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Abstract

This thesis focuses on the growth and impact of Transformers architectures
which are mainly used for Natural Language Processing tasks for Audio gener-
ation. We think that music, with its notes, chords, and volumes, is a language.
You could think of a symbolic representation of music as human language.

A brief sound synthesis history which gives basic for modern AI-generated
music models is mentioned. The most recent in AI-generated audio is carefully
studied and instances of AI-generated music are told in many contexts. Deep
learning models and their applications to real-world issues are some of the key
subjects that are covered.

The main areas of interest include transformer-based audio generation, in-
cluding the training procedure, encoding and decoding techniques, and post-
processing stages. Transformers have several key advantages, including long-
term consistency and the ability to create minute-long audio compositions.

Numerous studies on the various representations of music have been ex-
plained, including how neural networks and deep learning techniques can be
used to apply symbolic melodies, musical arrangements, style transfer, and
sound production.

This thesis focuses on transformer models and their importance in the context
of AI-based generative models, particularly in terms of their emotional influence
on individuals. We train transformer models on a dataset of diverse noise sounds
to demonstrate their ability to reliably generate sounds in response to textual
stimuli. We hope to establish the usefulness of these models in producing the
intended sounds by thorough human evaluation. Furthermore, we investigate
the emotional responses evoked by these created sounds in order to gain a better
understanding of how people perceive and interact with them.



Overall, this thesis not only improves the field of generative models with
transformer design for music composition, but it also provides a thorough ex-
amination of and the effects of created sounds on individuals. It emphasizes the
tremendous possibilities of this technology by showing cutting-edge develop-
ments in AI-generated sound synthesis.
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1
Introduction

In recent years, the use of artificial intelligence (AI) has increased significantly
in many fields. AI is now a part of our daily lives, making it easier and faster.
It’s used to solve a variety of everyday problems, from smartphones to customer
service. As artists, we can not only solve the difficulties of everyday life but also
in the field of visual art. Still, there are some visual problems with AI as an
artist, since it’s a kind of argument that anything AI produces is considered art.

It is used to achieve beautiful results in a variety of creative fields, from image
generation to sound generation to text. Nevertheless, we can debate what is
beautiful and whether we can assume that AI can create beautiful things. It’s
easy to say that AI is very successful in completing tasks in the objective realm,
but in the subjective realm, it will take years before we can accept whether the
work it produces is artistic or not. It also costs. However, this paper is also
about sound creation and is not seeking an artistic aspect. AI methods for music
and audio generation are discussed, with a particular focus on their artistic and
technical characteristics. Because sound production is mainly used in the artistic
field.

The Transformers architecture has seen an increase in usage and application
due to the improvements made in the field of AI and Natural Language Process-
ing (NLP). The Transformers approach was first developed for NLP tasks, but
it has now been extended to a diverse range of abilities, including audio gener-
ation. The focus of this thesis is on a comprehensive analysis of the expansion
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and profound impact of this architecture on music and audio synthesis.

Music and natural languages have similar characteristics when it comes to
characterizing their properties, such as notes, velocity, chords, and volumes.
Patterns in human language are mirrored in the symbolic representation of
music. To explore new methods for AI-generated audio, this research utilizes
the benefits of these similarities and delves deep into the perspective of neural
network architecture. The most recent developments in resolving instances of
various AI-composed music are given special attention due to the rich pattern
of AI-generated audio.

The main part of this research is the wide observation of deep learning models
in the sound generation area, defining its difficulties and finding the best match
for the objective of the subject. While focusing on transformers base generation,
navigating training process challenges, and deeply understanding encoders and
decoders methods. Transformers have benefits such as generating long-term and
consistency. Those advantages of transformer-based models are investigated
both from waveform and symbolic representation.

While this research investigates generation strategies, several types of music
representation are also highlighted and their obstacles are studied. There are
various approaches in neural networks and deep learning for symbolic models
to produce sounds, such as musical arrangement and style transfer, to reduce
difficulties. The major topic of this thesis is explaining transformer models with
the use of GAN models. As a result, the significance and impact of GANs cannot
be overstated.

In summary, the goal of this thesis is to broaden the understanding of transformer-
based generative models and to contribute to the field of generative models. Not
only does it highlight the most recent research on transformer-based generative
models, but it also discusses how to analyze musical data and how to generate
it.
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CHAPTER 1. INTRODUCTION

1.1 Explanation of Sound Generation with AI

Objects that vibrate, as we know, produce sounds. Typically, humans make
certain noises by using an instrument, either a musical instrument or any other
instrument, such as a wooden table. Human vision enables individuals to
use and be creative with sounds. Electronic music or sound became popular
as technology advanced, and not only with various materials, but also with
computers, which allow us to produce, change, or blend sounds to create many
types of sound, voices, and music.

Nowadays, AI is prominent in almost every industry, including sound and
music. AI speech synthesis technology has been improved by incorporating
fresh new artificial intelligence technology, allowing for the creation of not only
realistic sounds but also performance nuances that truly sound like a human is
performing.

Sound has five important properties: wavelength, amplitude, frequency, time
period, and velocity. They can be used to generate sound as information.

1.2 Brief history of sound synthesis

Art, like every other area of AI, is experiencing rapid growth. Nowadays,
it has significant success in generating creative output, which is a significant
challenge for AI. Because AI lacks the eyesight that humans have, but even with
limited resources, AI produces results that humans cannot discern.

It can write books, finish stories, paint, photo-shop photographs, and pro-
duce music of various genres, among other things. There have been various
approaches for making music, such as shifting the dimension of audio data
and transporting it to 2-dimensional spectrum space to appear as visuals and
processing them as images. The second way is to use a symbolic represen-
tation of music and treat it as a language before converting it to an auditory
representation.

These various approaches enable AI developers to experiment with various
types of deep learning models to process and generate.
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1.3. AIMS AND OBJECTIVES

1.3 Aims and Objectives

The goal of this thesis is to make sounds from raw wave audio data that can
affect neurons in the brain and influence the flavor of foods. Several studies have
found that our sensory organs are interconnected and that when one of them
is replicated, the others can be affected as well. The effect of color on taste has
been studied, and it has been discovered that although lighter colors make us
feel sweeter, darker ones make us feel bitter[26]. As a result, not only vision but
also hearing sense might influence how we taste food.

When we are eating something, we feel more fresh and crunchy when we
hear the voice that comes from the food texture, such as being crunchy. If the
frequency and decibel levels are raised, the meal will be perceived as more
crunchy. It has since been discovered that some neuro-acoustic sounds that can
affect neurons in the brain can also affect the type of taste that can be sensed by
the brain. [32].

With the knowledge of music, its waveform and description, such as taste, it
will be employed in this thesis, the model may generate similar sounds with the
same aim as the sound we received references for.

1.4 State of the Art

This thesis explains the current development status of products based on
cutting-edge technology, ideas, and features. It refers to the highest level of
overall development of a device, technology, or scientific subject at any given
time. The phrase is also known as "cutting edge" or "state of the art" and is used
to define the cutting edge of these technologies, as well as their latest, newest,
most advanced versions.

Although AI technologies are likely to be considerably younger than many of
the technologies that have influenced and sustained this decade, (AI) technology
has evolved rapidly over the years. AI technology is continually evolving, and it
is vital to understand which technologies are completely new and where these
new concepts might be applied. It is also difficult to find acceptable designs that
can be tracked quickly, efficiently, and precisely using innovative techniques to
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CHAPTER 1. INTRODUCTION

generate either sound, graphics, or text, depending on the purpose. Because
there are numerous problems in sound generation, many ways can be combined
to produce better outcomes. It is not entirely novel, but it can answer the problem
at hand and can be integrated with another design or method to achieve a better
solution.

Deep learning models paired with high-quality image data can be utilized
to solve real-world challenges like medical image analysis, video conferencing,
and autonomous driving. However, efficiently addressing these difficulties with
AI is a challenge. In many circumstances, only the best model, also known as
cutting-edge, can match the constraints of a certain application.

State-of-the-art (SOTA) DNNs are the finest models for a wide range of tasks.
A DNN can be classified as SOTA depending on its accuracy, speed, or any other
relevant parameter. In most computer vision fields, however, there is a trade-off
between these metrics. So, while a rapid DNN is possible, its precision is limited.
The metrics we calculate from errors according to tasks are the criteria that are
typically used to compare and assess DNNs. For DNNs, the state-of-the-art
is based on a combination of accuracy and error measures, as well as related
additional performance metrics.

SOTA DNNs are the best models which can be used for any kind of task. A
DNN can be defined as SOTA based on its accuracy, speed, or any other metric
of interest. However, in most computer vision fields, there is a trade-off between
these measurements. So, you can have a very fast DNN, but its accuracy is not as
targeted. The criteria that are usually used to compare and evaluate DNNs are
the metrics we calculate from errors according to tasks. State-of-the-art DNNs
are based on a combination of accuracy and error metrics and related additional
performance metrics.

Examples of AI-generated sounds across different industries

Artificial intelligence (AI) developments and the proliferation of deep learning
techniques have ushered in a new era of creativity and invention in a variety
of industries in recent years. One of the notable areas where AI has made
tremendous breakthroughs is in audio and sound creation. This chapter looks
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1.4. STATE OF THE ART

at a variety of applications and cases where AI-generated sounds have made their
way into many industries, altering the landscape of creativity and functionality.

Music and Entertainment Industry

The music and entertainment industries stand to benefit the most from AI-
generated sounds. AI has proved its ability to write original pieces of music
that resonate with human emotions by fusing machine learning algorithms and
musical theory. From classical symphonies to modern rhythms, AI models may
detect patterns in enormous music databases and develop songs that mimic the
styles of famous composers or give whole new audio experiences. Furthermore,
AI-generated sound effects have transformed the post-production process in
the film and game industries. AI algorithms contribute to the enhancement of
visual narrative by fast building immersive audio landscapes, thereby increasing
audience engagement.

Healthcare and Wellness Sector

Beyond entertainment, the healthcare and wellness sector has embraced AI-
generated sounds to facilitate therapeutic interventions and improve patient
well-being. Sound therapy, an age-old practice rooted in ancient cultures, has
evolved with the integration of AI. By leveraging machine learning techniques,
AI systems can tailor soundscapes that promote relaxation, stress reduction,
and sleep improvement. These personalized auditory environments adapt to an
individual’s physiological responses, ensuring optimal therapeutic outcomes.
Additionally, AI-generated sounds have found utility in diagnosing medical
conditions. The analysis of audio patterns, such as respiratory sounds or heart
murmurs, assists medical professionals in making accurate assessments, thus
accelerating the diagnostic process.

In conclusion, Chapter 2 delves into the multifaceted applications of AI-
generated sounds across different industries. From the harmonious compo-
sitions of the music and entertainment industry to the therapeutic soundscapes
of healthcare, AI’s transformative potential in sound generation is undeniable.
As we traverse these examples, the subsequent chapters will delve deeper into
the technical underpinnings that enable such creative and functional feats in the
realm of AI-generated audio.
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CHAPTER 1. INTRODUCTION

1.5 Applications of Sound Generation with AI and
Deep Learning

1.5.1 Role of AI-generated sounds in industries such as music,
film, gaming, and healthcare

Artificial intelligence AI is enabling breakthrough advancements in a variety
of industries, altering and redefining old practices. This chapter investigates the
critical role that AI-generated sound plays in a variety of disciplines, including
music, cinema, games, and healthcare. A thorough examination of these indus-
tries reveals how AI-generated music is transforming creativity, user experience,
and therapeutic uses.

Reshaping the Music Industry

The music industry has undergone a transformative journey with the integra-
tion of AI-generated sounds. AI algorithms, driven by intricate neural networks,
can analyze vast troves of musical data, discerning patterns, harmonies, and
rhythms. This newfound ability has enabled AI systems to compose original
musical pieces, paying homage to established genres or even forging entirely
new sonic landscapes. Musicians and composers now collaborate with AI coun-
terparts, leveraging their expertise to create compositions that challenge conven-
tional boundaries. Additionally, AI-generated sounds have empowered artists to
swiftly experiment with different melodies, arrangements, and instrumentation,
fostering a culture of dynamic creativity and exploration.

Enhancing Cinematic and Gaming Experiences

AI-generated sounds have emerged as vital tools for creating immersive and
engaging aural landscapes in film and games. The complex interplay of sights
and audio has a significant impact on audience engagement and emotional res-
onance. AI-powered sound effects and compositions provide these sectors with
new levels of personalization and adaptability. Machine learning algorithms as-
sess visual signals and scenarios to generate audio pieces that heighten tension,
elicit emotions, and sync flawlessly with the evolving narrative. This collabora-
tion improves the whole cinematic and gaming experience, ensuring that fans
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1.5. APPLICATIONS OF SOUND GENERATION WITH AI AND DEEP LEARNING

are immersed in a multi-sensory trip that extends beyond the screen.

Innovating Healthcare and Therapeutic Applications

AI-generated sounds have made advances in healthcare, contributing to novel
therapeutic techniques and diagnostics. Sound therapy, which has long been
acknowledged for its ability to reduce stress and promote relaxation, has been
enhanced by AI’s analytical powers. Personalized auditory experiences are
curated by AI systems based on human preferences and physiological responses.
These soundscapes help to reduce anxiety, improve sleep quality, and promote
general well-being. Furthermore, AI-powered acoustic pattern analysis provides
a speedy and accurate medical diagnosis. AI-generated noises are used by
healthcare experts to detect irregularities in heartbeats, respiratory cycles, and
other physiological signals, speeding up diagnosis and therapy planning.

In this chapter, we have explored the multifaceted impact of AI-generated
sounds across the music, film, gaming, and healthcare industries. By illumi-
nating the profound transformations these sectors have undergone, we lay the
foundation for deeper technical investigations in subsequent chapters. The in-
tricate dance between AI algorithms and soundscapes continues to shape the
present and future landscape of creativity, entertainment, and wellness.

1.5.2 Potential future developments within the field of AI-
generated sounds

There are currently a few examples of possible future results, such as music
and voices generated by artificial intelligence software based on sophisticated
inputs such as content commands and images.

Musical advancements will evolve to the point that we will be able to use
them to produce new and dynamic live music shows in the future. This pro-
gram enables musicians to rapidly compose and improvise modern melodic
compositions, resulting in a one-of-a-kind performance each time.
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CHAPTER 1. INTRODUCTION

1.6 Some Transformer Models For Music And Sound
Generation

There are several research and examples about audio and music generation
according to their purpose. From jazz music generation to pop music. From
text-based to wave-based. As a symbolic representation, those can be from piano
notes to guitar tabs, and even for percussive instruments, there are many types
of research.

1.6.1 AudioCraft

AudioCraft is Facebook research which includes several modules such as
EnCodec, MusicGen, and AudioGen. The aim of this project is to generate
music or some sort of voice, or acoustical audio from a given text. It includes an
NLP task to match the description with the type of music or sounds it is trained
with. According to the description, music, or sound given, it started to generate
related sounds.

The AudioCraft project allows you to choose a conditioner, language model,
and solver according to the aim of the task to be processed to generate sounds.
There are four kinds of solvers, AudioGen generates atmosphere, an acoustical
environment which is trained by environmental sounds such as bird voice, and
instrumental sound. MusicGen is way smaller than AudioGen according to the
samples that has to deal with because it just responsible for musical data not
every kind of sound data in the environment. EnCodec is the comparison task for
both AudioGen and MusicGen which includes an encoder-decoder transformer-
based model. The last solver is diffusion which is for the task multi-band-with
training.

MusicGen MusicGen is the task that includes a language model specific to
music generation. It uses a transformer language model and is trained with
musical data.

AudioGen MusicGen and Audio Gen generate audio from user text input, and
the output is text-related. AudioGen is fed environmental voices and produces
both environmental and musical sounds.

9



1.6. SOME TRANSFORMER MODELS FOR MUSIC AND SOUND GENERATION

1.6.2 MuseNet

Open-AI built Muse-Net, which can generate 4-minute-long compositions
with ten different instruments. Instead of using a wave technique, it estimates
the next token in MIDI files to learn patterns of harmony, rhythm, and style. Its
task works similarly to GPT-2, but instead of text as a sequence, it uses audio
data for tokens in the sequences. Its transformer design has been trained to
predict the next token in the sequence. The transformer’s architecture is based
on the magenta project’s Wave2Midi2Wave concept.

1.6.3 Music Transformer

Music Transformer is a Google Brain model for creating lengthier pieces.
Producing a long-duration piece of music or audio is a difficult challenge since
a musical sequence contains numerous time scales. It has a similar architecture
to RNNs, but instead of employing LS-TM, it employs Relative Attention, which
is analogous to the Attention Mechanism in NLP tasks but more efficient for
music production. This transfer-based methodology allowed us to easily access
prior occurrences.

1.6.4 AudioLM

AudioLM is one of the language model which generates long term consistence
sounds from text given and generated sounds have excellent audio quality.
Speech generation tests show that AudioLM can not only produce syntactically
and semantically coherent speech without any text, but the model sets are nearly
indistinguishable from speech. Additionally, AudioLM can simulate arbitrary
audio signals such as piano music and speech. The audio inputs are mapped to
sequence of discrete tokens and in the representation space it acts like language
modeling.

The two sorts of sound tokens are utilized by AudioLM. To begin with, from
the self-supervised language demonstrated by w2v-BERT, semantic tokens are
recovered. These markers capture both nearby connections and global long-
term structure while impressively downsampling the audio source. Permit for
expanded cluster demonstrating.
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CHAPTER 1. INTRODUCTION

Be that as it may, the sound that was reproduced from these tokens is of
poor quality. Acoustic tokens delivered by the SoundStream neural encoder are
utilized to capture specifics of the sound waveform and empower high-quality
union, in expansion to semantic tokens to induce over this confinement. High
sound quality and long-term consistency are accomplished by preparing the
framework to at the same time deliver semantic and acoustic tokens.

This model is not trained with any music text or symbolic representation.
The information of the data is its waveform. There are 2 tasks that need to be
considered, one of them is speech generation other one is piano generation.

1.6.5 MusicLM

MusicLM is the model which generates high-fidelity music from text given.
The model can be conditioned by both text and sounds.MusicLM has ability to
process music data to generate hierarchical sequence to sequence model, and it
is able to produce several minutes long music at 24kHz.

1.6.6 Wave2Midi2Wave

Wave2Midi2Wave is one of magenta projects which uses transformers to gen-
erate music. It consider music data as language with symbolic representation of
music such as notes and tabs. It coverts given wave sound data to midi format as
its name Wave2Midi, and it extract symbolic representation. With the language
model, it learns how should notes order, how to create harmony with symbolic
representation then, with the given sound data, it starts to continue from the
given one and tries to predict next note as like next word prediction task in NLP
then it constructs midi data with generated notes and in Midi2Wave part, It is
able to convert midi format to wave format with any kind of musical instrument.
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2
Methods of Sound Generation Neural

Networks

Audio creation becomes difficult for AI-based tasks because of its size. All
of the research in this field indicates that there are numerous ways to make
sounds by changing audio data into another type of data. The generation of
audio using neural network architecture has become one of the models’ issues.
Many designs can distinguish and address certain problems, yet developing
with only one model is frequently insufficient. Many models, such as GANs
for successful image production, encoder-decoder techniques, and transformers
for NLP applications, are presented to generate consistent and long audio with
great quality.

The methods utilized for picture generation necessitate image similarity. As
a result, audio data must be represented in image-like formats such as spec-
trograms. The model then operates as an image-generating task to build new
image-like audio representations, and from there, the waveform must be pre-
dicted and audio samples are generated. To improve the quality of these models,
some pre-processing and post-processing activities are required.

Language models as audio creation take a different technique; in this case,
some tokens, similar to NLP tasks, must be generated. RNNs with LSTM models
or transformer-based models dealing with audio data dimension. One approach
of NLP models believes that music has its own language and that audio data must

13
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be represented in text as in the NLP challenge. In the pre-processing stage, all
audio data must be transformed into tab or note representation. Unfortunately,
this approach has limits, even though they are quite successful in generating
longer than 4-minute sounds, they can synthesize instrumental and musical
audio data from the symbolic representation. In other words, they will not be
able to generate bird noises, traffic sounds, or non-instrumental sounds.

Because of the limits of symbolic representation as a starting point, we must
discover another way to employ it as a representation in the transformer. Based
on models, it came up with the idea of using audio waveforms to make new
audio.

2.1 Introduction to Neural Networks for Sound
Generation

2.1.1 What is audio data ?

Audio data consists of 44.100 samples per second. Because images have 256
values, the audio number is 65.536. Audio data is very cyclical. While image
data principle components include edge features, audio components analyze
sinuses’ cyclic ancient patterns. Millions of time steps are included in a typical
audio file of a few minutes sampled at 44.1 kHz. Music representation is typi-
cally separated into two categories: symbol representations, which are discrete
variables, and audio representations, which are continuous variables [18]. There
are also different types of audio files that contain audio data information.

The acronym MIDI stands for "Musical Instrument Digital Interface," and
it refers to a file format that represents musical data information as well as
communication for electronic instruments, computers, and gadgets[18]. It does
not include audio data such as MP3 and WAV. It includes instructions on how to
play the music. It has notes to play, duration, and velocities (which specify how
loud the note is played), as well as other types of control factors such as pitch
bends, etc...

14
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To convey precise instructions, data packets known as MIDI messages are
employed. MIDI messages include notes and note messages, control change
messages, and program change messages, to name a few. MIDI channels are
used to segregate distinct MIDI data streams within a single MIDI connection.
MIDI is a versatile and widely used format that is used for a variety of tasks,
including music creation and production, live performances, and the transmis-
sion of electronic instruments. This reduces the need to deal with difficult audio
waveforms, allowing musicians and producers to compose, modify, and share
musical ideas.

WAV is a popular audio file format for storing digital audio files that is a subset
of the Interchange File Format specification. It is widely used on Windows-based
computers and in professional audio software. "Waveform Audio File Format"
is abbreviated as WAV. Because of its high audio quality, WAV files are suitable
for storing uncompressed or losslessly compressed audio data. The format does
not compress the bit-stream and stores audio recordings with varying sampling
rates and bit-rates.

Files with the.mp3 suffix are digitally encoded audio file formats based on
MPEG-1 Audio Layer 3 or MPEG-2 Audio Layer 3. The Moving Picture Experts
Group (MPEG) created it utilizing Layer 3 audio compression. The MP3 file
format achieves compression that is one-tenth the size of .WAV or .AIF files. The
format allows for the streaming of such audio files over the internet for online
listening, which was previously not possible due to the enormous file sizes of
the audio files. Parameter settings such as bit-rate, sampling rate, composite, or
standard stereo can be used to modify the sound quality of an MP3 audio file.

2.1.2 I/O Representations

The fundamental challenge in developing AI-based music is translating the
music into a format that machine learning models can interpret. [4]Numerous
more sorts of melodic documentation exist in expansion to the staff documenta-
tion utilized in console music. For illustration, tablature (truncated "tab") may
be a notation framework that speaks to instrument fingering instead of melodic
notes. It’s prevalent on strung rebellious like the guitar and ukulele, as well as
free reed aerophones like the harmonica. The model must recognize informa-
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tion as numeric vectors, music must be represented as a series of numeric tokens
including rhythm, notes, timbre, and other important data elements. These to-
kens serve as musical representations that the AI system can process. Musical
expressions are often classified into two types: symbol domain and audio do-
main. The nuances drawn from symbolic expressions are incredibly important
in music and have a large influence on how people appreciate music.

This section will go over the audio data types that can be used with AI models.
The most difficult difficulty with audio generation is input and output because
models are quite successful at generating data that is comparable to input data.
There is no single method for training input sets.

Symbolic Output

Piano rolls (image-like) One of the common inputs for the music generation
models is Piano rolls. Piano-roll expresses the music score as a 2D matrix that
can be regarded as an image. It is a matrix representation of music which
includes information of notes and pitches as rows and time as columns. The
value inside that cell represents the velocity of notes. The matrix is called a score-
like matrix. The time information can be either absolute or symbolic. Absolute
time is the note occurrence and symbolic time is the version of extracted tempo
information.

Figure 2.1: Pianoroll

16



CHAPTER 2. METHODS OF SOUND GENERATION NEURAL NETWORKS

There is also multi-track piano roll representation which includes many pianos
to represent one specific track. If there are N tracks in the music piece then it
will have N piano rolls. MuseGan and Lead Sheet arrangement projects using
data sets that included piano roll data.

To increase performance, it converts MIDI data into DCGAN-friendly[18]
piano roll-style graphic pictures and adds RGB channels as an additional infor-
mation carrier. It can be portrayed in a similar way to a piano roll, however, the
pitch dimension changes to reflect chord types and different components of the
drum. The beat resolution further quantifies the temporal dimension.

Audio Output

Waveform A waveform is a graphical representation of a signal. Depending
on the sort of input used to generate the wave, it can be sinusoidal or square.
The waveform is determined by the parameters that define the wave’s size and
shape. In the [18] context of deep learning, sound output frequently refers to
the final sound signal created by a generative demonstration. The waveform
may become a widespread way to represent sound. A waveform displays the
plentifulness of a sound source over time.

Figure 2.2: Waveform

The waveform [30] has two primary properties to digitize the signal in addition
to amplitude. The sampling rate is the number of times a continuous signal is
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sampled, while the bit resolution is the number of times a continuous signal is
sampled. How many bits can be used to represent a signal in the -1 to 1 range.

Spectrogram Spectrogram is of representation of audio data[18]. The image-
like illustration of present frequencies signals over time. They’re useful for
audio processing, speech recognition, music analysis, and even more scientific
disciplines such as astronomy. According to typical manual features used for
audio analysis, Spectrogram has more information than original audio.

Figure 2.3: Spectrogram

Magnitude spectrogram It is an amplitude spectrogram [18] with frequency
on the horizontal axis and frequency amplitude on the vertical axis. If it is to
be utilized for audio generation, it must go through some reconstruction, which
includes a variety of derivation approaches. Because it is not real-time, each
time step takes the entire time scale of the signal. There are multiple iterations
required for forward and inverse STFT.

Mel spectrogram Mel spectrograms differ significantly from conventional spec-
trograms that plot frequency as a function of time in two main ways. Mel is
a transformation that transforms the actual measured frequency to a known
center frequency. Convert a log-magnitude STFT spectrogram to a mel spec-
trogram. In an empirically consistent manner, the mel spectrogram reduces the
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STFT spectral resolution. It follows that some data will be lost as a result. It is
often used to train neural networks.

2.1.3 Generation

Symbolic melody generation

The target is creating the output of a sequence of discrete music events.
MuseGAN and Midi-Net are examples of this generation. In MuseGAN inter-
track and intra-track discriminative feedback have been proposed and multi-loss
training has been developed to produce to train GAN to produce music tracks.
The intra-track feedback is for generating individual tracks; meanwhile, the
inter-track is for evaluating the joint performance of tracks like the band leader
or composer. So different GAN models have been worked on, one uses inter-
tracks for composing, one uses intra-track for jamming and the last is hybrid
GAN which uses both.

However, the use of symbolic representations has limitations[9]: one of these
is that the nuances abstracted away by representations are often musically quite
important; for example, the precise timing, timbre, and volume of the notes
played by a musician do not correspond exactly to those written in a score; and
secondly, symbolic representations are often tailored to specific instruments,
reducing their generality and implying that a lot of work is required.

Arrangement generation

The music arrangement is reconstructing and re-conceptualizing the process
of creating the piece. Arrangement generation is one of the sub-tasks of au-
tomatic music generation. The generation process includes references from
the original melody such as chord progress and other structural information.
Usually data set includes MIDI format. The role of arrangement is being a
bridge between the lead sheet, audio, and full score and connecting them. The
arrangement must be style-consistent re-orchestration, must have precise time
alignment of audio, lead sheet, or full score as a reference from original music
and data-set must provide labels.
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Style transfer generation

It is inspired by image style transfer. Music style has not been explained
clearly in a scientific perspective, yet. They solve different problems in the
computer music area. Style transfers are based on the idea of altering the style
and keeping the content fixed. It separates and recombines music contents and
styles. It ranges from compositional features to acoustic ones. Style transfer has
different challenges, including different music areas according to interpretation.
Those challenges occur by algorithmic composition, artistic performance, or
sound synthesis.

The music content is abstracted information style is the information that in-
creases interpretation and realization. the system must be flexible for dealing
with different scales, able to gather the performance control and information of
score from input and manipulate the representations of music.

There are three groups of style transfer, such as composition style transfer,
performance style transfer, and timbre style transfer. Timbre style is directly
related to sound generation and more importantly, works for generating different
acoustic instruments sounds. It transfers and adjusts the timbre information
and is applied to a sound representation. It saves the content information.
Wave-Net auto-encoders and audio spectrograms neural style transfer systems
are examples of this method. Meanwhile, Performance style transfer deals
with adjusting control information and saving the information of implicit score
content. It is related to performance rendering. It decodes control and notes and
combines different controls to create a new musical character. we can consider
composition style transfer for the musical genre which saves identifiable melody
contour and adjusts other score features. It creates a new harmony. arrangement
and variation.

2.1.4 Methods

Rule based methods

AI assumes or adopts established rules that are created by human-friendly
language. Those rules give an idea of what to do later according to the task prob-
lems and are defined by human code such as adding an if-else structure. These

20



CHAPTER 2. METHODS OF SOUND GENERATION NEURAL NETWORKS

rules are affirmed belongings and practice. Rule-based frameworks consistently
produce the same output, from given a variety of inputs making them unsur-
prising and reliable. Rule-based frameworks are essential for troubleshooting
and tracking because rules are essentially written in a way that people can
understand.

Rule-based manufactured insights frameworks utilize a set of inputs and a
set of rules to deliver a yield. The framework to begin with chooses which
arrangement to apply to the input. In case the run of the show is appropriate, the
framework takes the fitting steps and produces the yield. In case no substantial
enlightening is accessible, the framework may create standard yield, or incite
the client for extra subtle elements.

In some cases, music generation with AI models is done by following some
of the music rules and structures which are defined before. To create coherent
compositions, music theory principles can be used.

Concatenation based methods

Concatenative sound synthesis (CSS) strategies use a large database of source
audio divided into units and unit selection calculations called targets that deter-
mine how the units are placed. The perfect flavor for synthesized sounds and
expressions. Selection is based on identifiers. unit. It is a reflection extracted
from the source audio or a high-level identifier written into it. You can flip and
combine selected units to perfectly align your targets. However, if the database is
large enough, it is more likely that a coordinator can be found, reducing the need
to make changes even if the sound quality is constantly changing. Units may not
be uniform. This can be anything from audio clips to instruments, notes to com-
plete phrases. However, uniform estimation and classification units are often
used, and sometimes units similar to flag intervals, along with ghost checking
or a combination of overlap and addition.

Regular sound synthesis strategies are based on displaying sound flags. Build-
ing a show that properly brings out all the subtleties of sound can be a painstak-
ing process. Concatenated synthesis, on the other hand, completely blocks out
these subtle elements by using the original recording. For example, unit settings
from the database are taken into account when selecting units, allowing you to
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synthesize highly realistic-sounding trains. In this data-driven approach, rules
start from the information itself, rather than being created with careful consid-
eration as in a rule-based approach. Concatenation mixes can be more or less
data-driven. More is invaluable because the data contained in the many sound
illustrations in the database can be misused.

Machine learning based methods

The use of machine learning in audio and music signal processing is grow-
ing rapidly. Machine learning methods already dominate emerging approaches
in the disciplines of Music Information Retrieval and Audio Signal Process-
ing. While monophonic audio signals have been largely handled, significant
issues in polyphonic pitch transcription remain. Machine learning-based meth-
ods, such as statistical parametric methods, are less rigid and allow for things
like merging data from numerous speakers, model modification using minimal
quantities of training data, joint modeling of timbre and expressiveness, and so
on. Probabilistic modeling is one of the most used methodologies.

There have been many researches on chord generation based on traditional
machine learning methods. While monophonic audio signals have been largely
handled, significant issues in polyphonic pitch transcription remain. The com-
monly used models are the Markov model, and the hidden Markov model
(HMM)[18].

2.2 Music Representations and Neural Networks

The music representations which are discussed can be used for different kinds
of methods. So far with the neural network perspective, with the feature of
sound-like being highly dimensional and complex structure, there are many
approaches to processing sound data. As we know the GAN models are quite
successful methods for image generation, and for generating music, they are
getting benefits of musical features that can be represented in 2D space. For
instance, converting 1D wave data to 2D spectrogram data which is signal over
time at various frequencies, and trying to generate a similar 2D matrix then
predicting waveform from the generated spectrum.
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There is another way that we can consider music data as language either with
symbolic representation of it or waveform and processing musical features as
like text in tasks NLP. Because from notes to velocity, it can be considered as the
way of speaking in musical language. So as in the speech generation task, the
information is gathered from musical features.

Even while language models are quite capable of generating extended-length
coherence audio using transformers or LSTMs, there are several obstacles and
limitations. These methods work great for instrumental music, but when we
wish to make noises like dog barking or traffic noise, it is not possible to capture
these types of sounds in text-like notation. So, in order to generate this type of
data, the waveform of the data must be processed.

2.3 Data-set

2.3.1 Audio Craft

The data set takes a unique approach because the audio craft processes not
only audio but also language. This is why each piece of musical data must
include a description, some keywords, genre, instrument name, moods, and
metadata.

Each audio recording requires its own json file with information such as a
description, keywords, and name. The JSON files are compressed as data.jsons
or data.jsons.gz files and include one JSON per line. This JSON contains the
audio file’s location as well as any associated metadata. They are included
as data source subconfigurations in the configuration. It contains links to the
manifest file URL and essential metadata for each AudioCraft phase.

The AudioCraft dataset is not publicly available, although the model can
handle both mp3 and WAV files.

2.3.2 Food-Sound

The data collection contains 5500 sounds with JSON file descriptions that
may be used to generate tokens for usage in MusicGen and AudioGen designs.
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These descriptions are used for sound matching. There are 22 descriptions that
correspond to the 5500 data points. The metadata json, which comprises the
directory, filename, and sample rate, is created from the audio data.

The following are the descriptions used for the food sound project:

• Continuous glitchy elements with moving panorama

• Continuous hum with pitch and frequency modulation

• Continuous, deep and spatial, stable and rumbly

• Continuous, deep, spatial and gloomy

• Continuous, hollow, humming with ascending and descending pitch

• Continuous, humming with regular low impulse

• Continuous, rapid and glitchy elements with long pitch envelope

• Continuous, rapid elements with slowly moving panorama

• Continuous, rapid, glitchy buzzing elements

• Continuous, rapid, sizzling elements

• Continuous, scary sizzling cymbals with varying pitch

• Continuous, soft noise. Alarm like effect

• Continuously stridulating, buzzing and sizzling sound of processed crick-
ets

• Digital, continuous humming with varying pitch

• Light, a tonal ring of shredded glassy elements like insect swarm

• Sci-fi, science fiction, continuous, slightly sizzling elements

• Sci-fi, science fiction, squishy humming,

• Spatial, continuous, glitchy element with modulation and panning move-
ments

• Spatial, deep, synthetic with continuous frequency modulation

• Subtle, softly sizzling element with moving panorama

• Synthetic sci-fi, science fiction with a sixth interval and slight moving
panorama

• Synthetic sci-fi, science fiction with glitchy, slowly varying pitch envelope
and heavy low rumbling
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2.4 Deep Neural Network

2.4.1 WaveNet

WaveNet[12] is a deep generative technique that synthesizes high-quality au-
dio waves. It generates sound from the raw audio waveform and results success-
fully in excellent outputs. It manages the conditional probability distribution of
the next sample from the previous one . It was inspired by neural autoregres-
sive generative models. In autoregressive architecture, each waveform sample
is produced based on previous samples. In this way, it can capture sophisti-
cated dependencies, and that allows it to reproduce remarkably realistic audio.
Initially, it has been developed for text-to-speech and general audio generation.

Figure 2.4: WaveNet Architecture [22]

The main components of the article are causal dilated convolutions, which
ensure that the model only looks into the previous samples to generate the future
sample at each time step[30]. A stack of convolutional layers is used to model
the conditional probability distribution[22].WaveNet relies heavily on causal
convolutions. The model cannot break the ordering of the data by utilizing
causal convolutions. This is easier to accomplish with 1-D data, such as audio,
by moving the result of a conventional convolution by a few time steps. Dilated
convolution is also known as holes convolution or a-trous convolution. The
kernel varies linearly in ordinary convolution (dilation = 1). It is equivalent to
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a convolution with a bigger filter, in which the initial convolution is filled with
zeros to enhance the network’s receptive field.

2.4.2 RNNs

A recurrent neural network (RNN) is a deep learning network design that
predicts time series or sequential data. For the usage of RNNs in music genera-
tion, there are many approaches such as Hierarchical Recurrent Neural Network
(HRNN), VirtuosoNet, and CVRNN. Style performance model based on RNN
and Siamese network focusing only on note dynamics autoregressive model
learned directly during performance MIDI notes contain timing and dynamics
expressive force [17]. Those models deal with symbolic representations because
of their usage in language models as roots. In theory, an RNN can learn the
temporal structure of any length in the input sequence, but in practice, learning
long-term structure becomes increasingly difficult as the sequence lengthens.
The length of the learnable structure in each model is limited, and this limit is
determined by the complexity of the sequence to be learned.

HRNN [31] is made up of three LSTM-based sequence generators: the Bar
Layer, the Beat Layer, and the Note Layer. For learning melody, the Bar Layer
and Beat Layer are trained to yield bar profiles and beat profiles, which are
supposed to capture the high-level temporal aspects of melody.

The Bar Layer and Beat Layer produce a melody piece with a length of one
bar, and the Note Layer is trained to generate a melody conditioned on the
bar profile sequence and beat profile sequence. With the previous bar profile,
𝐵𝑡16 as input, the Bar Layer creates a bar profile 𝐵𝑡 first. The Beat Layer then
creates 4 beat profiles 𝑏𝑡 , ..., 𝑏𝑡+12 based on the bar profile 𝐵𝑡) using the input
𝑏𝑡4 . The Note Layer depends on both 𝐵𝑡 and 𝑏𝑡 in order to generate the notes
𝑛𝑡 , 𝑛𝑡+1, ...𝑛+3; 𝑛𝑡+4, ..., 𝑛𝑡+7; and so on.

The Performance RNN, on the other hand, is a variety of RNN for sound
creation that creates expressive timing and dynamics using a stream of MIDI
events. A fundamental component of MIDI is a series of precisely timed note-on
and note-off events, where each one determines the pitch of the subsequent note.
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Additionally, velocitythe force with which the note is struckis a note-on event.
[25]

The fundamental issue with RNNs is that they can easily lose their knowl-
edge of the past if the weights in the feedback loops are not correctly calibrated,
making created music uninteresting. Due to the gradient vanishing issue, it
is challenging for RNNs to preserve extensive historical information about se-
quences. Long Short-Term Memory (LSTM) was introduced two decades ago
for language pricing and sound generation. It is one of the strategies that protect
RNNs from memory loss by gating off the results accumulated by the RNNs
and storing them in a memory cache.RNN architecture-LSTM is used to help the
network remember and recover information in the sequence in order to address
this issue.

2.4.3 VQ-VAE

Music style transfer and symbolic representation of music can both be accom-
plished using VQ-VAE approaches. VQ-VAE with multi-scale discrete features
can produce high-quality images comparable to most of GAN models. There
is research on using VQ-VAE for music generation [14].In variational autoen-
coders, VQ-VAE introduces a hierarchical framework. It combines the benefits
of VAEs and autoencoders to produce a more expressive and economical model.

Vector quantization (VQ) is the process of transforming continuous or discrete
data into vectors, with the purpose of achieving data compression by quantiza-
tion.

A neural network an auto-encoder(AE) has one hidden layer with the same
number of output nodes as input nodes. They have a network of encoders to pa-
rameterize the posterior distribution q(z|x) of discrete latent random variables
z given input data x, and a decoder with a distribution p(x|z) over the input
data [21]. These are together with VQ-VAE with discrete latent variables with
a new way of training, inspired by vector quantization to learn useful discrete
representations in a completely unsupervised way. [18]
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The embedding layer with two convolutional layers of kernel size is respon-
sible for reducing pitches to dense representations, while the quantizing layer
is responsible for transferring continuous latent features to discrete ones in VQ-
VAE. By forward-passing the training set to the dictionary, obtained quantized
indices k from the VQ-VAE encoder and trained fresh 2-layers LSTM with them.
The encoder maps the input x to a sequence z of discrete codes from a code-
book, and the decoder tries to map z back to x [5]. Because we are employing
d-dimensional space and a codebook of k with the rest of the model parameters,
the complexity of VQ grows quickly, necessitating the use of a more practical
quantization technique.

2.5 Types of Generative Adversarial Neural Net-
works for Sound Generation

GANs have two networks: a generator and a discriminator. The generator
generates new samples from latent code, but the distribution of signals and new
samples cannot be distinguished from the training distribution. The generator
is the primary goal; the discriminator can be abstracted afterward because it is
only used to improve the generator. Adversarial is a game played between two
people. It is one of the unsupervised techniques for mapping low-dimensional
latent vectors to high-dimensional data.

2.5.1 DCGAN

Deep Convolutional GANs[23] are the extinction of GANs architecture by
using convolution and convolution-transpose layers in the discriminator and
generator. Discriminator includes a convolution layer, batch normalization layer,
and Leaky Re-LU activation. The input is a matrix, and the output is the scalar
probability of the inputs real distress provided the generator has batch norm
layers and Re-LU activation. The input is a latent vector that is created from a
standard normal distribution and the output is a dimensional matrix.

The main architecture of DCGAN for stability is that any pooling layers are
replaced with stridden convolutions for the discriminator and fractional-strides
convolutions for the generator.
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LSUN scene modeling is applied for DCGAN which is for avoiding over-
fitting and memorization of training data. Instead of data augmentation with
this method model is trained with LSUN bedrooms data set to illustrate how to
model scales with more and better resolution generation.

WaveGAN [10] GANs are well-known for their powerful approach to image
generation. The spectrum can be one of the viewpoints to interpret an audio
signal as image data for audio production, however, there is a difficulty with the
non-inevitability of the perceptually-informed spectrum. The GAN method al-
lows for the quick and easy sampling of enormous volumes of audio.WaveGAN
is capable of synthesizing a second slice of raw waveform audio. WaveGAN
is comparable to DCGAN-based GAN for Images. Without labels, it can learn
to make tiny sentences and synthesize audio from domains such as percus-
sion and piano. It is one-dimensionally processed and aggregates result in a
two-dimensional analog by flatting DCGAN.

It replaces pooling layers with striped convolution and fractional striped con-
volution. It also uses batch normalization and remove fully connected hidden
layer for deeper architecture as has been mentioned in DCGAN. Besides that
WaveGAN uses 2D convolutions to flatting, for instance 5x5 2D convolution
becomes 25 1D convolutions and it increases the stride factor.

Phase Shuffle Phase shuffle is the technique that regularizes the discrimi-
nator so that it doesnt just focus on really low-level details in the generator like
having a certain wave be of by four frames and using that to discriminate the
generated and real audio samples.

SpecGAN The Spectrogram Generative Adversarial Network (SpecGAN) is a
deep learning model that focuses on spectrograms to create audio signals from
spectrogram representations of audio input.

The raw audio data is first transformed to spectrogram pictures, which are
representations of frequency across time. To develop SpecGAN[10], audio is
processed using the short-time Fourier transform with 16ms windows and an
8ms stride. This technique produced 128 frequency bins separated linearly
between 0 and 8 kHz. The magnitude of the generated spectra is determined,
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and the amplitude values are logarithmic-ally scaled to better align with human
vision.

The magnitude of the resulting spectra is taken, and the amplitude values
are scaled logarithmic-ally to better accord with human vision. Each frequency
bin is normalized to have a zero mean and unit variance. The spectra are
trimmed to three standard deviations and re-scaled to [-1,1]. This stage generates
the input necessary to train a GAN. To generate waveforms from the resulting
spectrograms, invert the spectrogram preprocessing stages, resulting in linear-
amplitude magnitude spectra.

2.5.2 Conditional GAN

Conditional Generative Adversarial Networks (cGAN)[20] are one type of
GAN in which the model generates images or audio conditionally. As the
tradition of GAN, the generator learns how to produce a new image or audio
and the discriminator tries to distinguish between the generated one and the
real one. For both the generator and discriminator, there is a condition which is
a kind of extra information applied to them. The model learns multi-mapping
with the inputs and outputs which have different contextual information.

By having extra information, it has faster converges and it is easy to control
the generator’s output with the labels given.cGAN is not closely unsupervised
learning because it needs some label information as input in an additional layer.

2.5.3 Cycle-consistent GAN (CycleGAN)

CycleGAN[3] is a successful neural domain transfer architecture for graphics
that can move polyphonic musical compositions from a source genre to a target
genre, such as from jazz to classical, simply by changing the pitch of a note. It
has additional discriminators to balance the power of domain transfer versus
preserving the content of the original input, as well as separate gender classifiers
to measure the influence of genre change. The audio samples provided illustrate
that genre switching can not only be detected by a neural network classifier but
can also be heard by humans.
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Domain transfers are attractive because they require the development of
unique representation-learning methods that can be applied to other areas of
deep learning research. Domain transfer requires neural network models to have
a deep understanding of the underlying domain. Neural style transfer utilizing
deep generative models is an important component of deep representational
learning research.

The terms style and domain transfer are sometimes used interchangeably. In
the context of neural networks, style transfer often refers to applying the explicit
style attributes of one image while preserving the quality of the explicit content
of another.

This model, on the other hand, is built on a generative adversarial network
(GAN) and includes a vanilla GAN as generator G and discriminator D. A
generator tries to generate real-looking data from noise, whereas a discriminator
tries to understand the generator’s output from real data. In a two-player mini-
max game, G and D are learning iteratively. Because the model’s objective is to
transport music from one domain to another, the generator receives real samples
from the source domain as input rather than real noise.

Figure 2.5: Architecture of CycleGan [3]

The architecture of the model can be seen in Figure 2.5. The model’s procedure
is to exchange samples from A to B and bad versa; it has the same structure as
the late discharged CycleGAN, which comprises two GANs stacked in a cyclic
way and prepared in harmony. One generator transports information from
space A to space B, whereas the other exchanges information from space B to
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space A. Each generator yield has one discriminator tied to it. Blue and red
arrows demonstrate space exchanges in restricting bearings, though dark bolts
demonstrate misfortune capacities. L2 norm for the adversarial loss for the
generators;

𝐿𝐺𝐴→𝐵 = ∥𝐷𝐵(�̂�𝐵) − 1∥2[3]

𝐿𝐺𝐵→𝐴 = ∥𝐷𝐴(�̂�𝐴) − 1∥2

L1 norm for the adversarial loss which is cycle consistency loss

𝐿𝑐 = ∥ �̂�𝐴 − 𝑋𝐴∥1 + ∥ �̂�𝐵 − 𝑋𝐵∥2[3]

The structure of the cycle consistency loss ensures that input is matched to
itself back over the cycles between the generator and discriminator. It is utilized
to prevent the loss of information from the input to the generator; it aids in the
preservation of that information for back-transformation.

Since the model needs to differentiate between song genres in order to develop
songs based on genre, rather than just playing sounds, the loss needs to be
calculated for that classification. This feature may cause the training phase to
be unstable with this CycleGan sound generation. However, stability must be
balanced during the training phase. The generator also needs to learn genre
translation from source to target. In this situation, the discriminator must also
understand genre transitions. This model includes two different identifiers to
avoid genre patterns that lead to deception. As a result, these two identifiers
can make sense of the differential data from the target domain. Discriminator
loss will be in the end,

𝐿𝐺 = 𝐿𝐺𝐴→𝐵 + 𝐿𝐺𝐵→𝐴 + 𝜆𝐿𝑐[3]

𝜆 is used as a weight for the cycle consistency loss. For the discriminator loss
will be,

𝐿𝐷𝐴 = 1
2(∥𝐷𝐴(𝑥𝐴) − 1∥2 + ∥𝐷𝐴(�̂�𝐴)∥2)[3]
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𝐿𝐷𝐵 =
1
2(∥𝐷𝐵(𝑥𝐵) − 1∥2 + ∥𝐷𝐵(�̂�𝐵)∥2)[3]

𝐿𝐷,𝑎𝑙𝑙 = 𝐿𝐷 + 𝛾(𝐿𝐷𝐴,𝑚 + 𝐿𝐷𝐵,𝑚 )[3]

𝛾 is represents weight for extra discriminators.

Due to dimension issues, this methodology shows that methods can be com-
bined depending on the sound generation task. Unfortunately, one method is
not always suitable for processing specific audio data. To obtain more accurate
and consistent results, a different approach to handling these characteristics of
audio data is required.

Progressively growing of GANs (PGGAN)

GANSynth [11] A method for producing high-quality audio using Generative
Adversarial Networks and the NSynth database. Most audio waveforms, unlike
visuals, are extremely periodic, such as speech and music. Convolutional filters
trained on this data for various purposes frequently learn to construct loga-
rithmically scaled frequency selective filter banks spanning the human hearing
range.

It uses progressive growth of GAN architecture with 2D convolution, which
aims to grow the generator and discriminator progressively. The outputs of
the model are mel-spectrogram and instantaneous freq (IF). It uses IF to drive
the phase and then inverse STFT to gather the waveform. The inputs of the
generator are 256-dim random vector Z and 61-dim one-hot vector (MIDI 24-84)
for pitch conditioning. Auxiliary pitch classification is loss for the discriminator
to the real/fake loss and tries to predict the pitch label WaveNet solves scale
problems by centering the finest scale possible and hardly external conditional
signals for global form. But it causes slow speed for producing samples.

2.6 Language Models

2.6.1 Transformer-Based Audio Generation

Transformers attempt to tackle the parallelization challenge by combining en-
coders and decoders with attention models. The model’s ability to translate
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from one sequence to another is accelerated by attention. Transformers are
multi-encoding, multi-head architectures with attention and multi-head mech-
anisms. They are without a doubt a powerful and efficient methodology for
Natural Language Processing (NLP) problems. Additionally, they have recently
been introduced to be used for image generation, image classification, audio
generation, and audio classification jobs. They attempt to tackle the paralleliza-
tion challenge by combining encoders and decoders with attention models. The
model’s ability to translate from one sequence to another is accelerated by atten-
tion.

The basic idea behind transformers is to create self-attention mechanisms by
using positional embedding to avoid consuming memory as LSTM. As a result,
they allocated fewer resources than RNNs with LSTM, making them faster and
more efficient.

The Transformer [] is based on through and through position representations,
which are included in pre-position input representations by means of positional
sinusoidal or learned position embedding. The relationship between musical
notation (score) and actual sound is similar to the relationship between text
and audio. Timing and pitch are two illustrations of melodic measurements
where relative contrasts show up to be more imperative than absolute values.
To capture such pairwise relations between representations, display a relation-
aware shape of self-attention that they successfully utilize to adjust self-attention
by evacuating the introductory Transformer between two positions, tests from
a Transformer with our relative thought component, and the normal timing
arrangement appeared inside the dataset.

They were able to get compelling results in music era interchange by learning
transformers on inactive representations and conditioning a WaveNet generator,
which would have been impossible without the direction of meta-data and
convolutional designs [29]. They have also been used to learn idle sounds.
Transformers use a consideration instrument with the yield at one location
dependent on the input at another. There are several different transformer types.
They all share the same basic attention layers, but some are more specialized for
specific tasks.
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Seq2Seq A variety of related attempts have been made to use neural networks
to handle the general problem of sequence-to-sequence learning. Training mod-
els that translate sequences from one domain (such as English sentences) to
sequences from another domain are used in sequence-to-sequence learning.
The model[27] takes the input sentence ’ABC’ and creates the output sentence
’WXYZ’.

The Seq2Seq task takes a sequence of audio frames as input and outputs a
sequence of symbolic tokens representing the notes being played. [13].It can
be used in sound generation tasks because it is employed in the LM model.
An acoustic modelling[33] approach for speech conversion based on a frame-
work of sequence-to-sequence neural networks. An encoder network translates
input characteristics into a hidden representation, an attention module selects
the encoder output, and a decoder generates acoustic features for each frame
are all part of the model. There is also a post-filter network that enhances the
altered acoustic features. Finally, the time-domain waveform is recovered us-
ing a speaker-dependent WaveNet. This paradigm eliminates the requirement
for source filtering assumptions by using mel-scale spectrograms as auditory
features for speech generation.

Because Seq2Seq excels at language translation, you may use it to convert
melodies to chords and vice versa if your melody includes harmony or a chord
progression. The code is received by the encoder side and passed from one side
to the other. Similarly to a language task, each output of the final encoder is an
input for each level of the decoder, with the coding shifted from the preceding
output. To put it another way, chords are converted into melodies. The encoder
includes a bidirectional attention mechanism, whereas the decoder has a single-
stack forward addressing layer.

A sequence of inputs is mapped to a sequence of learned embedding plus
fixed positional embedding in T5 architecture [13]. In terms of sequence length
for the self-attention blocks, one constraint of sequence models applied to audio
is that most audio sequences are too long to fit in memory when modeling using
a Transformer architecture.
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Figure 2.6: Tokenization/detokenization [13]

Transformer-XL Transformer-XL[7], which extends learning reliance beyond
a fixed length while maintaining temporal coherence. As specific as its task in
music generation we can say there are a few notes to make into a song, and
Transformer XL excels at sequence development and auto-completion of song
ideas. It improves on Transformer by introducing the concept of repetition and
changing the position encoding mechanism. The iteration technique enables
the model to use information from previous tokens in addition to the current
training segment, thus extending the history[16].

Transformer-XL is a forward-directional decoder with memory and relative
positional encoding for exceptionally quick and precise predictions. Relative
sinusoidal positional embeddings are used in Transformer-XL. There is no re-
striction on the length of the sequence when padding to the left or the right.
Similar to a standard GPT model but with the addition of a recurrence mech-
anism for two successive segments. A segment is a group of tokens that are
sequential and may span several documents. Segments are supplied into the
model to train it to pay attention to information in both the previous and current
segments.

It is related to positional encoding and hidden state memory is included.
Transformer Memory allows for extremely quick inference. Instead of re-
evaluating the entire sequence on each prediction, you only need to assess
the most recently predicted token. Previous tokens have already been saved in
memory.

The key distinction between Transformer[16] and Transformer-XL is the use
of features from segments earlier to the current segment while updating the
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model parameters based on that current segment. The segments are from the
same input MIDI sequence of a music piece.

Relative Positional Encodings Edges can capture information about the
relative position differences between input elements in linear sequences [24].
Maximum relative position is thought to be clipped to a maximum absolute value
of k, implying that beyond a certain distance, exact relative position information
is useless. By limiting the greatest distance, the model can generalize to sequence
lengths that were not experienced during training.

Multi-Head Attention [28] A query and a set of key-value pairs are mapped
to output by an attention function, where the query, keys, values, and output are
all vectors. The output is generated as a weighted sum of the values, with the
weight allocated to each value determined by the query’s compatibility function
with the relevant key.

BERT stands for Bidirectional Encoder Representations from Transformers
which is a bi-directional encoder that produces SOTA results in answering ques-
tions and filling in the gaps, token masking, and exceptional context. Series of
Transformer encoder blocks, each with a multi-head bidirectional self-attention
layer followed by a feed-forward layer. Each encoder block has residual connec-
tions and layer normalization[8].

It is used for music or sound generation when there is a song has been com-
pleted, but something does not sound quite right. A more constant rhythm is
required for this song.BERT is an expert at filling in the blanks. To produce a
new variation, remove sections of the song and apply BERT.

Audio Tokenization The same sequence continuation principle that is impor-
tant to language models can be applied to audio data. The concept of audio
continuation proposes that an input audio waveform can be regarded as a suc-
cession of "audio tokens." A model might then be taught to generate an audio
continuation that matches the input’s properties.

An audio sequence typically contains semantic characteristics, such as melod-
ic/harmonic consistency in music, and Acoustic aspects, such as the distinct
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tone of a voice or the timbre of a musical instrument. These dependencies,
which can be semantic or auditory in nature, are critical for recording recurrent
or developing patterns throughout time.

Tokens are intended to represent long-term structure in audio with a BERT-
type language model trained on audio data that creates semantic tokens that
capture both local interdependence and global long-term structure for the Audio
Embedding w2v-BERT. Based on SoundStream, Audio Quantization provides
acoustic tokens that capture the nuances of the audio waveform and enable
high-quality synthesis.

2.6.2 Generative models of raw audio signals

The limitation of symbolic representation has been mentioned, so to go around
these limitations, music can be displayed within the crude sound space instep
[9]. Since computerized representations of sound waveforms are still lossy to a
few degrees, all musically important data is held. Sound waveform models are
moreover distant more wider and can be connected to recordings of any set of
rebellious, as well as non-musical sound signals like discourse.

It has been modeled[30] for the probability distribution of the samples of
the waveform of an audio signal when the decision is made to digitize the
signal, the sampling rate, which indicates how frequently the continuous signal
is sampled, and the bit-resolution, which measures how many bits are allocated
to represent the signal in the range of -1 to 1. The WaveNet implementation to
model technique with traditional neural network-based autoregressive WaveNet
architecture is the same as the original, but in this study[30], the dilation rate is
increased by a factor of 2 in each layer, totaling 10 layers, with 128 convolutional
filters in each layer. The model is made up of three layers of causal dilated
convolutions with a filter size of two that are dilated by a factor of two in each
succeeding layer.

Also, in order to implement the transformer on the input data, heavy data
augmentation such as amplitude scaling, time shifts, and so on was performed.
Before delivering it to the Transformer architecture, the input one hot represen-
tations matching the level of the bit representation were sent via a positional
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encoding layer to add positional information. The purpose of both the WaveNet
and Transformer architectures is to forecast the next sample.

2.6.3 Language Modeling Approach

Audio signals span different scales of consideration, including speech, music,
and natural sounds. For example, language can be analyzed at a very close
acoustic or phonetic level, but also in terms of prosody, language structure,
language use, or semantics. Music also follows a long-term structure but is made
up of highly unstable acoustic signals. When it comes to sound fusion, these
different scales are so interconnected that achieving high sound quality while
maintaining high consistency remains a challenge, especially in the absence of
thorough monitoring.

Using strategies such as propagation, adversarial training, and autoregressive
waveform modeling, speech synthesis models delivered signals with a level of
confidence that approximates reality. However, advanced models like WaveNet
actually produce babble-like unstructured sounds without significant condi-
tioning. On the other hand, language models have been shown to be able to
represent long-term, high-level structures of data in a variety of formats, and
the resulting advances in content and image rendering have allowed us to create
reliable and reasonable common sounds.

A single channel audio sequence 𝑥𝑅𝑇 is processed. In the framework of
AudioLm, the first tokenizer model maps x into a sequence of discrete tokens
ℎ = 𝑒𝑛𝑐(𝑥), ℎ = (ℎ1, ..., ℎ𝑇) from a finite vocabulary 𝑇′ ≪ 𝑇. Then Transformer
language model which includes only a decoder processes these discrete tokens
to y [2].

During derivation, the demonstrator autoregressively predicts the token se-
quence ℎ̂. The detokenizer model maps predicted tokens to audio for generating
waveform �̂� = 𝑑𝑒𝑐(ℎ̂).
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Figure 2.7: Overview tokenizers [2]

One of the advantages of having two models tokenizer and detokenizer is
generating discrete audio representation. Not only generating high-quality au-
dio is aimed but also long-term coherency is important to regenerate waveform.
Both have semantic and acoustic tokens to combine, promising for the model
to generate. This structure can be seen in figure Figure 2.7. While Sound-
Stream generates acoustic tokens, the intermediate layer of w2v-BERT generates
semantic tokens and ensures long-term structural consistency.

An input waveform is converted by SoundStream’s convolutional encoder to
a series of embedding at a sample rate that is considerably lower than the sam-
ple rate of the original audio. For a 16kHz input waveform, SoundStream is
configured to generate 50Hz embedding. Each embedding is discretized using
a residual vector quantizer (RVQ). RVQ consists of a hierarchy of Q vector quan-
tizers, with each quantizer having a vocabulary of N symbols. SoundStream’s
convolutional decoder reconstructs the waveform by mapping this discrete rep-
resentation to real-valued embeddings.

w2v-BERT, a model for learning self-supervised audio representations, is
used to compute semantic tokens. AudioLM uses the representations of the
pre-trained w2v-BERT to model long-term temporal structure in a generative
framework, despite the fact that this model may be adjusted for discriminative
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tasks like speech recognition or speech-to-text translation. In order to achieve
this, an intermediate layer of the w2v-BERT MLM module is chosen, and em-
beddings are computed at this level. k-means on these embeddings with K
clusters and utilize the centroid indices as semantic markers. Prior to clustering,
normalizing w2v-BERT embeddings so that each dimension has a zero mean
and unit variance greatly enhances their phonetic discriminability. w2v-BERT
performs downsampling along the temporal dimension.

Different features of acoustic tokens acquired from SoundStream and semantic
tokens obtained from w2v-BERT are obtained by comparing them in terms of
audio quality to motivate the hybrid tokenization technique. By teaching a
SoundStream decoder to rebuild audio from tokens, you may assess the accuracy
of the reconstruction. Only a decoder Transformer on the series of acoustic
tokens by flattening Y in a row-major order to a series of tokens y+o of length𝑇𝐴 ·
𝑄, where 𝑜 = (𝑜1, 𝑜2, ., 𝑜𝑇𝐴·𝑄) is the vector of offsets for generating distinct token
indices for the Q layers of the residual vector quantizer, with 𝑜𝑖 = (𝑖1𝑚𝑜𝑑𝑄) ·
𝑁 .The model, which has only been trained on acoustic tokens, samples speech
continuations every four seconds.

The semantic tokens for the entire sequence are first modeled using a hier-
archical technique, and these tokens are then used as conditioning to forecast
the acoustic tokens. This approach has two main advantages: first, the to-
ken grouping per organize is reduced compared to options like modeling the
interleaves arrangement of semantic and acoustic tokens, allowing for compu-
tationally more efficient analysis. Second, the hierarchical modeling reflects the
conditional independence suspicion that semantic tokens are anticipated to be
conditionally independent of past acoustic tokens given past semantic tokens,
that is, 𝑝(𝑧𝑡 |𝑧<𝑡 , 𝑦<𝑡)𝑝(𝑧𝑡 |𝑧<𝑡)

To capture long-term temporal structure in semantic modeling, the first stage
uses 𝑝(𝑧𝑡 |𝑧<𝑡), the autoregressive prediction of semantic tokens. Coarse acous-
tic, modeling Similar to the first stage, the second stage predicts solely the
acoustic tokens from the coarse Q SoundStream quantizers based on the seman-
tic tokens. The acoustic tokens in SoundStream have a hierarchical structure
because of residual quantization. To handle their hierarchical structure, on
the straightforward method of flattening the acoustic tokens in a row-major
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order. Since 𝑦1
1 is the first token predicted during training, the second stage

models 𝑝(𝑦𝑞𝑡 |𝑧, 𝑦≤<𝑡𝑄, 𝑦<<𝑡𝑞) for 𝑞 ≤ 𝑄 where the matching token sequence is
(𝑧1, 𝑧2, ..., 𝑧𝑇𝑆 , 𝑦

1
1 , 𝑦

2
1 , ..., 𝑦

𝑄
1 , 𝑦

1
2 , 𝑦

2
2 , ..., 𝑦

𝑄
2 , ..., 𝑦

𝑄
𝑇𝐴
).

Fine Acoustic Modeling The third configuration uses coarse Q‘ tokens as con-
ditioning to model the conditional probability distribution 𝑝(𝑦𝑞𝑡 |𝑦≤𝑄′, 𝑦≥𝑄′, 𝑦<𝑡 𝑞)
when q > Q. This operates on acoustic tokens that are compared with a fine
quantizer. In other words, all the tokens associated with the coarse Q’ quan-
tizer, the fine Q’ quantizer of the previous time step, and the token currently
being decoded at the current time step compared to the coarse quantizer are
used to predict 𝑦<𝑡 𝑞. Sound quality is significantly improved by eliminating the
outdated elements of lossy compression that remain after insertion.

After training, use AudioLM to generate audio, depending on the condition-
ing signal used, different forms of generation are achieved. All semantic tokens
�̂� are sampled in an unconditional generation scenario and used as conditioning
for acoustic modeling. To create an acoustic token in an acoustic production
environment, a semantic ground truth token z is obtained from a test sequence
x as conditioning. The resulting audio sequences still have different speaker
identities, but the content of the spoken sentences is always the same and con-
sistent with the ground truth transcript of x. This shows how semantic tokens
can effectively represent semantic content. The main use of Interest is to generate
a continuation from a short prompt x.

To accomplish this, the prompt is first transformed into appropriate semantic
tokens 𝑧>𝑡𝑠and coarse acoustic tokens 𝑦≤≤𝑄′𝑡𝑎 . The first stage creates 𝑧>𝑡𝑠 ts. It is
a continuation of semantic tokens that are autoregressively generated based on
the conditioning 𝑧>𝑡𝑠 . In the second stage, the complete semantic token sequence
𝑧≤𝑡𝑠 , 𝑧>𝑡𝑠 is concatenated with the coarse acoustic tokens of the prompt𝑦≤≤𝑄′𝑡𝑎 and
fed to the coarse acoustic model as conditioning. The coarse-grained acoustic
model then samples the relevant acoustic token continuations. The fine acoustic
model is used in the third stage to process the coarse acoustic tokens. Then
use the SoundStream decoder to reconstruct waveform x using the prompt and
sampled acoustic tokens.
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2.6.4 Generating Music From Text

Although the ability to generate audio from such crude subtitles represents
a significant advance, these models are still only capable of simulating basic
acoustic scenes containing a small number of short audio events. It remains
difficult to transform a single written caption into a complex audio sequence
with long-term structures and large numbers of stems, such as music clips.

In order to attain high fidelity and long-term coherence across seconds, Au-
dioLM[2] approaches audio synthesis as a speech modeling task in a discrete
representation space employing a hierarchy of coarse to fine discrete audio units
or tokens. Additionally, since no presumptions are made regarding the content
of the audio stream, AudioLM learns how to produce realistic sounds from a
pure audio corpus without annotations. Such systems could possibly produce
more insightful answers if they are trained on the appropriate data and have the
ability to model a range of signals.

The lack of linked speech-to-text data is a barrier to progress and exacerbates
the challenges inherent in high-quality, consistent speech synthesis. Compare
this to the imaging field. Recent advances in superior image generation quality
have greatly contributed to the utilization of large datasets. Additionally, writing
a description of a common sound in words is much more difficult than writing a
description of a graphic in text. First, it is difficult to clearly define the essential
elements of the acoustic environment and music in one word. Because the audio
is organized along a timeline, the captions for the entire series contain far fewer
annotations than the captions.

The MusicLM[1] model converts text descriptions into high-fidelity music. In
order to overcome the significant issue of pairwise data scarcity, MuLan is a joint
music-text model that has been trained to project music and accompanying text
descriptions onto nearby representations in an embedding space. Large audio-
only corpora can be trained on using this common embedding space without
the need for subtitles. In other words, MuLan embeddings are generated from
text input during inference but are computed from audio during conditioning
during training. Unlabeled music for very complex text descriptions, such as "a
mesmerizing jazz song with an unforgettable saxophone solo and solo singer"
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or "90s techno from Berlin with deep bass and powerful kicks" You can train
MusicLM to generate them on a huge data set of spacious and harmonious
music.

Additionally, the system’s ability to process signals other than speech is criti-
cal, because some musical qualities may be difficult or impossible to communi-
cate in words. When MuLan embeddings are fed into MusicLM, the sequence
of generated tokens differs significantly from the equivalent sequence in the
training set. This is due to the fact that MusicLM has been expanded to accept
additional melodies in the form of audio as conditioning in order to make music
clips that match the intended tune and are generated in accordance with the
aesthetics of the provided prompt.

Figure 2.8: Audio and text representations [1]

There are three models that are used for tokenization, which are SoundStream
and w2v-BERT as in AudioLM, and MuLan. They’re shown in Figure 2.8.
Those three models are used for gathering audio representation for conditional
autoregressive music generation. The approach in AudioLM also is followed
in MusicLM. While w2v-BERT is used for semantic tokens to encourage long-
term coherent era, SoundStream is for acoustic tokens, and the MuLan, which
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is utilized to symbolize conditioning, inserts content at the time of inference
and plays music during training. The discrete sound and text representation
for the sequence-to-sequence modeling is made conceivable by these models’
autonomous pretrained and frozen nature.

A system that empowers high-quality sound output with consistent structure
over long periods of time. This goal consolidates assists propels in adversarial
neural sound compression, self-supervised representation learning, and lan-
guage modeling. Particularly, it begins with raw sound waveforms and creates
crude semantic tokens from a pre-trained program on a self-supervised masked
language modeling target. In expansion to semantic tokens, the SoundStream
neural codec deployment is based on fine-level acoustic tokens that capture sub-
tle elements of the audio waveform and enable high-quality synthesis. Preparing
a language model to create both semantic and acoustic tokens at the same time
provides high audio quality and long-term consistency.

Additionally, the system’s ability to process signals other than speech is criti-
cal, because some musical qualities may be difficult or impossible to communi-
cate in words. When MuLan embeddings are fed into MusicLM, the sequence
of generated tokens differs significantly from the equivalent sequence in the
training set. This is due to the fact that MusicLM has been expanded to accept
additional melodies in the form of audio as conditioning in order to make music
clips that match the intended tune and are generated in accordance with the
aesthetics of the provided prompt.

The SoundStream model is used for mono audio, and RVQ learns 12 quan-
tizers with a vocabulary size of 1024 to quantize the audio embeddings in the
training step. The acoustic 600 tokens of A represent a 1-second tone with a
bit rate of 6 Kbit/s.Similar to AudioLM, w2v-BERT has 600 parameters to use
as an intermediate mask language modeling (MLM) layer. After pre-training
and freezing, the seventh layer first collects these embeddings and then places
centroids over them and quantizes them using the learned K-means. The tar-
get audio representation sequence is obtained from MuLan’s audio embedding
network. This is a continuous representation that can be used directly as a condi-
tional signal in transformer-based autoregressive models. MuLan embeddings
are quantized to provide a discrete representation based on discrete audio and
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conditioning signal tokens.

MuLan [15] works with 10 seconds of audio input. So to process longer data,
it first processes the long audio input, then it calculates the audio embedding
for a 10-second window using steps of 1 second and averages the resulting
embedding. The result of this operation is discretized using his RVQ with
a vocabulary size of 1024 and a vector quantizer of 12. During prediction,
MuLan is conditioned by the text embedding obtained from the text prompt
and quantized with the same RVQ used to capture the audio embedding in the
12-token MT. Conditioning during exercise has two benefits. One is that the
training data is easy to scale and is not limited by the need for subtitles. Second,
it is more responsive to noisy text descriptions.

Hierarchical sequence modeling is used to combine three separate represen-
tations to obtain the AudioLM text-based music generation model. The hierar-
chical model has transformers modeled autoregressively with only a separate
decode.MuLan audio tokens, semantic tokens, and acoustic tokens are extracted
from the audio-only training set throughout training, and MuLan audio tokens
are utilized as conditions for semantic token prediction over the semantic mod-
eling phase. In the semantic modeling stage, the semantic tokens are distributed
as 𝑝(𝑆𝑡 |𝑆<𝑡 , 𝑀𝐴) where S is the semantic tokens and t is the position in sequence
according to time step. Acoustic tokens are predicted using MuLan audio and
semantic tokens in the subsequent acoustic modeling step. Audio and semantic
tokens distributed as 𝑝(𝐴𝑡 |𝐴<𝑡 , 𝑆, 𝑀𝐴) where 𝐴𝑞 is the predicted conditioned
acoustic tokens. In addition, each stage includes a decoder-only transformer
model that is modeled as a sequence-to-sequence task. Finally, the MuLan text
token of the conditioning signal computes the text prompt and converts the
waveform from the created audio token using the SoundStream decoder.

2.6.5 Textually Guided Audio Generation

Textually Guided Audio generation system AudioGen [19], deals with the
sound generation task according to the given text description. It has the same
idea as image generation from textual description. Even though image and audio
generation have similar approaches, the being one one-dimensional signal for
audio is still a challenge from the deep learning perspective. This is a kind of
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problem to distinguish overlapping objects. Also not having enough audio data
which describes audio as textual is another challenge for this task.

AudioGen is a textually-guided audio generation model that performs text-to-
sound generation. It is a single-stage auto-regressive Transformer model trained
over a 16kHz EnCodec tokenizer with four codebooks sampled at 50 Hz. Because
of the lower frame rate, this model variant achieves similar audio quality to the
original approach disclosed in the AudioGen article while delivering faster-
generating speed. The AudioGenSolver, which implements the AudioGen’s
training used to generate the released model, is known as the solver. It defines
an autoregressive language modeling task across multiple streams of discrete
tokens derived from a pre-trained EnCodec model, similar to MusicGen, with
dataset-specific adjustments for environmental sound processing.

This model has been trained with sound data which includes not only musi-
cal or melodic sounds but also environmental sounds such as cat meawing, car
voice, etc... So when you give a text that describes the environment you want,
it produces a sound related to the description keywords included. For instance
when you write "A bird is singing while a musician playing guitar in the park
with children are playing around, and it starts to rain." In this example, the
model needs to generate four different acoustical content but unfortunately, It is
quite hard to generate acoustically fidelity sounds because to have the informa-
tion of degree of positions, decide which composition must be background or
foreground in the training set.

AudioGen has 2 steps as in Figure 2.9, first, the raw audio data is encoded to
discrete sequences with tokens by a neural audio compression model to train in
an end-to-end fashion. Compress representation is reconstructed to raw audio.
The second stage works on the output of the first step and also is conditioned
textual input. It uses an auto-regressive Transformer-decoder language model
to discrete audio tokens. The text is represented by T5 which is a pretrained
encoder model on a large corpus of text. Meanwhile, from the given text new
set of sounds is sampled with a language model. And those tokens are decoded
to waveform for audio representing of output.
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For audio representation, it has a similar architecture to the auto-encoder
model. The encoder model (E) includes 1D convolutional layers with C chan-
nels, followed by B convolutional blocks. Each convolutional block is created
with a single residual unit and a down-sampling layer consisting of a stridden
convolution with a stride size of S and a kernel size of K. The residual unit
comprises two convolutions and a skip connection. The convolutional blocks
consist of a two-layer LSTM and end with a 1D convolutional layer with a kernel
size of 7 and D output channels.

The flashy is an epoch-based solver module of Facebook that aims to handle
2 tasks such as logging metrics, to multiple back-ends, with custom formatting
and check-pointing and automatically tracking stateful parts. Each epoch has
several stages for each train, valid, and test dataset. It also provides distributed
training.

The aim of training is f jointly minimize a combination of reconstruction
losses and adversarial losses. First minimizing the difference between target
and regenerated audio data on the time domain and with multiple time scales,
calculating and minimizing loss by using the linear combination between two
differences 𝐿1and 𝐿2 on the mel-spectrogram.

𝜄 𝑓 (𝑥, �̂�) = 1
|𝛼 |�|𝑠 |

∑
𝛼𝑖∈𝛼

∑
𝑖∈𝑒

∥𝑆𝑖(𝑥) − 𝑆𝑖(�̂�)∥1 + 𝛼𝑖 ∥𝑆𝑖(𝑥) − 𝑆𝑖(�̂�)∥2

𝑆𝑖 stands for 64 bins 𝛼 stands for scalar coefficients

Multi-scale
𝜄 𝑓 𝑒𝑎𝑡(𝑥, �̂�) = 1

𝐾𝐿
∑
𝐾=1

∑
𝐿=1

∥𝐷𝑘(𝑥) − 𝐷𝑘(�̂�)∥1

Generation The generation stage enables the generation of samples condi-
tionally and/or unconditionally, as well as audio continuation. It has argmax
greedy sampling, softmax sampling at a certain temperature, and top-K and
top-P sampling.
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Figure 2.9: AudioGen [19]

2.6.6 Simple and Controllable Music Generation

MusicGen[6] is a text-to-music model capable of classifying high-quality mu-
sic samples based on linguistic descriptions or audio signals. It is a one-stage
autoregressive transformer model trained on a 32 kHz EnCodec tokenizer with
four codebooks sampled at 50 Hz, making it a basic and manageable model
for creating music[6]. MusicGen, unlike existing methods such as MusicLM,
does not require an independent semantic representation and creates all four
codebooks at the same time. It demonstrates that it predicts them in parallel
with only 50 autoregressive steps per audio second by inserting a slight delay
between the codebooks.

It has some challenges which are different from speech generation because of
the structure of music. Music has a complex structure because of its features.
Besides speech, music has harmonies and melodies from different kinds of
instruments. and also full frequency spectrum is needed. Both MusicGen and
AudioGen have solvers. Solvers are the core part of these architectures which
are the methods of how to solve the given task.

MusicGen solver is called the MusicGenSolver which is responsible for imple-
menting MusicGen‘s training and defining an autoregressive language modeling
task over several streams of discrete tokens taken from a pre-trained EnCodec
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model. Of course, the model has several limitations, such as the inability to gen-
erate genuine vocals and the fact that it was trained on English descriptions, so
it does not function well in other languages. Because there are so many different
types of music in the world, it is difficult to train the model with all of them.

T5Tokenizer T5 is an encoder-decoder model that turns all NLP difficulties
into a text-to-text format. It is taught by instructor compulsion. This means that
during training, we always need an input sequence and a corresponding target
sequence. It is a pre-trained language model which is created with encoder and
decoder architecture. It is pretrained on both supervised and unsupervised.

The positional embeddings and codebook projections are then given to a
transformer-based decoder with L layers, each of which has a causal self-
attention and cross-attention block. The conditioning C, which can either be
text or melody, is also taken as input by the decoder. After the text has been
encoded by a conventional encoder, let’s say T5, the cross attention block that
accepts the conditioning signal C if is text, says T5. If it is the melody, they
pre-process it into a chromatogram and then transmit the conditioning tensor C
as a prefix to the transformer input. As a result, we receive the generated output
music that is conditioned on condition C. There can be many language models
and they can used for the text-to-text part of the model. The models that are
also used for the MusicGen project are FLAN-T5 and CLAP. Instead of using T5,
also these can be chosen for the training part.

EnCodec

EnCodec is a convolutional-based encoder and decoder for the data. It’s a
compression model to avoid losing quality. Normally codecs decompose the
signal between the frequencies. Most of them refer to the human hearing abil-
ity. EnCodec has trained neural networks to regenerate sound from end to end.
Because MusicGen is built upon EnCodec’s design, the encoder, quantizer, and
decoder are the three components that makeup EnCodec’s end-to-end architec-
ture. It is similar to the autoencoder module.

While the encoder is for uncompressed data and transforms it to a higher
dimensional and lower frame rate to extract latent space, then the quantizer
compresses this uncompressed data to the target size. It regenerates the original
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signal from the saved information which is the most important one. As the
final step of the EnCodec, the decoder converts compressed audio data to time
domain space. The converted waveform data is similar to the original one.
Identifying changes because of loss is not perceptible to humans, it is the reason
that discriminators are used for improving the generated sound’s perceptual
quality.

A loss balancer method stabilizes training by decoupling hyper-parameter se-
lection from the normal scale of the loss. Furthermore, lightweight Transformer
models are employed to condense the resultant representation while retaining
real-time speed.The blancer creates a combination of all losses and gradients
re-scales. In that way, the model will able to stabilize training,
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3
Results

3.1 Audio Generation with XL-Transformers

The transformer architecture for processing was built using the GoodSound
dataset. The average audio length is between 4 and 8 seconds. It took too long to
make 4 minutes of audio, but the model can produce 40 seconds of audio pretty
quickly. The model functions similarly to next word or next sentence prediction.
According to the trained data, it continued the sound beyond 4 seconds and
created a longer sound from the shorter one.

Waveform data has been converted to MIDI in order to generate Pianoroll data
for transformers. After converting the data to Pianoroll, the note information
is extracted as words in the NLP task, and the following notes are predicted
based on the first 4 seconds of the audio, and the rest of the audio’s notes are
generated by the model before the notes are converted to an audio file. It gives
us the freedom to choose any instrument we desire. Unfortunately, this strategy
is insufficient if we wish to make a sound that is unrelated to any instrument
that we may play with notes.

These symbolic representations have been addressed through the applica-
tion of AI for generating cohesive music. However, these perspectives cannot
adequately capture the intricacies of emotion and style in music.

53



3.2. AUDIOCRAFT

3.2 AudioCraft

The audio Craft method has previously been described.As a result, the dataset
has been prepared for implementation in accordance with the design of Audio-
Gen and MusicGen. Both models are trained using various hyperparameters.
It demonstrates that utilizing a learning scheduler is the most accurate and fast
technique to train data. These two models each have their own solver architec-
ture, and the configuration fgilse has been updated to control which techniques
are utilized. For both models, multiple experiments were conducted to de-
termine the ideal combination of all optimization, kind of learning schedule,
learning rate, batch size, and so on.

Unfortunately, hardware constraints caused us to lower the size of the lan-
guage models, and batch size. Cross entropy was employed to calculate the
loss function. Several learning rate values were tried, and in the end, starting
with a higher value of learning rate, increasing the learning for each model with
the schedule, and arranging learning rate for smaller values, helped to better
configure weights and prevent over-fitting and unbalanced between validation
and training.

3.2.1 MusicGen

Hugging Face’s model repository is being queried for a pre-trained compres-
sion model, especially the "encodec 32khz" model.The compression model in
use is configured with four codebooks, each with a cardinality of 2048, implying
that each codebook contains 2048 unique entries. Furthermore, this model has
a frame-rate of 50, which means it processes data at a rate of 50 frames per
second. T5 is a model, and auto-casting is enabled during its evaluation. To
maximize efficiency, auto-casting often refers to automatically translating model
computations to the float32 (single-precision floating-point) data type.

Exponential Moving Average (EMA) is a technique used in model training. In
this scenario, EMA with a decay rate of 0.99 is applied to the model. It means that
during training, an exponentially weighted average of the model’s parameters
with a decay factor of 0.99 is computed, and this procedure is repeated every
30 updates.In terms of parameters, the model has around 21.26 million. This
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reflects the model’s complexity and capabilities. When the model, gradients,
and optimizer are loaded and operational, this indicates the base memory use.
The amount of memory used is around 0.34 gigabytes (GB).

Each layer in the model has 256-dimensional hidden representations. It uses
eight attention heads for multi-head self-attention, allowing it to capture a wide
range of data patterns. The "hidden scale" factor is set to 4, which may improve
the model’s ability to learn complicated features.

Particularly, this model is intended to be related, which means that it only
examines past tokens during self-attention, making it suited for autoregressive
model tasks. The Gaussian Error Linear Unit (GELU) is utilized as the activation
function, and layer normalization is applied before the feedforward layers.

Changing Learning Scheduler Strategy Unfortunately, without a scheduler
strategy, the Adam optimizer fails to reduce cross-entropy. Step Scheduler
with a step size of 4000 and a learning rate that starts with 1, allowing for the
usage of large learning rates. To avoid over-fitting and improve the variety in
the validation set for having a balanced loss value between the training and
validation, the training set has 16,000 samples while the validation set has 6000
samples. Otherwise, a lack of samples in the validation set results in a smaller
loss for the validation set. This could be because the validation set was too
simple for the model. Although D-adaption Adam is not the default optimizer,
it works well with the learning scheduler. At the end of the sixth epoch, the
model had a loss value of less than 0.5.

Train Summary The last epoch’s learning rate is set to 1.00E-04, which controls
the size of parameter updates during training. The size of gradients utilized in
the training procedure is indicated by the gradient norm of 0.3578. Furthermore,
the gradient scale is 1048576.000. The cross-entropy loss, which measures how
well the model’s predictions match the actual data, is 0.199, while the perplexity,
which measures the model’s performance in predicting sequences, is 1.221.
Finally, the length of this training update is recorded as 209.091 units of time.
Figure 3.2 depicts the change in learning rate during the training period.
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Figure 3.1: MusicGen Training Cross-Entropy

Figure 3.2: MusicGen Learning Rate

Valid Summary Several crucial metrics are included in this summary of the
validation procedure for the 50th epoch. The cross-entropy number is 0.197 as
shown in the accompanying Figure 3.3. Furthermore, the perplexity is recorded
at 1.218. Finally, the duration of this validation task is 106.572 units of time.

Figure 3.3: MusicGen Validation Cross-Entropy
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Evaluate Summary Several critical measures provide insights into the model’s
performance in the evaluation summary in Epoch 50. The cross-entropy is
0.195, which indicates how closely the model’s predictions match the actual
data. Perplexity, a common metric in language modeling, is 1.216, showing
the model’s ability to predict sequences. The chroma cosine similarity, which
measures the similarity of chroma features in audio or music analysis, is also
recorded at 0.269.

The "rtf" number, which represents the real-time factor, is given as 0.486. This
implies that the generating process occurred at around half the pace of real-
time, providing insight into its computational efficiency. The duration of this
generating work is recorded as 82.791 units of time.

3.2.2 AudioGen

The Hugging Face model hub, specifically the "encodec 32khz" repository,
is getting a pre-trained compression model for the model. In this instance,
the compression model consists of four codebooks, each having 2048 unique
entries (cardinality). Furthermore, the model has a frame-rate of 50 frames per
second. The T5 model will be evaluated using auto-casting, which means it
will be computed using the float32 (single-precision floating-point) data type.
The training method includes decoupled weight decay, which is a technique for
independently adjusting the weight decay for distinct regions of the model.

The model is using an EMA with a decay rate of 0.99. During training, this pro-
cess occurs every 30 updates. By smoothing out the model’s parameters, EMA
helps to stabilize and improve training. In terms of parameters, the model has
around 21.26 million. The model, gradients, and optimizer need approximately
0.34 GB of RAM.

Train Summary The learning rate at epoch 50 is 1.00E-04, the gradient norm
is 3.578E-01, the gradient scale is 1048576.000, the cross-entropy is 0.199, the
perplexity is 1.221, and the epoch duration is 209.091 units of time. Figure 3.5
depicts the change in learning rate during the training period.
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Figure 3.4: AduioGen Training Cross-Entropy

Figure 3.5: AduioGen Learning Rate During Training

Valid Summary As a result, the model attained a cross-entropy of 0.197 and a
perplexity of 1.218 at Epoch 50, as shown in the accompanying figure 3.6.

Figure 3.6: AduioGen Valitadion Cross-Entropy

Evaluate Summary In the model, the assessment results show a cross-entropy
score of 0.19 and a cosine similarity score of 0.269 after the 50th epoch.

3.2.3 Comparing AudioGen and MusicGen
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Waveform of MusicGen and AudioGen generated sounds on the left
side of the waveforms belong to sounds generated by AudioGen architecture,
and on the right-sided ones belong to sounds generated by MusicGen Architec-
ture.

In Figures 3.7, and 3.8, a and b have the same input as text as Continuously
Stridulating, and an is the one generated by AudioGen and b is the one generated
by MusicGen. Even if they appear to be the same, it is easy to tell them apart.
Furthermore, c and e are both a created by AudioGen with only one word
difference in the text input, which is synthetic, whereas c lacks the syntetic term
but e does. The same is true for d and f in MusicGen.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Spectrogram with Frequency Axis, on the left side of the spec-
trograms belong to sounds generated by AudioGen architecture, and on the
right-sided ones are belong to sounds generated by MusicGen Architecture.

3.2.4 Text-Sound Match Evaluation

34 people took part in the study’s evaluation phase. We did a twofold eval-
uation in order to better understand the quality and emotional impact of AI-
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generated sounds. Participants were shown AI-generated sounds and textual
descriptions, and they were asked to judge the accuracy and overall quality of
the sounds on a rating scale. This assessment took into account how well the
sounds matched the text descriptions provided. Participants investigated the
emotional aspects of the sounds. They had to identify and describe the feelings
elicited by each sound, as well as indicate the strength of these emotions. Par-
ticipants also evaluated how well the sounds conveyed the intended emotions
as described in the accompanying text descriptions. We gained useful insights
into the performance and emotional resonance of the AI-generated sounds as a
result of this holistic study.

According to human inspection, both models achieved very close scores of
10 for sound quality. MusicGen gets a rating of 4.93, while AudioGen has a
rating of 4.98. All of the sounds generated by AI using both models might
have the majority of their labels correct. Figures below show the comprehensive
evaluations.

continuous deep and spatial stable and rumbly

Figure 3.9 depicts the results of this sound, while Table 3.1 summarizes them.
The majority of respondents offered responses that correspond to the label de-
scriptions generated by the model. According to the participants, the average
quality rating for this sound is 4.2 out of 10.

Figure 3.9: Graphic for continuous deep and spatial stable and rumbly
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Description Count
deep, spatial and rumbly 23

deep and sizzling 6
humming and rapid sizzling elemets 5

Grand Total 34

Table 3.1: Answers for continuous deep and spatial stable and rumbly

deep, spatial and gloomy

Figure 3.10 depicts the results of this sound, while Table 3.2 and 3.3 summa-
rizes them. The majority of respondents offered responses that correspond to
the label descriptions generated by the model. According to the participants,
the average quality rating for this sound is 4.5 out of 10 for AudioGen and 4.0
for MusicGen.

(a) (b)

Figure 3.10: Graphic for deep, spatial and gloomy

Description Count
deep, spatial and gloomy 26

spatial and glitchy 7
spatial and sizzling 1

Grand Total 34

Table 3.2: AudioGen answers for deep, spatial and gloomy
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Description Count
deep, spatial and gloomy 26

spatial and glitchy 4
spatial and sizzling 4

Grand Total 34

Table 3.3: MusicGen answers for deep, spatial and gloomy

This set of responses and graphs suggest that AudioGen is slightly more
successful than MusicGen in producing this sound.

deep, spatial and hollow

Figure 3.11 depicts the results of this sound, while Table 3.4 and 3.5 summa-
rizes them. The majority of respondents offered responses that correspond to
the label descriptions generated by the model. According to the participants,
the average quality rating for this sound is 5.2 out of 10 for AudioGen and 4.6
for MusicGen.

(a) (b)

Figure 3.11: Graphics for deep, spatial, and hollow

Description Count
deep, spatial, and hollow 24

sizzling and gloomy 6
glitchy and stable 4

Grand Total 34

Table 3.4: AudioGen answers for deep, spatial, and hollow
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Description Count
deep, spatial and hollow 23

sizzling and gloomy 11
Grand Total 34

Table 3.5: MusicGen answers for deep, spatial and hollow

This set of responses and graphs suggest that MusicGen is slightly more
successful than AudioGen in producing this sound.

scary and sizzling cymbals with varying pitch

Figure 3.12 depicts the results of this sound, while Table 3.6 and 3.7 summa-
rizes them. The majority of respondents offered responses that correspond to
the label descriptions generated by the model. According to the participants,
the average quality rating for this sound is 5.3 out of 10 for AudioGen and 4.6
for MusicGen.

(a) (b)

Figure 3.12: Graphics for scary and sizzling cymbals with varying pitch

Description Count
scary and sizzling cymbals with varying pitch 33

gloomy and humming 1
Grand Total 34

Table 3.6: AudioGen answers for scary and sizzling cymbals with varying pitch
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Description Count
scary and sizzling cymbals with varying pitch 32

stable and rumbly 2
gloomy and humming 1

Grand Total 34

Table 3.7: MusicGen answers for scary and sizzling cymbals with varying pitch

This set of responses and graphs suggest that AudioGen is slightly more
successful than MusicGen in producing this sound.

continuously stridulating buzzing and sizzling sound of processed crick-
ets

Figure 3.13 depicts the results of this sound, while Table 3.8 and 3.9 summa-
rizes them. The majority of respondents offered responses that correspond to
the label descriptions generated by the model. According to the participants,
the average quality rating for this sound is 5.1 out of 10 for AudioGen and 5.1
for MusicGen.

(a) (b)

Figure 3.13: Graphics for by continuously stridulating buzzing and sizzling
sound of processed crickets

This set of responses and graphs suggest that MusicGen is slightly more
successful than AudioGen in producing this sound.
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Description Count
buzzing, sizzling and sound of crickets 24

science fiction and rumbly 5
gloomy and cymbals with varying pitch 5

Grand Total 34

Table 3.8: AudioGen answers for continuously stridulating buzzing and sizzling
sound of processed crickets

Description Count
buzzing, sizzling, and sound of crickets 26
gloomy and cymbals with varying pitch 6

science fiction and rumbly 2
Grand Total 34

Table 3.9: MusicGen answers for continuously stridulating buzzing and sizzling
sound of processed crickets

science fiction with a sixth interval and slight moving panorama

Figure 3.14 depicts the results of this sound, while Table 3.10 and 3.11 sum-
marizes them. The majority of respondents offered responses that correspond
to the label descriptions generated by the model. According to the participants,
the average quality rating for this sound is 5.8 out of 10 for AudioGen and 5.5
for MusicGen.

(a) (b)

Figure 3.14: Graphics for science fiction with a sixth interval and slight moving
panorama
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Description Count
science fiction and slight moving panorama 29

scary sizzling cymbals 3
gloomy and sound of processed crickets 2

Grand Total 34

Table 3.10: MusicGen answers for science fiction with a sixth interval and slight
moving panorama

Description Count
science fiction and slight moving panorama 29

gloomy and sound of processed crickets 3
scary sizzling cymbals 2

Grand Total 34

Table 3.11: MusicGen answers for science fiction with a sixth interval and slight
moving panorama

This set of responses and graphs suggest that MusicGen has the same success
with AudioGen in producing this sound.

rapid sizzling element

Figure 3.15 depicts the results of this sound, while Table 3.12 summarizes
them. The majority of respondents offered responses that correspond to the
label descriptions generated by the model. According to the participants, the
average quality rating for this sound is 4.9 out of 10 for MusicGen.

Description Count

rapid sizzling 29
spatial and humming 3

rumbly 2
Grand Total 34

Table 3.12: MusicGen answers for Rapid sizzling element
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Figure 3.15: Graphic for rapid sizzling element

In summary, the two language models MusicGen and AudioGen were trained
to make equivalent sounds using 5500 noise sounds such as humming, sizzling,
and so on. These kinds of auditory emotional effects on people were then
investigated. According to the participants, there were no discernible changes
in the results of the two algorithms for the assigning and qualification parts.
To a similar extent, both models accurately correlated written cues with sound
quality ratings. The majority of participants correctly identified the textual cue
for each sound. However, no perfect 100% connection in their responses to any
sound was detected.

The labels provided by the 34 participants closely aligned with the actual
text instructions for the associated noises, as seen in Figures 3.16 and 3.17.
This observation implies that humans may easily give labels to varied noises
or sounds. Participants were able to recognize and classify noises, however,
it was note worthy that they did not perceive these sounds as of high quality.
Furthermore, in another aspect of the study, the results show that the language
models AudioGen and MusicGen generate successful sounds depending on the
supplied text cues. It is simple to state that both the AI and human sides validate
each other.
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Figure 3.16: AudioGen Confusion Matrix
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Figure 3.17: MusicGen Confusion Matrix

Emotional Evaluation

The experiment included a group of 34 people who were each given a task.
While listening to different noises, participants were asked to describe the
strength or amount to which they felt four specific sentiments. These emotions
could include things like happiness, sadness, fear, or anger.

The participants were asked to rate how much they felt each of these emotions
(happiness, sadness, fear, and anger) on a scale of 0 to 10. This scale allows
participants to express the intensity or degree of their emotions while listening
to the noises.
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Figure 3.18: AudioGen the emotions conveyed by the sounds

Figure 3.19: MusicGen the emotions conveyed by the sounds

When we inspect Figures 3.11 and 3.12, we see that both models provide the
correct noises with high accuracy. Based on this data, it is possible to conclude
that these sounds elicit fear followed by anger in individuals. People become
more apprehensive when exposed to these sounds. Furthermore, it is clear that
happiness is represented at a lesser percentage.

Also, since the sound contains "scary" as a description within, it is easy to say
that it is the one that makes the participants feel more fearful than the other
noises made. As a result, we can easily say that we may express emotions in
the description to make people feel that emotion. It enables us to alter their
emotions by using noises generated by descriptions.
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Based on the results of two different models, it appears that the noise generated
by AudioGen had a greater influence on the participants than the noise generated
by MusicGen.
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4
Conclusions and Future Works

To summarize, audio and music creation are distinct tasks. To achieve realistic
results, many models must be trained. There are difficulties since music has
a broad scope. Music generation is more specialized than audio generation,
however, there are some difficulties to address. The generation is also affected
by the data collection and the type of audio output sought. To improve the
quality of encoder-decoder models, but to produce longer-created sounds from
short-length sounds, language models, particularly transformers, are extremely
efficient and coherent.

Longer outputs, higher sound quality, acoustical position, coherence sounds,
and other factors must be considered separately, and sound generating requires
more than one model to address those factors. As a result, combining the
answers to various problems allows for better results. With only one model
to generate sound, if the dataset is of poor quality, the outputs will be of poor
quality as well due to the poor quality of the reference data, hence those types
of model outputs require pre-processing and post-processing to improve the
sound quality. Because most models can create the same length as in the training
dataset, the length must be addressed as a job when adding some feature for
continuous generation.

Meanwhile, if the task needs to be broadened, such as text-to-sound or text-
to-music models, more models must be trained, not only to generate sound but
also to grasp the text semantically. Text-to-music and text-to-sound models are
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quite beneficial for obtaining desired sounds for the food sound project. Text-
to-music is a smaller version of text-to-sound. Because the task is as broad as
audio production, because it requires more descriptions and sounds to build
tokens and matches, text-to-music would suffice for this purpose in terms of
decreasing model parameters.

At this point, transformers by themselves are very promising for longer gen-
erations due to audio representation, and it has some limitations such as being
good for instrument generation. Symbolic representations are preferable for
this paradigm due to its architecture and language approach. It considers the
task to be a language processing task, such as next-word prediction or machine
translation. As a result, RNNs, LSTMs, and transformers are all effective models
for the textual representation of music.

We also asked people to fill out a survey about how they felt after hearing the
noises we created. So, for the model text-to-music or text-to-sound, feelings can
be included in the training dataset by employing this type of information. So
they can be generated by feeling as well as by describing what kind of noises
they are. We were able to collect data on the sounds we created as well as how
people felt while listening.

For the following works, sound can be made using these emotions and possibly
in the future sense based on people’s experiences with their emotions and senses.
This model can now make audio with descriptions, but based on the information
obtained from individuals, it can also make sounds with emotions and later
reference senses that need to affect people’s perceptions.
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