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Abstract

Despite the expectation that increases in rainfall with climatic change will result in increases in
pluvial flooding, there is more historical evidence for decreases in flood magnitude in the La Vizza
basin. The small basin of La Vizza, in the Eastern Italian Alps, provides a clear example for this
type of trend divergence. In this basin, flood magnitudes are decreasing, despite increasing rainfall
extremes. In this thesis we investigate how changes in soil moisture and snow water equivalent
play a role in controlling the above divergence. Using catchment average precipitation and
temperature, and a continuous hydrological model able to specify soil moisture and snow water
equivalent at the start of each rainfall-runoff events, we aim to better understand the relative role
of the two drivers in controlling the trends in runoff events. Additionally, trends in annual maxima
of rainfall, annual maximum of runoff, mean annual temperature, antecedent soil moisture, and
antecedent snow water equivalent are scrutinized to provide a comprehensive understanding. The
study employs a hybrid approach, coupling the ICHYMOD model with the TOPMELT continuous
hydrological model to simulate antecedent soil moisture and snow water equivalent. A total of 944
rainfall-runoff events were selected between 1 October 1985 to 31 September 2018 (33-year
timeframe) for detailed analysis. Model outputs were compared with observed runoff at the La
Vizza outlet to assess model efficiency. Additionally, satellite-based MODIS snow cover area data
were incorporated for comparison using GIS analysis. The assessment of trend in antecedent soil
moisture and antecedent snow water equivalent, aligned with selected events and standards, was
conducted using the Mann-Kendall test and Sen slope statistical estimator. Results revealed
noteworthy trends. Annual maximum of rainfall demonstrated an upward trajectory, with a
maximum increase of up to 12.30% for rainfall duration of 30 minutes whereas annual maxima of
runoff was decreased by -12.4% for runoff duration of 5 minutes over a ten-year period. Mean
annual temperature depicted statistically significant rising trends, exhibiting an average increase
of 15.19% over a decade, equivalent to a rise of 0.49° Celsius. Conversely, antecedent soil moisture
and antecedent snow water equivalent indicate minor decreasing trends. The negative decreasing
trend in the runoff coefficient, antecedents snow water equivalent, and antecedents soil moisture
well explain the decreasing runoff peak. These results shed light on the role of antecedents’

conditions on runoff process.
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1. Introduction
Mountain catchments are integral components of hydrological systems, playing a pivotal role in

supplying water resources to downstream regions. However, they are exceptionally vulnerable to
the impacts of climate change, which can significantly alter the hydrological processes governing
their water supply (Moraga et al., 2021; Somers & McKenzie, 2020). Key contributors to the water
supply in mountainous areas are snowmelt and rainfall, making these catchments particularly
sensitive to variations in temperature and precipitation patterns (Day, 2009). The rapid
transformation of high mountain regions due to global warming raises concerns about the evolution
of natural hazards in these areas (Beniston et al., 2018; Musselman et al., 2017). Climate change,
as a principal driver of environmental transformation, exerts profound influence on hydrological
systems, particularly in alpine regions. In the Alps, atmospheric warming has been observed to
more than double the global mean value over the past 50 years (Bohm et al., 2001). The intricate
interplay between changing atmospheric conditions and hydrological processes underscores the

need for comprehensive investigations.

Climatic shifts, coupled with varying human impacts, emerge as the primary drivers of changes in
rainfall-runoff dynamics (Kliment et al., 2011). The indisputable influence of anthropogenic
activities on climate change is underscored by the Intergovernmental Panel on Climate Change
(IPCC) report (2013), which attributes a significant temperature increase of 0.89°C from 1901 to
2012 to human-induced factors (Umar et al., 2022). The response of streamflow to rainfall-runoff
events is influenced by various factors, including the characteristics of the events themselves, such
as their intensity, duration, and frequency (Guastini et al., 2019). Additionally, soil moisture
content in catchments plays a crucial role in modulating the rainfall-runoff response (Bronstert &
Bardossy, 1999; Zehe et al., 2005, 2010; Zehe & Bloschl, 2004). Understanding the spatial scale-
dependent variations in rainfall-runoff events holds promise in elucidating the main drivers behind
the temporal variability of streamflow responses in catchments of diverse sizes (Guastini et al.,

2019).

Moreover, event water contributions to streamflow have been found to be influenced by antecedent
soil moisture conditions, event size, and rainfall intensity (Penna et al., 2016). This highlights the
complex interplay between antecedent conditions and hydrological response. Antecedent soil

moisture has emerged as a pivotal factor governing the non-linear behaviour of runoff (Brocca et
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al., 2005; Penna et al., 2011; Radatz et al., 2013; Western et al., 2004; Zhao et al., 2015). The role
of antecedent soil moisture, however, appears to vary when analysing different metrics of
streamflow response. Although it is acknowledged as a critical driver of runoff generation in
mountain catchments in various studies (Brocca et al., 2009; James & Roulet, 2009; Massari et al.,
2014; Tayfur et al., 2014; Tramblay et al., 2010), its role in explaining the variability of response
metrics may differ, sometimes overshadowed by event rainfall (Merz & Bloschl, 2009; Uber et al.,

2018).

Trend analysis is considered to be a crucial tool in detecting and understanding the rainfall-runoff
mechanics in a long-term series of hydrological and meteorological data and the outcomes from
such analysis stand out promising in supporting the findings from the different forecasting
hydrological model for the planning and management of water resources (Kliment et al., 2011).
The assessment of trends in hydro-meteorological data offers a valuable avenue for evaluating the
influence of climate change on hydrological systems (Chen & Georgakakos, 2014; Darand et al.,
2015; Sa’adi et al., 2019). Projections indicate that climate change will likely induce significant
hydrological alterations, leading to shifts in trends and the recurrence intervals of extreme events
(Umar et al., 2022). Consequently, researchers have increasingly utilized statistical and stochastic
techniques to detect trends and alterations in hydrological time series across varying temporal

scales (Caloiero et al., 2011).

In recent years, amidst mounting apprehensions regarding the ramifications of climatic
fluctuations (IPCC, 2007), researcher have employed a diverse array of statistical and stochastic
methodologies to detect trends and transitions within hydrological datasets, across varying
temporal granularities (Caloiero et al., 2011). In the domain of hydrometeorological variables, such
as precipitation, nonparametric statistical tests have recurrently been enlisted to corroborate
findings already perceived via more conventional analytical techniques, including moving
averages and regression analysis (Bocchiola et al., 2002; Bradley, 1998; Kundzewicz & Robson,

2004).

Man-Kendall test is one of the popular method for the trend detection and is widely used in
different studies for the trend detection in the hydrometeorological variables around the world (e.g.
Arnbjerg-Nielsen, 2006; Bormann et al., 2011; Brazdil et al., 2012; Douglas et al., 2000; Gregersen
et al., 2013; Jurko et al., 2009; Korhonen & Kuusisto, 2010; Kysely, 2009; Madsen et al., 2009;
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Meilutyté-Barauskiené et al., 2010; Petrow et al., 2009; Petrow & Merz, 2009; Sadri et al., 2009;
Wilson et al., 2010 and others), renowned for its non-parametric nature, robustness, and
insensitivity to outliers (Chevuturi et al., 2018; Hirsch et al., 1993; Salas & Maidment, 1993). For,
this study, the trends has been assessed using the non-parametric Mann-Kendall test (Kendall,
1975; Mann, 1945) and the trend slopes has been determined by using Sen’s slope method (Sen,
1968).

The scientific community has long recognized the significance of extreme precipitation events in
shaping hydrological regimes. Analysing observed data, Madsen et al. (2014) reported a noticeable
increase in extreme precipitation across Europe. In regions marked by snowmelt-driven peak
flows, studies have documented declining trends in extreme streamflow and earlier spring
snowmelt peaks, likely attributable to rising temperatures (Madsen et al., 2014). Climate
projections further suggest a future marked by intensified extreme precipitation (Madsen et al.,
2014), posing substantial hydrological alterations such as shifts in flood magnitudes and early

spring floods in catchments with snowmelt-dominated peak flows.

Empirical studies in specific regions have provided insights into changing hydrological patterns.
For instance, investigations in Northern Italy revealed an increasing trend in annual maxima of
long daily rainfall series (Dallan et al., 2022; De Michele et al., 1998; Libertino et al., 2019;
Montanari et al., 1996), while further analyses covering a broader timespan demonstrated varying

trends in total annual rainfall, rainy days, and event intensity (Brunetti et al., 2001).

Despite the expectation that increases in rainfall with climatic change will result in increases in
pluvial flooding, there is more historical evidence for decreases in flood magnitude in the La Vizza
basin (Marcon, 2023). In this basin, flood magnitudes are decreasing, despite increasing rainfall
extremes. In this thesis we investigate how changes in soil moisture and snow water equivalent
play a role in controlling the above divergence. Using catchment average precipitation and
temperature, and a continuous hydrological model able to specify soil moisture and snow water
equivalent at the start of each rainfall-runoff events, we aim to better understand the relative role
of the two drivers in controlling the trends in runoff events (both volumes and peaks). With this
overarching objective, the thesis has the specific objectives of:

1. quantifying the diverging trends in annual maxima of rainfall and runoff events for the

study basin
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ii.  quantifying the snow cover area by means of the TOPMELT model and validating it by
using MODIS satellite images

iii.  quantifying the trends for event-generating precipitation, antecedent soil moisture, and
antecedent snow water equivalent and assess their role in controlling the trend in runoff

events.

While there has been research on the Italian Alps region regarding how frequent heavy
precipitation in the recent years (Borga et al., 2007) is determining trends runoff (Marcon, 2023),
the specific role of the initial conditions of soil moisture and snow water equivalent before the
events remain unexplored in the La Vizza basin. To address this gap, the integration of a
hydrological models, TOPMELT and ICHYMOD, along with the GIS, has been used in this study.
TOPMELT has been structured to simulate snowpack dynamics and its interplay with runoff,
whereas ICHYMOD has been employed for calculating streamflow behaviours. Through this
integration, the ability to analyse the influence of diverse initial conditions on runoff trends has
been facilitated. By employing the hydrological model TOPMELT, which incorporates snow and
glacier melt considerations, it has become possible to simulate the evolving dynamics of these
processes under varying initial conditions. This is exemplified in the examination of how differing
antecedent soil moisture levels impact responses related to snowmelt and runoff. The capacity of
TOPMELT to compute snow water equivalents and simulate their spatial distribution aids in
comprehending how distinct initial conditions govern the temporal and spatial characteristics of
runoff patterns. Conversely, the ICHYMOD hydrological model encompasses a wider spectrum of
runoff processes and effectively integrates the outcomes derived from TOPMELT, enabling an
assessment of their collective influence on streamflow. This comprehensive evaluation contributes
to an enhanced understanding of how initial conditions shape the hydrological response within the

La Vizza basin.
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2. Data and study area

2.1.Study area

This study centres on the small basin of La Vizza basin, which occupies a pivotal position within
the Upper Cordevole River system, nestled in the eastern Italian Alps. This basin finds its
geographical niche within the majestic Dolomite Mountains, an iconic feature of northern Italy's
landscape. More specifically, the study area is strategically situated in the western part of the
Livinallongo del Col di Lana commune, which falls under the administrative jurisdiction of the
Province of Belluno within the Veneto region. A visual depiction of this geographic alignment is

presented in Fig. 1, providing a cartographic snapshot of the study area's precise location.
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Fig 1: Location map of the study basin. Red polygons indicate the study basin.

The study basin, La Vizza encompasses a geographical area of 7.3 square kilometres, characterized
by altitudes ranging from 1843 to 3152 meters above sea level (a.s.l.). The average elevation of
the basin is 2342 m a.s.l., with about a quarter of the area lying above 2500 m a.s.l. In terms of

climate, the basin experiences notable fluctuations in monthly average temperatures. January
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marks the coldest period with an average of -5.7 °C, while July registers the warmest month with
a peak of 14.1 °C.

The predominant land cover in the La Vizza basin is alpine grassland, covering approximately 74%
of the total area. Shrubs account for 14% of the land cover, while rocks make up approximately
12%. The hydrological dynamics within the basin are significantly influenced by precipitation,
with an average annual precipitation of 1220 mm. The bulk of this precipitation takes the form of
snow during the winter months. Subsequently, the melting of this snow during the spring and
summer months assumes paramount importance as it contributes significantly to the water

resources of the rivers and streams that traverse the basin (Guastini et al., 2019).

Elevation (M)
0 0.25 0.5 1Kl
P 3125 @ Outlet m

- D La Vizza Basin —— Stream Network

Fig 2: Elevation map of Study basin. The red dots indicate the outlet of La Vizza.

Geologically, the basin is underpinned by two primary lithological formations. The Dolomia

Cassiana formation predominantly consists of dolomite, while the San Cassiano formation
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comprises a combination of carbonate and terrigenous sandstones and claystones. The soils in this
area exhibit a moderate depth and an acidic pH. These soils are rooted in silicatic-siltic parent
material, characterized by commendable drainage capabilities. Slopes within the basin exhibit two
prominent soil types—Leptsols in steeper terrains and Cambisols in regions with more gentle
gradients (Penna et al., 2017; Zuecco et al., 2018). These geological and soil attributes contribute
significantly to the overall hydrological behaviour and environmental characteristics of the La

Vizza basin offering crucial insights into the terrain's makeup and its hydrological implications.

2.2.Data and their sources
Basin topography is described by means of a DTM with a 25 m grid resolution (Fig.2).

Precipitation, temperature data, streamflow/discharge at hourly time intervals and annual maxima
of rainfall at 5 minutes intervals for the study basin are available from ARPAV (Agenzia Regionale
per la Prevenzione e Protezione Ambentale del Veneto) for the period of 33 years (1 October 1985
to 31 September 2018). The observed discharge is available at the stream-gauge station in
Cordevole Catchment at La Vizza for the study period. Precipitation and temperature data are
obtained from the 11 different weather stations (Table 1) in and around the study area. The weather

station, Passo Pordoi lies in the study basin which records both precipitation and temperature data

(Fig.3).

Table 1: Details of weather stations. Data columns represent the type of data viz precipitation (P)
and temperature (T) collected by corresponding station. Coordinates are in Monte Mario Rome
Italy (1) projection system.

S.N. Weather Station X-Coordinate | Y-Coordinate Data
1. Arabba 1720708 5153542 P, T
2. Caprile 1729697 5147256 P
3. Biois a Cencenighe 1728252 5137397 P
4, Falcade 1720777 5137469 P
5. Malga Ciapela 1723204 5145688 P
0. Passo Falzarego 1730654 5156004 P
7. Passo Pordo1 1716656 5151560 P, T
8. Fasso Valles 1715621 5135470 P
- _ Pescul 1735771 5147134 P
10. Selva d1 Cadore 1733595 5148836 P
- r1an Fedaia 1719830 5149000 P, T
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Fig 3: Location of the weather station. The yellow triangle indicates the weather station responsible
for collecting precipitation data whereas and yellow triangle with black triangle inside indicates
the weather station responsible for collecting both precipitation and temperature data.

Satellite observations-based MODIS snow cover area (SCA) data are available from the Institute
for Applied Remote Sensing, EURAC research centre in coordination with the Bolzano province.
It encompasses a comprehensive time span from 1 January 2003 to 31 December 2018. The data
was meticulously curated at a spatial resolution of 250 meters. Notably, this endeavour hinged on
the application of an algorithm grounded in MODIS observations, an approach pioneered by
Notarnicola et al. (2013a, 2013b). The algorithm's efficacy lies in its capacity to generate MODIS
maps that convey the categorical presence of snow, clouds, non-snow conditions (bare land), or
water bodies, attributing these attributes to individual or clusters of pixels. Out of a collective of
374 corresponding pre-event instances, we have culled 326 pre-event MODIS images. These
selected images boast a commendably low cloud cover percentage, clocking in at under 10%. This
judicious selection paves the way for our rigorous analysis of the initial state of snow cover area

(SCA) preceding each event.
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3. Methods

3.1.Methodology for rainfall-runoff (rr) events selection
The purpose of rainfall-runoff events selection is to understand how the catchment responds to

rainfall inputs. Rainfall-runoff event classifications serve as valuable tools for enhancing our
comprehension of catchment hydrological dynamics (Gelmini et al., 2022). In the context of this
study, the analysis encompasses rainfall-runoff events occurring October 1985 and September
2018. The selection of these events is predicated upon the application of specific criteria, aligning
with standards used by Guastini et al. (2019). The listed criteria entail the following conditions:
a) a total event precipitation equal or larger than 5 mm,

b) two events were separated by at least 6 h with no precipitation (Guastini et al., 2019; Penna et
al., 2011),

c) events with a difference between streamflow peak (Q peak) and streamflow (Q) at the beginning
of the event below 0.01mm/h are excluded. This was done by using constant-k method proposed
by Blume et al. (2007).

For the chosen rainfall-runoff events, a comprehensive set of attributes was calculated. These
attributes encompassed the duration of the rainfall, the cumulative precipitation, the average and
maximum precipitation intensity, prevailing antecedent soil moisture and the streamflow peak

(Table 2).

Table 2: Matrices used in the study for describing the rainfall-runoff events.

S.N. Metrics
1. Cumulative precipitation (mm)
2. Precipitation duration (h)
3. Average precipitation intensity (mm/h)
4. Maximum precipitation intensity (mm/h)
5. Runoff peak (m?/s)
6. Antecedent soil moisture
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3.2.The hydrological model

3.2.1. TOPMELT and its integration into ICHYMOD

TOPMELT is an enhanced temperature-index based distributed continuous hydrological model for
snowpack simulation that helps us understand how snow and glaciers melt (Zaramella et al., 2019).
In other word, TOPMELT i1s a model that simulates how snow and ice melt in a mountain basin
using temperature and solar radiation as inputs. To do this, it divides the basin into smaller areas
based on their elevation and how much sunlight they receive. Higher areas are colder and lower
areas are warmer, so elevation affects how fast snow and ice melt. Sunlight also affects melting,
because more sunlight means more heat. TOPMELT uses a number of classes to group areas with
similar sunlight levels. TOPMELT can calculate how much snow and ice melt in each class for
each elevation band. Some areas may have glaciers, which are large masses of ice that move
slowly. TOPMELT keeps track of how much glacier area there is in each class and elevation band,
because glaciers melt differently than snow. The smaller the areas are, the more accurate the model
is, but also the more time and resources it takes to run it. TOPMELT tries to balance accuracy and

efficiency by choosing the right number of classes and elevation bands.

TOPMELT is based on the ICHYMOD hydrological model (Norbiato et al., 2008), which is a
semi-distributed model that divides the basin into sub-basins and uses a lumped approach for each
sub-basin. The ICHYMOD hydrological model is a tool that helps us understand how water flows
through a river basin. It integrates TOPMELT model to simulate the movement of water from
snowmelt and rainfall through the soil and into the river. The model has three parts: a snow routine,

a soil moisture routine, and a flow routine which has been used for the purpose of this work.

The snow routine simulates how snow melts and turns into water. The snow routine in [CHYMOD
represents snow accumulation and melt using a distribution function approach based on a
combined radiation index degree-day concept (Norbiato et al., 2008). The degree-day method is a
simple way to estimate the amount of snowmelt based on the air temperature. It assumes that the
snowmelt is proportional to the difference between the air temperature and a base temperature,
which is usually zero degrees Celsius. The proportionality constant is called the degree-day factor
and it depends on the characteristics of the snow and the environment. The snow melt rate (M) is

computed using the following equation:

10| Page



BT, = Tp), Ty > T,
M={, T > (1)

Where M is the melt rate (mm/h), Th is the hourly mean temperature (°C), To is a threshold
temperature beyond which melt is assumed to occur (°C), fm is a melt factor and EI is an energy
index which represents the potential radiation energy (variable in time) for a given site in the basin
(J/m*h). This energy index is based on factors like the angle of the sun, how clear the sky is, the

elevation of the area, which way it faces, and how steep it is.

The soil moisture routine describes how water is stored in the soil and how it moves through the
ground. The soil moisture is calculated based on the probability distributed model (PDM) of the
storage capacity, c, as described by Moore (2007) as following:

F@=1-(1 + =) @)

Cmax

Where Cmax is the maximum soil water storage capacity per unit area, and parameter b is a Pareto
exponent which controls the degree of spatial variability of storage capacity over the basin. The

value of b is related to the spatial distribution of soil types and land use within the basin.

The flow routine calculates how water flows through the river basin. The model also considers
how much water is lost due to evaporation and plant transpiration. The ICHYMOD model's
streamflow routine, is designed to calculate the flow of water throughout the entire catchment area.
It does this by considering two essential factors: the geographical layout of the land (topography)
and the soil's hydraulic properties. This integrated approach provides a comprehensive
understanding of the movement of water within the basin, taking into account both natural features

and the characteristics of the soil.

3.2.2. Model validation
The model validation process involved a rigorous comparison between the simulated data

generated by the model and the actual data observed in real-world scenarios. In this study, our

focus was directed towards two critical types of data: outflow and snow cover area. The simulated
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outflow values were meticulously cross-referenced with the measured discharge data collected at
the La Vizza outlet throughout the study's duration. Similarly, we evaluated the congruence
between the simulated snow cover area produced by the model and the satellite-derived snow cover
data captured by MODIS observations. This comprehensive validation process was undertaken to
ensure that the model's predictions were consistent and reliable in representing the real-world

hydrological dynamics.

A normalized statistic, Nash-Sutcliffe efficiency (NSE) proposed by Nash & Sutcliffe (1970) is
used in this work for comparing simulated and observed parameter. It assesses how closely a
model's predictions align with real-world data. NSE serves as a valuable tool for evaluating the
model's predictive accuracy by comparing its projections to actual outcomes. It quantifies the
degree of fit between the model's projected values and the actual observations, represented by a

line on a graph.

Bias is also calculated which is crucial in assessing the efficiency of a hydrological model as it
provides insights into the systematic errors or deviations in the model's predictions. Bias refers to
the consistent overestimation or underestimation of the model's output compared to the observed

data.

In this work, Nash-Sutcliffe efficiency (NSE) and bias are calculated for outflow and snow cover

area by using the following statistics:

YN | (OBS;—SIM;)2
NSE =1~ v ossomsy? ®)

¥R, (SIM;-OBS))

Bias = >N 0Bs, 4)

where OBSi and SIM; are the observed and simulated parameter at time 1, respectively, OBS 1is the

average value of the observed parameter and N is the number of observations.

The ideal values for bias and Nash—Sutcliffe efficiency (NSE) are 0 and 1, respectively. An NSE
value of 1 signifies a perfect match between the model's predictions and the observed data, while

an NSE value of 0 indicates that the model's predictions are equivalent to the average of the
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observed data. NSE values falling between negative infinity and 0 suggest that the observed data's

average provides better predictions than the model.

3.3.Trend analysis

Trend analysis in hydrometeorology serves as a valuable tool for unravelling the intricate
interactions between climatic shifts and hydrological processes within a mountain basin (Kliment
et al., 2011) is crucial for comprehending the hydrological dynamics of a basin due to its capacity
to unveil long-term shifts and patterns in climatic and hydrological variables. By examining trends,
we can identify significant changes in hydrometeorological variables. In this study trend analysis
are done for the variable such as annual maxima of rainfall, annual maxima of runoff, mean annual
temperature, antecedent soil moisture conditions and antecedent snow water equivalent at annual
and seasonal time scale. This analysis helps us understand the evolving behaviour of these
variables, their potential impacts on the basin's water resources and reasons for the divergence

trends in rainfall-runoff events.

In the field of hydro climatology, methods for identifying significant trends in time series data can
be categorized into two main types: parametric and non-parametric approaches (Gocic &
Trajkovic, 2013). Parametric tests demand that the data is both independent and follows a normal
distribution, while non-parametric tests only necessitate data independence. In the context of this
study, two non-parametric methods, namely the Mann-Kendall test and Sen's slope estimator, are
employed to identify trends in hydrometeorological variables. These methods offer robust trend
detection capabilities and are particularly suitable for analysing the intricate dynamics of the

dataset.

3.3.1. Man-Kendall test

The Mann-Kendall test, also known as the Kendall's tau test, is a non-parametric statistical test
widely used to detect trends within hydrometeorological variables with time series data (Birsan et
al., 2005; Brabets & Walvoord, 2009; Diop et al., 2018; Kliment et al., 2011; Soltani et al., 2013;
Umar et al., 2022; Wu & Qian, 2017) has been used in this study. It assesses whether there is a
monotonic increasing or decreasing trend in the data over time. The test statistic S for the Mann-

Kendall test (Kendall, 1975; Mann, 1945) is calculated using the following formula:

13|Page



n—1
n

S=Y X sgn(x—x) (5)
. j=i+1
i=1
Where, n is number of observations, xjand xi are the rank of the k™ and i observation respectively
where j>1 and sgn(xj- xi ) is sign function given by:

+1, iij—xi>0

sgn(x —x;) ={ 0, if xj — x; = 0} (6)
-1, fo]— Xi<0

The variance is calculated using the following formula:

Var(S) = (n—l)(2n+5)—2i1=81 t;(£;—1)(2t;+5) o

Where, the symbol "n" signifies the total number of data points, "m" represents the count of tied
groups within the dataset, with each tied group consisting of data points that share the same value.
The variable "ti" signifies the number of ties within each tied group of a particular extent "i". For
sample size greater than 10 (n>10), the calculation of the standard normal test statistic denoted as

"Zs" is performed using Equation (8).

s-1 .
N ifS>0
, ifS<0
Zs= 0, s41 ifS=0(8){ Vvar®

The underlying principle of the Mann-Kendall test involves testing the null hypothesis (Ho), which
asserts the absence of a significant trend within the dataset. The rejection of the null hypothesis
implies the presence of a considerable trend within the data series. The process of testing these
trends is conducted at a specified significance level denoted as "o." When the calculated value of
Zs exceeds a critical value, the null hypothesis is rejected. This indicates the existence of a

statistically significant trend within the time series under examination. The critical value is derived
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from the standard normal distribution table. In this study, level of significance (a) of 5% 1is
considered for the Man Kendall statistics test. At a significance level of 5%, the null hypothesis

of no trend is rejected if the absolute value of | Zs | exceeds 1.96.

Positive values of the standard normal test statistic, Zs, hold significance in the context of trend
analysis. These positive values point towards increasing trends within the examined time series
data. Conversely, when Zs assumes negative values, this suggests the presence of decreasing trends

in the data.

3.3.2. Sen slope estimator
The Mann-Kendall test serves the purpose of determining whether a significant trend exists within

a dataset. It answers the question of whether any noteworthy trend, whether upward or downward,
can be identified. However, the test itself does not provide information about the magnitude of the

detected trend.

To address this aspect, another technique known as Sen’s slope estimator, a non-parametric
procedure is applied. This method, developed by Sen (1968), is employed to calculate the actual
magnitude of the trend observed in the dataset. For a given dataset containing N sample pairs, the
slope representing the magnitude of the trend is computed using a following formula:

Q=% fori=1,...,N ©)

In equation 9, the terms X;j and xx correspond to the data values associated with distinct time indices
denoted as 'j' and 'k', respectively. 'j' refers to a particular time, while 'k’ represents an earlier time

point.

In case where there is only a single data value for each time period, the total number of paired

n(n—-1)

samples, N = ; n is the number of time periods. For multiple observation in one or more

n-D Js used.

time periods, N <

After obtaining the 'N' values of Qi, they are organized in ascending order from the smallest to the
largest. Subsequently, the median of the slopes, often referred to as Sen's slope estimator, is

computed from these ordered values by using following formula:
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Q[E]» if Nis odd
2
Qmed = {Qg]+Q{J¥] } (10)

- , if N is even

The sign of Qmed represent the trend exhibited by the data, while its magnitude signifies the degree

of the trend's steepness.

3.4. Remote sensing tools for snow cover area calculation and MODIS image
selection for validation
Based on remote sensing tools, satellite observations-based MODIS snow cover area (SCA) data

are available from the Institute for Applied Remote Sensing, EURAC research centre. These
records are generated by amalgamating snow maps derived from both MODIS Terra and Aqua
sensors (Gafurov & Bardossy, 2009; Molg et al., n.d.; Wang & Xie, 2009). It is important to note
that these sensors operate with different acquisition modes and times, with Terra acquiring data in
the morning in descending mode and Aqua collecting information in late morning or afternoon in
ascending mode. This variation in acquisition times results in reduced cloud coverage and fewer
pixels devoid of valuable data, owing to distinct lighting conditions and satellite viewing angles.
In the context of this study, the EURAC centre provides MODIS snow cover area (SCA) data,
which is based on the algorithm developed by Notarnicola et al. (2013a, 2013b). This algorithm

offers categorical SCA data at a spatial resolution of 250 meters, as delineated in Table 3.

Table 3: EURAC MODIS product description.

S.N. MODIS product EURAC code
1. Not detected 0
2. Snow 1
3. No Snow/bare land 2
4. Cloud 3
5. Surface water body 5

34.1. Fractional snow cover area calculation
To verify the accuracy of the model's simulated fractional snow cover area derived from the

TOPMELT algorithm, a comparison was made with the satellite observations-based MODIS snow
cover area (SCA). In line with the methodology employed by Di Marco et al. (2020), the MODIS
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snow cover area was also converted into fractional snow cover area. This conversion process
involves calculating the ratio between the number of pixels identified as snow-covered and the
total count of pixels, excluding those obscured by clouds. This relationship is expressed through
Equation 11.

fSCA = —snow (11)

Ntot—Nciouds

where, Nsnow represents the count of pixels indicating snow cover in the MODIS dataset, Niot
signifies the total number of pixels encompassing the entire catchment area, and Nciouds accounts

for the pixels identified as clouds by the MODIS classification.

3.5.Method for selection of MODIS SCA for validation with model simulated
SCA

To enhance the accuracy for validating the simulated snow cover area (SCA) with real ground
data, specific criteria are employed to refine the satellite-based MODIS images. These criteria are
designed to closely approximate the actual snow cover area on the ground. The following

conditions are applied to refine the MODIS images:

1. Select MODIS image before the rainfall-runoff event with cumulative precipitation less
than 10 mm of rainfall. This selection criteria based on the understanding that intense
rainfall exceeding 10 mm has the potential to induce snowmelt, thereby distorting the
accurate representation of the actual snow cover conditions preceding the rainfall-runoff

event.

il. Select MODIS image with least possible cloud coverage before the rainfall-runoff event.
This approach is adopted to reduce the potential overestimation of Snow-Covered Area
(SCA) that could result from the inclusion of cloud-covered regions in the calculation. In
pursuit of this, MODIS images taken up to one week prior to the rainfall event are examined

thoroughly.
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4. Results

4.1.Rainfall-runoff events
To examine how the catchment responds to rainfall and the role of soil moisture in the runoff

process, a total of 944 rainfall-runoff events were selected between 1985 and 2018 using the
criteria described in section 3.1 of the methodology. Out of these 944 rainfall-runoff events, 512
occurred between the years 2003 and 2018, during which MODIS images of snow cover area were

available for comparison and validation of the results.

4.2.Model validation

The model's accuracy was assessed through a comparison of its simulated results with real-world
observations. This evaluation was conducted by employing the Nash-Sutcliffe efficiency (NSE)
and bias calculations, as outlined in section 3.2.2 of the methodology. In this study, two key

parameters, namely runoff and snow cover area, were utilized to gauge the model's effectiveness.

For the entire study period, the NSE and bias values for the runoff were computed and yielded
values of 0.48 and -0.0041, respectively. An NSE score of 0.48 indicates a moderate level of
agreement between the model's predictions and the actual observed runoff data. Similarly, a bias
value of -0.0041 suggests that the model's predictions do not exhibit significant overestimation or

underestimation tendencies when compared to the observed data.

For the snow cover area assessment, the NSE was calculated specifically for the period spanning
from 2003 to 2018, while excluding summer events. The value for NSE was found to be 0.31
signifying a moderate agreement between the model's predictions and the actual observed snow
cover area data. The reduction in the Nash-Sutcliffe Efficiency (NSE) value could potentially be
attributed to the disparity in temporal resolution concerning the snow cover data. In the context of
the MODIS observation, a solitary instance of snow cover area data is acquired within a day, as
opposed to the model-generated dataset which encompasses 24 distinct snow cover data points.
This incongruence in temporal data granularity may plausibly account for the observed decrement

in the NSE, specifically in relation to the representation of snow cover area.
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4.3.Trend analysis

The assessment of trends was conducted on various variables, including the annual maxima of
rainfall, the annual maxima of runoff, mean annual temperature, antecedent snow water
equivalent, and antecedent soil moisture. This analysis encompassed both annual and seasonal
timeframes and was carried out using the non-parametric Man-Kendall test at , a significance level

(o) of 0.05 and Sen slope estimator, following the methodology described in section 3.3.

4.3.1. Trends in annual maxima of rainfall
The application of Mann-Kendall and Sen's slope statistical tests reveals a mix of positive,

negative, and no trends in the annual maxima of rainfall. Notably, a prevailing increasing trend

has been detected in the annual maxima for a significant portion of rainfall durations (Annex 1).

In Fig 4, only trends in the annual maxima of rainfall for three weather stations is shown for the
annual maxima of rainfall at 15 minute, 30 minute, 45 minute, 1 hour, 3 hour, 6 hour, 12 hour and

24 hours duration.
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Fig 4: Trends in the annual maxima of rainfall. Red, blue, green line indicate the presence of trends
while black line indicates no trend in annual maxima. Among these, both the red and green trend
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lines signify increasing trends, with the green trend line being statistically significant (at 0=5%).
On the other hand, the blue line depicts statistically insignificant decreasing trends.

Out of the total trends identified in the annual maxima of rainfall for various durations,
approximately 76% exhibit positive trends (Fig. 5), indicating an increase over time. Conversely,
about 23% demonstrate negative trends, signifying a decrease, while around 1% exhibit no trend.
Notably, among all the detected trends, only 25% are statistically significant, and interestingly, all
of these significant trends are positive, indicating a noteworthy and consistent increasing trend in

the annual maxima of rainfall.

Insignficant
Trend 75%

M Positive Trend m Negative Trend = No Trend

Fig 5: Percentage of trends in the annual maxima of rainfall for various duration of rainfall. Red,
blue, and grey colour section indicates respectively the presence of positive, negative and no trends
in annual maxima of rainfall.

The analysis has identified statistically significant increasing trends in the annual maxima of
rainfall for various durations, specifically at intervals of 5 minutes, 10 minutes, 15 minutes, 30
minutes, 45 minutes, 1 hour, and 3 hours, consistently observed across multiple weather stations.
Notably, the most prominent increase, reaching up to 12.30%, is seen in the annual maxima of
rainfall for a 30-minute rainfall duration over a span of 10 years (Fig. 6). This significant finding
underscores a clear pattern of rising annual maxima for shorter rainfall durations, which becomes

evident when considering the data presented in Annex 2.
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Fig 6: Average percentage change in significant annual maxima duration in a decade time.

4.3.2. Trends in annual maxima of runoff
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Fig 7: Trend in the annual maxima of runoff
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The analysis has identified statistically significant decreasing trends in the annual maxima of

runoff peak (Fig. 7). This analysis revealed a decrease of -10.7% in the annual maxima of runoff
in a decade.

4.3.3. Trends in mean annual temperature
Upon subjecting the data to Mann-Kendall and Sen's slope statistical tests, a robust pattern of

statistically significant increasing trends in the mean annual temperature is found across all the
weather stations (Annex 2). This noteworthy observation is vividly represented in Fig.7,
illustrating a consistent increase in the mean annual temperature within the study basin. This
finding provides a clear and compelling elucidation of the progressively rising mean annual

temperature in the vicinity of the study area.
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Fig 8: Scatter plot with trends in the mean annual temperature. Red trend line indicates
statistically significant positive trend.

Across the given weather stations, there is a notable range in the increase of mean annual
temperature, ranging from 12.34% to 19.37% over a span of 10 years (Fig. 8). To derive a
comprehensive perspective, the average mean annual temperature increase has been calculated by

computing the mean of observed temperature increments. This calculation yields a significant
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value of 15.19% rise over a decade, equivalent to a rise of 0.49 ° Celsius. This analysis effectively

captures the overall trend of temperature escalation within the designated timeframe.
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Fig 9: Percentage change in the mean annual temperature for 10 years’ time

4.3.4. Trends in antecedents SWE at annual and seasonal timescale
A negligible negative trend has been found for the antecedent Snow Water Equivalent (SWE) at

the annual timescale (Fig 10). However, when shifting the focus to the seasonal timescale, a
distinct pattern emerges. Notably, a marked positive trend, characterized by a significant
magnitude, becomes apparent for the winter season. In contrast, significant negative trends is
observed for the spring season, while smaller negative trends are detected for the autumn period.
Intriguingly, no discernible trend is identified for the summer season, as shown in Fig 11. It is
crucial to highlight that, upon closer inspection of statistical significance (as detailed in Annex 3),
the previously noted positive trend for the winter season is deemed insignificant. When this factor
is taken into consideration, the analysis conclusively indicates the presence of decreasing trends

in the Snow Water Equivalent.
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Fig 10:Scatter plot with trend in antecedents SWE at annual timescale
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Fig 11: Scatter plot with trend in antecedents SWE at seasonal timescale. Red trend line indicates
increasing trend and blue trend line indicates decreasing trend and black line indicates no trend.

When examining the antecedent snow water equivalent, a markedly positive trend during the
winter season indicates substantial snowpack accumulation. This could be the result of increased

snowfall or reduced melting rates but since there is limited data point in the winter, there could
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also be no trend as well. Conversely, substantial negative trends during spring suggest rapid
snowpack depletion, potentially due to warmer temperatures and accelerated snowmelt. Smaller
negative trends in autumn indicate a gradual reduction in snow water equivalent leading up to
winter. Notably, no discernible trend in summer implies that there is no significant accumulation

or reduction in snow water equivalent during this season.
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Fig 12: Percentage change in antecedents SWE in a decade
When considering statistics, a striking finding surfaces: a noteworthy and statistically significant
decrease in the antecedent Snow Water Equivalent (SWE) is evident across both annual and
seasonal timescales (Annex 4). The most prominent decline in the antecedent SWE by 24.46% has
been found, specifically within the spring season, over a decade-long span (Fig. 12). This result
underscores a significant alteration in the snow water equivalent, emphasizing the pronounced

shift observed in the springtime SWE dynamics.

4.3.5. Trends in antecedent SM at annual and seasonal timescale
At the annual timescale, a negligible negative trend is discernible in the antecedent soil moisture

(Fig. 13). Upon shifting the focus to the seasonal timescale, distinct observations emerge. Notably,

positive trends are detected for the summer, winter, and autumn seasons, while conversely, a
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negative trend is identified for the spring period, as visually depicted in Fig. 14. It is essential to
emphasize that, upon closer scrutiny (Annex 4), all of these identified trends lack statistical
significance at the 5% level of significance. This underscores that the observed variations in

antecedent Soil Moisture, although noticeable, do not attain a level of statistical significance within

the specified confidence interval.
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Fig 13:Scatter plot with trend in antecedents SM at annual timescale. Blue trend line indicates
decreasing trend.

Winter g Spring . Summer . Autumn

=
=]
@

0.8

ge °°
Q o gme
°

o® =
5%
2o

of

®
°
@

Antecedent SM (-)
7 8%
o'. Seo

=
o

0.6,

=
S

04

=
[\

0.2 0.2/ 0.2

et |t el R ——
1990 2000 2010 2000 2015 2000 2015 2000 2015

Fig 14: Scatter plot with trends in antecedents SM at seasonal timescale. Red trend line indicates
increasing trend and blue trend line indicates decreasing trend.
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During summer, winter, and autumn, positive trends in antecedent soil moisture suggest that the
soil tends to retain more moisture over time, potentially due to factors like increased rainfall or
reduced evaporation. However, the limited numerousness in winter hinders the understanding of
soil moisture trends. Conversely, the negative trend in antecedent soil moisture during spring
implies a drying trend leading up to this season, possibly attributed to factors such as increased

evaporation or decreased precipitation in preceding months.
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Fig 15: Percentage change in antecedents SM in 10 years’ time

Over a span of 10 years, an intriguing pattern has emerged within the antecedent Soil Moisture
(SM) dynamics, as illustrated in Fig. 15. The maximum increase, reaching 5.74%, is in the
antecedent SM in winter, while the maximum decrease of 2.63% is in the spring season. Although
none of these trends exhibit statistical significance, it's worth noting that the spring trend comes
closest to being statistically significant, with a p-value of 0.08. This finding highlights the notable
fluctuations in soil moisture content within the specified timeframe, underscoring the dynamic

nature of the studied parameter.
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4.3.6. Trends in event characteristics
The study examined trends in event attributes like cumulative precipitation, average precipitation

intensity, streamflow peak, and runoff coefficient. The analysis employed statistical methods

including Man-Kendall statistics and the Sen slope estimator. The objective was to gain insights

into how these event characteristics contribute to shaping the trends observed in runoff events.
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16: Scatter plot with trend in event characteristics in (a) cumulative precipitation, (b) average

precipitation intensity, (c) streamflow peak, (d) runoff coefficient. Red and blue trend line indicate
positive and negative trend respectively.

The analysis conducted using the statistical methods of Man-Kendall test and Sen slope estimator

for event characteristics yielded important insights. These findings indicated the presence of

significant positive trends in cumulative precipitation and average precipitation intensity.

Conversely, negative trends were observed in both streamflow peak and runoff coefficient, as

illustrated in Fig. 16. However, it's essential to emphasize that the observed negative trend in

streamflow peak did not attain statistical significance at the specified significance level () of 0.05

(Annex 5).

An examination of the data revealed a notable rise in cumulative precipitation by 3.62% and in

average rainfall intensity by 4.81% over a span of ten years within the context of rainfall events.
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On the contrary, for the same period, a decline of 2.8% in streamflow peak and 3.5% in runoff

coefficient was observed (Fig 17).
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Fig 17: Percentage change in event characteristics in a decade

5. Discussion

5.1.Trend divergence in annual maxima of rainfall and annual maxima of

runoff
A positive increasing trend in the annual maxima of rainfall, as reported in section 4.3.1 of the

results, aligns with studies conducted by De Michele et al. (1998) and Montanari et al. (1996) for
northern Italy. Similar findings were demonstrated in the study carried out by Madsen et al. (2014)
for Europe. The findings from another study by Caloiero et al. (2011) also support the increasing

trend in annual maxima of rainfall.

Negative decreasing trend results emerged in the context of annual maxima of runoff, as reported
in section 4.3.2 of the results, aligned with the study conducted by Mason (2023) for the La Vizza
basin. This result is also supported by the study of Madsen et al. (2014), which indicates a
decreasing trend in annual maxima of runoff. This trend was also evident in other studies from

regions dominated by snow in Europe.
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The increasing trend in annual maximum rainfall suggests that the region is experiencing more
intense rainfall events, as evident from section 4.3.6 of the results. This can lead to higher water
input into the river systems. However, the decreasing trend in annual maxima of runoff implies
that this increased rainfall is not translating into an equivalent increase in river discharge. This
discrepancy could be due to various factors affecting hydrological processes, but in this study, we
tried to understand the role of the antecedent SWE and soil moisture conditions on the runoff
generation. The trend analysis of antecedent snow water equivalent and antecedent soil moisture
conditions, both on an annual timescale from sections 4.3.4 and 4.3.5 of the results respectively,
indicates that snow water equivalent is significantly decreasing, while soil moisture is decreasing
negligibly. The reduction in snow water equivalent (SWE) correlates with a decrease in the
snowpack, resulting in a decreased volume of meltwater for runoff generation in snow-dependent
regions. This process involves decreased snow accumulation during winter, with the subsequent
warming in spring initiating the snowmelt, which contributes significantly to streamflow. Lower
SWE translates to a reduced snowpack available for meltwater, thus diminishing the volume of

meltwater entering watercourses and subsequently decreasing the runoff peak.

From the trend analysis of mean annual temperature from sections 4.3.3 of the result, it is evident
that temperatures are consistently increasing. The calculation yields a significant value ofa 15.19%
rise over a decade, equivalent to a rise of 0.49°C in mean annual temperature. The increasing trend
in mean annual temperature, as evident from this study, has implications for changing water
dynamics in the basin due to melting snow cover. The melting of snow cover, primarily attributed
to increasing temperatures, reveals a cascade of hydrological consequences. Snow meltwater,
which plays a pivotal role in sustaining streamflow during warmer months, indicates shifts in
timing and magnitude of runoff. Consequently, alterations in the availability of meltwater would
have significant impacts on runoff patterns, accentuating the observed divergence between rainfall

and runoff trends.
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5.2.Trends in hydrometeorological variables and influence of antecedent’s snow
water equivalent and antecedent’s soil moisture in runoff process

The implications of the observed trends in cumulative precipitation, average precipitation intensity,
streamflow peak, and runoff coefficient, as determined by the Man-Kendall test and Sen slope
estimator, are significant when considering the role of antecedent soil moisture (slightly
decreasing) and antecedent snow water equivalent (significantly decreasing in spring) in runoff

events.

The result obtained as in section 4.3.6 for rainfall intensity shows increasing trend in the rainfall
intensity which is in the line with the study conducted by Brunetti et al. (2001) for the northern
Italy. The increasing trend in the rainfall intensity was also demonstrated in the study conducted
by Caloiero et al. (2011). The notable increase in cumulative precipitation (3.62%) and average

rainfall intensity (4.81%) over a decade indicates a changing precipitation pattern.

The observed decline in streamflow peak (2.8%) and runoff coefficient (3.5%) over a decade
justify a reduction in the magnitude of runoff generated from rainfall events as obtained in the
section 4.3.2 of the result. This could be due to various factors, one of which is antecedent soil
moisture. Since, the trend in the soil moisture content before a rainfall event is decreasing, the soil
can absorb more of the incoming precipitation, reducing the immediate generation of surface
runoff in the future. As such, changes in antecedent soil moisture can influence the runoff response

to rainfall.

While there's a negligible decrease in antecedent SWE, it's important to note that changes in
snowpack dynamics can significantly affect runoff, especially in regions where snowmelt is a
significant contributor to streamflow like La Vizza basin. Changes in SWE can influence the
timing and magnitude of snowmelt runoff. Even small changes can impact the overall hydrological

regime, affecting the availability of water during different seasons.
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6. Conclusion
The assessment of trends in rainfall-runoff events in the La Vizza mountain basin has yielded

valuable insights into the changing hydrological dynamics of the region. Notably, there is a clear
divergence between the trends in annual maxima of rainfall and annual maxima of runoft. While
annual maxima of rainfall have exhibited a significant upward trajectory, annual maxima of runoff
have experienced a marked decrease over the same period. This divergence between increasing
rainfall and decreasing runoff suggests that the hydrological response to precipitation events is

undergoing notable changes.

The analysis of hydrometeorological variables, including cumulative precipitation and average
rainfall intensity, indicates a shifting precipitation pattern characterized by more intense rainfall
events. These changes, combined with the decreasing trend in antecedent soil moisture, imply that
initial soil conditions are becoming drier before rainfall events. This, in turn, can lead to increased
infiltration capacity, reduced surface runoff. Moreover, the observed trends in antecedent snow
water equivalent underscore the significance of snowpack dynamics in influencing runoff patterns,

particularly in regions largely dependent on snowmelt for streamflow.

In light of these findings, several recommendations emerge. Firstly, there is a pressing need for
further research to understand the multifaceted factors influencing these trends, including land use
changes, evapotranspiration rates, and soil properties. The use of hydrological models like the
ICHYMOD and TOPMELT has proven valuable in understanding the role of initial conditions of
parameters like soil moisture and snow water equivalent in runoff events in absence of observed
data. Further refinement and application of such models can enhance predictive capabilities and

inform sustainable water resource management practices.
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Appendix
Annex 1: Statistics for annual maxima of rainfall. * indicate statistically significant trend at
level of significance (a)= 0.05

Weather Station Stat Max Smin Max 10min Max 15min Max 30min Max 45min Max lh Max 3h Max 6h Max 12h Max 24h
Sen_slope_1d  0.00018  0.00027 0.00043 0.00064 0.00062 0.00057 0.00074 0.00037 0.00034 0.00000
p_value 0.04 * 0.04 * 0.01 * 0.00 * 0.01 * 0.01 * 0.00 * 031 0.65 0.99
Arabba Mean 5.80 9.07 11.37 15.34 17.74 1927 2975 41.87  60.66 77.21
Sen_10y 0.67 1.00 1.55 2.33 227 2.08 2.71 1.33 1.23 0.00
Sen 10y perc (%) 11.49 11.02 13.67 15.20 12.77 10.77  9.12 3.18 2.03 0.00
Sen_slope_1d  0.00003  0.00008 0.00015 0.00027 0.00035 0.00028 0.00027 0.00008 -0.00021 0.00004
p_value 0.59 0.54 0.39 0.29 0.22 0.30 0.24 0.90 0.57 0.98
Caprile Mean 6.48 10.25 12.67 16.52 18.32 19.76 3056 4259  60.36 79.30
Sen 10y 0.12 0.29 0.53 1.00 1.29 1.04 1.00 0.30 -0.75 0.13
Sen 10y perc (%) 1.93 2.78 4.21 6.05 7.06 5.24 3.27 0.70 -1.24 0.17
Sen_slope_1d  0.00013  0.00025 0.00011 -0.00005  -0.00004  -0.00025 -0.00053 -0.00185 -0.00160 -0.00175
p_value 0.31 0.40 0.76 0.87 0.94 0.53 0.59 0.34 0.51 0.69
Biois a Cencenighe Mean 6.16 9.68 11.42 14.93 18.34 2048 3843  60.62  90.46 120.79
Sen_10y 0.47 0.90 0.40 -0.18 -0.14 -0.91 -1.94 674 583 -6.38
Sen_10y_perc (%) 7.66 9.28 3.50 -1.18 -0.78 -4.45 -5.05  -11.12 -6.44 -5.29
Sen_slope_1d  0.00013  0.00025 0.00011 -0.00005  -0.00004  -0.00025 -0.00053 -0.00185 -0.00160 -0.00175
p_value 0.31 0.40 0.76 0.87 0.94 0.53 0.59 0.34 0.51 0.69
Falcade Mean 6.16 9.68 1142 14.93 18.34 2048 3843  60.62  90.46 120.79
Sen_10y 0.47 0.90 0.40 -0.18 -0.14 -0.91 -1.94 674 583 -6.38
Sen 10y perc (%) 7.66 9.28 3.50 -1.18 -0.78 -4.45 -5.05  -11.12 -6.44 -5.29
Sen_slope_1d  0.00018  0.00024 0.00024 0.00026 0.00032 0.00033 0.00039 0.00059 0.00058 0.00025
p_value 0.02 * 0.10 0.16 0.27 0.21 0.20 0.17 0.15 0.50 0.81
Malga Ciapela Mean 5.98 9.34 11.59 15.68 18.21 20.18  31.14  44.09  65.16 87.08
Sen_10y 0.67 0.88 0.86 0.97 1.16 1.21 1.44 2.16 2.12 0.90
Sen 10y perc (%) 11.14 9.46 7.43 6.16 6.38 5.98 4.63 4.90 3.25 1.03
Sen_slope_1d  0.00018  0.00024 0.00024 0.00026 0.00032 0.00033 0.00039 0.00059 0.00058 0.00025
p_value 0.02 * 0.10 0.16 0.27 0.21 0.20 0.17 0.15 0.50 0.81
Passo Falzarego Mean 5.98 9.34 11.59 15.68 18.21 20.18  31.14  44.09  65.16 87.08
Sen_10y 0.67 0.88 0.86 0.97 1.16 1.21 1.44 2.16 2.12 0.90
Sen_10y_perc (%) 11.14 9.46 7.43 6.16 6.38 5.98 4.63 4.90 325 1.03
Sen_slope_1d  0.00008  0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043
p_value 0.26 0.11 0.05 * 0.01 * 0.00 * 0.01 * 0.07 0.33 0.63 0.54
Passo Pordoi Mean 5.62 8.92 11.14 15.82 18.67 2049 3043 3877  48.89 59.99
Sen_10y 0.29 0.65 0.93 1.83 223 2.25 2.15 1.20 -0.84 -1.57
Sen 10y perc (%) 5.08 7.25 8.37 11.58 11.97 10.97  7.07 3.09 -1.72 -2.62
Sen_slope 1d  0.00008  0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043
p_value 0.26 0.11 0.05 * 0.01 * 0.00 * 0.01 * 0.07 0.33 0.63 0.54
Passo Valles Mean 5.62 8.92 11.14 15.82 18.67 2049 3043 3877  48.89 59.99
Sen_10y 0.29 0.65 0.93 1.83 223 2.25 2.15 1.20 -0.84 -1.57
Sen 10y perc (%) 5.08 7.25 8.37 11.58 11.97 10.97  7.07 3.09 -1.72 -2.62
Sen_slope_1d  0.00008  0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043
p_value 0.26 0.11 0.05 * 0.01 * 0.00 * 0.01 * 0.07 0.33 0.63 0.54
Pescul Mean 5.62 8.92 11.14 15.82 18.67 2049 3043 3877  48.89 59.99
Sen_10y 0.29 0.65 0.93 1.83 223 2.25 2.15 1.20 -0.84 -1.57
Sen 10y perc (%) 5.08 7.25 8.37 11.58 11.97 10.97  7.07 3.09 -1.72 -2.62
Sen_slope_1d  0.00008  0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043
p_value 0.26 0.11 0.05 * 0.01 * 0.00 * 0.01 * 0.07 0.33 0.63 0.54
Selva di Cadore Mean 5.62 8.92 11.14 15.82 18.67 2049 3043 3877  48.89 59.99
Sen_10y 0.29 0.65 0.93 1.83 2.23 2.25 2.15 1.20 -0.84 -1.57
Sen_10y_perc (%) 5.08 7.25 8.37 11.58 11.97 10.97  7.07 3.09 -1.72 -2.62
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Annex 2: Statistics for mean annual temperature. * indicate statistically significant trend at
level of significance ()= 0.05

Statistics— value Change in
Weather | Sen_slope 1d ?a_t o= 0.05) Min Mean | Max St_dev | Sen_10y | Sen_10y
Station | ' (%)

Pian 0.000103 0.0156 * 1.3371 | 2.7062 | 3.9008 | 0.6298 | 0.3752 | 13.8653
Fedaia

Arabba 0.000171 0.0301 * 3.9292 | 5.0724 | 63271 | 0.6166 | 0.6258 | 12.3371
if::fl‘:ﬁ 0.000130 0.0424 * 0.8423 | 2.4439 | 3.4832 | 0.6611 | 04734 |19.3682

Annex 3: Statistics for antecedent SWE.

significance (a)= 0.05

* indicate statistically significant trend at level of

Change
,Sl,?::ll:sti;slz Sen_slope 1d ?a—tv‘:iug. 05) Min Mean | Max St _dev | Sen_10y iSILn_l 0y

(%)
Annual -5.02E-06 6.53E-16 * | 0.000 | 30.706 | 1046.558 | 89.522 | -0.018 -0.060
Winter 6.76E-03 5.36E-01 |20.808 | 106.144 | 207.065 | 62.753 | 24.679 23.251
Spring -4.97E-03 2.14E-05 * | 0.000 | 74.207 | 1011.814 | 103.959 | -18.150 | -24.459
Summer 0.00E+00 1.26E-11* | 0.000 | 23.792 | 1046.558 | 92.371 0.000 0.000
Autumn -6.78E-06 4.43E-02 * | 0.000 | 11.360 | 410.323 | 43.275 | -0.025 -0.218
Annex 4: Statistics for antecedent SM. * indicate statistically significant trend at level of
significance (a)= 0.05
Statistics— p_value . Change 'in
Timescale Sen_slope 1d (at 0= 0.05) Min | Mean | Max St dev | Sen_10y (So;)n)_l(ly
Annual -1.65E-07 0.844 0.281 | 0.697 | 1.000 | 0.108 -0.001 -0.086
Winter 7.68E-06 0.108 0.453 | 0.488 | 0.563 | 0.037 0.028 5.736
Spring -5.00E-06 0.084 0.281 | 0.695 | 1.000 | 0.127 -0.018 -2.628
Summer 1.22E-06 0.277 0.479 | 0.714 | 1.000 | 0.102 0.004 0.625
Autumn 6.43E-07 0.752 0.394 | 0.656 | 1.000 | 0.089 0.002 0.358
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Annex 5: Statistics for event characteristics. * indicate statistically significant trend at level of
significance (a)= 0.05

Statistics— p_value Change in
Event Characteristics | Sen_slope_ld (at o= 0.05) Min | Mean | Max St_dev Seg;l)ﬂy
(1]
Cumulative 0.0002 0.009 * 1.800 | 22.614 | 342.400 | 26.433 3.620
Precipitation
Average 2.75E-05 0.00 * 0.325 | 2.084 | 12.467 | 1.420 4.814
Rainfall Intensity
Qumax -4.90E-06 0.07 * 0.070 | 0.639 | 3.980 0.519 -2.798
(Streamflow Peak)
RC -8.81E-07 0.05 * 0.001 | 0.091 | 0.989 0.113 -3.536
(Runoff Ratio)

Annex 6: Acronyms
ARPAYV | Agenzia Regionale per la Prevenzione e Protezione Ambentale del Veneto

AM Annual Maxima
DTM Digital Terrain Model
EURAC | Réseau Européen pour I'Afrique Centrale

GIS: Geographic Information System

IPCC Intergovernmental Panel on Climate Change

MODIS | Moderate Resolution Imaging Spectroradiometer

min Minute

mm Millimetre
NSE Nash Sutcliff Efficiency
PDM Probability Distributed Model

Q Runoff
SCA Snow Cover Area
SM Soil Moisture

SWE Snow Water Equivalent

y Year
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