the parcels’ internal consistency and dimensionality, and 

accepting those parcels that meet the specified criteria. If the items to be parceled represent a 

multidimensional construct they suggested randomly assigning items from different dimensions 

to a different set of parcels to ascertain that each parcel equally represents all aspects of the 

construct (Kishton & Widaman, 1994). When items from different dimensions are grouped to 

create parcels, they reduce the dimensions and threaten the effectiveness and validity of 

parceling techniques (Little et al., 2002). Model misspecification caused by mis-capturing the 

variance associated with the construct is the largest threat to the validity of parcels while dealing 

with multidimensional constructs (Little et al., 2002). Some have proposed parceling to be 

considered only under the conditions of unidimensional factor structure (Bandalos & Finney, 

2001; Little et al., 2002; Nasser & Takahashi, 2003).  

Item-to-construct relations are used to create parcels when researchers have either little or 

no concern of the indicators’ mean levels. This technique uses item loadings from an EFA to 

create parcels and leads to parcels that are similar in difficulty (intercept) and discrimination 

(slope). For instance, based on the results of the loadings from factor analysis, the items with the 

three highest loadings can be used to create the first indicators for three different parcels. Once 

the parcels have been created in the first round then in the second round, the next three items are 

added to the existing parcels in a reverse order by matching the item with the lowest loading to 

the parcel with the highest loading. In this way, all items with lower loading items are placed 

into parcels with higher loading items until no items are left (Little et al., 2002). After creating 

the parcels, the researchers need to verify that the item-to-construct relations remain relevant in 

each subgroup such as those based on gender, ethnicity, etc. (Bandalos & Finney, 2001; Little et 

al., 2002). Parceling is problematic when used to understand the relationships among individual 
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items that comprise a construct; instead, parceling is favored when used to understand the 

relationship among constructs (Little et al., 2002).  

Nasser et al. (1997) devised parcels based on the similarity of item content and factor 

structure and found that models with parcels outperformed models formed by individual items. 

Marsh et al. (1998) used Monte Carlo simulation and averaged 12 items randomly to create four 

different parcels (of 2, 3, 4, and 6 items) and found that the chance of proper solution increased 

with N and the number of parcels. Parcels with 3-and 4-item solutions yielded better solutions 

than those based on 2 or 6 items. Bandalos (2002) found that parcels based on all 12 items 

resulted in higher CFI and RMSEA values than 2-item and 3-item parcel models. 

Parcels that are constructed by randomly averaging items have almost equal common 

factor variance, but if any items have larger variances then the parcel tends to favor those items. 

Standardizing items to a common variance metric before parceling may help to leverage this 

issue of discrepant variance (Little et al., 2002). Bandalos and Finney (2001) found that among 

published studies from 1989 to 2001, most researchers (29%) utilized the parceling technique 

based on grouping adjacent items within a dimension. In contrast, a smaller percentage of 

researchers used the odd/even split technique (3%), and an even smaller percentage created 

parcels based on the direction of items being positively or negatively worded (6.5%). Thompson 

and Melancon (1996) utilized the skewness of the items by summing the most negatively skewed 

items with the most positively skewed items until they exhausted all items in their data. While 

grouping items to create parcels, researchers need to screen the direction of words and phrases 

and reverse code the items, when necessary, to ensure that the positively worded phrases and/or 

words do not group together with negatively worded phrases and/or words (Little et al., 2002). 

Parcels that had both negatively and positively skewed items have been shown to perform better 
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than parcels that only had positively skewed items (Hau & Marsh, 2004). Nevertheless, the fact 

that parcels are used is more important than the strategies used to construct parcels (Marsh et al., 

2013; Meade & Kroustalis, 2005, 2006). 

Assessing Fit in Models with  

Parcels 

While assessing model fit with parcels, researchers have mostly used Hu and Bentler’s 

(1999) criteria of model fit (Matsunaga, 2008). Nasser and Takahashi (2003) found the CFA 

model fit indicated by GFI, CFI, TLI, and ECVI improved with more items per parcel, and the 

change in the p-value of 𝜒2 remained minimal, whereas the value of 𝜒2: 𝑑𝑓 and RMSEA showed 

mixed patterns. For instance, the value of 𝜒2: 𝑑𝑓 and RMSEA suggested better fit (decreased) 

with more items per parcel (and at least three parcels per factor) but their values became 

inconsistent when there were only two parcels per factor. Bandalos and Finney (2001) warned 

against the use of item-parcels by emphasizing that although goodness-of-fit indices are often 

used to gauge the appropriateness of the model fit, parcels may mask misspecification of the 

model and these fit indices may provide no guarantee about the correct model specification.  

The Effect of Parceling on  

Measurement Invariance 

Meade and Kroustalis (2006) conducted an extensive review of applied articles in 

psychology journals until 2001, where they identified 13 articles that employed parceling 

techniques in tests of measurement invariance using CFA. The reasons stated for utilizing parcels 

encompassed increasing indicator reliability (37.5%), improving indicator distribution (31.3%), 

reducing the number of indicators (18.8%), and achieving more efficient parameter estimation 

(12.5%). For instance, Matsunaga et al. (2021) used parcels to test configural, measurement 

(metric, scalar, and residual), and structural (factor variance and factor covariance) invariance 
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across postpartum time periods to compare postpartum bonding between mother and child. 

Likewise, Giné et al. (2017) used 949 children and implemented parcels to investigate support 

needs domain constructs across different age groups (5-6, 7-8, 9-10, 11-12, 13-14, and 15-16 

years) of Catalan children and youth with intellectual disability. Applied researchers in several 

fields such as psychology, et cetera, indicated that they used parcels as indicators in conducting 

tests of measurement invariance to alleviate skewness, to improve reliability, reduce the number 

of indicators, and to produce a more stable solution (Aguayo et al., 2019; Contractor et al., 2017; 

Fronczyk, 2019; Giné et al., 2017; Matsunaga et al., 2021). Meade and Kroustalis (2006) 

revealed the primary reason that applied researchers use parcels with invariance testing was to 

increase reliability of indicators, to improve distribution of indicators, to reduce number of 

indicators, and to produce more efficient parameter estimation.  

In terms of methodological studies regarding parceling and CFA-based measurement 

invariance, the effect of parceling on measurement invariance has not garnered much attention. 

One reason for the lack of research on this topic may be that researchers advocate using parcels 

as the emphasis is on the structural aspect (the distribution of latent traits across groups) rather 

than the measurement (the way the indicators measure the latent trait across groups) aspect of the 

model (Bandalos & Finney, 2001; Little et al., 2002; Marsh et al., 2013; Matsunaga, 2008; 

Meade & Kroustalis, 2006). The structural aspect involves the distribution of latent traits across 

groups, for instance, when researchers wish to examine if the groups have the same factor means, 

variances, and covariances. The measurement aspect oversees the way indicators measure the 

latent trait across different groups to measure invariance (Hoffman, 2018). Meade and Kroustalis 

(2006) found that in cases where the simulated data had a known lack of invariance, models with 

parcels as indicators more often and incorrectly indicated the presence of measurement 
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invariance than in models with items as indicators. They found that item-level indicators were 

more accurate in detecting lack of invariance with large sample sizes than parcel-level indicators. 

For sample sizes of 500 per group, item-level data were competent in identifying lack of metric 

invariance for each item, but parceled data were not capable of identifying lack of metric 

invariance for each of the parcels. In general, tests based on item-level indicators had more 

power with high factor loadings of items than parcels. For sample sizes of 200 and 500 per 

group, item-by-item (16-item scale) metric invariance tests were able to detect differentially 

functioning items whereas parcels were able to identify differentially functioning items of metric 

invariance tests only when the average factor loadings of the differentially functioning items 

varied between the groups being tested (Meade & Kroustalis, 2005, 2006). Based on the 

performance of tests of invariance under different sample sizes (100, 200, 300, 400, and 500) per 

group, Meade and Kroustalis recommended using a sample size greater than 200 per group for 

adequate power across all conditions. When equal sample size was used for each group, item-

level indicators tended to be more sensitive to low levels of differential functioning than parcel-

level indicators (Meade & Kroustalis, 2006). They suggested that using parcels could help 

improve model fit of structural models that do not focus on the error aspects of measurement 

(Meade & Kroustalis, 2006); however, they warned against using parcels as indicators claiming 

that doing so could potentially mask a lack of invariance and suggested using items as indicators 

even if the items yielded poor model fit.  

However, Meade and Kroustalis (2006) only focused on one type of parceling technique 

by using four items per parcel in each parcel and only tested configural, metric, and scalar 

invariance on two balanced groups of a two-factor model. It is still unclear how employing 

different parceling techniques (such as those based on skewness, randomness, etc.) for more 
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(larger than two) and unbalanced groups with large numbers of factors (greater than two) would 

behave in invariance testing. Further exploration of the performance of fit indices in assessing 

both measurement invariance and latent mean differences could be beneficial to researchers who 

conduct invariance testing. 

While parceled data have been used in multiple groups CFA in applied research, 

methodological research on the topic is limited. There is currently no guidance on how to handle 

invariance and parcels together, and it should be noted that not all techniques that work well with 

item-level data may work as effectively with parcels. Additionally, the fit indices used for item-

level data may not be appropriate for parcel-level data. To further support this point, related 

research can be explored, such as the concept of differential bundle functioning (DBF) that 

affects DIF. Although there is limited methodological research on this topic, related research 

such as DBF can shed some light on the effectiveness of parcels in detecting non-invariance. 

To better understand the use of parcels in detecting measurement non-invariance, it is 

important to consider the relationship between IRT and DIF analysis. DBF is an extension of 

DIF analysis that involves using bundles of items, also known as parcels, to identify whether two 

distinct groups with equal ability differ in their probability of answering a bundle of items 

correctly (Banks, 2013, p. 43). By combining multiple items within a test to form a bundle, DBF 

allows for a more efficient use of data by examining groups of items together rather than one at a 

time. Moreover, DBF enables the examination of item interactions and identification of which 

items are functioning differently across groups. 

DBF and CFA-based invariance testing with parcels are related in the context of 

measurement invariance in that both techniques involve the use of groups of items rather than 

individual items. DBF allows for a more efficient examination of measurement invariance by 
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focusing on bundles of items that are likely to function differently, while parcels are used to 

increase measurement precision and reduce the number of parameters to estimate within a CFA 

framework. As in CFA-based invariance testing, the aggregation of items into bundles can be 

useful in situations where there is a limited amount of data or the sample size is small, which 

allows DBF to display greater power than DIF analyses. However, it is important to note that 

DBF is a more complex approach than DIF (Banks, 2013; Latifi et al., 2016). 

DBF has certain advantages over DIF “such as better control of Type I errors, greater 

statistical power, and greater opportunities to accumulate meaningful explanations for why DBF 

occurs” (Banks, 2013, p. 53). DBF allows researchers to evaluate fewer hypotheses and provides 

greater control over Type I error rates than DIF, which assesses each item on a test N-1 times 

(Banks, 2013). In a study by Nandakumar (1993), DBF yielded greater statistical power than DIF 

based on individual items that were part of a secondary dimension, as those items may not 

exhibit DIF but a bundle of such items may amplify DIF and yield moderate to large DBF in the 

hypothesized direction (Banks, 2013). 

DIF analysis is known to be prone to Type I errors, while DBF, like CFA-based 

invariance using parcels, allows for the simultaneous testing of multiple items (Gierl & Khaliq, 

2001). However, for tests with complex structures, multivariate DIF (MDIF) or the Mantel-

Haenszel method may be more appropriate (Banks, 2013; Gierl & Khaliq, 2001). DBF and CFA-

based invariance using parcels may mask or lose the properties of individual items when several 

items are combined to create bundles. Therefore, using unidimensional constructs is 

recommended when using DBF (Banks, 2013). The power of finding DIF or DBF decreases with 

smaller sample sizes and unequal ratios of cases in the two or more groups being compared 

(Walker et al., 2012). Furthermore, the relationship between the magnitude of the estimated 
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coefficient (β) and its standard error associated with the estimated coefficient (β) in DBF 

analysis with sample size and group size ratios is not well-established and requires further 

research to establish (Walker et al., 2012). 

In summary, both DIF and DBF are useful methods for detecting non-invariance, but 

researchers should carefully consider the strengths and limitations of each approach and choose 

the most appropriate method based on their specific research questions and the nature of their 

data. Thorough and appropriate analyses should be conducted to ensure accurate and meaningful 

results (Banks, 2013; Gierl & Khaliq, 2001; Nandakumar, 1993). 

Chapter Summary 

In this chapter, I addressed measurement concepts in general and measurement invariance 

from a factor analysis perspective, and presented standard mechanisms used by researchers in 

assessing model fit in CFA as well as measurement invariance. By providing an example of the 

state of mood, I elaborated measurement invariance and its levels. In the above sections, I 

reviewed the literature on measurement invariance within a CFA framework and elaborated the 

different tests of invariance such as configural, scalar, metric, residual, and latent mean. I 

discussed the importance of measurement invariance in comparative research, how it is assessed 

using various fit indices, and the different levels of invariance that need to be met for reliable and 

valid comparisons across different groups. I discussed the use of parceling as a statistical method 

to combine items to create a new continuous variable and its potential impact on invariance 

testing. Although a substantial amount of research has been conducted on measurement 

invariance and parceling, there is limited research on conducting invariance analysis using 

parcels. The existing research has only considered using two balanced groups in testing the 

impact of parcels on tests of measurement invariance so it remains unclear how the results with 
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two balanced groups would extend to multiple unbalanced groups. Moreover, existing research 

by Meade and Kroustalis (2005, 2006) in a CFA framework only utilized one type of parceling 

technique (based on factor loadings) by combining four items with identical factor loadings in 

each parcel and used a two-factor model to assess the impact of parcels on tests of measurement 

invariance. However, it is unlikely in practice to have all items with similar loadings, and applied 

studies may have more than a two-factor model. Additionally, the limited research on the effects 

of parcels on measurement invariance analysis has only assessed different invariance tests with 

simulated data and has not addressed the effects of non-invariance on tests of latent means. To 

address these gaps, I discussed a related topic, differential bundle functioning (DBF), which uses 

bundles of items to assess differential item functioning in an IRT framework. DBF and CFA-

based invariance analyses using parceling share similarities in constructing item bundles, but 

they differ in their data analysis methodologies. DBF employs an IRT-based approach to detect 

differential item functioning, while CFA-based invariance analysis uses structural equation 

modeling.  

Building upon the literature reviewed in this chapter, Chapter 3 outlines the methodology 

employed to address these gaps, specifically how the impact of parceling on tests of 

measurement invariance was assessed in the current study using empirical data.  
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CHAPTER III 

 

METHODOLOGY 

 

This chapter details the nature of the data that were utilized in this study, including the 

sample and measures, followed by the data analysis plan. I elaborate the details of the complex 

two-stage stratified sampling techniques exercised by TIMSS to collect data used in this study. 

In addition, I discuss the measures and variables that were used in this study, followed by model 

specification and the data analysis plan. Given the emphasis on investigating the sensitivity of 

different test conditions, I provide appropriate strategies to address the sensitivity of different test 

conditions on the results and conclusions of the study. 

Data Source 

The data for this report were obtained from the TIMSS 2015 U.S. student data file. The 

SPSS control files provided by Tang and Averett (2018) were utilized to download and read 

TIMSS 2015 data into SPSS. I chose to work with TIMSS data as they are public use data and 

meet the sample size requirement needed for this study. TIMSS is an international assessment 

sponsored and organized by the International Association for the Evaluation of Education 

Achievement (IEA) since 1995 (Averett et al., 2018). TIMSS assesses fourth and eighth grade 

students’ math and science achievement around the world (more than 60 countries) every four 

years. It also gathers information about students’ and schools’ backgrounds along with students’ 

experiences, interests, and attitude towards math and science to find ways to improve the quality 

of education for students.  
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A total of 10,221 U.S. eighth grade students from 246 U.S. high schools participated in 

the 2015 TIMSS with the overall weighted school response rate of 96 percent for students 

(including students from sampled as well as substitute schools) and 78 percent for schools before 

using the substitute schools (Averett et al., 2018). The TIMSS 2015 assessment constituted a 

combined math and science assessment, along with questionnaires administered to students, 

teachers, and schools. This multinational assessment was conducted in over 60 countries. 

However, data for the current study only included eighth grade students from the U.S. (Averett et 

al., 2018). 

Data Collection Procedures 

TIMSS administered paper-and-pencil assessments to students and self-administered 

questionnaires to principals, teachers, and students in each of the 60 countries to explore 

educational contexts in each country. The assessment items included multiple choice questions 

and constructed-response items, with a scoring rubric for constructed-response items. Minimal 

adaptations were made to the assessment items before administering them in the U.S. to make 

the assessments clearer and more readable to U.S. students without changing the essence of the 

questions.  

The chief state school officer and state assessment director in each of 50 states and the 

District of Columbia were contacted to sample public schools and after receiving their 

permission, public schools were contacted. Non-religious affiliated private schools were 

contacted directly. In case of religious private schools such as Catholic private schools, the 

diocese was contacted before reaching out to the school (Averett et al., 2018; Martin et al., 

2016).  
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Initially, schools were approached by mail. TIMSS coordinators were appointed in 

schools and were notified at various points of time to prepare them for TIMSS tasks. Special 

attention was paid to ensure that schools would bear minimum burden. In-person visits were also 

made to a few schools to secure participation of schools as needed. Drafts of parental approval 

letters and forms were sent to schools, which were obtained before contacting the students. 

Incentives were given to school coordinators and students, respectively, to improve the response 

rate. Potential nonresponse bias at the school level was measured by comparing the 

characteristics of participating schools with the total eligible sample of schools (Averett et al., 

2018; Foy, 2017). The results of the bias analysis revealed potential nonresponse bias for eighth-

grade students in the US based on the characteristics studied, but school nonresponse 

adjustments eliminated the bias in the final sample (Averett et al., 2018). 

Obtaining the Data 

For the proposed study, only eighth grade U.S. students’ self-administered 

questionnaires, data files, codebooks, technical reports, and user guides from TIMSS 2015 were 

downloaded and utilized. Student questionnaires include multiple choice questions on students’ 

home resources, background, math and science attitude, and experiences in school. For this study 

only items from students’ self-administered math attitude questionnaires were utilized (Foy, 

2017; Martin et al., 2016).  

Due to contradictory reports on the presence (Else-Quest et al., 2013; Watt et al., 2012) 

and lack of measurement invariance (Bofah & Hannula, 2015; Jacobs et al., 2002) in gender 

differences in mean math attitude scores, this study focused on gender differences. Furthermore, 

previous research conducted by Riegle-Crumb et al. (2011) demonstrated a notable gender and 

racial disparity in mean math attitude scores among eighth-grade students from the United States 
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in TIMSS 2003. Hence, in this study, gender and race were employed as grouping variables. 

Eighth-grade students were selected due to the observed expansion of gender differences in math 

attitudes during adolescence after puberty, as indicated by the research of Reilly et al. (2019).  

Sample 

The sample for the proposed study comprised 10,211 eighth grade students (weighted 

student response rate of .94) with an average age of 14.24 years (SD = .48) from 246 schools 

(with a weighted student response rate of .96) who participated in TIMSS 2015 in the U.S. There 

were 17 private schools and 105 public schools. In terms of weighted survey percentage, there 

were almost equal numbers of girls (49.81%) and boys (49.61%), and a greater percentage of 

students who were White (46.03%) compared with other racial/ethnic groups.  

Description of the Secondary  

Data Set 

TIMSS 2015 exercised a non-experimental survey study with a two-stage stratified 

cluster sample design. At the first stage of the U.S. data collection, a sample of schools was 

drawn based on stratification by census region (northeast, midwest, south, and west), poverty 

level for public school as high or low (high if more than 50 percent of students were eligible for 

free or reduced-price lunch program; otherwise, low) and type of school (private/public). Within 

each stratum, the sampling frame was implicitly stratified by estimated grade enrollment, 

race/ethnicity of students, and locale (city, suburban, town, and rural). At the second stage, one 

or more intact classes of students were selected from each of the sampled schools (Foy, 2017; 

Martin et al., 2016).  

To generalize the findings of the study to U.S. fourth and eighth graders, TIMSS 2015’s 

sampling frame included any schools having a fourth and eighth grade as of the 2012-2013 

academic year. U.S. schools in 50 states and the District of Columbia, Department of Defense 
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domestic schools, and Bureau of Indian Education schools were in its inclusion criteria. U.S. 

schools in Puerto Rico and U.S. territories, Department of Defense school overseas, adult 

education with no fourth or eighth grade, and non-education institutions were in its exclusion 

criteria (Averett et al., 2018). 

TIMSS used different types of sampling weights at the student level (totwgt, senwgt, and 

houwgt), teacher level (tchwgt and matwgt), and school level (sciwgt and schwgt) to adjust for 

over- and under-representation of subgroups (e.g., students from different geographical regions, 

poverty level of school, type of school, and location of school) due to sampling and to ensure 

that the representation of students in the sample was proportional to the population estimates for 

the country, thereby making it easy to generalize results from the sample to the population, and 

to compare the samples across countries and within countries. In the U.S., only the samples of 

public-school students were representative of the nation (Averett et al., 2018; Foy, 2017). 

Measures 

The TIMSS 2015 student questionnaire was used to answer the research questions for the 

current study. The student questionnaire includes a total of 37 questions on math attitudes. These 

questions asked students to self-report their attitude towards math on four math attitude 

subscales, Like Learning Mathematics, Confidence in Mathematics, Valuing Mathematics, and 

Mathematics Lesson. All items in these subscales have a four-point Likert-type rating scale (0 = 

disagree a lot to 3 = agree a lot; Martin et al., 2016). These items were originally written in 

English by IEA for TIMSS (Averett et al., 2018). 

Like Learning Mathematics  

There are nine items in this scale with a Cronbach’s alpha reliability estimate of .94 for 

scores from the U.S. eighth graders in the TIMSS 2015 sample. These items address students’ 
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attitude towards learning mathematics. Example items include, “I enjoy learning mathematics,” 

“I wish I did not have to study mathematics,” and “I like to solve mathematics problems.” Based 

on the information obtained from TIMSS 2015 for the full sample of U.S. eighth graders, pattern 

coefficients for the items ranged from .70 to .90. Table A1 provides further details on the pattern 

coefficients. 

Mathematics Lesson  

There are 10 items in this scale with a Cronbach’s alpha reliability estimate of .94 for 

scores from the U.S. eighth graders in the TIMSS 2015 sample. These items measure students’ 

attitudes towards their mathematics teacher, such as “My teacher is easy to understand,” “I am 

interested in what my teacher says,” and “My teacher is good at explaining mathematics.” One 

item was randomly removed from this subscale to ensure each parcel had an equal number of 

items and to maintain substantive meaning (Nasser & Takahashi, 2003). According to Nasser 

and Takahashi (2003), removing items based on performance or wording is acceptable when 

constructing parcels. Further information on the pattern coefficients for the full sample of U.S. 

eighth graders from TIMSS 2015, including those ranging from .67 to .86, can be found in Table 

A2. 

Confidence in Mathematics  

There are nine items in this scale which address students’ confidence in doing 

mathematics with a Cronbach’s alpha reliability estimate of .90 for scores from the U.S. eighth 

graders in the TIMSS 2015 sample. Example items include, “I usually do well in mathematics,” 

“Mathematics is not one of my strengths,” and “Mathematics makes me confused.” Table A3 

provides further details on the pattern coefficients ranging from .58 to .82 obtained from TIMSS 

2015 for the full sample of U.S. eighth graders. 



73 

 

 

 

Valuing Mathematics 

 There are nine items in this scale which address students’ attitude towards the value of 

mathematics. Scores from these nine items had a Cronbach’s alpha reliability estimate of .89 for 

the U.S. eighth graders in the TIMSS 2015 sample. Example items include, “I think learning 

mathematics will help me in my daily life,” “I need to do well in mathematics to get the job I 

want,” and “It is important to do well in mathematics.” Further details on the pattern coefficients 

obtained from TIMSS 2015 for the full sample of U.S. eighth graders, ranging from .60 to .83, 

can be found in Table A4. 

Design Conditions 

In this study, the type of parceling, sample size, gender, and race were used as 

independent variables (IVs) whereas confirmatory factor analysis fit statistics and invariance-

based decisions (fully invariant, partially invariant, not variant) were used as dependent variables 

(DVs). Type of parceling and sample size were manipulated to examine their effect on the 

invariance analyses. Gender and race were used as the grouping variables serving as the basis for 

the tests of measurement invariance. Parcels were constructed three different ways. More 

discussion about parceling strategies is included in the section below on “types of parceling.” 

Seven different sample sizes were used for each of the grouping variables (gender and race). 

Details regarding sample size can be found below, in the section “sample size.”  

Types of Parceling 

Items were combined to create a set of three 3-item parcels per subscale. Researchers 

have recommended using three parcels per latent factor to help reduce the number of parameters 

in the model, and improve model fit while still allowing the latent factor to be locally identified 

and yield consistent results (Matsunaga, 2008; Nasser & Takahashi, 2003; Rhemtulla, 2016). 
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Following Marsh et al.’s (1998) suggestion about parcels with three and four items and given the 

nature of the TIMSS data, three items were combined to create a parcel. Matsunaga (2008) 

suggested forming three parcels per factor in a random way to “improve model fit, safeguard 

against estimation bias, and enhance generalizability of findings” (p. 288). 

Strategies such as parceling based on factor loadings, random allocation, and skewness 

used by prior researchers were implemented in creating parcels (Rocha & Chelladurai, 2012; 

Thompson & Melancon, 1996). For instance, based on the items’ skewness, three parcels were 

created for each subscale by pairing the most skewed item with the least skewed item, the second 

most skewed item with the second least skewed item, the third most skewed item with the third 

least skewed item and so on, until all items in the subscale have been assigned to each of the 

parcels (Nasser & Takahashi, 2003). If some items had the same value of skewness, I expanded 

the decimal places of skewness to more digits after the decimal (such as three or four) to better 

sort and organize them. In fact, expatiating skewness of data provides rich information about the 

data as small differences in skewness give different meaning and improve prediction accuracy 

(Chen et al., 2020). 

Similar procedures used in sorting items in terms of skewness (described above) were 

implemented to apply and organize the pattern coefficients of items from each scale to form a set 

of three parcels for each subscale. I ran principal component analysis (PCA) with an oblique 

rotation (as the factors in the math attitude would be expected to have some correlation) in SPSS 

(version 25.0 for Windows) and used the pattern coefficients retrieved from the PCA to create 

parcels. I requested the pattern coefficients reported to three or four decimal places to better sort 

and organize the pattern coefficients in creating parcels. 
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Finally, items were assigned to one of the three parcels for each subscale randomly. A 

total of three items were assigned to one parcel. Three groups of parcels were created for each 

subscale and items were placed one at a time and without replacement into each of the three 

parcels until all items had been exhausted. Regardless of methods used to create the parcels, after 

assigning the items to their respective parcels, their values were averaged within each parcel to 

create the indicator variables with three indicators per latent variable.  

Sample Size 

A minimum sample size of 200 per group is necessary to have adequate power to detect 

lack of measurement invariance and is the size most often used in practice (Kline, 2016; Meade 

et al., 2008; Meade & Kroustalis, 2006). TIMSS 2015 data, which were used in this study, 

comprise many participants (N = 10,221). Since disparate sample sizes across groups are often 

found in practice and may affect fit indices (Chen, 2007; Yoon & Lai, 2018), I included balanced 

and unbalanced groups. With the emphasis on the minimum sample size needed for conducting 

invariance analyses based on race, I created four sample size combinations for balanced race as 

well as balanced gender. For balanced race, I employed: 100/100/100, 133/133/133, 

150/150/150, 200/200/200, 300/300/300, 400/400/400, and 500/500/500, and for balanced 

gender, I used: 150/150, 200/200, 225/225, 300/300, 450/450, 600/600, and 750/750.  

 The sample size combinations per group which were used in this study for balanced race 

are consistent with previous simulation and applied research examining measurement invariance 

(French & Finch, 2006; Holbert & Stephenson, 2002; Lee & Whittaker, 2021). Lee and 

Whittaker reported that sample sizes of 200, 400, and 800 per group are reasonable sample sizes 

used by social and behavioral sciences researchers while conducting invariance analysis in SEM. 

When sample size is smaller than 100, the absolute model fit indices like RMSEA over-reject 
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correct models (Chen et al., 2008). Holbert and Stephenson (2002) reported that more than a 

quarter of communication-related literature between 1995-2000 had sample sizes smaller than 

150. And the average sample size of the communication-related studies published between 2001-

2006 had 30% of studies with a sample size smaller than 150 even though the average sample 

size of each group was 200-300 (Matsunaga, 2008). Meade and Kroustalis (2005) used sample 

sizes of 100, 200, 300, 400, and 500 per group in their simulation study to examine the effect of 

parcels on tests of measurement invariance. Rutkowski and Svetina (2014) reported that sample 

sizes of at least 600 per group better represented empirical data from large scale studies. The 

number of participants in the study impacts the power of invariance tests which, in turn, affects 

the tests’ sensitivity in detecting differences in chi-square (French & Finch, 2006; Putnick & 

Bornstein, 2016). Chi-square statistics increase with sample size which leads to larger groups 

having more weight than smaller groups while testing invariance. Consequently, under 

unbalanced conditions, the chi-square test may not detect non-invariance (Yoon & Lai, 2018). In 

addition, because the chi-square is sensitive to sample size, using many participants “may lead to 

over-rejection of measurement invariance tests if the change in chi-square is the only criterion 

used to evaluate fit” (Putnick & Bornstein, 2016, p. 70). Unlike chi-square, ∆AFIs such as ∆CFI, 

∆TLI, and ∆SRMR are less sensitive to sample size; hence the issue of sample size may be less 

important as researchers rely more on the use of AFIs as fit criteria of invariance tests (Cheung 

& Rensvold, 2002; Putnick & Bornstein, 2016). 

Simulation studies have shown that the power to detect factorial non-invariance is 

reduced as the sample size disparity between the groups increases (Chen, 2007; Kaplan & 

George, 1995). Previous research has shown that the degree of imbalance in sample size between 

smaller and larger groups had a greater impact on the means and change in alternative fit indices 
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(such as ∆CFI and ∆RMSEA) of metric-noninvariant models compared to metric-invariant 

models. The change in total sample size across groups has had a greater effect than the change in 

degree of imbalance between groups on the mean and ∆AFIs (such as ∆CFI and ∆RMSEA) of 

metric-invariant models (Yoon & Lai, 2018). The power to detect violation of invariance 

decreases as the ratio of the sample size in the larger versus smaller group increases substantially 

and this is concerning whenever there is a huge disparity in sample size between the minority 

and majority group as the associated bias may go undetected in factorial invariance studies 

(Yoon & Lai, 2018). Out of 279 invariance related studies published between 2007 and 2016 in 

American Psychological Association journals, 54.8% of studies had a ratio of 1 and 1.5 between 

the largest and smallest group size, 10% of studies had a ratio between 1.5 and 2, 18.3% had a 

ratio between 2 and 3, and the average small to large group size ratio was 2.33 (Yoon & Lai, 

2018). In the current study, I incorporated sample size ratios of 1:1, 1:1.5, and 1:2 between the 

groups.  

Subsamples 

I created 42 subsamples in SPSS (version 25.0 for Windows) one at a time via its random 

sample feature under the “select cases” option by specifying the desired sample size. I used the 

sample size combinations that I described earlier in the sample description to create subsamples. 

The subsamples had a total sample size of 300, 400, 450, 600, 900, 1,200, and 1,500 with 

balanced as well as unbalanced ratios of gender and race as the grouping variables. The 

subsamples were exported as a csv file to be read into Mplus (version 8.1 for Windows) and R 

(version 3.5.3 package mice) for further analysis. The following grouping variables, gender and 

race, were used in creating subsamples. 
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Gender  

In the TIMMS 2015 data collection, students were asked to identify their gender as girl or 

boy. There were almost equal numbers of girls (49.81%) and boys (49.61%). Some studies 

reported the influence of gender on students’ math attitude with lower values of math 

confidence, liking for math, self-concept, and value for math for girls (Else-Quest et al., 2010; 

Watt et al., 2012). In terms of math attitude scores, tenth grade female students have been found 

to report less positive math attitudes and self-efficacy, but greater math anxiety than males (Else-

Quest et al., 2013). Based on the eighth grade U.S. students’ data from the TIMSS 2003, Riegle-

Crumb et al. (2011) reported that male students had slightly more positive mean math attitude 

scores than females. Jacobs et al. (2002) reported that first through twelfth grade students’ 

attitudes on “math self-competence” and “values in math” did not vary as a function of gender 

for U.S. school districts in the suburb of a large midwestern city. Math attitude of eighth graders 

from five African countries (those who participated in TIMSS 2011) was found to be invariant 

across gender (Bofah & Hannula, 2015). Lack of scalar invariance of math attitudes of high 

school students enrolled in AP statistics revealed that the way males and females experience self-

confidence and enjoyment in doing math differed and the researchers (Ober et al., 2021) 

emphasized that making efforts such as revising the wording of problematic items to potentially 

resolve this issue of non-invariance to make meaningful comparisons across gender. Although it 

is pertinent to establish invariance before making any comparisons across groups, some studies, 

for instance, Riegle-Crumb et al. (2011) utilized TIMSS to compare students’ mean attitude 

towards math in terms of gender without establishing the presence of measurement invariance.  
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Race 

Eighth grade U.S. students in the TIMSS 2015 identified their race as White (not 

Hispanic), Black (not Hispanic), Hispanic, Asian, two or more races, and other. Almost half 

(46.03%) of the students in the study were White, followed by 28.68% for Hispanic students, 

Black (12.72%), Asian (4.38%), two or more races (5.70%), others (1.53%), and missing (.96%). 

Due to the relatively small sample sizes for Black, Asian, two or more races, and others 

compared with other categories of race, they were combined into a single “others” category to 

increase the statistical power of the analysis. The categories of race used for analysis were 

White, Hispanic, and others. 

Based on eighth grade U.S. students’ data from the 2003 TIMSS, White males had higher 

values on math attitude scores (such as self-concept in math) than Black and Hispanic males, and 

similar values as minority males (Riegle-Crumb et al., 2011). While the mean math attitude 

scores between eighth grade White and Black U.S. males were not significantly different in 

TIMSS 2003, the mean math attitude scores were significantly different between White and 

Hispanic males (Riegle-Crumb et al., 2011). Else-Quest et al. (2013) credited students’ socio-

economic status (SES) and immigration as key players in rendering similar math attitude 

amongst students of different ethnic groups as they found differences in math attitude only when 

SES and immigration were not used as a covariate. Wang (2013) found non-invariance on math 

attitude of high school graduates (who had just entered college) based on race/ethnicity and 

established partial metric invariance by constraining one factor loading at a time. Although 

studies on the invariance of math achievement based on race/ethnicity are abundant, studies that 

consider invariance of math attitude are limited.  
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Fit Statistics 

In Chapter 2, I discussed CFI, RMSEA, SRMR, TLI, and chi-square difference tests. In 

this section, I detail what aspects of model fit were detected by each of these fit indices. As 

different tests of measurement invariance entail different criteria of fit indices, I have broken the 

discussion of fit indices into their use for different phases of the invariance analysis.  

First, I assessed the test of configural invariance. Configural invariance indicates the 

same factor structure holds across groups and is a necessary baseline condition for all subsequent 

invariance tests (Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). CFI and TLI greater 

than .95 (Hu & Bentler, 1999; Meade et al., 2008), RMSEA less than .08 (Hu & Bentler, 1999; 

Meade et al., 2008), SRMR less than .08 (Hu & Bentler, 1999; Meade et al., 2008), and a non-

significant likelihood ratio chi-square test (at an alpha of .05) were used as cutoffs in assessing 

configural invariance. When configural invariance is not supported, the general practice is to 

modify the model. For instance, Zhou et al. (2020) modified their three-factor measurement 

model to a two-factor measurement model when they found that configural invariance was not 

established on their three-factor model that compared differences between U.S. and Chinese 

college students in terms of perceiving ambiguity tolerance. Although I had considered removing 

latent variables, if needed, in order to achieve configural invariance, such revision was 

unnecessary in the current study as configural invariance of the model was supported.  

Where configural invariance was supported, changes in fit indices, including chi-square 

difference tests (∆𝜒2), ∆CFI, ∆TLI, ∆RMSEA, and ∆SRMR were used to assess the difference 

between the less restricted, configural-invariant and the more restricted, metric-invariant model 

(Chen, 2007; Cheung & Lau, 2012; Cheung & Rensvold, 2002; Meade et al., 2008; Putnick & 

Bornstein, 2016). Metric invariance is present when the factor loadings are invariant (equal) 
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across groups (Milfont & Fischer, 2010; Putnick & Bornstein, 2016; Vandenberg & Lance, 

2000). A non-significant chi-square difference test (∆𝜒2) with a criterion of .05 alpha (Chen, 

2007), cutoffs of ∆CFI ≤ -.02, ∆TLI ≤  −.01, and ∆RMSEA ≥ .015 paired with ∆SMR ≥ .030 

were used to compare the fit of the metric-invariant model relative to the configural-invariant 

model to determine if metric invariance holds (Rutkowski & Svetina, 2014). If full metric 

invariance did not hold then I examined the size of the loadings and constrained all loadings to 

be equal across groups, except the loading with the largest unstandardized difference and 

modification index corresponding to factor loadings, which I allowed to be estimated in each 

group. Then I compared the ∆𝜒2 between the new (with the new relaxed constraint) and the old, 

constrained model. The insignificance of ∆𝜒2 indicated that partial invariance was established. 

To ensure the validity of the results, a conservative approach was taken in testing for partial 

invariance by limiting the number of post hoc modifications to only one. The decision to limit 

the number of post hoc modifications to only one was motivated by the common critique in 

literature that post hoc modification has the potential to capitalize on chance (Kline, 2016). A 

model was considered partially metric-invariant if an adequate change in fit (non-significant 

∆chi-square and changes in at least two of the four descriptive fit statistics criteria were met) was 

obtained only after relaxing a factor loading constraint in one of the groups being compared. 

Once full or partial metric invariance was established then scalar invariance was tested by 

equating indicator intercepts (for continuous, parceled data) and item thresholds for categorical, 

item-level data over groups (Scholten et al., 2017). Changes in fit indices of ∆CFI ≤ -.01, ∆TLI 

≤ .-01, and ∆RMSEA ≥ .01 paired with ∆SRMR ≥ .01 were used, in addition to the chi-square 

difference test (with an alpha of .05), to assess if this model yields worse fit than the preceding 

metric-invariant model (Chen, 2007; Rutkowski & Svetina, 2014). If the model fit deteriorated 
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when parcel intercepts and item thresholds were held constant between the two groups, then 

invariance was not supported. If full scalar invariance did not hold, I examined the size of the 

differences in thresholds or intercepts between groups and constrained all except for the intercept 

or threshold with the largest unstandardized difference, which was allowed to be estimated in 

each group. To assess partial scalar invariance, I relaxed the intercept or threshold constraint of 

one of the groups being compared and evaluated whether there was an adequate change in fit. 

Specifically, the criteria for partial scalar invariance included a non-significant ∆chi- test and 

trivial changes in at least two of the four descriptive fit statistics. Then I compared the ∆chi-

square between the new (with the relaxed constraint) and the old, constrained model. The 

insignificance of ∆chi-square indicated that partial invariance was established. 

After full or partial scalar invariance was established, I compared group means on the 

latent factors, based on the test of latent mean differences. Lack of latent mean differences 

indicates that the “mean level of each construct is the same across groups” (Cheung & Rensvold, 

2002, p. 236). When testing for latent means across groups, one group was designated as the 

reference group with a mean of zero, while the latent mean of alternate groups was estimated 

relative to the reference group's latent mean (Steenkamp & Baumgartner, 1998). The significance 

of the test of latent mean difference represents the differences between the means of the two 

groups (Schmitt & Kuljanin, 2008). To evaluate the statistical significance of these differences, 

the p-value was used at an alpha level of .05.  

Finally, residual invariance was tested by comparing the fit of the model with residuals 

held constant between males and females (and separately, among the three racial groups) with 

the fit of the scalar-invariant model. Cutoffs of ∆CFI ≤ -.005, ∆TLI ≤ -.01, and ∆RMSEA ≥ .01 
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paired with of ∆SRMR ≥ .01, and a chi-square difference test with an alpha set at .05 were used 

to determine if the residual invariance model was supported (Rutkowski & Svetina, 2014).  

Treatment of Missing Data  

TIMSS 2015 identified four types of missing data: not administered, omitted, logically 

not applicable, and not reached in its original data. An item was considered omitted if the 

respondent was supposed to answer the question but did not provide a response. An item was 

considered not administered if the respondent had no chance to answer the question (Foy, 2017). 

Missing data techniques were utilized in R (version 3.5.3 mice package) to identify the 

proportion of values missing in the data set and to examine the missing data patterns.  

Missing data patterns are a way to identify if the missing data predict any discernible 

pattern or not and help to detect if the data are missing completely at random (MCAR), missing 

at random (MAR), or missing not at random (MNAR). Descriptive statistics such as a data 

matrix plot were used to visually solicit the pattern of missingness. Little’s test (Little, 1988) was 

conducted in R (package mice) to evaluate whether the data were missing completely at random. 

Since there was no substantial missing data, the default missing data treatment methods in Mplus 

(Muthén & Muthén, 1998-2017 version 8.1 for Windows) were employed: 1) pairwise deletion 

with weighted least squares means and variance adjusted estimation (WLSMV) for categorical 

indicators-based models, and 2) full information maximum likelihood (FIML) with the robust 

maximum likelihood parameter estimator (MLR; Yuan & Bentler, 2000) for continuous 

indicators-based models (Asparouhov & Muthén, 2021). I employed listwise deletion during 

parcel creation, resulting in very few missing parcels. These missing parcels were negligible and 

only happened in a minuscule number of cases where all the items assigned to a parcel were 

missing. 
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Missing data were handled using Full Information Maximum Likelihood (FIML) during 

the invariance analysis based on parcels, which included administered but unanswered items. 

FIML only considers cases that have at least some non-missing values (Geiser, 2010) and 

provides a summary of missing data patterns, including their frequency and nature (MCAR, 

MAR, or MNAR), which can identify the type of missingness in the data. Additionally, FIML 

provides standard errors and parameter estimates under both MAR and MCAR (Newsom, 2020). 

MCAR indicates that the likelihood of missing data is independent of observed and unobserved 

values, while MAR suggests that the probability of missingness can depend on observed values, 

and MNAR suggests that the likelihood of missingness can depend on unobserved values (Little 

& Rubin, 1987).  

Specification of Models  

This section details the model and parameters that I implemented to examine the 

combined effect of different types of parceling strategies, total and group sample sizes, and 

number of groups on tests of measurement invariance between groups (based on gender and 

race) in a confirmatory factor analysis model. Figure 3.1 illustrates an item-based CFA model 

that was used in this study.  
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Figure 3.1 

Confirmatory Factor Analysis Model for Item-level Indicators 

 
 

 

Each of the four factors (Like Learning Math, Math Lesson, Confidence in Math, and 

Valuing Math) had nine indicators (see Figure 3.1). These four factors are hypothesized to be 

correlated with one another. Table 3.1 specifies which parameters of the CFA model were fixed 

(set to a specific value or constrained to equal another parameter) or freed (allowed to be 

estimated) in testing configural invariance. As seen in Table 3.1, the factor variances were fixed 

to 1.0 and factor means were fixed to 0, whereas factor loadings, factor correlations, thresholds, 

and residual variances were freely estimated. As already mentioned, error terms (i.e., residuals or 

uniqueness) of the indicators were set free; however, they were not correlated with the error 

terms of other indicators. 
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Table 3.1 

Configural Invariance Model Specification for Categorical Indicators-based Models 

Parameters Free/Fixed 

Factor Loadings Free 

Thresholds Free 

Residuals Free 

Factor Correlations Free 

Factor Variances 1.0 

Factor Means 0 

 

The total number of possible parameters estimated in each group for all the CFA models, 

were quantified via Equation 3.1: 

                                        
𝑝(𝑝+1)

2
+ 𝑝                                                                  (3.1) 

where p indicates the number of indicators (Hoffman, 2018; University of California, Los 

Angeles, n.d.). As configural invariance only requires the factor structure to be invariant across 

groups, no parameters such as loadings and intercepts were constrained to be equal across groups 

(Geiser, 2010). For the analysis, I used MLR as an estimator for continuous indicators and 

WLSMV for categorical indicators. MLR has been found to outperform WLSMV in estimating 

standard errors, reducing Type I errors, and detecting group differences for smaller sample sizes 

(N ≤ 200) and non-normal latent distributions (French & Finch, 2006; Koziol & Bovaird, 2018; 

Li, 2016); however, MLR is inappropriate for conducting invariance analysis when indicator 

variables are categorical (such as rating-scale items; Lubke & Muthén, 2004). To construct a 

CFA model for parcel-level indicators, I averaged three items to create each indicator. Using 

factor loadings, skewness, or random selection as criteria, I then combined these indicators to 
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create three parcels, with a total of nine items being used. Figure 3.2 illustrates an example of the 

CFA models that I used for parcel-level indicators (see Figure 3.2).  

Figure 3.2 displays that each of the four math attitude subscales (Like Learning Math, 

Math Lesson, Confidence in Math, and Valuing Math) is composed of three indicators. A 

baseline model was initially constructed, and its overall fit was assessed. If the model did not 

demonstrate good overall fit, the model was re-specified based on modification indices and 

factor loadings of standardized and unstandardized parameter estimates. The examination of 

standardized factor loadings within each group was conducted, but not compared between the 

groups. For each type of invariance test, Table 3.2 provides details on how the models were 

specified. It should be noted that in Table 3.2, the term "Fix" indicates that the parameter 

estimates were computed in one group but constrained in the other groups to equal the first 

group's estimates. However, for latent means, the factor means in the reference group were set to 

0, and the factor means in the other group were allowed to vary. Table 3.2 displays the gradual 

constraining of parameters for the configural-invariant model to assess metric, scalar, and 

residual invariance. Following the establishment of configural invariance, constraints were 

imposed on the factor loadings (of the categorical (item-based) indicators-based subsamples and 

the continuous (parceled) indicators-based subsamples) across groups to assess metric 

invariance. In cases where full configural invariance was not achieved, indicators were cross 

loaded to examine partial configural invariance. 
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Figure 3.2 

Configural Factor Analysis Model for Parcel-level Indicators 

 

 

Table 3.2 

Model Specification for Invariance Tests 

Parameters Type of Invariance 

 Configural Metric Scalar Residual 

Factor Loading Free Fix Fix Fix 

Intercept/Threshold Free Free Fix Fix 

Residuals Free Free Free Fix 

Factor Correlation Free Free Free Free 

Factor Variances 1.0 1.0 1.0 1.0 

Factor Means 0 0 Fix Fix 
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Likewise, I used the metric-invariant model as the baseline and fixed its 

intercepts/thresholds to establish full or partial scalar invariance. Once full or partial scalar 

invariance was attained, I fixed the reference group’s latent means to 0 in the scalar invariant 

model and freed the other group’s means to test latent mean differences. In addition to fixing the 

intercepts, I estimated residual variances in only one group and constrained the residual 

variances on the other group(s) to equal those from the first group in assessing residual 

invariance (Geiser, 2010).  

In terms of estimating models based on parcel-level indicators, I used the robust 

maximum likelihood parameter estimator (MLR) since the normality assumption was moderately 

or severely violated and MLR has been found to be robust to departures against multivariate 

normality. MLR is used for continuous variables with severely non-normal distributions (Kline, 

2016). Whenever MLR is implemented, the unbiased ML estimator is used to acquire 

information about parameter estimates, “but standard errors and chi-square test statistics are 

statistically corrected to enhance robustness of ML against departures from normality” (Li, 2016, 

p. 937). In addition, MLR can be a robust approach for analyzing complex samples in structural 

equation modeling while using Mplus (Muthén & Muthén, 1998-2017). 

As I mentioned earlier in Chapter 2, the WLSMV estimator, which does not require 

distributional assumptions and is designed for ordered categorical data, was used for categorical 

indicators-based models. Additionally, WLSMV provides a robust method for analyzing 

complex samples in SEM in Mplus (Muthén & Muthén, 1998-2017) and allows for tests of 

thresholds required when conducting invariance analysis based on categorical indicator variables 

(Lubke & Muthén, 2004).  
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Data Analyses 

As discussed earlier, non-restricted public use TIMSS 2015 student data and codebooks 

were downloaded from https://timssandpirls.bc.edu/timss2015/international-database/. SPSS 

(version 25.0 for Windows) was used to screen data. Variables that have information about 

students (such as Student ID, sex, race), students’ math attitude scores, and TIMSS’ sampling 

techniques were used for this study. Descriptive statistics, including means, standard deviations, 

range, skewness, kurtosis, and histograms of the variables along with a normal approximation 

curve and normal Q-Q plots were examined to better understand the nature of the data, and to 

identify any aberrant patterns and overall distributional characteristics of the data.  

Recoding of Items 

To prepare data for analysis, negatively worded items were reverse coded, and parcels 

were created. Two negatively worded items, “I wish I did not have to study mathematics,” and 

“Mathematics is boring” from the Learning Mathematics subscale were reverse coded. Similarly, 

five negatively worded items, “Mathematics is more difficult for me than for many of my 

classmates,” “Mathematics is not one of my strengths,” “Mathematics makes me nervous,” 

“Mathematics is harder for me than any other subject” and “Mathematics make me confused” 

from Confidence in Mathematics subscale were reverse coded. The negatively worded items 

were reverse coded to ensure that higher values reflect more positive students’ attitudes. 

Students’ gender was dummy coded (0 = Boy, 1= Girl). Students’ race was coded (0 = White, 

1= Hispanic, 2 = Other) with White as the refence group.  

Estimating Reliability 

McDonald’s omega (McDonald, 1999) was used to estimate internal consistency 

reliability in Mplus on scores from both the item-level and parceled subscales. Instead of 
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Cronbach’s alpha, McDonald’s omega was used as it is similar to Cronbach’s alpha but provides 

a truer estimate of internal consistency (Deng & Chan, 2017; Hayes & Coutts, 2020). Increased 

reliability of indicators has been cited as one of the reasons for using parcels over items (Little et 

al., 2002; Meade & Kroustalis, 2005; Nasser & Wisenbaker, 2003). To investigate the 

differences in the reliability estimates of parcels and item-level subscales, I evaluated the 

reliability of scores from each parcel and item-level model. I used an acceptable reliability value 

of omega =.7, as defined by Ursachi et al. (2015), for both the 3-item and 9-item indicator 

models, which excluded parcels. I assessed the coefficient omega of the subsamples and found 

them to be high throughout the subsamples, ranging between .85 to .95. The models with nine-

items as indicators were found to consistently have the highest coefficient omegas, followed by 

parcel-based models created via factor loadings, followed by the three-item indicator models and 

random-indicator based models.  

Addressing the Sample Design 

 

Sampling Weights 

TIMSS 2015 provided seven different sampling weights including student level, teacher 

level, and school level weights, but out of these weights only three weights (totwgt, senwgt, and 

houwgt) were for student-level variables. Amongst these three different student-level weights, 

totwgt (total student weight that sums to the national population) was applied in assessing the 

descriptive statistics of the sample since TIMSS 2015 suggested that totwgt would be appropriate 

to use for “within-country” analysis (such as in the current study) and this study only focused on 

U.S. students (Kastberg et al., 2013). Application of sample weights creates parameter estimates 

that are more indicative of the population characteristics based on the use of a stratified sample 

(Hahs-Vaughn, 2005). While conducting the invariance analysis and other inferential statistical 
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tests, I converted totwgt to normalized weights so that the total N would sum to the total N of my 

data rather than to the population N. I normalized the weight by dividing the raw totwgt (i.e., 

individual totwgt) by the mean totwgt from the sample in SPSS (Hahs-Vaughn & Lomax, 2006). 

Normalized weights help to “address sample size sensitivity while still incorporating sample 

weights” (Hahs-Vaughn, 2005, p. 226), by adjusting standard errors to reflect the number of 

cases in the sample rather than in the full population. I specified the normalized sampling 

weights in Mplus under the complex sampling option. As the data used in this study are based on 

a complex sampling design, a two-stage stratified cluster sample, I implemented the following 

strategies to address clustering effects.  

Before conducting tests of invariance, I estimated the intra cluster correlations (ICC). 

ICC values inform how strongly the students in the same sampling cluster (in this case, school) 

resemble each other and how similar their outcomes were. ICC can range from zero to one, with 

values closer to one indicating stronger resemblance or excessive dependence within the clusters 

(Raudenbush & Bryk, 2002). ICC values less than .05 represent small to a medium clustering 

effect (LeBreton & Senter, 2008). I used Mplus (via the command type = twolevel basic) to 

output the latent factors’ ICCs. I used ICC values < .05 as a cutoff to identify a lack of clustering 

effect. Since Mplus accommodates data from complex samples, I specified the cluster variable 

(identified as JKREP in TIMSS) which allows Mplus to adjust standard errors to account for the 

cluster sampling (Averett et al., 2018; Foy, 2017). 

 Although students are nested within schools, only the measurement model associated 

with student-level variables was of interest in this study; hence, hierarchical linear model (HLM) 

was not exercised. Huang (2016) mentioned that multilevel models such as HLM will not be 

needed if the researcher’s primary focus is not on the cluster-level variables but only on the 
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level-one units of analysis, as is the case in the current study. The cluster sampling was 

considered for all models conducted using Mplus with JKREP as a cluster variable provided in 

the TIMMS 2015 data to address the underestimated standard errors and associated risk of Type 

I error caused by the violation of independence of observations assumption inherent in cluster 

sampling (Raudenbush & Bryk, 2002).  

Assessing Multivariate Normality 

I examined the histogram and Q-Q plot of the subsamples to assess normality for each 

subscale. In the histograms, I visually examined if the distribution of the subsamples is 

approximately normal. In the normal Q-Q plot, I examined if the normal probability plots 

showed any substantial deviation from the diagonal to assess normality. Absolute values of 

kurtosis and skewness between 1.0 and 2.3 were identified as moderately non-normal and values 

beyond 2.3 were considered as severely non-normal (Lei & Lomax, 2005).  

Answering the Research Questions 

I analyzed the invariance analysis results to determine the sensitivity of testing to various 

conditions. Using the strategies outlined in the following paragraphs, I answered the research 

questions (repeated below) and detected the sensitivity of invariance testing to conditions such as 

sample sizes, indicator variable (including parceling) techniques, number of groups, and 

grouping variables. 

Q1  Do the means of and results based on the fit statistics (chi-square, CFI, RMSEA, 

SRMR, TLI) of the configural invariance test in a confirmatory factor analysis 

model differ by type of indicator variable technique, total sample size, and ratio of 

group sample sizes, across groups (gender and race)? 

 

Q2 Do the means of and results based on the incremental fit statistics (∆CFI, ∆ 

RMSEA, ∆ SRMR, ∆ TLI, and chi-square difference test) of the metric invariance 

test in a confirmatory factor analysis model differ by type of indicator variable 

technique, total sample size, and ratio of group sample sizes, across groups 
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(gender and race)?1500) including balanced versus unbalanced group size, across 

groups (gender and race)? 

 

Q3  Do the means of and results based on the incremental fit statistics (∆ CFI, ∆ 

RMSEA, ∆ SRMR, ∆ TLI, and chi-square difference test) of the scalar invariance 

test in a confirmatory factor analysis model differ by type of indicator variable 

technique, total sample size, and ratio of group sample sizes, across groups 

(gender and race)? 

 

Q4  Do the means of and results based on the incremental fit statistics (∆ CFI, ∆ 

RMSEA, ∆ SRMR, ∆ TLI, and chi-square difference test) of the residual 

invariance test in a confirmatory factor analysis model differ by type of indicator 

variable technique, total sample size, and ratio of group sample sizes, across 

groups (gender and race)? 

 

A total of 210 subsamples were generated by combining seven categories of total sample 

size, five indicator variable techniques, two groups (gender and race), and three ratios of group 

sample sizes (1:1, 1:1.5, and 1:2). Invariance tests were performed for each subsample, 

beginning with configural invariance, then metric, scalar, residual, and latent mean invariance. 

The fit indices and incremental fit indices were used to determine whether the models are fully 

invariant, non-invariant, or partially invariant, as previously outlined. For each of the subsamples 

constructed under different design conditions, I aggregated the results and performed a series of 

One-Way ANOVAs to determine if the means of the fit statistics for each level of invariance test 

differed based on the type of indicator variable technique, grouping variable (race or gender), 

and total sample size for designs comprising three different ratios of group sample sizes. Given 

that each case had only one replication and because cell size was inadequate for either 

MANOVA or factorial ANOVA, I used One-Way ANOVAs. 

 There were four different omnibus ANOVAs based on type of parceling, sample size, 

grouping variable, and balance nature for each of the five dependent variables (means of chi-

square, CFI, RMSEA, SRMR, TLI). To address the increase in Type I error that results from 

conducting multiple statistical tests, I employed the Holm-Bonferroni method also called Holm’s 
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sequential Bonferroni procedure (Eichstaed et al., 2013; Holm, 1979). This procedure safeguards 

against familywise Type I errors without decreasing statistical power, in contrast to the 

traditional Bonferroni adjustment (Eichstaed et al., 2013). Holm-Bonferroni method organizes 

the significance tests in ascending order of p-values and adjusts the magnitude of adjustment 

accordingly (Eichstaed et al., 2013; Holm, 1979). I adjusted the alphas for each test and used 

them to test the ordered p-values from Holm-Bonferroni method. For instance, to control Type I 

error associated with 20 One-Way ANOVAS, the first test was evaluated by comparing the 

smallest p-value against the adjusted alpha of .05/20. If it was statistically significant, the second 

test was assessed by comparing the second smallest p-value against the adjusted alpha of .05/19, 

and so on until non-significance was reached.  

Based on a priori power analysis in G*Power (version 3.1.9.7 for Windows) for a One-

Way ANOVA with four groups (e.g., indicator variable technique) with Bonferroni adjusted 

alpha (.05/4 = .0125), target power of .8, and a medium effect size (Cohen’s f of .25 for One-

Way ANOVA; Chen et al., 2010; Lakens, 2013), I needed a minimum sample size of 244. 

However, my actual sample size was considerably less than the required minimum of 244, as the 

N was based on the number of invariance analyses I ran rather than the number of students. To 

address concerns about low statistical power, I focused on effect size, as it provides a 

standardized measure of effect magnitude that is not sample size-dependent and can help 

determine whether the observed effects are meaningful. 

Before performing One-Way ANOVAs, several assessments were conducted to ensure 

that the ANOVA assumptions were met. This involved examining frequencies and descriptive 

statistics to detect errors, outliers, and missing data, as well as checking for skewness using 

histograms, values of skew and kurtosis, and normal probability plots of dependent variables. 
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The Holm-Bonferroni method was utilized to correct for multiple comparisons in various 

statistical tests. Firstly, it was used in the Shapiro-Wilk test of normality and Levene's test of 

homogeneity of variance. It was also employed in the 20 One-Way ANOVAs conducted to 

compare means of the fit indices or alternative fit indices of the invariance tests for any design 

condition. Furthermore, the method was applied to any pairwise comparisons that were 

conducted after the ANOVA omnibus test. Finally, it was used for the tests of independence to 

examine the association between results of invariance tests and design conditions. Descriptive 

statistics and partial eta-squared were analyzed to estimate effect size, which quantifies the 

amount of variance in the dependent variable explained by group membership. To compare 

effects across different design conditions, values of .02, .13, and .26 were used as criteria for 

small, medium, and large effect sizes, respectively, for eta-squared. Similarly, values of .2, .5, 

and .8 were used as benchmarks for small, medium, and large effect sizes of Cohen's d in 

pairwise comparisons. Finally, Cramer's V effect size estimate was used to measure the strength 

of association between design conditions and invariance test results, with criteria set at values of 

.10, .20, .40, .60, and .80 for negligible, weak, moderate, relatively strong, and strong measures 

of association, respectively (Chen et al., 2010; Cohen, 1988; Kotrlik et al., 2011; Lakens, 2013). 

After conducting ANOVA tests, I categorized the results of the invariance tests as fully, 

partially, or non-invariant. Specifically, a model was considered fully configurally invariant if it 

obtained adequate fit (met at least three of the four fit statistics criteria) without any cross-

loadings. If an adequate fit (met at least three of the four fit statistics criteria) was only obtained 

after estimating one or more cross-loadings in one of the groups being compared, it was 

considered partially configural-invariant. Models that did not obtain adequate fit (none or fewer 

than two fit statistics criteria were met) were classified as configurally non-invariant. To examine 
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the relationship between the type of invariance test results and different design conditions, such 

as sample size, indicator variable technique, grouping variables, and balanced versus unbalanced 

group sizes, I conducted a series of tests of independence using the design condition (with 

corresponding levels) as one variable and the categorized invariance test results (fully, partially, 

and non-invariant) as the other variable. The same process was applied to the metric, scalar, and 

residual invariance tests to determine the relationship between the results and the design 

conditions. Table 3.3 summarizes tests of independence that I implemented to examine the 

association between the type of invariance test results and the design conditions. Four tests of 

independence were performed to determine if there was an association between each of the four 

design conditions and the outcomes of invariance tests. The number of cells in each test was 

determined by multiplying the results of invariance tests (fully invariant, partially invariant, and 

not invariant) by the number of categories in each of the four design conditions. The significance 

of tests of independence was evaluated using the Holm-Bonferroni method, as described above. I 

used Cramer’s V to estimate the effect size for chi-square tests. Cramer’s V indicates the strength 

of association between two categorical variables and ranges between 0 (no relationship) and 1 

(perfect relationship; Gliner et al., 2002). I used Cohen’s (1988) values to determine small (.07 - 

.21), medium (.21 - .35), and large (greater than .35) effect size based on Cramer’s V (Sun et al., 

2010). 
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Table 3.3 

Dimensions of Independence Tests Across Design Conditions and Invariance Outcomes 

Invariance Outcomes Design Conditions 

 Total Sample Size 
Indicator Variable 

Techniques 
Number of Groups 

Ratio of Group 

Sample Sizes 

Fully Invariant 
7 5 2 2 

Partially Invariant 
7 5 2 2 

Non-invariant 
7 5 2 2 

Total 
3 x 7 3 x 5 3 x 2 3 x 2 

 

 

To answer the first four research questions, I utilized the same analytic approach with one 

difference. For Q1, I examined the fit indices of the configural model. For Q2, I subtracted the fit 

indices for the more constrained metric model (created by constraining the factor loadings to be 

equal across groups) from the fit indices for the less constrained configural model. Similarly, for 

Q3, I subtracted the fit indices for the scalar-invariant model (created by constraining the 

intercepts or thresholds to be equal across groups) from the fit indices for the metric model. 

Finally, for Q4, I subtracted the fit indices for residual invariance model (created by constraining 

the residual variances to be equal across groups) from the fit indices for the scalar model. 

Q5  Are there significant latent means differences between groups (gender, race) in 

terms of indicator variable technique, total sample size, and ratio of group sample 

sizes? 
 

To answer Q5, I employed analytical strategies similar to those used for the second parts 

of Q1 through Q4. However, instead of using the three categories of invariance tests, I classified 

the test results of latent mean differences as either significantly different or not different between 

groups. I obtained these results through Mplus and analyzed whether there was any association 
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between significant or non-significant latent means tests and each design condition using 

Fisher’s exact tests of independence. 

Specifically, I examined whether there were significant differences in latent means test 

results between different design conditions (indicator variable techniques, total sample sizes, 

ratios of group sample sizes [including balanced and unbalanced group sizes], and the number of 

groups [two and three]). To ensure there was no increased risk of Type I error across the 16 tests 

conducted, I applied Holm-Bonferroni adjusted method. 

Chapter Summary 

In this chapter, I explained the data collection procedures for TIMSS 2015 and discussed 

the design conditions and dependent variables used for my study. I also outlined the methods 

used to specify the model and analyze the data and justified my use of a sensitivity analysis 

approach. Building upon this foundation, Chapter 4 presents an overview of the statistical results 

and interpretation of the findings to address the research questions. 
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CHAPTER IV 

 

RESULTS 

 

In this chapter, I present the findings to my research questions. For this study, I 

conducted sensitivity analysis by examining the results of invariance analysis to detect how 

sensitive the invariance testing was to the various conditions that I have created based on sample 

sizes, indicator variable techniques, nature of balance in each group, and number of groups. I 

have organized the results of my study in terms of the sequence of research questions.  

Descriptive Statistics 

Once SPSS data from TIMSS was downloaded from the TIMSS website, the overall data 

was read into R as an Excel file to investigate the nature of missingness of data. Missing data 

(such as items that were not administered or omitted) that were applicable to the variables and 

constructs used in this study were changed to “NA.” Missing data techniques were exercised to 

identify the proportion of values missing in the data set. The overall TIMSS dataset with a 

sample size of 10,221 was used in analyzing the data. There were slightly more girls (N = 5,091) 

than boys (N = 5,071), and a greater percentage of White (46.03%) students compared with other 

racial/ethnic groups. About 2.21 % of all observations were missing from the overall TIMSS 

data. None of the variables used in the study were missing more than 3% of observations, with 

many variables complete. 

A data matrix plot (Figure B1 in Appendix B) was used to visually examine the pattern of 

missingness. In the plot, red lines indicate missing values and shaded lines (black represents the 

largest values) indicate the magnitude of observed variables. The plot shows that no variables 
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were completely missing from the data. In fact, the pattern of missingness appeared to be 

relatively random. Little’s test (Molenberghs et al., 2015) was conducted on the overall TIMSS 

data (sample size of 10,221) to evaluate whether the data were missing completely at random. 

Little’s test on the overall data was statistically significant (p <.001), which shows evidence that 

the data were not MCAR, but this could be due to the large sample size. Based on the descriptive 

statistics and associated plots, there were few missing values and they exhibited no discernible 

pattern.  

After examining the pattern of missingness, the data were read into Mplus to conduct 

tests of measurement invariance. Before conducting the analysis, ICC values, a measure of 

relatedness of responses within a cluster, were computed. The ICC values of the variables were 

computed with the basic model (type = basic). The ICC values of most variables were larger than 

.05; hence, the Mplus command (type = complex) was applied in running invariance tests to 

address potential clustering effects (Muthén & Muthén, 1998-2017). In addition, to account for 

the complex sampling design associated with the data, school as the cluster variable, JKZONE as 

the stratification variable, and NORMWT as the sampling weight were utilized to run invariance 

tests.  

As there was no substantial missing data and Mplus command (type = complex) was 

utilized, FIML was used with MLR for continuous indicators-based tests and the default missing 

data treatment (pairwise deletion) was exercised with WLSMV for categorical indicators-based 

invariance tests. The measurement invariance tests were conducted in a sequence. The results of 

invariance tests were recorded in Excel and read into SPSS to answer the research questions. The 

research questions were answered in sequence as the latter research question builds on the earlier 

one. In the following section, I present my findings for each research question. For the sake of 
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brevity, selected descriptive statistics are presented in answering the research questions. The full 

set of descriptive statistics for all conditions examined in this dissertation will be available upon 

request.  

Research Questions 

In the following paragraphs, I address each research question sequentially. First, I restate 

the research question and then present the descriptive statistics of the independent and dependent 

variables pertaining to each research question. Then I discuss the assumptions that were tested 

along with steps taken to address any assumption violation. Finally, I answer each part of each 

research question. 

Research Question 1 

Q1  Do the means of and results based on the fit statistics (chi-square, CFI, RMSEA, 

SRMR, TLI) of the configural invariance test in a confirmatory factor analysis 

model differ by type of indicator variable technique, total sample size, and ratio of 

group sample sizes, across groups (gender and race)? 

 

A total of 42 subsamples were created based on total sample size (300, 400, 450, 600, 

900, 1,200, and 1,500), ratio of group sample sizes (1:1, 1:1.5, and 1:2), and number of groups 

(gender = 2 groups and race = 3 groups) as discussed in Chapter 3. Each of the 42 subsamples 

incorporated five different indicator variable techniques, yielding a total of 210 subsamples for 

analysis. For simplicity, I will refer to the five different indicator variable techniques as: no 

parceling based on a subset of nine items as indicators (P1), no parceling based on a subset of 

three items as indicators (P2), parceling based on factor loadings (P3), parceling based on 

skewness (P4), and parceling based on random selection (P5). Among the 210 subsamples, 84 

subsamples were created via P1 and P2, which had categorical indicators; hence, WLSMV was 

used to conduct invariance tests in Mplus. The remaining 126 subsamples created via P3, P4, and 

P5 had continuous indicators, and MLR was used to test invariance. Tables 4.1 and 4.2 show the 
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descriptive statistics of the DVs for the categorical and continuous indicators-based model, 

respectively.  

 

Table 4.1 

Descriptive Statistics of Fit Indices for Categorical Indicators-Based Models 

Fit Indices Min Max Mean Std. Dev Kurtosis Skewness 

chi-square 164.680 5591.42 1811.48 1666.82 -1.08 .56 

CFI .95 1.0 .97 .02 -1.76 -.08 

TLI .94 .99 .97 .02 -1.69 -.04 

RMSEA .05 .11 .07 .01 3.29 1.39 

SRMR .03 .11 .07 .02 -1.31 .15 

 

Note. There were 84 valid cases. 

 

Table 4.2 

Descriptive Statistics of Fit Indices of Continuous Indicators-Based Models 

Fit Indices Min Max Mean Std. Dev Kurtosis Skewness 

chi-square 140.43 
684 371.79 118.82 -.43 .58 

CFI 
.92 .98 96 .01 1.39 -.98 

TLI 
.89 .97 .94 .01 1.34 -.98 

RMSEA 
.05 .12 .09 .01 .06 .09 

SRMR 
.04 .10 .06 .01 -.60 .55 

 

Note. There were 126 valid cases. 

 

Due to the use of different estimators, WLSMV for categorical and MLR for continuous 

indicators, results were not directly comparable. Therefore, separate ANOVAs were run for the 
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categorical (items) and continuous (parcels) indicators-based models to answer the first part of 

Q1. 

One-Way Analyses of Variances 

After conducting tests of configural invariance, separate One-Way ANOVAs were 

performed with the five different fit statistics as the dependent variables for the categorical and 

continuous indicators-based models. Model characteristics including total sample size, ratio of 

group sample sizes, type of indicator variable technique, and number of groups were treated as 

independent variables. The IVs were balanced with equal number of observations at all level 

combinations (see Table B1 in Appendix B) for both sets of models.  

Tenability of Assumptions of  

One-Way Analyses 

of Variances 

The Holm-Bonferroni method was employed to control Type I error associated with 20 

One-Way ANOVAs (Eichstaed et al., 2013; Holm, 1979). The fit indices for categorical 

indicator-based models showed statistically significant deviations from normality, as determined 

by the Holm-Bonferroni method adjusted Shapiro-Wilk test. Based on the descriptive 

information presented on Table 4.1, the skewness and kurtosis of the distribution of all the fit 

statistics were between +3 and -3, except for RMSEA, which had a leptokurtic distribution 

(kurtosis = 3.29). The Holm-Bonferroni method adjusted Levene’s test was found to be 

statistically significant for chi-square (of total sample size and indicator variable technique) and 

for SRMR (of indicator variable technique), suggesting a violation of the assumption of 

homogeneity of variance. Only the RMSEA fit index in the continuous indicators-based models 

demonstrated normal distribution without significant deviations from normality, as determined 

by the Holm-Bonferroni method adjusted Shapiro-Wilk test, among all the fit indices tests. The 
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kurtosis and skewness of the distribution of all the fit statistics were between +3 and -3 (see 

Table 4.2). The Holm-Bonferroni method adjusted Levene’s test was found to be statistically 

significant for CFI, TLI and RMSEA of total sample size suggesting violation of the 

homogeneity of variance assumption.  

Despite the apparent violation of homogeneity of variance and normality, ANOVA is 

mostly robust against violation of normality and homogeneity of variance in balanced designs 

(Larson, 2008) as was the case in the current study. To examine the effect of violation of the 

homogeneity of variance assumption, robust F (Welch) tests were conducted for all design 

conditions of the categorical as well as continuous indicators-based models. The results of the 

robust ANOVAs using Welch F test and standard ANOVAs (Tables 4.3 and 4.4) were similar; 

hence, the homogeneity of variance assumption violation did not have much of an effect on the 

ANOVA. Thus, standard ANOVA results were used in answering Q1. The independence of 

observations assumption was assumed to be met for the ANOVAs in this study since different 

samples were used for different invariance tests. For example, when examining fit statistics for 

two groups (males and females) versus three groups (racial groups) with a total sample size of N 

= 500, the 500 students used for the male/female invariance tests were different from the 500 

students used for the invariance tests based on race.  

Results of One-Way Analyses of  

Variances for Categorical 

Indicator Models 

Table 4.3 shows that significant mean differences were found for all fit indices (chi-

square, CFI, TLI, RMSEA, and SRMR) with effect sizes (𝜂2) ranging from small to large for the 

item-level indicator conditions (P1 and P2). The means of chi-square were statistically 

significantly greater for P1 (nine items per latent variable); M = 3304.40, SD = 1021.24) than for 
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P2 (three items per latent variable); M = 318.57, SD = .01) with a large effect size (Cohen’s d = 

4.11). The mean CFI (M = .98, SD = .01) and TLI of P1 (M = .95, SD = .01) were statistically 

significantly lower than for the means of CFI (M = .99, SD = .00) and TLI of P2 (M = .96, SD = 

.01) with large effect sizes (Cohen’s d > 5). The mean RMSEA of P1 (M = .06, SD = .00) was 

significantly lower (better model fit) than for the mean RMSEA of P2 (M = .07, SD = .01) with a 

large effect size (Cohen’s d = .82). The mean SRMR of P2 (M = .05, SD = .01) was significantly 

lower (better model fit) than for the mean of P1 SRMR (M = .09, SD = .01) with a large effect 

size (Cohen’s d = 4.42). The results of the configural invariance ANOVAs indicated that only 

the parceling condition was related to model fit. The findings suggested that models with three 

items as indicator variables (P2) were more likely to support configural invariance than models 

with nine items as indicator variables (P1), except for RMSEA. None of the other design 

conditions were associated with differences in model fit when testing configural invariance with 

item-level indicators.  
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Table 4.3 

One-Way Analyses of Variances of Fit Indices of Q1 for Categorical Indicators-based Models 

 
 Sum of Sq df Mean Sq F p-value HB alpha 𝜂2 

Total Sample Size 

chi-square Between Groups 22684187.87 6 3780697.98 1.40  .2250 .0036 .10 

Within Groups 207913271.34 77 2700172.36        

CFI Between Groups .00 6 .00 .11 .9950 .0500 .01 

Within Groups .03 77 .00        

TLI Between Groups .00 6 .00 .16 .9860 .0167 .01 

Within Groups .03 77 .00        

RMSEA Between Groups .00 6 .00 1.03 .4150 .0042 .07 

Within Groups .01 77 .00        

SRMR Between Groups .00 6 .00 1.33 .2530 .0038 .09 

 Within Groups .04 77 .00        

Ratio of Group Sample Sizes 

chi-square Between Groups 55337.21 2 27668.61 .01 .9900 .0250 .00 

 Within Groups 230542122.00 81 2846199.04        

CFI Between Groups .00 2 .00 .08 .9220 .0100 .00 

 Within Groups .03 81 .00        

TLI Between Groups .00 2 .00 .08 .9220 .0083 .00 

 Within Groups .03 81 .00        

RMSEA Between Groups .00 2 .00 .28 .7560 .0050 .01 

 Within Groups .01 81 .00        

SRMR Between Groups .00 2 .00 .04 .9570 .0125 .00 

 Within Groups .04 81 .00        

Type of Indicator Variable Technique (P1 and P2) 

chi-square Between Groups 187218799.55 1 187218799.55 353.91 <.0025* .0029 .81 

 Within Groups 43378659.66 82 529008.05         

CFI Between Groups .02 1 .02 948.67 <.0025* .0025 .92 

 Within Groups .00 82 .00         

TLI Between Groups .02 1 .02 674.26 <.0025* .0026 .89 

 Within Groups .00 82 .00         

RMSEA Between Groups .00 1 .00 14.03 <.0025* .0031 .15 

 Within Groups .01 82 .00         

SRMR Between Groups .04 1 .04 409.98 <.0025* .0028 .83 

 Within Groups .01 82 .00         

Number of Groups 

chi-square Between Groups 1789690.59 1 1789690.59 .64 .4260 .0045 .01 

 Within Groups 228807768.62 82 2790338.64        

CFI Between Groups .00 1 .00 .04 .8490 .0071 .00 

 Within Groups .03 82 .00        

TLI Between Groups .00 1 .00 .07 .7930 .0063 .00 

 Within Groups .03 82 .00        

RMSEA Between Groups .00 1 .00 .08 .7820 .0056 .00 

 Within Groups .01 82 .00        

SRMR Between Groups .00 1 .00 1.70 .1970 .0033 .02 

 Within Groups .04 82 .00       

 

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha.  

*Indicates significance after Holm-Bonferroni method. 



108 

 

 

 

Results of One-Way Analyses of 

Variances for Continuous 

Indicator Models 

 Standard ANOVAs (Table 4.4) showed statistically significant differences in the means 

of chi-square, CFI, TLI, and RMSEA for total sample size, with large effect sizes. Post hoc 

results revealed that means of chi-square were statistically significantly greater (indicating 

poorer fit) for some larger Ns (900; M = 419.83, SD = 72.88; 1,200; M = 472.66, SD = 68.66; 

and 1,500; M = 536.07, SD = 98.45) than for smaller Ns (300; M = 274.32, SD = 44.15, 400; M = 

289.90, SD = 65.61, 450; M = 279.77, SD = 52.60, and 600; M = 338.00, SD = 67.03) with large 

effect size (Cohen’s d >5). The mean CFI was statistically significantly greater (better model fit) 

for some larger Ns (1,200; M = .96, SD = .00 and 1,500; M = .96, SD = .01) than for smaller Ns 

(300; M = .95, SD = .01 and 400; M = .95, SD = .01) with large effect size (Cohen’s d > 5). The 

mean TLI was statistically significantly greater (better model fit) for some larger Ns (1,200; M = 

.95, SD = .01 and 1,500; M = .95, SD = .01) than for smaller Ns (300; M = .93, SD = .01 and 400; 

M = .93, SD = .02) with large effect size (Cohen’s d >5). The means of RMSEA were 

significantly lower (better model fit) for some larger Ns (1,200; M = .08, SD = .01) and 1,500; M 

= .08, SD = .01) than for smaller N (300; M = .10, SD = .01) with large effect size (Cohen’s d > 

6). Post hoc results suggest that configural invariance was more likely to be supported with 

larger N (1,200 and 1,500) than smaller N (300 and 400), except for chi-square. There were also 

statistically significant differences in the means of RMSEA and SRMR for type of indicator 

variable technique with moderate to large effect sizes. Post hoc results revealed that the mean 

RMSEA (M = .09, SD = .01) and SRMR (M = .08, SD = .01) of P4 (parcels based on skewness) 

were significantly larger (worse fit) than the means of RMSEA (M = .08, SD = .01) and SRMR 
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(M = .05, SD = .01) for P5 (parcels based on random selection) with large effect sizes (Cohen’s d 

>5), indicating greater support of configural invariance for P5 than for P4.  

 

Table 4.4 

One-Way Analyses of Variances of Q1 for Continuous Indicator Models 

 
 Sum of Sq df Mean Sq F p-value HB alpha 𝜂2 

Total Sample Size 

chi-square Between Groups 1199915.11 6 199985.85 42.13 <.0025* .0025 .68 

Within Groups 564912.48 119 4747.16     
CFI Between Groups .00 6 .00 8.21 <.0025* .0026 .29 

Within Groups .01 119 .00     

TLI Between Groups .01 6 .00 7.36 <.0025* .0031 .27 
Within Groups .02 119 .00     

RMSEA Between Groups .01 6 .00 7.44 <.0025* .0029 .27 

Within Groups .02 119 .00     
SRMR Between Groups .00 6 .00 2.85 .0130 .0056 .13 

 Within Groups .02 119 .00     

Ratio of Group Sample Sizes 

chi-square Between Groups 6400.18 2 3200.09 .22 .8000 .0250 .00 
 Within Groups 1758427.41 123 14296.16       

CFI Between Groups .00 2 .00 5.12 .0070 .0042 .08 

 Within Groups .01 123 .00       
TLI Between Groups .00 2 .00 5.17 .0070 .0038 .08 

 Within Groups .02 123 .00       

RMSEA Between Groups .00 2 .00 3.06 .0500 .0083 .05 
 Within Groups .02 123 .00        

SRMR Between Groups .00 2 .00 .20 .8190 .0500 .00 

 Within Groups .02 123 .00       

Type of Indicator Variable Technique (P3, P4, and P5) 

chi-square Between Groups 134257.02 2 67128.51 5.06 .0080 .0045 .08 

 Within Groups 1630570.57 123 13256.67        

CFI Between Groups .00 2 .00 2.63 .0760 .0125 .04 
 Within Groups .01 123 .00       

TLI Between Groups .00 2 .00 2.70 .0710 .0100 .04 

 Within Groups .03 123 .00        
RMSEA Between Groups .00 2 .00 12.81 <.0025* .0033 .17 

 Within Groups .02 123 .00        

SRMR Between Groups .01 2 .01 126.86 <.0025* .0028 .67 
 Within Groups .01 123 .00        

Number of Groups 

chi-square Between Groups 168465.05 1 168465.05 13.09 <.0025* .0036 .10 
 Within Groups 1596362.54 124 12873.89        

CFI Between Groups .00 1 .00 4.08 .0460 .0071 .03 

 Within Groups .01 124 .00       

TLI Between Groups .00 1 .00 4.45 .0370 .0063 .04 

 Within Groups .03 124 .00       

RMSEA Between Groups .00 1 .00 6.67 .0110 .0050 .05 
 Within Groups .02 124 .00       

SRMR Between Groups .00 1 .00 2.54 .1130 .0167 .02 

 Within Groups .02 124 .00       

 

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method.  

* Indicates significance after Holm-Bonferroni method. 
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There were statistically significant differences in the means of chi-square for the number 

of groups (two versus three) with a moderate effect size. The descriptive results revealed that the 

mean chi-square for configural invariance tests of three groups (M = 408.36, SD = 113.19) was 

greater (worse fit) than the mean chi-square for configural invariance tests of two groups (M = 

335.23, SD = 113.74), with a large effect size (Cohen’s d = .64), suggesting greater support of 

configural invariance for fewer groups than for more groups. The lack of statistical significance 

and associated small effect sizes indicated that having different ratios of group sizes was not 

associated with model fit when testing configural invariance.  

Results of Configural Invariance 

Based on Tests of Independence 

In the following sections, I present my findings on the classification of configural 

invariance test results into fully, partially, or non-invariant categories and discuss the outcomes 

of the configural invariance tests under various design conditions. 

Modifying and Classifying Results 

of Invariance Tests 

 

In my analysis for configural invariance, I used the same factor structure across the 

groups and allowed parameters such as factor loadings, intercepts/thresholds, and residuals of the 

observed indicator variables to vary between groups. I determined whether the results of 

configural invariance were fully, partially, or non-invariant based on CFI > .95, TLI > .95, 

RMSEA < .08, SRMR < .08 criteria. If more than three of the four fit indices failed to meet the 

criteria, I adjusted the model by cross-loading indicators based on modification indices (MI) and 

standardized expected parameter change (SEPC) values in the applicable group (Bowen & Masa, 

2015), but only if estimating cross-loadings substantially improved model fit in support of 

configural invariance. Cross-loading involves assigning a single indicator to multiple factors to 
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achieve adequate model fit. In the current study, cross-loadings were estimated to obtain partial 

configural invariance when full invariance was not supported (Steenkamp & Baumgartner, 

1998). 

As described in Chapter 3, MIs evaluate the improvement in overall fit of a model if a 

specific constraint is removed (Yoon & Kim, 2014), with high MIs indicating significant lack of 

fit for the constrained parameter. Each MI has an associated SEPC value, which ranges from 0 to 

1, and larger values suggest substantial misspecification of the model (Saris et al., 2009; 

Steenkamp & Baumgartner, 1998; Whittaker, 2012; Yoon & Kim, 2014). Steenkamp and 

Baumgartner (1998), among others, recommended relaxing constraints for parameters with high 

MIs and substantial SEPCs and fewer constraints otherwise. I used parameter estimates, MIs, and 

SEPCs to determine which indicators to cross-load. For instance, in an unbalanced group ratio 

design (1:1.5) with continuous indicators-models parceled via skewness and 900 participants, I 

cross-loaded an indicator from Confidence in Math to Like Learning Math for boys based on 

larger MI (99.32) and SEPC (.49) values compared to other cross-loading options. To evaluate 

partial configural invariance, I compared the configural-invariant model with a partial 

configural-invariant model that included one modification. If the descriptive fit indices of the 

modified model were worse (or no better) than the configural invariance model, I identified the 

measurement model as non-invariant.  

While partial invariance has been discussed in previous research (Byrne et al., 1989; 

Khojasteh & Lo, 2015; Yoon & Kim, 2014), there is no clear agreement among researchers 

about the optimal number of invariance constraints to relax between groups or the number of fit 

statistics required to verify partial invariance (Putnick & Bornstein, 2016). Given the lack of 

clear guidelines on the number of fit indices necessary to classify an invariance test as fully 
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invariant, partially invariant, or non-invariant, I made only one modification (based on allowing 

one cross-loading) to test for partial configural invariance. The results of these tests are presented 

in the following section. 

Results of Configural Invariance 

Tests 

 The frequency distributions in Tables 4.5 and 4.7 show that 210 configural invariance 

tests were conducted, yielding a majority of fully invariant results (148) compared to partially-

invariant (34) and non-invariant (28) results. A model was identified as fully invariant if it 

achieved adequate model fit (met at least three of the four fit statistics criteria) without adding 

any cross-loading. A partially invariant model was obtained by estimating one cross-loading in 

one of the groups being compared and attaining adequate fit (met three of the four fit indices 

criteria). If the models failed to achieve adequate fit, with none or fewer than two fit indices 

meeting the criteria, even after cross-loading an indicator variable, they were considered non-

invariant. Out of the 210 configural invariance tests, 62 were modified by adding a single cross-

loading in one of the groups compared (see Table 4.6). While no cross-loadings were added to 

item-level indicators-based subsamples (P2; no parceling based on a subset of three items as 

indicators), greater numbers of cross-loadings were added to models using parceled indicators 

based on skewness (P4), factor loadings (P3), and random selection (P5). Small group sizes (N = 

300 and 400) had the highest number of models with added cross-loadings. After categorizing 

the results of configural invariance tests as fully, partially, and non-invariant, tests of 

independence were conducted to assess the relationship between the outcomes of configural 

invariance tests and the different design conditions. 
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Table 4.5 

Frequency of Classification of Configural Invariance 

 

Invariance N % 

Full 148 70.5 

Partial 34 16.2 

Non 28 13.3 

Total 210 100.0 

 

 

Table 4.6 

Number of Cross-Loadings Added for Each Parcel Condition 

 

Design Conditions 

Number of Cross Loadings Added 

0 1 Total 

N % N % % 

Total Sample Size 

300 15 50.0 15 50.0 100 

400 15 50.0 15 50.0 100 

450 22 73.3 8 26.7 100 

600 19 63.3 11 36.7 100 

900 21 70.0 9 30.0 100 

1200 30 100 0 .0 100 

1500 26 86.7 4 13.3 100 

Ratio of Group Sample Sizes 

1:1 55 78.6 15 21.4 100 

1:1.5 43 61.4 27 38.6 100 

1:2 50 71.4 20 28.6 100 

Type of Indicator Variable Technique 

P1 37 88.1 5 11.9 100 

P2 42 100 0 .0 100 

P3 25 59.5 17 40.5 100 

P4 15 35.7 27 64.3 100 

P5 29 69.0 13 31.0 100 

Number of Groups 

Two  72 68.6 33 31.4 100 

Three 73 69.5 32 30.5 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. 
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Test of Independence Results  

As mentioned above regarding the ANOVAs, the assumption of independence of 

observations was met for the tests of independence because each test used a different sample, 

thus ensuring that one sample did not have any bearing on another sample. The expected cell 

count was less than five for some cells; hence, Fisher's exact test was used instead of Pearson's 

chi-square test to test for independence of the invariance results and design conditions (total 

sample size, ratio of group sample sizes, indicator variable techniques and number of groups). 

When the expected cell frequency is less than five, the results from Pearson's chi-square test can 

be unreliable and Fisher's exact test is a more appropriate method (Agresti, 2018). Following the 

statistically significant Fisher's exact test results, pairwise comparisons were performed using 

post-hoc Fisher's exact tests with Holm-Bonferroni method to effectively control the family-wise 

error rate, employing the fisher.multcomp function from the RVAideMemoire R package. 

The results of Fisher's exact test showed a statistically significant association between 

total sample size and outcomes of configural invariance tests, as presented in Table 4.8, with a 

moderate effect size (Cramer's V). The pairwise comparison of group sizes revealed that a small 

sample size of 300 had significantly fewer fully invariant results and significantly more non-

invariant results compared to larger sample sizes of 1,200 and 1,500, as shown by the frequency 

distribution in Table 4.7, the mosaic plot in Figure 4.1, and the pairwise Fisher's exact test in 

Table 4.9. Additionally, a small sample size of 400 had significantly fewer fully invariant results 

and significantly more partially invariant results than a large group size of 1,200. 

Similarly, Fisher's exact test in Table 4.8 revealed a statistically significant association 

between the type of indicator variable technique and outcomes of configural invariance tests, 

with a weak effect size (Cramer's V). The frequency distribution in Table 4.7, pairwise 
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comparisons of invariance results in Table 4.10, and the mosaic plot in Figure 2.2 indicated that 

P1 had more fully invariant results and fewer partially invariant and non-invariant outcomes than 

P4. Moreover, P2 had more fully invariant results and fewer partially invariant results than P3, 

and more fully invariant and fewer non-invariant outcomes than P4. These findings suggest that 

item-level indicators provide more support for configural invariance than parcels. Results 

showed no significant association between configural invariance tests outcomes and different 

ratio of group sample sizes or between numbers of groups. 
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Table 4.7 

Frequencies of Configural Invariance Tests for Each Design Condition 

 
Design Conditions Number of Models for Each Design Condition 

Invariant Partially Invariant Non-invariant Total 

N % N % N % N % 

Total Sample Size 

300 15 50.0 5 16.7 10 33.3 30 100 

400 15 50.0 8 26.7 7 23.3 30 100 

450 22 73.3 3 10.0 5 16.7 30 100 

600 19 63.3 7 23.3 4 13.3 30 100 

900 21 70.0 7 23.3 2 6.7 30 100 

1,200 30 100 0 .0 0 .0 30 100 

1,500 26 86.7 4 13.3 0 .0 30 100 

Ratio of Group Sample Sizes 

1:1 55 78.6 7 10.0 8 11.4 70 100 

1:1.5 43 61.4 15 21.4 12 17.1 70 100 

1:2 50 71.4 12 17.1 8 11.4 70 100 

Indicator Variable Techniques 

P1 37 88.1 5 11.9 0 .0 42 100 

P2 42 100 0 .0 0 .0 42 100 

P3 25 59.5 6 26.2 6 14.3 42 100 

P4 15 35.7 14 31.0 14 33.3 42 100 

P5 29 69.0 8 11.9 8 19.0 42 100 

Number of Groups  

Two 72 68.6 24 22.9 9 8.6 105 100 

Three 76 69.5 14 12.4 19 18.1 105 100 

 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection.  

 

Table 4.8 

Test of Independence of Configural Invariance and Different Design Conditions 

 
 Pearson chi-square Value df p-value HB alpha Cramer’s V 

Total Sample Size  38.80 12 <.0125* .0125 .43 

Ratio of Group Sample Sizes 5.50 4 .2400 .0500 .24 

Type of Indicator Variable 55.83 8 <.0167* .0167 .37 

Number of Groups 4.44 2 .1090 .0250 .11 

Note. HB alpha = Holm-Bonferroni method.  
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Figure 4.1 

Association between Results of Configural Invariance and Total Sample Size 

 

 

Note. This mosaic plot shows the association between results of configural invariance tests and 

total sample size. The rectangles' size represents observation frequency, and the X-axis bars' 

width corresponds to different total sample sizes. The Y-axis bars indicate the occurrence of full 

(red), partial (yellow), and no (green) configural invariance results. The bars' width and height 

depict the relative frequency of each category, with wider bars indicating more observations in 

each category. 
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Figure 4.2 

Results of Configural Invariance and Type of Indicator Variable Technique Association 

  
 

Note. The mosaic plot displays the association between indicator variable technique and 

configural invariance results, with each outcome represented by a distinct color. The rectangle 

size represents observation frequency, with larger rectangles indicating higher observation 

frequencies. The X-axis bars correspond to each indicator variable technique category. The Y-

axis bars show full (red), partial (yellow), and none (green) configural invariance results. The 

width and height of each bar represent the relative frequency of occurrence for the corresponding 

category, with wider bars indicating a higher frequency of observations in that category. 
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Table 4.9 

Adjusted P-values for Results of Fisher’s Exact Test 

Total Sample Size Pairs Invariant Results Pairs 

Full vs. Partial Full vs. Non Partial vs. Non 

p-value HB alpha p-value HB alpha p-value HB alpha 

300 vs. 400 
.5263 .0023 .7617 .0033 .4621 .0021 

300 vs. 450 
.4347 .0019 .1274 .0012 1.0000 .0063 

300 vs. 600 
1.0000 .0038 .1167 .0012 .2329 .0014 

300 vs. 900 
1.0000 .0042 .0188 .0009 .0894 .0011 

300 vs. 1,200 
.0073 .0009 <.0008* .0008 1.0000 .0071 

300 vs. 1,500 
.4542 .0020 <.0008* .0008 .0325 .0010 

400 vs. 450 
.0885 .0011 .3311 .0017 .6668 .0028 

400 vs. 600 
.7569 .0031 .3141 .0016 .7007 .0029 

400 vs. 900 
.5424 .0024 .0706 .0010 .3891 .0018 

400 vs. 1,200 
<.0008* .0008 .0013 .0008 1.0000 .0083 

400 vs. 1,500 
.0984 .0011 .0023 .0008 .2451 .0014 

450 vs. 600 
.2913 .0014 1.0000 .0050 .3698 .0017 

450 vs. 900 
.3018 .0015 .4295 .0019 .1534 .0013 

450 vs. 1,200 
.0877 .0011 .0193 .0009 1.0000 .0100 

450 vs. 1,500 
1.0000 .0045 .0511 .0010 .0808 .0010 

600 vs. 900 
1.0000 .0036 .6652 .0026 .6424 .0025 

600 vs. 1,200 
.0028 .0009 .0302 .0009 1.0000 .0125 

600 vs. 1,500 
.3130 .0015 .0418 .0010 .5165 .0022 

900 vs. 1,200 
.0039 .0009 .1836 .0013 1.0000 .0167 

900 vs. 1,500 
.3248 .0016 .2151 .0013 1.0000 .0250 

1,200 vs. 1,500 
.1124 .0012 1.0000 .0056 1.0000 .0500 

Note. HB alpha = Holm-Bonferroni method. 

*Indicates significance after Holm-Bonferroni method. 
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Table 4.10 

Pairwise Comparisons of Configural Invariance Results and Type of Parcel 

 
Type of Indicator Variable 

Technique 

Invariant Results Pairs 

Full vs. Partial Full vs. Non Partial vs. Non 

p-value HB alpha p-value HB alpha p-value HB alpha 

P1 vs. P2 
.0551 .0036 1.0000 .0100 1.0000 .0125 

P1 vs. P3 
.0524 .0031 .0067 .0023 .2663 .0045 

P1 vs. P4 
< .0020* .0020 < .0018* .0018 .0525 .0033 

P1 vs. P5 
.7451 .0071 .0051 .0022 .0359 .0029 

P2 vs. P3 
< .0019* .0019 .0043 .0021 1.0000 .0167 

P2 vs. P4 
< .0017* .0017 < .0017* .0017 1.0000 .0250 

P2 vs. P5 
.0151 .0025 < .0019* .0019 1.0000 .0500 

P3 vs. P4 
.2073 .0042 .0278 .0026 .3585 .0056 

P3 vs. P5 
.1569 .0038 1.0000 .0083 .2685 .0050 

P4 vs. P5 
.0105 .0024 .0349 .0028 .7369 .0063 

Note. Indicator variable techniques: P1 = nine-item as indicators, P2 = three-item as indicators, 

P3 = factor loadings, P4 = skewness, and P5 = random selection. HB alpha = Holm-Bonferroni 

method adjusted alpha. 

*Indicates significant after Holm-Bonferroni method. 

 

Research Question 2 

Q2  Do the means of and results based on the incremental fit statistics (∆ CFI, ∆ 

RMSEA, ∆ SRMR, ∆ TLI, and chi-square difference test) of the metric invariance 

test in a confirmatory factor analysis model differ by type of indicator variable 

technique, total sample size, and ratio of group sample sizes, across groups 

(gender and race)?  

 

A total of 182 full and partially invariant configural models from results of Q1 were used 

to examine the change in fit statistics for metric invariance tests. Out of the 182 fully and 

partially invariant configural models used to examine the change in fit statistics for metric 

invariance tests for Q2, 84 models were based on item-level indicators, while 98 subsamples 

were based on parceled indicators. In the following section, I present the results for the first part 
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of Q2, which examines the mean change in fit statistics for the design conditions. Next, I present 

the results of the second part of Q2, which investigates the association between metric invariance 

test results and different design conditions.  

 

Table 4.11 

Descriptive Statistics of Change in Fit Indices for Parcel-Based Indicator Models 

 
 Min Max Mean Std. Dev Kurtosis Skewness 

Δchi-square -40.75 

 

86.74 

 

27.99 

 

16.17 

 

4.96 

 

.35 

 

ΔCFI -.01 

 

.01 

 

.01 

 

.00 

 

2.44 

 

-.55 

 

ΔTLI -.01 

 

.01 

 

.00 

 

.00 

 

2.05 

 

-.27 

 

ΔRMSEA .00 

 

.00 

 

-.01 

 

.00 

 

1.41 

 

.18 

 

ΔSRMR .00 

 

.05 

 

.02 

 

.01 

 

1.79 

 

1.20 

 

Note. There were 98 valid cases. 

 

Table 4.12 

Descriptive Statistics of Change in Fit Indices for Item-Based Indicator Models 

 Min Max Mean Std. Dev Kurtosis Skewness 

Δchi-square -842.13 

 

69.76 

 

-145.11 

 

227.33 

 

2.29 

 

-1.77 

 

ΔCFI .00 

 

.01 

 

.01 

 

.00 

 

-.84 

 

.12 

 

ΔTLI .00 

 

.01 

 

-.01 

 

.00 

 

-.53 

 

-.16 

 

ΔRMSEA -.02 

 

.01 

 

.00 

 

.01 

 

2.45 

 

.21 

 

ΔSRMR .00 

 

.01 

 

.00 

 

.00 

 

.07 

 

.70 

 

Note. There were 84 valid cases. 
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As in Q1, separate analyses were conducted for categorical (item-level) and continuous 

(parcel-based) indicator models to answer the first part of Q2, as different estimators (WLSMV 

for categorical indicators and MLR for continuous indicators) were used, making direct 

comparisons impossible. 

One-Way Analyses of Variances 

Q2 used the same independent (design conditions) and dependent (fit indices) variables 

as in Q1. However, the number of observations varied across the different level combinations of 

the independent variables (see Table B1 in Appendix B). The ratio of the largest to smallest 

group size was less than 1.5 for all independent variables except for the total sample size, which 

had a ratio of 1:2.3 between the smallest (300) and largest (1,500) groups. This discrepancy in 

sample size can result in a liberal F test and increased Type I error rate if the smaller group has a 

higher variance (Tabachnick & Fidell, 2001). Attention was paid to the assumption of 

homogeneity of variance and appropriate measures were taken where the assumption was 

violated. 

Tenability of Assumptions of  

One-Way Analyses of  

Variances 

For the continuous indicators-based models, Holm-Bonferroni method adjusted Shapiro-

Wilk test of normality revealed statistical significance for all change in fit indices, indicating a 

violation of normality. The kurtosis and skewness of the distribution of the incremental fit 

statistics were outside the range of +3 and -3 (see Table 4.11) for ∆chi-square. Holm-Bonferroni 

method adjusted Levene's test revealed a statistically significant difference variances in ∆CFI 

and ∆SRMR for total sample size ANOVAs, indicating a violation of the homogeneity of 

variance assumption. To address the violations of normality and homogeneity of variance 
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assumptions, standard ANOVAs, robust ANOVAs, and Kruskal-Wallis tests were compared. 

The consistent results of these tests indicated that the violations were not a concern, and thus 

standard ANOVAs were used in subsequent analyses. 

In categorical indicators-based models, only ∆CFI and ∆TLI met the normality 

assumption according to the Holm-Bonferroni method adjusted Shapiro-Wilk test. Meanwhile, 

Holm-Bonferroni method adjusted Levene’s test indicated a violation of the homogeneity of 

variance assumption for ∆chi-square of total sample size and parcels, and ∆RMSEA of parcels. 

To address these violations, standard ANOVAs, robust ANOVAs, and Kruskal-Wallis tests were 

compared, but their results were inconsistent. Therefore, Kruskal-Wallis test was used for 

subsequent analyses to assess the differences in mean change in fit indices for item-level 

indicators-based models. In the following sections, I present the results of the item-level 

indicators-based models (P1 and P2) followed by the parcels-based indicators models (P3, P4, 

and P5). 

Results of One-Way Analyses of  

Variances for Item-level  

Indicator Models 

Table 4.13 presents the means comparison for different design conditions using the 

Kruskal-Wallis test. The results showed statistically significant differences in the ranks of 

∆SRMR for various total sample sizes, with a small effect size, as indicated by a Holm-

Bonferroni method adjusted Kruskal-Wallis test. Post-hoc Mann-Whitney U tests for pairwise 

comparisons revealed that median ∆SRMR was significantly higher for total sample size of 600 

(rank = 50.17, median > 6) than for total sample size of 1,200 (rank = 19.29, median > 0) with a 

small effect size (𝑟2 = .11).  
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Additionally, there were statistically significant differences in the ranks of ∆chi-square, 

∆CFI, and ∆TLI for different types of indicator variable techniques, with large effect sizes. Post-

hoc Mann-Whitney U tests revealed that the median values of ∆chi-square (median = -51.29) for 

the different indicator variable techniques were significantly higher for P2 (mean rank = 61.1, 

median > 37) than for P1 (mean rank = 23.9, median > 5) with a large effect size (𝑟2 = .58). 

Additionally, the median values of ∆CFI (median = .00) for the different indicator variable 

techniques were significantly higher for P1 (mean rank = 62.43, median > 40) than for P2 (mean 

rank = 22.57, median > 2) with a large effect size (𝑟2 = .67). Furthermore, the median values of 

∆TLI (median = .01) for P1 (mean rank = 60.30, median > 33) were significantly higher than for 

P2 (mean rank = 24.70, median > 4) with a large effect size (𝑟2 = .53). 

The finding suggests that there were differences in metric invariance across group sizes 

in the medians of ∆SRMR, with a greater support of metric invariance for a group size of 1,200 

than for 600. However, the effect size of this difference was small, indicating limited practical 

significance. The results indicate mixed support for metric invariance with P1 and P2. While 

median values of ∆chi-square were significantly higher (indicating worse fit) for P2 than for P1 

with a large effect size and the median values of ∆CFI were significantly higher for P1 than for 

P2 provide more support for metric invariance in P1 than in P2. However, the median values of 

∆TLI were significantly higher for P2 than for P1, also with large effect sizes, suggesting more 

support of metric invariance in three-item based indicator model (P2) than in nine-item based 

indicators model (P1). 
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Table 4.13 

Results of Q2 for Item-level Indicators Models Using Kruskal-Wallis Tests 

 Kruskal-Wallis df p-value HB alpha 𝜂2 

Total Sample Size 

∆chi-square 14.90 6 .0200 .0031 .12 

∆CFI 3.19 6 .7900 .0071 .00 

∆TFI 2.90 6 .8200 .0083 .00 

∆RMSEA 7.54 6 .2700 .0042 .02 

∆SRMR 21.28 6 <.0025* .0029 .20 

Ratio of Group Sample Sizes 

∆chi-square .32 2 .8500 .0100 .00 

∆CFI .21 2 .9000 .0167 .00 

∆TFI .30 2 .8600 .0125 .00 

∆RMSEA 1.99 2 .3700 .0056 .00 

∆SRMR 2.11 2 .3500 .0045 .00 

Type of Indicator Variable Technique (P1 and P2) 

∆chi-square 48.82 1 <.0025* .0026 .58 

∆CFI 56.50 1 <.0025* .0025 .68 

∆TFI 45.02 1 <.0025* .0028 .54 

∆RMSEA 4.98 1 .0300 .0033 .05 

∆SRMR 4.53 1 .0300 .0036 .05 

Number of Groups 

∆chi-square .87 1 .3500 .0050 .00 

∆CFI .00 1 .9900 .0500 .00 

∆TFI .01 1 .9300 .0250 .00 

∆RMSEA .37 1 .5500 .0063 .00 

∆SRMR 4.42 1 .0400 .0038 .04 

Note. 𝜂2 = Eta-squared, which is estimated based on the fixed-effect model. HB alpha = Holm-

Bonferroni method adjusted alpha.  

 

Results of One-Way Analysis of  

Variance for Parcel-based  

Indicator Models 

Based on the ANOVA results (see Table 4.14), the mean ∆SRMR for the total sample 

size was statistically significant with a moderate effect size. Further post hoc comparisons using 

Cohen's d effect size calculation revealed that the mean ∆SRMR of a large group size (N = 
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1,200; M = .009, SD = .004) was significantly greater than for some small and moderate total 

sample sizes (N = 400; M = .021, SD = .007; N = 600; M = .017, SD = .006; N = 900; M = .020, 

SD = .006), with large effect sizes (Cohen’s d > 1.3). The difference in the mean of ∆SRMR for 

larger versus smaller total sample sizes suggests metric invariance was more likely to be 

supported with smaller sample sizes rather than larger ones, as larger sample sizes had 

significantly greater ∆SRMR indicating worse fit. Significant differences in the mean of ∆chi-

square was also found with a moderate effect size. Post hoc comparisons revealed that the mean 

of ∆chi-square was significantly larger for a large total sample size (N = 1,500; M = 27.99, SD = 

19.87) than for a smaller total sample size (N = 300; M = 20.62, SD = 9.33) with a large effect 

size (Cohen’s d > 2.6). The means of ∆chi-square, ∆TLI, and ∆RMSEA for the number of 

groups showed statistically significant differences with small effect sizes. The mean ∆chi-square 

of two groups (M = 22.75, SD = 17.10) was lower than that for three groups (M = 34.43, SD = 

12.36) with a moderate effect size (Cohen’s d = .77). This means that metric invariance was 

better supported for fewer groups than for more groups, with a difference equivalent to .77 

standard deviations. The mean ∆TLI of two groups (M = .003, SD = .002) was significantly 

lower than for three groups (M = .005, SD = .002) with a large effect size (Cohen’s d = .96). This 

indicates that metric invariance was better supported for fewer groups than for more groups, with 

a difference equivalent to .96 standard deviations. The mean of ∆RMSEA of two groups (M = -

.002, SD = .002) was significantly than that for three groups (M = -.005, SD = .021) with a large 

effect size (Cohen’s d =.92). Contrary to what was found for ∆chi-square and ∆TLI, ∆RMSEA 

suggest that metric invariance was better supported by the three-group model than the two-group 

model.  
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Table 4.14 

One-Way Analysis of Variance Results of Q2 for Parcel-based Indicator Models 

  Sum of Sq df Mean Sq F p-value HB alpha 𝜂2 

Total Sample Size 

∆chi-square Between Groups 5104.47 6 850.74 3.82 <.0025* .0031 .20 

Within Groups 20257.61 91 222.61       

∆CFI Between Groups .00 6 .00 1.22 .3000 .0045 .08 

Within Groups .00 91 .00       

∆TLI Between Groups .00 6 .00 1.00 .4300 .0063 .06 

Within Groups .00 91 .00       

∆RMSEA Between Groups .00 6 .00 1.16 .3300 .0050 .07 

Within Groups .00 91 .00       

∆SRMR Between Groups .00 6 .00 12.04 <.0025* .0025 .44 

 Within Groups .01 91 .00       

Ratio of Group Sample Sizes 

∆chi-square Between Groups 17.30 2 8.65 .03 .9700 .0500 .00 

 Within Groups 25344.77 95 266.79       

∆CFI Between Groups .00 2 .00 .50 .6100 .0083 .01 

 Within Groups .00 95 .00       

∆TLI Between Groups .00 2 .00 .43 .6500 .0100 .01 

 Within Groups .00 95 .00       

∆RMSEA Between Groups .00 2 .00 .60 .5500 .0071 .01 

 Within Groups .00 95 .00        

∆SRMR Between Groups .00 2 .00 .05 .9500 .0250 .00 

 Within Groups .01 95 .00       

Type of Indicator Variable Technique (P3, P4, and P5) 

∆chi-square Between Groups 1908.64 2 954.32 3.87 .0200 .0033 .08 

 Within Groups 23453.44 95 246.88        

∆CFI Between Groups .00 2 .00 2.69 .0700 .0036 .05 

 Within Groups .00 95 .00       

∆TLI Between Groups .00 2 .00 2.61 .0800 .0038 .05 

 Within Groups .00 95 .00        

∆RMSEA Between Groups .00 2 .00 2.01 .1400 .0042 .04 

 Within Groups .00 95 .00       

∆SRMR Between Groups .00 2 .00 .21 .8100 .0125 .00 

 Within Groups .01 95 .00       

Number of Groups 

∆chi-square Between Groups 3305.43 1 3305.43 14.39 <.0029* .0029 .13 

 Within Groups 22056.65 96 229.76       

∆CFI Between Groups .00 1 .00 .91 .3400 .0056 .01 

 Within Groups .00 96 .00       

∆TLI Between Groups .00 1 .00 22.23 <.0025* .0026 .19 

 Within Groups .00 96 .00       

∆RMSEA Between Groups .00 1 .00 20.38 <.0025* .0028 .18 

 Within Groups .00 96 .00       

∆SRMR Between Groups .00 1 .00 .01 .9200 .0167 .00 

 Within Groups .01 96 .00       

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha. 

*Indicates significance after Holm-Bonferroni method. 
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The study's findings suggest that when testing metric invariance number of groups 

showed significant differences in the mean of ∆chi-square, ∆TLI, and ∆RMSEA with small 

effect sizes. The lack of statistical significance and small effect sizes indicate that there were no 

significant differences in testing metric invariance, regardless of group sizes or the type of 

indicator variable technique used.  

Results of Metric Invariance Based  

on Tests of Independence 

The following sections present the study's findings on the classification of metric 

invariance test results into fully, partially, or non-invariant categories, as well as the outcomes of 

the metric invariance tests under various design conditions. 

Modifying and Classifying Results 

of Invariance Tests 

When testing for metric invariance, the factor loadings of the observed indicator variables 

were initially constrained to be equal across groups. To assess metric invariance, the fit of the 

constrained model was compared to the fit of the corresponding configural-invariant model using 

various criteria, such as non-significant ∆chi-square, ∆CFI ≤ -.02, ∆TLI ≤ -.01, ∆RMSEA ≥ .015, 

and ∆SRMR ≥ .030, to assess metric invariance.  

I identified a model as fully invariant if an adequate incremental fit (non-significant ∆chi-

square and at least two of the four descriptive fit statistics criteria were met) was achieved 

without releasing any factor loading constraints. In models that did not meet the criteria for full 

invariance, to test for partial invariance, I compared the statistical significance of the chi-square 

between the configural model and the modified metric model and observed changes in the fit 

indices. A model was considered partially metric-invariant if an adequate change in fit (non-

significant ∆chi-square and changes in at least two of the four descriptive fit statistics criteria 
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were met) was obtained only after relaxing the factor loading constraints of one of the groups 

being compared. 

To determine which factor loading to release for which group, I used the factor loading 

with the largest unstandardized difference between groups along with the largest MI and SEPC 

values. However, to ensure a conservative approach in testing for partial metric invariance, I 

only made one modification by relaxing a single factor loading. This decision was made because 

there are no clear guidelines on the number of modifications to pursue, and I did not want to be 

too liberal in my approach. Table 4.16 reveals that among the 182 metric invariance tests 

conducted, 105 tests required modification by releasing factor loadings for one of the groups 

being compared. Notably, the indicator variable technique, P1, based on nine-item indicators 

mode, had the highest number of cases with a relaxed factor loading among all the indicator 

variable techniques employed. 

If the models did not obtain an adequate fit (none or only one of the incremental fit 

indices met the criteria), even after relaxing one of the factor loadings, they were identified as 

non-invariant. The results of the metric invariance tests are shown in Table 4.18. Overall, 182 

metric invariance tests were conducted, resulting in 77 fully-invariant, 37 partially invariant, and 

68 non-invariant models. 

 

Table 4.15 

Frequency of Metric Invariance Classification 

Invariance N % 

Full 77 42.3 

Partial 37 20.3 

Non 68 37.4 

Total 182 100 
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Table 4.16 

Number of Factor Loadings Relaxed for Each Parcel Condition 

Design Conditions 

Number of Factor Loadings Relaxed  

0 1 Total 

N % N % % 

Total Sample Size 

300 10 50.0 10 50.0 100 

400 11 47.8 12 52.2 100 

450 16 64.0 9 36.0 100 

600 9 34.6 17 65.4 100 

900 7 25.0 21 75.0 100 

1,200 15 50.0 15 50.0 100 

1,500 9 30.0 21 70.0 100 

Ratio of Group Sample Sizes 

1:1 30 48.4 32 51.6 100 

1:1.5 21 36.2 37 63.8 100 

1:2 26 41.9 36 58.1 100 

Type of Indicator Variable Technique 

P1 1 2.4 41 97.6 100 

P2 13 31.0 29 69.1 100 

P3 24 66.7 12 33.3 100 

P4 15 53.6 13 46.4 100 

P5 24 70.6 10 29.4 100 

Number of Groups 

Two  38 39.6 58 60.4 100 

Three 39 45.3 47 54.7 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection.  

Following this, the results of the metric invariance tests were categorized as fully, 

partially, or non-invariant models. Then Fisher’s exact tests of independence were conducted to 

examine the relationship between the results of metric invariance tests and various design 

conditions. 

Test of Independence Results  

The assumption of independence of observations was satisfied as different samples were 

used for different invariance tests. As the expected cell count of some cells of total sample size 
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were less than five, Fisher's exact test was used in R to assess the association between the results 

of metric invariance tests and different design conditions. Table 4.17 shows the frequency of 

metric invariance test results for each design condition. Table 4.18 provides evidence of a 

statistically significant relationship between the type of indicator variable technique and the 

results of metric invariance tests with a moderate effect size (Cramer’s V).  

Based on the frequency distribution presented in Table 4.17 and the mosaic plot (Figure 

4.3), as well as the pairwise comparisons of metric invariance results and type of indicator 

variable technique used, it was found that P1 had significantly fewer counts of fully invariant 

models than all other indicator variable technique (P2 - P5), and also had the largest number of 

non-invariant models compared to other indicator variable techniques (P2 - P5). Moreover, P2 

had a significantly larger number of non-invariant models than P5 and a lower number of fully 

invariant models than P5 models. However, no statistically significant differences between 

indicator variable techniques were observed for the partial invariance model. The lack of 

statistically significant differences between indicator variable techniques for the partial 

invariance model suggests that partial metric invariance may be more robust to different types of 

indicator variables.  

The choice of indicator variable technique appeared to be important in testing fully and 

non-invariant metric invariance tests. In particular, full invariance was supported more 

frequently with parcels than with P1. Nevertheless, the change in fit statistics for metric 

invariance tests remained consistent regardless of the choice of total sample size, the ratio of 

group sample sizes, and the number of groups being compared. 
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Table 4.17 

Frequencies of Metric Invariance Tests for Each Design Condition 

 

Design Conditions 

Number of Models for Each Design Condition 

Invariant Partially Invariant Non-invariant Total 

N % N % N % N % 

Total Sample Size         

300 10 50.0 4 20.0 6 30.0 20 100 

400 11 47.8 3 13.0 9 39.1 23 100 

450 16 64.0 3 12.0 6 24.0 25 100 

600 9 34.6 7 26.9 10 38.5 26 100 

900 7 25.0 7 25.0 14 50.0 28 100 

1,200 15 50.0 7 23.3 8 26.7 30 100 

1,500 9 30.0 6 20.0 15 50.0 30 100 

Ratio of Group Sample Sizes 

1:1 30 48.4 10 16.1 22 35.5 62 100 

1:1.5 21 36.2 10 17.2 27 46.6 58 100 

1:2 26 41.9 17 27.4 19 30.7 62 100 

Indicator Variable Technique 

P1 1 2.4 5 11.9 36 85.7 42 100 

P2 13 31.0 12 28.6 17 40.5 42 100 

P3 24 66.7 7 19.4 5 13.9 36 100 

P4 15 53.6 7 25.0 7 21.4 29 100 

P5 24 70.6 6 17.6 4 11.8 34 100 

Number of Groups          

Two 38 39.6 22 22.9 36 37.5 96 100 

Three 39 45.4 15 17.4 32 37.2 86 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection.  
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Table 4.18 

Results of Test of Independence Under Different Design Conditions 

 
 Pearson chi-Square  df p-value HB alpha Cramer’s V 

Total Sample Size  14.35 12 .2789 .0250 .20 

Ratio of Group Sample Sizes 5.52 4 .2380 .0167 .24 

Type of Indicator Variable  72.3 8  <.0125* .0125 .45 

Number of Groups 1.03 2 .5999 .0500 .01 

Note. HB alpha = Holm-Bonferroni method adjusted alpha. 

 

Table 4.19 

Pairwise Comparisons of Metric Invariance Results and Type of Parcel 

Type of Indicator 

Variable 

Technique 

Invariant Results Pairs 

Full vs. Partial Full vs. Non Partial vs. Non 

p-value HB alpha p-value HB alpha p-value HB alpha 

P1 vs. P2 .1848 .0036 < .0019* .0019 < .0026* .0026 

P1 vs. P3 .0089 .0025 < .0017* .0017 <.0020* .0020 

P1 vs. P4 .0573 .0031 < .0018* .0018 <.0023* .0023 

P1 vs. P5 .0062 .0024 < .0017* .0017 <.0022* .0022 

P2 vs. P3 .0540 .0029 .0028 .0021 .0028 .0063 

P2 vs. P4 .3730 .0045 .0852 .0033 .0852 .0071 

P2 vs. P5 .0431 .0028 < .0019* .0019 .0010 .0050 

P3 vs. P4 .5343 .0083 .4911 .0056 .4911 .0167 

P3 vs. P5 1.0000 .0100 1.0000 .0125 1.0000 .0250 

P4 vs. P5 .3533 .0042 .2906 .0038 .2906 .0500 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. HB alpha = 

Holm-Bonferroni method adjusted alpha. 
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Figure 4.3 

Results of Metric Invariance and Type of Indicator Variable Technique Association 

  

 

Note. The mosaic plot illustrates the association between indicator variable technique and metric 

invariance results. with distinct colors representing the various outcomes. Each distinct color 

represents a different outcome, and the size of each rectangle corresponds to observation 

frequency, with larger rectangles indicating higher frequency. The X-axis bars correspond to 

parceling categories, and the Y-axis bars show the full (red), partial (yellow), and non (green) 

metric invariance results. The width and height of each bar represent the relative frequency of 

occurrence for each category, with wider boxes indicating more observation. 
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Research Question 3 

Q3  Do the means of and results based on the incremental fit statistics (∆ CFI, ∆ 

RMSEA, ∆ SRMR, ∆ TLI, and Chi-Square difference test) of the scalar 

invariance test in a confirmatory factor analysis model differ by type of indicator 

variable technique, total sample size, and ratio of group sample sizes, across 

groups (gender and race)?  

 

To address Q3, 114 models that demonstrated full and partial metric invariance from Q2 

were analyzed. The goal was to investigate the change in fit statistics of scalar invariance tests, 

with 31 models using categorical indicators and 83 models using continuous indicators. The first 

part of Q3 presents the results regarding the mean changes in fit indices of the design conditions, 

while the second part of Q3 tests the association between the results of scalar invariance tests and 

various design conditions. As in RQs 1 and 2, separate analyses were conducted for the 

categorical (item-level) and continuous (parcel-based) indicators models due to the use of 

different estimators (WLSMV for categorical indicators and MLR for continuous indicators), 

making direct comparisons between the results impossible.  

One-Way Analyses of Variances 

This research question utilized the same IVs and DVs, but the number of observations for 

different levels of the independent variable was varied, as shown in Table B1 in Appendix B. 

The ratio of the largest to smallest group size was less than 1.5 for the type of indicator variable 

technique (1:1.3 between P4 and P5 of continuous indicators-based models), ratio of group 

sample sizes (1:1.2 between balanced and unbalanced group size of continuous indicators-based 

models), number of groups (1:1.2 between three and two groups of continuous indicators-based 

models), and 1:2 between three and two groups of categorical indicators-based models.  
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The Tenability of Assumptions of  

One-Way Analyses of Variances 

The normality assumption was not violated for ∆RMSEA based on the non-significant 

Holm-Bonferroni method adjusted Shapiro-Wilk test result, while the kurtosis of ∆CFI, ∆TLI, 

and ∆SRMR (see Table 4.20) exceeded the acceptable range (+3 to -3; Lei & Lomax, 2005), 

indicating a violation of normality for these change in fit indices. Except for ∆chi-Square, ∆CFI, 

and ∆TLI in the indicator variable technique, all change in fit indices violated the homogeneity 

of variance assumption, as confirmed by a statistically significant Holm-Bonferroni method 

adjusted Levene's test. The ANOVAs, robust ANOVAs, and Kruskal-Wallis tests consistently 

yielded results unaffected by the violated assumptions of normality and homogeneity. 

Consequently, standard ANOVAs were used for subsequent analysis. 

 

Table 4.20 

Descriptive Statistics of Change in Fit for Categorical Indicators-based Models 

 

 Min Max Mean Std. Dev Kurtosis Skewness 

∆chi-square -28.72 189.01 54.95 49.76 1.83 1.45 

∆CFI -.01 .01 .00 .00 3.86 .07 

∆TLI -.01 .01 .00 .00 4.31 -1.12 

∆RMSEA -.02 .01 -.01 .01 .77 -.28 

∆SRMR -.02 .03 .00 .01 4.90 -.39 

Note. There were 31 valid cases. 

 

The mean change in fit indices for the continuous indicators-based models were found to 

be non-normally distributed with significant Holm-Bonferroni method adjusted Shapiro-Wilk 

test, but with acceptable kurtosis and skewness values (see Table 4.21). The Holm-Bonferroni 

method adjusted Levene's test revealed that all mean change in the fit indices violated the 
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homogeneity of variance assumption, except for ∆CFI of the total sample size. Consistent results 

were obtained for the continuous indicators-based models across ANOVA, robust ANOVA, and 

Krushkal-Wallis test, confirming no issues due to violation of normality and homogeneity of 

variance assumptions, as expected. Hence, standard ANOVAs were used for analysis. 

 

Table 4.21 

Descriptive Statistics of Change in Fit for Continuous Indicators-based Models 

 Min Max Mean Std. Dev Kurtosis Skewness 

∆chi-square 3.90 58.39 25.67 10.70 .25 .62 

∆CFI -.01 .00 .00 .00 1.57 -1.18 

∆TLI -.01 .01 .00 .00 .50 -.97 

∆RMSEA .00 .00 .00 .00 .44 .80 

∆SRMR .00 .00 .00 .00 1.30 .15 

Note. There were 83 valid cases. 

 

Results of One-Way Analyses of  

Variances for Item-level  

Indicator Models 

The results of the standard ANOVA presented in Table 4.22 showed that the mean 

differences in the ∆chi-square for the type of indicator variable technique was statistically 

significant. The mean of ∆chi-square for P1 (M = 129.01, SD = 52.35) was significantly greater 

than for P2 (M = 37.17, SD = 28.70), indicating poor fit for P1, with a large effect size (Cohen’s 

d > 2.70). The results indicated stronger support for scalar invariance in P2 (three-item based 

indicator model) compared to P1 (nine-item based indicator model). The results suggest that the 

type of parceling provided support for scalar invariance. The other design conditions such as 

total sample size, ratio of sample sizes, and the number of groups were unrelated to mean change 

in fit indices used for testing scalar invariance.  
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Table 4.22 

One-Way Analyses of Variances of Q3 for Categorical Indicators-based Models 

 Sum of Sq df Mean Sq F p-value HB alpha 𝜂2 

Total Sample Size 

∆chi-square Between Groups 12124.32 5 2424.86 .98 .4520 .0050 .16 

Within Groups 62155.50 25 2486.22       

∆CFI Between Groups .00 5 .00 2.20 .0860 .0029 .31 

Within Groups .00 25 .00       

∆TLI Between Groups .00 5 .00 1.40 .2590 .0036 .22 

Within Groups .00 25 .00       

∆RMSEA Between Groups .00 5 .00 .98 .4500 .0045 .16 

Within Groups .00 25 .00       

∆SRMR Between Groups .00 5 .00 1.36 .2730 .0038 .21 

 Within Groups .00 25 .00       

Ratio of Group Sample Sizes 

∆chi-square Between Groups 13218.23 2 6609.12 3.03 .0640 .0028 .18 

 Within Groups 61061.59 28 2180.77       

∆CFI Between Groups .00 2 .00 .39 .6800 .0125 .03 

 Within Groups .00 28 .00       

∆TLI Between Groups .00 2 .00 .45 .6400 .0100 .03 

 Within Groups .00 28 .00       

∆RMSEA Between Groups .00 2 .00 .12 .8890 .0167 .01 

 Within Groups .00 28 .00        

∆SRMR Between Groups .00 2 .00 1.19 .3180 .0042 .08 

 Within Groups .00 28 .00       

Type of Indicator Variable Technique (P1 and P2) 

∆chi-square Between Groups 40814.27 1 40814.27 35.37 <.0025* .0025 .55 

 Within Groups 33465.55 29 1153.98       

∆CFI Between Groups .00 1 .00 .02 .8990 .0250 .00 

 Within Groups .00 29 .00       

∆TLI Between Groups .00 1 .00 .51 .4800 .0056 .02 

 Within Groups .00 29 .00       

∆RMSEA Between Groups .00 1 .00 2.86 .1020 .0031 .09 

 Within Groups .00 29 .00       

∆SRMR Between Groups .00 1 .00 .00 .9850 .0500 .00 

 Within Groups .00 29 .00       

Number of Groups 

∆chi-square Between Groups 9380.70 1 9380.70 4.19 .0500 .0026 .13 

 Within Groups 64899.12 29 2237.90       

∆CFI Between Groups .00 1 .00 1.36 .2530 .0033 .05 

 Within Groups .00 29 .00       

∆TLI Between Groups .00 1 .00 .26 .6170 .0083 .01 

 Within Groups .00 29 .00       

∆RMSEA Between Groups .00 1 .00 .43 .5190 .0063 .01 

 Within Groups .00 29 .00       

∆SRMR Between Groups .00 1 .00 .35 .5570 .0071 .01 

 Within Groups .00 29 .00       

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha.  

*Indicates significance after Holm-Bonferroni method.  
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Although total sample size showed no significant difference, the effect sizes ranged from 

moderate to large, indicating practical significance in testing scalar invariance. The insignificant 

results could be attributed to the small sample size of 31. The absence of significant differences 

and small effect sizes suggests that there were no substantial differences in the mean of the 

change in fit statistics for scalar invariance tests, regardless of the ratio of group sample sizes, or 

the number of groups used. 

Results of One-Way Analysis of  

Variance for Parcel-based  

Indicator Models 

The ANOVA results revealed that scalar invariance testing for continuous indicator-

based models resulted in a statistically significant difference in the mean of ∆TLI for number of 

groups, with a small effect size. In addition, the mean ∆TLI of race (M = .002, SD = .002) was 

significantly higher than the mean ∆TLI of gender (M = .000, SD = .002), with a large effect size 

(Cohen’s d > .69). Similarly, the mean of ∆RMSEA was statistically significant for number of 

groups, with a small effect size. Furthermore, the mean of ∆RMSEA of race (M = -.002, SD = 

.002) was significantly lower than the mean of ∆RMSEA of gender (M = .000, SD = .002), 

indicating better fit for race than for gender. 

The results of the study suggest that the number of groups showed the most significant 

difference on the mean change in fit indices for tests of scalar invariance. The lack of significant 

differences and small effect sizes implies that there were no substantial differences in the tests of 

scalar invariance for total sample size, ratio of group sample sizes, or the type of indicator 

variable techniques used. 
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Table 4.23 

One-Way Analysis of Variance Results of Q3 for Parcel-based Indicator Models 

 Sum of Sq df Mean Sq F p-value HB alpha 𝜂2 

Total Sample Size 

∆chi-square Between Groups 1986.60 6 331.10 3.40 .0050 .0028 .21 

Within Groups 7398.56 76 97.35       

∆CFI Between Groups .00 6 .00 1.02 .4210 .0050 .07 

Within Groups .00 76 .00       

∆TLI Between Groups .00 6 .00 1.55 .1730 .0036 .11 

Within Groups .00 76 .00       

∆RMSEA Between Groups .00 6 .00 1.55 .1730 .0038 .11 

Within Groups .00 76 .00       

∆SRMR Between Groups .00 6 .00 .95 .4640 .0063 .07 

 Within Groups .00 76 .00       

Ratio of Group Sample Sizes 

∆chi-square Between Groups 78.58 2 39.29 .34 .7140 .0500 .01 

 Within Groups 9306.58 80 116.33       

∆CFI Between Groups .00 2 .00 .51 .6040 .0125 .01 

 Within Groups .00 80 .00       

∆TLI Between Groups .00 2 .00 1.09 .3430 .0045 .03 

 Within Groups .00 80 .00       

∆RMSEA Between Groups .00 2 .00 1.83 .1670 .0033 .04 

 Within Groups .00 80 .00       

∆SRMR Between Groups .00 2 .00 .34 .7120 .0250 .01 

 Within Groups .00 80 .00       

Type of Indicator Variable Technique (P3, P4, and P5) 

∆chi-square Between Groups 194.64 2 97.32 .85 .4320 .0056 .02 

 Within Groups 9190.53 80 114.88       

∆CFI Between Groups .00 2 .00 .58 .5630 .0100 .01 

 Within Groups .00 80 .00       

∆TLI Between Groups .00 2 .00 .71 .4970 .0083 .02 

 Within Groups .00 80 .00       

∆RMSEA Between Groups .00 2 .00 .74 .4800 .0071 .02 

 Within Groups .00 80 .00       

∆SRMR Between Groups .00 2 .00 3.36 .0400 .0031 .08 

 Within Groups .00 80 .00       

Number of Groups 

∆chi-square Between Groups 772.46 1 772.46 7.27 .0090 .0029 .08 

 Within Groups 8612.71 81 106.33       

∆CFI Between Groups .00 1 .00 1.13 .2900 .0042 .01 

 Within Groups .00 81 .00       

∆TLI Between Groups .00 1 .00 9.94 <.0026* .0026 .11 

 Within Groups .00 81 .00       

∆RMSEA Between Groups .00 1 .00 11.21 <.0025* .0025 .12 

 Within Groups .00 81 .00       

∆SRMR Between Groups .00 1 .00 .20 .6580 .0167 .00 

 Within Groups .00 81 .00       

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha.  

*Indicates significance after Holm-Bonferroni method.  
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Results of Scalar Invariance Based  

on Tests of Independence 

The following sections present the study's findings on the classification of scalar 

invariance, including results classified as fully, partially, or non-invariant, and outcomes of the 

scalar invariance tests under different design conditions. 

Modifying and Classifying Results 

of Invariance Tests 

When testing for scalar invariance, I initially constrained thresholds of observed indicator 

variables to be equal for categorical (item-level) indicators-based models and intercepts of 

observed indicator variables to be equal for continuous indicators-based subsamples. In addition, 

I freed the factor mean of the alternate groups to test for scalar invariance. I evaluated scalar 

invariance using various criteria, including non-significant ∆chi-square, ∆CFI ≤ -.01, ∆TLI ≤ -

.01, ∆RMSEA ≥ .01, and ∆SRMR ≥ .01. 

To classify models as fully invariant, I checked for minimal changes in descriptive fit 

indices (based on criteria noted above) and non-significant ∆chi-square and determined if at least 

two of the four changes in fit statistics met the criteria, while keeping the threshold or intercept 

constraints equal between groups. If full scalar invariance was not met, I relaxed either one 

threshold or one intercept constraint for one group and assessed the statistical significance of the 

chi-square difference between the metric-invariant and modified scalar-invariant model. I 

classified a model as partially invariant if it met the criteria, only after relaxing one threshold or 

intercept constraint.  

To determine which intercept or threshold to release for each group, I considered the 

largest unstandardized difference, MIs, and SEPCs values. I made only one modification, to be 

conservative, as there are no clear guidelines on the number of modifications to pursue. If the 



142 

 

 

 

models did not fit adequately even after relaxing a threshold or intercept, I classified them as 

non-invariant. Table 4.24 displays the results of 114 scalar invariance tests, with 57 fully 

invariant, 27 partially invariants, and 30 non-invariant models. Table 4.25 presents the 

modifications made during scalar invariance tests 

 

Table 4.24 

Frequency of Scalar Invariance Classification 

Invariance N % 

Full 57 50.0 

Partial 27 23.7 

Non 30 26.3 

Total 114 100 

 

 

Table 4.25  

Number of Thresholds or Intercepts Relaxed for Each Design Condition 

 Number of Intercept or Threshold Relaxed 

 0 1 Total 

 N % N % % 

Total Sample Size 

300 10 71.4 4 28.6 100 

400 11 78.6 3 21.4 100 

450 14 73.7 5 26.3 100 

600 10 62.5 6 37.5 100 

900 4 28.6 10 71.4 100 

1200 5 22.7 17 77.3 100 

1500 3 20.0 12 80.0 100 

Ratio of Group Sample Sizes 

1:1 23 57.5 17 42.5 100 

1:1.5 14 45.2 17 54.8 100 

1:2 20 46.5 23 53.5 100 

Type of Indicator Variable Technique 

P1 3 50.0 3 50.0 100 

P2 19 76.0 6 24.0 100 

P3 13 41.9 18 58.1 100 

P4 9 40.9 13 59.1 100 

P5 13 43.3 17 56.7 100 

Number of Groups 

Two  25 41.7 35 58.3 100 

Three 32 59.3 22 40.7 100 
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Out of all the scalar invariance tests conducted, 57 tests (50 percent) required 

modification by releasing the intercept or threshold for one of the groups being compared. The 

highest percentage of instances where one intercept or threshold was relaxed to obtain partial 

scalar invariance was found for a total sample size of 1,200, considering the design condition of 

the total sample size. In addition, analyses based on two groups (gender) had the greatest number 

of instances where one intercept or threshold was relaxed. Regarding the type of indicator 

variable techniques, P2 had the largest number of instances that needed no modifications 

compared to the other indicator variable techniques. 

First, the results of the scalar invariance tests were categorized into fully invariant, 

partially invariant, or non-invariant models. Then, to explore the associations between the results 

of the scalar invariance tests and various design conditions, tests of independence were 

conducted. 

Test of Independence Results  

The assumption of independence of observations was satisfied as different samples were 

used for different invariance tests. As the expected cell count of some cells of total sample size 

and type of indicator variable techniques were less than five, Fisher's exact test was used in R to 

assess the association between the results of metric invariance tests and different design 

conditions. To control the family-wise error rate, Holm-Bonferroni method was applied to the 

four tests and pairwise comparison tests that were carried out. Table 4.26 shows the frequency of 

scalar invariance tests for each design condition.  

Fisher's exact test (Table 4.27) indicated a significant association between total sample 

size and invariance results (full, partial, and non-invariant). Pairwise comparisons (Table 4.28) 

revealed that a small total sample size (N = 450) had more fully invariant outcomes and fewer 
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non-invariant outcomes than a large total sample size (N = 1,200). These results align with the 

frequency distribution in Table 4.26 and the mosaic plot in Figure 4.4. 

 

Table 4.26 

Frequencies of Scalar Invariance Tests for Each Design Condition 

 
 
Design Conditions 

Number of Models for each Design Condition 

Invariant Partially Invariant Non-invariant Total 

N % N % N % % 

Total Sample Size        

300 10 71.4 2  14.3 2 14.3 100 

400 11 78.6 2 14.3 1 7.1 100 

450 14 73.7 0 .0 5 26.3 100 

600 10 62.5 4 25.0 2 12.5 100 

900 4 28.6 6 42.9 4 28.6 100 

1,200 5 22.7 8 36.4 9 40.9 100 

1,500 3 20.0 5 33.3 9 46.7 100 

Ratio of Group Sample Sizes        

1:1 23 57.5 9 22.5 8 20.0 100 

1:1.5 14 45.2 11 35.5 6 19.4 100 

1:2 20 46.5 7 16.3 16 37.2 100 

Type of Indicator Variable Technique 

P1 3 50.0 0 .0 3 50.0 100 

P2 19 76.0 3 12.0 3 12.0 100 

P3 13 41.9 11 35.5 7 22.6 100 

P4 9 40.9 7 31.8 6 27.3 100 

P5 13 43.3 6 20.0 11 36.7 100 

Number of Groups         

Two 25 41.7 19 31.7 16 26.7 100 

Three 32 59.3 8 14.8 14 25.9 100 

 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loading, P4 = skewness, and P5 = random selection. 
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Table 4.27 

Results of Fisher’s Exact Tests Under Different Design Conditions 

 Pearson chi-square  df p-value HB alpha Cramer’s V 

Total Sample Size  34.82 12 <.0125* .0125 .37 

Ratio of Group Sample Sizes 6.28 4 .1794 .0500 .17 

Type of Indicator Variable Technique 14.51 8 .0695 .0167 .25 

Number of Groups 5.12 2 .0775 .0250 .21 

Note. HB alpha= Holm-Bonferroni method adjusted alpha.  

*Indicates significance after Holm-Bonferroni adjusted method.  
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Figure 4.4 

Association Between Results of Scalar Invariance and Total Sample Size 

 
 

 

Note. The mosaic plot shows the association between total sample size and scalar invariance test 

results, with different colors indicating the different test outcomes. The size of each rectangle 

corresponds to observation frequency, with larger rectangles indicating a higher frequency of 

observations. The width of the X-axis bars corresponds to each category of total sample size. The 

Y-axis bars show full (red), partial (yellow), and green (none) configural invariance results. The 

width and height of each bar represent the relative frequency of occurrence for the corresponding 

category, with wider boxes indicating more observations for a specific category. 
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Table 4.28 

Post Hoc Comparisons of Invariant Results by Total Sample Size Pairs 

 

Total Sample Size Pairs 

Comparison 

Invariant Results Pairs Comparison 

Full vs. Partial Full vs. Non Partial vs. Non 

p-value HB alpha p-value HB alpha p-value HB alpha 

300 vs. 400 1.0000 .0036 1.0000 .0029 1.0000 .0063 

300 vs. 450 .6757 .0024 .2031 .0014 .1667 .0014 

300 vs. 600 1.0000 .0038 .6522 .0021 1.0000 .0071 

300 vs. 900 .1611 .0013 .0743 .0011 1.0000 .0083 

300 vs. 1200 .0214 .0009 .0414 .0010 1.0000 .0100 

300 vs. 1500 .0274 .0009 .0623 .0011 1.0000 .0125 

400 vs. 450 .3630 .0016 .2222 .0015 .1071 .0012 

400 vs. 600 1.0000 .0042 .6483 .0020 1.0000 .0031 

400 vs. 900 .1089 .0012 .0393 .0009 1.0000 .0033 

400 vs. 1200 .0053 .0008 .0414 .0010 1.0000 .0167 

400 vs. 1500 .0062 .0008 .0555 .0010 .5692 .0017 

450 vs. 600 .6757 .0025 .0978 .0011 .0606 .0011 

450 vs. 900 .3748 .0017 .0016 .0008 .0440 .0010 

450 vs. 1200 .0397 .0009 <.0008* .0008 .1154 .0012 

450 vs. 1500 .0460 .0010 .0021 .0008 .2445 .0016 

600 vs. 900 .1611 .0013 .2112 .0015 1.0000 .0250 

600 vs. 1200 .0214 .0009 .1283 .0013 .6404 .0019 

600 vs. 1500 .0274 .0009 .1870 .0014 .6199 .0018 

900 vs. 1200 .6619 .0022 1.0000 .0045 .6946 .0026 

900 vs. 1500 .6305 .0019 1.0000 .0050 .6699 .0023 

1200 vs. 1500 1.0000 .0028 1.0000 .0056 1.0000 .0500 

Note. HB alpha = Holm-Bonferroni method adjusted alpha.  

*Indicates significance after Holm-Bonferroni method.  

 

Based on the analysis of the frequency distribution and statistical tests, no significant 

association was found between scalar invariance results and the different design conditions such 

as ratio of group sample sizes, types of indicator variable techniques, and numbers of groups.  
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Research Question 4 

Q4  Do the means of and results based on the incremental fit statistics (∆ CFI, ∆ 

RMSEA, ∆ SRMR, ∆ TLI, and chi-square difference test) of the residual 

invariance test in a confirmatory factor analysis model differ by type of indicator 

variable technique, total sample size, and ratio of group sample sizes, across 

groups (gender and race)? 

 

To answer Q4, a total of 84 fully and partially invariant scalar models were generated 

from the subsamples used in Q3. Among these models, 25 models employed categorical (item-

level) indicators, while 59 utilized continuous (parceled) indicators to assess the changes in fit 

statistics of residual invariance tests. In the first part of my analysis for Q4, I present the results 

concerning the mean differences in change in fit statistics across the different design conditions. 

Subsequently, in the second part, I investigate the association between the outcomes of residual 

invariance tests and various design conditions. 

 

Table 4.29 

Descriptive Statistics of Change in Fit for Item-level Indicators-based Models 

 Min Max Mean Std. Dev Kurtosis Skewness 

∆chi-square -31.83 66.95 17.69 15.60 2.70 .55 

∆CFI -.01 .01 .00 .00 6.35 -1.95 

∆TLI -.01 .01 .00 .00 3.72 -1.61 

∆RMSEA -.01 .00 .00 .00 2.90 .75 

∆SRMR .00 .01 .00 .00 3.00 1.22 

Note. There were 59 valid cases. 
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Table 4.30 

Descriptive Statistics of Change in Fit for Continuous Indicators-Based Models 

 Min Max Mean Std. Dev Kurtosis Skewness 

∆chi-square -458.16 35.26 -17.87 101.57 15.95 -3.87 

∆CFI .00 .01 .00 .00 3.96 2.04 

∆TLI .00 .01 .00 .00 3.13 1.86 

∆RMSEA -.01 .00 .00 .00 -.44 .14 

∆SRMR .00 .01 .00 .00 .84 .50 

Note. There were 25 valid cases. 

 

The categorical and continuous indicators-based models were analyzed separately for the 

first part of Q4 due to the use of different estimators. Direct comparisons between the results 

were not possible, hence the need for separate analyses. 

One-Way Analyses of Variances  

The independent and dependent variables remained consistent for this research question, 

but the number of observations for each level of the independent variables varied across different 

models. Further details can be found in Table B1of Appendix B. All independent variables in the 

categorical indicators-based models had a group sample size ratio less than 1.5, such as the N = 

300 and N = 900 groups having a ratio of 1:7, and the type of indicator variable technique having 

a ratio of 1:7.3 between P2 and P1. To prevent a liberal F test and increased Type I error rate due 

to the smaller group having higher variance, the assumption of homogeneity of variance was 

carefully assessed, and appropriate measures were taken when necessary (Tabachnick & Fidell, 

2001). For the continuous indicators-based models, none of the comparisons were based on 

ratios of between-group sample sizes > 1.5. 
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The Tenability of Assumptions of  

One-Way Analyses of Variances 

Table 4.29 revealed that the mean change in fit indices for almost all the categorical 

indicators-based models had leptokurtic distributions, with ΔCFI exhibiting extremely high 

kurtosis and negative skewness. Further analysis showed that the extreme values of Δchi-square 

were present in the models created via P1. The Holm-Bonferroni method adjusted Shapiro-Wilk 

test confirmed that Δchi-square, ΔCFI, and ΔTLI did not meet the normality assumption. 

Additionally, the Holm-Bonferroni method adjusted Levene's test indicated that all mean change 

in fit indices, except for Δchi-square of the total sample size and type of indicator variable 

techniques design conditions, did not meet the assumption of equal variance. Since ANOVA, 

robust ANOVA, and Kruskal-Wallis test results were inconsistent for categorical indicators-

based models, indicating a violation of normality, Kruskal-Wallis tests were used to compare 

differences in mean change in fit indices. 

Statistically significant Holm-Bonferroni method adjusted Shapiro-Wilk test results 

indicated that ΔCFI, ΔTLI, and ΔRMSEA for continuous indicators-based models were non-

normally distributed. Descriptive information (Table 4.30) revealed that Δchi-square, ΔCFI, and 

ΔTLI had leptokurtic distributions, with ΔCFI having extremely high kurtosis and negative 

skewness. The Holm-Bonferroni method adjusted Levene's test showed that the change in fit 

statistics (ΔCFI, ΔTLI, and ΔRMSEA) for the total sample size design condition violated the 

homogeneity of variance assumption. However, the results for the continuous indicators-based 

models were consistent across all statistical tests (standard ANOVAs, robust ANOVAs, and 

Kruskal-Wallis test), indicating that despite violations of the homogeneity of variance and 

normality assumptions, test results appeared to be robust to violation. Therefore, ANOVAs were 

used for further analysis. 
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Results of One-Way Analyses of  

Variances for Item-level 

Indicator Models 

The Kruskal-Wallis test (see Table 4.31) showed no significant difference in the mean 

change of fit statistics across design conditions in testing residual invariance. Moderate to large 

effect sizes were observed for certain design conditions, including mean ∆SRMR for the total 

sample size condition, and mean ∆chi-square, ∆CFI, and ∆TLI for the type of indicator variable 

technique condition, indicating practical significance. Despite the non-significance associated 

with small sample size (N = 25) for conducting the ANOVA, the moderate to large effect sizes 

suggest that there is still useful information to be gained and that the non-significance was likely 

due to low statistical power. 
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Table 4.31 

Results of Q4 for Item-level Indicators-based Models Using Kruskal-Wallis Tests 

  Kruskal-Wallis df p-value HB alpha   
Total Sample Size 

∆chi-square 6.78 5 .237 .0045 .09 

∆CFI 4.11 5 .534 .0083 .05 

∆TFI 4.26 5 .512 .0071 .04 

∆RMSEA 4.78 5 .443 .0063 .01 

∆SRMR 13.52 5 .019 .0029 .45 

Ratio of Group Sample Sizes 

∆chi-square 2.72 2 .256 .0050 .03 

∆CFI 5.27 2 .072 .0031 .14 

∆TFI 3.39 2 .183 .0038 .06 

∆RMSEA 2.43 2 .296 .0056 .02 

∆SRMR .31 2 .857 .0125 .07 

Type of Indicator Variable Technique (P1 and P2) 

∆chi-square 7.62 1 .006 .0028 .29 

∆CFI 8.36 1 .004 .0025 .32 

∆TFI 8.07 1 .004 .0026 .31 

∆RMSEA 3.13 1 .077 .0033 .09 

∆SRMR .03 1 .862 .0167 .04 

Number of Groups 

∆chi-square 1.43 1 .231 .0042 .02 

∆CFI .05 1 .820 .0100 .04 

∆TFI .01 1 .911 .0250 .04 

∆RMSEA .0 1 .978 .0500 .04 

∆SRMR 2.31 1 .128 .0036 .06 

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha  

 

Results of One-Way Analysis of  

Variance for Parcel-based  

Indicator Models 

The results of the ANOVAs revealed a statistically significant difference in the mean of 

∆chi-square for the number of groups in the residual invariance testing of continuous indicators-

based models, with a large effect size. The mean ∆chi-square for race (M = 28.24, SD = 14.03) 

was significantly higher than the mean ∆chi-square for gender (M = 8.79, SD = 10.57), 
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suggesting less support for residual invariance in race than in gender, with a large effect size 

(Cohen’s d > 1.58). 

The results showed a significant difference in the mean change in fit statistics for residual 

invariance when using the number of groups. The analysis showed no significant differences in 

the mean change of fit statistics when testing residual invariance across varying total sample 

sizes, different ratios of group sample sizes, or different types of indicator variable techniques. 

However, the results indicated that the insignificant mean differences in ∆CFI and ∆TLI in the 

total sample size design condition were associated with moderate effect sizes, suggesting 

practical significance in testing residual invariance. 
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Table 4.32 

One-Way Analysis of Variance Results of Q3 for Parcel-based Indicator Models 

 
 Sum of Sq df Mean Sq F p-value HB alpha 𝜂2 

Total Sample Size 

∆chi-square Between Groups 1273.82 6 212.30 .86 .5310 .0063 .09 
Within Groups 12845.52 52 247.03       

∆CFI Between Groups .00 6 .00 1.37 .2420 .0031 .14 

Within Groups .00 52 .00       

∆TLI Between Groups .00 6 .00 1.36 .2500 .0033 .14 

Within Groups .00 52 .00       
∆RMSEA Between Groups .00 6 .00 1.08 .3870 .0042 .11 

Within Groups .00 52 .00       

∆SRMR Between Groups .00 6 .00 .22 .9670 .0500 .03 

 Within Groups .00 52 .00       

Ratio of Group Sample Sizes 

∆chi-square Between Groups 284.80 2 142.40 .58 .5650 .0071 .02 

 Within Groups 13834.55 56 247.05       

∆CFI Between Groups .00 2 .00 .72 .4910 .0056 .03 

 Within Groups .00 56 .00       
∆TLI Between Groups .00 2 .00 2.07 .1360 .0026 .07 

 Within Groups .00 56 .00       

∆RMSEA Between Groups .00 2 .00 .21 .8150 .0167 .01 

 Within Groups .00 56 .00       

∆SRMR Between Groups .00 2 .00 1.22 .3030 .0036 .04 

 Within Groups .00 56 .00       

Type of Indicator Variable Technique (P3, P4, and P5) 

∆chi-square Between Groups 222.44 2 111.22 .45 .6410 .0083 .02 

 Within Groups 13896.90 56 248.16       

∆CFI Between Groups .00 2 .00 .92 .4060 .0045 .03 
 Within Groups .00 56 .00       

∆TLI Between Groups .00 2 .00 .27 .7610 .0125 .01 

 Within Groups .00 56 .00       

∆RMSEA Between Groups .00 2 .00 .14 .8710 .0250 .01 

 Within Groups .00 56 .00       

∆SRMR Between Groups .00 2 .00 1.55 .2210 .0029 .05 

 Within Groups .00 56 .00       

Number of Groups 

∆chi-square Between Groups 5537.96 1 5537.96 36.79 <.0025* .0025 .39 

 Within Groups 8581.39 57 150.55       
∆CFI Between Groups .00 1 .00 1.84 .1800 .0028 .03 
 Within Groups .00 57 .00       

∆TLI Between Groups .00 1 .00 .11 .7370 .0100 .00 

 Within Groups .00 57 .00       

∆RMSEA Between Groups .00 1 .00 1.07 .3060 .0038 .02 

 Within Groups .00 57 .00       
∆SRMR Between Groups .00 1 .00 .63 .4310 .0050 .01 
 Within Groups .00 57 .00       

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha.  

*Indicates significance after Holm-Bonferroni method.  
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Results of Scalar Invariance Based 

on Tests of Independence 

The following sections present the study's findings on the classification of residual 

invariance, including results classified as fully, partially, or non-invariant, and outcomes of the 

residual invariance tests under different design conditions. 

Modifying and Classifying Results  

of Invariance Tests 

In continuous indicator-based subsamples, I imposed the constraint that the residual 

variances of observed indicator variables for alternate groups were equal to those of the reference 

group when testing for residual invariance. In models based on categorical indicators, testing for 

residual invariance presented a challenge since residual variances had to be constrained across all 

groups in the initial configural, metric, and scalar models for identification purposes. To assess 

the presence of residual invariance, I compared a model that allowed residual variances to differ 

across groups for items with at least partial scalar invariance to a model that fixed the residual 

variances. By comparing the fit of these models, I was able to determine whether allowing 

residual variances to differ across groups improved the model fit (Templin, 2017). Several 

criteria were used to evaluate residual invariance, including non-significant ∆chi-square, ∆CFI ≤ 

-.005, ∆TLI ≤ -.01, ∆RMSEA ≥ .01, and ∆SRMR ≥ .01. These criteria were applied to both 

continuous indicator-based and categorical indicator-based subsamples. 

The goal was to check for minimal changes in descriptive fit indices while keeping the 

residual variances equal between groups. For continuous indicators-based models, one residual 

variance constraint for one group was relaxed if full residual invariance was not met, and the 

statistical significance of the chi-square difference between the scalar and modified residual-

invariant model was assessed. To test for residual invariance with categorical indicators, I 
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estimated a larger model by freeing the residual variances in the alternative group for items with 

at least partial scalar invariance and compared it to the model in which the residual variances 

were constrained to be equal. If the model did not achieve full residual invariance, I freed the 

residual variances constraint of one group and evaluated the statistical significance of the chi-

square difference between the partially scalar-invariant model and the modified residual-

invariant model. If the model achieved the criteria for partial invariance only after freeing one 

residual variance constraint, it was classified as partially invariant. I considered the largest 

unstandardized difference, MI, and SEPC values for the parameters that were currently fixed or 

constrained to determine which residual variance to free. If the modified model met the criteria 

only after one modification, it was classified as partially invariant. Only one modification was 

made, and if the modified model did not fit adequately, it was classified as non-invariant. Table 

4.33 displays the results of 84 residual invariance tests, with 56 fully invariant, 19 partially 

invariants, and 9 non-invariant models. 

 

Table 4.33 

Frequency of Residual Invariance Classification 

Invariance N % 

Full 56 66.7 

Partial 19 22.6 

Non 9 10.7 

Total 84 100 

 

 

Table 4.34 presents the modifications made during residual invariance tests. Out of all the 

residual invariance tests conducted, 28 tests (33.3 percent) required only one modification. 

Among the total sample sizes, the highest percentage of cases with no modification was seen for 
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the group size of 450 (85.7%). In terms of the number of groups, 35 subsamples needed no 

modification for two groups (79.5%) and 9 subsamples needed one modification (20.5%). 

Whereas for the cases which had three groups, 52.5% subsamples needed no modifications but 

47.5% of subsamples needed one modification.  

 

Table 4.34 

Number of Residuals Altered for Each Design Condition 

 Number of Residuals Altered 

 0 1 Total 

 N % N % % 

Total Sample Size 

300 5 41.7 7 58.3 100 

400 9 69.2 4 30.8 100 

450 12 85.7 2 14.3 100 

600 8 57.1 6 42.9 100 

900 6 60.0 4 40.0 100 

1,200 10 76.9 3 23.1 100 

1,500 6 75.0 2 25.0 100 

Ratio of Group Sample Sizes 

1:1 27 84.4 5 15.6 100 

1:1.5 16 64.0 9 36.0 100 

1:2 13 48.1 14 51.9 100 

Type of Indicator Variable Technique 

P1 1 33.3 2 66.7 100 

P2 11 50.0 11 50.0 100 

P3 17 70.8 7 29.2 100 

P4 13 81.2 3 18.8 100 

P5 14 73.7 5 26.3 100 

Number of Groups 

Two  35 79.5 9 20.5 100 

Three 21 52.5 19 47.5 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. 
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The residual invariance test results were first categorized into fully invariant, partially 

invariant, or non-invariant models. Next, tests of independence were conducted to explore the 

association between the residual invariance test results and various design conditions. 

Test of Independence Results  

The assumption of independence of observations was assumed to be satisfied as different 

samples were used for different invariance tests. As the expected cell counts of some cells of 

total sample size and type of indicator variable techniques were less than five, Fisher's exact test 

was used in R to assess the association between the results of metric invariance tests and 

different design conditions. Table 4.35 displays the frequency of residual invariance test results 

for each design condition, and Table 4.36 shows the results of Fisher's exact test for the design 

conditions. 
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Table 4.35 

Frequencies of Residual Invariance Test Results for Each Design Condition 

 

Design Conditions 

 Number of Models for each Design Condition 

Invariant Partially Invariant Non-invariant Total 

N % N % N % N % 

Total Sample Size         

300 5 41.7 6  50.0 1 8.3 12 100 

400 9 69.2 0 .0 4 30.8 13 100 

450 12 85.7 2 14.3 0 .0 14 100 

600 8 57.1 4 28.6 2 14.3 14 100 

900 6 60.0 3 30.0 1 10.0 10 100 

1,200 10 76.9 3 23.1 0 .0 13 100 

1,500 6 75.0 1 12.5 1 12.5 8 100 

Ratio of Group Sample Sizes 

1:1 27 84.4 2 6.3 3 9.4 32 100 

1:1.5 16 64.0 7 28.0 2 8.0 25 100 

1:2 13 48.1 10 37.0 4 14.8 27 100 

Type of Indicator Variable Technique 

P1 1 33.3 2 66.7 0 .0 3 100 

P2 11 50.0 7 31.8 4 18.2 22 100 

P3 17 70.8 6 25.0 1 4.2 24 100 

P4 13 81.3 0 .0 3 18.8 16 100 

P5 14 73.7 4 21.1 1 5.3 19 100 

Number of Groups          

Two 35 79.5 8 42.1 1 2.3 44 100 

Three 21 52.5 11 57.9 8 20.0 40 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection.  
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Table 4.36 

Results of Fisher’s Exact Tests Under Different Design Conditions 

 chi-square Value df p-value HB alpha Cramer’s V 

Total Sample Size  19.80 12 .0710 .0500 .17 

Ratio of Group Sample Sizes 12.26 4 <.0167* .0167 .21 

Type of Indicator Variable Technique  14.93 8 .0605 .0250 .18 

Number of Groups 9.78 2 <.0125* .0125 .33 

Note. HB alpha = Holm-Bonferroni method adjusted alpha.  

*Indicates significance after Holm-Bonferroni method.  

 

Figure 4.5 

Association between Results of Residual Invariance and Ratio of Group Sample Sizes 

 

Note. The mosaic plot shows an association between ratio of group sample sizes and residual 

invariance test results with different colors to indicate outcomes. Larger rectangles indicate 

higher observation frequency. X-axis bars show the categories of group size ratios, while Y-axis 

bars show full (red), partial (yellow), and no (green) residual invariance results. The width and 

height of each bar indicate relative frequency, and wider boxes represent more observations in a 

category. 
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Table 4.36 reports the results of Fisher's exact test, which found a statistically significant 

association between the ratio of group sample sizes and the outcomes of invariance (full, partial, 

and non-invariant) with a small effect size. Subsequent analysis involving pairwise comparisons 

presented in Table 4.37 and a mosaic plot depicted in Figure 4.5 revealed that balanced group 

sample sizes (1:1) produced more fully invariant outcomes and fewer partially invariant 

outcomes than an unbalanced group sample size (ratio of 1:2). Furthermore, a statistically 

significant association was also found between the number of groups and the results of residual 

invariance tests with a small effect size. A statistically significant Holm-Bonferroni method 

adjusted pairwise comparison using Fisher’s exact test, along with the accompanying frequency 

distribution and mosaic plot (Figure 4.6) indicates that fewer number of group (gender) yielded a 

higher frequency of fully residual invariant outcomes and a smaller frequency of non-invariant 

residual outcomes than large number of groups (race).  

 

Table 4.37 

Post Hoc Comparisons of Invariant Results by Ratio of Group Sample Sizes Pairs 

Ratio of Group Sample 

Sizes Comparison 

Invariant Results Pairs Comparison 

 

Full vs Partial Full vs Non Partial vs Non 

p-value HB alpha p-value HB alpha p-value HB alpha 

1:1 vs 1:2 .0607 .0063 .2700 .0083 1.0000 .0250 

1:1 vs 1:1.5 <.0056* .0056 .3047 .0100 .2350 .0071 

1:1 vs 1:2 .5420 .0167 1.0000 .0500 .4018 .0125 

       

Note. 𝜂2 = Eta-squared (fixed-effect model). HB alpha = Holm-Bonferroni method adjusted 

alpha.  

*Indicates significance after Holm-Bonferroni method.  
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Figure 4.6 

Association Between Results of Residual Invariance and Number of Groups 

 

Note. The mosaic plot illustrates the association between number of groups and residual 

invariance test results, with different colors indicating the different test outcomes. The size of 

each rectangle corresponds to observation frequency, with larger rectangles indicating a higher 

frequency of observations. The width of the X-axis bars corresponds to the number of groups. 

The Y-axis bars show full (red), partial (yellow), and green (none) residual invariance results. 

The width and height of each bar represent the relative frequency of occurrence for the 

corresponding category, with wider boxes indicating more observations for a specific category. 

 

Following the examination of the frequency distribution and statistical tests, no 

significant association was found between the change in fit indices when performing residual 

invariance tests and varying sample sizes and indicator variable techniques.  
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Research Question 5 

Q5  Are there significant latent means differences between groups (gender, race) in 

terms of indicator variable technique, total sample size, and ratio of group sample 

sizes?  

 

Research suggests that full metric/scalar invariance is not necessary for meaningful tests 

of invariance and substantive analysis, like comparing factor means, as long as one item, apart 

from the one used to define the scale of each latent construct, remains invariant (Byrne et al., 

1989; MacCallum et al., 1999; Steenkamp & Baumgartner, 1998). In the current study, the 84 

fully and partially invariant scalar models that were utilized to test residual invariance were also 

employed to test latent mean differences. Among these models, 25 used categorical (item-level) 

indicators, and 59 used continuous (parceled) indicators to test for latent mean differences 

between groups. Using Mplus, I categorized the test results of latent mean differences between 

groups as either statistically significant or not for Q5. To evaluate whether there were 

associations between latent mean differences under various design conditions, such as indicator 

variable techniques, total sample sizes, ratios of group sample sizes, and the number of groups, I 

employed Fisher’s exact tests of independence. I applied the Holm-Bonferroni method to avoid 

an increased risk of Type I error across the 48 Fisher’s exact of independence conducted. In the 

following sections, I present the study's findings on the association between different design 

conditions and latent mean differences between groups. 

Results of Tests of Latent Mean  

Difference Based on Tests of 

Independence 

Table 4.38 presents the frequency of significant and non-significant latent mean 

differences for four different latent variables based on the number of groups and their 

comparisons. It includes two sections, one for two-group comparisons and another for three-
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group comparisons. Each row in the table indicates the latent variable's name, based on the 

comparisons between the groups under gender and race, and the frequency and percentage of 

significant and non-significant results. For example, when comparing the latent variable, Like 

Learning Mathematics between girls and boys, 6 out of 44 latent mean difference tests (13.6%) 

were significant, and 38 (86.4%) were non-significant. Similarly, when comparing White and 

Hispanic groups based on the latent variable, Mathematics Lesson, only one out of 40 latent 

mean difference tests (2.5%) yielded a significant result. 

 

Table 4.38 

Frequency of Tests of Latent Mean Classification 

Results of Latent Mean Difference for Each Design Condition 

 

Number of Groups  
Significant Non-significant Total 

N % N % N % 

Two 
      

Like Learning Mathematics 6 13.6 38 86.4 44 100 

Mathematics Lesson 2 4.5 42 95.5 44 100 

Confidence in Mathematics 12 27.3 32 72.7 44 100 

Valuing Mathematics 6 13.6 38 86.4 44 100 

Three        

White vs. Hispanic       

Like Learning Mathematics 25 62.5 15 37.5 40 100 

Mathematics Lesson 1 2.5 39 97.5 40 100 

Confidence in Mathematics 1 2.5 39 97.5 40 100 

Valuing Mathematics 1 2.5 39 97.5 40 100 

White vs. Others       

Like Learning Mathematics 5 12.5 35 87.5 40 100 

Mathematics Lesson 3 7.5 37 92.5 40 100 

Confidence in Mathematics 14 35.0 26 65.0 40 100 

Valuing Mathematics 3 7.5 37 92.5 40 100 

Hispanic vs. Others       

Like Learning Mathematics 3 7.5 37 92.5 40 100 

Mathematics Lesson 5 12.5 35 87.5 40 100 

Confidence in Mathematics 10 25.0 30 75.0 40 100 

Valuing Mathematics 4 10.0 36 90.0 40 100 

Note. Two = Girls and Boys. Three = White, Hispanic, and Others. 
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Differences in the number of significant and non-significant differences in latent means 

were observed across different group comparisons for various latent variables. For instance, the 

mean of the latent variable, Confidence in Math was significantly different between Hispanic and 

Others but not significantly different between White and Hispanic in a balanced design with 150 

Hispanic, White, and Others using models parceled through random selection. Fisher’s exact 

tests of independence were performed separately for gender and race to investigate the 

association between the test of latent means and various design conditions. 

Tests of Independence Results  

Since several design conditions had expected cell counts less than five, the chi-square test 

was not appropriate for assessing the independence of latent mean differences under these 

conditions. Therefore, Fisher's exact test, which is recommended for small sample sizes, was 

used to evaluate the independence of latent mean differences and the different design conditions. 

Table 4.39 shows the results of latent mean difference tests for gender across various design 

conditions, categorized into three sections: Total sample size, Ratio of Group Sample Sizes, and 

Type of Indicator Variable Techniques. The table is divided into different sections, and within 

each section, it presents the number and percentage of statistically significant (Sig) differences in 

latent means between groups for a particular design condition. For example, in the total sample 

size section, the table shows the number and percentage of significant differences for different 

total sample sizes, along with a total count of percentages. As shown in Table 4.39, there were 

relatively more non-significant than significant tests of latent mean differences. Table 4.39 

shows that during the latent mean difference test for gender in the parceling design condition, P1 

had a frequency of zero. This indicates that there were no significant or non-significant latent 

mean differences observed for P1 in the gender comparison. 
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Table 4.39 

Frequencies of Significant Tests of Latent Mean Differences between Girls and Boys 

Results of Latent Mean Difference for Each Design Condition 

Design Conditions Like Learning Math Math Lesson 
Confidence in 

Math 
Valuing Math Total  

 Sig Sig Sig Sig  
  N % N % N % N % N % 

Total Sample Size 

300 1 14.6 0 .0 2 28.6 0 .0 7 100 

400 0 .0 0 .0 0 .0 1 12.5 8 100 

450 0 .0 2 28.6 0 .0 0 .0 7 100 

600 0 .0 0 .0 4 66.7 0 .0 6 100 

900 1 20.0 0 .0 1 20.0 0 .0 5 100 

1,200 2 33.3 0 .0 3 50.0 2 33.3 6 100 

1,500 2 40.0 0 .0 2 40.0 3 60.0 5 100 

Ratio of Group Sample Sizes 

1:1 1 6.3 0 .0 2 12.5 3 18.8 16 100 

1:1.5 2 14.3 2 14.3 5 35.7 2 14.3 14 100 

1:2 3 21.4 0 .0 5 35.7 1 7.1 14 100 

Type of Indicator Variable Technique 

P1 0 .0 0 .0 0 .0 0 .0 0 0 

P2 0 .0 0 .0 1 8.3 1 8.3 12 100 

P3 3 20.0 1 6.7 5 33.3 3 20.0 15 100 

P4 2 22.2 1 11.1 3 33.3 2 22.2 9 100 

P5 1 12.5 0 .0 3 37.5 0 .0 8 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. Sig = statistically 

significant at the .05 level in the Mplus test of latent mean difference. 

 

Although P1 had a frequency of zero in the gender comparison (Table 4.39), it was 

included in the pairwise comparison of race, as indicated by the counts presented in the 

following tables (Tables 4.40 - 4.42). The inclusion of P1 in the pairwise comparison of race, as 

indicated by the counts presented in Tables 4.40 - 4.42, is important because if effect sizes are 

medium or larger, the lack of significant latent mean differences may suggest low statistical 

power, even if all or most effect sizes are small. The results of latent mean difference tests for 
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pairwise comparisons of race (White and Hispanic, White and Others, and Hispanic and Others) 

are presented in the following tables (Tables 4.40 – 4.42) for different design conditions. The 

tables are organized into three sections: Total Sample Size, Ratio of Group Sample Sizes, and 

Type of Indicator Variable Techniques. 

 

Table 4.40 

Frequencies of Latent Mean Difference Tests between White and Hispanic Students 

Results of Latent Mean Difference for Each Design Condition 

Design Conditions 

Like Learning 

Math 
Math Lesson 

Confidence in 

Math 
Valuing Math 

Total 

Sig Sig Sig Sig   

N % N % N % N % N % 

Total Sample Size   
300 2 40.0 0 .0 0 .0 0 .0 5 100 

400 2 40.0 0 .0 0 .0 0 .0 5 100 

450 5 71.4 0 .0 0 .0 0 .0 7 100 

600 4 50.0 0 .0 0 .0 0 .0 8 100 

900 5 100 0 .0 0 .0 0 .0 5 100 

1,200 4 57.1 0 .0 0 .0 0 .0 7 100 

1,500 3 100 1 33.3 1 33.3 1 33.3 3 100 

Ratio of Group Sample Sizes   
1:1 12 75.0 1 6.3 1 6.3 1 6.3 16 100 

1:1.5 6 54.5 0 .0 0 .0 0 .0 11 100 

1:2 7 53.8 0 .0 0 .0 0 .0 13 100 

Type of Indicator Variable Techniques  
P1 2 66.7 0 .0 0 .0 0 .0 3 100 

P2 5 50.0 0 .0 0 .0 0 .0 10 100 

P3 7 77.8 0 .0 0 .0 0 .0 9 100 

P4 4 57.1 1 14.3 1 14.3 1 14.3 7 100 

P5 7 63.6 0 .0 0 .0 0 .0 11 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. Sig = statistically 

significant at the .05 level in the Mplus test of latent mean difference. 
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Table 4.41 

Frequencies of Latent Mean Difference Tests between White and Other Students 

Results of Latent Mean Difference for Each Design Condition 

Design 

Conditions 

Like Learning 

Math 
Math Lesson 

Confidence in 

Math 
Valuing Math 

Total 

Sig Sig Sig Sig   

N % N % N % N % N % 

Total Sample Size   
300 0 .0 0 .0 1 20.0 0 .0 5 100 

400 0 .0 0 .0 2 40.0 0 .0 5 100 

450 1 14.3 2 28.6 0 .0 0 .0 7 100 

600 0 .0 0 .0 3 37.5 0 .0 8 100 

900 1 20.0 0 .0 5 100 2 40.0 5 100 

1,200 3 42.9 1 14.3 0 .0 1 14.3 7 100 

1,500 0 .0 0 .0 3 100 0 .0 3 100 

Ratio of Group Sample Sizes   
1:1 2 12.5 0 .0 7 43.8 0 .0 16 100 

1:1.5 1 9.1 2 18.2 5 45.5 3 27.3 11 100 

1:2 2 15.4 1 7.7 2 15.4 0 .0 13 100 

Type of Indicator Variable Techniques  
P1 0 .0 0 .0 0 .0 0 .0 3 100 

P2 1 10.0 2 20.0 1 10.0 0 .0 10 100 

P3 3 33.3 0 .0 4 44.4 2 22.2 9 100 

P4 0 .0 0 .0 4 57.1 0 .0 7 100 

P5 1 9.1 1 9.1 5 45.5 1 9.1 11 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. Sig = statistically 

significant at the .05 level in the Mplus test of latent mean difference. 
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Table 4.42 

Frequencies of Latent Mean Difference Tests between Hispanic and Other Students 

Results of Latent Mean Difference for Each Design Condition 

Design 

Conditions 

Like Learning 

Math 
Math Lesson 

Confidence in 

Math 
Valuing Math 

Total 

Sig Sig Sig Sig   

N % N % N % N % N % 

Total Sample Size   
300 1 20.0 0 .0 0 .0 0 .0 5 100 

400 0 .0 0 .0 0 .0 0 .0 5 100 

450 1 14.3 2 28.6 4 57.1 2 28.6 7 100 

600 0 .0 0 .0 0 .0 0 .0 8 100 

900 0 .0 2 40.0 5 100 0 .0 5 100 

1,200 0 .0 0 .0 0 .0 1 14.3 7 100 

1,500 1 33.3 1 33.3 1 33.3 1 33.3 3 100 

Ratio of Group Sample Sizes   
1:1 1 6.3 0 .0 6 37.5 1 6.3 16 100 

1:1.5 2 18.2 3 27.3 2 18.2 3 27.3 11 100 

1:2 0 .0 2 15.4 2 15.4 0 .0 13 100 

Type of Indicator Variable Techniques  
P1 0 .0 0 .0 0 .0 0 .0 3 100 

P2 2 20.0 1 10.0 1 10.0 1 10.0 10 100 

P3 0 .0 1 11.1 3 33.3 1 11.1 9 100 

P4 1 14.3 1 14.3 3 42.9 1 14.3 7 100 

P5 0 .0 2 18.2 3 27.3 1 9.1 11 100 

Note. Indicator variable techniques: P1 = nine-item subset as indicators, P2 = three-item subset 

as indicators, P3 = factor loadings, P4 = skewness, and P5 = random selection. Sig = statistically 

significant at the .05 level in the Mplus test of latent mean difference. 

 

Fisher's exact tests revealed only one statistically significant association, which was the 

association between the total sample size of Hispanic and Other participants and the mean 

differences on Confidence in Math. This association had a large effect size (Cramer's V > .8). A 

pairwise comparison in Table 4.44, a frequency table of each design condition (Table 4.39), and 

a mosaic plot (Figure 4.4) were used to investigate the findings further. The results showed that 

for Confidence in Math, total sample size of 600 produced more non-significant latent mean 



170 

 

 

 

difference outcomes than the total sample size of 900. Similarly, the total sample size of 1,200 

also produced more non-significant latent mean difference outcomes than the total sample size of 

900. These significant latent mean outcomes revealed higher latent mean values for Confidence 

in Math for Others than Hispanic students. The moderate to large effect sizes observed for most 

of the non-significant Fisher's exact results are noteworthy, especially the large effect size for the 

association between the latent variable, Confidence in Math, and total sample size among White 

and Others. However, these non-significant results may be due to the relatively low sample size 

of 40 used in the Fisher's exact tests and the conservative adjusted-alpha levels resulting from the 

large number of tests considered during the adjustment. However, unlike statistical significance 

tests, effect size is not dependent on sample size (Sullivan & Feinn, 2012) or on the alpha level. 
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Table 4.43 

Results of Fisher’s Exact Tests Under Different Design Conditions 

Number of Groups chi-square value df p-value HB alpha Cramer's V 

Three: White vs. Hispanic      

Like Learning Math      

    Total Sample Size 7.35 6 .2894 .0021 .44 
    Ratio of Group Sample Sizes 1.52 2 .4683 .0033 .21 

    Type of Indicator Variable Technique 1.50 4 .8261 .0063 .21 

Mathematics Lesson      

    Total Sample Size 11.43 6 .0760 .0013 .56 

    Ratio of Group Sample Sizes .00 2 1.000 .0083 .20 

    Type of Indicator Variable Technique 5.32 4 .2559 .0019 .35 
Confidence in Mathematics      

    Total Sample Size 11.72 6 .0685 .0012 .56 

    Ratio of Group Sample Sizes .00 2 1.0000 .0100 .20 

    Type of Indicator Variable Technique 5.57 4 .2334 .0018 .35 

Valuing Mathematics      

Total Sample Size 11.28 6 .0800 .0013 .56 
Ratio of Group Sample Sizes .00 2 1.0000 .0125 .20 

Type of Indicator Variable Technique 5.40 4 .2484 .0019 .35 

Three: White vs. Others      

Like Learning Math      

    Total Sample Size 8.43 6 .2084 .0017 .48 

    Ratio of Group Sample Sizes .00 2 1.0000 .0167 .07 
    Type of Indicator Variable Technique 4.06 4 .3983 .0028 .36 

Mathematics Lesson      

    Total Sample Size 5.85 6 .4403 .0031 .42 
    Ratio of Group Sample Sizes 3.55 2 .1694 .0015 .28 

    Type of Indicator Variable Technique 2.60 4 .6262 .0050 .31 

Confidence in Math      

    Total Sample Size 21.49 6 .0015 .0011 .76 

    Ratio of Group Sample Sizes 3.15 2 .2069 .0016 .29 

    Type of Indicator Variable Technique 6.68 4 .1539 .0015 .41 

Valuing Mathematics      

    Total Sample Size 9.95 6 .1269 .0014 .51 

    Ratio of Group Sample Sizes 7.83 2 .0200 .0011 .46 
    Type of Indicator Variable Technique 3.39 4 .4953 .0038 .33 

Three: Hispanic vs. Others      

Like Learning Math      

    Total Sample Size 7.28 6 .2954 .0022 .40 

    Ratio of Group Sample Sizes 2.05 2 .3588 .0025 .27 

    Type of Indicator Variable Technique 4.64 4 .3258 .0023 .34 
Mathematics Lesson      

    Total Sample Size 11.32 6 .0790 .0013 .50 

    Ratio of Group Sample Sizes 5.44 2 .0660 .0012 .34 
    Type of Indicator Variable Technique .00 4 1.0000 .0250 .15 

Confidence in Math      

    Total Sample Size 24.10 6 < .0001* .0001 .83 

    Ratio of Group Sample Sizes 1.74 2 .4188 .0029 .24 

    Type of Indicator Variable Technique 3.30 4 .5082 .0042 .31 
Valuing Mathematics      

    Total Sample Size 7.37 6 .2879 .0020 .42 

    Ratio of Group Sample Sizes 5.22 2 .0735 .0012 .37 
    Type of Indicator Variable Technique .00 4 1.0000 .0500 .11 

Note. Three = White, Hispanic, and Others. HB alpha = Holm-Bonferroni method adjusted 

alpha. For brevity only the results of three groups are presented. 

*Indicates significance after Holm-Bonferroni method.  
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Table 4.44 

Post Hoc Comparisons by Total Sample Size in Latent Mean Difference Test Results 

 

Total Sample Size 

Comparison 

  

Latent Mean Differences in Confidence in Mathematics between Hispanic and Others 

Significant vs. non-significant 

p-value HB alpha 

300 vs. 400 1.0000 .0071 

300 vs. 450 .0808 .0033 

300 vs.  600 1.0000 .0083 

300 vs. 900 .0079 .0026 

300 vs. 1,200 1.0000 .0100 

300 vs. 1,500 .3750 .0056 

400 vs. 450 .0808 .0036 

400 vs. 600 1.0000 .0125 

400 vs. 900 .0079 .0028 

400 vs. 1,200 1.0000 .0167 

400 vs. 1,500 .3750 .0063 

450 vs. 600 .0256 .0029 

450 vs. 900 .2046 .0042 

450 vs. 1,200 .0699 .0031 

450 vs. 1,500 1.0000 .0250 

600 vs. 900 < .0024* .0024 

600 vs. 1,200 1.0000 .0500 

600 vs. 1,500 .2727 .0045 

900 vs. 1,200 < .0025* .0025 

900 vs. 1,500 .1071 .0038 

1,200 vs. 1,500 .0013 .0050 

Note. HB alpha = Holm-Bonferroni method adjusted alpha. Significant results were only found 

between Hispanic and Others.  

*Indicates significance after Holm-Bonferroni method.  
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Figure 4.7 

Mean Differences in Confidence in Math: Hispanic vs. Others by Total Sample Size 

 

 

Note. The mosaic plot displays the relationship between total sample size and test of latent mean 

difference, with distinct colors representing the various outcomes. The size of each rectangle 

corresponds to observation frequency, with larger rectangles indicating a higher frequency of 

observations. The width of the X-axis bars corresponds to each total sample size category. The 

Y-axis bars show significant (red) and non-significant (yellow) latent mean difference test 

results. The width and height of each bar represent the relative frequency of occurrence for the 

corresponding category, with wider boxes indicating more observations for a specific category. 

 

Tests of latent mean differences among the three racial groups revealed that larger total 

sample sizes (600 and 1,200) were associated with more non-significant outcomes than a total 

sample size of 900, with higher latent mean values for Confidence in Math for Others compared 

to the Hispanic group. 
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Chapter Summary 

Inferential analyses based on ANOVAs and tests of independence were used to answer 

five research questions regarding differences in invariance testing based on different design 

conditions such as indicator variable techniques, total sample size, including ratio of group 

sample sizes, and number of groups. For a detailed overview of the research questions, please 

refer to pages 21 and 107. The following summary of results is structured according to the 

research questions. 

With respect to the first research question, which asked about the association between 

configural invariance and each of the four design conditions, there were several factors found to 

be related to the presence of configural invariance, including indicator variable technique, total 

sample size, and number of groups. The ratios of sample sizes did not appear to be related to 

results of configural invariance tests. In both the item-level and parcel-level indicator models, 

differences based on indicator variable technique were found both on the means of the fit indices 

as well as on the invariance classification (fully, partially, or non-invariant). For the configural 

invariance tests of the item-based indicator models, number of indicator variables (three-item 

versus three-item models) was the only condition for which the means of the fit statistics 

differed, with large effect sizes. Specifically, the three-item indicator models provided more 

support for configural invariance than the nine-item indicator models based on better model fit, 

as suggested by mean chi-square, CFI, SRMR, and TLI. The RMSEA did not differ based on 

number of indicators in the item-level models.  

Configural invariance tests for parcel-based indicator models differed by indicator 

variable technique, total sample size, and number of groups. For example, the means of RMSEA 

and SRMR indicated greater support of configural invariance for models with parcels created via 
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random selection than for parcels created via skewness. Regarding the effect of total sample size, 

based on both the mean fit statistics and invariance classifications, configural invariance was 

supported more often under larger total sample sizes than smaller total sample sizes. For 

example, models based on total sample sizes of 300 and 400 obtained fewer fully invariant and 

more non-invariant or partially invariant results than models based on larger total sample sizes of 

1,200 and 1,500. Moreover, the mean chi-square provided greater support of configural 

invariance for gender than for race. When comparing configural invariance classifications among 

the five indicator variable techniques, some differences were detected between the item-level 

versus parcel-level indicator models. Specifically, nine-item indicator-based models had more 

fully invariant and fewer partially invariant results than models with indicators parceled via 

skewness, while three-item indicator-based models had more fully invariant and fewer partially 

configural-invariant outcomes than models with indicators parceled via loadings. Finally, the 

three-item indicator-based models showed greater support for fully configural-invariant 

outcomes and less evidence of non-invariant configural outcomes than models parceled via 

skewness. 

For the second research question, which examined the association between metric 

invariance and the four design conditions, several factors were found to be related to the 

presence of metric invariance, including indicator variable technique, total sample size, and 

number of groups. Similar to findings regarding configural invariance in the first research 

question, the ratio of group sample sizes did not appear to have any association with the results 

of metric invariance test. The differences based on indicator variable techniques were only 

evident in the means of the incremental fit indices of the item-based indicator models, and in the 

classification of metric invariance tests. Specifically, the nine-item indicator-based models 
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provided less support for metric invariance compared to the three-item indicator models, based 

on worse model fit of ∆TLI and the largest number of relaxed factor loadings. The results of 

metric invariance tests were only different based on indicator variable technique, with the nine-

item indicator models having the fewest fully invariant metric models, followed by the three-

item indicator models with the second fewest fully invariant models. With regards to total 

sample size, based on the mean incremental fit statistics and invariance classification, metric 

invariance was supported more on a total sample size of 1,200 than on a total sample size of 600 

for item-based indicator models, as suggested by ∆SRMR. For the parcel-based indicator 

models, more support for metric invariance was found for a total sample size of 1,200 than for 

total sample sizes of 400, 600, and 900, based on the mean of ∆SRMR. Regarding the number of 

groups, the means of the incremental fit indices showed conflicting results. While more support 

for metric invariance was found in fewer groups (gender) than in a larger number of groups 

(race), as suggested by ∆chi-square and ∆TLI, contrary results were found based on mean 

∆RMSEA. 

For the third research question, which examined differences in scalar invariance across 

four design conditions, the findings indicated significant effects of indicator variable technique 

and total sample size. Consistent with the results for configural and metric invariance, the ratio 

of group sample sizes did not appear to be related to the outcomes of the scalar invariance tests. 

For the item-based indicator models, number of items was the only condition that showed 

significant differences in the means of the incremental fit statistics, with a large effect size. 

Specifically, the three-item indicator models provided more support for scalar invariance than 

the nine-item indicator models, based on a better model fit of ∆chi-square. However, no 

significant differences were observed between indicator variable techniques for the parcel-based 
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indicator models, and no significant differences were found between the outcomes of scalar 

invariance tests and the type of parceling. The results based on the outcomes of scalar invariance 

tests were found to be associated only with total sample size. A small total sample size of 450 

was found to have more fully invariant outcomes and fewer non-invariant outcomes than a large 

total sample size of 1500. Finally, the results based on the means of the incremental fit indices of 

the parcel-based indicator models were found to be significantly different only for the number of 

groups. Specifically, more support for scalar invariance was found in the race group than in the 

gender group, as suggested by the means of ∆TLI and ∆RMSEA. 

For the fourth research question, which investigated the differences in residual invariance 

across the four design conditions, the findings indicated significant effects of ratio of group 

sample sizes and number of groups. Differences based on the number of groups were found on 

the means of the incremental fit indices as well as the outcomes of residual invariance tests. 

Specifically, less support of residual invariance was found in tests of racial invariance than in 

gender invariance for parcel-based indicator models, as indicated by the mean ∆chi-square, and 

more support of residual invariance was found in gender comparisons than in race comparisons. 

Differences based on the ratio of group sample sizes were found only in the outcomes of residual 

invariance tests, where a balanced group sample size ratio showed more support for residual 

invariance than an unbalanced group size sample with a ratio of 1:2. 

With respect to the last research question, which asked about latent mean differences 

between the four design conditions, significant latent mean differences were found only for the 

latent variable, Confidence in Math between different races and among different total sample 

sizes. In particular, the mean differences in Confidence in Math were found to be significantly 

higher for Others than for Hispanic students. Additionally, total sample sizes of 1,200 and 600 
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were found to be associated with more non-significant outcomes in Confidence in math than a 

total sample size of 900.  

In conclusion, this chapter presented the results for each research question as well as the 

summaries of results according to the research questions. The following chapter discusses the 

findings of this study in light of prior research, identifies the limitations of this study, highlights 

implications of the findings, and provides suggestions for future research.  
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CHAPTER V 

 

DISCUSSION AND CONCLUSIONS 

 

Through this dissertation I investigated how various combinations of total sample sizes, 

types of indicator variables (including indicator variable techniques), and ratio of group sample 

sizes would function in explaining tests of measurement invariance across different number of 

groups. To achieve this objective, a CFA model of empirical data from TIMSS 2015 was 

employed and eighth-grade U.S. students’ responses on four different math attitude subscales 

using a Likert-type rating scale was used. This chapter presents the conclusions drawn regarding 

each of the five research questions in the context of existing research. Following the conclusions, 

I identify the limitations of the study, provide recommendations for future research, and discuss 

the implications for practice.  

A Middle Way Approach for Testing  

Measurement Invariance 

Research has shown that the requirement of large sample size, varying criteria to evaluate 

model fit, number of groups being compared, and complexity of the model have led researchers 

to avoid testing measurement invariance, even though a lack of invariance can produce biased 

tests of mean differences and regression coefficients (De Roover et al., 2014; French & Finch, 

2006; Putnick & Bornstein, 2016). To address these challenges, applied researchers have 

incorporated parcels in tests of measurement invariance, as parcels have been shown to alleviate 

skewness, improve reliability, reduce the number of indicators, and produce a more stable 

solution (Aguayo et al., 2019; Contractor et al., 2017; Fronczyk, 2019; Giné et al., 2017; 
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Matsunaga et al., 2021). However, there is limited methodological research on the effect of 

parcels on tests of measurement invariance, with Meade and Kroustalis (2005, 2006) advocating 

in favor of items as indicators in assessing configural, metric, scalar, and residual invariance, 

claiming that using parcels as indicators could potentially mask a lack of invariance. They also 

suggested using items as indicators, even if the items yielded poor model fit. Nonetheless, using 

items as indicators requires larger total sample sizes, which may not be attainable due to non-

response rate, non-participation, limited resources, time constraints, and other practical 

considerations. 

The findings of this study offer a middle way, a balanced and adaptable approach for 

applied researchers to test measurement invariance without the requirement of extremely large 

sample sizes for testing invariance using items as indicators, or using parcels that might conceal 

a lack of invariance. By carefully selecting a smaller number of items with the highest factor 

loadings, applied researchers may be able to better assess measurement invariance tests. This 

approach can help to address the challenges associated with testing measurement invariance, 

making it more accessible for applied researchers. 

Design Conditions and Configural  

Invariance  

Item-based models detected lack of invariance better than parcel-based models. Three-

item models provided stronger evidence of configural invariance than nine-item and parcel-based 

models, with all three-item models exhibiting full configural invariance. Meade and Kroustalis 

(2006) found that models with items as indicators were more effective at detecting a lack of 

invariance than models with parcels as indicators, which indicated the presence of measurement 

invariance. Furthermore, higher CFI and TLI values and lower chi-square and SRMR values 

supported the use of three-item models in tests of configural invariance. However, RMSEA 
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favored nine-item models, possibly due to their sensitivity to model complexity in smaller 

samples, despite research suggesting its favoring of simpler models and independence from 

sample size (Breivik & Olsson, 2001; Cangur & Ercan, 2015; Schermelleh-Engel et al., 2003). 

This study found that that model based on smaller total sample sizes (N = 300 and 400) 

had a higher frequency of added cross loadings than models based on larger total sample sizes (N 

= 1,200 and 1,500). Findings indicate that a small total sample size of 300 resulted in fewer fully 

configural invariant and more non-configural invariant findings than larger total sample sizes of 

1,200 and 1,500. Meade and Kroustalis (2006) also found that item-level indicators were more 

effective than parcel-level indicators in detecting a lack of invariance with larger sample size. 

However, detecting factorial non-invariance becomes less effective as the ratio of the larger to 

the smaller group increases (Chen, 2007; Kaplan & George, 1995). This is concerning as this can 

lead to unnoticed biases in factorial invariance studies when there is a considerable difference in 

sample sizes between the minority and majority groups (Yoon & Lai, 2018). However, in the 

current study I did not find any support for an association between configural invariance and the 

ratio of group sample sizes. 

Design Conditions and Metric  

Invariance 

This study found that models based on a total sample size of 1,200 provided stronger 

support for metric invariance compared to models based on a total sample size of 600, with 

significant differences in values of ∆SRMR and a small effect size. Item-based analyses were 

found to be better at identifying items with significant differences in factor loadings than parcel-

based analyses, as reported by Meade and Kroustalis (2005, 2006). Nine-item models had 

significantly fewer fully invariant metric models and significantly non-invariant metric models 

compared to all other parcel-based models. In contrast, three-item models had significantly fewer 
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fully invariant metric models and significantly more non-invariant metric models than models 

parceled via random selection, which is logical, given that smaller parcels may not capture the 

complexity of the construct being measured, leading to greater measurement error and reduced 

metric invariance. In contrast, random selection of parcels may better capture the construct, 

resulting in more reliable and valid results and higher levels of metric invariance. In terms of 

support for metric invariance, greater support was found in three-item models based on the ∆TLI 

(with a large effect size) whereas nine-item models had more support based on low ∆chi-square 

and high ∆CFI (both with large effect sizes). However, the nature of the groups was confounded 

with the number of groups since empirical data were used instead of a simulation design. 

Therefore, it is unclear whether the differences in invariance findings were due to the number of 

groups alone or due to differences based on gender and race.  

Non-significant differences with small effect sizes were observed when testing metric 

invariance using parcel-based models, indicating that the type of parcel may not be relevant in 

assessing fit for metric invariance. However, it is important to note that the level of shared 

variance between indicators within each parcel may vary depending on the approach used to 

create parcels, which can affect the power of measurement invariance tests. As a result, Meade 

and Kroustalis (2006) recommended using items instead of parcels as indicators in tests of metric 

invariance. Previous studies have shown mixed findings on the use of parcels in SEM, with 

proponents suggesting parcels reduce parameters and improve model fit, while critics argue that 

use of parcels may obscure sources of model misspecification and lead to biased estimates. 

(Bandalos & Finney, 2001; Little et al., 2002; Matsunaga, 2008). 
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Design Conditions and Scalar  

Invariance 

In testing for scalar invariance, this study found no significant differences in mean ∆AFIs 

for total sample sizes, but practical significance was indicated by moderate to large effect sizes 

for item-based models. Meade and Kroustalis (2006) found that using individual items as 

indicators in tests of intercepts often resulted in high Type I error rates, while using parcels as 

indicators led to lower Type I error rates due to the summation of items within a parcel. 

Although scalar invariance tests using items as indicators often failed, tests using parcels as 

indicators rarely identified lack of invariance in Meade and Kroustalis’s (2006) study. In the 

current study I found stronger support for scalar invariance in three-item models with a 

significantly lower mean ∆chi-square and the lowest percentage of relaxed intercepts or 

thresholds. 

 Scalar invariance was more strongly supported in groups with three categories (White, 

Hispanic, and Others) than groups with two categories (gender), based on higher ∆TLI and lower 

∆RMSEA of parcel-based models. However, Ober et al. (2021) found no scalar invariance across 

gender for high school students enrolled in AP statistics, suggesting differences in self-

confidence and enjoyment in math and the need to revise problematic items. 

Design Conditions and Residual  

Invariance 

Parcels are known to improve the fit of a model by canceling out random and systematic 

errors, regardless of whether the fitted model is correctly specified or not (Little et al., 2002; 

Matsunaga, 2008). Compared to item-based models, parcel-based models in the current study 

were found to have fewer relaxed residuals. Although residual invariance was not supported in 

the nine-item and three-item models, the level of support for residual invariance was relatively 
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higher in the three-item models compared to the nine-item models. Meade and Kroustalis (2006) 

found that parcel-based models had a generally low ability to detect a lack of invariance in terms 

of the indicator uniquenesses (residuals), even with a large total sample size of 500 per group. In 

the current study, smaller total sample sizes of 300 and 400 were found to have a higher 

percentage of altered residuals than larger total sample sizes of 1,200 and 1,500 in testing partial 

residual invariance. 

Consistent with the findings of Walker et al. (2012) who reported that detecting 

differential item functioning (DIF) or differential bundle functioning (DBF) becomes more 

challenging with smaller sample sizes or unequal ratios between groups, equal sample size ratios 

in my study led to significantly more fully invariant outcomes and fewer partially invariant 

outcomes compared to unequal ratios of 1:2. Furthermore, fewer groups (e.g., two gender 

groups) exhibited a higher frequency of fully invariant residuals models, suggesting stronger 

support for fewer number of groups than for larger number of groups (e.g., three race groups). 

Design Conditions and Latent  

Mean Difference 

The study found significant mean differences in Confidence in Math between Hispanic 

and Others. The mean differences in Confidence in Math were significantly greater for Others 

than Hispanic students for a total sample size of 900 compared to 1,200 and 600. However, no 

significant differences in latent means based on indicator variable technique were found between 

boys and girls or among the three racial groups, with small to moderate effect sizes. Notably, due 

to the failure to achieve full or partial scalar invariance, no nine-item indicator models were used 

to test latent mean differences between boys and girls. The results of Wang's (2013) study 

showed no consistent differences in attitudes between males/females and students of different 
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races. However, this study suggests that there may be differences in how constructs are perceived 

or measured across different groups.  

 Previous studies have reported that girls tend to have lower math confidence, liking for 

math, self-concept, and value for math than boys, and that male students tend to have slightly 

more positive math attitude scores than females (Else-Quest et al., 2010; Riegle-Crumb et al., 

2011; Watt et al., 2012). However, Jacobs et al. (2002) reported no variation in math self-

competence and math values as a function of gender for U.S. school districts in the suburbs of a 

large Midwestern city. In terms of race, Riegle-Crumb et al. (2011) found that white boys had 

higher math attitude scores than Black and Hispanic boys. In TIMSS 2003, Riegle-Crumb et al. 

(2011) found that eighth-grade White boys exhibited higher math attitude scores compared to 

Black and Hispanic boys. Additionally, there was no significant difference in mean scores 

between White and Black boys, but a significant difference was observed between White and 

Hispanic boys. These previous findings provide additional context and support for the study's 

results on Confidence in Math and suggest that there may be complex and varied factors 

influencing math attitudes and confidence among different groups. 

Limitations 

As is the case with any research, the current study had several limitations. The study's use 

of real data in a non-experimental design represents an inherent limitation of conducting 

methodological research based on secondary survey data. For example, although the study 

identified some consistent patterns related to invariance testing results, causal inferences cannot 

be drawn due to the research design. The inability to explore potential biases and Type I and 

Type II error rate with simulated data, which a Monte Carlo simulation study would allow, is 

another limitation. Additionally, the nature and number of gender and race groups were 
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confounded, which makes it impossible to determine if differences found when testing 

invariance for two versus three groups were due to the numbers of groups or to more conceptual 

differences between race and gender with respect to math attitudes. Implementing tests of partial 

invariance was challenging because of the lack of clear guidelines. The conservative approach I 

adopted in which I only allowed one invariance constraint to be relaxed per model may have 

affected the outcomes of the study. The study was also limited by its inability to conduct 

factorial analyses because interaction effects between moderator variables and parcel condition 

variables were not examined. The small sample size for each research question was also a 

limitation, and the Ns for some of the ANOVAs may have been too small to support adequate 

statistical power, especially for later levels of invariance testing with fewer cases. 

This study utilized TIMSS data, which were selected for their wide availability, high 

technical quality, and extensive use in prior research on math and science content areas (Averett 

et al., 2018; Foy, 2017). However, the use of TIMSS data was a limitation because of its narrow 

focus, limited age groups, content areas, and time periods, and because it only collected data 

from students. This limited the generalizability of findings, and the estimates may be subject to 

sampling and non-sampling errors, which also limits generalizability to other studies. 

The comparison between item-level and parceled indicators was restricted due to the 

presence of both categorical and continuous indicators, which require different analysis methods. 

As a result, it was not possible to include both item-level and parcel conditions in the same 

ANOVAs. Separate ANOVAs were conducted for each set of conditions. This limited the study 

because a direct comparison between the effects of item-level and parcel conditions in the same 

analysis was not possible. If all five parceling conditions (P1 through P5) could have been 
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included in the same ANOVAs, it may have provided a more comprehensive understanding of 

the effects of parceling on the study variables.  

To reduce the number of parameters in the model and improve model fit, three 3-item 

parcels per subscale were created, following recommendations by researchers (Matsunaga, 2008; 

Nasser & Takahashi, 2003; Rhemtulla, 2016). Little et al. (2002) warned that using a small 

number of indicators per parcel can lead to inaccurate estimates. Marsh et al. (2013) 

demonstrated that the number of parcels per latent variable can influence measurement 

invariance tests. Thus, the specific parceling strategy employed in the current study can have 

important implications for study results.  

In conclusion, the study had several limitations, including the use of real data in a non-

experimental design, limitations of TIMSS data, difficulties in implementing tests of partial 

invariance, and the inability to conduct factorial analyses. The sample size for each research 

question was also a limitation, and the Ns for some of the ANOVAs may have been too small to 

support adequate statistical power. The comparison between item-level and parceled indicators 

was restricted, and the creation of three 3-item parcels per subscale had important implications 

for study results such as potential measurement error and reduced variability.  

Recommendations for Future Research 

This study found that in general, using fewer indicators selected based on having high 

factor loadings appeared to be more supportive of invariance. However, determining the optimal 

number of indicators for applied researchers with large numbers of survey items and smaller 

sample sizes requires further research. When testing invariance between groups, applied 

researchers often use parcels to simplify and improve model fit. However, determining the 

criteria for fit indices and ∆AFIs when using parcel-level indicators is challenging due to the lack 
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of clear guidelines. Researchers typically use the same criteria for fit indices and ∆AFIs used for 

item-level indicators when working with parcels, even though these may not be suitable. 

Nonetheless, criteria have been developed for item-level indicators that may be more appropriate 

for parcels. Further research on criteria for fit indices and ∆AFIs when working with parcels 

could be helpful for applied researchers. 

In addition, it would be insightful to explore different numbers of groups, as invariance 

testing is not always limited to two or three groups. Examining more extreme ratios than those 

used in the current study could also be useful for applied researchers. When using parcels as 

indicator variables in invariance analyses, several unanswered questions warrant further research, 

such as the impact of different parceling methods, the number and size of parcels, presence of 

missing data and creation parcel indicators, and the choice of estimation method on invariance 

analyses, all of which need to be examined under a more tightly controlled Monte Carlo 

simulation design. Addressing these questions could enhance our understanding of how to use 

parcel indicators in invariance analyses. 

Implications 

This study has implications for researchers conducting measurement invariance tests 

using parcel and item indicators. Challenges associated with testing measurement invariance 

include the requirement of large total sample sizes, varying criteria for evaluating model fit, the 

number of groups being compared, and the complexity of the model. While parcels can alleviate 

some of these challenges, the study suggests that using a smaller number of items selected based 

on high factor loadings can be an effective approach for assessing measurement invariance. 

The study found that using fewer indicators selected based on high factor loadings from 

an EFA for a unidimensional scale may be more effective than using a large number of items or 
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all types of parcels. Three-item indicator models outperformed models based on all items and all 

types of parcels in achieving configural and metric invariance. However, comparing results of 

continuous and categorical indicators-based models estimated using different estimation 

methods, MLR and WLSMV was challenging, hence, researchers should carefully consider the 

estimation method used for their models. 

Overall, the study's findings offer a middle way for researchers to conduct tests of 

measurement invariance without the need for extremely large total sample sizes or relying solely 

on parcels as indicators. This approach can make testing measurement invariance more 

accessible for applied researchers, ultimately leading to more accurate and reliable research 

findings. 

Conclusions 

Through this study I examined the performance of continuous and categorical indicators-

based models estimated using MLR and WLSMV, respectively. Direct comparison of the results 

of these two types of models was challenging due to the use of different estimation methods. The 

study found that item-based models were better at achieving configural-invariant outcomes than 

parcel-based models. Moreover, three-item indicator models outperformed models based on all 

items and all types of parcels in achieving configural, metric and scalar invariance, suggesting 

that using fewer carefully selected indicators based on factor loadings from an EFA might be an 

effective approach when dealing with a large number of items. Previous studies have supported 

the idea of using fewer indicators to improve model fit (Hayduk & Littvay, 2012; Nasser & 

Wisenbaker, 2003). Additionally, the study supports Meade and Kroustalis’ (2005,2006) claim 

that item-based indicators are better than parcel-based indicators in achieving residual 

invariance. The study's findings are also consistent with Meade and Kroustalis' earlier work, 



190 

 

 

 

which showed that sample size is more important than parceling strategy in tests of measurement 

invariance. The study extends their research by demonstrating that fewer carefully selected 

indicators can address the issue of having to collect large samples, but still be effective in 

assessing tests of measurement invariance. The study highlights the importance of sample size in 

measurement invariance tests and the superiority of item-based indicators in detecting lack of 

invariance. (Meade & Kroustalis, 2005, 2006; Yuan & Bentler, 2000). 
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Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36(2), 

109-133. https://doi.org/10.1007/BF02291393 

Kaplan, D., & George, R. (1995). A study of the power associated with testing factor mean 

differences under violations of factorial invariance. Structural Equation Modeling: A 

Multidisciplinary Journal, 2(2), 101-118. https://doi.org/10.1080/107055 19509539999 

Kastberg, D., Roey, S., Ferraro, D., Lemanski, N., & Erberber, E. (2013). U.S. TIMSS and PIRLS 

2011 Technical Report and User’s Guide (NCES 2013-046). U.S. Department of 

Education. Washington, DC: National Center for Education Statistics, Institute of 

Education Sciences.  

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models 

with small degrees of freedom. Sociological Methods & Research, 44(3), 486-507. 

https://doi.org/10.1177/0049124114543236 

https://doi.org/10.1111/1467-8624.00421
https://doi.org/10.1111/1467-8624.00421
https://doi.org/10.3389/fpsyg.2017.01823
https://doi.org/10.1177/0165025419866911
https://doi.org/10.1007/BF02291393
https://doi.org/10.1080/107055%2019509539999
https://doi.org/10.1177/0049124114543236


201 

 

 

 

Khojasteh, J., & Lo, W. (2015). Investigating the sensitivity of goodness-of-fit indices to detect 

measurement invariance in a bifactor model. Structural Equation Modeling, 22(4), 531-

541. https://doi.org/10.1080/10705511.2014.937791 

Kim, E. S., Cao, C., Wang, Y., & Nguyen, D. T. (2017). Measurement invariance testing with 

many groups: A comparison of five approaches. Structural Equation Modeling, 24(4), 

524–544. https://doi.org/10.1080/10705511.2017.1304822 

Kim, E. S., & Yoon, M. (2011). Testing measurement invariance: A comparison of multiple-

group categorical CFA and IRT. Structural Equation Modeling, 18(2), 212–228. 

https://doi.org/10.1080/10705511.2011.557337 

Kishton, J. M., & Widaman, K. F. (1994). Unidimensional versus domain representative 

parceling of questionnaire items: An empirical example. Educational and Psychological 

Measurement, 54(3), 757-765.  

https://doi.org/10.1177/0013164494054003022 

Kline, R. B. (2016). Principles and practice of structural equation modeling (3rd ed.). Guilford 

publications. 

Kotrlik, J., Williams, H., & Jabor, K. (2011). Reporting and interpreting effect size in 

quantitative agricultural education research. Journal of Agricultural Education, 52(1), 

132-142. https://doi.org/10.5032/jae.2011.01132 

Koziol, N. A., & Bovaird, J. A. (2018). The impact of model parameterization and estimation 

methods on tests of measurement invariance with ordered polytomous data. Educational 

and Psychological Measurement, 78(2), 296-296.  

https://doi.org/10.1177/0013164416683754 

https://doi.org/10.1080/10705511.2014.937791
https://doi.org/10.1080/10705511.2017.1304822
https://doi.org/10.1080/10705511.2011.557337
https://doi.org/10.1177/0013164494054003022
https://doi.org/10.5032/jae.2011.01132
https://doi.org/10.1177/0013164416683754


202 

 

 

 

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science : A 

practical primer for t -tests and ANOVAs. Frontiers in Psychology, 4(11), 1–12. 

https://doi.org/10.3389/fpsyg.2013.00863 

Larson, M. G. (2008). Analysis of variance. Circulation (New York, N.Y.), 117(1), 115-121. 

https://doi.org/10.1161/CIRCULATIONAHA.107.654335 

Latifi, S., Bulut, O., Gierl, M., Christie, T., & Jeeva, S. (2016). Differential Performance on 

National Exams: Evaluating Item and Bundle Functioning Methods using English, 

Mathematics, and Science Assessments. SAGE Open, 6(2).  

https://doi.org/10.1177/2158244016653791 

LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and 

interrater agreement. Organizational Research Methods, 11(4), 815–852. 

https://doi.org/10.1177/1094428106296642 

Lee, J., & Whittaker, T. A. (2021). The impact of item parceling on structural parameter 

invariance in multi-group structural equation modeling. Structural Equation Modeling, 

28(5), 684-698. https://doi.org/10.1080/10705511.2021.1890604 

Lei, M., & Lomax, R. G. (2005). The effect of varying degrees of nonnormality in structural 

equation modeling. Structural Equation Modeling, 12(1), 1-27. 

https://doi.org/10.1207/s15328007sem1201_1 

Li, C. H. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum 

likelihood and diagonally weighted least squares. Behavior Research Methods, 48(3), 

936–949. https://doi.org/10.3758/s13428-015-0619-7 

Little, R., & Rubin, D. (1987). Statistical Analysis with Missing Data. John Wiley and Sons 

Publishers, New York. 

https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.1161/CIRCULATIONAHA.107.654335
https://doi.org/10.1177/2158244016653791
https://doi.org/10.1177/1094428106296642
https://doi.org/10.1080/10705511.2021.1890604
https://doi.org/10.1207/s15328007sem1201_1
https://doi.org/10.3758/s13428-015-0619-7


203 

 

 

 

Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing 

values. Journal of the American Statistical Association, 83(404), 1198-1202. 

https://doi.org/10.1080/01621459.1988.10478722 

Little, T. D. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: 

Practical and theoretical issues. Multivariate Behavioral Research, 32(1), 53-76. 

https://doi.org/10.1207/s15327906mbr3201_3 

Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to 

parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 

151-173. https://doi.org/10.1207/S15328007SEM0902_1 

Lubke, G. H., & Muthén, B. O. (2004). Applying multigroup confirmatory factor models for 

continuous outcomes to likert scale data complicates meaningful group comparisons. 

Structural Equation Modeling, 11(4), 514-534. 

https://doi.org/10.1207/s15328007sem1104_2 

Luo, J., Wang, M., Ge, Y., Chen, W., & Xu, S. (2020). Longitudinal invariance analysis of the 

short grit scale in Chinese young adults. Frontiers in Psychology, 11, 466-466. 

https://doi.org/10.3389/fpsyg.2020.00466 

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor 

analysis. Psychological Methods, 4(1), 84-99. https://doi.org/10.1037/1082-989X.4.1.84 

Marsh, H. W., Hau, K., Balla, J. R., & Grayson, D. (1998). Is more ever too much? the number 

of indicators per factor in confirmatory factor analysis. Multivariate Behavioral 

Research, 33(2), 181-220. https://doi.org/10.1207/s15327906mbr3302_1 

 

 

https://doi.org/10.1080/01621459.1988.10478722
https://doi.org/10.1207/s15327906mbr3201_3
https://doi.org/10.1207/S15328007SEM0902_1
https://doi.org/10.1207/s15328007sem1104_2
https://doi.org/10.3389/fpsyg.2020.00466
https://doi.org/10.1037/1082-989X.4.1.84
https://doi.org/10.1207/s15327906mbr3302_1


204 

 

 

 

Marsh, H. W., Lüdtke, O., Nagengast, B., Morin, A. J. S., & Von Davier, M. (2013). Why item 

parcels are (almost) never appropriate: Two wrongs do not make a right-camouflaging 

misspecification with item parcels in CFA models. Psychological Methods, 18(3), 257–

284. https://doi.org/10.1037/a0032773 

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: 

Evaluation of alternative estimation strategies and indicator construction. Psychological 

Methods, 9(3), 275-300. https://doi.org/10.1037/1082-989X.9.3.275 

Martin, M. O., Mullis, I. V. S., Hooper, M., Yin, L., Foy, P., & Palazzo, L. (2016). Creating and 

Interpreting the TIMSS 2015 Context Questionnaire Scales. In M. O. Martin, I. V. S. 

Mullis, & M. Hooper (Eds.), Methods and Procedures in TIMSS 2015 (pp. 15.1-15.312). 

Retrieved from Boston College, TIMSS & PIRLS International Study Center website: 

http://timss.bc.edu/publications/timss/2015-methods/chapter-15.html 

Matsunaga, A., Ohashi, Y., Sakanashi, K., & Kitamura, T. (2021). Factor structure of the 

postpartum bonding questionnaire: Configural invariance and measurement invariance 

across postpartum time periods. Journal of Psychiatric Research, 135, 1-7. 

https://doi.org/10.1016/j.jpsychires.2020.11.017 

Matsunaga, M. (2008). Item parceling in structural equation modeling: A primer. 

Communication Methods and Measures, 2(4), 260-293. 

https://doi.org/10.1080/19312450802458935 

McDonald, R. P. (1989). An index of goodness-of-fit based on noncentrality. Journal of 

Classification. 6, 97-103. 

McDonald, R. P. (1999). Test theory: A unified treatment. Lawrence. Erlbaum Associates 

Publishers. 

https://doi.org/10.1037/a0032773
https://doi.org/10.1037/1082-989X.9.3.275
https://timssandpirls.bc.edu/publications/timss/2015-methods/chapter-15.html
https://doi.org/10.1016/j.jpsychires.2020.11.017
https://doi.org/10.1080/19312450802458935


205 

 

 

 

McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and 

goodness of fit. Psychological Bulletin, 107. 247-255. 

Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit 

indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568-

592. https://doi.org/10.1037/0021-9010.93.3.568 

Meade, A. W., & Kroustalis, C. M. (2005). Problems of item parceling for confirmatory factor 

analysis tests of measurement invariance of factor loadings. Paper presented at the 20th 

Annual Conference of the Society for Industrial and Organizational Psychology, Los 

Angeles, CA.  

Meade, A. W., & Kroustalis, C. M. (2006). Problems with item parceling for confirmatory factor 

analytic tests of measurement invariance. Organizational Research Methods, 9(3), 369-

403. https://doi.org/10.1177/1094428105283384 

Meade, A. W., & Lautenschlager, G. J. (2004). A monte-carlo study of confirmatory factor 

analytic tests of measurement equivalence/invariance. Structural Equation Modeling, 

11(1), 60–72. https://doi.org/10.1207/S15328007SEM1101_5 

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. 

Psychometrika, 58(4), 525–543. https://doi.org/10.1007/BF02294825 

Milfont, T. L., & Fischer, R. (2010). Testing measurement invariance across groups: 

Applications in cross-cultural research. International Journal of Psychological Research, 

3(1), 111-130. https://doi.org/10.21500/20112084.857 

Molenaar, D., & Borsboom, D. (2013). The formalization of fairness: Issues in testing for 

measurement invariance using subtest scores. Educational Research and Evaluation, 

19(2–3), 223–244. https://doi.org/10.1080/13803611.2013.767628 

https://doi.org/10.1037/0021-9010.93.3.568
https://doi.org/10.1177/1094428105283384
https://doi.org/10.1207/S15328007SEM1101_5
https://doi.org/10.1007/BF02294825
https://doi.org/10.21500/20112084.857
https://doi.org/10.1080/13803611.2013.767628


206 

 

 

 

Molenberghs, G., Fitzmaurice, G. M., Kenward, M. G., Tsiatis, A. A., & Verbeke, G. (2015). 

Handbook of Missing Data Methodology. CRC Press, Boca Raton. 

Muthén, B., & Asparouhov, T. (2018). Recent methods for the study of measurement invariance 

with many groups: Alignment and random effects. Sociological Methods & Research, 

47(4), 637-664. https://doi.org/10.1177/0049124117701488 

Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th ed.). Los Angeles, CA: 

Muthén & Muthén. 

Nandakumar, R. (1993). Simultaneous DIF amplification and cancellation: Shealy‐stout's test for 

DIF. Journal of Educational Measurement, 30(4), 293-311. 

https://doi.org/10.1111/j.1745-3984.1993.tb00428.x 

Nasser, F., & Takahashi, T. (2003). The effect of using item parcels on ad hoc goodness-of-fit 

indexes in confirmatory factor analysis: An example using sarason's reactions to Tests. 

Applied Measurement in Education, 16(1), 75-97. 

https://doi.org/10.1207/S15324818AME1601_4 

Nasser, F., Takahashi, T., & Benson, J. (1997). The structure of test anxiety in Israeli–Arab high 

school students: An application of confirmatory analysis with miniscales. Anxiety, Stress, 

and Coping, 10, 129–151. https://doi.org/10.1080/10615809708249298 

Nasser, F., & Wisenbaker, J. (2003). A monte carlo study investigating the impact of item 

parceling on measures of fit in confirmatory factor analysis. Educational and 

Psychological Measurement, 63(5), 729-757. 

 https://doi.org/10.1177/0013164403258228 

Newsom, J. (2020). Missing Data and Missing Data Estimation in SEM. 

http://web.pdx.edu/~newsomj/semclass/ho_missing.pdf 

https://doi.org/10.1177/0049124117701488
https://doi.org/10.1111/j.1745-3984.1993.tb00428.x
https://doi.org/10.1207/S15324818AME1601_4
https://doi.org/10.1080/10615809708249298
https://doi.org/10.1177/0013164403258228
http://web.pdx.edu/~newsomj/semclass/ho_missing.pdf


207 

 

 

 

Newsom, J. (2021). Item Response Models [PowerPoint slides]. Categorical Data Analysis. 

http://web.pdx.edu/~newsomj/cdaclass/ho_irt.pdf 

Ober, T. M., Coggins, M. R., Rebouças-Ju, D., Suzuki, H., & Cheng, Y. (2021). Effect of teacher 

support on students’ math attitudes: Measurement invariance and moderation of students' 

background characteristics. Contemporary Educational Psychology, 66, 101988. 

https://doi.org/10.1016/j.cedpsych.2021.101988 

Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: 

The state of the art and future directions for psychological research. Developmental 

Review, 41, 71-90. https://doi.org/10.1016/j.dr.2016.06.004 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data 

Analysis Methods (2nd ed.). Thousand Oaks, CA: Sage. 

Reilly, D., Neumann, D. L., & Andrews, G. (2019). Investigating gender differences in 

mathematics and science : Results from the 2011 trends in mathematics and science 

survey. Research in Science Education (Australasian Science Education Research 

Association), 49(1), 25-50. https://doi.org/10.1007/s11165-017-9630-6 

Remler, D. K., & Van Ryzin, G. G. (2011). Research methods in practice: Strategies for 

description and causation. Sage Publications, Inc.  

Rhemtulla, M. (2016). Population performance of SEM parceling strategies under measurement 

and structural model misspecification. Psychological Methods, 21(3), 348–368. 

https://doi.org/10.1037/met0000072 

Riegle-Crumb, C., Moore, C., & Ramos-Wada, A. (2011). Who wants to have a career in science 

or math? exploring adolescents’ future aspirations by gender and race/ethnicity. Science 

Education, 95(3), 458–476. https://doi.org/10.1002/sce.20431 

http://web.pdx.edu/~newsomj/cdaclass/ho_irt.pdf
https://doi.org/10.1016/j.cedpsych.2021.101988
https://doi.org/10.1016/j.dr.2016.06.004
https://doi.org/10.1007/s11165-017-9630-6
https://doi.org/10.1037/met0000072
https://doi.org/10.1002/sce.20431


208 

 

 

 

Rocha, C. M., & Chelladurai, P. (2012). Item parcels in structural equation modelling: An 

applied study in sport management. International Journal of Psychology and Behavioral 

Sciences, 2(1), 46-53. https://doi:10.5923/j.ijpbs.20120201.07 

Rushton, J. P., Brainerd, C. J., & Pressley, M. (1983). Behavioral development and construct 

validity: The principle of aggregation. Psychological Bulletin, 94(1), 18–38. 

https://doi.org/10.1037//0033-2909.94.1.18 

Rutkowski, L., & Svetina, D. (2014). Assessing the hypothesis of measurement invariance in the 

context of large-scale international surveys. Educational and Psychological 

Measurement, 74(1), 31-57. https://doi.org/10.1177/0013164413498257 

Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or d 

detection of misspecifications? Structural Equation Modeling, 16, 561–582. 

https://doi.org/10.1080/10705510903203433 

Sass, D. A., Schmitt, T. A., & Marsh, H. W. (2014). Evaluating model fit with ordered 

categorical data within a measurement invariance framework: A comparison of 

estimators. Structural Equation Modeling, 21(2), 167-180. 

https://doi.org/10.1080/10705511.2014.882658 

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the Fit of Structural 

Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. 

Methods of Psychological Research Online, 8(2), 23-74. 

Schmitt, N., & Ali, A. A. (2015). The practical importance of measurement invariance. In C. E. 

Lance, R. J. Vandenberg, C. E. Lance, & R. J. Vandenberg (Eds.), More statistical and 

methodological myths and urban legends (pp. 327–346). New York, NY: 

Routledge/Taylor & Francis Group. https://doi.org/10.4324/9780203775851-25 

https://doi:10.5923/j.ijpbs.20120201.07
https://doi.org/10.1037/0033-2909.94.1.18
https://doi.org/10.1177/0013164413498257
https://doi.org/10.1080/10705510903203433
https://doi.org/10.1080/10705511.2014.882658


209 

 

 

 

Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and 

implications. Human Resource Management Review, 18(4), 210-222.  

https://doi.org/10.1016/j.hrmr.2008.03.003 

Scholten, S., Velten, J., Bieda, A., Zhang, X. C., & Margraf, J. (2017). Testing measurement 

invariance of the depression, anxiety, and stress scales (DASS-21) across four countries. 

Psychological Assessment, 29(11), 1376–1390. https://doi.org/10.1037/pas0000440 

Sharma, S., Durvasula, S., & Ployhart, R. E. (2012). The analysis of mean differences using 

mean and covariance structure analysis: Effect size estimation and error rates. 

Organizational Research Methods, 15(1), 75-102. 

https://doi.org/10.1177/1094428111403154  

Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). Understanding the model size effect on SEM fit 

indices. Educational and Psychological Measurement, (2), 310-334. 

https://doi.org/10.1177/1073191117711020 

Sijtsma, K., & Junker, B. W. (2006). Item response theory: Past performance, present 

developments, and future expectations. Behaviormetrika, 33(1), 75-102. 

https://doi.org/10.2333/bhmk.33.75 

Sivo, S. A., Fan, X., Witta, E. L., & Willse, J. T. (2006). The search for “optimal” cutoff 

properties: Fit index criteria in structural equation modeling. The Journal of Experimental 

Education, 74(3), 267–288. https://doi.org/10.3200/JEXE.74.3.267-288 

Spearman, C. (1904). 'General intelligence,' objectively determined and measured. The American 

Journal of Psychology, 15(2), 201–293. https://doi.org/10.2307/1412107  

 

https://doi.org/10.1016/j.hrmr.2008.03.003
https://doi.org/10.1037/pas0000440
https://doi.org/10.1177/1094428111403154
https://doi.org/10.1177/1073191117711020
https://psycnet.apa.org/doi/10.2333/bhmk.33.75
https://doi.org/10.3200/JEXE.74.3.267-288
https://psycnet.apa.org/doi/10.2307/1412107


210 

 

 

 

Stark, S., Chernyshenko, O. S., & Drasgow, F. (2006). Detecting differential item functioning 

with confirmatory factor analysis and item response theory: Toward a unified strategy. 

Journal of Applied Psychology, 91(6), 1292–1306. https://doi.org/10.1037/0021-

9010.91.6.1292 

Steenkamp, J. B. E. M., & Baumgartner, H. (1998). Assessing measurement invariance in Cross‐

National consumer research. The Journal of Consumer Research, 25(1), 78-107. 

https://doi.org/10.1086/209528 

Steiger, J. H. (1989). EzPATH: A supplementary module for SYSTAT and SYGRAPH. 

Evanston, IL: SYSTAT. 

Steinmetz, H. (2013). Analyzing observed composite differences across groups: Is partial 

measurement invariance enough? Methodology: European Journal of Research Methods 

for the Behavioral and Social Sciences, 9(1), 1-12. https://doi.org/10.1027/1614-

2241/a000049 

Sullivan, G. M., & Feinn, R. (2012). Using effect size-or why the P value is not enough. Journal 

of Graduate Medical Education, 4(3), 279-282. https://doi.org/10.4300/JGME-D-12-

00156.1 

Sun, S., Pan, W., & Wang, L. L. (2010). A comprehensive review of effect size reporting and 

interpreting practices in academic journals in education and psychology. Journal of 

Educational Psychology, 102(4), 989-1004. https://doi.org/10.1037/a0019507 

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Needham, MA: 

Allyn and Bacon. 

 

https://doi.org/10.1037/0021-9010.91.6.1292
https://doi.org/10.1037/0021-9010.91.6.1292
https://doi.org/10.1086/209528
https://doi.org/10.1027/1614-2241/a000049
https://doi.org/10.1027/1614-2241/a000049
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.1037/a0019507


211 

 

 

 

Tanaka, J. S. (1993). Multifaceted conceptions of fit in structural equation models. In K. A. 

Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 10-39). Newbury 

Park, CA: Sage.  

Tang, J., & Averett, C. (2018). Trends in International Mathematics and Science Study (TIMSS) 

2015 U.S. public-use datafile. Institute of Education Sciences. Retrieved June 16, 2018, 

from https://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=2018021 

Templin, J. (2017). EPSY 906/CLDP 948 Example 7A. Retrieved Jan 30, 2023, from 

https://jonathantemplin.com/wp-

content/uploads/2017/08/EPSY906_Example07a_CFA_MG_Invariance.pdf 

Teresi, J. A. (2006). Overview of quantitative measurement methods: Equivalence, invariance, 

and differential item functioning in health applications. Medical Care, 44(11), S39-S49. 

https://doi.org/10.1097/01.mlr.0000245452.48613.45 

Thompson, B., & Melancon, J. (1996). Using item “testlets/parcels” in confirmatory factor 

analysis: An example using the PPDP-78. Paper presented at the annual meeting of the 

Mid-South Educational Research Association, Tuscaloosa, AL 

Treiblmaier, H., & Filzmoser, P. (2009). Benefits from using continuous rating scales in online 

survey research. In Proceedings of the Institut f. Statistik u. Wahrscheinlichkeitstheorie, 

Forschungsbericht SM-2009-4, November 2009. 

Tucker, L., & Lewis, C. (1973). A Reliability Coefficient for Maximum Likelihood Factor 

Analysis. Psychometrica, 38(1), 1–10. https://doi.org/10.1007/BF02291170 

 

 

https://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=2018021
https://doi.org/10.1097/01.mlr.0000245452.48613.45
https://doi.org/10.1007/BF02291170


212 

 

 

 

Tyrell, F. A., Yates, T. M., Widaman, K. F., Reynolds, C. A., & Fabricius, W. V. (2019). Data 

harmonization: Establishing measurement invariance across different assessments of the 

same construct across adolescence. Journal of Clinical Child and Adolescent Psychology, 

48(4), 555-567. 

 https://doi.org/10.1080/15374416.2019.1622124 

University of California, Los Angeles. (n.d.). Confirmatory factor analysis (CFA) in R with 

lavaan. IDRE Stats-Statistical Consulting. 

https://stats.idre.ucla.edu/r/seminars/rcfa/#s2a 

Ursachi, G., Horodnic, I. A., & Zait, A. (2015). How reliable are measurement scales? External 

factors with indirect influence on reliability estimators. Procedia Economics and 

Finance, 20, 679-686. https://doi.org/10.1016/S2212-5671(15)00123-9 

Vandenberg, R. J. (2002). Toward a further understanding of and improvement in measurement 

invariance methods and procedures. Organizational Research Methods, 5(2), 139-158. 

https://doi.org/10.1177/1094428102005002001 

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance 

literature: Suggestions, practices, and recommendations for organizational research. 

Organizational Research Methods, 3(1), 4-70. 

https://doi.org/10.1177/109442810031002 

Vandenberg, R. J., & Morelli, N. A. (2016). A contemporary update on testing for measurement 

equivalence and invariance. In Meyer, J.P. (Ed.), The Handbook of employee commitment 

(pp. 449-461). Cheltenham, UK: Edward Elgar Publishing. 

https://doi.org/10.1080/15374416.2019.1622124
https://stats.idre.ucla.edu/r/seminars/rcfa/#s2a
https://doi.org/10.1016/S2212-5671(15)00123-9
https://doi.org/10.1177/1094428102005002001
https://doi.org/10.1177/109442810031002


213 

 

 

 

van de Schoot, R., Schmidt, P., De Beuckelaer, A., Lek, K., & Zondervan-Zwijnenburg, M. 

(2015). Editorial: Measurement Invariance. Frontiers in Psychology, 6(7), 10–

13.https://doi.org/10.3389/fpsyg.2015.01064 

Walker, C. M., Zhang, B., Banks, K., & Cappaert, K. (2012). Establishing Effect Size Guidelines 

for Interpreting the Results of Differential Bundle Functioning Analyses Using 

SIBTEST. Educational and Psychological Measurement, 72(3), 415–434. 

https://doi.org/10.1177/0013164411422250 

Wang, X. (2013). Why students choose STEM majors: Motivation, high school learning, and 

postsecondary context of support. American Educational Research Journal, 50(5), 1081-

1121. https://doi.org/10.3102/0002831213488622 

Watt, H. M., Shapka, J. D., Morris, Z. A., Durik, A. M., Keating, D. P., & Eccles, J. S. (2012). 

Gendered motivational processes affecting high school mathematics participation, 

educational aspirations, and career plans: a comparison of samples from Australia, 

Canada, and the United States. Developmental Psychology, 48(6), 1594-1611. 

https://doi.org/10.1037/a0027838 

Whittaker, T. A. (2012). Using the modification index and standardized expected parameter 

change for model modification. The Journal of Experimental Education, 80(1), 26-44. 

https://doi.org/10.1080/00220973.2010.531299 

Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal 

structural equation models: Measuring the same construct across time. Child 

Development Perspectives, 4(1), 10-18.https://doi.org/10.1111/j.1750-8606.2009.00110.x  

 

https://doi.org/10.3389/fpsyg.2015.01064
https://doi.org/10.1177/0013164411422250
https://doi.org/10.3102/0002831213488622
https://doi.org/10.1037/a0027838
https://doi.org/10.1080/00220973.2010.531299
https://doi.org/10.1111/j.1750-8606.2009.00110.x


214 

 

 

 

Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological 

instruments: Applications in the substance use domain. In K. J. Bryant, M. Windle, & S. 

G. West (Eds.), The science of prevention: Methodological advances from alcohol and 

substance abuse research (pp. 281–324). Washington, DC: American Psychological 

Association. 

Yoon, M., & Kim, E. S. (2014). A comparison of sequential and nonsequential specification 

searches in testing factorial invariance. Behavior Research Methods, 46(4), 1199-1206. 

https://doi.org/10.3758/s13428-013-0430-2 

Yoon, M., & Lai, M. H. C. (2018). Testing factorial invariance with unbalanced samples. 

Structural Equation Modeling, 25(2), 201-213. 

https://doi.org/10.1080/10705511.2017.1387859 

Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using data-based 

specification searches: A monte carlo study. Structural Equation Modeling, 14(3), 435–

463. https://doi.org/10.1080/10705510701301677  

Yuan, K., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance 

structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165-

200. https://doi.org/10.1111/0081-1750.00078 

Zhou, Y., Xu, J., & Rief, W. (2020). Are comparisons of mental disorders between Chinese and 

German students possible? An examination of measurement invariance for the PHQ-15 , 

PHQ-9 and GAD-7. BMC Psychiatry, 20(1), 1–11. https://doi.org/10.1186/s12888-020-

02859-8 

 

  

https://doi.org/10.3758/s13428-013-0430-2
https://doi.org/10.1080/10705511.2017.1387859
https://doi.org/10.1080/10705510701301677
https://doi.org/10.1111/0081-1750.00078
https://doi.org/10.1186/s12888-020-02859-8
https://doi.org/10.1186/s12888-020-02859-8


215 

 

 

 

APPENDIX A 

FACTOR LOADINGS OF MATH  

SUBSCALE ITEMS 
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Table A1 

Like Learning Math 

Items Factor Loading 

I like mathematics .91 

I enjoy learning mathematics .88 

I like to solve mathematics problems .88 

I look forward to mathematics class .87 

Mathematics is one of my favorite subjects .87 

I like any schoolwork that involves numbers .82 

I learn many interesting things in mathematics .76 

Mathematics is boring .75 

I wish I did not have to study mathematics .70 

 

Table A2 

Mathematics Lesson 

 
Items Factor Loading 

My teacher is good at explaining mathematics .86 

My teacher has clear answers to my questions .85 

My teacher is easy to understand .83 

My teacher does a variety of things to help us learn .81 

My teacher tells me how to do better when I make a mistake .81 

My teacher listens to what I have to say .80 

I am interested in what my teacher says .78 

My teacher gives me interesting things to do .79 

My teacher lets me show what I have learned .77 

I know what my teacher expects me to do .67 
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Table A3 

Confidence in Math 

 
Items Factor Loading 

Mathematics is not one of my strengths  .82 

Mathematics is harder for me than any other subject .82 

I learn things quickly in mathematics .79 

Mathematics makes me confused .78 

I usually do well in mathematics .77 

Mathematics is more difficult for me than for many of my classmates .76 

I am good at working out difficult mathematics problems .76 

Mathematics makes me nervous .63 

My teacher tells me I am good at mathematics .58 

 

Table A4 

Valuing Mathematics 

 
Items Factor Loading 

It is important to learn about mathematics to get ahead in the world .83 

Learning mathematics will give me more job opportunity when I am an adult .82 

It is important to do well in mathematics .78 

I need to do well in mathematics to get the job I want .77 

I need to do well in mathematics to get into the university of my choice  .73 

I think learning mathematics will help me in my daily life .72 

I need mathematics to learn other school subjects .70 

My parents think that it is important that I do well in mathematics .65 

I would like a job that involves using mathematics .60 
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APPENDIX B 

DESCRIPTIVE INFORMATION  
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Figure B1 

Pattern of missingness 
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Table B1 

 

Number of Subsamples in Each Category of Design Conditions and Research Questions 

 
Independent 

Variables 

Number of Subsamples  

Q1 Q2 Q3 Q4 Q5 

Cate Cont Cate Cont Cate Cont Cate Cont Gen Race 

Total Sample Size 

300 12 18 12 8 7 7 7 5 7 5 

400 12 18 12 11 4 10 4 9 8 5 

450 12 18 12 13 6 13 5 9 7 7 

600 12 18 12 14 5 11 5 9 6 8 

900 12 18 12 16 3 11 1 9 5 5 

1200 12 18 12 18 6 16 3 10 6 7 

1500 12 18 12 18 0 15 0 8 5 3 

Type of Indicator Variable Technique 

P1 42 0 42 0 6 0 3 0 0 3 

P2 42 0 42 0 25 0 22 0 12 10 

P3 0 42 0 36 0 31 0 24 15 9 

P4 0 42 0 28 0 22 0 19 9 7 

P5 0 42 0 34 0 30 0 16 8 11 

Ratio of Group Sample Sizes 

1:1 28 42 28 34 10 30 8 24 16 16 

1:1.5 28 42 28 30 7 24 6 19 14 11 

1:2 28 42 28 34 14 29 11 16 14 13 

Number of Groups 

Two (Gender) 42 63 42 54 17 43 12 32 44 0 

Three (Race) 42 63 42 44 14 40 13 27 0 40 

 

Note. Cate = Categorical indicators-based subsample
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APPENDIX C 

R CODES FOR ANALYSIS 
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C1 EXAMINING MISSING VALUE 

install.packages('VIM') 

library('VIM') 

install.packages('mice') 

library('mice') 

 

##set working directory, extract file and rename the file to screen missing data### 

setwd('C:/Users/kriti/OneDrive/Documents/Dissertation/Data analysis/R/') 

 

##Read Excel files### 

library(readxl) 

original_clean_all <- read_excel("original.clean.all.xlsx") 

TR=original_clean_all 

#### replace 9 with NA  

TR[TR==9]<-NA 

 

## INFLUX AND OUTFLUX WITH IDS ## 

FR<-TR[c(3:75,78:79)] 

 

## INFLUX AND OUTFLUX WITH IDS to reduce noise### 

SR<-TR[c(3:11,13:39,76:79)] 

 

## MISSING PROPORTIONS ## 

(proportionMissing = sum(is.na(TR))/prod(dim(TR))) 

  

## INFLUX AND OUTFLUX ## 

flux(SR) 

fluxplot(SR) 

 

## DATA MATRIX PLOT ## 

## SHADING INDICATES MAGNITUDE, RED INDICATES MISSING ## 

matrixplot(TR) 

matrixplot(FR) 

matrixplot(SR) 

## AGGREGATION PLOT ## 

aggr(SR) 

 

#Little’s test### 

install.packages('misty') 

library('misty') 

na.test(SR) 

##################################################################  
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C2 FISHER’S EXACT TEST AND MOSAIC  

PLOT 

 

### install all the required packages to run Fisher’s Exact Test#### 

install.packages("RVAideMemoire") 

library(RVAideMemoire) 

install.packages("readxl") 

library(readxl) 

library(openxlsx) 

install.packages("vcd") 

library(vcd) 

install.packages("grid") 

library(grid) 

 

#########read excel file into Rstudio################################### 

Q1_2_chisquare_mlr_wlsmv_together <- read_excel("Dissertation/Results/final.q1/Q1.2.chisqua

re.mlr.wlsmv.together.xlsx") 

Q1.T= Q1_2_chisquare_mlr_wlsmv_together  

attach(Q1.T) 

Q1.TF<-data.frame(Q1.T$Parcels,Q1.T$Invariance) 

attach(Q1.TF) 

Q1.B=table(Q1.T.Parcels,Q1.T.Invariance) 

 

######### Run Fisher’s exact test for Type of Indicator Variable Technique######## 

write.xlsx(A, "fishertest") 

dimnames(Q1.B)<-list(Parcels=c("P1","P2","P3","P4","P5"),Invariace=c("Full","Partial","None"

)) 

fisher.test(Q1.B,simulate.p.value=TRUE) 

a<-fisher.test(Q1.B,simulate.p.value=TRUE) 

fisher.multcomp(Q1.B,p.method = "none") 

print (fisher.multcomp(Q1.B,p.method = "none"),digits=22) 

# Compute Cramer's V for Fisher's exact test 

assocstats(Q1.B, method="fisher")$Cramer 

par(mar = c(4, 4, 4, 2) + 0.1, cex = .8) 

 

##Print mosaic plot based on frequencies 

mosaicplot(Q1.B, color=c("brown", "gold", "green"), xlab ="Type of Indicator Variable 

Technique", ylab = "Results of Configural Invariance", type="Expected, gp=shading_hsv") 

 

###Output tables and results#### 

sink("output.txt") 

fisher.test(B,simulate.p.value=TRUE) 

fisher.multcomp(Q1.B,p.method = "none") 

print('fisher.multcomp(B,p.method = "none"))') 

sink() 
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APPENDIX D 

MPLUS SYNTAX FOR ANALYSIS 
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D1 MPLUS SYNTAX TO TEST ICC VALUES 

 

title: CFA Multiple Group Invariance 

Data: file is original.clean.allitems.withoutheader.csv;  

variable: names = school !id of US schools in TIMSS 2015 

                    class !id of US eighth grade classes in TIMSS 2015 

                    stud !id of eighth grade US students in TIMSS 2015 

                   l1-l3 ! items pertaining to Learning Mathematics 

                   m1-m3 ! items pertaining to Mathematics lesson   

                   cf1-cf3 ! items pertaining to Confidence in math  

                   cc1-cc3 ! items pertaining to Concepts of Math 

                     jkzone !stratification  

                     jkrep 

                     gender !grouping variable 

                     race !grouping variable 

                     totwt !total weight from TIMSS 2015 

                     normwt; !normalized total weight for each subsample 

  

           Usevariables = l1-l9   m2-m10  cf1-cf9  cc1-cc9; !all indicators for latent variable 

           Categorical= l1-l9 m2-m10  cf1-cf9 cc1-cc9; !categorical var 

           Missing = all (9); !Missing values identified as 9 

           cluster = school; !Clustered by school 

           stratification=jkzone; !Specification of stratification 

           grouping=race(1=white 2=hispanic 3=others); !use this grouping only for cont 

           weight=normwt; !Applied normwt as the weighting variable for each subsample  

 

 Analysis:  

Estimator= WLSMV; 

Type = twolevel basic; 

 

Output: sampstat standardized residual; 
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D2 MPLUS SYNTAX TO CALCULATE  

COEFFICENTOMEGA WITH  

WLSMV 

 

title: reliability estimates for categorical items with 4 response using wlsmv 

data: file = race.balanced.300.all.items.csv; 

variable: names = school !id of US schools in TIMSS 2015 

                      class !id of US eighth grade classes in TIMSS 2015 

                      stud !id of eighth grade US students in TIMSS 2015 

                      l1-l9 !items pertaining to Learning Mathematics 

                      m2-m10 !items pertaining to Mathematics Lesson 

                      cf1-cf9 !items pertaining to Confidence in Math 

                     cc1-cc9 !items pertaining to Concepts of Math 

           Usevariables = l1-l9  m2-m10  cf1-cf9  cc1-cc9; !all indicators for latent variable 

           Categorical= l1-l9 m2-m10  cf1-cf9 cc1-cc9; !categorical var 

           Missing = all (9); !Missing values identified as 9 

 

MODEL: 

  ! Factor 1 

  F1 BY L1-L9*(I1-I9); 

  L1(E1); L2(E2); L3(E3); 

  L4(E4); L5(E5); L6(E6); 

  L7(E7); L8(E8);L9(E9); 

  F1@1; 

 

  ! Factor 2 

  F2 BY M2-M10*(I10-I18); 

  M2 (E10); M3 (E11); M4 (E12);  

  M5 (E13); M6 (E14); M7 (E15); 

  M8 (E16); M9 (E17); M10 (E18); 

  F2@1; 

 

  ! Factor 3 

  F3 BY CF1-CF9*(I19-I27); 

  CF1(E19); CF2(E20); CF3(E21); 

  CF4(E22); CF5(E23); CF6(E24); 

  CF7(E25); CF8(E26); CF9(E27); 

  F3@1; 

 

  ! Factor 4 

  F4 BY CC1-CC9*(I28-I36); 

  CC1(E28); CC2(E29); CC3(E30); 

  CC4(E31); CC5(E32); CC6(E33); 

  CC7(E34); CC8(E35); CC9(E36); 

  F4@1; 

 



227 

 

 

 

MODEL CONSTRAINT: 

  NEW SUMLOAD1 SUMVAR1 OMEGA1; 

  SUMLOAD1 = (I1+I2+I3+I4+I5+I6+I7+I8+I9)**2; 

  SUMVAR1 = E1+E2+E3+E4+E5+E6+E7+E8+E9; 

  OMEGA1 = SUMLOAD1/(SUMLOAD1+SUMVAR1); 

 

  NEW SUMLOAD2 SUMVAR2 OMEGA2; 

  SUMLOAD2 = (I10+I11+I12+I13+I14+I15+I16+I17+I18)**2; 

  SUMVAR2 = E10+E11+E12+E13+E14+E15+E16+E17+E18; 

  OMEGA2 = SUMLOAD2/(SUMLOAD2+SUMVAR2); 

   

  NEW SUMLOAD3 SUMVAR3 OMEGA3; 

  SUMLOAD3 = (I19+ I20+I21+I22+I23+I24+I25+I26+I27)**2; 

  SUMVAR3 = E19+E20+E21+E22+E23+E24+E25+E26+E27; 

  OMEGA3 = SUMLOAD3/(SUMLOAD3+SUMVAR3); 

   

  NEW SUMLOAD4 SUMVAR4 OMEGA4; 

  SUMLOAD4 = (I28+I29+I30+I31+I32+I33+I34+I35+I36)**2; 

  SUMVAR4 = E28+E29+E30+E31+E32+E33+E34+E35+E36; 

  OMEGA4 = SUMLOAD4/(SUMLOAD4+SUMVAR4); 

 

Analysis: 

Estimator=WLSMV; 

Parameterization=theta; 

 

output: standardized sampstat; ! fully standardized sol 
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D3 MPLUS SYNTAX TO CALCULATE 

COEFFICENTOMEGA WITH MLR 

 

title: reliability estimates for continuous parceled items using MLR 

data: file = race.unbalanced.skewness.900.2.csv; 

variable: names = school !id of US schools in TIMSS 2015 

                      class !id of US eighth grade classes in TIMSS 2015 

                      stud !id of eighth grade US students in TIMSS 2015 

                      l1-l9 !items pertaining to Learning Mathematics 

                      m2-m10 !items pertaining to Mathematics Lesson 

                      cf1-cf9 !items pertaining to Confidence in Math 

                     cc1-cc9 !items pertaining to Concepts of Math 

            Usevariables = l1-l3 m1-m3 cf1-cf3 cc1-cc3; 

            Missing = all (9); !Specify all missing values 

 

MODEL: 

    ! Factor 1 

    F1 BY L1-L3*(I1-I3); 

    L1(E1); L2(E2); L3(E3); 

    F1@1; 

 

    ! Factor 2 

    F2 BY M1-M3*(I4-I6); 

    M1 (E4); M2 (E5); M3 (E6); 

    F2@1; 

 

    ! Factor 3 

    F3 BY CF1-CF3*(I7-I9); 

    CF1(E7); CF2(E8); CF3(E9); 

    F3@1; 

 

    ! Factor 4 

    F4 BY CC1-CC3*(I10-I12); 

    CC1(E10); CC2(E11); CC3(E12); 

    F4@1; 

 

 MODEL CONSTRAINT: 

    NEW SUMLOAD1 SUMVAR1 OMEGA1; 

    SUMLOAD1 = (I1+I2+I3)**2; 

    SUMVAR1 = E1+E2+E3; 

    OMEGA1 = SUMLOAD1/(SUMLOAD1+SUMVAR1); 

 

    NEW SUMLOAD2 SUMVAR2 OMEGA2; 

    SUMLOAD2 = (I4+I5+I6)**2; 

    SUMVAR2 = E4+E5+E6; 

    OMEGA2 = SUMLOAD2/(SUMLOAD2+SUMVAR2); 
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    NEW SUMLOAD3 SUMVAR3 OMEGA3; 

    SUMLOAD3 = (I7+I8+I9)**2; 

    SUMVAR3 = E7+E8+E9; 

    OMEGA3 = SUMLOAD3/(SUMLOAD3+SUMVAR3); 

 

    NEW SUMLOAD4 SUMVAR4 OMEGA4; 

    SUMLOAD4 = (I10+I11+I12)**2; 

    SUMVAR4 = E10+E11+E12; 

    OMEGA4 = SUMLOAD4/(SUMLOAD4+SUMVAR4); 

 

 Analysis: 

      Estimator=MLR; 

 

 output: standardized sampstat; ! fully standardized sol 
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D4 MODEL 1A - EXAMPLE OF MPLUS SYNTAX  

FOR CONFIGURAL INVARIANCE TEST  

OF CATEGORICAL INDICATORS 

 
title: CFA Multi Group Configural invariance test of categorical items with 4 response options with 

WLSMV  

data: file = race.unbalanced.allitems.1200.2.csv; 

variable: names = school  

                    class !id of US eigth grade classes in TIMSS 2015 

                    stud !id of eight grade US students in TIMSS 2015  

                    l1-l9 !items pertaining to "Learning Mathematics" 

                    m2-m10 !items pertaining to "Mathematics lesson"   

                    cf1-cf9 !items pertaining to "Confidence in math"  

                    cc1-cc9 !items pertaining to "Concepts of Math"   

                    jkzone 

                    jkrep 

                    gender 

                    race 

                    totwt 

                    normwt;  

           Usevariables = l1-l9 m2-m10  cf1-cf9  cc1-cc9; !all indicators for latent variable 

           Categorical= l1-l9 m2-m10  cf1-cf9 cc1-cc9; !categorical var 

           Missing = all (9); !Missing values identified as 9 

           cluster = school; !Clustered by school 

           stratification=jkzone; !Specification of stratification 

           grouping=race(1=white 2=hispanic 3=others); !use this grouping only for cont 

           weight=normwt; !Applied normwt as the weighting variable for each subsample  

Analysis: 

          Type= complex; !Takes care of clustering 

          Estimator=wlsmv;  

          Parameterization=theta; 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p < .05 for df=1 

 

!!Configural Model for White Reference Group 

MODEL:  

!Factor loadings all freely estimated 

factor1 by l1-l9*; 

factor2 by m2-m10*; 

factor3 by cf1-cf9*; 

factor4 by cc1-cc9*; 

!item threshold of all the indicators all freely estimated 

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 
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[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 

 

!! Configural model for Hispanic alternative group  

Model Hispanic:  

!Factor loadings all freely estimated 

factor1 by l1-l9*; 

factor2 by m2-m10*; 

factor3 by cf1-cf9*; 

factor4 by cc1-cc9*; 

!item threshold all freely estimated 

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 
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! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 

 

!!Configural model for Others alternative group 

Model Others:  

!Factor loadings all freely estimated 

factor1 by l1-l9*; 

factor2 by m2-m10*; 

factor3 by cf1-cf9*; 

factor4 by cc1-cc9*; 

!item threshold all freely estimated 

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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D5 MODEL 1B-EXAMPLE OF MPLUS SYNTAX  

FOR METRIC INVARIANCE  

TEST OF CATEGORICAL 

 
Analysis: 

          Type= complex; !Takes care of clustering 

          Estimator=wlsmv; 

          Parameterization=theta; 

          difftest = race.unbalanced.allitems.1200.2.configural.dat; 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p<.05 for df=1 

Savedata: difftest = race.unbalanced.allitems.1200.2.metric.dat; 

 

!!Metric model for White Reference group 

MODEL:  

!Factor loadings all freely estimated 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item threshold all  

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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!!Metric model for Hispanic alternative group 

Model Hispanic:  

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item threshold all  

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 

 

!!Metric model for Other alternative group 

Model Others:  

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item threshold all  

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 
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[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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D6 MODEL 1C-EXAMPLE OF MPLUS SYNTAX  

FOR SCALAR INVARIANCE TEST OF  

CATEGORICAL INDICATORS 

 
Analysis: 

          Type= complex; !Takes care of clustering 

          Estimator=wlsmv; 

          Parameterization=theta; 

          difftest = race.unbalanced.allitems.1200.2.metric.dat; 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p<.05 for df=1 

Savedata: difftest = race.unbalanced.allitems.1200.2.scalar.dat; 

 

!!Scalar model for White Reference Group 

Model:  

!Factor loadings all freely estimated 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item threshold all  

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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!!Scalar model for Hispanic alternative Group 

Model Hispanic:  

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item thresholds constrained to reference group 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 

 

!!Scalar model for Others alternative Group 

Model Others:  

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item thresholds constrained to reference group 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 
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D7 MODEL 1D-EXAMPLE OF MPLUS SYNTAX  

FOR STEP 1 OF RESIDUAL INVARIANCE  

TEST OF CATEGORICAL INDICATORS 

 
Analysis: 

          Type= complex; !Takes care of clustering 

          Estimator=wlsmv; 

          Parameterization=theta; 

         !difftest = race.unbalanced.allitems.1200.2.residfree.dat; 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p<.05 for df=1 

Savedata: difftest = race.unbalanced.allitems.1200.2.residfree.dat; 

 

!! Residual model for White reference group 

MODEL: 

!Factor loadings all freely estimated 

factor1 by l1-l9*; 

factor2 by m2-m10*; 

factor3 by cf1-cf9*; 

factor4 by cc1-cc9*; 

!item threshold all  

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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!!Residual model for Hispanic alternative group 

Model Hispanic:  

!Factor loadings all fixed to reference group 

!item thresholds constrained to reference group 

!residual variances all freed for step 1 of testing residual invariance 

  l1-l9*; 

  m2-m10*; 

  cf1-cf9*; 

  cc1-cc9*; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 

 

!!Residual model for Others alternative group 

Model Others: 

!Factor loadings all fixed to reference group 

!item thresholds constrained to reference group 

!residual variances all freed for step 1 of testing residual invariance 

  l1-l9*; 

  m2-m10*; 

  cf1-cf9*; 

  cc1-cc9*; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 
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D8 MODEL 1E-EXAMPLE OF MPLUS SYNTAX  

FOR STEP 2 OF RESIDUAL INVARIANCE  

TEST OF CATEGORICAL INDICATORS 

 
Analysis: 

          Type= complex; !Takes care of clustering 

          Estimator=wlsmv; 

          Parameterization=theta; 

          difftest = race.unbalanced.allitems.1200.2.residfree.dat; 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p<.05 for df=1 

Savedata: difftest = race.unbalanced.allitems.1200.2.residfix.w1mod.dat; 

 

!! Residual model for White reference group 

MODEl:  

!Factor loadings all freely estimated 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item threshold all freely estimated 

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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!!Residual model for Hispanic alternative group 

Model Hispanic:  

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item thresholds constrained to reference group 

!residual variances all freed for step 1 of testing residual invariance 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 

 

!! Residual model for Others alternative group 

Model Others: 

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item thresholds constrained to reference group with 1 modification made 

m6*; 

!residual variances all freed for step 1 of testing residual invariance 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 
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D9 MODEL 1F-EXAMPLE OF MPLUS SYNTAX  

FOR TEST OF LATENT MEANS FOR 

 CATEGORICAL INDICATORS 

 
Analysis: 

          Type= complex; !Takes care of clustering 

          Estimator=wlsmv; 

          Parameterization=theta; 

          difftest = race.unbalanced.allitems.1200.2.metric.dat; 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p<.05 for df=1 

Savedata: difftest = race.unbalanced.allitems.1200.2.scalar.dat; 

 

!!Test of latent means model for White reference group 

MODEL: 

!Factor loadings all freely estimated 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item threshold all  

[l1$1 l2$1 l3$1 l4$1 l5$1 l6$1 l7$1 l8$1 l9$1*]; 

[l1$2 l3$2 l3$2 l4$2 l5$2 l6$2 l7$2 l8$2 l9$2*]; 

[l1$3 l3$3 l3$3 l4$3 l5$3 l6$3 l7$3 l8$3 l9$3*]; 

[m2$1 m3$1 m4$1 m5$1 m6$1 m7$1 m8$1 m9$1 m10$1*]; 

[m2$2 m3$2 m4$2 m5$2 m6$2 m7$2 m8$2 m9$2 m10$2*]; 

[m2$3 m3$3 m4$3 m5$3 m6$3 m7$3 m8$3 m9$3 m10$3*]; 

[cf1$1 cf2$1 cf3$1 cf4$1 cf5$1 cf6$1 cf7$1 cf8$1 cf9$1*]; 

[cf1$2 cf2$2 cf3$2 cf4$2 cf5$2 cf6$2 cf7$2 cf8$2 cf9$2*]; 

[cf1$3 cf2$3 cf3$3 cf4$3 cf5$3 cf6$3 cf7$3 cf8$3 cf9$3*]; 

[cc1$1 cc2$1 cc3$1 cc4$1 cc5$1 cc6$1 cc7$1 cc8$1 cc9$1*]; 

[cc1$2 cc2$2 cc3$2 cc4$2 cc5$2 cc6$2 cc7$2 cc8$2 cc9$2*]; 

[cc1$3 cc2$3 cc3$3 cc4$3 cc5$3 cc6$3 cc7$3 cc8$3 cc9$3*]; 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! Factor mean fixed to 0 for identification (Forced by Mplus) 

[factor1@0]; 

[factor2@0]; 

[factor3@0]; 

[factor4@0]; 
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!! Test of latent mean model for Hispanic alternative group 

Model Hispanic: 

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item thresholds constrained to reference group 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 

 

!!Test of latent mean model for Others alternative group 

Model Others: 

!Factor loadings all fixed to reference group 

factor1 by l1-l9* (L1-L9); 

factor2 by m2-m10* (M2-M10); 

factor3 by cf1-cf9*(CF1-CF9); 

factor4 by cc1-cc9*(CC1-CC9); 

!item thresholds constrained to reference group 

!residual variances all fixed for identification 

l1-l9@1; 

m2-m10@1; 

cf1-cf9@1; 

cc1-cc9@1; 

!factor variance fixed to 1 for identification 

factor1@1; 

factor2@1; 

factor3@1; 

factor4@1; 

 

! factor mean freed to test scalar invariance 

  [factor1*]; 

  [factor2*]; 

  [factor3*]; 

  [factor4*]; 
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D10 MODEL 2A-EXAMPLE OF MPLUS SYNTAX 

 FOR CONFIGURAL INVARIANCE TEST 

 FOR CONTINUOUS INDICATORS 

 WITH MLR 

 
title: CFA Multiple Group Invariance for continuous indicators with MLR 

data: file = race.unbalanced.loading.1200.2.csv; 

variable:  names = school !id of US schools in TIMSS 2015 

                    class !id of US eighth grade classes in TIMSS 2015 

                    stud !id of eighth grade US students in TIMSS 2015 

                   l1-l3 ! items pertaining to Learning Mathematics 

                   m1-m3 ! items pertaining to Mathematics lesson   

                   cf1-cf3 ! items pertaining to Confidence in math  

                   cc1-cc3 ! items pertaining to Concepts of Math 

                     jkzone !stratification  

                     jkrep 

                     gender !grouping variable 

                     race !grouping variable 

                     totwt !total weight from TIMSS 2015 

                     normwt; !normalized total weight for each subsample       

          Usevariables = l1-l3 m1-m3 cf1-cf3 cc1-cc3 ; !every variable in the model 

          Missing = all (9); !Missing values identified as 9 

          cluster = school; !Clustered by school 

          stratification=jkzone; !Specification of stratification 

          grouping=race(1=white 2=hispanic 3=others); !use this grouping only for cont 

          weight=normwt; !Applied normwt as the weighting variable for each subsample  

Analysis: 

    Type=complex; !Takes care of clustering 

    Estimator=MLR; !For continuous items whose residuals may not be normal 

output: standardized sampstat; ! fully standardized sol 

MODINDICES(5); ! For modification indices of p<.05 for df=1 

 

!! Configural model for White reference group 

Model:  

!Factor loadings all freely estimated 

  factor1 by l1-l3* (L1-L3); 

  factor2 by m1-m3* (M1-M3); 

  factor3 by cf1-cf3* (CF1-CF3); 

  factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts all freely estimated  

  [l1-l3*]; 

  [m1-m3*]; 

  [cf1-cf3*]; 

  [cc1-cc3*]; 

!residual variances all freely estimated 

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 
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 !factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

 

!! Configural model for Hispanic alternative group 

Model Hispanic:  

 !Factor loadings all freely estimated 

  factor1 by l1-l3*; 

  factor2 by m1-m3*; 

  factor3 by cf1-cf3*; 

  factor4 by cc1-cc3*; 

!item intercepts all freely estimated 

  [l1-l3*]; 

  [m1-m3*]; 

  [cf1-cf3*]; 

  [cc1-cc3*]; 

!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

!! Configural model for Others alternative group 

Model Other:  

 !Factor loadings all freely estimated 

  factor1 by l1-l3*; 

  factor2 by m1-m3*; 

  factor3 by cf1-cf3*; 

  factor4 by cc1-cc3*; 

 !item intercepts all freely estimated 

  [l1-l3*]; 

  [m1-m3*]; 

  [cf1-cf3*]; 

  [cc1-cc3*]; 
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!residual variances all freely estimated 

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 
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D11 MODEL 2B-EXAMPLE OF MPLUS SYNTAX  

FOR METRIC INVARIANCE TEST FOR  

CONTINUOUS INDICATORS  

WITH MLR 
Analysis: 

    Type=complex; !Takes care of clustering 

    Estimator=MLR; !For continuous items whose residuals may not be normal 

output: standardized sampstat; ! fully standardized solution, local model fit 

MODINDICES(5); 

 

!! Metric model for White reference group 

Model:  

 !Factor loadings all freely estimated 

  factor1 by l1-l3* (L1-L3); 

  factor2 by m1-m3* (M1-M3); 

  factor3 by cf1-cf3* (CF1-CF3); 

  factor4 by cc1-cc3* (CC1-CC3); 

 !item intercepts all freely estimated  

  [l1-l3*]; 

  [m1-m3*]; 

  [cf1-cf3*]; 

  [cc1-cc3*]; 

  !residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

  !factor variance fixed to 1 for identification 

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

 

!! Metric model for Hispanic alternative group 

Model:  

 !Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

 !item intercepts all freely estimated  

  [l1-l3*]; 

  [m1-m3*]; 

  [cf1-cf3*]; 

  [cc1-cc3*]; 
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!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

 !factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification 

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

 

!! Metric model for Others alternative group 

Model Others: 

!Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

 !item intercepts all freely estimated  

  [l1-l3*]; 

  [m1-m3*]; 

  [cf1-cf3*]; 

  [cc1-cc3*]; 

!residual variances all freely estimated -->just list item by itself, @=fixed, *=free 

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification -->just list factors by itself, @=fixed, *=free 

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 
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D12 MODEL 2C-EXAMPLE OF MPLUS SYNTAX 

 FOR SCALAR INVARIANCE TEST FOR  

CONTINUOUS INDICATORS  

WITH MLR 
Analysis: 

    Type=complex; !Takes care of clustering 

    Estimator=MLR; !For continuous items whose residuals may not be normal 

output: standardized sampstat; ! fully standardized solution, local model fit 

MODINDICES(5); 

 

!! Scalar model for White reference group 

Model:  

!Factor loadings all freely estimated 

  factor1 by l1-l3* (L1-L3); 

  factor2 by m1-m3* (M1-M3); 

  factor3 by cf1-cf3* (CF1-CF3); 

  factor4 by cc1-cc3* (CC1-CC3); 

 !item intercepts all freely estimated  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1-Icc3); 

!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

 

!! Scalar model for Hispanic alternative group 

Model Hispanic: 

 !Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts constrained to reference group  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1a Icc2 Icc3); 
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!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! factor mean freed to test scalar invariance 

[factor1*]; 

[factor2*]; 

[factor3*]; 

[factor4*]; 

 

!!Scalar model for Others alternative group 

Model Others:  

!Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts constrained to reference group  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1-Icc3); 

!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! factor mean freed to test scalar invariance 

[factor1*]; 

[factor2*]; 

[factor3*]; 

[factor4*]; 
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D13 MODEL 2D-EXAMPLE OF MPLUS SYNTAX 

FOR RESIDUAL INVARIANCE TEST  

FOR CONTINUOUS INDICATORS  

WITH MLR 

 
Analysis: 

    Type=complex; !Takes care of clustering 

    Estimator=MLR; !For continuous items whose residuals may not be normal 

 

output: standardized sampstat; ! fully standardized solution, local model fit 

MODINDICES(5); 

 

!! Residual model for White reference group 

Model:  

!Factor loadings all freely estimated 

  factor1 by l1-l3* (L1-L3); 

  factor2 by m1-m3* (M1-M3); 

  factor3 by cf1-cf3* (CF1-CF3); 

  factor4 by cc1-cc3* (CC1-CC3); 

 !item intercepts all freely estimated  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1-Icc3); 

!residual variances all freely estimated  

   l1-l3* (EI1-EI3);  

   m1-m3* (Em1-Em3); 

   cf1-cf3*(Ecf1-Ecf3); 

   cc1-cc3* (Ecc1-Ecc3); 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

 

!! Residual model for Hispanic alternative group 

Model:  

!Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 
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!item intercepts constrained to reference group  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1a Icc2 Icc3); 

!residual variances set equal to reference group 

   l1-l3* (EI1-EI2 EI3a);  

   m1-m3* (Em1-Em3); 

   cf1-cf3*(Ecf1-Ecf3); 

   cc1-cc3* (Ecc1-Ecc3); 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! factor mean freed to test scalar invariance 

[factor1*]; 

[factor2*]; 

[factor3*]; 

[factor4*]; 

 

!! Reference model for Others alternative group 

Model Other:  

!Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts constrained to reference group  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1-Icc3); 

!residual variances set equal to reference group 

   l1-l3* (EI1-EI3);  

   m1-m3* (Em1-Em3); 

   cf1-cf3*(Ecf1-Ecf3); 

   cc1-cc3* (Ecc1-Ecc3); 

!factor variance fixed to 1 for identification -->just list factors by itself, @=fixed, *=free 

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! factor mean freed to test scalar invariance 

[factor1*]; 

[factor2*]; 

[factor3*]; 

[factor4*]; 
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D14 MODEL 2E-EXAMPLE OF MPLUS SYNTAX 

FOR TEST OF LATENT MEANS FOR  

CONTINUOUS INDICATORS  

WITH MLR 

 
Analysis: 

    Type=complex; !Takes care of clustering 

    Estimator=MLR; !For continuous items whose residuals may not be normal 

output: standardized sampstat; ! fully standardized solution, local model fit 

MODINDICES(5); 

 

!! Test of Latent mean model for Hispanic reference group 

Model: !Reference group Hispanic 

!Factor loadings all freely estimated 

  factor1 by l1-l3* (L1-L3); 

  factor2 by m1-m3* (M1-M3); 

  factor3 by cf1-cf3* (CF1-CF3); 

  factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts all freely estimated  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1-Icc3); 

!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! Factor mean fixed to 0 for identification  

  [factor1@0]; 

  [factor2@0]; 

  [factor3@0]; 

  [factor4@0]; 

 

!! Test of Latent mean model for White alternative group 

Model White:  

!Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts constrained to reference group  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 
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 [cc1-cc3*] (Icc1a Icc2 Icc3); 

!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

 !factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! factor mean freed to test scalar invariance 

[factor1*]; 

[factor2*]; 

[factor3*]; 

[factor4*]; 

 

!! Test of latent mean model for Others alternative group 

 Model Others:  

!Factor loadings all set equal to reference group 

    factor1 by l1-l3* (L1-L3); 

    factor2 by m1-m3* (M1-M3); 

    factor3 by cf1-cf3* (CF1-CF3); 

    factor4 by cc1-cc3* (CC1-CC3); 

!item intercepts constrained to reference group  

   [l1-l3*] (II1-II3); 

   [m1-m3*] (Im1-Im3); 

   [cf1-cf3*] (Icf1-Icf3); 

   [cc1-cc3*] (Icc1-Icc3); 

!residual variances all freely estimated  

  l1-l3*; 

  m1-m3*; 

  cf1-cf3*; 

  cc1-cc3*; 

!factor variance fixed to 1 for identification  

  factor1@1; 

  factor2@1; 

  factor3@1; 

  factor4@1; 

! factor mean freed to test scalar invariance 

[factor1*]; 

[factor2*]; 

[factor3*]; 

[factor4*]; 
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APPENDIX E 

SPSS SYNTAX FOR ANALYSIS 
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Figure E1 

Flowchart illustrating the Test of Comparison of Means  
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E1 MODEL 1A-EXAMPLE OF SPSS SYNTAX  

FOR TEST OF COMPARISON OF MEANS 

 

 

* Encoding: UTF-8. 

DATASET ACTIVATE DataSet1. 

DESCRIPTIVES VARIABLES=deltachi deltacfi deltatli deltarmsea deltasrmr 

/STATISTICS=MEAN STDDEV MIN MAX KURTOSIS SKEWNESS. 

 

EXAMINE VARIABLES=Deltachi deltacfi deltatli deltarmsea deltasrmr 

/PLOT NPPLOT 

/COMPARE GROUPS 

/STATISTICS DESCRIPTIVES 

/CINTERVAL 95 

/MISSING PAIRWISE 

/NOTOTAL. 

 

* SYNTAX FOR ONE-WAY ANOVAS AND ROBUST ANOVAS. 

ONEWAY Deltachi deltacfi deltatli deltarmsea deltasrmr BY Gsize 

/ES=OVERALL 

/STATISTICS DESCRIPTIVES HOMOGENEITY WELCH 

/MISSING ANALYSIS 

/CRITERIA=CILEVEL(0.95) 

/POSTHOC=GH ALPHA(0.05). 

 

ONEWAY Deltachi deltacfi deltatli deltarmsea deltasrmr BY Ratio 

/ES=OVERALL 

/STATISTICS DESCRIPTIVES HOMOGENEITY WELCH 

/MISSING ANALYSIS 

/CRITERIA=CILEVEL(0.95) 

/POSTHOC=GH ALPHA(0.05). 

 

ONEWAY Deltachi deltacfi deltatli deltarmsea deltasrmr BY Parcels 

/ES=OVERALL 

/STATISTICS DESCRIPTIVES HOMOGENEITY WELCH 

/MISSING ANALYSIS 

/CRITERIA=CILEVEL(0.95) 

/POSTHOC=GH ALPHA(0.05). 

 

ONEWAY Deltachi deltacfi deltatli deltarmsea deltasrmr BY GenRace 

/ES=OVERALL 

/STATISTICS DESCRIPTIVES HOMOGENEITY WELCH 

/MISSING ANALYSIS 

/CRITERIA=CILEVEL(0.95) 

/POSTHOC=GH ALPHA(0.05). 
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* SYNTAX FOR KRUSHKAL-WALLIS TEST 

NPAR TESTS 

/K-W=deltachi deltacfi deltatli deltarmsea deltasrmr BY Gsize(1 6) 

/MEDIAN=deltachi deltacfi deltatli deltarmsea deltasrmr BY Gsize(1 6) 

/STATISTICS DESCRIPTIVES 

/MISSING ANALYSIS. 

 

NPAR TESTS 

/K-W=deltachi deltacfi deltatli deltarmsea deltasrmr BY Ratio(1 3) 

/MEDIAN=deltachi deltacfi deltatli deltarmsea deltasrmr BY Ratio(1 3) 

/STATISTICS DESCRIPTIVES 

/MISSING ANALYSIS. 

 

NPAR TESTS 

/K-W=deltachi deltacfi deltatli deltarmsea deltasrmr BY Parcels(1 2) 

/Median=deltachi deltacfi deltatli deltarmsea deltasrmr BY Parcels(1 2) 

/STATISTICS DESCRIPTIVES 

/MISSING ANALYSIS. 

 

NPAR TESTS 

/K-W=deltachi deltacfi deltatli deltarmsea deltasrmr BY GenRace(0 1) 

/Median=deltachi deltacfi deltatli deltarmsea deltasrmr BY GenRace(0 1) 

/STATISTICS DESCRIPTIVES 

/MISSING ANALYSIS. 

 

  



259 

 

 

 

E2 MODEL 1B-EXAMPLE OF SPSS SYNTAX  

FOR TESTS OF INDEPENDENCE 

 FOR Q1- 4 

 

* Encoding: UTF-8. 

FREQUENCIES VARIABLES=Gsize Ratio Parcels GenRace Invariance 

/ORDER=ANALYSIS. 

 

* SYNTAX FOR FREQUENCES 

FREQUENCIES VARIABLES=Invariance 

/FORMAT=NOTABLE 

/ORDER=ANALYSIS. 

 

CROSSTABS 

/TABLES=Gsize BY Modification 

/FORMAT=AVALUE TABLES 

/CELLS=COUNT ROW  

/COUNT ROUND CELL. 

 

CROSSTABS 

/TABLES=Ratio BY Modification 

/FORMAT=AVALUE TABLES 

/CELLS=COUNT ROW  

/COUNT ROUND CELL. 

 

CROSSTABS 

/TABLES=Parcels BY Modification 

/FORMAT=AVALUE TABLES 

/CELLS=COUNT ROW  

/COUNT ROUND CELL. 

 

DATASET ACTIVATE DataSet1. 

CROSSTABS 

/TABLES=GenRace BY Modification 

/FORMAT=AVALUE TABLES 

/CELLS=COUNT ROW  

/COUNT ROUND CELL. 

 

* SYNTAX FOR TESTS OF INDEPENDENCE 

CROSSTABS 

/TABLES=Invariance BY Gsize Ratio Parcels GenRace 

/FORMAT=AVALUE TABLES 

/STATISTICS=CHISQ PHI 

/CELLS=COUNT EXPECTED ROW COLUMN ASRESID 

/COUNT ROUND CELL. 
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E3 MODEL 1B-EXAMPLE OF SPSS SYNTAX  

FOR TESTS OF INDEPENDENCE FOR Q5 

 

* Encoding: UTF-8. 

FREQUENCIES VARIABLES=Gsize Ratio Parcels GenRace F1.Significance 

/ORDER=ANALYSIS. 

 

CROSSTABS 

/TABLES= F1.Significance BY Gsize Ratio Parcels  

/FORMAT=AVALUE TABLES 

/STATISTICS=CHISQ PHI 

/CELLS=COUNT EXPECTED ROW COLUMN ASRESID 

/COUNT ROUND CELL. 

EXECUTE. 
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