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Abstract

Collaborative Robotics is an emerging filed that combines the unique capabili-
ties of humans and robots to create a flexible working environment that meets
the evolving needs of industrial production. A key aspect of improving the
collaborative capabilities of robots is their ability to accurately predict human
movements, thereby facilitating smoother and more productive collaborations.
Although the problem of Human Motion Prediction (HMP) has received consid-
erable attention in recent years, it has not yet been studied in the specific context
of Collaborative Robotics. There are some limitations in this regard, in particular
the lack of comprehensive and specific datasets for training Deep Learning (DL)
models, which are currently the state of the art solution for this problem. This
thesis investigates Transfer Learning (TL) approaches for DL models to improve
human motion prediction on smaller, domain-specific datasets, with the aim
of enhancing the collaborative capabilities of robots. Several experiments were
conducted to compare the performance of DL models initialised from scratch
and those derived using TL approaches. The experiments were based on state of
the art DL models and various domain-specific datasets of different sizes. The
evaluation of individual DL models was based on the main metrics proposed
in the literature for the HMP task. In addition, complementary metrics were
used to assess the advantages of TL techniques. The results show that TL ap-
proaches have significant potential to improve accuracy for the HMP task in the
case of domain-specific contexts. These benefits are particularly pronounced
when dealing with datasets of limited size, especially when their human motion
actions are similar to those found in the dataset used to pre-train these DL mod-
els. Furthermore, the importance of using a large and diverse dataset for model
pre-training is highlighted. These observations pave the way for future research
involving the replication of these experiments using a significantly larger and
richer dataset for pre-training DL models. This will allow for the testing of
much more complex DL models and TL techniques, thus providing a broader
perspective on this type of approach.
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1
Introduction

Over the last few decades, the field of industrial robotics has undergone a
remarkable transformation, significantly changing the manufacturing process
and production automation. Industrial robots have been at the forefront of this
revolution. They have undergone significant advances, leading to remarkable
improvements in the speed and safety of production chains. The evolution of
industrial robots, since their first applications in industry, has been significant
and dynamic [9]. Initially, these machines lacked any form of intelligence and
they were based on predefined movements, limiting their use to repetitive and
very simple tasks. To adapt the same machine to a new task, the entire robot
had to be reprogrammed, which made their use time demanding. Over time,
advances in research fields such as Computer Vision (CV) and Machine Learning
(ML), have paved the way for the introduction of intelligence into robots. By
integrating various sensors, such as cameras and lidars, robots became able
to perceive and understand their environment. By processing these data, the
systems were able to adapt their behaviour to different situations, bringing
to a new level of flexibility. This evolution has continued over time, leading
to the current situation where machines have achieved a good level of self-
adaptation. For example, by using a vision system, a robot can perform a pick-
and-place task effectively even when dealing with different objects of different
orientations. However, the evolving needs and goals of modern industry, which
seeks to achieve customizable production and seamless integration between
machines and humans, have given rise to a new frontier in robotics known as
Collaborative Robotics. This emerging field aims to enable robots and humans to
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1.1. COLLABORATIVE ROBOTICS

work together productively and safely in close proximity, thus introducing a new
era for industry and robotics. This chapter introduces the field of Collaborative
Robotics and the problem of Human Motion Prediction (HMP) and provides an
overview of the current state of the art.

1.1 Collaborative Robotics

Collaborative Robotics is an emerging filed of robotics, driven by the evolv-
ing needs of industries focused on a customizable production and a greater
emphasis on creating a synergy between humans and machines [18]. Unlike
traditional industrial robots that operate in closed and isolated environments,
this new branch of robotics aims to develop and implement collaborative robots
(commonly known as cobots) that can work alongside human operators in shared
workspaces, bridging the gap between automation and human intelligence.
Safety is a key aspect of Collaborative Robotics, as cobots are designed to co-
exist with humans. Equipped with force/torque sensors, vision systems and
proximity detectors, cobots can sense human presence and understand their
surroundings, ensuring a safe working environment. They can also contribute
to human well-being by performing monotonous, repetitive, and dangerous
tasks, thereby reducing the risk of workplace injuries. Their versatility extends
beyond the industrial environment, with applications in sectors as diverse as
healthcare, where they are used, for example, to assist doctors during surgical
procedures [30]. Collaborative Robotics combines the strengths of both humans
and robots. It allows humans to use their creativity, problem-solving skills
and adaptability, while benefiting from the precision, speed and strength of
robots. By assigning tasks based on each agent’s unique capabilities, humans
and cobots can work together to effectively achieve their common goals. They
are also typically equipped with user-friendly programming interfaces, such as
hand-guided teaching, which allow non-experts to easily train and command
cobots. In addition, their adaptability to dynamic environments and seamless
integration into existing workflows ensure minimal downtime and smooth op-
erations. As a result, Collaborative Robotics holds great promise for improving
industry and, in particular, the well-being and safety of the human operators.

Human Robot Collaboration (HRC) is an active and promising area of re-
search that offers significant benefits in various applications, particularly in
industrial environments. Despite its potential, the use of cobots still suffers
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CHAPTER 1. INTRODUCTION

from certain limitations and research gaps [31]:

• Human safety: Safety is a critical issue due to the close proximity of humans
and machines. While safety is essential, it can sometimes conflict with
maximising performance, for example by reducing the cobot’s speed to
avoid potentially dangerous collisions. Finding the right balance between
safety and performance is essential for efficient and safe collaboration.

• Intuitiveness: Human operators can find it challenging to work with cobots,
mainly due to a lack of confidence in the robot’s capabilities, which can
hinder productive collaboration. Improving the intuitiveness and usability
of such systems is essential to promote smooth collaboration.

• Adaptability: The ability of cobots to adapt to new environments and tasks
is a another major research gap. Improvements in Collaborative Robotics
technology should enable a single robot to perform different (not neces-
sarily closely related) tasks in different environments without the need for
major software or mechanical updates.

These research gaps and technological challenges can be mitigated by im-
proving the overall intelligence of robotic systems, which can be identified in
three main aspects: 1) the robot perception, i.e. everything related to the un-
derstanding of what is happening in the working environment, which includes
the data acquisition and data processing. 2) the prediction of human movements,
which allows the system to anticipate the operator’s intentions, avoiding the
need to constantly wait for the robot to perform the task in response to specific
commands. This can improve the fluidity and safety of the collaboration, lead-
ing to increased productivity. 3) the robot motion, which includes aspects related
to the handling of the machine according to the information acquired in the
previous steps. It is essential to understand how to move the robot in a way that
optimally increases the operator’s confidence in collaborative interaction. This
includes aspects such as improving the interpretability and comprehension of
the robot’s movements.

The work in this thesis focuses on improving the prediction of human mo-
tion in Collaborative Robotic environments. By understanding and anticipating
human intentions, cobots can dynamically adapt and optimise their motion,
improving coordination with the operator and the overall quality of the collab-
oration.
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1.2. HUMAN MOTION PREDICTION

1.2 Human Motion Prediction

Anticipation is an innate and involuntary phenomenon that plays a crucial
role in human interactions. In activities such as receiving an object from a
person or lifting a heavy box with someone else, we naturally anticipate the
other person’s movements and adjust our actions accordingly, without explicit
communication. This concept extends beyond physical interactions to situations
such as driving, where we anticipate the movements of pedestrians or cyclists
to avoid potential hazards. The ability to understand and anticipate human
motion is a critical aspect for intelligent systems that coexist and collaborate
with humans in shared workspaces [29]. The anticipation of human motion is
a multidisciplinary task that focuses on predicting future human movements
of individuals or groups. It involves interpreting human behaviour and trans-
lating it into predictive models capable of estimating future movements, some-
times even multiple plausible futures. The importance of predicting human
motion spans multiple and diverse applications. In autonomous vehicles, pre-
dicting the intentions of pedestrian in real time is critical to avoid accidents.
In sports and entertainment, motion prediction enhances virtual reality experi-
ences, video game interactions and motion capture technologies. In addition,
HMP has applications in healthcare, assisting in the analysis and rehabilitation
of human movement disorders. Unfortunately, accurate predictions of body
motion is a very difficult challenge, even for humans, due to the complexity and
non-deterministic nature of human behaviour. Our movements are constantly
influenced by internal and external stimuli, leading to sudden and unexpected
changes in movement patterns [23]. For example, if any of us were to observe
a person walking for a few seconds, we would most likely predict a walking
motion for the next few seconds as well. A sudden event, such as a mobile
phone call or a friend walking by, can significantly change the person’s actual
movement, making our prediction completely wrong. Nevertheless, the de-
velopment of effective HMP algorithms is of great importance, given the wide
range of applications that can benefit from this capability.

In Collaborative Robotics, the prediction of human motion is a critical aspect
to ensure productivity and safety during human-machine collaboration tasks.
However, predicting human motion in this context is extremely challenging due
to several factors that are not present in traditional motion prediction scenarios.
These additional aspects include the presence of objects in the shared workspace
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CHAPTER 1. INTRODUCTION

(some static, some moving and some interacting) and the presence of the cobot
itself. These elements significantly influence human behaviour and add com-
plexity to the HMP problem. Deep Learning (DL) algorithms have recently
shown great results in HMP, outperforming statistical methods and standard
ML algorithms. However, most existing datasets, and consequently the DL
models trained on them, are based on recordings of humans performing general
activities in open spaces. To effectively predict human motion in Collaborative
Robotics settings, it is essential to include more information about the environ-
ment, such as the robot’s position, the location of objects in the workspace, and
the semantic information about the human operator’s actions.

Unfortunately, such comprehensive datasets are very limited, and creating
new ones can be costly and time consuming. Therefore, this thesis aims to
explore the technique of Transfer Learning (TL) to investigate the adaptability of
existing DL trained models for HMP to Collaborative Robotics contexts. Transfer
Learning is a general ML technique that allows the transfer of knowledge from
pre-trained models on large and more generic datasets to downstream tasks,
where data availability is limited. By applying Transfer Learning, this research
aims to improve the predictive capabilities of existing models and open up new
possibilities for effective Human Robot Collaboration.

1.3 HMP-knowledge transferability

To improve the prediction of human motion in the context of Collaborative
Robotics, it is necessary to train DL models on very large and specific datasets,
which are unfortunately not available at the time of writing. However, outside
the context of Collaborative Robotics, many datasets are available for the more
general problem of HMP (which will be discussed later). The work in this thesis
aims to understand and investigate the transferability of the knowledge from
DL models, trained on such datasets, to the specific context of Collaborative
Robotics. In particular, the aim is to understand what can be achieved with-
out the need to collect large datasets specific to the context of Collaborative
Robotics. One of the most important aspects to understand is how well differ-
ent DL models are able to actually learn about the human body and its motion
dynamics, independently from the actions they are trained on. This property
can be fundamental, as their knowledge of human body, gained from training
on general but large datasets, can be transferred to more specific contexts. If
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this is the case, by collecting a relatively small amount of training examples,
the models can adapt their knowledge to well predict actions that are specific
to Collaborative Robotics. Therefore, this work tries to answer the following
questions: How much can a DL model learn about the human skeleton and its motion
dynamics, regardless the actions it sees during training? How much does the knowledge
acquired by the model depend on the actions it sees? Is it possible to improve HMP in
Collaborative Robotics settings without the need to collect large datasets?

1.4 State of the Art review

This section provides an overview of the current state of the art approaches
for the problem of HMP and the technique of Transfer Learning for Deep Neural
Networks (DNN). It also provides an overview of the main datasets currently
available for training DNN models for the task of HMP.

1.4.1 Human Motion Prediction techniques

The way in which human motion is represented, and therefore the type of
data to be predicted, depends on the specific application; indeed, the problem
of anticipating human motion has several facets. For example, in the work
proposed by Lee et al. [19], the goal was to predict the overall position of football
players within the field. In this specific application, each person can be modelled
as a single point described by two coordinates in a 2D grid map representing
the ground. Therefore, the prediction of a player’s movement consists of a 2D
occupancy grid over time. On the other hand, in the context of Collaborative
Robotics, predicting human motion requires a more comprehensive approach,
where the full 3D pose of the person must be determined. This involves not only
capturing the absolute position in space, but also predicting the trajectories of
individual joints that define the body pose. Indeed, a complete understanding
of where the hands, legs, and all other parts of the human body are located in
space is essential for successful collaboration. What these approaches have in
common, however, is that they represent a movement of some duration through
a sequence of poses, each of which contains the information required for the
task of interest.

Human motion prediction algorithms can be broadly divided into two main
groups [29, 23]: 1) models based on Deep Learning techniques and 2) models
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CHAPTER 1. INTRODUCTION

based on statistical methods, pattern-based rules, and standard ML approaches.
In recent years, end-to-end DL models have demonstrated superior performance
compared to other methods for predicting human motion, especially for longer
predictions. This is due to their remarkable ability to learn complex patterns
from data. As a result, non-Deep Learning approaches have now become obso-
lete and the focus of the literature has shifted mainly to DL models. This section
provides an overview of the most common DL approaches for 3D human mo-
tion prediction, which can be divided into three main categories according to
the type of Neural Network (NN) architecture underlying the different proposed
solutions [23]:

• Recurrent Neural Networks (RNNs): RNNs are a type of NN specifically
designed to handle sequential data, making them particularly well suited
to time series tasks. The key concept behind their architecture is that in-
formation is represented by hidden states, which are then used recursively
as input for subsequent steps. This recursive approach allows the hidden
state of each step to encapsulate information from previous states, thereby
encoding the entire context of the sequence up to that point. However, a
notable limitation of standard RNNs is that they suffer from vanishing or
exploding gradient during training, which limits their ability to effectively
capture long-term dependencies in sequences. To mitigate this problem,
several improved variants have been proposed, including Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells, which have
shown significant improvements. For the HMP task, RNNs can be used to
capture the temporal relationships between the poses along a motion se-
quence, and then use this information to generate a prediction sequence.
Fragkiadaki et al. [8] proposed a Encoder-Recurrent-Decoder (ERD) ap-
proach based on a RNN architecture that incorporates non-linear encoder
and decoder networks before and after recurrent layers. To reduce er-
ror accumulation over time, Ghosh et al. [10] proposed a 3-layer LSTM
network followed by a Dropout Autoencoder (DAE) block that filters the
predicted poses, reducing error accumulation. Wang et al. [37] proposed
a Position-Velocity Recurrent Encoder-Decoder (PVRED) approach based
on a RNN architecture that incorporates both the position and velocity
information of human motion, improving long-term predictions.

• Graph Convolutional Networks (GCNs): GCNs are a type of DL model de-
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signed to process and analyse data represented in the form of a graph,
where nodes (vertices) represent individual elements and the links (edges)
between nodes represent relationships and interactions between these ele-
ments. The architecture of GCNs is based on convolutional operations, that
aggregate information from adjacent nodes. In this way, they learn to ef-
fectively represent the relationships between different elements within the
graph, and then use this knowledge to generate the output of interest. The
underlying structure of GCNs is similar to that of classical Convolutional
Neural Networks (CNNs), but instead of extracting features from images,
they process information from graphs. This characteristic has led to their
extensive use in scenarios where the data has an internal structure that can
be effectively modelled as a graph. In particular, for the task of HMP, they
can capture the relationships between the different joints of the skeletal
representation of the human body. In [26], instead of representing the
human pose as a kinematic tree, they used a graph where each pair of
body joints is connected. Li et al. [20] proposed a Dynamic Multi scale
Graph Neural Network (DMGNN) to model the internal relationships of
the human body for feature learning at different scales. These features are
then combined to generate the motion predictions.

• Generative Adversarial Networks (GANs): GANs are a powerful class of DL
models designed to generate realistic and high quality synthetic data by
sampling from a learned data distribution. The GAN architecture consists
of two basic components: the generator and the discriminator. The goal
of the generator is to generate realistic data, while the discriminator is
trained to distinguish between real and synthetic data (from the generator).
During the training phase, the GAN strives to reach an equilibrium point
where the generator becomes so good at producing synthetic data that it is
indistinguishable from real data, making it difficult for the discriminator
to distinguish between the two. The strength of GANs lies in their ability
to learn complex data distributions and generate synthetic ones with a
very high degree of fidelity. For the HMP task, this feature can be used
to generate future predictions. However, it is important to recognise that
GANs can present challenges during the training process and can generate
unrealistic data. In [5], the authors proposed a GAN-based approach
in which the input is represented as a probability distribution, which is
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then used to generate multiple future sequences. In [16] they proposed a
bidirectional GAN architecture to limit the mode-collapse problem (when
the generator can only produce a small set of outputs). They also used the
network to generate multiple futures.

The first two classes of architectures described above, RNNs and GCNs,
represent deterministic models. The problem is formulated as a regression
task, i.e. they always produce the same output for a given input. In contrast,
GANs belongs to the class of probabilistic approaches that introduce an element
of randomness into the network output during inference. As a result, GANs
can produce different outputs for the same input. This feature can be used to
produce multi-future human motion predictions.

The attention mechanism is another important aspect to consider in this re-
view. Rather than being a distinct architecture, the attention mechanism is a
versatile feature that can be integrated into various DL models. With the rapid
advancement of technology, complex models with millions of parameters have
been created with the ability to learn a significant amount of information. How-
ever, when dealing with sequential data, especially long sequences, it becomes
difficult for these models to retain all the information from the beginning up to
the current time, leading to information loss. The attention mechanism stands
out as one of the most powerful techniques discovered in recent years. Given a
sequence as input, this mechanism allows the model to focus on specific parts of
the input data that are most relevant for predicting the current step. In practice,
this is achieved by computing, at each time step, a representation of the previous
input sequence by a weighted combination of hidden states from previous time
steps. The weights, i.e. the importance to be given to each past segment, are
learned by the model during the training phase. The attention mechanism has
shown remarkable effectiveness in various fields, such as in Natural Language
Processing (NLP) for machine translation, using the remarkable Transformers ar-
chitecture [35]. In the context of HMP, attention can be seamlessly incorporated
into NN architectures, allowing the models to focus on particular patterns of
human body motion or sub-sequences within the input sequence. Mao et al. [25]
proposed a DL model based on GCNs that implements the attention mechanism
to capture similarities between the current and past motion sub-sequences. Ak-
san et al. [3] proposed a DL approach based on Transformers architecture that
implements a spatial and temporal self-attention mechanism. The first relates
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all the skeletal joints of the human body at a given time step, while the second
relates a single joint to itself in time during the motion sequence.

1.4.2 Transfer Learning

DL models require large datasets for effective training, which typically in-
volves large investments in both data collection and model training. Particularly
in the filed of Collaborative Robotics, this can be challenging due to data scarcity.
TL is emerging as a valuable machine learning technique to overcome this prob-
lem. By using models pre-trained on large datasets for similar tasks, TL allows
knowledge transfer to a task-specific model that can be adapted to perform well
on a smaller dataset. This approach actually improves the generalisation perfor-
mance of the model when limited data is available. TL has shown remarkable
effectiveness in several contexts, including NLP and CV [33]. In NLP, Large
Language Models (LLMs) have gained significant popularity, exemplified by
chatbots such as ChatGPT and Google BARD. These LLMs are trained on large
corpora of text from different sources, such as Wikipedia and Google Books, to
build up a large knowledge about the language, and then used for downstream
tasks using TL techniques. Mozafari et al. [28] proposed a TL approach based
on the BERT LLM [7] to address the lack of labelled data for detecting hateful
content in online social media. Similarly, Tida et al. [34] used BERT for real-
time spam email detection. In CV, TL is widely used for object detection tasks,
where models pre-trained on millions of images are fine-tuned for more specific
applications. For example, the pre-trained object detector YOLOv5 [17] can be
adapted trough fine-tuning techniques to serve as a high-performance object
detector for specific classes of targets [21, 1].

To the best of our knowledge, no work has been published in the context of
HMP that specifically investigates the TL technique for DL algorithms. However,
there are some papers in the literature that have applied these techniques to
related tasks. Gupta et al. [13] proposed TL approaches for the task of Human
Activity Recognition (HAR) via video surveillance. The TL approach has been
studied to deal with the need to re-train these models when the activity patterns
of new users differ from those seen by the model during training. Gui et al. [12]
proposed an approach based on meta-learning to train a predictor with improved
generalisation performance. In particular, the goal was to train a model that
could later be quickly adapted to task-specific unseen actions in a few training
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sequences.
Given the promising results of TL in various domains, this thesis aims to

explore its application in the context of collaborative robotics, investigating the
transferability of knowledge for HMP models. In doing so, it seeks to address
the challenge of limited data availability and open up new possibilities for
improving Human Robot Collaboration.

1.4.3 Datasets

The type and the amount of data available influences the architecture of the
NN, e.g. the size of certain layers (input and output) or the complexity required
by the network: large amounts of data require a larger model to achieve good
performance. Datasets play a key role in the design and training DL models,
so it is important to make an in-deep analysis of the available datasets before
starting to train the networks. In the following an overview of the main datasets
available for the task of HMP: Human 3.6M (H36M) [15], Achieve of Motion
capture As Surface Shapes (AMASS) [24], 3D Poses in the Wild (3DPW) [36],
and CMU [11]:

• Human 3.6M (H36M): This dataset contains 3D human poses recorded
from 11 different subjects (5 females and 6 males), each performing 15
different typical activities such as walking, smoking, discussing, or eating .
The data was captured by using a vicon motion capture system at 50 frames
per second (fps), recording two different sub-actions for each activity,
giving a total of 30 motion captures per subject. Each human movement is
represented by a sequence of poses, where each pose is described by joint
angle rotations of 32 keypoints. H36M is one of the first large datasets
for HMP to be published, and it has been the standard for training and
evaluating DL models for this task in recent years. However, given recent
advances in computing technology, this dataset is now relatively small.
Furthermore, the limited number of actions recorded introduces a strong
bias in the data, which can lead to poor generalisation performance for
models trained on this dataset.

• Achieve of Motion capture As Surface Shapes (AMASS): This is one of the
larger dataset available at the time of writing, containing recordings from
500 different subjects for a total of more than 60 hours of recordings.
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AMASS aggregates motion captures from many different small datasets,
standardising the representation using the Skinned Multi-Person Linear
Model (SMPL) [22]. Each human pose is represented by 24 keypoints
rotations at different fps, depending on the specific sub-dataset, ranging
from 25 to 120.

• 3D Poses in the Wild: 3DPW is a dataset of people performing actions out-
doors, hence the name "in the wild". The motion sequences were recorded
using a mobile phone camera, which allowed flexibility in capturing ev-
eryday life scenes, including playing sports, hugging, riding a bus, and
taking selfies. It consists of a total of 60 videos and 7 actors, recorded at 30
fps.

• CMU: CMU is a dataset published by Carnegie Mellon University. It
consists of a total of 144 different subjects, recorded from 41 markers placed
on the human body. Similar to previous datasets, it contains recordings of
common actions such as sports activities, walking, and directing traffic.

The problem with these datasets is that they relate to the movements of
people in general contexts. In a Collaborative Robotics environment, however, it
is important to include other information, such as the position of the cobot itself
in space, or the position of objects, knowing which are interactive and which
are static. Since the acquisition of datasets is quite expensive, it is important
to understand how much knowledge can be transferred from models trained
on these generic datasets to smaller ones, that are more specific to collaborative
environments.

12



2
Deep Learning approaches for

Human Motion Prediction

This Chapter introduces the representation of human motion in a machine-
readable form and a detailed description of the Deep Learning (DL) models that
will be later the subject of the experiments for the Deep Transfer Learning (DTL)
technique. These models where chosen to be representative of the main state
of the art architectures for the problem of Human Motion Prediction (HMP)
reviewed in Section 1.4. In particular, two models are considered: 1) Position-
Velocity Recurrent Encoder-Decoder (PVRED) [37], an architecture based on a
Recurrent Neural Network (RNN) and 2) History Repeat Itself (HRI) [25], based
on Graph Convolutional Network (GCN) and the attention mechanism.

2.1 Human Motion Representation

This Section discusses the dominant approach to represent human motion in
DL models, which require input data in a machine-readable form, i.e. numbers.
The standard methodology is to represent the human body through a skeletal
structure, so that each pose can be described by the angles of rotation of indi-
vidual joints, or by using three-dimensional coordinated for each joint position
in the space. The transition between these representations is possible by the use
of both forward and inverse kinematics. However, due to the non-uniqueness
of solutions in the latter approach, an angular representation of the skeletal
structure is generally preferred. Regarding the angular representation, multiple
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notations can be used:

• Euler angles: Euler angles provide a human-friendly and intuitive method
of expressing 3D rotations using a set of three parameters. However, the
presence of singularities and the associated gimbal-lock problem, com-
bined with the existence of 12 different Euler angle sequences, introduces
complexity and ambiguity into the representation of rotations.

• Quaternions: Quaternions offer a solution to the main drawbacks of the
Euler angle notation. They successfully mitigate the gimbal-lock problem
offering a singularity-free representation which can be easly interpolated.
However, it is important to notice that quaternions are more complicated
to implement, they require normalization to maintain the mathematical
properties, and they are specified by means of four parameters.

• Exponential map/angle-axis: The exponential map or angle-axis representa-
tion introduces a simpler notation that eliminates the need for normaliza-
tion, which distinguishes it from quaternions. In addition, it mitigates the
singularity problem of Euler angles, while maintaining a concise three-
parameter representation. However, exponential maps are less intuitive
and can be hard to interpret.

• Rotation matrices: Rotation matrices provide a complete and singularity-
free representation of 3D rotations, which are commonly used in kinemat-
ics computation. Their main drawback lies in the representation redun-
dancy , as it requires the specification of nine parameters for each rotation.
This redundancy can potentially lead to numerical issues, especially when
dealing with large datasets and models.

Various works have implemented training models using different representa-
tions in an attempt to identify potential performance differences between them.
However, even if in some cases specific notations brought to better results, a
single representation that consistently outperforms all the others remains to be
identified. Similarly, the number of joints (or keypoints) used to represent a
human pose depends on the level of detail with which the various parts of the
human body need to be described. Generally, in the context of HMP, the main
articulations of the body are considered, with the head, hands, and feet rep-
resented as a single keypoint, thus making no distinction between the fingers.
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The choice of the representation depends on the specific requirements of the
application at hand. Figure 2.1 shows an example of a human body skeletal
representation based on the Skinned Multi-Person Linear Model (SMPL) model.

Figure 2.1: An example of a human body skeleton representation

Given a choice of notation, a human pose 𝒙 can be represented as follows:

𝒙 = (𝒆1, 𝒆2, ..., 𝒆 𝐽) ∈ R𝐽×𝐷 (2.1)

where 𝐽 is the number of skeleton joints and 𝒆 𝑗 ∈ R𝐷 is the representation of
the 𝑗𝑡ℎ joint angle or position with 𝐷 parameters, 1 ≤ 𝑗 ≤ 𝐽. For example, in
the case of quaternions representation 𝐷 = 4, while for rotation matrices 𝐷 = 9.
This notation can be easily extended to describe a whole body movement 𝑿 1:𝑁 ,
represented by a sequence of 𝑁 poses over time at a certain frequency:

𝑿1:𝑁 = (𝒙1, ..., 𝒙𝑁 ) ∈ R𝐽×𝐷×𝑁 (2.2)

where 𝒙 𝑖 represents the human body pose at time stamp 𝑖, 1 ≤ 𝑖 ≤ 𝑁 .
Therefore, given an input sequence 𝑿 1:𝑁 of length 𝑁 (seed sequence), the prob-
lem of predicting the future 𝑀 human poses �̂�𝑁+1:𝑁+𝑀 (target sequence) can be
formulated as follows:

�̂�𝑁+1:𝑁+𝑀 = arg max
𝑿𝑁+1:𝑁+𝑀

𝑃(𝑿𝑁+1:𝑁+𝑀 |𝑿1:𝑁 ) (2.3)
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where 𝑃(𝑿𝑁+1:𝑁+𝑀 |𝑿1:𝑁 ) is the probability for a target sequence to be the future
for a given seed sequence. HMP models can be interpreted as estimators of
the probability 𝑃, so given a seed sequence as input they output the most
probable future. The length 𝑁 of the seed sequence and the length 𝑀 of the
target sequence represent model parameters, which are also correlated with the
number of frames per second (fps) of the motion sequence. Predictions up to
400𝑚𝑠 are defined as short-term, while predictions up to 1000𝑚𝑠 are defined as
long-term.

2.2 Position-Velocity Recurrent Encoder-Decoder

PVRED is a DL model for HMP based on a RNN architecture [37]. Standard
RNN approaches, whose input is only the sequence of human poses, tend to
converge to a static pose after a few prediction frames or fail to generate nat-
ural looking sequences. To mitigate this problem, thus to improve long-term
predictions, the authors proposed a novel architecture that also incorporates
pose velocity information and a temporal embedding of the motion sequence
frames. The latter, inspired by the positional word encoding applied in Natural
Language Processing (NLP), is used to give to the model the information about
the temporal relationships between the different frames of the sequence. The
PVRED model is based on the RNN Encoder-Decorder (RED) architecture, to
which it adds the velocity and positional frames embedding. PVRED is based
on an exponential map representation for the joint angle rotations of the body
skeleton, and it is designed to work with human motion sequences at 25 fps.
In the following, the general structure of the RED architecture is described and
then the details of the PVRED model are presented.

2.2.1 RNN Encoder-Decoder architecture

The basic architecture of PVRED is the standard RNN Encoder-Decoder
(RED) model, which is used for sequence to sequence (seq2seq) tasks. It consists
of two blocks: the encoder, which operates on an input sequence and gath-
ers the relevant information through its hidden states, and the decoder, which
exploits the information from the encoder and autoregressively generates the
output sequence. Both the encoder and the decoder blocks use hidden states,
which are vectors that embed the information about the past sequence up to the
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current time stamp. The goal of the encoder is to encapsulate all the relevant
information about the input sequence in its last hidden state, which is the only
past information available to the decoder to predict the future sequence. Fol-
lowing the human motion representation as in Section 2.1, given the input seed
sequence 𝑿 1:𝑁 = (𝒙1, ..., 𝒙𝑁 ) of length N, the encoder hidden state 𝒉 𝑖 at time
stamp 𝑖 is updated by:

𝒉 𝑖 = 𝑓 (𝒉 𝑖−1, 𝒙 𝑖) (2.4)

where 𝑓 is a non-linear function, 𝒙 𝑖 is the input human pose at time stamp 𝑖, and
the first hidden state 𝒉0 is initialised accordingly to some criteria, e.g. randomly.
The decoder hidden states �̃� 𝑗 follow the same structure:

�̃� 𝑗 = 𝑔(�̃� 𝑗−1, �̂�𝑁+𝑗) (2.5)

where 𝑔 is again a non-linear function, �̂�𝑁+𝑗 is the predicted human pose at time
stamp 𝑗, and the first hidden state �̃�0 is initialised as the last encoder hidden state
𝒉𝑁 . The key idea is that the encoder contains all the information about the input
sequence in its last hidden state, which is then passed to the decoder through
the initialisation of its first hidden state. Both encoder and decoder hidden
states have a fixed size, which is a hyperparameter of the Neural Network (NN)
architecture.

The information contained in the hidden states of the decoder can then
be applied to predict future poses using linear regression. Formally, for each
prediction time stamp 𝑗 ∈ 1, ..., 𝑀, the future 𝑗𝑡ℎ pose can be computed as:

�̂�𝑁+𝑗 = 𝑾�̃� 𝑗−1 + 𝒃 (2.6)

where 𝑾 represents the weights and 𝒃 the bias, both learnable parameters. For
the training phase, the Mean Squared Error (MSE) loss can be used which is
defined as follows:

𝐿 =
1
𝑀

𝑀∑
𝑗=1

∥ �̂�𝑁+𝑗 − 𝒙𝑁+𝑗 ∥ (2.7)

where �̂�𝑁+𝑗 and 𝒙𝑁+𝑗 represent the predicted and the ground truth poses, re-
spectively, at prediction time stamp 𝑗.
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2.2.2 Position-Velocity RED architecture

PVRED improves the architecture of RED by feeding the model not only
with the information about the past poses, but also with the pose velocities
and their positional embedding. Moreover, instead of estimating directly the
future pose as in 2.6, the decoder first predicts the human pose velocities and
then, through a residual connection, the future pose. In addition, a Quaternion
Transformation (QT) layer is added before computing the loss function. A
description of the positional embedding and the overall structure of the NN
architecture is presented below.

Positional embedding

The addition of positional embedding information is inspired by the field of
NLP, which allows the model to understand about the relationships between
poses at different time stamps. For example, if we think of a movement where a
person sits down and then stands up from a chair, the individual poses between
sitting and standing will be very similar, because the movement is basically the
same but performed in the opposite order. By adding positional information,
the model becomes able to distinguish between two poses that are almost equiv-
alent, but one involves sitting and the other involves getting up from a chair.
Positional encoding consists of representing the temporal position of a given
frame trough by a real-valued vector. A simple approach could be to use a
one-hot representation, which consists of encoding each frame in a vector of size
equal to the sequence length, composed of all zeros except for a one correspond-
ing to the current frame. However, this allows only fixed-length sequences to be
handled. In PVRED, the positional encoding is implemented through sine and
cosine functions. Each frame 𝑡 is embedded by a vector 𝒑𝑡 ∈ R𝑑𝑝 , where 𝑑𝑝 is the
fixed size of the positional embedding. To allow operations such as linear com-
binations between the different input data, the size of positional embeddings 𝑑𝑝
is set equal to the size of the human poses and their velocity representations.
Assuming a seed sequence and a target sequence of length 𝑁 and 𝑀 respec-
tively, for a given time stamp 𝑡 ∈ 1, ..., 𝑁 , ..., 𝑁 +𝑀, its positional embedding
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𝒑𝑡 is then computed as follows:

𝒑𝑡(𝑖) =

𝑠𝑖𝑛(𝑡/10000)2𝑖/𝑑𝑝 , if 𝑖 is even

𝑐𝑜𝑠(𝑡/10000)2𝑖/𝑑𝑝 , if 𝑖 is odd
(2.8)

where 𝑖 represents the index of the positional embedding vector. This sinusoidal
embedding allows the model to handle sequences of arbitrary length and to cap-
ture the temporal relationships between different frames helping in predicting
natural looking poses.

Position-Velocity RNN

To improve long-term predictions, the RNN architecture of PVRED makes
use of Gated Recurrent Unit (GRU) cells which are fed at each time step 𝑡with the
human pose 𝒙𝑡 , the pose velocity 𝒗𝑡 , and the positional embedding 𝒑𝑡 . The pose
velocity 𝒗𝑡 is computed as the discrete time derivative of 𝒙𝑡 . The mathematical
formulation of each GRU cell of the encoder at a given time stamp 𝑡 is then as
follows:

𝒛𝑡 = 𝜎(𝑼 𝑧
𝑥𝒙𝑡 +𝑼 𝑧

𝑣𝒗𝑡 +𝑼 𝑧
𝑝𝒑𝑡 +𝑾 𝑧𝒉𝑡−1)

𝒓 𝑡 = 𝜎(𝑼 𝑟
𝑥𝒙𝑡 +𝑼 𝑟

𝑣𝒗𝑡 +𝑼 𝑟
𝑝𝒑𝑡 +𝑾 𝑟𝒉𝑡−1)

𝒉′
𝑡 = 𝑡𝑎𝑛ℎ(𝑼 ℎ

𝑥𝒙𝑡 +𝑼 ℎ
𝑣𝒗𝑡 +𝑼 ℎ

𝑝𝒑𝑡 +𝑾 ℎ(𝒓 𝑡 ◦ 𝒉𝑡−1))
𝒉𝑡 = (1 − 𝒛𝑡) ◦ 𝒉𝑡−1 + 𝒛𝑡 ◦ 𝒉′

𝑡

(2.9)

where 𝒓 𝑡 represents the recurrent gate, 𝒛𝑡 the update gate, 𝒉𝑡 the hidden state,
and 𝑼 ,𝑾 the variables and weights matrices respectively. The same mathemat-
ical formulation holds also for the decoder hidden state �̃�𝑡 .

To predict the future human pose at time stamp 𝑗 ∈ 1, ..., 𝑀, first the discrete
time velocity is predicted and then it is added to the previous time stamp pose:

𝒗𝑁+𝑗−1 = 𝑾𝒉𝑁+𝑗−1 + 𝒃

𝒙𝑁+𝑗 = 𝒙𝑁+𝑗−1 + 𝒗𝑁+𝑗−1
(2.10)

where 𝑾 and 𝒃 represents the weights and the bias learnable parameters re-
spectively. This operation is performed by a linear layer stacked on top of the
GRU layer(s).
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Quaternion Transformation

Since the exponential map notation for joint rotations suffers from singu-
larities and discontinuities, PVRED integrates a QT layer to convert from ex-
ponential map to quaternion notation. This QT layer is integrated withing the
end-to-end architecture and thus included in the overall training process. Given
a three-dimensional vector in exponential map representation 𝒆, the QT layer
transforms it into a four-dimensional quaternion representation 𝒒:

𝒒(𝑖) =

𝑐𝑜𝑠(0.5∥𝒆∥2) 𝑖 = 1
𝑠𝑖𝑛(0.5∥𝒆∥2)

∥𝒆∥2
· 𝒆(𝑖 − 1) 𝑖 ≥ 2

(2.11)

where 𝑖 represent the 𝑖𝑡ℎ element of 𝒒. In addition, during the training phase,
the derivative of the loss (based on the quaternions 𝒒 and defined below) is
computed with respect to 𝒆 to allow backpropagation of the error and the opti-
misation of the parameters of the NN.

Loss function

The loss function 𝐿 used during the training phase of the model is defined
as follows:

𝐿 =
1
𝑀

𝑀∑
𝑗=1

∥𝑔(�̂�𝑁+𝑗) − 𝑔(𝒙𝑁+𝑗)∥ (2.12)

where 𝑔 represents the QT for both the prediction and the target which are
originally expressed in exponential map notation. Since the only purpose of the
QT layer is to compute the loss function, it is discarded at inference time. An
overview of the PVRED architecture is shown in Figure 2.2.

Position-Velocity Recurrent Encoder-Decoder is a fairly simple NN architec-
ture, being based on the RED model. However, the use of velocities and posi-
tional embeddings makes this model very competitive in the research landscape,
as it performs very well compared to many other state of the art NN models.
Several variants of the network can be created by changing the hyperparameters
of the network, such as the size of the hidden states or the embeddings. In ad-
dition, higher complexity can be achieved by stacking multiple GRU layers. In
the original paper, the authors obtained the best results by using 2 GRU layers.
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Figure 2.2: The architecture of Position-Velocity Recurrent Encoder-Decoder,
taken from the original paper [37]. At time stamp 𝑡 GRU cells are fed with
human pose 𝒙𝑡 , pose velocity 𝒗𝑡 , and positional embedding 𝒑𝑡 . The output
is computed as the sum of the previous predicted pose 𝒙𝑡−1 and the current
predicted velocity 𝒗𝑡 . A Quaternion Transformation layer is used to compute
the loss in the quaternion joint angle representation.

2.3 History Repeat Itself

HRI is a DL model that introduces a new concept in the context of HMP. The
key idea behind its architecture is that human movement tends to repeat itself,
hence the name of the model. This is most obvious in periodic actions, such as
walking or running, where the same motion patterns are continuously repeated
at a certain frequency. However, this interpretation is also true in more complex
movements, such as cooking or different sports activities. While in the first
examples the individual sub-movements are very few and repeated frequently, in
more complex actions the individual sub-movements are much more numerous
and generally repeated at greater intervals in time. In order to find relevant
historical information, HRI implements a motion attention mechanism that aims
to find these repeated sub-actions in different movements. This information,
combined with the past motion sequence, is processed by a GCN to learn the
relationships between the different joints of the human skeleton, which is then
used to predict future poses. In the following, it is presented the motion attention
mechanism and the most relevant aspects of the HRI architecture.
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2.3.1 Motion attention mechanism

One of the major drawbacks of RNN approaches is their limited ability to
deal with long input sequences due to information loss. This is mainly because
the information available to the decoder to predict future poses is only the one
encoded in the last hidden layer of the decoder. Since it is fixed in size, this
requires the NN to embed all the information in a very limited space, which
inevitably leads to a loss of information. The general concept of the attention
mechanism instead allows the model to create a dynamic embedding of the
input sequence for each prediction time stamp, i.e. it is computed as a weighted
combination of all the encoder hidden states. The weights, also called attention,
allow the model to extract the aspects of the input sequence that are the most
relevant for predicting the current time stamp pose.

In the context of HMP, some previous approaches have introduced a frame-
wise attention mechanism, which aims to find relationships between individ-
ual frames. However, these approaches lead to ambiguous motion because
the model is unable to distinguish between two similar poses that appear in
completely different contexts. To solve this problem, HRI introduces a motion-
attention mechanism that aims to find relationships between sub-sequences rather
than individual frames. This allows the model to discriminate between similar
poses that appear in completely different contexts.

With reference to the human motion representation described in Section 2.1,
the motion attention model implemented in HRI is based on a decomposition
of the input motion sequence 𝑿1:𝑁 into 𝑁 −𝑀 − 𝑇 + 1 sub-sequences of length
𝑀 + 𝑇. The motion prediction block of the model architecture, which will be
described later, exploits past 𝑀 frames to predict future 𝑇 frames. The motion
attention mechanism is based on the same formalism used in the Transformer ar-
chitecture, namely key-value pairs and a query. Each key-value pair is associated
with a motion sub-sequence 𝑿 𝑖:𝑖+𝑀+𝑇−1, 𝑖 ∈ 1, 2, ..., 𝑁 − 𝑁 − 𝑇 + 1 , where the
key corresponds to first 𝑀 frames, while the value to the whole sub-sequence.
The query, on the other hand, is associated to the latest sub-sequence 𝑿𝑁−𝑀+1:𝑁

of length 𝑀 which will then represent the input of the predictor together with
the dynamic context of the seed sequence. In order to avoid predicting too high
frequency motion which do not represent natural movements of the human
body, HRI introduces a Discrete Cosine Transform (DCT) on the temporal di-
mension of the values so that to truncate high frequencies. Therefore, each value
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𝑿 𝑖:𝑖+𝑀+𝑇−1 is mapped into 𝑽 𝑖 ∈ R𝐾×(𝑀+𝑇) = R(𝐽×𝐷)×(𝑀+𝑇), where each row con-
tains the DCT coefficients of one joint coordinate sequence. At each prediction
step, a dynamic context of the past motion sequence is obtained as a weighted
sum of the values, where the weights (i.e. the attention scores) are computed
from the keys and the query. The latter are mapped into vectors of equal size
by two functions 𝑓𝑞 , 𝑓𝑘 : R𝐾×𝑀 → R𝑑 respectively, implemented through NN
layers:

𝒒 = 𝑓𝑞(𝑿𝑁−𝑀+1:𝑁 )
𝒌 𝑖 = 𝑓𝑘(𝑿 𝑖:𝑖+𝑀−1) (2.13)

where 𝒒, 𝒌 𝑖 ∈ R𝑑 for 𝑖 ∈ {1, 2, ..., 𝑁 −𝑀−𝑇+1}. Then, for each key the attention
score is computed as follows:

𝑎𝑖 =
𝒒𝒌𝑇𝑖∑𝑁−𝑀−𝑇+1

𝑖=1 𝒒𝒌𝑇𝑖
(2.14)

To avoid getting negative attention scores which would cause numerical issues,
the NN layers implementing 𝑓𝑞 and 𝑓𝑘 have ReLU as their activation function.
The dynamic context 𝑈 for the current prediction time stamp is computed as a
weighted sum of the values:

𝑼 =
𝑁−𝑀−𝑇+1∑

𝑖=1
𝑎𝑖𝑽 𝑖 (2.15)

where𝑼 ∈ R𝐾×(𝑀+𝑇). The output of the attention model, combined with the last
sub-sequence of size 𝑀 (i.e. the key), is then given as input to the predictor to
estimate the future 𝑇 poses, that is the sequence �̂�𝑁+1:𝑁+𝑇 .

2.3.2 Prediction model

To predict future poses, the DCT representation described above is used
to represent the temporal information of the past human poses. The latter,
combined with the dynamic context vector, is processed by a stack of GCN layers
to capture the spatial dependencies between the joint coordinates or angles used
to represent skeletal poses. Therefore, the predictor is divided into two separate
blocks, the temporal and the spatial encodings:

• Temporal encoding: To predict the future sequence𝑿𝑁+1:𝑁+𝑇 , the key𝑿𝑁−𝑀+1:𝑁
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is extended to 𝑀+𝑇 frames by replicating the last one, i.e. 𝒙𝑁 , for 𝑇 times.
Then, it is computed its DCT encoding, 𝑫 ∈ R𝐾×(𝑀+𝑇), which is concate-
nated with the dynamic context vector 𝑼 , and then passed to the GCN
layers. This encodes the information about the entire sequence history,
focusing on the last 𝑀 frames.

• Spatial encoding: To capture the relationships between the links of the
human body, the skeleton is modeled through a fully connected graph of
𝐾 nodes. The input of a GCN layer 𝑝 consists of a matrix 𝑯𝑝 ∈ R𝐾×𝐹, where
each row is represented by a feature vector of size 𝐹. For example, the first
GCN layer takes as input the concatenation of the DCT representation
of the last sub-sequence 𝑫 and the dynamic context vector 𝑼 , therefore
𝐹 = 2(𝑀 + 𝑇). The output of a GCN layer is then computed as follows:

𝑯𝑝+1 = 𝜎(𝑨𝑝𝑯𝑝𝑾 𝑝) ∈ R𝐾×�̂� (2.16)

where 𝑨𝑝 ∈ R𝐾×𝐾 is the trainable adjacency matrix representing the degree
of correlation between the nodes in the graph, and 𝑾 𝑝 ∈ R𝐹×�̂� is a set
of trainable weights; 𝜎() is the activation function. A forward pass on
multiple GCN layers stacked on top of each other gives the output of the
model, from which the coordinates or rotation angles of each joint for the
predicted sequence �̂�𝑁−𝑀+1:𝑁+𝑇 can be obtained by applying the Inverse
Discrete Cosine Transform (IDCT) transform.

Loss function

HRI has been designed to work with both 3D coordinated and joint angles in
exponential map notation, so two separate loss functions are defined depending
on which representation is used during training. For the 3D joint coordinate
representation, the Mean Per Joint Position Error (MPJPE) is used, which is
defined for each training sample as follows:

𝐿3𝐷 =
1

𝐽(𝑀 + 𝑇)
𝑀+𝑇∑
𝑡=1

𝐽∑
𝑗=1

∥�̂�𝑡 , 𝑗 − 𝒑𝑡 , 𝑗 ∥2 (2.17)

where �̂�𝑡 , 𝑗 ∈ R3 represents the 3D coordinates of the 𝑗𝑡ℎ joint of the 𝑡𝑡ℎ frame for
the predicted sequence. The same notation also holds for the target sequence
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𝒑𝑡 , 𝑗 . In angle notation, the loss instead corresponds to the average 𝑙1 distance
defined as follows:

𝐿𝑎𝑛𝑔 =
1

𝐾(𝑀 + 𝑇)
𝑀+𝑇∑
𝑡=1

𝐾∑
𝑘=1

|�̂�𝑡 ,𝑘 − 𝒙𝑡 ,𝑘 | (2.18)

where �̂�𝑡 ,𝑘 is the predicted 𝑘𝑡ℎ angle for the 𝑡𝑡ℎ frame. Instead, 𝒙𝑡 ,𝑘 represents
the ground truth. A representation of the overall structure of the HRI network
is shown in Figure 2.3.

Figure 2.3: The NN architecture of History Repeat Itself, taken from the original
paper [25]. The attention mechanism tries to find relationships between past
motion sub-sequences to computed a dynamic context vector. This information,
together with the last motion sub-sequence, is processed by the predictor to
generate the next future sub-sequence.

In practice, the two functions 𝑓𝑞 and 𝑓𝑘 for the attention mechanism are
implemented by two 1D convolutional layers, each followed by a ReLU activa-
tion function. The total number of stacked GCN layers is 12. Compared to
the Position-Velocity Recurrent Encoder-Decoder model, History Repeat Itself
represents a more complex architecture due to the motion attention mechanism
and the stacking of several GCN layers, which highers the total number of NN
parameters. In particular, the motion attention mechanism allows the model to
learn about common patterns of the human body movements, and then use this
information to generate future sequences. However, this attention mechanism
may itself be one of the factors causing the model to perform poorly in terms
of generalisation. If the model is used to make predictions about movements
other than those seen during training, the attention mechanism may be strongly
biased towards the actions in the training dataset.
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3
Deep Transfer Learning

In recent years, Deep Learning (DL) models have shown significant improve-
ments in solving very diverse problems in many fields. This is mainly because,
compared to more standard Machine Learning (ML) algorithms or statistical
approaches, these Deep Neural Networks (DNN) are extremely capable of mod-
elling and learning from data with non-linear relationships. This characteristic
is a consequence of the structure and mathematical complexity of these models,
which are built by stacking multiple Neural Network (NN) layers, each with
its own set of parameters and activation function. However, although the com-
plexity of these models is their strength, it also highlights one of their main
limitations. In fact, DL models are trained by updating their parameters to ob-
tain the best prediction through back-propagation and optimisation algorithms.
Since the number of parameters of DL models is usually in the millions or even
more, the amount of data required to train them optimally is huge. In the con-
text of supervised learning, the data must also be labelled, a process that is
typically done manually, making it a very time-consuming and expensive task.
In addition, the training process itself is very time consuming and requires a lot
of computing power, which is often not affordable for small research groups.
The technique of Transfer Learning (TL) can be used to mitigate these problems
by reducing the amount of domain-specific data and the training time required
to achieve good performance for the task at hand. This Chapter introduces the
general concept of TL and then focuses on its application in the case of DL mod-
els. It also describes the main techniques used for Deep Transfer Learning (DTL)
and presents their main advantages and criticisms.
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3.1 Transfer Learning

TL is a technique used in the field of ML which consists in transferring the
knowledge acquired by a pre-trained model on a large dataset to a more specific
downstream task. More specifically, this technique is used when the availability
of data for a specific task is low and it is not possible or too costly or difficult
to collect more data. If a ML model is trained on a dataset that is too small, the
amount of data is insufficient for the model to gain enough knowledge to achieve
good generalisation performance. This problem is called overfitting, which in
practice occurs when the model becomes very good at making predictions on the
training set, but its performance on the test set deteriorates rapidly. This usually
happens when the training set is too small, so that it is easy to get good results
on the latter, but not large enough for the model to acquire general knowledge
about the type of data it is dealing with.

The idea behind TL is to use a pre-trained model that has been trained on
a large dataset as a starting point for building a new model to solve a specific
task (called the target domain). The basic concept of this approach is that
the pre-trained model has already learned a lot of knowledge from a large
dataset (called the source domain), which is then used to improve performance
for the target task. This knowledge is then incorporated into the new model,
which is tuned on the small dataset available for the specific task. Conversely,
attempting to build a model from scratch when a small dataset is available
would hinder the acquisition of domain knowledge, resulting in strong biases
and poor generalisation performance. As pointed out by Yosinski et al. [39],
the transferability of knowledge from a pre-trained model is more effective
when the source and target domains have similar characteristics. However, TL
approaches can also be applied when the two domains are not strictly related,
and such techniques are generally still more effective than randomly initialising
the weights of the NN.

In recent years, TL has become so common in various ML and data mining
applications that many different techniques have been developed depending
on the type of data and the type of model or algorithm used [38]. This thesis
focuses on the technique of TL applied to DL models for the task of Human
Motion Prediction (HMP).
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3.2 Deep Transfer Learning

While the TL technique is a versatile approach applicable to standard ML
algorithms, its significant advances are particularly notable within the context
of DL models, which take the name DTL. This importance is primarily due to
the fact that DL models require large amounts of data that may not be avail-
able, especially for very specific tasks. Here, TL approaches play a key role in
improving model generalisation and mitigating the overfitting problem. The
basic idea remains the same as that of traditional TL: instead of initialising a
fresh model with random parameters for the downstream task, they can first be
taken from a pre-trained model and then optimised through training iterations.
Several techniques have been proposed in recent years, each offering different
strategies. Some focus only on parameter optimisation, maintaining the pre-
trained NN architecture. Others introduce the concept of freezing certain layers
or adding new ones within the NN. This Section provides an overview of the
main techniques currently used for DTL.

3.2.1 Deep Transfer Learning approaches

A systematic categorisation of different DTL approaches can be made based
on the relationship between the source domain and the task domain [14]. Two
categories can be identified: homogeneous and heterogeneous. The first refers to
scenarios where the source and task domains are of the same nature. The lat-
ter, on the other hand, refers to cases in which the two domains differ in their
characteristics. It is important to note that the categorisation of domains as
homogeneous or heterogeneous is subjective and can take on different facets
depending on the specific application context. Another categorisation can be
based on the labelling context of the source and target datasets. Three distinct
categories can be identified: transductive, where only labelled source data are
involved; inductive, where both source and target data are labelled; and unsu-
pervised, where neither source nor target domains are labelled. However, in
the context of this thesis, a more interesting classification is certainly based
on the type of DTL approaches that can be used. In this context, four differ-
ent categories of approaches are identified as pointed out by Iman et al. [14]:
1) instance-based, 2) feature-based, 3) model-based, and 4) relational/adversarial-based.
Below is a description of each of these categories:
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• Instance-based: The Instance-based approach is a solution that can be ap-
plied in the case of homogeneous domains. It involves assigning weights
to samples in the source domain and then using these weighted samples
in the target domain. This approach makes two main contribution: first,
it helps to increase the size of the target dataset, which also improves its
distribution. Secondly, the weights help the new model to focus only on
the relevant information from the source domain.

• Feature-based: The category of feature-based TL approaches focuses on
mapping instances or features from both the source and the target do-
mains into a homogeneous space in order to create a more uniform data
representation. Within this category, two distinct ones can be identified:
Asymmetric and Symmetric approaches. The first consists in mapping the
features of the source domain to the corresponding features of the target
domain. The latter, on the other hand, maps both source and target fea-
tures in a common latent space. Overall, this feature-based approach helps
to reduce the lack of information in the target domain by accumulating
knowledge from the source domain.

• Model-based: Model-based approaches focus on knowledge transfer at the
model level, achieved by sharing parameters between a pre-trained model
and a newly initialised model. The basic concept behind these approaches
is that a pre-trained model, having been exposed to a large dataset, has
learned significant information about the data. This knowledge can then
be transferred to downstream task models by sharing the parameters of the
layers that build the NN architecture, thus improving their performance.

• Relational/Adversarial-based: Relational or adversarial approaches focus on
extracting features, common patterns, and correlations between the source
and the target domains. Relational-based approaches use rules or logical
relationships, while adversarial approaches are inspired by Generative
Adversarial Network (GAN).

An overview of the classification of DTL approaches described above is shown
in Figure 3.1. Currently, the most common class of approaches in DTL is rep-
resented by the model-based ones as they allow to easily perform a domain
adaptation from the source to the target domains by adjusting the parameters
of the network.
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Figure 3.1: An overview of the classification of the main Deep Transfer Learning
techniques, based on the relationship between the source and target domains,
and on the different classes of approaches.

3.2.2 Model-based Deep Transfer Learning

Traditional DL approaches typically involve initialising the parameters of the
NN at random or according to other protocols, followed by iterative optimisation
to achieve the best performance on the target task. Model-based approaches for
DTL allow the use of a pre-trained model on a similar task as a starting point
to build the new model specific to the target task. However, two problems
can arise: catastrophic forgetting and a biased pre-trained model. The first refers
to the situation where the knowledge accumulated in the pre-trained model is
completely lost during the adaptation to the target task, thus completely loosing
the advantages of DTL. The biased pre-trained model, on the other hand, occurs
when the pre-trained model has a strong bias towards the source domain data it
encountered during training. This bias greatly reduces the ability of the model
to effectively adapt to novel data within the target domain. Therefore, when
applying DTL techniques, it is important to mitigate these two issues in order to
maximise the effectiveness of the model adaptation.

Numerous techniques have been proposed for model-based DTL, generally
involving a combination of pre-training a model on a source domain, selectively
freezing and/or fine-tuning specific layers of the pre-trained model, and possibly
adding fresh layers to enhance the model’s capabilities. There are still no stan-
dardised techniques and the choice between these methods depends heavily on
the specific application and the type of architecture of the NN to which TL is ap-
plied. The following paragraphs describe each of these strategies, highlighting
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what they consist of and their main advantages and challenges.

Fine-tuning

Rather than randomly initialising the parameters of the NN, the fine-tuning
involves initialising them using the weights from a pre-trained model, which
requires the two NN to have the same architecture. Later, these values are
adjusted to tune the model for the specific downstream task. However, this
approach can potentially lead to catastrophic forgetting because of the pre-
trained weights that are changed too much. In practice, several strategies can be
used to mitigate this problem. These generally consist of using a lower learning
rate to allow smaller changes in the parameters, and fine-tuning only specific
layers of the network. Fine-tuning is a very common approach used in practice
that allows a direct way of transferring knowledge and it has a relatively simple
implementation process.

Freezing

In DNN, the first layers are typically responsible for extracting high-level
data features. Subsequently, middle layers process these features to extract
finer, lower-level details, which are finally processed by the last layers to solve
the task at hand, i.e. to make predictions or classify data. In the context of DTL,
another important strategy consist of freezing some layers, which corresponds to
avoid their updating during the training phase. This is usually done on the first
layers, which helps to preserve the main features that the pre-trained model has
gathered about the source data, thus reducing the risk of catastrophic forgetting.
However, this strategy can introduce a significant bias from the pre-trained
model, which has the potential to hinder the tuned model for a downstream
task to learn novel low-level features. This issue can be potentially enhanced
if the source and target domain are not homogeneous. This strategy is more
complex to apply than fine-tuning, as it requires in-depth knowledge of the NN
architecture to identify which layers are important to freeze and which are not.

Progressive learning

Progressive Neural Network (PNN) mimics the human learning process,
which involves building on previously learned skills. This strategy lies between
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fine-tuning and freezing, and is an effective technique for mitigating both catas-
trophic forgetting and the strong bias of the pre-trained model. This strategy
consists of freezing the entire pre-trained NN while stacking additional layers
on top of it. This allows the reuse of the features acquired by the pre-trained
model and their subsequent elaboration to address the specific task. Progressive
learning facilitates the preservation of the existing knowledge and helps to use
its features in the context of the new task. Clearly, understanding how many and
which layers to add to the network and where to position them is a challenging
task that requires a lot of experience to apply Progressive Learning optimally.

There is no specific DTL technique that can be applied generally, as it depends
on many factors, including the NN architecture, its total number of parameters,
and the relationship between the source and the target domains. However, some
general considerations can be made. Firstly, a large and diverse source dataset
is crucial to avoid having a strong bias or insufficient knowledge from the pre-
trained model. DTL is generally more effective when the source and the target
domains are homogeneous, which helps with knowledge transfer. Similarly,
the reuse of pre-trained features leads to optimal results in cases where the
datasets are similar between source and target. Furthermore, the potential of
DTL methods is enhanced when the target dataset is very limited in size, as
training a fresh new model is likely to lead to poor generalisation performance
due to data scarcity. Therefore, the main advantages of DTL are the improved
model performance when data is limited, but also the reduction of training
epochs. In fact, when TL techniques are applied, DL models tend to converge
to the optimal configuration faster then when a fresh new model is initialised.
This helps to reduce the training time and cost, making the training of complex
NN feasible even when computational resources are limited.

However, it is important to note that finding the best configuration of the
parameters for training DNN, including the context of DTL, requires a lot of
expertise in the field. Nevertheless, good results can also be obtained experi-
mentally by testing different configurations of the various techniques.
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4
Metrics

In order to quantitatively evaluate the results of the experiments described in
Chapter 5, both metrics for assessing the effectiveness of Transfer Learning (TL)
techniques and for evaluating the performance of Human Motion Prediction
(HMP) models are introduced and described in this Chapter. It also introduces
the zero-velocity model, a baseline that is used to benchmark HMP models.

4.1 Human Motion Prediction metrics

To measure the quality of the motion prediction, it is necessary to compare
the entire predicted sequence with the target one, which represents the ground
truth. Given the complexity of the human body structure, the metrics should
take into account all frames and all joint rotation angles or coordinates describing
a single pose in the predicted sequence. The metrics that are considered in this
work, which are described below, are inspired by two papers proposed by Aksan
et al. [2, 3]. Their formulation is based on the mathematical description of the
human motion representation introduced in Section 2.1. For each metric, its
definition and computational details are provided for a given frame 𝑡 and for a
given test batch 𝑿 𝑡𝑒𝑠𝑡 .

4.1.1 Euler Error

The Euler Error is one of the most commonly used metrics at the time of
writing to evaluate and compare different models for the accuracy of joint angle
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predictions. For a given time stamp 𝑡 and a test batch X𝑡𝑒𝑠𝑡 , the Euler Error 𝐿𝑒𝑢𝑙
can be computed as follows:

𝐿𝑒𝑢𝑙(𝑡) = 1
|X𝑡𝑒𝑠𝑡 |

∑
𝑿 𝑡∈X𝑡𝑒𝑠𝑡

𝐽∑
𝑗=1

∥�̂� 𝑗 − 𝜶 𝑗 ∥2 (4.1)

where �̂� 𝑗 and 𝜶 𝑗 represents the rotation of the 𝑗𝑡ℎ joint expressed in Euler angle
notation for the predicted and target sequences, respectively, at frame 𝑡. The
Euler Error evaluates the average Euclidean distance between the predicted and
the target sequences. To compute an overall metric for the entire predicted
sequence rather than a single frame 𝑡, the average over all the prediction frames
can be computed. The Euler Error metric has a total of 9 variants, based on the
different Euler angle sequences.

4.1.2 Joint Angle Difference

The Joint Angle Difference is based on quantifying the angular rotation re-
quired to align the predicted joint with the direction of the ground truth. Unlike
the Euler Error, this metric does not depend on the specific parameterisation of
rotation, as it is based on rotation matrices. The Joint Angle Difference metric
𝐿𝑎𝑛𝑔𝑙𝑒 is therefore defined as follows:

𝐿𝑎𝑛𝑔𝑙𝑒(𝑡) = 1
|X𝑡𝑒𝑠𝑡 |

∑
𝑿 𝑡∈X𝑡𝑒𝑠𝑡

1
𝐽

𝐽∑
𝑗=1

∥log(R̃𝑗)∥2 (4.2)

where R̃𝑗 is the rotation matrix needed to align the predicted direction of the
𝑗𝑡ℎ joint with the target joint. Similarly as before, an overall metric for the entire
predicted sequence can be computed by averaging over all predicted frames in
the sequence.

4.1.3 Positional Error

Positional Error measures the accuracy of body keypoint positions in the 3D
space. Instead of measuring the error based on the rotation angles, this metric is
based on a comparison between the 3D coordinates of the body keypoints of the
predicted and target sequences. To obtain the 3D coordinates of the keypoints,
the forward kinematics can be computed by moving along the kinematic tree
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that describes the human body skeleton. Therefore, the Positional Error 𝐿𝑝𝑜𝑠
is computed as the Euclidean distance between the 3D coordinates of paired
keypoints between the predicted and target sequences. For a given time stamp
𝑡, the Positional Error can be computed as follows:

𝐿𝑝𝑜𝑠(𝑡) = 1
|X𝑡𝑒𝑠𝑡 |

∑
𝑿 𝑡∈X𝑡𝑒𝑠𝑡

1
𝐽

𝐽∑
𝑗=1

∥�̃� 𝑗 − 𝒑 𝑗 ∥2 (4.3)

where 𝒑 𝑗˜ represents the 3D coordinates of the 𝑗𝑡ℎ keypoint for the predicted
sequence, while 𝒑 𝑗 refers to the target sequence. By averaging over all prediction
frames, the total error of the predicted sequence can be computed. Unlike the
other two metrics, Positional Error somehow weights the impact of each keypoint
in the overall error. In fact, forward kinematics depends on the length of the
links, so given the same angular error for two links of different lengths, the
Positional Error will be much higher for a long link, rather than for a short one.
This also reflects our perception when we make a visual evaluation. In fact, a
shoulder rotation error of a given angle is certainly worse than a wrist rotation
error of the same angle.

4.1.4 Qualitative evaluation

Another approach that can be used to assess the quality of predicted se-
quences, is a qualitative assessment based on graphical visualisation. Although
this is not an objective metric, it is often very effective because it is easy to inter-
pret and can highlight common patterns of error that would otherwise be almost
impossible to detect using quantitative metrics alone. For example, if a model
makes very good predictions for the upper part of the body but it is completely
wrong for the lower part, the metrics described above would not be able to
detect this problem because they take into account all the joints in the skeleton.
Instead, by visualising different predicted sequences, this problem would be
easily detected. Visualising predicted sequences can also be very useful when
overlapped with the corresponding target sequences to visually highlight which
joints have the greatest error. Of course, similar considerations could be made
by computing the metrics independently for each joint and comparing them;
however, this approach would make the evaluation too complex, so a graphical
visualisation is preferable.
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4.2 Zero-Velocity baseline

Zero-Velocity is a naïve HMP model introduced as a baseline to assess the
predictive capabilities of state of the art models. As the name suggests, this
model produces a prediction with Zero-Velocity, i.e. the human skeleton stands
still at the position of the last frame of the seed sequence. In other words, the last
pose of the input sequence is replicated as many times as there are prediction
frames. Although this model may seem useless because it makes no predictions,
when it was introduced it outperformed most existing state of the art models
[27]. The prediction of human motion is a very difficult task given the complexity
of the human body structure. Predicting that a person will move is generally
riskier than predicting that the person will remain stationary. This is because
if the predicted motion is in the opposite direction to the ground truth, the
error is double that of a stationary prediction. In the context of HMP, making a
prediction in the opposite direction to the true one is quite common, given the
ambiguity and the many factors that can influence a person’s movement. In fact,
it is not uncommon for even a human being to make such mistakes. Therefore,
a comparison with the Zero-Velocity model may be of interest to understand
when its predictions are better than a static one, so as to evaluate its potential.

4.3 Transfer Learning metrics

The TL technique has now become a very common approach in the field of
Deep Learning (DL). In general, to evaluate the effectiveness of this approach
with respect to training a new model from scratch, one compares the perfor-
mance of the two models on the task of interest. For example, for an object
detection task, the Intersection over Union (IoU) score of the two models can be
compared and the effectiveness of TL can be associated with the improvement
of this metric. Similarly, in the context of HMP, this comparison can be based
on the metrics described in Section 4.1, which can be computed by using the
best model obtained during the training phase. For example, the average Euler
Error or Positional Error in the test set along the prediction frames can be com-
pared between a model trained from scratch and another model initialised with
pre-trained weights. However, this simple evaluation does not really highlight
the benefits of TL. In particular, as suggested by Zhu et al. [40], it is important
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to consider two main aspects when evaluating a TL approach:

• Mastery: Mastery refers to how well the learned model, starting from a
pre-trained one, performs in the target domain.

• Generalisation: Generalisation refers to the ability of the pre-trained model
to quickly adapt to the target domain.

In this regard, the authors have reviewed the main metrics that have been
proposed in recent years to assess these two aspects of TL, mastery and gen-
eralisation. It is important to note that their work focused on the context
of Reinforcement Learning (RL) rather than DL, which is a different area of
Machine Learning (ML). However, although some of these metrics are specific
to RL, others can be directly applied or suitably adapted to the context of DL.
Therefore, following Zhu et al. [40], the metrics that will be used to evaluate the
effectiveness of TL approaches for HMP are Jumpstart Performance, Minimal Error
Performance, and Time To Threshold.

All of these metrics are based on how the error of the model evolves over
the different epochs of the training phase. For a given model, say 𝐴, trained
for 𝑁𝐴 epochs, the error during training can be represented by a vector 𝒆𝐴
of length 𝑁𝐴, where 𝒆𝐴(𝑖) corresponds to the error at the training epoch 𝑖 ∈
1, 2, ..., 𝑁𝐴. There is no specific type of error or score that must be used, rather
these metrics can be generalised with appropriate adjustments when necessary.
In the specific context of the work of this thesis, the aim is to compute these TL
metrics to compare the performance of a DL model trained from scratch with
a model obtained by using some TL technique. However, their description and
mathematical formulation below is generalised for a comparison between two
generic models, 𝐴 and 𝐵.

Jumpstart Performance

Jump-Start Performance (JSP) compares the performance of the two models
after the very first training epoch, and therefore assess the goodness of the pre-
dictions of the two when initialised. When comparing a pre-trained model with
another model starting from scratch, JSP is an index of how much knowledge
the pre-trained model has from the source dataset. Mathematically, Jump-Start
Performance 𝐽𝑆𝑃 can be computed as:

𝐽𝑆𝑃 = 𝒆𝐴(1) − 𝒆𝐵(1) (4.4)
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where 𝒆𝐴(1) and 𝒆𝐵(1) represent the error after the first training epoch for the
two models 𝐴 and 𝐵 respectively. In this particular case, a positive JSP means
that model 𝐴 performs worse than model 𝐵.

Minimal Error Performance

Minimum Error Performance (MEP) corresponds to the difference between
the minimum error achieved by the two models during training. The latter can
be computed separately for each model as follows:

𝑀𝐸𝑃𝐴 = min{𝒆𝐴(𝑖)|𝑖 ∈ 1, 2, ..., 𝑁𝐴}
𝑀𝐸𝑃𝐵 = min{𝒆𝐵(𝑖)|𝑖 ∈ 1, 2, ..., 𝑁𝐵}

(4.5)

Therefore, the MEP can be computed as:

𝑀𝐸𝑃 = 𝑀𝐸𝑃𝐴 −𝑀𝐸𝑃𝐵 (4.6)

A positive value for this metrics means that model𝐴 reaches an overall minimum
error which is lower compared to model 𝐵.

Time To Threshold

Time To Threshold (TTT) is a metric related to the number of epochs needed
for a given model to reach a given error threshold. In this particular case, given
two models 𝐴 and 𝐵, the threshold 𝑇 is defined as the maximum between the
minimum error of the two models:

𝑇 = max{𝑀𝐸𝑃𝐴 , 𝑀𝐸𝑃𝐵} (4.7)

This definition allows to have a threshold that is always reached by both the
models, thus avoiding numerical problems in the computation of the metric.
Then, the number of epochs 𝑡𝐴 needed by model 𝐴 to reach the error 𝑇 can be
defined as the epoch 𝑖 at which the error goes below 𝑇 for the first time; an
analogous definition for model 𝐵:

𝑡𝐴 = min
𝑖∈(1,2,...,𝑁𝐴)

{𝒆𝐴(𝑖) ≤ 𝑇}
𝑡𝐵 = min

𝑖∈(1,2,...,𝑁𝐵)
{𝒆𝐵(𝑖) ≤ 𝑇}

(4.8)
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Finally, the Time To Threshold 𝑇𝑇𝑇 is defined as:

𝑇𝑇𝑇 = 𝑡𝐴 − 𝑡𝐵 (4.9)

Similar to JSP, positive values for TTT mean that model 𝐴 performs worse than
model 𝐵 as it requires more training epochs to reach the threshold.

In some other cases, the threshold 𝑇 can be defined as the minimum error of
one of the two models, rather than the maximum between the two. For example,
assuming𝑇 = 𝑀𝐸𝑃𝐵, three different cases can be identified for TTT: 1)𝑇𝑇𝑇 > 0,
so the minimum error of 𝐴 is lower than that of 𝐵, and model 𝐴 reaches 𝑇 in
fewer training epochs. 2) 𝑇𝑇𝑇 < 0, meaning that the minimum error of 𝐴 is
still lower than the minimum error of 𝐵, but model 𝐵 reaches 𝑇 faster. 3) 𝑇𝑇𝑇 is
undefined, which happens when model 𝐵 reaches a minimum error lower than
that of 𝐴. This definition of 𝑇 can be useful to include the MEP, and thus to
compute a more comprehensive metric.

These metrics described above can be computed separately for the training
error, validation error, test error, or even the training loss. They can also be
computed for the different HMP metrics described in Section 4.1, i.e. Euler
Error, Joint-Angle Difference, and Positional Error. Obviously, computing all
possible combinations would be too confusing, so it is important during the
experiments to select the ones that are most relevant for drawing conclusions.
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5
Experimental setup

In order to investigate the transferability of knowledge from Deep Learning
(DL) models trained for the task of Human Motion Prediction (HMP), numerous
experiments have been carried out to understand whether Transfer Learning
(TL) techniques can bring benefits to the quality of the prediction when limited
datasets are available. This Chapter motivates the choice of the state of the art DL
models and the datasets among those available used for the experiments, and
describes some of the main preprocessing steps required to perform the various
tests. In addition, a complete list of the experiments carried out is presented,
with technical details, together with a description of the resources available and
the selected development environment.

5.1 Deep Learning Models and Datasets

The choice of DL models and datasets used in the experiments evolved in
parallel, as it was important to find models that had been trained, or at least
had been designed to be trained, on common datasets in order to allow for a fair
comparison between them. Regarding the choice of DL models, it was important
to choose them to be representative of the current state of the art algorithms for
HMP, as it would not have been possible to run experiments on all available
models due to limited resources. The choice of datasets, on the other hand,
was guided by two main aspects. It was important to identify those that had
already been used to train the models, so that they were already set up for that
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type of data, and others that were closer to a Collaborative Robotics context.
The first would have been used as the source domain, while the latter as target
domains. This Section provides a detailed description of the motivations behind
the choice of models and datasets, describing their main characteristics useful
for the objectives of this thesis.

5.1.1 Models selection

As described in the state of the art review in Section 1.4, DL approaches
for the task of HMP can be divided into three main classes based on the
type of Neural Network (NN) underlying their architecture, which can be
identified as Recurrent Neural Networks (RNNs), Graph Convolutional Net-
works (GCNs) and Generative Adversarial Networks (GANs). The latter cate-
gory, i.e. GANs, were not considered for the experiments, mainly because of
their non-deterministic behaviour, which can lead to unreliable results. Given
that the experiments were characterised by target datasets of small size, dif-
ferences in predictions due to their non-determinism would lead to significant
differences in the results for the same input, making their analysis unreliable.
Furthermore, these type of approaches are generally used to predict multi-
future sequences, which is outside the scope of this thesis. Therefore, the choice
of models fell on the other two categories, i.e. RNNs and GCNs.

It was then important to consider models for which the code used by the
authors to build, train, and test the model was available. This was essential
not only to avoid having to build the whole model from scratch, but more
importantly to have the guarantee of using the same model that was described
in the paper. In fact, it was fundamental to use pre-trained models that reflected
the state of the art. Often papers omit a lot of details to provide a more high-
level description of the architecture, so it would be almost impossible to fully
replicate the NN. In addition, models for which code is available generally
provide training checkpoints from which the authors have derived the results
shown in the corresponding papers. This save training time, as the trained
model in the source domain is already available.

As a result of the above considerations, the models chosen are those de-
scribed in Sections 2.2 and 2.3, i.e. Position-Velocity Recurrent Encoder-Decoder
(PVRED) and History Repeat Itself (HRI) respectively. The first is representative
of the class of approaches based on RNN architecture, while the latter on GCN
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and the attention mechanism. Both models were trained on motion sequences
at 25 frames per second (fps) and tested on predicting sequences of 25 frames,
which corresponds to a prediction of 1 second. The set of hyperparameters
proposed by the authors was used, except for some modification that will be
described below in the experiments Section. Some additional details on the
configurations of these models are given in the following paragraphs.

PVRED

PVRED was pre-trained on Human 3.6M (H36M) as the source dataset to
predict sequences of 25 frames, which is the same as when testing. The model
uses the rotation angle representation of the human body skeleton, in particular
the exponential map notation. Two different configurations of this model’s
architecture were used for the experiments, corresponding to NN with one and
two RNN layers.

HRI

HRI was also pre-trained on H36M as the source dataset to predict sequences
of 10 frames instead of 25. This is because of its network architecture and the
motion attention mechanism. In fact, as described in Section 2.3, HRI is designed
to predict window sequences of 𝑀 frames in a single step, which is then autore-
gressively fed as input to the model to obtain longer sequences. For windows of
10 frames, the prediction step is repeated three times in order to obtain futures
of 25 frames. The model was set up to work with both 3D coordinates and
rotation angles to represent the body skeleton; for the experiments, exponential
map notation was used.

5.1.2 Datasets selection

The choice of the datasets was closely related to the choice of the models,
as it was important to identify suitable source and target datasets that could
be used for the TL experiments. With regard to the source domain, it was
necessary to identify a sufficiently large dataset on which both the models had
already been trained. This would have led to common characteristics between
the pre-trained models and therefore the possibility to make a fair comparison
between the different NN architectures based on the results obtained during the
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experiments. In this regard, as mentioned above, H36M dataset was chosen.
As it is still the main benchmark for testing HMP algorithms, the majority of
the state of the art DL models have been trained on it, making it perfect for
obtaining pre-trained configurations. In addition, it still represents one of the
largest and richest datasets available today in terms of the variability of the
actions it contains.

With regard to the target domain, it was important to identify a dataset that
was sufficiently different from the source domain in order to test the knowledge
transferability of the models during the experiments. Given the Collaborative
Robotics filed in which this thesis is set, the ideal case would have been to
use target datasets specific to that context. However, since the latter are not
available at the time of writing, it was important to identify some that are close
in terms of actions to the Collaborative Robotics context. Nevertheless, it was
also interesting to study the transferability of the knowledge for this type of
data from a more general perspective, therefore also considering target domains
similar to the source domain, in order to compare the benefits of TL in different
cases. As a result of these considerations, Achieve of Motion capture As Surface
Shapes (AMASS) dataset was chosen as the target domain. It is not a single
dataset, but a collection of smaller standardised datasets, each with its own
set of actions. This makes it really suitable for the purposes of this thesis, as
different datasets can be extracted as the target domain depending on the the
specific goals of the experiments.

However, the two datasets have significant differences, mainly in the repre-
sentation of the human skeleton, which are highlighted in the following para-
graphs.

H36M dataset

H36M [15] contains recordings of 15 different actions performed by a total of
11 subjects recorded at 50 fps, but only 7 of them are commonly used for training
and testing DL models. This dataset follows a very specific structure, in fact for
each subject there are two separate recordings for each action, giving a total of
30 motion captures for each subject. The full list of actions is as follows: walking,
eating, smoking, discussing, giving directions, greeting, phoning, posing, purchasing,
sitting, sitting down, taking photo, waiting, walking dog, and walking together. A
human body pose is represented by the angular rotation of a 32-link skeleton
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plus the global rotation in the 3D space expressed in exponential map notation,
giving a total of 99 parameters describing each pose. An example of the skeletal
representation for a general walking pose is shown in Figure 5.1a.

(a) H36M skeleton (b) AMASS skeleton

Figure 5.1: An example of the skeleton representation of the two datasets H36M
and AMASS for a walking pose. The main differences between the two are in
the shoulder area and on the upper part of the legs.

As can be seen from the visual representation of the skeleton, both hands and
feet are represented by more than one keypoint, as the skeleton representation
also considers a simplified scheme for their articulations. However, it is common
to discard these and some other joints when predicting the human motion, thus
simplifying the overall representation of the body skeleton with a total of 21
joints. The standard approach when using this dataset is to downsample the
motion sequences at 25 fps and to use the actions of subjects 1,6,7,8, and 9 as the
training set, subject 11 as the validation set and subject 5 as the test set.

AMASS dataset

AMASS [24] is the largest dataset available at the time of writing and it
consists of a collection of smaller datasets. For this reason there is no common
frame rate, as each datasets has its own, ranging from 30 fps to 120 fps. Similarly,
the set of actions depends on the specific dataset, so there is no predefined
internal structure, which is instead a characteristic of H36M. However, one of
the most interesting aspects of AMASS is that the skeletal representation of all
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the datasets which it contains is standardised according to the Skinned Multi-
Person Linear Model (SMPL) [22] body model. Each pose is specified by the
rotation angles of 24 links with the additional global rotation in the 3D space in
exponential map notation. An example of the AMASS skeleton representation
is shown in Figure 5.1b.

Regarding the choice of the target AMASS sub-datasets to be used for the TL
experiments, three were selected: ACCAD, GRAB, and DanceDB. The following
paragraphs give a description of each of the three datasets and explain why they
were chosen.

ACCAD

ACCAD [4] is a small dataset containing actions that are quite similar to the
source domain represented by H36M. This dataset was chosen to assess the
benefits of TL techniques when the source and target domains are quite similar,
so that a comparison can be made with the results on a target dataset with a
different distribution of actions compared to H36M.

GRAB

As the name suggests, GRAB [32] is a dataset containing actions of a subject
grasping various objects from a static workstation, resulting in motion sequences
with a static lower body. Of the datasets available in AMASS, this is probably
the closest to a Collaborative Robotics context. For example, in industrial con-
texts, the operator may be assembling products while remaining stationary at a
particular workstation.

DanceDB

DanceDB [6] is a dataset consisting of rather long motion sequences about
dancing subjects. Although not directly related to the context of Collaborative
Robotics, this dataset was chosen to study the effectiveness of TL in the case of
target domains that are very different from the source domain, since H36M does
not contain actions similar to the dancing ones.

In summary, H36M has been chosen as the source dataset on which to pre-
train the DL models selected for the experiments, as it represents the most
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common benchmark and all the latter are designed to deal with its data. On the
other hand, three smaller datasets were selected from AMASS to represent the
target domain in the TL experiments. As ACCAD was the smallest of the three,
only part of GRAB and DanceDB were included in order to balance their size
and to be able to make a fair analysis of the results obtained. Table 5.1 gives an
overview of the main characteristics of the datasets that have been considered.

H36M ACCAD GRAB DanceDB

Total time [min] 175.87 26.75 24.06 24.29
Frames per second 50 120 120 120

Table 5.1: Summary of the datasets selected for the experiments, showing total
duration and frames per second.

However, given the differences between all the selected datasets in terms of the
number of fps and the two different skeletal representations of the human body,
some preprocessing steps were required in order to standardise the data to be
given as input to the DL models.

5.2 Preprocessing

Before proceeding with the experiments that will be described below, some
preliminary steps are required in order to prepare the datasets and the models.
In particular, they refer to a transformation from AMASS to H36M to match
the two skeletal representations of the human body, a downsampling approach
to uniform the fps of the different motion sequences, and a procedure to split
the datasets into training, test, and validation sets. This Section describes these
preprocessing steps and presents a graphical tool developed to visualise motion
sequences.

5.2.1 AMASS to H36M transformation

The two datasets H36M and AMASS use a different skeletal representation,
so giving a motion sequence from AMASS as input to a pre-trained model on
H36M without changing the NN architecture would not only cause numerical
problems, but also the actual poses would not make sense if interpreted with a
different kinematic tree. As shown in Figure 5.1, the two skeletons are charac-

49



5.2. PREPROCESSING

terised by strong differences, especially in the shoulder area and in the upper
part of the legs. In addition, the hands and feet in AMASS are modelled in a
simpler way than in H36M. Therefore, when taking any motion sequence from
AMASS based on the SMPL body model, it is necessary to compute a projec-
tion to obtain the same actual poses from the H36M skeleton perspective before
giving them as input to the models.

Mathematically, this procedure can be represented by a function 𝑓 : R𝐽𝐴×𝐷 →
R𝐽𝐻×𝐷 , which maps individual poses from AMASS to their corresponding rep-
resentation with the skeletal model of H36M; 𝐽𝐴 and 𝐽𝐻 represent the number
of joints used in the AMASS and H36M skeleton, respectively. In other words,
given a body pose 𝒙𝐴 from AMASS, the goal is to compute 𝑓 (𝒙𝐴) = 𝒙𝐻 which
can be interpreted with the H36M skeleton representation so that the two are
visually equivalent, i.e. they correspond to the same pose but based on two
different skeleton models. Since each pose is described by the rotation angles
of each joint, the problem can be broken down into the individual joints as
follows: given a joint 𝑖 , 𝑖 ∈ 0, 1, ..., 𝐽𝐴 from the AMASS skeleton and its corre-
sponding joint 𝑗 , 𝑗 ∈ 0, 1, ..., 𝐽𝐻 from the H36M skeleton, the transformation can
be expressed as:

𝒆𝐻𝑗 = 𝒆𝐴𝑖 × 𝑹𝑖 (5.1)

where 𝒆𝐻𝑖 and 𝒆𝐴𝑗 are the rotation angles in rotation matrix notation for H36M
and AMASS respectively, and 𝑹𝑖 is the rotation matrix representing the transfor-
mation step. The problem can therefore be seen as computing 𝑹𝑖 , 𝑖 ∈ 1, 2, ..., 𝑗𝐴,
which are called aligning rotation matrices because they represent the rotation
required to project one representation into the other. The pairs (𝑖 , 𝑗) of corre-
sponding joints were obtained experimentally by visually comparing the two
skeletons.

Computing aligning rotation matrices

Each body pose is described by the set of the joint rotation angles. How-
ever, another fundamental aspect of each body model is given by the offsets,
which represent not only the length of each joint of the skeleton, but also its
default orientation in 3D space when the corresponding rotation angle is zero;
in practice, they are described by three coordinates representing a vector in the
3D space. Therefore, if the rotations of all the joints of both the H36M and
AMASS skeletons are set to zero, the resulting poses are called default pose and
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they do not match each other. Thus, based on the two default poses, the aligning
rotation matrices 𝑹𝑖 can be derived by rotating the joints of AMASS to match
those of H36M. This could be done experimentally by manually trying to find
the correct rotations, but it is better to compute them analytically to improve the
overall accuracy of the transformation.

The offsets, and therefore the links, are relative, so each part of the body
can be represented by a vector connecting the end of the preceding link to the
beginning of the next. Therefore, given two paired links 𝑙𝐴𝑖 and 𝑙𝐻𝑗 from AMASS
and H36M skeletons respectively, the aligning rotation matrix 𝑹𝑖 corresponds
to the rotation to be applied to the vector representing 𝑙𝐴𝑖 to align it with the
vector representing 𝑙𝐻𝑗 ; this can be computed using standard linear algebra
techniques. However, since the offsets are relative, it is important to move along
the kinematic tree of the body skeleton and consider the progressive rotations
of previous links when computing each aligning rotation matrix.

Therefore, given two paired links 𝑙𝐴𝑖 and 𝑙𝐻𝑗 , the relative offset �̃�𝐴𝑖 , which
account for the previous aligning rotations along the kinematic tree, can be
computed as follows:

�̃�
𝐴
𝑖 = 𝑙𝐴𝑖 × 𝑹𝑐ℎ𝑎𝑖𝑛(𝑖) (5.2)

where 𝑹𝑐ℎ𝑎𝑖𝑛(𝑖) corresponds to the multiplication of all aligning rotation matri-
ces for all links preceding 𝑙𝐴𝑖 along the kinematic chain. Then the corresponding
aligning rotation matrix 𝑹𝑖 can be computed as the rotation matrix needed to
align �̃�𝐴𝑖 with 𝑙𝐻𝑗 . Finally, assuming 𝑖′ as the next link after 𝑙𝐴𝑖 along the kinematic
chain, 𝑹𝑐ℎ𝑎𝑖𝑛(𝑖′) is updated as follows:

𝑹𝑐ℎ𝑎𝑖𝑛(𝑖′) = 𝑹𝑖 × 𝑹𝑐ℎ𝑎𝑖𝑛(𝑖) (5.3)

Therefore, a relative rotation for the 𝑖𝑡ℎ link of the AMASS representation can
be transformed into the H36M representation as follows:

𝒆𝐻𝑗 = 𝒆𝐴𝑖 × 𝑹𝑖 (5.4)

where the two link rotations 𝒆𝐻𝑗 and 𝒆𝐴𝑖 are expressed as rotation matrices.
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Transforming poses and sequences

Once the aligning rotation matrices have been computed for each joint, a
complete transformation of an AMASS body pose 𝒙𝐴 into a H36M one 𝒙𝐻 can
be computed by iteratively applying Equation 5.4 to all the joints of the skeleton.
Since the H36M skeleton representation consists of more joints than AMASS,
for those having no correspondence, their rotation is set to zero angle. This
is not a problem as these joints are all discarded when making predictions.
Similarly, by applying a pose transformation to each frame of a given sequence,
it is possible to transform a complete motion sequence. An example of a body
pose transformation is shown in Figure 5.2.

(a) H36M skeleton (b) AMASS skeleton

Figure 5.2: An example of body pose transformation from AMASS to H36M
skeletal representation. The two poses are almost equivalent except for some
parts, mainly around the shoulders and the upper part of the legs.

It is important to note that the description given above concerns the general
procedure for transforming each link rotation, whereas for some specific links it
was necessary to apply some additional minor steps which are not described for
the sake of simplicity. Moreover, as can be seen in Figure 5.2, this transformation
leads to very similar but not exactly equal poses. Some differences between the
two, such as the length of the links, are mainly due to the position of the
keypoints in the body skeleton. One could try to mitigate these discrepancies
by manually adjusting some offsets or rotation angles, however they do not
really pose a problem. In fact, a visual assessment of the transformation of
complete motion sequences shows that they are characterised by natural body
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movements that are, on the whole, very similar to the original. Moreover,
since these sequences are fed to the DL models during the experiments, the
discrepancies will be consistent in both the seed and the target sequence, thus
cancelling out the differences.

5.2.2 Downsampling motion sequences

Both the PVRED and HRI models work with 25 fps motion sequences, so
it was necessary to unify all the different datasets to this frame rate. For the
H36M motion sequences, originally at 50 fps, a simple decimation approach
based on skipping one frame every two was used. However, this is only possible
if the source sequence fps is a multiple of the target sequence fps. In the case
of AMASS this was not possible because many motion sequences are at 30 or
60 fps. To downsample such motion sequences, each joint rotation was treated
as a discrete signal over time. A polynomial-based interpolation method was
then used to obtain an approximate continuous signal, which was then sampled
at the frequency of interest to obtain the desired fps for the downsampled
motion sequence. The motion sequences were also filtered to remove high-
frequency movements that are not characteristic of the human body. When
visually comparing the original and downsampled sequences, the differences
are very minimal and barely noticeable. Using this interpolation approach, all
motion sequences were downsampled to 25 fps.

5.2.3 Splitting the datasets

After transforming and downsampling to 25 fps the three target datasets
from AMASS to H36M skeletal representation, it was necessary to split them
into training, test, and validation sets before proceeding with the experiments.
Unfortunately, in the case of AMASS there is no standard splitting procedure
based on subject ids as there is for the H36M dataset. A simple approach could
be to randomly assign each motion sequence in the dataset to training, test,
or validation set accordingly to a probability distribution. However, given the
limited size of the target datasets, and the fact that human motion is a data
type that is strongly biased by the type of action, this approach would result in
very unbalanced splits. There is a high probability that some type of actions
would only appear in the test dataset, thus greatly reducing the generalisation
performance of the DL models. Ideally, each motion sequence should have a
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label describing its action type on which to base a balanced split; however, this
type of information is not available.

A clustering-based approach was used to synthetically generate such labels.
First, instead of splitting the full motion sequences directly, they were broken
down into separate windows of fixed length, which were collected into a set
𝑆, a procedure that would be done later anyway. This is because the different
sequences in the dataset vary greatly in their length and therefore do not contain
the same amount of information. The aim was then to try to assign a label to
each window so that those with the same value were characterised by the same
type of action. To do this, a k-means clustering algorithm was used, based on
embeddings 𝒆𝑠 ∈ R𝑑 for each window 𝑠 ∈ 𝑆. The embeddings were created
by concatenating the vector representation of all the poses in the window and
then reducing their size to 𝑑 using the Principal Component Analysis (PCA)
technique. After running the clustering algorithm with 𝐾 clusters, the labels
were used to create balanced splits of the target datasets.

The size of the embeddings 𝑑 and the number of clusters 𝐾 were set to 200
and 15 respectively, based on experimental tests.

5.2.4 Skeleton visualisation

The graphical visualisation of body poses or whole motion sequences can
be useful for a qualitative evaluation of the predicted sequences and also as a
general debugging tool. Therefore, a human pose visualisation tool has been
developed based on 3D plots where each link of the human body pose is rep-
resented as a segment in the space connecting the two extreme keypoints. The
3D coordinates of the keypoints are computed by applying forward kinematics
along the kinematic tree representing the human skeleton, based on the specific
rotation angles of the links of the given pose. Instead, in order to visualise entire
motion sequences, the plot is updated with the pose corresponding to the cur-
rent frame at the correct frequency. The visualiser implements several features,
including the ability to overlap multiple skeletons to compare two or more mo-
tion sequences, which can be extremely useful when evaluating the quality of the
predicted sequence. This makes it possible to clearly visualise the differences
with respect to the ground truth and possibly identify the main weaknesses
of the prediction algorithm. The images of the human skeleton shown in the
different Chapters have been rendered with the developed visualiser.
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5.3 Experiments

The aim of this thesis is to study the problem of HMP in the context of Col-
laborative Robotics and to investigate the effectiveness of the technique of Deep
Transfer Learning (DTL) to improve the performance of the models when limited
datasets are available. Therefore, the experiments carried out were aimed at an-
swering the questions posed by this thesis. The first set of experiments involved
a comparison between a model initialised from scratch and the fine-tuning tech-
nique on different partitions of the target datasets with different sizes. The aim
was to understand if this TL approach can improve the model performance and
how they change as the number of data varies. Subsequently, further experi-
ments were conducted to test different TL techniques to understand if they can
bring improvements compared to a more commonly used fine-tuning approach.
This Section presents an overview of the different partitions of the target datasets
used and a complete list of all the experiments conducted with their motivations.

5.3.1 Progressive Dataset Partitioning

In the case of practical applications, it would be useful to study how much
the benefits of TL approaches vary depending on the size of the datasets, in
order to understand the amount of data that needs to be collected to achieve
good performance for the HMP task. Therefore, each of the three selected
target datasets, i.e. ACCAD, GRAB, and DanceDB, was partitioned based on
the following approach: the test and validation sets are fixed for all partitions
and correspond to 10% of the dataset, while the training set ranges from 10%
to 80% with progressive increases of 10%. For example, the smaller ACCAD
partition will have training, test, and validation sets corresponding to 10%, 10%,
and 10% of its total size, with the 70% discarded. On the other hand, the larger
partition will have the same test and validation sets, but the training set will
correspond to the 80% of the dataset; in this case, the entire dataset is used.
Using different partitions makes it possible to understand how results change
when different amounts of data are available for training, but the same set is
used to evaluate the models. Table 5.2 shows the number of windows contained
in each of the different dataset partitions; the splitting procedure was the one
described in 5.2.3.

The number of windows between the different target datasets is quite similar,
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Number of windows extracted for each target dataset partitions

Partition ACCAD GRAB DanceDB
Train Test Valid Train Test Valid Train Test Valid

10,10,10 21 21 21 24 24 24 22 22 22
20,10,10 42 21 21 48 24 24 44 22 22
30,10,10 63 21 21 72 24 24 66 22 22
40,10,10 84 21 21 96 24 24 88 22 22
50,10,10 105 21 21 120 24 24 110 22 22
60,10,10 126 21 21 144 24 24 132 22 22
70,10,10 147 21 21 168 24 24 154 22 22
80,10,10 168 21 21 192 24 24 176 22 22

Table 5.2: Number of motion sequence windows extracted for each partition of
the three target datasets. Partition x,y,z represents the percentage size of the
training, test, and validation sets, respectively.

which allows for balanced experiments. If this were not the case, the results
could be strongly influenced by the size of the partitions, making a comparison
between them unreliable.

5.3.2 Transfer Learning by fine-tuning

The first set of experiments conducted aimed to compare the performance of
a DL model initialised from scratch with a fine-tuning approach on the different
partitions of the target datasets. Specifically, in both cases the NN architecture
is the same, but for the scratch model its parameters are randomly initialised,
while in the case of a fine-tuned model they are taken from a checkpoint pre-
trained on the source dataset. In the specific case of these experiments, when
referring to the fine-tuning approach, this means that all model parameters are
updated during training. Symmetric experiments were performed for both DL
models described in Section 5.1, and in particular two different NN architectures
for PVRED with one and two RNN layers respectively were considered. This
was done to compare the effectiveness of the fine-tuning approach as the model
architecture becomes more complex.

The hyperparameters used for the different models, such as the size of the
NN layers or the optimiser, are those specified by the authors in the respective
papers. This was done to avoid the risk that changes in the NN architectures or
other parameter changes would strongly influence the results of the experiments,
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rather than being a consequence of the TL technique itself. Furthermore, if these
techniques were to be deployed in practical contexts, the pre-trained model
would probably be left as it is, or only a few minor changes would be made.
However, the learning rate was reduced by a factor of 10 only for the fine-tuned
model, which, as described in Chapter 3, helps to reduce the risk of catastrophic
forgetting. With regard to the number of epochs, some preliminary tests were
carried out with a very high value for this parameter in order to understand
when the models start to overfit on average and therefore to stop training a few
epochs ahead. Table 5.3 shows the number of epochs and the learning rate used
for training from scratch or for fine-tuning the different DL models.

Different configurations of some model parameters

Parameter
PVRED HRI

1 RNN layer 2 RNN layers
scratch tuned scratch tuned scratch tuned

Learning rate 0.0001 0.00001 0.0001 0.00001 0.0005 0.00005
Epochs 1000 1000 1000 1000 100 100

Table 5.3: Different configurations of the parameters of PVRED with one and
two RNN layers and HRI models.

The same model configurations were used to run the experiments on all
partitions of the target datasets. During training, the models were evaluated
using the metrics described in Section 4.1 and the results were stored for further
analysis. These initial experiments have already made it possible to identify
common features between the different experiments performed on the different
partitions, and thus to draw some preliminary conclusions about the benefits of
the fine-tuning technique.

5.3.3 Other Transfer Learning techniques

The second set of experiments focused on applying different TL techniques
to understand if the results of the fine-tuning approach can be improved. These
techniques can be divided into two main classes:

• Freezing the entire pre-trained network and replacing only the last layer.

• Freezing the entire pre-trained network and stacking fresh-new layers on
top of it.
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Both classes of approaches aim to reduce the problem of catastrophic forgetting
by using the features learned by the pre-trained model. In particular, the first
class is generally less powerful than the second, which increases its potential to
process and learn about data by adding new layers. These experiments focused
only on the ACCAD dataset, which from the fine-tuning experiments appeared
to be the dataset where TL is more beneficial. Moreover, only its 30% training
partition was considered as it is neither too small nor too large, and according to
the results of previous experiments it is representative of the different partitions.

Regarding PVRED, only the 1 RNN layer configuration was used as the fine-
tuning approach performed best on it. The experiments consisted of 1) freezing
the entire NN and replacing the last linear layer, which is the only one trained,
and 2) freezing the entire NN and stacking a fresh new RNN layer, which is
trained together with the last linear layer. Similar experiments were carried out
for HRI. They consisted of 1) freezing the whole NN architecture and training
only the last prediction layer, and 2) freezing the entire NN architecture and
stacking several GCN layers trained with the last prediction layer. In particular,
two different setups with two and four additional GCN layers were tested. The
number of epochs and the learning rate were the same as those used in the
fine-tuning experiments.

5.4 Resources and development setup

Training DL models can be costly in terms of time and resources. To mitigate
this, we conducted heavier experiments on a computing cluster while minor pro-
cesses on a desktop computer. The specifications for each device are presented
in Table 5.4.

Desktop Computer Computing Cluster

GPU NVIDIA GeForce RTX 2080 Ti 3x NVIDIA Tesla V100 S
GPU memory 11 GB 3x 32 GB
CPU Intel Core i9-9900K Intel Xeon CPU E5-2609 V3
RAM 32 GB 64 GB
Disk 250 GB 30 TB

Table 5.4: Specifications of Desktop Computer and Computing Cluster.

DL models were developed in Python 3.6.10, based on the PyTorch library.
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6
Results and discussion

This Chapter presents and discusses the main results of the experiments
described in Section 5.3, which aimed to investigate whether Deep Transfer
Learning (DTL) approaches can be beneficial for the task of Human Motion
Prediction (HMP) when limited amount of data is available. The first part of the
experiments is related to the fine-tuning approach, while the second part applies
other Transfer Learning (TL) techniques based on freezing part of the Neural
Network (NN) and adding fresh new layers. The setup of the experiments, as
well as the settings of the different model hyperparameters, refer to what is
described in Chapter 5. The results show the pattern of the validation error
along the training epochs and the computation of the TL metrics based on the
latter. Furthermore, the best configurations of the different models are evaluated
on the test set by computing the average error along the 25 prediction frames.

6.1 Fine-tuning experiments

This Section presents the results of the comparison between the scratch and
fine-tuned models. In both cases the NN architecture is the same, but the ini-
tialisation of the parameters is different: in the scratch model they are randomly
initialised, while in the fine-tuned model they are taken from the pre-trained
checkpoint. During training, all parameters are updated, with a 10 times lower
learning rate in the case of fine-tuning. The experiments were carried out on
the two Position-Velocity Recurrent Encoder-Decoder (PVRED) configurations,
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with one and two Recurrent Neural Network (RNN) layers, and on History
Repeat Itself (HRI), with progressively larger training partitions.

6.1.1 PVRED with one RNN layer

The first experiments involved the simpler NN architecture, i.e. PVRED with
a RNN layer, on the smallest ACCAD partition for which all HMP metrics are
shown. Given the similar pattern for the latter, only the Euler Error is shown in
the results for the following experiments.

Preliminary experiments on ACCAD

Both the scratch and fine-tuned models based on the PVRED architecture
with one RNN layer were trained for 1000 epochs. The results of all HMP
metrics computed on the validation set are shown in Figure 6.1.

(a) Euler Error Compari-
son

(b) Joint Angle Difference
Comparison

(c) Positional Error Com-
parison

Figure 6.1: Comparison of HMP metrics between a model initialised from scratch
and a fine-tuned model using the ACCAD dataset (10% training set partition).

As can be seen from the plots, the fine-tuned model performs better than the
scratch model: not only is the minimum error lower, but the convergence is also
much faster in terms of epochs. In addition, there is a strong improvement in
the initial performance of the model after the very first epoch, implying that the
pre-trained model carries knowledge from the source domain.
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Since the error trend is very similar for all three HMP metrics, only the Euler
Error is shown in the following results, as this is also the most common metric
used for evaluation purposes at the state of the art. This helps to keep the
notation simple. If there are cases where significant differences between the
diverse metrics are present, these will be reported and detailed for each specific
experiment. Furthermore, to help reading the graphs shown in this Chapter,
some simplifications were adopted based on two observations. First, the gap
between the initial and the minimum error is quite large, resulting in a very
stretched 𝑦 axis. Second, the error pattern is very flat after the first half of the
training epochs. Since the most interesting part of comparing different models is
the convergence region, in the following plots both the 𝑥 and 𝑦 axes are clipped
at [0, 500] and [0, 4] respectively. In very few cases the convergence of the
scratch model (which has a more non-increasing error pattern) occurs beyond
500 epochs. However, this behaviour and the initial error gap are captured by
the TL metrics.

These first results are very promising as the fine-tuning approach clearly im-
proves the performance of the model significantly. However, this first partition
tested is relatively small, so it will be interesting to understand what happens
when the size of the training sets increases.

Experiments on all target datasets partitions

As mentioned above, the subsequent experiments included all partitions of
the three target datasets to assess how the results differ with different training set
sizes and action distributions. As a common pattern emerged as the amount of
data increased (which will be discussed later), in order to keep the notation more
compact, only the results for the 10%, 30%, 50%, and 80% training partitions are
shown in Figure 6.2.

In general the fine-tuned approach improves the performance of the model
compared to scratch training. As mentioned above, the main improvements
are in terms of an overall lower minimum error plus fewer training epochs
are needed to reach this point. However, some interesting observations can
be made. When comparing the three target datasets, the one where the fine-
tuning approach works best is ACCAD, since the gap between the minimum
error with the scratch model is the largest and the epochs required to converge
are comparable to the other datasets. This is probably because ACCAD is the
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(a) Training set partition 10% (b) Training set partition 30%

(c) Training set partition 50% (d) Training set partition 80%

Figure 6.2: The validation Euler Error during the training epochs of PVRED
with one RNN layer is shown in the graphs, which illustrate the comparison
between a model trained from scratch and a fine-tuned model, using different
partitions of the target datasets.

most similar dataset to the source domain of the three, so the transferability
of pre-trained knowledge is more beneficial. On DanceDB there is a similar
behaviour to ACCAD, although less pronounced, while on GRAB the minimum
errors are quite similar, but the convergence of the fine-tuned model is much
faster. Considering that GRAB includes actions with the lower part of the body
at rest, the overall error is lower, which is probably why the improvements of
the fine-tuned model are less noticeable.

Regarding the different sizes of the partitions, the fine-tuned model seems
to give the highest benefits compared to the scratch model when the training
partition is the smallest. This is an expected behaviour, probably because the
randomly initialised model does not have enough information to properly tune
its parameter when trained on small partitions. On the other hand, the fine-
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tuned model can use the knowledge from the source domain and improve its
predictions. With 50% and 80% training partitions, the minimum error is almost
the same, but there is still a huge improvement in the number of epochs needed
to converge, i.e. the fine-tuned model is much faster.

Some additional considerations can be made based on the total Euler Error
between the three source datasets. GRAB is the one with the lowest error, and
this is probably due to its actions: the lower part of the body is stationary, which
makes it easier to predict and therefore the overall error decreases. On the other
hand, DanceDB is the target dataset with the highest error, which can also be
explained by the nature of its actions: dancing very often involves very wide
body movements, which are extremely unpredictable unless you already know
the dance. This makes its predictions very difficult, considering also that there
are no similar movements in the source domain, i.e. Human 3.6M (H36M). The
results for the other partitions of the datasets not shown, i.e. 20%, 40%, 60%, and
70%, reflect the trend shown in Figure 6.2: the lower the partition, the higher
the improvements given by the TL approach.

However, further analysis can be done by quantitatively evaluating the re-
sults shown above by computing the TL metrics, which are reported in Table
6.1.

TL Metrics for PVRED with 1 RNN Layer

TL Metric Training set partition 10% Training set partition 30%
ACCAD GRAB DanceDB ACCAD GRAB DanceDB

JSP 2.356 2.573 4.047 3.059 3.134 3.970
MEP 0.182 0.030 0.076 0.074 0.046 0.014
TTT 329 337 147 278 496 156

TL Metric Training set partition 50% Training set partition 80%
ACCAD GRAB DanceDB ACCAD GRAB DanceDB

JSP 4.049 2.094 2.711 2.101 2.139 2.488
MEP 0.039 0.029 0.002 0.036 0.012 0.003
TTT 262 320 157 964 419 72

Table 6.1: Transfer Learning metrics computed for different training set par-
titions, comparing the performance of a model trained from scratch with a
fine-tuned model based on PVRED with one RNN architecture. Positive values
indicate better performance for the fine-tuned model.
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These metrics allow to further analyse and compare the performance of
the fine-tuned and scratch models, especially for some aspects that are not
visible from the Euler Error plots in 6.2. First, the Jump-Start Performance (JSP)
highlights the gap between the two models after the very first training epoch
where, as can be seen from the Table, it is always positive, meaning that the
Euler Error of the pre-trained model is lower. The gap is quite large and there
is not really a clear pattern along the increasing size of the training partitions.
This is probably because the initial performance of the scratch model depends
on the initialisation of its weights, which is random.

The Minimum Error Performance (MEP) and Time To Threshold (TTT) reflect
the considerations made above when looking at the Euler Error plots: the fine-
tuned model reaches a lower minimum error in much fewer training epochs,
which is more pronounced in the case of ACCAD and for smaller partitions of
the training set. Some strange values for the TTT can be observed in the case
of ACCAD and GRAB 80% partition. This is because, as mentioned above, the
scratch model tends to have a non-increasing Euler Error pattern, especially
for larger training sets, which makes it reach the minimum error much further.
On the other hand, the fine-tuned model reaches the threshold much earlier,
resulting in a very large difference in the number of epochs. This does not
happen for smaller partitions, as the scratch model tends to overfit the data in
the first half of the training epochs.

Nevertheless, in general the improvements are always significant. Also com-
paring this metric with the Euler Error curves, it is clear that the TL approach
significantly improves the results when only a few training epochs are available.
In the specific case of these experiments, the training time was not too high due
to the small size of the datasets. However, when considering scaling up the
models to contexts where both the source and target domains are much larger,
a significant reduction in the number of epochs may be extremely important to
make the training procedure feasible. Another interesting comparison can be
made by evaluating the performance of the different models on the test set by
computing the average Euler Error along the 25 prediction frames. Following
standard Machine Learning (ML) approaches, the training checkpoint chosen
for each model corresponds to the one with the lowest validation Euler Error.
The results are shown in Figure 6.3.

The evaluation results on the test set are consistent with the above consid-
erations based on the validation error. The fine-tuned model always performs
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(a) Test on ACCAD (b) Test on GRAB (c) Test on DanceDB

Figure 6.3: Evaluation of the 25 prediction frames for the different scratch and
fine-tuned models based on PVRED with one RNN layer architecture.

better than the scratch model, especially for small dataset partitions and in the
case of ACCAD. Some additional considerations can be made to reason about
the amount of data required to train those models. Based on ACCAD, the fine-
tuned model on the 30% partition performs even better than the scratch model
trained on the 80% partition. This result is very significant as it suggests that
if the pre-trained model brings enough information from the source domain,
not only the training epochs and the minimum error are much better, but also
the size of the dataset required is much smaller. This can be very beneficial
in practical applications of Collaborative Robotics, where, if a HMP model al-
ready has sufficient pre-trained information, only a small number of samples are
needed to fine-tune the model effectively. Unfortunately, the same behaviour is
not that stronger for the other two datasets, i.e. GRAB and DanceDB, suggest-
ing that the pre-trained knowledge is probably not rich enough to lead to good
generalisation performances for datasets that are quite different from the source
domain.

Overall, the error has an exponential increasing trend along the 25 prediction
frames, which is caused by the accumulation of error over time.

6.1.2 PVRED with two RNN layers

The second set of experiments replicates the same performed in 6.1.1 but
using the PVRED architecture with two RNN layers. The aim is to understand
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how the results change when using the same type of NN with two different
levels of complexity. Increasing the number of parameters generally improves
the capabilities of the NN, but it also requires much more data to optimise it
properly. As before, the results are based on the Euler Error metric, given the
similarity of the three HMP metrics on the pattern. The results of the comparison
between the scratch and fine-tuned models based on the validation Euler Error
are shown in Figure 6.4.

(a) Training set partition 10% (b) Training set partition 30%

(c) Training set partition 50% (d) Training set partition 80%

Figure 6.4: The validation Euler Error during the training epochs of PVRED
with two RNN is shown in the graphs, which illustrate the comparison between
a model trained from scratch and a fine-tuned model, using different partitions
of the target datasets.

Again, it is clear that the fine-tuned model still generally performs better than
the scratch model. However, the advantages of the TL approach are significantly
less pronounced compared to those performed with PVRED with one RNN layer.
In particular, a first visual comparison shows that the gap between the minimum
Euler Error of the two models is significantly reduced and that the scratch model
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now converges much faster. A more detailed comparison between the two fine-
tuned models and the two scratch models in the two configurations shows that
the error curves of the first two are almost equivalent, showing that there is
definitely no improvement. On the other hand, the scratch model with two
RNN layers shows a strong improvement with respect to the NN architecture
with one RNN layer.

Overall, similar considerations as before can be drawn: the target dataset
where the TL approach brings the greatest benefits is ACCAD, as the size of
the training partitions increases, the performance of the fine-tuned and scratch
models are almost equivalent. To better understand the differences in the mini-
mum Euler Error and the number of epochs needed to converge, the TL metrics
are shown in Table 6.2.

TL Metrics for PVRED with 2 RNN Layer

TL Metric Training set partition 10% Training set partition 30%
ACCAD GRAB DanceDB ACCAD GRAB DanceDB

JSP -0.437 -0.643 -0.334 -0.288 -1.042 -0.579
MEP 0.108 0.019 -0.007 0.033 0.012 0.008
TTT 99 69 / 118 116 58

TL Metric Training set partition 50% Training set partition 80%
ACCAD GRAB DanceDB ACCAD GRAB DanceDB

JSP 0.689 0.512 1.055 1.219 1.29 1.185
MEP 0.058 0.013 -0.009 0.043 0.008 0.013
TTT 105 108 / 685 567 60

Table 6.2: Transfer Learning metrics computed for different training set par-
titions, comparing the performance of a model trained from scratch with a
fine-tuned model based on PVRED with two RNN architectures. Positive val-
ues indicate better performance for the fine-tuned model. Empty values for the
TTT metrics mean that the fine-tuned model never reaches the minimum error
of the scratch model.

The computation of the TL metrics clearly shows the differences compared
to the NN architecture with only one RNN layer. For the ACCAD and GRAB
datasets, the behaviour is quite similar, although for the first the benefits of
fine-tuning are significant. This is particularly noticeable in the TTT metric, as
the scratch model is now much faster to converge. For the DanceDB dataset, on
the other hand, the performances of the fine-tuned and scratch models are now
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much closer, even for small training partitions. In particular, the scratch model
is even able to achieve a lower minimum Euler Error than the fine-tuned model,
albeit only slightly.

In terms of the JSP metric, this is negative for the 10% and 30% partitions,
meaning that the performance of the fine-tuned model is worse than that of the
scratch model after the very first epoch. This may indicate that the knowledge
of the pre-trained model is not broad enough to generalise well to more complex
models. The scratch model, which has a higher learning rate, is able to tune its
parameters more quickly. Figure 6.5 shows the results of the evaluation on the
test set.

(a) Test on ACCAD (b) Test on GRAB (c) Test on DanceDB

Figure 6.5: Evaluation of the 25 prediction frames for the different scratch and
fine-tuned models based on PVRED with two RNN layers architecture.

In the case of the evaluation on the test set, the results are much more
comparable between the two PVRED architectures with one and two RNN layers.
In fact, comparing the computation of the TL metrics, the main differences are
in the TTT and JSP, which are not reflected in the evaluation, since the selection
of the model checkpoints is based only on the MEP. The latter shows the main
differences in the DanceDB dataset, in fact comparing Figure 6.3c and 6.5c it
is more evident that the scratch models reaches better performance in the case
of two RNN layers configuration. On the other hand, in the case of ACCAD
and GRAB, the evaluation curves are almost equivalent between the two NN
architectures.

In the case of ACCAD, the fine-tuned model trained on the 30% partition
again performs slightly better than the scratch model trained on the 80% parti-

68



CHAPTER 6. RESULTS AND DISCUSSION

tion. However, this does not hold for the other two datasets, suggesting that the
TL approach works best when the source and target domains are similar.

After these first experiments on PVRED, some conclusions can be drawn. In
general, the fine-tuning approach performs better than training a model from
scratch, and this is much more evident in the case of the simpler architecture,
i.e. with one RNN layer. This is probably because the source dataset, i.e. H36M,
and the type of actions it consists of are not rich enough to provide sufficient
pre-trained information to achieve a good grade of generalisation and so better
performance in more complex NN. Furthermore, as pointed out in the review
of DTL in Chapter 3, the fine-tuning approach works better when the source
and target domains are similar. In the specific case of these experiments, this is
represented by the ACCAD dataset. This suggests that the knowledge acquired
by the pre-trained model is strongly related to the specific type of actions it sees
during training. Therefore, it is necessary to have large and very rich source
datasets in order to be able to successfully apply the TL technique in different
target domains for the task of HMP.

6.1.3 HRI

In order to understand if fine-tuning is an approach that can be successfully
applied to different Deep Learning (DL) models for the task of HMP, other ex-
periments were performed as for PVRED in the case of the HRI model. Similarly,
they consist of a comparison between a fine-tuned model and a scratch model
on the different partitions of the three target datasets. As the error pattern is
again similar for all three HMP metrics, the results are based on the Euler Error
metric only. The different models were trained for 100 epochs and the validation
error results are shown in Figure 6.6.

From these first results it is clear that HRI has a completely different be-
haviour compared to PVRED. Both the fine-tuned and scratch models start with
a much lower Euler Error, and the improvement over the training epochs is
much smoother. Overall, the minimum error of the fine-tuned model tends to
be lower compared to the scratch model, especially in the case of the ACCAD
dataset. On the other hand, the scratch model seems to converge faster than the
fine-tuned model, which has a smoother error pattern.

In addition, a strange behaviour can be observed in the case of the 10%
partition, where the scratch model has a strong initial peak, while the fine-
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(a) Training set partition 10% (b) Training set partition 30%

(c) Training set partition 50% (d) Training set partition 80%

Figure 6.6: The validation Euler Error during the training epochs of HRI is
shown in the plots, which illustrate the comparison between a model trained
from scratch and a fine-tuned model, using different partitions of the target
datasets.

tuned model immediately starts to deteriorate. This suggests that the amount
of data available in the training set is not large enough for this type of NN
architecture, which is more complex compared to PVRED and consists of many
more parameters. In addition, the fine-tuned model is generally more difficult
to improve, and this can be caused by a strong bias from the pre-trained model.
In particular, the motion attention mechanism is likely to be strongly biased by
the actions the model has seen during training on the source dataset. However,
similarly to PVRED, increasing the partition size makes the performance of the
fine-tuned and scratch models very similar. Table 6.3 shows the results of the
computation of the TL metrics.

In general, the fine-tuning approach achieves a lower minimum error and
converges faster compared to the scratch model. In the case of the 50% partition
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TL Metrics for HRI

TL Metric Training set partition 10% Training set partition 30%
ACCAD GRAB DanceDB ACCAD GRAB DanceDB

JSP 0.150 0.272 0.196 0.797 0.914 0.888
MEP 0.072 0.023 0.12 0.134 0.018 0.028
TTT 71 38 13 8 10 55

TL Metric Training set partition 50% Training set partition 80%
ACCAD GRAB DanceDB ACCAD GRAB DanceDB

JSP 0.716 0.872 0.678 0.412 0.433 0.310
MEP 0.148 0.031 0.017 0.007 0.036 -0.029
TTT 85 -11 73 44 3 /

Table 6.3: Transfer Learning metrics computed for different training set par-
titions, comparing the performance of a model trained from scratch with a
fine-tuned model based on the HRI architecture. Positive values indicate better
performance for the fine-tuned model. Empty values for the TTT metrics indi-
cate that the fine-tuned model never reaches the minimum error of the scratch
model.

on GRAB, the scratch model converges 11 epochs earlier, while in the case of
the 80% partition on DanceDB, the latter reaches a lower error. However, there
is no clear behaviour along the different partitions. In the tests performed on
PVRED, it was clearly noticeable that the MEP and TTT decreased as the size of
the training set increased. In the case of HRI, however, this is only noticeable
for ACCAD, while there seems to be no correlation for the other datasets. This
could be due to the NN architecture itself, which is much more complex for HRI
and probably requires a larger amount of data to be trained properly. Figure 6.7
shows the results of the evaluation of the different models on the target test sets.

In the case of ACCAD and GRAB, the fine-tuned models generally performs
better than the scratch model. Moreover, in some cases, especially for ACCAD,
the fine-tuned models trained on smaller partitions perform significantly better
than the scratch model trained on much larger partitions. However, these results
must be taken with caution, as some inconsistent results can be identified with
respect to the validation Euler Error. For example, looking at the validation error
for the 30% partition on ACCAD in Figure 6.6b, it is evident that the fine-tuned
model achieves a minimum error that is significantly lower than the scratch
model. However, when compared with the evaluation on the test set in Figure
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(a) Test on ACCAD (b) Test on GRAB (c) Test on DanceDB

Figure 6.7: Evaluation of the 25 prediction frames for the different scratch and
fine-tuned models based on HRI.

6.7a, the fine-tuned model performs much worse, especially for the second part
of the predicted sequence. Another example is that the fine-tuned model on the
80% partition performs worse than the fine-tuned model on the 50% partition for
both GRAB and DanceDB, which can be seen in Figure 6.7b and 6.7c respectively.
These inconsistencies and strange results in the comparison of performance on
the validation and test sets may be a consequence of both the NN architecture
itself and the limited amount of data in the target datasets. In fact, HRI relies
on the attention mechanism to make predictions, attempting to repeat common
motion patterns that it has already seen in the source dataset during training.
This makes the model strongly biased towards the type of actions in the training
set. In the specific case of this experimental setup, even if the target datasets
were split using a clustering-based procedure, due to their limited size, it is
almost impossible to have the same distribution of actions between the training,
test, and validation sets. Therefore, considering that the best model checkpoints
are selected based on the minimum error on the validation set, this is very often
not reflected on the test set. To obtain more reliable results, it is necessary to
repeat the experiments with much larger source and target datasets.
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CHAPTER 6. RESULTS AND DISCUSSION

6.2 Other TL techniques

This Section presents the experiments related to TL techniques other than
fine-tuning. The aim of these experiments is to understand whether other
approaches for DTL can lead to improvements over standard fine-tuning, and
whether they can mitigate the main TL problems, i.e. catastrophic forgetting
and a biased pre-trained model. In particular, since ACCAD seems to be the
target dataset where TL is more effective, the results shown in this Section focus
only on the latter. Furthermore, to keep the notation simple, only the 30%
partition is used, as it is neither the smallest nor the largest, and can therefore
be representative of all the other partitions. Furthermore, since the fine-tuning
performed much better on PVRED with one RNN layer, the experiments focus
on this configuration of NN and on the HRI model.

6.2.1 PVRED

Some other TL techniques were tested on the PVRED architecture with one
RNN. In particular, one experiment focused on freezing the entire pre-trained
weights of NN, and replacing only the last linear layer, which is then tuned.
Another experiment instead followed a similar approach, stacking an additional
RNN layer. Figure 6.8 shows the results of the validation Euler Error along the
training epochs.

As can be seen from the results, the best performing approach is the fine-
tuning one, which achieves the lowest error with the fastest convergence. It is
interesting to note that the two other TL techniques achieve a lower Euler Error
compared to the scratch model, but only after many training epochs. The frozen
pre-trained model, without stacking an additional RNN layer, improves faster
in the first epochs than the one with the additional layer. This is because it is
a simpler architecture that is easier to optimise. The fact that the fine-tuning
approach is the one that achieves the best performance was expected, as it is a
relatively simple NN architecture overall.

6.2.2 HRI

Similarly to PVRED, the experiments tested other TL approaches consisting
of freezing and/or stacking other Graph Convolutional Network (GCN) lay-
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Figure 6.8: A comparison between different TL approaches for PVRED based on
the 30% partition of the ACCAD target dataset.

ers. The first experiment consisted of freezing the entire pre-trained NN and
replacing the last layer, which is the only one trained. Other experiments fo-
cused on freezing the pre-trained network and stacking several GCN layers.
The idea is that in this way the model can use the pre-trained features learned
from the source dataset and elaborate them with the fresh new layer to make
the predictions. Several combinations were tested, but only the one with two
additional GCN is shown in the results, as different combinations led to very
similar behaviour. Figure 6.9 shows the validation Euler Error along the training
epochs.

In this case, all the TL approaches perform very similarly, although the fine-
tuned one is slightly better than the others. Additional approaches, not reported
here for the sake of simplicity, were tested, but the fine-tuned results were never
improved. Notably, the tested TL approaches included unfreezing the layers that
implement the motion attention mechanism. Probably, unlike PVRED where the
fine-tuning works best because of the simpler NN architecture, in the case of
HRI this is due to the small amount of data used to pre-train the model. Given
also the above considerations about HRI, it would be necessary to repeat all
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Figure 6.9: A comparison between different TL approaches for HRI based on the
30% partition of the ACCAD target dataset.

the experiments with a much larger source dataset in order to extract the true
potential of this model.
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7
Conclusions

The study of this thesis explored Transfer Learning (TL) techniques in the
context of Deep Learning (DL) models applied to the task of Human Motion
Prediction (HMP). The aim was to determine whether the use of human body
knowledge embedded in pre-trained models could improve the accuracy of mo-
tion predictions, when dealing with small, domain-specific datasets. To achieve
this goal, different experiments were conducted using state of the art DL models
designed for the problem of HMP. In the case of TL approaches, these mod-
els were first pre-trained on one of the largest datasets available, i.e. Human
3.6M (H36M), and then fine-tuned to predict motion sequences within the target
datasets. In this regard, three distinct target datasets were selected: 1) ACCAD,
which closely resembles the source dataset, 2) GRAB, consisting of actions sim-
ilar to a Collaborative Robotics context, and 3) DanceDB, a dataset significantly
distinct from the source dataset. In terms of DL model selection, two were cho-
sen, namely Position-Velocity Recurrent Encoder-Decoder (PVRED) and History
Repeat Itself (HRI), which represent the primarily DL approaches currently used
for HMP. PVRED is based on a Recurrent Neural Network (RNN) architecture,
while HRI uses a motion attention mechanism combined with a Graph Convo-
lutional Network (GCN) architecture.

Several TL techniques have been tested and compared with respect to training
a model from scratch. This aimed to determine whether these strategies can
bring to performance improvements when dealing with a limited amount of
data, as is the case in Collaborative Robotics. Furthermore, different partitions
of the target datasets were used to analyse the experimental results in terms of
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dataset dimensionality. The evaluation of DL models performance was based
on HMP metrics from the literature, while additional TL-specific metrics were
used to assess the effectiveness of the TL approaches.

The results show improvements of the fine-tuning approach compared to
training a model from scratch in the case of PVRED, which is the simpler Neural
Network (NN) architecture. In this case, fine-tuning showed significant im-
provements both in the decrease of the minimum error and in the reduction of
the number of training epochs required to converge. Moreover, the NN con-
figuration of PVRED with one RNN show the grates benefits from fine-tuning.
Regarding the dataset, the best improvements of fine-tuning were obtained in
the case of ACCAD, which is the closer to the source dataset. Conversely,
when examining the results for HRI, the fine-tuning approach generally showed
improved performance compared to training from scratch. However, these
improvements were less pronounces and in some cases the scratch model per-
formed better. Similarly to PVRED, the fine-tuning approach demonstrated its
effectiveness primarily on the ACCAD dataset. In addition, other TL techniques
were tested for both the DL architectures. However, none of these alternative
approaches were able to improve the gains achieved by fine-tuning.

Several notable conclusions can be drawn from these results. First, it is
evident that the fine-tuning approach generally outperformed the training of
models from scratch. This effect was particularly pronounced for the simpler
NN architecture, i.e. PVRED, and for smaller partitions on the ACCAD dataset.
This observations suggest that DL models may not be able to acquire an un-
derstanding of human motion inherently, independent of the actions they see
during training. In particular, TL demonstrated its effectiveness when the tar-
get dataset closely resembled the source dataset. The results also showed that
pre-trained knowledge derived from the source domain may not be sufficient
for more complex NN architectures such as HRI. The source dataset, H36M,
despite being one of the largest and most used datasets, is limited in size and
contains a relatively small number of actions, which introduces significant bias
into the pre-trained models. However, the results for PVRED suggest that if
the pre-trained knowledge is sufficiently rich, TL approaches can significantly
improve performance while reducing the need for extensive data collection to
fine-tune the models. These observations are of particular importance in the
field of Collaborative Robotics, where collecting new data can be costly and time
expensive.
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CHAPTER 7. CONCLUSIONS

In terms of future work, an interesting direction to explore is the use of
a much larger source dataset, such as Achieve of Motion capture As Surface
Shapes (AMASS). This would serve to increase the richness of the pre-trained
knowledge, while reducing the bias introduced by the limited set of different
actions in H36M. Such direction has the potential to enhance the effectiveness of
TL, particularly in the context of more complex architectures such as HRI, and
to investigate the conclusions of this study in a broader perspective. It is also
worth noting that the field of HMP is developing rapidly. Consequently, in the
upcoming years more sophisticated DL models and much larger datasets will
become available, offering opportunities for improved performance and broader
applicability in the near future.
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