

This work is licensed under a Creative Commons Attribution 4.0 International License. The license permits unrestricted
use, distribution, and reproduction in any medium, on the condition that users give exact credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if they made any changes.

Beyond the Buzz: A Journey Through CI/CD
Principles and Best Practices

Vamsi Krishna Thatikonda
8921 Satterlee Ave Se, Snoqualmie, WA

Abstract:
Continuous Integration and Continuous Deployment (CI/CD) are
pivotal in modern software development. Shifting from the classic
waterfall models, the current age is dominated by Agile
methodologies and DevOps practices. This article explores CI and
CD's core principles, differences, and similarities. It touches upon
essential techniques such as automation, ensuring consistency, and
the importance of quick feedback mechanisms. Beyond these, the
discussion extends to cutting-edge methods, infrastructure as code,
potential security considerations, and monitoring within CI/CD

environments. While CI/CD offers numerous benefits, it's essential to acknowledge its challenges, which
necessitate attention and action. With an ever-evolving landscape featuring trends like AI/ML integration
into CI/CD, businesses find themselves at a juncture where embracing and finetuning CI/CD is vital for
competent software delivery.

Keywords: Continuous Integration (CI), Continuous Deployment (CD), Automation, DevOps, Feedback loops.

Introduction
Continuous Integration and Continuous
Deployment (CI/CD) have carved out a
significant space in contemporary software
development practices. In a rapidly digitalizing
environment, there's an increasing appetite for
speedy, dependable, and streamlined software
delivery processes. At the heart of DevOps,
CI/CD serves this exact purpose, ensuring that
software transitions smoothly from integration
and testing phases to live production
environments (Shahin, Ali Babar, & Zhu, 2017).
This discussion aims to shed light on nuanced
practices forming the foundation of robust
CI/CD procedures and workflows.

Historical Perspective
In earlier times, software development leaned
towards more structured waterfall models. These
models had a lengthy path, from conception to
going live. However, the advent of Agile
practices in the early 2000s created a desire for
swift feedback mechanisms and more regular
software releases. This led to the emergence of
Continuous Integration, a practice focused on
traditional code merges into a centralized
location, which made spotting integration issues
faster and earlier (Vuppalapati et al., 2020).
Continuous Deployment extended this
philosophy, placing a premium on automating
the software journey to the production phase.
Within the Agile and DevOps frameworks,
CI/CD emerges as an influential practice, aiding
organizations in delivering value swiftly and
consistently to their consumers.

Suggested Citation
Thatikonda, V.K. (2023). Beyond
the Buzz: A Journey Through
CI/CD Principles and Best
Practices. European Journal of
Theoretical and Applied Sciences, 1(5),
334-340.
DOI: 10.59324/ejtas.2023.1(5).24

mailto:vamsi.thatikonda@gmail.com
https://orcid.org/0009-0006-1180-1606
https://doi.org/10.59324/ejtas.2023.1(5).24

www.ejtas.com EJTAS 2023 | Volume 1 | Number 5

335

Understanding the Basics: CI VS. CD
Continuous Integration (CI) and Continuous
Deployment (CD) have profoundly impacted
the transformation of software delivery
processes. Though these terms might sometimes
be used interchangeably, understanding their
nuances is essential for efficient software
outcomes. Continuous Integration (CI) is the
consistent practice of developers merging their
alterations into a primary branch, typically
several instances within a day. This practice
spotlights integration challenges early on and
encourages a more cohesive development
approach (Vuppalapati et al., 2020). An essential
aspect of CI is an automated testing framework,
which ensures integrations are validated, paving
the way for prompt and error-free feedback.

Continuous Deployment (CD), on the other
hand, focuses on the automated release of
integrated changes to a live production
environment, ensuring software is always in a
deployable state. This streamlines the delivery
and provides users consistent access to the
newest features and bug fixes (Vuppalapati et al.,
2020).

Differentiating CI from CD is vital as it
determines the breadth and depth of automation
required, the risk management strategy, and the
frequency of releases. For businesses,

understanding the distinction allows for better
resource allocation, tool selection, and strategic
decision-making in the software delivery
lifecycle.

Key Principles of CI/CD
Automation: Central to CI and CD, automation
replaces manual processes, ensuring swift,
repeatable, and error-free operations (Klotins et
al., 2022). Through automation, businesses can
improve deployment frequency, lower the
change failure rate, and expedite time to
recovery, leading to better operational
performance.

Consistency: Ensuring a consistent environment
across stages minimizes surprises and issues
when deploying to production. Consistency aids
in reproducing bugs, streamlining
troubleshooting, and reducing time spent on
environment-related topics.

Fast feedback loops: One of the primary
advantages of CI/CD is the immediate feedback
developers receive (Karamitsos, Albarhami, &
Apostolopoulos, 2020). Rapid detection of
issues accelerates resolution and reduces the
associated costs. Fast feedback mechanisms
significantly improve developer productivity and
overall software quality.

Figure 1. The Relationship of Continuous Integration and Continuous Delivery and

Continuous Deployment
Source: Shahin, Ali Babar, & Zhu, (2017)

Advanced CI Best Practices
Continuous Integration (CI) has emerged as a
crucial practice for maintaining software quality

and agility in the evolving software development
landscape. Among the sophisticated methods
championed by industry experts and researchers,
several stand out in their impact and significance.

www.ejtas.com EJTAS 2023 | Volume 1 | Number 5

336

Frequent code commits are a cornerstone of CI.
By integrating smaller chunks of code more
often, developers can reduce development time
and promptly detect and address issues, ensuring
smoother integrations and minimizing
integration debt (Shahin, Ali Babar, & Zhu,
2017). Teams committing code multiple times
daily reduce integration challenges and accelerate
release frequencies.

Emphasizing the need to maintain a single
source repository ensures a centralized version
history, streamlining the integration and
deployment processes—this singular source of
truth aids in reducing discrepancies and
inconsistencies during integrations (Humble, &
Farley, 2015).

Automation is at the heart of CI, and automating
the build process eliminates manual errors and
ensures rapid, consistent builds. High-
performing teams automated their CI processes,
resulting in faster feedback and reduced lead
times.

Self-testing builds take the practice further.
Once the build is complete, automated tests
validate the correctness, ensuring the code's
stability before it proceeds further in the
pipeline. Projects with robust automated testing
reported fewer post-release defects (Vasilescu et
al., 2015).

Advanced CD Best Practices
The ascendancy of Continuous Deployment
(CD) practices is a testament to the industry's
shift towards rapid, reliable, and iterative
software releases. As organizations strive for
excellence, several advanced CD methodologies
stand out in their capacity to transform the
deployment landscape.

One pivotal practice is the Deployment of a
clone of the production environment. This
ensures the code is tested in an environment
mirroring its eventual live state, drastically
reducing deployment-related surprises and
inconsistencies.

Automating deployment processes is necessary
because manual deployments are error-prone

and inconsistent (Humble, & Farley, 2015).
Automation ensures repeatable and reliable
deployments, which is crucial for maintaining
uptime and system stability.

Blue/Green deployments have become an
industry favorite, where two environments –
'blue' for the current version and 'green' for the
new one – are maintained. This allows for swift
rollbacks if issues arise and ensures zero
downtime during releases, a strategy that has
been shown to reduce risks and improve user
experience.

Feature flagging, or toggle-driven development,
allows teams to turn features on or off selectively
(Meinicke et al., 2020). This facilitates phased
rollouts and provides a safety net in case of
problematic releases.

Infrastructure as Code (IAC)
Infrastructure as Code (IAC) has emerged as a
transformative paradigm in modern IT
operations, fundamentally altering how
infrastructure provisioning and management are
approached. IAC is the practice of defining and
managing computing and network infrastructure
using descriptive code scripts or templates
(Kumara et al., 2021). This concept is
instrumental in CI/CD pipelines, fostering
consistency, repeatability, and scalability.

One of the primary values of IAC in CI/CD is
its ability to ensure environmental consistency
across different stages of the software delivery
lifecycle. As applications move from
development to staging to production, IAC
ensures that the underlying infrastructure
remains uniform, minimizing deployment-
related anomalies.

Several tools have emerged to facilitate IAC.
Terraform stands out for its platform-agnostic
nature, allowing teams to describe infrastructure
as code and provision it across diverse
environments (Ihuoma, 2022). On the other
hand, Ansible shines in configuration
management, ensuring that servers are correctly
configured and compliant with desired states
(Arnavsharma, 2023).

www.ejtas.com EJTAS 2023 | Volume 1 | Number 5

337

Figure 2 Basic Workflow of IAC

Source: Porter, S. (2019)

Figure 3- Workflow of Terraform

Source: Ingram, T. (n.a.)

Monitoring, Testing, and Feedback in
CI/CD
Monitoring in real-time is imperative in CI/CD.
It ensures that any anomalies, performance
regressions, or errors are immediately identified
as changes are continuously integrated and
deployed. Such vigilant oversight is vital to
maintain system health, especially in a CD
context where deployments are frequent.

The landscape of testing has also evolved with
CI/CD. A/B testing allows developers to release
two versions of a feature to different user groups

and measure performance, ensuring that only
effective changes are deployed universally.
Canary releases involve rolling out features to a
subset of users, ensuring they function as
intended before a broader deployment
(Schermann et al., 2016).

Feedback loops are the lifeblood of CI/CD.
Teams thrive on real-time feedback, both from
automated systems and end-users. Acting upon
this feedback swiftly ensures software quality,
user satisfaction, and system reliability.

www.ejtas.com EJTAS 2023 | Volume 1 | Number 5

338

Security Considerations in CI/CD
Integrating security into CI/CD has become
non-negotiable in the age of escalating cyber
threats. A predominant practice is the "shift left"
with security. This entails introducing security

considerations early in the development lifecycle
rather than treating them as an afterthought
(Mao et al., 2020). Shifting security left has
proven to reduce vulnerabilities and expedite
software releases.

Figure 4. Depiction of Shift Left on Security

Source: Lisle, M. & Sokhi, H.K. (n.a.)

Automated security tests are pivotal in CI/CD,
as they validate code and infrastructure against
known vulnerabilities continuously. When run at
every code commit or push, these tests ensure
that security flaws don't seep into production.
Moreover, continuous monitoring for
vulnerabilities ensures that even post-
deployment systems are under vigilant watch for
any security anomalies or breaches.

Challenges and Pitfalls
Despite the evident advantages of CI/CD, teams
encounter obstacles. Common mistakes include
overlooking infrastructure consistency,
neglecting comprehensive test coverage,
sidelining real-time monitoring. Such oversights
can lead to integration failures, deployment
rollbacks, and even system outages (Nichols et
al., n.a.). To overcome these challenges,
organizations must embrace a culture of
continuous learning, prioritize end-to-end
automation, and maintain rigorous feedback
loops.

Future Trends in CI/CD
CI/CD's transformative journey is bound to
continue with the integration of cutting-edge
technologies. One notable trend is the fusion of
AI/ML with CI/CD pipelines. Leveraging
machine learning can optimize build-test-deploy
cycles, identify failure patterns, and auto-correct
issues, significantly enhancing pipeline efficiency
(Nogueira et al., 2018). Additionally, predictive
analysis in CI/CD is gaining traction. By
analyzing historical data, organizations can
predict potential vulnerabilities, performance
issues, and areas needing optimization, leading
to proactive problem-solving rather than
reactive.

Conclusion
The evolutionary journey of Continuous
Integration and Continuous Deployment
(CI/CD) underscores its pivotal role in modern
software development. Rooted in the tenets of
collaboration, automation, and swift feedback,
CI/CD has transformed the conventional

www.ejtas.com EJTAS 2023 | Volume 1 | Number 5

339

delivery paradigms, emphasizing rapid, reliable,
and efficient software release cycles. As
businesses grapple with the demands of a rapidly
digitizing world, CI/CD emerges as a beacon of
operational efficiency and agility. From its
historical inception to cutting-edge integrations
with AI and predictive analytics, CI/CD has
remained at the forefront of DevOps excellence.
Embracing its principles and best practices is not
just advisable but imperative for organizations
aspiring for robust, timely, and secure software
delivery.

References
Arnavsharma. (2023). Ansible vs Terraform:
Key differences. Lets learn something new.
Retrieved from
https://arnav.au/2023/07/10/ansible-vs-
terraform-key-differences/

Humble, J. & Farley, D. (2015). Continuous
Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Upper Saddle River,
NJ u.a: Addison-Wesley.

Ihuoma, B. (2022). A gentle introduction to
terraform. (part 1). Retrieved from
https://awstip.com/a-gentle-introduction-to-
terraform-part-1-
2da61eba7032?gi=78dd5be83b56

Ingram, T. (n.a.). What is terraform and why is it
needed? GovCIO. Retrieved from
https://govcio.com/resources/article/what-is-
terraform-and-why-is-it-needed/

Karamitsos, A.I., Albarhami, S. &
Apostolopoulos, C. (2020). Applying devops
practices of continuous automation for machine
learning. Information, 11(7), 363.
https://doi.org/10.3390/info11070363

Klotins, E., Gorschek, T., Sundelin, K. & Falk,
E. (2022). Towards cost-benefit evaluation for
Continuous Software Engineering Activities.
Empirical Software Engineering, 27(6).
https://doi.org/10.1007/s10664-022-10191-w

Kumara, I., Garriga, M., Romeu, A.U., Di Nucci,
D., Tamburri, D.A. & van den Heuvel, V.J.
(2021). The do's and don'ts of Infrastructure

Code: A systematic gray literature review.
Information and Software Technology, 137, 106593.
https://doi.org/10.1016/j.infsof.2021.106593

Lisle, M. & Sokhi, H.K. (n.a.). Shift left on
security and privacy: Why it's critical to speed,
quality and Customer Trust. Thoughtworks.
Retrieved from
https://www.thoughtworks.com/what-we-
do/data-and-ai/modern-data-engineering-
playbook/shift-left-on-security-and-privacy

Mao, R., Zhang, H., Dai, Q., Huang, H., Rong,
G., Shen, H., Chen, L. & Lu, K. (2020).
Preliminary findings about DevSecOps from Grey
Literature. In 2020 IEEE 20th International
Conference on Software Quality, Reliability and
Security (QRS).
https://doi.org/10.1109/qrs51102.2020.00064

Meinicke, J., Hoyos, J., Vasilescu, B. & Kästner,
C. (2020). Capture the feature flag. Proceedings of
the 17th International Conference on Mining
Software Repositories.
https://doi.org/10.1145/3379597.3387463

Nichols, W.R., Yasar, H., Antunes, L., Miller,
C.L. & McCarthy, R. (n.a.). Automated Data for
DevSecOps Programs. Technical Report,
Technical Paper. Retrieved from
https://apps.dtic.mil/sti/pdfs/AD1168421.pdf

Nogueira, A.F., Ribeiro, J.C.B., Zenha-Rela,
M.A., & Craske, A. (2018). Improving la redoute's
CI/CD pipeline and DevOps processes by applying
machine learning techniques. 2018 11th International
Conference on the Quality of Information and
Communications Technology (QUATIC).
https://doi.org/10.1109/quatic.2018.00050

Porter, S. (2019). Infrastructure as code: testing
and monitoring. Retrieved from ,
https://sensu.io/blog/infrastructure-as-code-
testing-and-monitoring

Schermann, G., Schöni, D., Leitner, P. & Gall,
H.C. (2016). Bifrost – Supporting Continuous
Deployment with Automated Enactment of Multi-Phase
Live Testing Strategies. Proceedings of the 17th
International Middleware Conference.
https://doi.org/10.1145/2988336.2988348

Shahin, M., Ali Babar, M. & Zhu, L. (2017).
Continuous integration, delivery, and

https://arnav.au/2023/07/10/ansible-vs-terraform-key-differences/
https://arnav.au/2023/07/10/ansible-vs-terraform-key-differences/
https://awstip.com/a-gentle-introduction-to-terraform-part-1-2da61eba7032?gi=78dd5be83b56
https://awstip.com/a-gentle-introduction-to-terraform-part-1-2da61eba7032?gi=78dd5be83b56
https://awstip.com/a-gentle-introduction-to-terraform-part-1-2da61eba7032?gi=78dd5be83b56
https://govcio.com/resources/article/what-is-terraform-and-why-is-it-needed/
https://govcio.com/resources/article/what-is-terraform-and-why-is-it-needed/
https://doi.org/10.3390/info11070363
https://doi.org/10.1007/s10664-022-10191-w
https://doi.org/10.1016/j.infsof.2021.106593
https://www.thoughtworks.com/what-we-do/data-and-ai/modern-data-engineering-playbook/shift-left-on-security-and-privacy
https://www.thoughtworks.com/what-we-do/data-and-ai/modern-data-engineering-playbook/shift-left-on-security-and-privacy
https://www.thoughtworks.com/what-we-do/data-and-ai/modern-data-engineering-playbook/shift-left-on-security-and-privacy
https://doi.org/10.1109/qrs51102.2020.00064
https://doi.org/10.1145/3379597.3387463
https://apps.dtic.mil/sti/pdfs/AD1168421.pdf
https://doi.org/10.1109/quatic.2018.00050
https://sensu.io/blog/infrastructure-as-code-testing-and-monitoring
https://sensu.io/blog/infrastructure-as-code-testing-and-monitoring
https://doi.org/10.1145/2988336.2988348

www.ejtas.com EJTAS 2023 | Volume 1 | Number 5

340

deployment: A systematic review on approaches,
tools, challenges and practices. IEEE Access, 5,
3909–3943.
https://doi.org/10.1109/access.2017.2685629

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P. &
Filkov, V. (2015). Quality and productivity outcomes
relating to continuous integration in github.
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering.
https://doi.org/10.1145/2786805.2786850

Vuppalapati, C., Ilapakurti, A., Chillara, K.,
Kedari, S. & Mamidi, V. (2020). Automating tiny
ML intelligent sensors devops using Microsoft Azure.
2020 IEEE International Conference on Big
Data (Big Data).
https://doi.org/10.1109/bigdata50022.2020.93
77755

https://doi.org/10.1109/access.2017.2685629
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1109/bigdata50022.2020.9377755
https://doi.org/10.1109/bigdata50022.2020.9377755

