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Abstract

Image manipulation tools are constantly improving. Most recently, the productization of gen-
erativemodels in popular software likeAdobe Photoshop provided awhole new range of possi-
bilities. Though many applications might be harmless, image forgery is not. Tampered images
can spread false information, manipulate opinions, and erode trust in media. Therefore, be-
ing able to detect fake images is of the utmost importance. The majority of Image Forgery
Detectionmodels consist of specialized architectures, often trained with limited data and com-
putational resources. In contrast, image segmentation has found substantial interest and in-
vestment. In this work, I explore the capabilities of state-of-the-art general image segmentation
models to adapt to the task of Image Forgery Detection to leverage the extensive resources and
advancements in this field. I assess their performance on the detection of classical Photoshop
manipulation like splicing. Further, I extend the scope to the detection ofAI-inpainted images,
i.e. images that were manipulated using deep generative models. I show that image segmenta-
tion models can keep up with state-of-the-art forgery detection tools. Moreover, the models
can detect AI-inpainted regions by identifying the characteristic frequency signature of the
generative models.
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1
Introduction

In today’s digital age, images have become ubiquitous and are accessed and shared through nu-
merous channels. They play a crucial role in conveying information, shaping opinions, and
influencing our understanding of the world. However, with the widespread availability of im-
age manipulation tools, creating fake images has become increasingly easier. This has serious
implications for the credibility of images and raises concerns about the reliability of visual infor-
mation. Manipulated or fake images can mislead viewers, spread false information, and erode
trust in media.

Image editing software like Adobe Photoshop or GIMP is not new by anymeans, and so are
fake images. But, with technology constantly improving and especially through the introduc-
tion of generative models, the skill and effort it takes to produce a photorealistic fake image has
been drastically reduced. What once took years of practice can now be done in seconds. All it
takes is selecting the area of an image, describing a change in natural language and passing it on
to a model like Midjourney [14]. Only a couple of years ago, AI-generated images only made
for a nice cover of a book about deep learning [15]. Nowadays, the results are truly stunning
and can already cause confusion. Just this year, an image of the pope wearing a stylish puffer
jacket caused outrage about the perceived waste of money by the Catholic Church (figure 1.1).
The “success” of the image is likely based on two main features. First, the fake was very good.
The image did not give any clear indications of being fake except for potentially portraying
something slightly unrealistic. Second, it triggered a confirmation bias [16]. The church wast-
ing money was not a new sentiment. The image just had to be realistic enough to enforce this
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Figure 1.1: Viral Tweet showing an AI‐generated picture of Pope Francis in a puffer jacket [1].

idea. But, rather than diving deeper into the intricacy of the human mind, this work focuses
on solving the first part of the problem. If humans cannot detect images generated by models
anymore, it might be time for models to do the detection themselves.

ImageForgeryDetectionmeansdetecting if an imagewasmanipulated and identifyingwhich
areas of the image are fake. It differs from other image classification tasks, as models are sup-
posed to detect something hidden between the pixels. Therefore, the architectures used in this
field are highly specialized to emphasize image features that go beyond the three color channels
and can indicate forgery. In this work I will address Image Forgery Detection as an image seg-
mentation task. Instead of dividing the image into semantic categories a human can see, like
dog, sky or car, I train a model to separate the image into categories only the model can see, i.e.
real or fake. With my experiments, I explore if general image segmentation models with mil-
lions of parameters are able to outperform highly specialized but much smaller Image Forgery
Detection models. Moreover, I will address a new family of “AI-powered” forgery tools. For
this I will combine the advances in detecting AI generated images and Image Forgery Detec-
tion and train amodel for AI-inpainting detection. AI-inpainting is a technique that uses deep
generative models to alter or recreate parts of an image. The output is an image that is partly
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AI generated and partially authentic. The goal of the detector is to distinguish the generated
area from the rest of the image.
The document is structured in the following way: chapter 2 reviews relevant literature on

Image ForgeryDetection aswell as AI image generation, chapter 3 describes the research design
aswell as the data andmodels used, chapter 4 describes the experiments anddiscusses the results
and chapter 5 provides final conclusions as well as an outlook for further research.
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2
Literature Review

This chapter is divided into six sections: section 2.1 reviews common Image Forgery tech-
niques, section 2.2 focuses on the contributions of generative AI, section 2.3 summarizes clas-
sical Image Forgery Detection methods, section 2.4 gives an overview of Deep Learning-based
Image ForgeryDetection approaches, section 2.5 describes frameworks for the detection of AI-
generated images, and section 2.6 summarizes recent approaches to AI-inpainting detection.

2.1 Classical Image Forgery

Image Forgery is the act of altering the content of an imagewith the intent tomodify ormisrep-
resent its information. The term “classical” is used to describe forgery methods predating the
introduction of AI tools to this field. In this section, I will review the most common classical
Image Forgery techniques.

First are techniques that donot change the actual contentof the image. This includes changes
of contrast, colorization, application of different filters, etc. Second are traditional techniques
for inserting or removing content from an image which are, splicing, copy-move and inpaint-
ing (figure 2.1). Splicing describes the act of taking an object from one image and inserting it
into another. Copy-move works similarly but copies an object inside of an image and inserts
it again within the same image at another position. Lastly, inpainting is mainly used when re-
moving objects. The empty space left is filled by extrapolating and copying other image parts.
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Figure 2.1: Examples of classical Image Forgery, with the original images on the top and on the bottom from left to right:
inpainting, copy‐move and splicing [2].

Third are complementary techniques used to conceal the impact of the ones mentioned above.
These include reshaping and resizing of objects, blurring or smoothing of edges, etc.

2.2 AI Generated Images

The two most common architectures for generative models for images are Variational Auto-
Encoders (VAE) [17] andGenerative Adversarial Networks (GAN) [18]. Bothmodels learn to
generate images from a random distribution by approximating the training data distribution.

TheVAE is built like a traditionalAutoencoder consisting of an encoder and a decoder. Dur-
ing training, the encoder maps input images to a lower dimensional latent space. The decoder
reverses this process, taking as input a feature vector from the latent space and producing an
image as output (figure 2.2). The difference to an Autoencoder is that, during generation, the
input of the decoder is sampled from a random distribution which is parametrized using the
latent variables. The system is trained by maximizing the variational lower bound

Ez∼Q[logP (X|z)]−DKL[Q(z|X)∥P (z)].

This equation is maximized by increasing the likelihood for the decoder P to reproduce the
dataX with the input z (first term). Here, z is sampled from the distributionQ of the encoder.
The second term is the Kullback-Leibler divergence ofQ(z|X) and the prior distribution for

6



Figure 2.2: High‐level architecture of a VAE [3]. Figure 2.3: High‐level architecture of a GAN [4].

the latent variables P (z), which is generally assumed to be Gaussian. Maximizing both terms
together increases the likelihood of producing data similar to the inputwhile keeping the latent
distribution close to a Gaussian.

A GAN consists of a generator which generates images from a random distribution and a
discriminator which attempts to distinguish between real and fake images (figure 2.3). During
the training, the two compete until the generator learns tomislead the discriminator by generat-
ing images that are not distinguishable from the training data. The learning can be formulated
as a zero-sum game

min
G

max
D

Ex∼pdata logD(x) + Ez∼pmodel log (1−D(G(z)).

with D the Discriminator, G the Generator, pdata the distribution of real data, pmodel the dis-
tribution of noise going into G, x a sample from the real data, and G(z) a sample from the
Generator. D assigns a probability for its input to come from pdata. Therefore, the goal for
the Discriminator is to assign high values to the real samples x (left term) and low values to
the fake samples G(z) (right term). The Generator, on the other hand, tries to mislead the
Discriminator to assign high probabilities to generated samples.

After generating images from a random distribution, the next step was generating images
from a natural language prompt. One of the first models that got much public attention for
text-to-image generation was DALL-E [19]. The researchers combined the generative abilities
of a VAE with a transformer [20]. First, the VAE is trained in the same way as before. Then,
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given a text and image pair, the transformer is used to learn to map the text input to the latent
space of the VAE for the respective image. Once both parts are trained, text can go as input into
the transformer, which produces the latent embedding that then goes into the decoder of the
VAE, which then creates an image.

Anothermilestone in the development of image generationwas latent diffusion [21], which
combines the idea of a latent space representation of images from VAEs and GANs and diffu-
sion models. On a high level, a diffusion model learns to reverse a process of gradual addition
of randomnoise. Although showing remarkable results for images, thesemodels have been too
costly to use directly on the pixel domain. This limitation was overcome by combining them
with an Autoencoder and applying the diffusion process to the lower dimension latent space.

Besides the mentioned techniques, there have beenmany further improvements and tweaks
to these models over the past years. With many models easily accessible and companies like
Photoshop starting to offer “AI-powered” solutions to their customers, AI-generated or AI-
manipulated images are everywhere. Whether it is an image of the pope wearing his favourite
jacket or Donald Trump getting arrested [22], these images already manage to spread false in-
formation.

2.3 Image Forensics

In this section, I will summarize themain characteristics of forged images and how to use them
for detection. A great source to learn about image forensics is Prof. Hany Farid’s tutorial on
Digital Image Forensics [5]. In this extensive work, Farid explains many different approaches
to digital image forensics ranging from format-based methods like double JPEG compression
to physics-based forensics, analyzing if the content of an image obeys the laws of physics.

Format

A popular format for digital images is JPEG. To be precise, JPEG is less a format but a lossy
compression algorithm. Following different steps of applying Discrete Cosine Transform and
a quantization step allows storing images with little loss of information. Characteristics of this
process can be used to identify tampered images.

Besides the pixel values, JPEG files contain metadata. That includes information like the
compression factor or the JPEG version, but also focal length, exposure time, etc. which dif-
fer from camera to camera and smartphone to smartphone. While this combination may not

8



Figure 2.4: Distribution of pixel values in an image for single (a)‐(b) and double (c)‐(d) JPEG
compression [5].

Figure 2.5: Example of a
Bayer Filter [6].

always be a unique identifier for the camera model, if an image header does not align with any
common combinations, it is likely that the image did not come directly from a camera.
Before loading a JPEG image, for example, intoPhotoshop, itmighthave already gone through

a first stage of compression. When being altered and saved again, it undergoes a second com-
pression. This Double JPEG Compression can leave artefacts in the image histogram. The
main reason for this phenomenon is the quantization step of the process. Figure 2.4 shows
an image histogram for four quantization steps. With compression factor 2 (a), compression
factor 3 (b), double compression first with factor 3 and then with a factor 2 (c), and double
compression the other way around (d). The histogram in (c) shows periodically empty bins.
This artefact arises because the first compression is stronger than the second. The first quanti-
zation step, with a factor of 3, redistributes the values from 128 to 42 bins. In the second step
these 42 bins are redistributed in 64 bins, leaving several new bins empty. Similarly, when the
quantization increases, as shown in (d), values concentrate in certain bins.

Camera

Taking a photo with a camera differs from generating an image with AI or alternating it with
classic Photoshop tools. A major difference is that taking a photo involves a camera sensor
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that underlies certain physical constraints. Most digital cameras (including smartphones) use
CMOS image sensors, a specific type of Active Pixel Sensor (APS). A property of these sensors
used for Image Forgery Detection is the Color Filter Array (CFA). Here, each pixel is assigned
a value of red, green or blue that repeats over the area of the sensor in periodic order, similar
to a checkerboard. One of the most common designs is the Bayer Filter (see figure 2.5). To
obtain an image where each pixel is not monochromatic but rather a superposition of all three
colours, a step calledDemosaicing is required. This process employs an algorithmto interpolate
colours between the different pixels*. This process leaves periodic artefacts in the image. When
an image is tampered with, these patterns break. For example, when copy-pasting a part of
another image, the frequencyof the colourswill be different between the old and thenew image.
This can be detected with CFA analysis. Further methods that utilize the characteristics of the
camera sensor are Chromatic Aberration and Sensor Noise.

Image Features

When adding an object from another image, this object likely has to be rescaled to a new size,
which introduces correlations between the pixels. For a one-dimensional signal x of length n
which is resampled to a new signal y of lengthm,when only considering linear transformations,
this process takes the form of

y = Ax

with A ∈ Rm×n. In this case each element of y can be expressed as a linear combination of
elements in x

yi =
n∑

j=0

ai,jxj.

This correlation can be detected.
Detecting clonedpartswithin an image involves comparing various regions of the imagewith

one another. Utilizing a brute force approach for this task would become unwieldy quickly.
Therefore, approximate methods like Scale Invariant Feature Transform (SIFT) are employed,
which transform the image into a series of local feature vectors.

Beyond the pixels

Previous approaches have in common that they analyse the image file. Whatwas not taken into
account yet is the semantic image content. Farid mentions several possible indicators beyond

*For the curious reader, I recommend Capturing Digital Images (The Bayer Filter) - Computerphile
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the pixel values or the file header. These include reflections and shadows, lighting, perspective,
and the general plausibility of the scene.
The two main takeaways from this brief review of Image Forensics techniques are there is

No Free Lunch, but we are getting some appetizers. Some methods can be clear indicators
in some cases but not in others. If the header of a JPEG file contains the information that
the file was saved from Adobe Photoshop, this is good news, but if someone goes through the
work to remove this data, this feature becomes useless. There is not one solution that fits them
all. On the other hand, there are several features a Deep Learning framework could make use
of. Statistical differences in the pixel values, repeated areas in the images or periodic colour
distributions could all be detected by a model. Considering the capabilities of current Deep
Learningmodels in “understanding” the input content, itwould even seempossible for amodel
topickuponmisaligned shadowsornon-physical behaviour. The following section reviews the
advancesmade inDeep Learning Image Forensics and howmodels use the indicators discussed
in this section.

2.4 Deep Learning Approaches to Image Forensics

Deep Learning models led to improvements in many different disciplines, including Image
Forensics. Two surveys from 2020 review the first approaches making use of deep neural net-
works [23], [24]. Both studies find that Deep Learning models perform much better than
traditional methods.

Although there are different approaches, all models aim to detect a change in the distribu-
tion of pixel valueswithin the forged area compared to the original image. To achieve this, most
of the reviewed models do not use raw RGB values of an image as input but rely on image pre-
processing from classic image forensics like Discrete Cosine Transform or Laplacian Kernels.

To overcome the constraint of predefined features, Bayar and Stamm [25] proposed a new
convolutional layer. Instead of relying on predefined filters, the model learns the dependencies
between pixels itself. To detect the structural changes between different areas, the model first
needs to focus on local structures rather than global ones. The proposed layer uses prediction
error filterswhichpredict the value of the central pixel of thewindowusing the remainingpixels
in the filter window. This process emphasizes local dependencies, allowing to detect changes
throughout the image. This concept is closely related to the noise residuals from the Spatial
RichModel (SRM) [26] known from steganalysis.
Another interesting example is the model by Cozzolino and Verdoliva [27]. The authors
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treat the problem of splicing detection as anomaly detection using an Autoencoder. First, the
model is trained to represent the images. Then each pixel is classified based on the error level.
As spliced regions are assumed to be different from the rest of the image, the model is expected
to make more errors in that region. The output is a pixel-level classification mask.
Most of these works operate on a specific type of forgery with a specialized model architec-

ture. In a more recent survey, the authors reviewed models with multipurpose capabilities [2].
For example, to improve the detection of inter-pixel dependencies and enable the model to de-
tect different types of forgeries, Bappy et al. [28] introduced a hybrid architecture including
an Autoencoder and an LSTM. The LSTM detects dependencies between pixels that might
occur due to resampling of the spliced object. These features are then added to the encoder
embedding of the Autoencoder and fed into the decoder.

Zhou et al. [29] proposed amulti-branchmodel. One branch uses the RGB channels, while
the second branch uses the SRM noise features as input. The overall architecture is that of a
Faster R-CNN [30] known from object detection. The model outputs bounding boxes that
mark the doctored regions.

A more recent contribution that was not part of the reviews is TransForensics [31]. It is the
first image forensics model to use self-attention [20]. The attention mechanism improves the
model’s flexibility in learning the inter-pixel dependencies leading to state-of-the-art results on
the most common Image Forgery datasets.

To summarize, Deep Learning has drastically improved the capabilities of Image ForgeryDe-
tection. But, mostmodels still rely on predefined features from classical approaches. This is im-
plemented either by preprocessing the data and using the features as input into themodel or by
implementing the functionality into an end-to-end system. Whilst some models use features
related to the file format or camera model, most approaches focus on inter-pixel dependen-
cies as the main feature for detecting Image Forgery. Over time models have improved from
image-level classification to either pixel-level classification (similar to image segmentation) or
bounding box prediction (similar to object detection).

2.5 Detecting AI Generated Images

As described in the previous section, the detection of classic Image Forgery techniques with
Deep Learning is mainly based on statistical dependencies between pixels. These dependencies
are altered during forgery operations, for example, through resampling pixels or combining
different images. This section investigates the characteristics of AI-generated images.
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Similar to the “Beyond the Pixel” methods, some techniques can detect logical inconsis-
tencies in the generated material. For example, detecting unusual blinking patterns in AI-
generated videos [32], or mouth shapes that do not fit the spoken words [33]. Bau et al. [34]
made an interesting analysis of what a GAN cannot generate. For instance, in a comparison
between real and fake images using image segmentation, they found that GANs produced sig-
nificantly fewer pixels classified as humans.

Making use of inter-pixel dependencies also proved to be an effective approach to detecting
AI-generated images. Mo et al. [35] were able to detect AI-generated images of faces with over
95% accuracy, picking up on statistical artefacts by the generating model. Their detector was
a simple CNN-based architecture taking as input the images and applying a high pass filter.

More research into GAN-specific artefacts showed that the up-sampling and deconvolution
process in the decoder of the network produces characteristic structures in the images. When
transforming the data from a lower dimensional latent space to the high dimensional image
space, themodel has to create high-resolution features from low-resolution data. The introduc-
tion of artefacts during this process was first shown by Odena et al. [36] detecting a checker-
board structure in GAN-generated images. Zhang et al. [7] continued this analysis using Dis-
crete Fourier Transform (DFT). Figure 2.6 shows a comparison of a real and a fake image and
their respective spectrum in the frequency domain after applying DFT†. The spectrum shows
distinct high-frequency artefacts for the GAN image that are not present in the real image. Al-
though the detector could detect images generated by a specific generative model, it failed to
generalize to data from other models not seen during training. Later it was shown that this can
be improved by making use of more diverse training data as well as data augmentation [37].
Goebel et al. [38] managed to detect which out of six different GANs had generated which
images.

The aforementioned research was done before text-to-image models became widely accessi-
ble. In a recent paper Sha et al. [39] explored the capabilities of text-to-image models and their
detection. Two of thesemodels are DALL-E 2 and Stable Diffusion. Though the authors were
able to detect images from Stable Diffusion with about 90% accuracy, the classification accu-
racy for images fromDALL-E 2was only slightly above 50% (on a balanced dataset) and there-
fore close to chance. To overcome this issue, the authors considered a new detection paradigm.
For each image, they created an image description with the image captioningmodel BLIP [40].
Then, they embedded the image and the caption using CLIP [41] and used the concatenated
embeddings for classification. This approach partly improved the performance of the detec-

†The frequencies are shifted, with low frequencies in the centre of the spectrum.
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Figure 2.6: Real image (left) and AI generated fake image (right) with their respective spectral image showing frequency
artefacts for the generated image [7].

tor‡.
Detecting AI-generated images is highly model dependent as detectors pick up on specific

characteristics of the generative models. These can be categorized into two main types: high-
frequency image characteristics, which emerge during the upsampling process, and semantic
characteristics, which contribute to the overall content and meaning of the image.

2.6 AI-Inpainting Detection

As described in section 2.1, image inpainting is used to recover lost or removed parts of an im-
age. There exist different deterministic algorithms like Navier-Stokes-based inpainting [44].
The method uses the Navier-Stokes differential equations from fluid dynamics to fill in miss-
ing image information from its surroundings. Newer approaches use deep generative models,
i.e. AI-inpainting, which can fill in missing image information or alter image parts based on
natural language prompts. Given the relatively recent emergence of these models, there hasn’t
been a well-established state-of-the-art in terms of their detection. The main bottleneck for
this research is the lack of established datasets. Therefore, each researcher had to create their
own data, making it difficult to compare the results. So far, approaches rely on the use of noise
features, as already seen in section 2.4. Two contributions are outlined below in more detail.
Wang et al. [45] trained amodel to detect different inpaintingmethods, including traditional

algorithms andDeepLearning. They approached the problem as an object detection task using
a modified R-CNN to predict a bounding box around the tampered area. Similar to previous
approaches in Image Forgery Detection, they used noise features as an additional input into

‡The authors considered two datasets, MSCOCO [42] and Flickr30k [43]. On the first, the performance
increased up to 80% accuracy, on the second, there was no improvement at all.
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the network. It was done using the Local Binary Pattern (LBP) [46] similar to the SRM. The
data source were images fromMS COCO [42] that the authors manipulated themselves.

Li et al. [47] introduced the Noise-Image Cross-fusion Network (NIX-Net). The network
uses bothRGBandSRMfeatures as input andpredicts a binary segmentationmask. Moreover,
the authors used special training data to improve the generalizability of the detector between
different inpainting techniques. First, they trained an Autoencoder to fully reconstruct au-
thentic base images from the Places dataset [48]. Then, they replaced parts of the real images
with the respective area of the reconstructed images to emulate differences in the noise patterns
between real and fake image regions. A detector trained on thismodel-agnostic datasetwas able
to detect inpainted regions from different generative models.
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3
Research Design &Data

This chapter is divided into three sections: section 3.1 states the main research questions and
describes the experiments, section 3.2 gives an overview of the data used, and section 3.3 de-
scribes the architecture of the used models in depth.

3.1 ResearchDesign

I approach the problemof Image ForgeryDetection as an image segmentation task. Unlike pre-
vious approaches that relied on highly specializedmodels, I make use of the advances in univer-
sal image segmentation. Recent models, like MaskFormer [9], successfully combined different
segmentation paradigms showing a high level of flexibility to adapt to the different tasks. Thus,
I explore the applicability of these advancedmodels in the context of Image Forgery Detection.
To address this, I focus on two main research questions:

1. Howdo large image segmentationmodels performon the task of classical Image Forgery
Detection?

2. Howdomodern large image segmentationmodels perform on the task of AI-inpainting
detection?

To answer these questions, I carry out two sets of experiments.
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3.1.1 Classical Image Forgery Detection

The first set of experiments focuses on identifying classical image forgery techniques as de-
scribed in section 2.1. Existing detection models have been specifically designed for this pur-
pose. In addition to RGB image features, these models used specialized modules like the Bayer
filter [6], which allowed them to pick up on inter-pixel dependencies that change during the
image tampering. A downside of this approach is the required level of feature engineering, lim-
iting the model’s flexibility. For example, this includes selecting suitable kernels for surfacing
noise features.

In recent years, image segmentation models like the MaskFormer [9] made significant ad-
vances, demonstrating strong versatility. Iwill test how thesemodels adapt to the ImageForgery
Detection task. Therefore, Iwill compare the performance of large image segmentationmodels
in detecting forged image regions to state-of-the-art forgery detection models.

I will use the CASIA Image Tampering Detection Evaluation Database v2 [49] for the ex-
periments. This dataset is a cornerstone of Image Forgery Detection experiments, providing
an excellent basis to compare the performance of the models trained during this work to other
forgery detection models. Section 3.2.1 describes the dataset in more detail.

Themodels used during the course of this work areMaskFormer [9] andMask2Former [10].
The models were selected due to their availability via the huggingface library and good perfor-
mance on the benchmark Semantic Segmentation on ADE20K [50]. The architecture for each
model is described in detail in section 3.3.

3.1.2 AI-Inpainting Detection

The second set of experiments extends the work beyond the detection of classical image forgery
tools. Over thepast years, evenmonths,manyAI imagemanipulation tools havebecomewidely
accessible. In May this year (2023) Adobe released it’s AI-inpainting tool Generative Fill for
beta testers [51]. I will test the models from the previous section in their capabilities to detect
image sections created with one of these tools.

Due to the novelty of the tools, there does not exist a commonAI-inpainting dataset. There-
fore, I create a new dataset combining two different sources, i.e. the Places205 dataset as well
as test data from theMATmodel. This dataset is described in more detail in section 3.2.2.
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Figure 3.1: Examples of the three image segmentation paradigms [8].

3.1.3 Image Segmentation

There are three main image segmentation paradigms, i.e. instance, semantic, and panoptic seg-
mentation (figure 3.1). Instance segmentation means to identify different objects or things in
the image. The model outputs different object masks indicating which pixel belongs to an ob-
ject and which not. Semantic segmentation does not focus on individual objects but rather
on semantic categories. As shown in figure 3.1, semantic segmentation does not differenti-
ate between different people in the image as all of them belong to the same person category.
The model outputs one semantic map indicating the category of each individual pixel. Lastly,
panoptic segmentation combines the previous two approaches by separating the image into
semantic categories and distinguishing between different instances within these categories.

Initially, the three tasks were addressed separately by different models. Carion et al. [13] suc-
cessfully combined themwith their Detection Transformer (DETR). The model first predicts
object masks for instance segmentation and, in a second step, merges the different masks into
one panoptic segmentationmap. This approachhas been refinedwith themodelsMaskFormer
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[9] andMask2Former [10]. These models are described in more detail in section 3.3.
In the experiments, the models are trained using the semantic segmentation paradigm. The

goal is to not focus on objects but rather on regions. This enables themodel to detect a different
manipulations, for example, inpainting which usually removes and object and replaces it with
background. This would not fall under the scope of an object detection model. Similar to
previous approaches that detected discrepancies between the forged region and the rest of the
image, the scope of this work is to train themodels to distinguish between real and fake regions
independent of whether they are showing an object or not. Therefore, the models are trained
on a binary image segmentation task classifying each pixel as either real or fake.

3.2 Data

3.2.1 CASIA v2

The CASIA Image Tampering Detection Evaluation Database v2 [49] was first introduced in
2013 and is a cornerstone of Image ForgeryDetection research. Most papers thatwere reviewed
in section 2.4 evaluated their results on this dataset, making it a great source for comparison.
Moreover, with 12.614 examples it is the largest dataset available. 5123 are tampered, and 7491
are authentic images.

The images have different sizes and formats, i.e. compressed (JPEG) and uncompressed
(TIFF). The authentic images are classified in 9 categories: scene, animal, architecture, char-
acter, plant, article, nature, indoor and texture.

The tampered imageswere createdwith either copy-move, copying one part of the image and
inserting it again at another position, or splicing, taking an object fromone image and inserting
it in another image. In addition the creators used blurringwithin the tampered regions tomake
the images look as realistic as possible to the human eye. Moreover, the dataset contains binary
masks, indicating the tampered region for each image. Some examples are shown in figure 3.2.
Figure 3.5 shows the distribution of mask sizes.

The size and widespread use of the dataset make it a good candidate for machine learning
experiments. Other common datasets are COVERAGE [52] and Columbia [53], which only
contain around 100 and 1000 tampered images and are therefore too small to fine-tune a large
model like MaskFormer. The dataset is available on Kaggle [54].

Aproblemwith the dataset is its entanglement. All 5123 tampered imageswere created from
either one (copy-move) or two (splicing) of the authentic images. Under closer investigation,
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Figure 3.2: Examples from the CASIA v2 test data with forged images on top and the respective ground truth masks below.
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it turns out that only a subset of 1956 authentic images were used to create the tampered ones.
This can lead to the situation that parts of an image that was used in training also appear in
testing. This data leakage could inflate the results. Oneway to prevent this would be to remove
all the base images that were already used during training from the test set. Unfortunately, for
an80/20 split, thiswould cause88%of the smaller test set todrop fromthe experiments. None
of the reviewed works addressed this problem. The main scope of my first set of experiments
is to evaluate if modern large image segmentation models can keep up with the performance
of specialized architectures that use image forgery-specific features like noise. For this reason,
I will test the models in the same way as previous approaches to be comparable. In the second
step, I will assess how far data leakage affects the performance of the models during testing.

The data is split into training (80%) and testing (20%) in the same way for all experiments.
Further, a fixed 20% share of the training data is held out as a validation set during training.
The exact numbers are reported in table 3.1.

Type Train Validation Test
Tampered 3206 814 961
Authentic 4775 1182 1534

Table 3.1: Size of the train, validation and test set for the experiments with the CASIA v2 dataset.

3.2.2 Places205+MAT

The Places205+MAT dataset was created during the course of this work from two different
datasets. The first one is Places205 [48], a common dataset for scene recognition. The second
is test data from the Mask-Aware Transformer for Large Hole Image Inpainting (MAT) [11].
This model takes as input an image and a mask and tries to recreate the masked area. The
model is described in more detail in section 3.3.3. The test data contains images that were
reconstructed by the model and the respective groundtruth masks.
Places205. Places205 is a scene recognition dataset with 205 different categories of environ-

ments like teenage bedroom,winter forest path or sunny coast. Each category hasmore than 5000
images, and the dataset contains 2.5million images in total. The dataset is a subset of the larger
Places356-Standard. For this work I used a subset of 36.320 images, sampled randomly across
all categories. The data is available on Kaggle [55].
MAT. The dataset contains images from Places365-Standard partially reconstructed by the

MAT model. Figure 3.3 shows examples of reconstructed images and their masks. The data
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and themodel were selected due to both performance and accessibility. Themodel is currently
on second place of the Places2 Image Inpainting benchmark [56]. Moreover, themodel is avail-
able on github [57], and some of the test data is openly available onOneDrive [58]. The dataset
contains 36.000 reconstructed images. The masks were created randomly sampling [0, 3] rect-
angles of different sizes and [0, 4] brush strokes of different widths. The average mask density
for the training set used in this work is 0.217. The distribution of mask density is shown in
figure 3.4.
The combined Places205+MAT contains 72.320 examples, half inpainted by MAT, the

other half original. Unfortunately, the authors of MAT did not provide the original images
or file names making it impossible to match the reconstructed images with the respective origi-
nals. But, due to the size of the dataset and the random sampling of the authentic images, data
leakage should not be a problem. The data is split in 80% training and 20% testing data. Fur-
thermore, 20% of the training data is held out during training as a validation set. The exact
sizes of the different splits are reported in table 3.2.

Type Train Validation Test
Inpainted 23 360 5840 7300
Authentic 23 360 5760 7200

Table 3.2: Size of the train, validation and test set for the experiments with the Places205+MAT dataset.

3.2.3 Stable Diffusion

The MAT data is comparable to prompt base image inpainting data like the one generated
through Photoshop Generative Fill in the way that the final product in both cases is an im-
age that is partially authentic and partially AI-generated. But, there are two main differences
between these two types of data.

First, inpainting tools like Photoshop Generative Fill take as input not only an image and
a mask, but also a text prompt telling the model what to fill the masked area with. For MAT,
this additional constraint does not exist. The model only has to match the style of the residual
image, but it does not have to follow an additional semantic constraint. This changes the way
the model is trained and, therefore, impacts the kind of data it generates.

Second, for MAT, the masked information is lost. Therefore each pixel within the masked
area is generated by the model. For prompt-based inpainting models this information is still
accessible. In fact, the model tries to extend this part of the image rather than recreating it.
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Figure 3.3: Examples from the MAT test data with manipulated images on top and the respective groundtruth masks below.
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Figure 3.4: Distribution of mask density for the MAT training
data.

Figure 3.5: Distribution of the mask density for tampered im‐
ages in the CASIA v2 training set.

This also changes the model’s behavior and the value that can be provided by groundtruth
masks. For the prompt-based inpaintingmodel, not every pixel within thatmask will bemodel
generated and, therefore, share certain model-related properties. This means, that the mask
also contains falsely labeled pixels, making it harder to train a model.
To better understand the performance of the MaskFormer on detecting AI inpainting, I

have created a second dataset. This dataset contains 100 images created using stable diffusion.
Though too small to train a model, it will allow me to test the generalizability of the models
trained on Places205+MAT.
I use the implementation of stable diffusion inpainting by runwayml on huggingface [59].

The inputs are 100 images fromPlaces205 thatwerenotpart of the sampleused inPlaces205+MAT
to prevent data leakage. The masks are randomly sampled squares implemented in the same
way as for the MAT model. Lastly, the prompts are randomly sampled from a selection of 5
prompts with increasing levels of detail.

• a person

• a small box

• a basketball, high resolution

• a cute sea otter high resolution

• a person on a skateboard doing a kickflip in high resolution

Examples for each prompt are shown in figure 3.6. The images are very different in quality.
For some of the images, the queried results are visible, while in other images, the results do not
resemble the query, or the image did not change noticeably. As described above, the inpainted
elements often do not fill the complete mask area. The average masked area is 24%.
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Figure 3.6: Examples from the data created with stable diffusion with original (left), mask (middle), stable diffusion image
(right) and prompt (top).
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Figure 3.7: High‐level architecture of the MaskFormer model [9].

3.3 Models

This section describes the different models that were used during the experiments.

3.3.1 MaskFormer

The MaskFormer [9] extends the previous DETR model [13] from combining instance and
panoptic segmentation to including semantic segmentation. It achieved state-of-the-art results
when it first came out and is currently onplace 36 of the benchmark for Semantic Segmentation
on ADE20K with a mIoU of 55.6 [50].

Figure 3.7 shows the overall architecture of the model. First, a backbone extracts image
features to a lower dimensional feature map F . In one part of the workstream (bottom), a
pixel decoder upsamples the feature map to produce per-pixel embeddings Epixel. The second
path applies a transformer decoder to F , creating N per-segment embeddingsQ. Here, N is
a hyperparameter and does not correspond to the number of final predicted classes K. Then a
multi-layer perceptron takesQ to produce both,N class predictions andN respectivemask em-
beddings Emask. The final mask predictions are obtained via a dot product between mask and
pixel embeddings. In the last step, the N predicted masks and corresponding class predictions
are combined into one final semantic map prediction.
Pixel-level module. The model uses either a ResNet [60] or a Swin Transformer [61] as

a backbone. The latter is an improved version of the Vision Transformer (ViT) [62]. While
the ViT computes attention globally on the whole image, the Swin Transformer computes
attention locally in smaller windows. In the second step, these windows are shifted to allow
for inter-window dependencies. This ShiftedWindow (Swin) approach reduces the computa-
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tional complexity from quadratic to linear with respect to image size. During the initial testing
of the MaskFormer, the Swin Transformer performed better than the ResNet. The feature
map generated by the backbone has lower dimension than the input, scaled down by a factor
of S with F ∈ RCF×H

S
×W

S where CF is the number of channels, and H , W are height and
width of the input image.

The pixel decoder is based on the architecture of a Feature Pyramid Network (FPN) [12].
The network upsamples the low-dimensional and semantically dense feature map from the
backbone in a step-wise manor. Here, the network follows the same steps as the backbone in
reversed order*. It allows the network to not only take the output from the previous step as
input, but also the respective feature map with the same dimensions from the backbone. This
procedure is shown in figure A.1. At the end, a 1 × 1 convolution projects each pixel to and
embedding of dimensionCE .
Transformer module. The model uses a standard transformer decoder [20]. It takes as

inputs the backbone feature mapF andN queries. These queries are learnable positional em-
beddings. The exact architecture of the decoder is shown in figure A.2. The modules’ outputs
areN embeddings of sizeCQ, one for each segment.
Segmentation module. The segmentation module combines the outputs of the pixel-level

module and the transformer module. The transformer outputQ ∈ RCQ×N passes through a
linear classifier followed by a softmax to generate the N class predictions. For the mask em-
beddings, a Multi-Layer Perception transformsQ intoN vectors with the same dimension as
the pixel embeddings CE . Using a simple dot-product followed by a sigmoid activation func-
tion, these two embeddings are combined intoN mask predictions assigning a probability to
each pixel [h,w] to belong to a certain mask. For semantic segmentation, the model combines
theN mask predictions with theN class predictions. Each pixel is assigned to a class with the
maximum combined probability of class and mask prediction

ĉ[h,w] = argmax
c∈{1,...,K}

N∑
i=1

pi(c) · M̂ i[h,w]. (3.1)

Here pi(c) is the probability of set i to belong to class c, M̂ i is the corresponding predicted
mask and M̂ i[h,w] is the probability of pixel [h,w] to be in that mask. ĉ[h,w] is the class the
model predicts for pixel [h,w].

*For example, if the backbone reduces the dimension (H, W) by factors of 4, 8, 16 and 32 successively, the
decoder increases the dimension again following the same steps in reversed order.
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Loss function. Themodel is trainedusing a combination of three different losses, i.e. binary
cross entropy for the class prediction and a combination of a dice loss [63], and a focal loss [64]
for the mask prediction. Given a set of N predictions ẑ and the corresponding ground truths
z we get:

L(ẑ, z) =
N∑
j=1

[− log pσ(j)(cj) + Lmask(M̂σ(j),Mj)] (3.2)

Here σ(j) is a bipartite matching that assigns each of theN segments to amatching class mask.
The focal loss is a modified cross-entropy loss that puts less weight on good predictions and

more on bad ones. This is achieved by the factor (1− αi)
γ with

αi = mi · m̂i + (1−mi)(1− m̂i) =

m̂i ifmi = 1

(1− m̂i) ifmi = 0
. (3.3)

mi is the probability that pixel i belongs to this specific mask. If the prediction is good, i.e.
close to either 0 if it is not or 1 if it is, the factor becomes very small (< 1) for values of γ > 0,
reducing the weight of the loss. On the other hand, if the prediction is bad, the factor is close
to one, and the loss stays close to its full value. For γ = 0, the loss is equivalent to the regular
cross-entropy.

The dice loss is similar to the IoU, i.e. dividing the number of correct positive predictions
by the number of total positive predictions. The only difference is that, here, each prediction
is neither 1 nor 0 but the probability of the prediction being one. The combined mask loss is
formalised as

Lmask(m̂,m) = wdice · Ldice(m̂,m) + wfocal · Lfocal(m̂,m)

= −wdice · (1−
2
∑H·W

i=1 m̂i ·mi + 1∑H·W
i=1 m̂i +mi + 1

)− wfocal ·
H·W∑
i=1

(1− αi)
γ logαi

(3.4)
wherewdice andwfocal are tunable weights.

Parameters. Different versions of the model are available via huggingface. Each version
differs in the backbone used as well as the training data (table 3.3). Apart from the backbone
the remaining hyperparameters are the same for each version (table A.1). The versions used in
this work are either trained on ADE20K-full, ADE20K or COCO-Stuff-10k. ADE20K-full
has 25k training examples and over 3000 semantic categories. Of these, only 847 were used
during the training of the model. The authors also considered a further reduced version of
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Model Backbone mIoU #paramters

MaskFormer

R101c 47.2 60M
Swin-S 51.0 63M
Swin-B 52.3 102M
Swin-L 55.6 212M

Mask2Former
Swin-S 52.4 69M
Swin-B 53.7 107M
Swin-L 57.3 216M

Table 3.3: Different versions of the MaskFormer and Mask2Former with either a ResNet backbone (R) or a Swin Transformer
(Swin). The mIoU values are reported for the ADE20K validation set with 150 categories [10].

ADE20k with only 150 classes. COCO-Stuff-10k has 9k training examples and 171 different
categories.

3.3.2 Mask2Former

TheMasked-attentionMask Transformer (Mask2Former) has the same general architecture as
theMaskFormerwith twomain improvements. These are the introductionofmasked-attention
and the use of multi-scale features [10].

One of the main efforts when training a transformer for object detection is learning which
region one module should attend to. In the classical formulation of attention, each head ini-
tially can attend to the whole input. During training the learned attentionweights narrow that
field of attention down. For models like DETR and MaskFormer this leads to very slow con-
vergence during training. Masked-attention alleviates this problem. The idea is the following:
Each transformer module consists of several layers. Each layer takes as input the standard set
of Query, Key and Value, as well as a mask. This mask is the binarized prediction mask of the
previous layer. Therefore, all points outside of the mask predicted by the previous layer are
discarded. This updated version of cross-attention is formalized in equation 3.5.

Xl = softmax(Ml−1 +QlK
T
l )Vl +Xl−1 (3.5)

Here, l is the layer index, Xl ∈ RN×C are the N query features of that layer and Ql =

fQ(Xl−1) is a linear transformation of the output of the previous layer. Kl,Vl ∈ RHlWl×C

are the images features after linear transformations fK(.) and fV (.). Hl andWl are the height
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and width of the image features. Lastly, the attention mask is defined as

Ml−1(x, y) =

0 ifMl−1(x, y) = 1

−∞ otherwise
(3.6)

withMl−1 ∈ {0, 1}N×HlWl .
The second enhancement of the model is the use of multi-scale features in the transformer.

Using high-resolution features is computationally costly, therefore, the MaskFormer uses the
spatially low-dimensional output of the backbone as input into its transformer decoder. The
Mask2Former, on the other hand, uses feature maps from all the upsampling stages of the
pyramid-like pixel decoder (figure 3.8). Here, the first layer of the transformer decoder takes
as input a low dimensional feature map (similar to the MaskFormer). The second layer takes
as input a higher dimensional feature map as well as the mask prediction of the previous layer
resized to the spatial dimension of the second layer. This allows for the use of high-dimensional
features without having to compute attention on the whole feature map. The feature maps of
the pixel decoder have resolution 1/32, 1/16 and 1/8 of the original image.
With it’s improvements, the Mask2Former achieves better results than its predecessor with

only about 5M parameters more (table 3.3). Moreover, the training time was reduced drasti-
cally from 300 epochs for the MaskFormer to only 50 epochs. In this work I only consider
versions of the model pretrained on ADE20K as described in the previous section.

3.3.3 MAT

TheMask-Aware Transformer for Large Hole Image Inpainting (MAT) [11] takes as input an
image and amask and reconstructs the masked area using the residual image information. The
model is currently in the first place for Image Inpainting on CelebA-HQ [65] and second for
Image Inpainting on Places2 [56]. The key components of the model are its transformer mod-
ules using both shifted windows [61] and masked-attention as well as its Style Manipulation
Module (SMM), which is similar to a StyleGAN [66]. The architecture of the model is shown
in figure 3.9.
First, several convolutional layers downsample the input to aggregate information and re-

duce computational complexity by applying attention on a lower dimensional space. Next are
five transformer modules. The size of the shifted windows increases first and then decreases
again. Masked-attention, as described in the previous section, guides themodel to focus on the
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Figure 3.8: High‐level architecture of the Mask2Former model (left) and design of the masked‐attention transformer module
(right) [10].
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Figure 3.9: High‐level architecture of the MAT model [11].

image parts that are not masked. The output of the last transformer module is passed again
into a set of convolutional layers that upsample the features to the size of the original input
and add the input from the SMM. The SMM replaces parts of the transformer output with
random noise and produces scaling factors for the weights of the final convolutional layers,
which upsample the data back to the input size. This allows for pluralistic and photorealistic
image inpainting.
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4
Experiments

This chapter is divided into two sections: section 4.1 describes the experiments carried out on
the CASIA dataset for photoshop detection and section 4.2 reports the results for the experi-
ments on AI-inpainting detection using both datasets Places+MAT and Stable Diffusion.

4.1 Image Forgery Detection

4.1.1 MaskFormer

Comparing architectures

The first experiment compares five different versions of the MaskFormer model. Here I con-
sider three different backbones, namely Swin-S, Swin-B and ResNet101c. For the Swin-based
models I test both versions trained on ADE20Kwith the reduced set of 150 labels and COCO
with 171 labels. The ResNet101c is trained on ADE20Kwith the full label set which includes
847 categories. Themodel, parameters and training data are described in detail in section 3.3.1.

All five models are fine-tuned on the CASIA training dataset including both tampered and
authentic images. The latter are included to improve the precision of the model to prevent the
detection of fake regions in every image. The models are then trained for 20 epochs and an
additional 20 if they did not overfit within the first round. Themodels are evaluated after each
epoch on the validation set. Figure 4.1 shows learning curves for training and validation loss of
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all models. Section A.2 describes the specifications during training in more detail.
From a first evaluation of the learning curves, it is evident that all models overfit the data

within a maximum of 40 epochs. All models reach about the same loss, around 0.06. But, the
models pre-trained on ADE20K reached the same level earlier than models trained on COCO.
ResNet101c starts overfitting first after 11 epochs. It is likely due to the reason that it is the
model with the lowest number of parameters. Second are Swin-S-COCO, Swin-S-ADE20K
andSwin-B-ADE20K.All three of themstart overfitting at around20 epochs. The slowsmodel
Swin-B-COCOwhere overfitting becomes visible at around 25 epochs.

All Swin models perform similarly on the validation set at the overfitting threshold. The
ResNet101c performs slightly worse. Due to its faster convergence than the other Swin-based
models, whilst having the same performance on the valdiation set, Swin-S-ADE20K was used
for all further experiments.

Swin-S-ADE20Kwas retrainedwith an early-stoppingmechanism that stopped the training
after 16 epochs when the validation loss did not improve for three epochs with respect to a
threshold of 0.005. The f1 score of an image is calculated on pixel-level, where each pixel of
the segmentation mask counts as one single prediction. Therefore, for example, the number
of true positives is the number of pixels that were correctly classified as fake. As the f1 score
for any authentic image is zero, I only report the score for the tampered images. Figure 4.2a
shows the distribution of f1 scores for the tampered images from the test set. The plot shows
that scores concentrate in the extremes, with most scores being close to 0 or 1. The median f1
score is 0.777. Moreover, the best 25% of images all have an f1 score above or equal to 0.942.
The mean value of predictions, on the other hand, is only 0.561. This is due to the 25% of
examples that have a score of 0 meaning the predicted mask did not overlap with the ground
truth or the model did not predict any mask at all. Image-level precision and recall follow the
same distribution as the f1 score (figure A.3) with a mean precision of 0.609 and mean recall
of 0.578.

Table 4.1 compares the f1 scores of different models from the literature with the models
trained during this work. The MaskFormer comes in second, two points ahead of the MFCN
and 7 points behind TransForensics, the best model found.

Figure 4.5 shows the ten examples from section 3.2.1 with their respective predictions from
Swin-S-ADE20K. Six of the predictions match the groundtruth mask almost exactly. For the
examples in rows four and seven themodel failed topredictmost of themask. Both are examples
where the image was mirrored. This could be an indication of a technique the model struggles
to detect. Figures A.4 and A.5 show the ten best and ten of the zero predictions. The best
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(a)MaskFormer Swin‐S‐COCO. (b)MaskFormer Swin‐S‐ADE20K.

(c)MaskFormer Swin‐B‐COCO. (d)MaskFormer Swin‐B‐ADE20K.

(e)MaskFormer ResNet‐ADE20K. (f)MaskFormer Swin‐S‐ADE20K.

Figure 4.1: Learning curves for different MaskFormer architectures. Reported are both training and validation loss while
fine‐tuning the models on the CASIA v2 dataset (a)‐(e). The model in (f) is fine‐tuned on tampered examples only.
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(a) (b)

Figure 4.2: Distribution of f1 scores for the predictions of Swin‐S‐ADE20K on the tampered images from the CASIA v2 test
set (a). On the right (b) these scores are separated in test images that were partly seen during training and completely new
images. Here the scale is relative to be able to compare the two distributions.

examples aremainly landscapes, wheremuch of the imagewas replaced (often the sky). Reason
for this could be the size of the fake region with respect to its border, inflating the f1 score.
Further, the images often seem to have clear panes, like sky and mountains. Separating those
two elements is similar to the original segmentation task of themodel. The bad predictions are
mainly images with small changes where a small object was either added, copied or removed.

Prediction trends

The distribution of the mask density gives further information on which trends influence the
model performance. Figure 4.3a plots the mask density relative to the f1 score of the respective
prediction. No correlation is visible, negating the assumption that large masks would inflate
the f1 scores. On the contrary, the cluster in the lower right corner of the plot (high f1 score,
small mask) indicates that themodel predicts many small objects relatively well. With regard to
prediction accuracy, figure 4.3b compares the size of the groundtruth mask with the predicted
mask. The best predictions lay on a one to one line, with the predicted mask being the same
size as the groundtruth. Besides that, points scatter above and below the line, not indicating
any trend in predicting masks smaller or larger than the groundtruth.

Model precision

In previous works, model performance was only evaluated on tampered images. What has not
been addressed in the literature before is the performance on authentic images, i.e. how many
false positives does themodel produce. I measure the overall model precision as the share of au-
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(a) (b)

Figure 4.3: Mask density as a function of the f1 score (a) and the density of the predicted mask (b) for the MaskFormer
Swin‐S‐ADE20K on the CASIA v2 test set.

(a) (b)

Figure 4.4: Distribution of the prediction mask density for MaskFormer Swin‐S‐ADE20K on tampered (a) and authentic
images (b) from the CASIA v2 test set.

thentic images that were correctly classified as fully authentic, i.e. the predicted mask does not
contain any fake pixels. Figure 4.4 shows the distribution of predicted mask sizes for tampered
and authentic images. For authentic images, the model predicted a mask in 30% of cases. In
comparison, for tampered images, the model predicted a mask for 89% of the cases*.

Trainingwithout negative examples

In most examples from the literature, models were trained on tampered images only. To assess
the effect of authentic images on the training, I fined-tuned another version of theMaskFormer
Swin-S-ADE20K without authentic images. The learning curves are shown in figure 4.1f and

*In some cases the model predicted a mask that did not overlap with the groundtruth mask. This led to the f1
score being zero in 25% of cases, but the prediction density only in 11%.
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the f1 score on the test set is reported in table 4.1. With a mean score of 0.607, the model
performs better than the model trained on authentic and tampered images and is only 0.02
points behind the current state-of-the-art. This is caused by the lower share of predictions
with 0 f1 score, which decreased by 4 percentage points to 21% for tampered images. But,
this performance improvement comes with a cost. Before, the share of authentic images where
the model predicted a mask was 30%. This value increased to 88%. As expected, the model
performs better in detecting tampered regions in tampered images but decreases strongly in
precision.

Data leakage

Another important factor for the performance of themodel couldbedata leakage. As described
in section 3.2.1, many of the tampered examples in the test set are built from the same images as
images in the training set. To get a better estimate of the true performance of the model, figure
4.2b compares the f1 score for both partly repeated and completely new images. The number
of zero-predictions is much higher for the new images with 44% compared to 21% for the
partially repeated ones. The mean f1 scores are 0.602 for the repeated images and only 0.362
for the new ones. Note that most of the images 83% are partially repeated. This result clearly
shows that data leakage influences the model performance.
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(a) (b)

Figure 4.6: Learning curves on training and validation set for the fine‐tuning of the Mask2Former Swin‐S‐ADE20K on CASIA
v2 (a). Distribution of f1 scores for the predictions of the model on the tampered images from the test set (b).

4.1.2 Mask2Former

The Mask2Former, as described in section 3.3.2, is an optimized version of the MaskFormer.
The experiments in this section were designed to test if it also performs better on the task of
Image ForgeryDetection. As themodel is very similar to theMaskFormer I only considered the
Mask2Former Swin-S-ADE20K.Moreover, the model has highGPUmemory usagemaking it
impossible to train models larger than size small on the machine used in this work.

In the same way as before, I fined-tuned the model on the whole CASIA v2 dataset, includ-
ing authentic images. The learning curves are shown in figure 4.6a and the mean f1 score is
reported in table 4.1. The model performs better than the MaskFormer with a mean f1 score
of 0.583. But, the share of 0 f1 score predicitons is 32%, two percentage points higher than
for the MaskFormer. The higher average f1 score comes from a more polarised distribution of
scores. As shown in figure 4.6b, the scores are even more distributed to the edges, i.e. either 1
or 0 rather than in between. The median f1 score is 0.901. This is 0.112 points more than for
theMaskFormer. In addition to its good performance on tampered images, the model also has
high precision. The share of authentic images in the test set where the model predicts a mask
is only 5%.

4.2 AI-Inpainting Detection

The following experiments aim to assess the capabilities of modern large image segmentation
models to discriminate between real andAI-generated pixels in an image. This sectiondescribes
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Model F1 Details
SPAN [67] 0.382 CNNwith Bayer and SRM layers
RGB-N [29] 0.408 R-CNNwith RGB and Noise features
MFCN [68] 0.541 Multi-task CNN detecting surface and edge mask
TransForensics [31] 0.6270.6270.627 CNNwith attention
MaskFormer 0.561 Swin-S-ADE20K
MaskFormer (Tp) 0.607 Swin-S-ADE20K trained on tampered images only
Mask2Former 0.583 Swin-S-ADE20K

Table 4.1: Performance of different models on the CASIA v2 dataset.

(a) (b)

Figure 4.7: Learning curves on training and validation set for the fine‐tuning of the MaskFormer Swin‐S‐ADE20K on
Places205+MAT (a). Distribution of f1 scores for the predictions of the model on the tampered images from the test set
(b).

the fine-tuning of the MaskFormer model on the Places205+MAT dataset and the evaluation
of the model performance on various data sources.

Places205+MAT

I trained the MaskFormer Swin-S-ADE20K on the Places205+MAT dataset, including both
inpainted and authentic images. The learning curves are shown in figure 4.7a and the distribu-
tion of f1 scores on the test set in figure 4.7b. The results are extraordinarywith amean f1 score
on the test set of 0.995 and a minimum f1 score of 0.932. Some examples are shown in figure
4.8. As indicated by the f1 score, the predicted masks match the groundtruth masks almost
exactly. Moreover, the performance on the authentic test images reveals that the model is very
precise. The mask prediction density on the authentic images is exactly zero. The model did
not predict any fake pixels in any of the authentic images.
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I conducted a series of rigorous tests to ensure that the performance is measured accurately
and not inflated by any side effects. These are described in the following.

MAT

As a first comparison, I trained the same model only on the images reconstructed by MAT.
Learning curves and f1 distribution are shown in figure A.6. The performance on the recon-
structed images is similar to before with a mean f1 score of again 0.995. The performance on
the authentic images on the other hand nowdropped significantly. Themodel predicted a non-
zeromask in 55% of examples. Thesemasks seem to not pick up on any clearly distinguishable
objects in the scene but rather form a porous cover of parts of the image (figure A.7).

Stable Diffusion

To test if the first model can generalize to other inpainting sources, I tested it’s performance on
the 100 images from the stable diffusion dataset (section 3.2.3). The model achieves a mean
f1 score of 0.367. More importantly, the average prediction density of the model on the stable
diffusion images is 99.9%. In other words, the model predicts nearly every pixel to be fake for
every image. Examples are shown in figure A.8. I also tested the model on the original images
from Places205 from which the stable diffusion data was created. These images were not part
of neither train, validation or test set of the previous experiments. The result is the same as
before, the model predicts every pixel as real on the authentic images without exception.

CASIA

Next, I tested the dependency of the model on the main data source Places205. The model
was applied to both parts of the CASIA test set, i.e. authentic and tampered images. For the
authentic images themodel predicted each pixel in each image to be authentic withoutmistake.
For the tampered images the results are nearly the same, except for one single image where the
model predicts 99.6% of the pixels to be fake. For every other image the result is the same, no
fake pixels were detected.

Frequency Analysis

As a final test, I analyzed the spectrum of the MAT images. As shown in [7], GANs can leave
frequency artefacts in the generated images. To analyze if theMaskFormer picks up on artefacts
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Figure 4.9: Mean shifted DCT for the training images in Stable Diffusion (left), Places205 (middle), andMAT (right). Displayed
are the DCT coefficients for the different frequencies as described in section A.1. High values refer to a high abundance of
the respective frequency and vice versa. The two datasets that were altered by a generative model (left and right) show
characteristic frequency artefacts compared to the authentic images (center).

of theMATmodel, I replicated this analysis here. I calculated theDCT for each image (see sec-
tion A.1 for details). Then, I took themean for each of the five sets of images, i.e. CASIA (tam-
pered), CASIA (authentic), Places, MAT and Stable Diffusion. Further, I shift the spectrum
so that low frequencies are in the centre of the spectral image. The spectra forMAT, Places205
and Stable Diffusion are shown in figure 4.9. Bothmodels, Stable Diffusion andMAT, altered
the original spectrum of the Places205 dataset. Within the spectrum of Places205, frequencies
are distributed randomly. For Stable Diffusion, the increased intensity around the centre in-
dicates a higher abundance of low frequencies. Following this, the model creates less detailed
features which are associated with high frequencies. The MAT images, on the other hand,
show another trend. Low frequencies are not overrepresented, but the spectrum contains dis-
crete spectral lines. This phenomenon was discovered before by Zhang et al. [7] and is shown
in figure 2.6. These three spectra provide a good explanation for the model performance. The
MATmodel leaves a clear frequency signature in the images which is not detectable by the hu-
man eye, but can be picked up by a model. The images by Stable Diffusion on the other hand
do not match the distribution of the Places205 images and are therefore also not detected as
authentic. But, as they have another signature as theMAT images, themodel cannot detect the
altered regions. Lastly, the spectra for both tampered and authentic images from the CASIA
training set are shown in figure A.9. Both spectra look similar to the one of Places205. Thus,
it is not surprising that they were also classified as authentic by the model.
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ComparisonwithNIX-Net

There does not exist an exact reference for AI-inpainting detection on images created from
Places205 using the MAT inpainting model. But, as described in section 2.6, Li et al. [47]
tested their NIX-Net on images from Places205 that were inpainted using different models.
The best mean IoU achieved on their test set was 0.921. TheMaskFormer scored 0.069 points
higher with a mean IoU of 0.990 without specialized noise features. But, in contrast to the
NIX-Net, it was not able to generalize to other inpainting techniques.
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5
Conclusion

In this work, I approached the detection of image manipulation with classical manipulation
tools like Adobe Photoshop as an image segmentation problem. For this task, I fine-tuned
the large image segmentation models MaskFormer and Mask2Former to classify the pixels of
an image into two categories, real and fake. I evaluated the results, calculating the f1 score
for the predicted masks on tampered images and the share of correct zero-mask predictions
on authentic images. Furthermore, I compared the f1 scores of the different models with the
current state of the art (table 4.1).

The best model, MaskFormer Swin-S-ADE20K trained on tampered images only, achieved
an f1 score on the test set of0.607which is only0.02points behind thebestmodel performance
found in the literature and better than any other model. In contrast to previous research, I
extended the analysis of forgery detection and considered themodel performance on authentic
images as an evaluation criterion. Therefore, the rate of true negative predictions, i.e. themodel
predicting all pixels as realwithin a real image,wasused to asses themodels image-level precision.
The best performance, considering both metrics, was achieved by the Mask2Former Swin-S-
ADE20K,which achieved an image-level f1 score of 0.583 on the test set and correctly classified
95% of the authentic images.

In a final step, I assessed the problem of data leakage when training on the CASIA dataset.
It was motivated by the fact, that many tampered images were created from the same authentic
images. When simply splitting the data in train and test set, many of the test images were par-
tially seen during training (section 3.2.1). This has not been addressed in any of the reviewed
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works using this dataset. To assess the extent of this problem, I compared the model perfor-
mance on images only made of components not seen during training with partially repeated
images. Themodel achieved amean f1 score of 0.421 on the completely new images and 0.590
on the partially repeated ones. This inflation of f1 scores through the repeated images has to
be considered when making assumptions about the model performance beyond the CASIA
dataset.

With my experiments, I could show that current state-of-the-art image segmentation mod-
els can keep up with specialized architectures for Image Forgery Detection. Further, I demon-
strated that these models can achieve high precision when including authentic images in the
training. Finally, I assessed the problem of data leakage for the CASIA dataset allowing future
research to take this problem into account.

The second set of experiments was focused on the detection of AI-inpainted images, i.e. au-
thentic images that were altered by a generativemodel. I created a new dataset, combining a set
of authentic images with the test data of a model for image inpainting. Similar to the previous
experiments, I trained the MaskFormer Swin-S-ADE20K on the data and evaluated its perfor-
mance in terms of image-level f1 score and precision. The model achieved exceptional results
with a mean f1 score of 0.995 and zero false predictions on the authentic test images. I further
tested the model on a set of images created by Stable Diffusion as well as the CASIA dataset.
The model detected the Stable Diffusion images as manipulated but could not generate an
accurate segmentation mask. Instead, it classified nearly all pixels in the images as fake. The
model could not detect any fake images created with Photoshop (CASIA). Previous research
has found distinct frequency artefacts in images created by generative models. Based on these
results, I analyzed the spectra of the different datasets using Discrete Cosine Transform. It re-
vealed unique frequency artefacts for both MAT and Stable Diffusion that were not present
in the authentic images or the images that were manipulated with Photoshop. The different
characteristics of artefacts found in MAT and Stable Diffusion images could explain why the
model did not generalize to the new data.

I have shown that it is possible to identify AI-inpainted regions in otherwise authentic im-
ages with high precision using an image segmentation model. Furthermore, the model also
was able to identify authentic images but struggled with the detection of inpainted regions
generated by other generative models. The next steps for this research will be comparing dif-
ferent generative models and analyzing if one can detect models with a less distinct signature
as MAT. Furthermore, this research would benefit from creating a large, diverse and publicly
available AI-inpainting dataset. Such a dataset would need to contain examples from different
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models with a variety of prompts and input images. It would enable further investigation of
AI-inpainting detection.

To conclude, the detection of Photoshop and AI-inpainting using an image segmentation
model is possiblewith a competitiveperformance compared to specialized state-of-the-art forgery
detectionmodels. Similar to other detection tasks, Image Forgery Detection is constantly com-
peting with improving manipulation tools. Furthermore, the problem of mis- and disinfor-
mation caused by fake images is unlikely to be solved solely through detection. As outlined
in the introduction, there are two factors to the success of a fake image. First, the fake must
be good enough to not be detected by either the human eye or a model. Second, it has to be
believable. This cuts back to the pope wearing an expensive jacket, an image that had it both.
But, additional images like the pope going scuba diving, finding the holy grail or riding a large
motorcycle [69] did not cause outrage, despite having the same image quality. In the end, solv-
ing the problem of manipulated images requires both effective detection models and a critical
approach to new visual information.
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A
Appendix

A.1 DCT

DCT is similar to the Discrete Fourier Transform, but is limited to the space of real numbers.
It is used to transform an image from the spatial to the frequency domain. For an image of size
N ×M , a 2D type II DCTwithout normalization is defined as:

F (u, v) =
N−1∑
i=0

M−1∑
j=0

cos
[ πu
2N

(2i+ 1)
]
cos

[
πj

2M
(2j + 1)

]
f(i, j). (A.1)

Here f(i, j) is the intensity of pixel [i, j] andF (U, v) the DCT coefficient at [u, v] . For most
images, most of the signal lies in the upper left corner (low frequencies). In this work, the
spectrum is shifted, with low frequencies in the center.

A.2 Technical Specifications

The models were trained using a Vertex AI notebook from the Google Cloud Platform. The
machine was a n1-highmem-8 with 8 vCPUs, 52 GB RAM and an NVIDIA Tesla P4 GPU.
Training The main model, MaskFormer Swin-S-ADE20K, for 20 epochs on the CASIA train-
ing set with 7981 images takes about 26 hours.

All training runs on bothMaskFormer andMask2Former used a learning rate of 5e−5 and
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Parameter Value
S 32
N 100
CE 256
CF 256
wdice 1
wfocal 20
CF (R101c) 2048
CF (Swin-S) 768
CF (Swin-B) 1024

Table A.1: Hyperparameters of the MaskFormer.

the Adam optimizer. The MaskFormer was trained with a batch size of 4 and Mask2Former
with a batch size of 2. This wasmainly selected due tomemory reasons selecting themaximum
batch size possible before the machine ran out of GPU memory. The final models for predic-
tions on the test set were selected using early stopping. The training stopped if the validation
loss did not improve for 3 epochs. All the code is publicly available on Github*.

A.3 Tables

A.4 Figures

*https://github.com/jelfes/ImageForgeryDetection.git
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Figure A.1: Architecture of a Feature Pyramid Network [12]
with backbone on the left and pixel‐decoder on the right.
The prediction on each level of the pyramid is omitted in
the MaskFormer.

Figure A.2: Architecture of the transformer module used in
DETR [13]. The MaskFormer only uses the Decoder (right
side) taking as input the backbone feature mapF .

(a) (b)

Figure A.3: Distribution of precision (a) and recall (b) of the MaskFormer Swin‐S‐ADE20K on the CASIA test set.
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(a) (b)

Figure A.6: Learning curves on training and validation set for the fine‐tuning of the MaskFormer Swin‐S‐ADE20K on tam‐
pered images only from Places205+MAT (a). Distribution of f1 scores for the predictions of the model on the test set (b).
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Figure A.9: Mean shifted DCT of tampered and authentic training images from the CASIA v2 dataset. Low frequency are
shifted to the center. Displayed are the DCT coefficients for the different frequencies as described in section A.1. High
values refer to a high abundance of the respective frequency and vice versa.
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