
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Final Dissertation

Scaling Laws in microbial growth

Thesis supervisor: Candidate:
Prof. Samir Suweis Tommaso Amico

External thesis supervisor:
Prof. Carlo Albert

Academic Year 2022/2023

1

Abstract

Microbial growth and division are fundamental processes shaping organisms’ life cycle.
Mathematical models of such biological processes have been developed, but several questions
remain open, especially when focusing on single-cell lineages.
The development of new microfluidic devices, combining single-molecule microscopy and
automated image analysis, allows to track individual cells and their quantities of interest for
many generations.
Furthermore, recent discoveries of scaling laws hint at the existence of universal growth laws,
not yet formulated.

In this thesis work we hypothesize that cells operate in the vicinity of a critical point and
we therefore aim at describing temporal and size scaling of lineages both from a theoretical
and an empirical point of view.
Our first step is indeed an analytical one, carried out with the purpose of putting the problem
in the proper theoretical framework.
Simulations are coded in order to explore the behavior of the system at di↵erent distances
from the critical point. They are based on various models having di↵erent numbers of traits
which range from 1 to 2, but belonging to the same universality class. Finally, we want to
probe the proposed theoretical results by making use of available cell data from two di↵erent
experiments and comparing them to the predictions of our model.

Analysis’ results are presented both for the numerical approach and for the comparison
with experimental data. We show how simulations confirm the hypothesized scalings and
clarify exponents upon which di↵erent theoretical results can be found in literature.
Furthermore, the moment scaling we find in experimental data is consistent with the criticality
hypothesis. To corroborate this result we infer the control parameters of a particular model
from the universality class with the aid of Bayesian Inference (BI) and find that they are
indeed close to the critical point.
Data quality shows to be an hurdle in probing the scaling of the autocorrelation length ⇠

with respect to hmi. No clear behaviour arises indeed from the analysis.

2

Contents

1 Introduction 4

2 Theoretical framework 6
2.1 Single-cell models . 6
2.2 Markov jump process . 6
2.3 Observable scaling laws . 7
2.4 Single-trait models: size only . 8
2.5 Two trait models: a licensing protein triggering division 9

3 Numerical simulations 11
3.1 Sampling sizes at birth . 11
3.2 Small sizes approximation . 12

4 Single-cell data 15
4.1 Outliers . 16

5 Results: numerical simulations 17
5.1 Autocorrelation’s oscillations . 17
5.2 � critical exponent . 18
5.3 ⌘ critical exponent . 18
5.4 Correlation length’s scaling . 20

6 Results: experimental data 22
6.1 Correlation length . 22
6.2 Comparison with experimental data: moments’ scaling 22

7 Conclusions 26

8 Appendix A 27
8.1 Hazard rate and survival probability relation 27
8.2 Survival derivation . 28
8.3 Passing to log-space . 29

9 Appendix B 30
9.1 Anomalous scaling, higher moments . 30
9.2 Bayesian Inference . 30

9.2.1 Metropolis-Hastings algorithm . 30
9.2.2 Bayesian inference for our model . 31

10 Appendix C: Haskell implementation 33
10.1 A safe programming language leads to recursion 34
10.2 Dealing with computations that may fail: the Maybe type and finding the

root of a function . 35
10.3 Monads in Haskell . 37
10.4 The functor type class . 37
10.5 The applicative type class . 38
10.6 Finally Monads . 39
10.7 Sampling sizes at birth and performances . 40
10.8 Custom data types and type synonyms . 41

3

1 Introduction

Through the years, significant e↵ort has been put in answering fundamental questions
on microbial growth and division [1]. Understanding the mechanisms behind cell size
control is pivotal for comprehending how microorganisms regulate their growth, division,
and overall population dynamics. In spite of the amount of research, significant aspects
of these fundamental processes are not yet fully understood as attempts to answer some
of the long-standing questions on the subject have been severely hindered by restricted
experimental access to single-cell attributes [1, 2]. This underscores the ongoing relevance
of studying microbial growth as it continues to yield new insights into biological processes
thanks to recent advancements in experimental techniques.
Furthermore key traits of microbes, e.g. cell size, often show self-similar behaviour [3] which
has as a common feature power law scaling, hinting at the possibility of an underlying critical
process [3, 4, 11].
The ubiquity of scale invariance in ecological systems has been explained by self-organized
criticality i.e., systems formed by many interacting parts spontaneously evolve towards
the critical point, leading to dynamically diverging correlation lengths, making the scaling
behaviour independent of microscopic details [3, 4].

In [3], the authors analyze observed scaling in cellular properties, such as size, of
phytoplankton which is responsible for half of all primary production on Earth [36]. This
highlights their critical role in global nutrient cycles. We have indeed that phytoplankton
growth and activity directly impact the availability of essential nutrients in aquatic
ecosystems, which, in turn, a↵ects the entire food web. The authors propose that
essential aspects of the phytoplankton response to changing environmental conditions can
be described, in a robust quantitative manner, by scaling laws. Understanding these
scaling laws is crucial for predicting how phytoplankton populations will adapt to shifts
in factors like light availability, temperature, and nutrient concentrations. Furthermore, the
importance of the studied organisms, make the understanding of their traits’ behaviour of
fundamental relevance.
To study critical behaviour, in [3] a class of models equivalent to the ones here described in
the Theoretical framework section is used. In this thesis we study single-cell lineages while [3]
focuses on population models leading to significant di↵erences in the studied universality
class and on the behaviour of the models.

In [6], Escherichia coli strains’ are studied at di↵erent experimental conditions. The
focus is, as in this thesis, on single-cell lineages tracked for many generations making [6]
insightful for our work. In [6] the autocorrelation function (acf) is analyzed in depth in
an e↵ort to explain the observed transient oscillations, with low frequencies dominating, in
the acf . A noisy linear map, linking final and initial cell size, is proposed. This cell-size
control constitutes the negative feedback used to explain the presence of oscillations. The
introduction of the linear map means that the process is auto-regressive with order 1 making
the correlation length ⇠ analytically retrievable from the map’s parameters. Combining
simulations of cell growth and division with experimental data, the authors show how the
noisy linear map is able to reproduce the observed oscillations not just in cell size but also
in constitutive gene expression.

Another work that studies single-cell lineages is [19] where a negative feedback between
initial cell length and added length before division is found. Furthermore, the authors
propose a mathematical model of the global interactions present between global cellular
variables which succeed in reproducing several aspects of the studied dataset. Oscillations
in the autocorrelation function are observed as in [6] and for which a theoretical explanation
is provided.

Another work which has been proven key to the development of this thesis is [23] which
presents a broad investigation of the multiplicative noise problem along the lines of previous
analyses of critical phenomena from a theoretical point of view. In particular, the critical
properties of multiplicative-noise problems with di↵erent symmetries are looked at both
accounting for fluctuations and in the mean field setting. The case study of zero spatial
dimensions is similar to to our system helping in the determination of the universality class’
critical exponents. Another theoretical approach which studies multiplicative noise problems

4

is [24].
In this thesis work, where single-cell lineages are looked at, we hypothesize that the

organisms under study operate close to a critical point associated to a second order
active-to-absorbing phase transition. We thoroughly investigate this universality class in
order to assess the behaviour of a fundamental trait i.e. size of organisms that have key
biological relevance [6].
The order parameter that continuously goes from 0 to positive values and vice-versa is
size at birth averaged across the lineage. The control parameter is the ratio between
the growth and division time-scales of the system, which will be respectively named, in
the Theoretical framework section, as !1 and !2.

We will begin this work by investigating the universality class of the system from a
theoretical point of view, assuming that the process respects the Markov property for the
size at birth m.
This will allow us to have some informed expectations about scaling laws and critical
exponents that can be then tested further along in the thesis.

Later on, di↵erent members of the studied universality class are introduced. We start by
describing a simple and analytically tractable model before increasing the complexity and
the biological plausibility.
This will allow us to generate single cell lineages with custom parameters (e.g. the distance
from the critical point) belonging to the assumed universality class, i.e. they exhibit
characteristic scaling laws in the vicinity of the critical point [4].

In the next step we compare our results with publicly available data. As stated above,
tracking single cell statistics has proven to be a challenging task through the years.
The introduction of a new microfluidic single-cell trapping device called mother machine
allows to track cells for numbers of generations that are orders of magnitude greater with
respect to previously available methods [5]. Its dead-end channels contain cells that are
clones of the mother cell while the size of the colony is maintained fixed in time because the
flow in the main channel flushes away cells that grow out of the dead-end channels. A more
in-depth presentation of the mother machine is presented in the Single-cell data section.
Both [6] and [7] make use of this new technology producing and making available significant
features of each lineage e.g. size at birth, size at division and growth rate. While being
the most wide spread microfluidic device [20], the mother machine is not the only one. [37]
for example makes use of the sister machine which allows to track two lineages from the
same mother cell. The authors propose a minimal model that tries to explain evidence
of correlations in size fluctuations that can persist for many generations. The premise is
that the environment plays a defining role in setting the size control parameters, and that
di↵erent channels within a microfluidic device are subject to di↵erent environments.

Appendix C: Haskell implementation describes Haskell ’s implementation of numerical
simulations. Haskell [21] is a statically typed, purely functional, lazy evaluated language
that allows us to achieve a significant improvement in terms of performances with respect
to a Python implementation.
Functions in Haskell [21] are pure functions in the mathematical sense of the term. However
not to make our simulation’s code overly complicated we need some form of side e↵ects, we
thus make use of the category theory’s notion of monads : a framework for handling e↵ects
without compromising the purity of functions [8].
Monadic computation, originally introduced by Eugenio Moggi [10], not only naturally arises
in our implementation due to the need of accumulating sampled sizes in a final result vector;
it is also associated to working with computations that may fail i.e. the sampling process
itself. This induce us to exploit the concept of the Maybe monad in Haskell.

5

2 Theoretical framework

2.1 Single-cell models

We start out by describing the dynamics of single cells as it might be observed by the mother
machine device [5]. The fundamental trait of our discussion is the size of the cell m. The
state of the cell is however described by a vector x containing multiple traits of the cell and
having m as its first component.
The dynamics of x is described by a deterministic ODE,

ẋ(t) = g(x(t)) , (1)

loosely called growth process which is punctuated by stochastic division events.
Both the time-points of the division as well as the change of the cell’s state upon division
can be stochastic. We assume x(t) to be a complete description of the cell’s state, such that
the division time-point can be modeled in terms of a state-dependent hazard rate function,
h(x(t)), describing the cell’s instantaneous probability to divide. This hazard rate function
is related to the survival probability, S(t), i.e. the probability not to divide until time t as,

d lnS(t)

dt
= �h(x(t)) , (2)

a simple derivation of eq. 2 is shown in Appendix A.
Upon division, the cell draws its new state x from the conditional probability distribution
J(x|x0) where x0 denotes the current state. For the single-cell process, we randomly select a
single daughter cell, between the two possible choices, as the mother for the next cell cycle,
which is defined as the time period in between two division time-points.
Denoting the traits at birth of a cycle with the subscript i as xi, we can derive from
the aforementioned functions g, h and J , the transition p.d.f. k(xi+1|xi). A time series
(x0,x1, . . . ,xN) is called a lineage.

2.2 Markov jump process

We make here two assumptions about the stochastic process described in the Single-cell
models section. First, we assume the model obeys the Markov property for the size at birth
m, i.e. the marginalization w.r.t. all but the first trait mi+1 only depends on the initial trait
variable mi, leading to a transition probability k(mi+1|mi). This does not mean that there
needs to be a hazard rate function that depends on m only. It only means that whichever
traits the hazard rate might depend on, can be calculated from eq. 1 knowing only the initial
value mi.
Second, we assume that the transition probability k admits an equilibrium distribution
 eq(m), and that the the moments hm

k
i : k � 1 are finite. We call this the homeostasis

assumption.

A class of models characterized by at least two dimensionless parameters, � =
!2

!1
and

h =
u

v
, is considered, where !1 and !2 are frequencies related to growth and division

respectively and u and v are size scales related to processes limiting small and large cell
sizes, respectively. Three di↵erent members of this class are presented later in this section.
W.l.o.g. we set v = 1. First, we consider the scale-free limiting case (h = 0) at small sizes.
For sizes m, m0

⌧ 1, we can make the scaling approximation

k(m0
|m) ⇡

1

m0G�

✓
m

0

m

◆
, (3)

where the function G�(x) is parameterized by � and converging to zero in both limits x ! 0
and x ! 1 making k(m0

|m) normalizable.
In the scale-free case, the asymptotics of the equilibrium distribution eq(m), as m ! 0,
follow a power law eq(m) ⇠ m

�(�)�1. The function �(�) is derived by the normalization
condition Z

G�

✓
1

x

◆
· x

��1
dx = 1 . (4)

6

There is a critical point, �c, where �(�c) = 0. It separates an active phase, where eq(m) 2
L
1(R+) from an absorbing phase where eq(m) = �(m). As the order parameter, we use

the average size at birth hmi, along a lineage.
Generically, the phase transition is second order, with lim

h!0
hmi = 0, for � > �c, and lim

h!0
hmi >

0, for � < �c, since

�(�) / �c � � +O

⇣
(� � �c)

2
⌘
, � < �c . (5)

Thus, in the absence of the parameter h, which acts as a cell regulator, the order parameter
continuously transitions from positive values to 0 as the control parameter � crosses the
critical point. Such a point naturally occurs, because, in the absence of trait scales, from
eq. 1 in its first dimension we can write,

mi+1 = f ·mi · exp[!1⌧] , (6)

where the inter-division time ⌧ > 0 and possibly the division factor 0 < f < 1 are drawn
from random variables. Thus, in the absence of a process preventing too small cell sizes, the
stochastic process described by k might converge to m = 0 from which it cannot escape.
Of course, such limiting processes do exists, however, we hypothesize that real systems
might be close enough to the critical point, for the associated scaling laws to be of biological
relevance. To derive the scaling of the connected correlation function, i.e. the correlation
function of the fluctuations �m = m� hmi [12],

hmi+nmiic = h(mi � hmi) (mi+n � hmi)i , (7)

also called autocorrelation, we define the operator

(T)(m) :=

Z
 (m0)k(m0

|m) dm0
. (8)

In the active phase, due to the detailed balance condition, it is a self-adjoint operator on
the Hilbert space L2(eq), with scalar product defined as h | 0

i =
R
 (m) 0(m) eq(m) dm.

The T operator has unit norm, which follows from the Cauchy-Schwartz inequality:

kT k
2 = hT |T i =

Z
(T)2(m) eq(m) dm

Z

2(m0)k(m0

|m) eq(m)dm0
dm = k k

2
.

(9)
Thus, the spectrum of T is real and norm-bounded by one. In the active phase and away

from the critical point, T has an isolated eigenvalue � = 1 corresponding to the equilibrium
distribution eq. The correlation length is determined by the spectral gap. In the scale-
free limit, eigenfunctions f� 2 L

2(eq) also follow a power-law asymptotic f�(m) ⇠ m
, as

m ! 0. Integrability at m ! 0 requires that > ��/2. The associated eigenvalue satisfies

� =

Z
G�(x)x

�1
dx =

Z
G�(1/x)x

��1
dx . (10)

The function �() is convex, and �(��) = �(0) = 1. Hence, for �� < < 0, we have
�() < 1. Furthermore, using a Taylor expansion

Z
G�(1/x)x

��1
dx = 1 + a�� + b��

2 +O(�3) , (11)

together with eq. 4 and eq. 10 we derive �max = 1�O(�2).
The correlation length ⇠ scales as ⇠ ⇠ (1 � �max)�1 [12], which means ⌫ = 2 following
conventional notation ⇠ ⇠ |� � �c|

�⌫ [12].

2.3 Observable scaling laws

In the active phase, the scaling is determined by �� := � � �c, as long as h ⌧ ��. If h
is too large, it will determine the scaling. In the absorbing phase, the scaling of the order

7

parameter and the auto-correlation time is always determined by h. In both phases and for
m ⌧ 1, we can make the scaling ansatz

 eq(m) ⇡ m
�(�)�1

F(h/m) , (12)

where F(x) is a cuto↵ function decaying su�ciently fast as x ! 1 and as x ! 0. As a
consequence, with

hm
k
i =

R1
0 m

k��+1
· F
�
h
m

�
R1
0 m��+1 · F

�
h
m

� , (13)

we have that hmk
i ⇠ |� � �c| 8k > 0 as similarly derived in [3] because of the pole appearing

in the denominator. Hence, following conventional notation, i.e. hmi ⇡ |� � �c|
� [12], � = 1.

In the absorbing phase (� < 0), the scaling of the order parameter and the autocorrelation
time is determined by the parameter h leading to anomalous scaling laws [3],

hm
k
i ⇠

(
h
k
, k < ��,

h
��1

, k � �� .
(14)

Furthermore, approaching criticality the return to equilibrium follows a much slower decay as
perturbations decay as a power law for times much shorther than the correlation length [3],
with the autocorrelation function that is thus captured by an exponential distorted by a
power law as if self-similar behaviour is present time correlations should decay in a power-
law fashion [4].
The power law exponent, is denoted as 2 � ⌘, where ⌘ is the correlation critical exponent,
following conventional notation [12] in the case of zero spatial dimensions. For the
determination of ⌘ we draw from literature [23]: for a class of models with multiplicative
noise in zero dimensions, which is indeed similar to the model class we consider here, when

there is a transition to an absorbing phase 2 � ⌘ evaluates to
1

2
i.e. hmn,m0ic ⇠ n

� 1
2 for

n ⌧ ⇠.

However [24] reports that the only observable value of 2� ⌘ is 2� ⌘ =
3

2
. One of the goals

of this thesis work is to asses numerically 2� ⌘.
Finally, unless we assume a particular model we cannot determine the distance to the

critical point experimentally. However, we can combine size and temporal scaling laws to
arrive at ⇠ ⇠ hmi

�2 which, in appropriate experimental conditions, could be verified using
real data.

2.4 Single-trait models: size only

We start with cells that are completely described by just one trait: their size m. A minimal
model [3] requires two time scales, associated with growth and division, respectively, as well
as two size-scales, associated with size-limiting processes at the upper and lower end of the
size range. The simplest member of this class has growth and division rates depending
linearly on the size:

g(m;✓) = !1 · (u+m) , d(m;✓) = !2

⇣
1 +

m

v

⌘
. (15)

With ✓ being the parameter vector ✓ = (!1,!2, u, v)
T composed of two frequencies defining

time-scales, i.e. !1,2 and two trait scales u and v.
The model defined by eq. 15 assumes that the decay of the distribution at small cell sizes
is due to a faster growth. Only to get an intuition, for m ⌧ u, ṁ ⇡ !1u and thus
m(t) ⇡ !1ut+m0 pointing to linear growth. For m � u instead, ṁ ⇡ !1 · m leading
to m(t) ⇡ m0 · exp(!1t) and suggesting exponential growth (m0 denotes the integration
constant representing the initial size).
Hence, when the the size m becomes small, the growth behaviour switches from exponential
to linear which, in the range of small times, is actually faster as simply shown graphically
in Fig. 1 for u = 0.5, !1 = 1 and m0 = 0.1 < u (notice how both growth equations coincide
for t = 0).

8

Figure 1: Linear growth is actually faster for small times with low cell size.

The decay at large sizes is due to faster division. For simplicity, we assume cells to divide

into two daughter cells of equal size, i.e. we set the division factor at f =
1

2
and

J(m1,m1|m) = �

⇣
m1 �

m

2

⌘
· �

⇣
m2 �

m

2

⌘
. (16)

In dimensionless notation, single-cell lineages are described by the transition probability

k(m|m
0) =

�(1 + 2m)

m+ h
2

✓
2m+ h

m0 + h

◆�(h�1)

· exp [��(2m�m
0)]�(2m > m

0) , (17)

For h = 0, the operator T defined in eq. 8 is non-compact, and its equilibrium distribution
needs to be scale-free, ⇠ m

��1, for m ⌧ 1. Setting h = 0 in eq. 17 we find that

(T eq) (m) =
�2�

� + �
· eq(m) (1 +O(m)) = eq (18)

Hence, there is a critical point at �c = (ln2)�1, and 0 < � = O(�c � �), for � < �c, whereas
 eq(m) = �(m), for � > �c.

We present here a slightly di↵erent single-cell lineage model. As in the previous case, cell
growth is here governed by cell size only. However now the lower bound u does not mark a
passage between di↵erent growth behaviours but instead separates exponential growth from
a region where cells cannot divide. The model is described by,

g(m;✓) = !1 ·m d(m;✓)

8
<

:
0, m < u

!2
m+ v

u+ v
, m � u

, (19)

adding thus biological plausibility. We won’t focus though on this model too much as our
numerical simulations do not make use of eq. 19.

2.5 Two trait models: a licensing protein triggering division

Single-cell data shows that, to describe the instantaneous probability for a cell to divide, a
single trait does not su�ce and a second one is needed [13].
As such, an unspecified cellular protein level can be be used, which, depending on the species,

9

might be related to the initiation of chromosome replication or the formation of new cell
membrane.
Thus, we set x = (m, p)T and we assume that both m and the protein content p accumulate
at a rate proportional to the mass,

g(x,✓) = !1m ·

✓
1
c

◆
. (20)

For the division rate, we choose a functional form equivalent to eq. 19,

h(p) =

8
<

:
0 p < u

!2(p+ v)

u+ v
p � u .

(21)

We assume that the protein content is depleted upon division and, as previously, the division

factor is set at f =
1

2
leading to

J(m1, p1;m2, p2|m) = �

⇣
m1 �

m

2

⌘
�(p1)�

⇣
m2 �

m

2

⌘
�(p2) . (22)

The parameters of this model are ✓ = (!1,!2, u, v, c). W.l.o.g. we set !1 = 1, v = 1 and

c = 1 and are left again with the two dimensionless relevant parameters � =
!2

!1
and h =

u

v
.

10

3 Numerical simulations

To study the universality class of the system under study in this thesis work we rely on
numerical simulations.
We thus exploit what we introduced in the previous section to sample lineages and study
their behaviour approaching the critical point, keeping in mind that the scaling behaviour
has two regimes: the first is controlled by the distance from the critical point |� � �c|, the
second by the control parameter h.

3.1 Sampling sizes at birth

We have mainly two methods to sample sizes at birth. The first exploits the relation
introduced in eq. 2 to retrieve the survival function S(t) from the hazard rate. Given
S(t), which is a monotone decreasing function in the closed interval [0, 1], we consider a
uniform sample u ⇠ U [0, 1] (not to be confused with the model parameter u) and we use it
to find the corresponding division time ⌧ .
This is achieved by inverting S setting thus ⌧ = S

�1(u) analogously to what we would do
in the inverse transform sampling method and as briefly sketched for a dummy survival
function in Fig. 2.
Denoting as N the length of our simulation, we are now able to get the division times

Figure 2: We use a random sample u to find the inter-division time ⌧ = S
�1(u)

⌧1 . . . ⌧N . The generic size at birth mi is then readily retrieved by making the system evolve

between ⌧i�1 and ⌧i according to its growth law and by setting mi =
1

2
·m(⌧i) according to

our convention of the division factor being f =
1

2
.

This process allows us to sample lineages of arbitrary length N that belong to our selected
model as long as we have, as previously mentioned, an analytical understanding of the
survival function S(t). The latter is, for the model described in eq. 15,

S(t) = exp

⇢
!2t ·

⇣
u

v
� 1
⌘
+
!2

!1

✓
u+m0

v

◆
·
�
1� e

!1t
��

. (23)

For eq. 20 and eq. 21 we have instead,

S(t) = exp

⇢
�

m0

u+ v

!2

!1
·
�
e
!1t � e

!1t0
�
+

v �m0

u+ v
· !2(t� t0)

�
✓(t� t0)

�
, (24)

11

with t0 ⌘
1

!1
ln

✓
1 +

1

m0

◆
being the minimum time at which the cell can divide and ✓ is

the Heaviside function. The derivations of eq. 23 end 24 are shown in Appendix A.
In both cases S(t) is not analytically invertible, to deal with this fact [3] introduces an
approximation of the survival function valid for short times but which holds true in the
setting of cells population. Here we study instead single lineages, hence to deal with S

�1

we use numerical methods mainly through Python’s Scipy library [14] and Haskell’s math-
functions [15].

The second method used to sample size at birth can be exploited only for the model
described by eq. 15 due to the analytical understanding we have of it. In fact eq. 17 gives
the transition probability that can be used to sample a new m. To be more computationally
e�cient though we pass to log-space by making the change of variable m ! e

x (and thus
x = ln (m)) obtaining for the special case h = 0,

pdf(x|x0) = �2��
· exp

n
� ·

⇣
�2ex + e

x0
+ x0 � x

⌘
+ ln (1 + 2ex)

o
, (25)

where x0
⌘ ln (m0). The few mathematical steps to arrive to eq. 25 are shown in Appendix A.

We can note that the only parameters eq. 25 depends on are h and �. In other instances
were !1, !2, u and v appear explicitly, numerical computation is performed, unless otherwise
stated, by setting v = 1 and !1 = 1.

Once we have at our disposal the transition probability, thanks to the Mathematica
software [16], we compute the connected CDF that allows us to sample log-sizes by inverting
it numerically.
An example of 100 sizes at birth drawn at h = 0 and � = �c � 1 using the Haskell [21]
language is shown in Fig. 3.

Figure 3: Example of 100 simulated generations with h = 0 and � = �c � 1

3.2 Small sizes approximation

One of the main purposes of numerical simulations in this thesis is to test the
system’s behaviour in the vicinity of the critical point. As we will see in the
Results: numerical simulations section, many critical exponents will be confirmed
and tested using the simplest member of our universality class, i.e. the model described by
eq. 15. We focus on the active phase with h = 0.
We know that for � > �c, hmi = 0, hence having a second order phase transition as
� ! �c� , hmi ! 0 and we will thus deal with increasingly small sizes at birth the closer we
get to the critical point.
In particular, dealing with log-sizes, x will go to �1 and this can lead to numerical

12

problems. To invert the CDF we sample u ⇠ U [0, 1] and we find the x which is the root of
0 = CDF (x|x0)� u, thanks to [14] or [15].
In both cases, the former using Brent ’s [17] method and the latter exploiting Ridders’ [18]
algorithm, the definition of a proper interval bracketing the solution is needed. With no
insight on the solution though, the bracket risks to become very large and can possibly
harm both performance and feasibility of the root finding procedure as the algorithm might
not converge.

It turns out though that as x ! �1 many simplifications are available as exponentials
approach 0, the CDF in log-space for h = 0 indeed reads,

P<(x|x
0) = 1� 2��

· exp

n⇣
�2ex + e

x0
� x+ x

0
⌘
· �

o
. (26)

The equation to numerically solve becomes thus,

0 = 1� 2��
· exp

n⇣
�2ex + e

x0
� x+ x

0
⌘
· �

o
� u , (27)

with u the uniform sample and this reads

(1� u) · 2� = exp
n⇣

�2ex + e
x0
� x+ x

0
⌘
�

o
Separating the
exponential from
the rest.

x+ 2ex = �
1

�
· ln (2� · (1� u)) + x

0 Taking the
logarithm on both
sides and
assuming e

x0
⇡ 0.

(28)

That, solved graphically, looks like Fig. 4.

Figure 4: Graphical solution of eq. 28

Where we assumed (1� u) ⌘ q =
1

e
, x0 = �200 and that we are at criticality i.e. � =

1

ln 2
.

So, unless �
1

�
· ln q is high enough1 to balance x

0, x+ e
x lies in its linear part and we can

1e.g. to have a value
1

�
· ln q > 10 (that still far lower than the x0 in the example) we need q < e�10� ,

that happens with probability < e�10�

13

approximate x+ 2ex ⇡ x.
We are left with the equation,

x = �ln 2�
1

�
· ln q + x

0
. (29)

If we now call xi the i� th size at birth of a certain lineage, by recursion we find,

xn = �ln 2 · · ·� ln 2| {z }
n times

�
1

�
· ln q0 � · · ·�

1

�
· ln qn + x0 ;

xn = �n · ln 2�
1

�

nX

i=1

ln qi

!
+ x0 ;

xn = �n · ln 2�
1

�
· ln

nY

i=1

qi

!
+ x0 .

(30)

With this we achieve two things:

1. We confirm that above the critical point, xn diverges to �1, as expected, whereas
above it, it would go to +1 if it weren’t for the neglected non linear terms.
Furthermore, close to the critical point, those divergences are random-walk-like, i.e.
scale like

p
n. Both conclusions derive from the central limit theorem which tells

us that
1

n

P
qi converges toward a normal distribution centered at �1 and with a

standard deviation of � =
p
n.

2. We get either a very good approximation of x which helps us define a proper and more
e�cient bracket or directly a method to sample x given x

0 that can be ”activated”
whenever x0 is low enough by setting a threshold.

For completeness we mention that, calling Q ⌘
Qn

i=1 qi in eq. 30, being Q the product of n
i.i.d. uniform random numbers, Q is distributed like,

pdf (Q) =

8
>>><

>>>:

(�ln (z))n�1

(n� 1)!
0 < z 1

0 otherwise

(31)

14

4 Single-cell data

Lineages used in this thesis work refer to previously published data [6, 19]. Both data
sets are collected thanks to a mother machine device that allows to track cells in a regime
of steady-state growth, which is necessary for reproducible quantitative studies [20]. Such
measurements provide ample new information about the processes studied here [19].
For this reason and for the high number of generations a lineage can be observed for, the
mother machine has attracted much interest for its potential studies that comprehend but
are not limited to bacterial physiology, cell mechanics and cell aging [20, 5].
This kind of design consists of a series of growth channels, oriented at right angles to a
trench through which growth medium is passed at a constant rate. The cell at the end of
the growth channel, distal to the trench, is referred to as the ”old-pole mother cell” (or
mother cell) because one of its poles, abutting the end of the channel, is inherited from one
generation to the next. The diameter of the growth channels prevents the mother cell from
moving around [5].
All the cells in each channel are clones of the mother cell that resides in the dead-end side
of the channel. Furthermore, the colony has a fixed size through time because flow in the
main channel flushes away extra cells that grow out from the dead-end channels. The same
flow also maintains a constant media environment in the growth channels by replenishing
nutrients and removing metabolic waste products [20].
An illustration of the mother machine device, taken from [7] is showed in Fig. 5,
Let’s now describe a little more in depth the two data sets at our disposal. From now on

Figure 5: Graphical sketch of a mother machine device [7].

we will refer to the data available from [19] as long lineages set and the one published by [6]
as short lineages set, the name choice will be made clear in the following.
The data is formatted in a csv file containing multiple columns which describe the status of
the cell at each generation, the minimal set of entries used in this thesis are summed up in
tab. 1.

length birth length final lineage ID generation

Length at birth of
the studied cell

Length at division of
the studied cell

Unique identifier of
the lineage

Unique identifier
of the generation
within the lineage

Table 1: Minimal set of parameters used from each data set.

The long lineages set is composed of 20 di↵erent lineages with a maximum length of 250
generations and a minimum of 47, an example, where an exponential is fit from the initial
to the final cell length, is shown in Fig. 6 for the first 50 generations.
The short lineages one is instead sub-divided in two di↵erent data sets obtained at di↵erent
experimental conditions (25oC and 37oC respectively). The variance of the generation

15

Figure 6: Example of the first 50 generations of a lineage from [19].

length is in this case much lower as the lineages have either 69 or 70 samples. The 25oC
case contains 65 lineages whether in the 37oC set we can find 160 lineages.
Tab. 2 summarizes the experimental data’s features.

Long-lineages set Short-lineages set
25°C 37°C

Number of lineages 20 65 160
Min. length of lineages 47 69 69
Max. length of lineages 250 70 70

Table 2: Main features of each dataset considered in this thesis.

4.1 Outliers

To identify and eliminate outliers in experimental data we take the same approach of [6].
Cells indeed occasionally undergo aberrant cell growth such as filamentation, to recognize
such instances we check for the following:

1. initial cell length is larger then L̄+ 2�L,

2. final cell length is larger than 2 · (L̄+ 2�L),

3. initial cell length is smaller then L̄� 2�L.

Where L̄ and �L are the average and standard deviation of the cell size distribution, respectively.
If a data point does belong to the 3 categories above the latter part of the lineage (the one
after the outlier) gets discarded from the analysis. Only a very small percentage of data
(< 1%) is a↵ected by this procedure.

16

5 Results: numerical simulations

5.1 Autocorrelation’s oscillations

In [6] it was reported that the autocorelation of the tested lineages, belonging to what
we called here the short lineages set, displayed strong oscillations that canceled out upon
averaging.
We see the same behaviour in the lineages simulated with our models, as seen in Fig. 7 for
a lineage of 250 samples drawn according to the growth law described in 15 at h = 0 and
|� � �c| = 1.

Figure 7: Autocorrelation function for a sampled lineage according to 15 having
250 generations. The parameter of the model are set to h = 0 and |� � �c| = 1.

The strong oscillations may harm, if not averaged out, the quality of the di↵erent fits
performed on the autocorrelation and thus prevent a correct determination of the various
scalings. The fact that oscillations do not survive the average also excludes the presence
of an underlying periodic component of the autocorrelation (acf), ruling out building and
fitting an envelope containing the maxima of the acf .
Recent literature [6] proposes a noisy linear map, based on the linear relationship observed
between initial and final length of a generation, of the form

Li(n+ 1) = (aLi(n) + b+ ✏) , (32)

where Li(n) is the initial size at generation n and ✏ is Gaussian white noise whether a and
b are the linear coe�cients.
Eq. 32 describes an auto regressive model of order 1, whose autocorrelation function yields
acf(n) = a

n [22] with n representing the lag. This latter relation would allow us to estimate

the autocorrelation length ⇠ as ⇠ = �
1

ln a
, obtained setting a

n = e
�n

⇠ . Making use of the

linear map proves to be way too noisy for a reliable estimation of the autocorrelation length,
especially when looking for a scaling behaviour, on real data. Furthermore, when talking
about our simulations, the long nature of our sampled lineages act as a way of averaging at
small lags, as shown in Fig. 8, representing the autocorrelation of the last 1 million samples
of an 8 million generations lineage at h = 0 and |���c| = 0.1, 1000 lags are shown for visual
clarity. We are thus allowed to traditionally fit the acf (with a pure exponential or with an
exponential distorted by a power law depending on the distance from the critical point) and
we will not assume any underlying linear auto regressive relation.

17

Figure 8: 1000 lags of the autocorrelation function for a lineage sampled according
to eq. 15 at h = 0 and |� � �c| = 0.1. The acf is computed for the last 1 million
generations of an 8 million simulated lineage.

5.2 � critical exponent

In order to test whether � assumes the expected value of 1 we simulate 100 lineages at h = 0.
Trying to go su�ciently close to the critical point we choose |� � �c| as 100 equally spaced
(in log-space) points going from |� � �c| = 10�1 to |� � �c| = 10�6. Being at h = 0 we are
forced to place ourself at � < �c i.e. in the active phase.
Going closer to the critical point comes with an added complication: the return to
equilibrium follows a much slower decay as perturbations follow a power law for times much
shorter than the correlation length [3], this fact requires us to simulate longer lineages in
order to arrive at stationarity.
We thus generate 8 million samples per lineage, with only the latter portion (1 million
samples) taken for the analysis.
Fig. 9 shows how the first 3 moments of the initial size at birth scale with the distance
to the critical point, in linear scale and log-log respectively. Other moments are shown
in Appendix B.

Both a visual inspection for the linear scale plots and the comparison with the drawn
red line, representing a line with slope 1, confirm the expected value of � = 1. Furthermore,
linear behaviour is also noticeable for higher moments.
Looking at the figures in log-log scale, we see how the quality of the linear scaling
progressively worsens as we approach the critical point. We hypothesize that this e↵ect
is due to the aforementioned critical slowing down and longer lineages would lead to clearer
scaling also closer to the critical point.
We tested this assumption by simulating shorter lineages, whose scaling indeed worsens
further from �c with respect to the the ones in Fig. 9 confirming the finite-size e↵ect.

5.3 ⌘ critical exponent

As outlined in the Observable scaling laws section, numerical simulations can clarify the
nature of the power law exponent 2�⌘ that characterizes the autocorrelation function when
self-similar behaviour arises.
The lineages that will help us give a more informed assessment about 2 � ⌘ are the same
used for the � exponent 5.2 i.e. we are at h = 0 with |� � �c| ranging from 10�1 to 10�6

approaching �c from the active phase.
We estimate the autocorrelation function with the statsmodels Python library [25], while

18

Figure 9: Scaling of the first 3 moments of the size at birth for lineages of 8 million
generations simulated at h = 0 and with |� � �c| transitioning from 10�1 to 10�6.
Linear scale (top) and log-log scale (bottom). The red line is a line with slope 1
drawn as a guide for the eye.

the fit of acf(n) with the exponential distorted by a power law is performed using scipy ’s
curve fit function [14] which exploits the least-squares algorithm [26] to find both the optimal
parameters and the their covariance matrix.
Fig. 10 sums up the results, the x-axis is plotted in log scale as |� � �c| is equally spaced in

log-space. As we approach the critical point 2� ⌘ seems to be converging to
1

2
, confirming

Figure 10: Autocorrelation’s power law critical exponent approaching �c, the x-
axis is plotted in log scale for visual clarity as |� � �c| points are equally spaced in
log-space. The behaviour of 2� ⌘ confirms the result stated in [23].

thus what was stated in [23].

19

5.4 Correlation length’s scaling

Using the lineages analyzed and described in the previous two sections we try to assess
numerically the correlation length critical exponent i.e. we look for ⌫ in ⇠ = |� � �c|

�⌫ [12].
Inferring ⇠ fitting the studied lineages as already described when assessing ⌘’s value,
we obtain Fig. 11.

Figure 11: Correlation length approaching the critical point. ⇠ diverges as expected.
Furthermore ⌫ = 2 seems confirmed by numerical simulations. The same flattening
e↵ect noticed for the � exponent’s derivation is noticeable.
The red line (right) represents a line with slope �2 drawn as a guide for the eye.

We can notice how the same e↵ect, attributed to finite-size arises the closer we get to �c,
analogously to what happened in Fig. 9. Also in this case other experiments, performed
with shorter lineages, saw the flattening e↵ect appear further from the critical hinting at a
finite-size problem.
Fig 11 clearly shows that ⇠ is diverging as � ! �c, as expected for critical systems. ⇠ remains
also below the system’s size by which it’s bounded [12].

We also probe whether ⇠ scales quadratically with the inverse of the average size
at birth, i.e. ⇠ ⇠ hmi

�2 (we refer to this critical exponent as ⇢) as stated in
the Observable scaling laws section. Fig. 12 which draws ⇠ and hmi in log-log scale, answers
positively the question.

If both ⇠ ⇠ |���c|
�2 and ⇠ ⇠ hmi

�2 hold then we should also see that hmi ⇠ |���c|. This
latter relation, already confirmed in Fig.9, does not depend on any fit of the autocorrelation
function connecting instead one manually set variable (the distance to critical point) to a
statistic of the lineage that can be easily retrieved (the mean).
Tab. 3 summarizes the values of the critical exponents we looked at thanks to numerical
simulations in this thesis.

⌫ 2� ⌘ � ⇢

2 1/2 1 2

Table 3: Critical exponents of the system studied in this thesis work.

20

Figure 12: Correlation length plotted against average size at birth. The expected
quadratic behaviour is confirmed. The red line represents a line with slope 2 drawn
as a guide for the eye.

21

6 Results: experimental data

6.1 Correlation length

We described experimental data in the Single-cell data section and we already stated how,
without assuming a specific model, we cannot determine the distance from the critical point.
This greatly reduces our possibilities to confirm the di↵erent scalings probed in the previous
sections. The main one analyzed in the Results: numerical simulations section is the relation
⇠ ⇠ hmi

�2. Moment scaling is also something we can compare and that we will look at.
We encounter though 2 main problems in verifying ⇠ ⇠ hmi

�2. First of all, up to now we
have benefited from the fact that we could make lineages very long e.g. numerical results
are presented for 1 million samples (the last million out of the 8 total). This has the e↵ect of
averaging out oscillations making the fit of the autocorrelation function much more reliable.
When dealing with experimental data though, oscillations are indeed present and this can
blur the scaling e↵ect.
To probe this finite-size shortcoming of experimental data we reproduce Fig. 12 using the
same generated lineages used for Fig. 12 but instead of taking the last million generations
we pick the last 250 i.e. the typical length of our long-lineages set. The new plot in log-log
scale is shown in Fig. 13

Figure 13: Using the same lineages that showed a nice ⇠ ⇠ hmi
�2 scaling when

taking the last million samples, we instead see no clear behaviour arising considering
250 samples.

On top of oscillations being present, we also expect real observations to be noisier than
simulations making the ⇠-hmi relation even more di�cult to see.
The second main point lies on the fact that the data we use here exhibit a very limited range
as far as average size at birth hmi, this naturally prevents the signal, even if present, to arise
from noise. Fig. 14 takes into account all the data at our disposal and confirms what we
discussed above and what we saw considering a few samples of simulated lineages, i.e. the
⇠ ⇠ hmi

�2 behaviour is hidden.

6.2 Comparison with experimental data: moments’ scaling

We now focus on moment scaling away from the critical point. Specifically, we focus on
k = 2 and k = 3.

Fig. 15 shows moment scaling for k = 2 and k = 3. We can immediately notice how
results are noisy (much noisier than simulations). Furthermore, in all 3 cases the mean sizes
at birth hmi span a small segment. This feature of the x-axis having a very limited range
makes it hard to fit hm

k
i. We can for example see how, visually (Fig.15), the data seems

linearly distributed while a log-log plot (Fig. 16) tells us otherwise.

22

Figure 14: Correlation length (y-axis) plotted against the average size at birth
(x-axis) for each experimental data set used in this thesis work. No clear scaling is
observable connecting the correlation length ⇠ to the average size at birth hmi in
experimental data.

Figure 15: Moment’s scaling of experimental data. Although the scatter points
seem to lie on a linear curve, we are limited by the hmi range that hides power law
behaviour (we are looking at the tangent) as a linear fit in log-log yells exponents
di↵erent from 1. The x-axis’ short range also harms a reliable assessment of the
power law exponent.

Figure 16: Moment’s scaling of experimental data in log-log scale.

The results of linear plots in log-space, measuring the power-law exponents, made via the
Scipy [14] library are shown in Tab. 4. The error of each result is computed taking the
square root of the covariance matrix’s diagonal term corresponding to the exponent. Rows
are indexed with the keyword slope as the slope in a log-log plot correspond to the variable

23

we are looking for i.e. the power law exponent. We notice, for the long-lineages set, the

Long-lineages set Short-lineages set
25°C 37°C

slope, k = 2 1.94± 0.04 2.17± 0.04 2.30± 0.03
slope, k = 3 2.8± 0.1 3.5± 0.2 4.0± 0.1

Table 4: Fitted power law exponent for experimental data’s moment scaling.

values being below trivial moment scaling, especially for k = 3. The short-lineages set give
back values above 2 and 3 for k = 2 and k = 3 respectively. We find this result oddly looking
and we hypothesize that this deviation from the expected behaviour is caused by the poor
quality of the data (both noise and short x-range).
To probe how conclusive the fit is, we proceed by generating a heatmap hoping to get more
insight: we sample slopes and intercepts uniformly from an interval wrapping the fitted slope
and intercept respectively. Then, we compute the mean squared error between the points
represented in Fig. 15 and the line having the sampled slope and intercept.

Figure 17: Heatmaps representing the mean squared error (MSE) (in the colorbar)
for di↵erent slopes and intercepts. The blue point marks trivial moment scaling.

Fig. 17 shows how lower values of the power law values w.r.t tab. 4 are compatible with the
Mean Squared Error MSE (represented by the color and visible in the colorbar) landscape.
We have in fact that the valley representing low MSE wraps around an x value of 2 and 3
for plots on the left and on the right of Fig. 17 respectively. The observed behaviour of the
MSE landscape w.r.t. to the fitted exponents is probably related to the landscape being
very flat around the minimum.

We further study scaling by getting back to simulations. This time we want to closely
emulate experimental data and we do not need to approach the critical point to find any
critical exponent. The question thus lie on how to properly set the h and � values.
Only guessing the h and � values won’t probably su�ce though in this case. To answer this
problem we rely on Bayesian Inference for which we use Python’s emcee [27] library which
exploites the Montecarlo-Hastings algorithm, a brief introduction to Bayesian Inference and
its application to our case is in Appendix B. We run the inference using the model described

24

in eq. 20 and eq. 21 for every lineage at our disposal. This way we get, for each lineage,
the posterior for every parameter of the model whose inferred value is estimated taking the
maximum of the posterior.
Examples of posterior estimates can be found in Appendix B while results of the inference
process is summed up in Fig. 18 where h values (top row) and � values (bottom row) are
showed for each dataset as a function of the average size at birth hmi, the critical point is
also shown as a purple horizontal line. We can notice that the inferred values of � confirm
our initial hypothesis that lineages operate in the proximity of the critical point �c.

Figure 18: h values (top row) and � values (bottom row) infered for each lineage of
each dataset. Data is shown as a function of the average size at birth. The purple
line (bottom row) represents the critical point �c.

With the parameters of our two trait model now set, we can proceed with the new
simulations.

The next step is that of repeating the analysis that lead to tab. 4. In the Short-lineages
set case, the power law exponent is now below 2 and 3 for k = 2 and k = 3 respectively as
showed in tab. 5 while it’s interesting to notice how we get very similar results w.r.t. tab. 4
for the long-lineages set.

Long-lineages set Short-lineages set
25°C 37°C

slope, k = 2 1.90± 0.02 1.971± 0.008 1.970± 0.003
slope, k = 3 2.74± 0.05 2.90± 0.02 2.901± 0.007

Table 5: Fitted power law exponent for lineages simulated using the two trait model
with h and � vales found with Bayesian Inference as in Fig. 18.

25

7 Conclusions

In this thesis work we have studied single-cell lineages, under the hypothesis that the
system operates near a critical point associated with a second order active-to-absorbing
phase transition.
We used the size at birth averaged across a lineage (hmi) as the order parameter while
the control parameter is � i.e. the ratio between the growth and division time-scale of the
system.

In the Theoretical framework section we have introduced the universality class of the
system, setting up the various critical exponents to be later verified.
Unless we assumed a particular model though, we could not determine the distance from
the critical point. We thus introduced 3 di↵erent models belonging to the same universality
class in the Theoretical framework section. Each model adds biological plausibility to the
previous one but all share 4 key parameters i.e. the trait scales u and v regulating too small
and too large sizes respectively, and the time scales !1 and !2 representing the growth factor
and the division rate, respectively.

We then probed the critical exponents thanks to numerical simulations performed by
sampling lineages according to the aforementioned models. We succeed in confirming
multiple exponents and we also clarifyed how the autocorrelation one (2�⌘) approaches the
critical point as in literature 2 di↵erent results can be found.

Simulations were coded with Haskell [21], a purely functional programming language,
using monadic computations [10] which allows programming with e↵ect in a non e↵ectful
environment [8]. The Appendix C: Haskell implementation section contains the description
of the code implemented and the performance improvements w.r.t. a plain Python
implementation.

In Single-cell data we described experimental data used in this thesis. Both datasets,
which we called long-lineage set and short-lineage set are collected thanks to a mother
machine: a device that allows to track cells for many generations.
The long-lineages set contained 20 lineages of size ranging from 49 to 250. The short-lineages
one is instead further divided in two sets collected at di↵erent experimental conditions having
respectively 65 lineages with sizes ranging from 69 to 70 and 160 lineages with sizes ranging
from 69 to 70.

In the last step of our analysis we looked at experimental data and its scaling. Due to
the small range of the observed average sizes at birth, relatively short lineages not allowing
to average out oscillations and due to noise in the data, no scaling relation between ⇠ and
hmi could be observed.

In this thesis we find evidence for criticality in two ways:

• Via direct observation of anomalous moment scaling in experimental data.

• Via Bayesian Inference, used to infer the control parameter for a particular member
of the universality class confirming the initial hypothesis of proximity to the critical
point. Appendix B presents the application of Bayesian Inference in this thesis.

26

8 Appendix A

8.1 Hazard rate and survival probability relation

Here we want to show a simple derivation of eq. 2 that links the probability not to divide
until time t, i.e. S(t) and the hazard rate h(x(t)).

First of all, let’s set a little bit of notation: we will denote as T the random variable
representing the survival time i.e. the time-to-event.
The probability that the event did occur by time t, i.e. the cumulative density function will
be marked as CDF (t), CDF (t) = 1� S(t).
We can then rewrite the hazard rate using its limit definition,

h(t) = lim
�t!0

✓
P (t < T t+�t|T > t)

�t

◆
, (33)

With the | sign denoting conditional probability. The cumulative hazard rate function H(t)
is instead,

H(t) =

Z
h(t) · dt . (34)

Eq. 33 can be reworked using the product rule, i.e. P (AB) = P (A|B)·P (B) = P (B|A)·P (A),
and the relation,

P (t < T t+�t) ^ P (T > t) = P (t < T t+�t) , (35)

as:

h(t) = lim
�t!0

✓
P (t < T t+�t) ^ P (T > t)

P (T > t) ·�t

◆
Using the product
rule.

h(t) = lim
�t!0

✓
P (t < T t+�t)

S(t) ·�t

◆
Exploiting eq. 35
and the fact that
P (T > t) = S(t).

h(t) = lim
�t!0

✓
P (T t+�t)� P (T t)

S(t) ·�t

◆
Refactoring the
numerator.

h(t) = lim
�t!0

✓
CDF (t+�t)� CDF (t)

�t

◆
·

1

S(t)
Exploiting CDF ’s
definition and
bringing S(t) out
of the parenthesis.

h(t) =
dCDF (t)

dt
·

1

S(t)
Using the
derivative
definition.

h(t) =
d(1� S(t))

dt
·

1

S(t)
Using survival
function’s
definition.

(36)

h(t) = �
dS(t))

dt
·

1

S(t)
Computing the
derivative.

(37)

Finally we notice that for a general function f(x), using the chain rule we find
d

dx
ln(f(x)) =

d

dx
f(x) ·

1

f(x)
and thus we can rewrite eq. 37 as h(t) = �

d

dt
lnS(t) that

is indeed equation 2.

27

8.2 Survival derivation

Here we derive eq. 23 and eq. 24 finding S(t) needed to retrieve the inter-division times of
a lineage beginning with the former.
Let’s start in the single trait case. First of all we need the expression of the growth rate, we
notice that the ODE in the left of eq. 15 is integrable by separation of variables, yielding

m(t) = (m0 + u) · e!1t � u , (38)

in which we have used the substitution m(t = 0) = m0 to find the integration constant.
Then,

d lnS(t)

dt
= �!2 ·

✓
1 +

m(t)

v

◆
;

d lnS(t)

dt
= �!2 ·

✓
1 +

e
!1t · (u+m0)� u

v

◆
,

(39)

separating the variables and integrating we get,

lnS(t) = �!2t

⇣
u

v
� 1
⌘
�
!2

!1
·
(u+m0)

v
· e

!1t + c . (40)

With c being the integration constant, found by imposing the initial condition S(t = 0) = 1
i.e. at time 0 no cell has encountered a division event, leading to eq. 23.

We proceed analogously for the two trait model finding,

m(t) = m0 · e
!1t; p(t) = mb · (e

!1t � 1) . (41)

The time t0 at which the cell can start to divide, is retrieved by imposing p(t) = u, indeed,

m0 ·
�
e
!1t0 � 1

�
= u . (42)

Taking the logarithm on both sides we find,

t0 =
1

!1
ln

✓
1 +

u

m0

◆
. (43)

For the derivation of S we start from the t < t0 case for which h = 0 and thus d lnS(t) = 0
pointing at S(t) being a constant that evaluates to 1 exploiting the properties of the survival
function at t = 0.
At t � t0 instead,

d lnS(t)

d t
= �!2 ·

m0 (e!1t � 1) + v

u+ v
Putting p(t) in
the equation for
h.

lnS(t) = �!2

Z
m0e

!1t �m0 + v

u+ v
d t Separating the

variables and
integrating.

lnS(t) = �!2

✓
v �m0

u+ v
· t
m0

!1
· e

!1t

◆
+ c With c the

integration
constant.

(44)

c is found requiring the condition S(t = t0) = 1.
Putting back together the t < t0 and the t � t0 case we retrieve eq. 24.

28

8.3 Passing to log-space

We retrieve here the conditional probability pdf(x|x0) where x = ln (m) for h = 0 starting
from eq 17. The h > 0 case is analogous.

pdf(m|m
0)
��
h=0

= e
��(2m�m0)

�

✓
1

m
+ 2

◆
·

✓
2m

m0

◆��

Our starting
point.

pdf(m|m
0) = e

��(2m�m0)
�

✓
m

0

m

◆�

· 21��

✓
1

2m
+ 1

◆
Bringing a 2 out
of both
parenthesis and
flipping the first.

(45)

Now we make the change x = ln (m) and we multiply by the jacobian e
x leading

to,

pdf(x|x0) = exp

n
��

⇣
2ex � e

x0
⌘o

· �

e
x0

ex

!�

· 21��

✓
1

2ex
+ 1

◆
e
x We are now in

log-space.

pdf(x|x0) = exp

n
�

⇣
�2ex + e

x0
+ x

0
� x

⌘o
�2�� (1 + 2ex) Putting a 2 and

e
x inside the last
parenthesis.

(46)

We finish o↵ by rewriting 1 + 2ex as exp {ln (1 + 2ex)}.

29

9 Appendix B

9.1 Anomalous scaling, higher moments

We extend here what was shown in the Results: numerical simulations section that showed
anomalous scaling for the first 3 moments of lineages’ size at birth.
In Fig. 19 we instead display scaling up to the 6-th moment.

Figure 19: Scaling of the 4-th, 5-th and 6-th moment of the size at birth for lineages
of 8 million generations simulated at h = 0 and with |� � �c| transitioning from
10�1 to 10�6. Linear scale (top) and log-log scale (bottom). The red line is a line
with slope 1 drawn as a guide for the eye.

We can extend the reasoning of the first 3 moments also here, confirming the expected
anomalous scaling behaviour already reported in [3] for cells populations.

9.2 Bayesian Inference

In this section we briefly outline how we made use of Markov Chain Monte Carlo (MCMC)
techniques to obtain random samples from the posterior distribution of the parameters of
our models.
We used Python’s emcee library [27] which exploits a variant of the Montecarlo-Hastings
algorithm, for the exact implementation we refer to [27].

9.2.1 Metropolis-Hastings algorithm

Sampling from a distribution can prove to be a di�cult task. Markov Chain Monte Carlo
algorithms face the problem by designing a Markov chain whose limiting distribution is the
desired one, and by obtaining samples by running the chain at equilibrium.
The Metropolis algorithm was the first Markov Chain Monte Carlo Method developed [28]
and is presented in [29]. Let’s call the desired target distribution ⇡ (in reality we will see
that just something proportional to ⇡ is needed) and let us consider, for simplicity, the case
of a finite space Xn 2 {1, . . . , k}. We need an arbitrary jump probability Tij , signaling the
probability to jump from element j to i, it has to be symmetric with 0 on the diagonal, i.e.

30

the probability to stay in the same state is 0 [30],

Tij = Tji, Tii = 0 . (47)

T is used to generate candidate transitions. Each transition from j to i is accepted with
probability

Aij = min

⇢
1,
⇡i

⇡j

�
, (48)

meaning that if ⇡i > ⇡j the jump is always accepted, otherwise it is accepted with probability
⇡i

⇡j
< 1. The continuous case is analogous if we considerX 2 R, with the distribution ⇡ being

defined on a continuous space ⇡(x) and the jump proposal from x to x
0 being T = T (x0

, x).
The MCMC procedure has the advantage that we do not need to compute the evidence as
it goes away in the ratio needed to evaluate Aij , furthermore the markov chain defined by
the Metropolis algorithm is guaranteed to converge to the desired distribution ⇡ [30].

Metropolis’ algorithm can be simply modified to allow for non-symmetric jump proposals.
In the Metropolis-Hastings algorithm one has that the new transition probability, for the
continuous case is,

A(x0
, x) = min

⇢
1,
⇡(x0) · T (x, x0)

⇡(x) · T (x0, x)

�
. (49)

9.2.2 Bayesian inference for our model

We used Bayesian inference considering the model described in 20, 21, inferring the following
7 parameters,

✓ = {u, v,!2, a, b, c, d} . (50)

u, v, !2 are the already discussed scales. The two couples of parameters a, b and c, d are
instead connected with the division ratio f and the !1 parameter respectively. We in fact
assume that f is represented by a beta distribution (defined between 0 and 1) i.e,

f ⇠
x
a�1

· (1� x)b�1

B(a, b)
, (51)

with B(a, b) =
�(a)�(b)

�(a+ b)
and � the Gamma function.

c and d instead determine the growth parameter !1, we use indeed an underlying Gamma
distribution, which is strictly positive,

!1 ⇠
1

�(c)dc
· x

c�1
e
� x

d . (52)

Applying now the Bayes’ theorem we get,

P (✓|⌧,!1, f) / L(⌧,!1, f |✓) · p(✓) (53)

Where P (✓|⌧,!1, f) represents the posterior, L(⌧,!1, f |✓) the likelihood, p(✓) is the prior
on our set of parameters ✓ and ⌧ is the interdivision time. Notice that we have disregarded
the evidence as it is not needed in the Markov Chain Monte Carlo algorithm.
As far as the likelihood goes we can exploit the product rule and the fact that !1 and f are
independent to find

L(⌧,!1, f |✓) = L1(⌧ |!1, f,✓) · L2(!1|✓) · L3(f |✓) , (54)

Where L2 and L3 are Gamma(c, d) and Beta(a, b) respectively while L1 is the probability
density function of interdivision times, which depends on the model and it is minus the
derivative of the survival function.

We show below, in Fig. 20, two examples of sampled posterior distributions, in blue we
have the 95% confidence interval, median (red) and mode (green) are also highlighted. Both
left posterior (a parameter) and right posterior (d parameter) have nicely converged. Fig. 21
instead shows example of sampled chains, we see the they already converged as we used a
burnout period of 5000, i.e. the firsts 5000 sample of each chain are thrown away.

31

Figure 20: Examples of the posterior distribution for the a parameter (left) and
the d parameter (right).

Figure 21: Chains of the a parameter (top) and b parameter (bottom). A burnout
period of 5000 samples has been implemented.

32

10 Appendix C: Haskell implementation

Before looking into the specifics of our code implementation we make a brief overview of
the Haskell programming language highlighting its challenges and advantages in simulating
sizes at birth.

The Haskell programming language has its roots in the lambda calculus mathematical
theory of functions. In the 1930s Alonzo Church attempted to create a system of logic that
used only functions and variables, what started as an inquiry on set theory turned out to
be a discovery of an universal model of computation, equivalent to the Turing machine [9].
Haskell is a functional programming language which can be viewed as a style of programming
in which the basic method of computation is the application of functions to arguments. In
turn, a functional programming language is one that supports and encourages the functional
style [8].
In Haskell, functions have to follow 3 rules to make them behave as pure functions in the
mathematical sense of the term:

• All functions must take an argument.

• All functions must return a value.

• Anytime a function is called with the same argument, it must return the same value.

None of the 3 rules are generally respected in an imperative programming language.
Furthermore, the third one, in the context of programming languages takes the name of
referential transparency [9].

The pure nature of Haskell implies that simple equational reasoning can be used to
execute programs, to transform programs, to prove properties of programs and to derive
programs directly from specifications of their behaviour. Equational reasoning is particularly
powerful when combined with the use of induction to reason about functions that are defined
using recursion. We have indeed that cutting-edge research in programming languages is
experimenting with ways to mathematically prove that programs will do exactly what you
expect [8, 9].
A dummy example of a function in Haskell can be given by the identity function.

1 id x = x

The above example shows how, reflecting its primary status in the language, function
application in Haskell is denoted silently using spacing. Parenthesis can be used (but when
looking into the code we’ll see there are valid alternatives) in applications of the form f(g(x)),
e.g.

1 doubleId x = id (id x)

with doubleId a function applying twice the identity.
As mathematical functions do, Haskell functions need a domain and a co-domain. Haskell ’s
strong type system achieves exactly that, although it is strongly recommended, you can
avoid writing explicitly the types involved in your functions as the compiler’s type inference
will deduce the right types for you.
The identity function definition with types explicitly written down becomes:

1 id :: a -> a

2 id x = x

with a representing a catch for all types as id can be applied to any type.
Haskell ’s type system allows for easily defining type synonyms and new types with as many
type constructors as you like. The advantages of this type system are countless, for example
it provides an object oriented paradigm that’s more flexible then traditional imperative
programming languages.
Its main feature though is probably how it makes programs intuitive to understand and easy
to read. The types and type synonyms defined in this thesis work are shown in 10.8.

33

10.1 A safe programming language leads to recursion

Given the time-series structure of our work we will deal with looping a whole lot. Writing
down the basics of looping in Haskell is thus key in understanding how the main functions
we use in this thesis work.
Programs are said to be safe when they always behave exactly the way you expect them to
and you can thus easily reason about their behavior. A safe programming language is one
that forces your programs to behave as expected.
Moreover, when you change a value in your programming environment, you’re changing the
program’s state. Changing state creates side e↵ects in your code, and these side e↵ects can
make code hard to reason about and therefore unsafe [9].

We can for example look at a simple for loop in Python which computes the factorial
of a given number,

1 @typechecked

2 def factorialFn(n:int) -> int:

3 factorial = 1

4 for i in range(1,n + 1):

5 factorial *= i

6 return factorial

7

8 print(factorialFn (5))

1 >>> 120

The for loop in the function is inherently unsafe, we are indeed accessing a global (in
the context of the function) variable i.e. factorial and we are changing it each time.
Furthermore the *= infix operator could not exists in a language like Haskell as it violates
the third of our function rules: each time it is called we get a di↵erent result.
Finally, in Haskell it is better to think at variables as definitions, while the code below
compiles with no problems,

1 x :: Int

2 x = 1

the following will raise an error,

1 x :: Int

2 x = 1

3

4 x :: Int

5 x = 2

as we are harming referential transparency so that in our Python example we would not be
able to assign to factorial a new value at each step.

Haskell ’s basic mechanism for looping is recursion [8]. We can thus write our simple
factorial function as follows.

1 factorialFn ::Int -> Int

2 factorialFn 0 = 1

3 factorialFn n = n * factorial (n-1)

4

5 factorialFn 5

1 >>> 120

The above snippet shows an example of pattern matching in Haskell, with the first line being
executed if the input is 0 and representing the base case while the second is the recursive
condition. For more insights on pattern matching we refer to [9, 8]
A little note on the previous function. We have previously mentioned how being able to
reason about your program is one of the main features of Haskell, the factorialFn is not
built toward this goal as we defined overlapping patterns. The only reason why the function
works is indeed that the compiler gives precedence to the first condition. A better solution
would be to use guards whose in-depth introduction is given in [9, 8], as below.

1 factorialFn ::Int -> Int

2 factorialFn n | n > 0 = n * factorialFn (n-1)

3 | otherwise = 1

34

4

5 factorialFn 5

1 >>> 120

Throughout these examples we are using the Int type which is bounded, i.e. it cannot
assume arbitrary high values, if we would need a type with no bounds we could rely on the
Integer data type.

10.2 Dealing with computations that may fail: the Maybe type and
finding the root of a function

In the above section we wrote a simple function that computes the factorial of an integer
n. The factorial though is defined only for integers n � 0 and our function will fail its
purpose for negative integers returning simply 1. While it is possible to raise errors in
Haskell through its error function it is considered bad practice. This is because it then
becomes easy to introduce bugs in your code that your compiler cannot check [9].
A great workaround is the Maybe type, i.e. a parameterized type whose definition in Haskell ’s
standard Prelude reads:

1 data Maybe a = Nothing | Just a

with | signaling the logical or. So Maybe is parameterized by a type a (any type) and can
be either Just a or Nothing. Just a stands for a computation that completed successfully
while Nothing highlights that something went wrong. Let’s now rewrite our factorialFn
function so that we don’t have to worry about negative integers.

1 factorialFn ::Int -> Maybe Int

2 factorialFn n | n > 0 = Just $ n * fromJust (factorialFn (n-1))

3 | n == 0 = Just 1

4 | otherwise = Nothing

Some explaining to do. First of all note how our function has changed its type and now
returns a Maybe Int and not an Int anymore. We then see for the first time the $ operator
which just allows us not to overcrowd the code with parenthesis e.g. we could just as well
have written Just (n * fromJust (factorialFn (n-1))). There’s nothing fancy about
the $, its definition in the standard Prelude indeed reads,

1 ($)::(a -> b) -> a -> b

2 f $ x = f x

i.e. it takes a function from a to b, a value of type a and returns a value of type b and from
its definition we see that’s just a plain function application. The trick lies in the fact that
$ is a binary operator, so it has lower precedence than any other function we are using [9].
In the definition of $ we see a snapshot of how Haskell deals with multi-argument functions
i.e. through currying (celebrating the work of Haskell Curry), for our purposes we just need
to know that the last argument of the type signature is the return type, the other ones are
the argument types.
Finally fromJust takes a value inside the Just constructor and brings it out e.g.

1 x :: Int

2 x = fromJust $ Just 5

3

4 print(x)

1 >>> 5

Let’s then see the new factorial function in action.

1 factorialFn 5

1 >>> Just 120

1 factorialFn (-1)

1 >>> Nothing

35

So, although it is not yet the most elegant function, factorialFn does its job. The
introduction of concepts like functors, monads and applicative functors will allow a better
implementation of factorialFn.

A careful introduction of computations that may fail in Haskell is needed here because the
numericRootFinding [15] library, which we will use a lot, exploits this concept thoroughly.
The major shortcoming of the Maybe type is its lack of information on the error message. In
our factorial function, if Nothing is returned, we know it is due to a negative integer. But if
we are dealing with more complex tasks like querying from a database, there are countless
things that may go wrong and for all of them we see just Nothing. Haskell deals with this
issues with the Either type that allows you to customize errors, without raising them with
the error function, basically as you like.
For our purposes instead we work with the numericRootFinding [15] library. Specifically,
we use its ridders function, which relies on Ridders algorithm [18], to numerically find the
root of a function f : R ! R. This operation takes two inputs: a bracket of doubles defining
the interval in which to look for the solution and the function to find the root of. This leads
to the following type signature.

1 ridders :: RiddersParam -> (Double , Double) -> (Double -> Double) -> Root

Double

So the function apart from the discussed bracket and function f , it takes as input a value
of type RiddersParam that is no more than a tuple specifying the maximum number of
iterations and the error tolerance for the root approximation. Having a computation that
is in danger of failing it returns a Root Double, a type introduced below. As per the
numericRootFinding [15] documentation there are two possible sources of failing,

1. The function does not have opposite signs when evaluated at the lower and upper
bounds of the search.

2. The search failed to converge within the given error tolerance after the given number
of iterations.

Hence, the library deals with this two cases defining the Root data type:

1 -- | The result of searching for a root of a mathematical function.

2 data Root a = NotBracketed

3 | SearchFailed

4 | Root a

we can see that Root is exactly equivalent to the Maybe type with the only di↵erence being
the specification of the error message: basically the Nothing constructor has been split in
NotBracketed and SearchFailed while the Root contructor takes the place of Just.
We are now fully equipped to understand the function that draws samples from the CDF .

1 drawCDF :: CdfParameters -> RandomNumber -> Root LogSize

2 drawCDF param unif

3 | hValue param > 0.0 = ridders def bracketPositiveH $ functionToInvert param

unif

4 | xBirth param > -20 = ridders def bracket $ functionToInvert param unif

5 | otherwise = pure $ - log 2 - (1 / gammaValue param) * log unif + xBirth

param

6 where

7 bracket = getBracket $ xBirth param

With def being the default error tolerance and bound for the number of iterations of the
ridders function while pure is a fancier way of writing Root as we will see when talking
about applicative functors. The conditions following the firsts two guards can be better
understood by taking a grasp at record syntax as explained in 10.8.

We have now solved the issue of drawing from the CDF and we are left with
understanding how to keep a running state and code with side e↵ects in a language like
Haskell. Actually we have also raised a problem: during simulations we indeed need the size
at birth at step i to generate the size at step i+ 1 but now we do not have a plain Double
to work with but a Root Double and basic operations like multiplication with an Int are
not defined. For every basic operation we would need a wrapper of the type,

36

1 customMultiplication :: Root Double -> Int -> Root Double

2 customMultiplication (Root n) m = (Root m*n)

3 customMultiplication errorType m = errorType

both these 2 hurdles can be overcome through the tools introduced in the next section.

10.3 Monads in Haskell

To handle e↵ects in Haskell we need Monads and monadic computations [10], working
without them is possible but code quickly becomes cumbersome and hard to understand not
to mention the high probability of making errors and the the di�culty in debugging.
But what exactly is a monad? It is an applicative functor that implements the (>>=)
(pronounced bind) operator. And what is an applicative functor? It is a functor that
implements the pure function and the (<*>) (app) operator: safe to say a little introduction
to each notion is needed.

What every mentioned concept have in common is that they work with types in a context
i.e. parameterized type that accept only one parameter exactly like Maybe and Root. We
then introduce the graphical notation we will used to get some visual intuition. The graphical
notation such as several parts of this section are borrowed from [9].
We will signal di↵erent types with di↵erent shapes e.g. a circle for an Int and a square for a
String. An empty circle will then represent the embedding in a context while a line stands
for a function, Fig. 22 sums up the basics of the notation.

Figure 22: Resume of the graphical notation: we see a type in a context connected
through a function to another type in a context e.g. we could be representing a
function Maybe Int -> Maybe Double.

Throughout the section we will use the parameterized type Maybe as an example for its
intuitiveness.

10.4 The functor type class

We have previously mentioned how with types in a context also the most basic operations like
multiplication can be hard. Haskell deals with this problem by making the parameterized
type a member of the Functor class, i.e. we need to define a function called fmap whose
type signature is shown below.

1 fmap :: Functor f => (a -> b) -> f a -> f b

We can make Maybe an instance of functor :

1 instance Functor Maybe where

2 -- fmap :: Functor f => (a -> b) -> f a -> f b

3 fmap func (Just n) = Just (func n)

4 fmap func Nothing = Nothing

where the type signature has been commented out because, without language extensions, it
is not allowed in instance declarations. Hence, the functor takes a computation and applies
it inside the context if we have a Just of something otherwise it propagates Nothing as we
can see in the following examples were we are using (<$>): an infix synonym of fmap.

1 (* 5) <$> Just 2.0

37

1 >>> Just 10.0

1 (* 5) <$> Nothing

1 >>> Nothing

We can also visualize fmap with our graphical notation in Fig. 23.

Figure 23: Graphical visualization of what fmap does: we have a function func
that connects type a to type b while we have a in a context (e.g. Maybe) and we
want to arrive to b in a context. fmap Does exactly that.

10.5 The applicative type class

Applicative functors generalize functors when we deal with functions that take multiple
arguments. We did not focus on currying here and we will thus present how applicative
works without getting into the specifics.
We need to define two functions: (<*>) (app) and pure.

1 (<*>) :: Applicative f :: f (a -> b) -> f a -> f b

2 pure :: Applicative f :: a -> f a

i.e. app takes a function from a to b in a context and a value of type a in a context giving
back a value of type b in a context. pure allows you to simply put something in a context
as we can see graphically in Fig. 24.

Figure 24: Graphical visualization of the <*> operator (A) and of pure (B) which
simply puts a value in a context.

The Maybe type is made an instance of applicative with the following definitions

1 instance Applicative Maybe where

2 -- (<*>) :: f (a -> b) -> f a -> f b

38

3 (<*>) (Just func) (Just n) = Just (func n)

4 (<*>) Nothing _ = Nothing

5 (<*>) _ Nothing = Nothing

6 -- pure :: a -> f a

7 pure n = Just n

with _ a catchall that matches anything.
A couple of examples can show how applicative generalizes functors when we have

functions of multiple arguments like multipication does.

1 pure (*) <*> Just 10 <*> Just 5

1 >>> Just 50

1 pure (*) <*> Just 10 <*> Nothing

1 >>> Nothing

10.6 Finally Monads

Using functors and applicatives helps you a lot when dealing with objects in a context. For
example we can rewrite our functorialFn function in a much more elegant way as the code
listing below shows. Not only that, in our previous implementation we used the fromJust
function and that is considered bad practice as fromJust Nothing raises an error.

1 factorialFn ::Int -> Maybe Int

2 factorialFn n | n > 0 = (* n) <$> factorialFn (n-1)

3 | n == 0 = Just 1

4 | otherwise = Nothing

There is a pattern though with which we still cannot deal. If we call our context m (as
monad) if we have at our disposal m a and a function (a -> m b) we have no way at this
point to retrieve the final m b. The problem solved by making types instances of monad is
visualized in Fig. 25.

Figure 25: The monad class through the (>>=) operator takes a value in a contex
m a, a function a -> m b and gives back a value m b.

The minimal definition of themonad type class requires the declaration of the (>>=) operator
(bind), let’s see its type signature.

1 (>>=) :: Monad m => m a -> (a -> m b) -> m b

We can implement the (>>=) operator for the Maybe type as

1 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

2 (>>=) m g = case m of

3 Nothing -> Nothing

4 Just x -> g x

with the case syntax being an alternative to pattern matching with guards.
It would be nice to make an example of an application of the bind operator, for that we
need a function of the type a -> m b. Turns out we already defined such a function: it’s
our factorialFn! We can then write,

1 (factorialFn 3) >>= factorialFn

39

1 >>> 720

because we also needed a value in a context we chose the return of the factorialFn function.
The result is a chaining of factorialFn that computes the factorial of 3 and the factorial
of its result i.e. 6! = 720.
It’s exactly this ability to chain together actions that makes monads good for our purpose
as we need chaining together operations when sampling sizes at birth.

In our function that samples sizes at birth we will use one of the main monads in Haskell
i.e. the state monad, many resources explaining this monad are available, one of which is
the documentation of the library used for the implementation [33], inspired by [34].
At its core though, the state monad maintains a state and the result of a computation.
When a new computation is performed, the running state is updated and the new result
stored.

10.7 Sampling sizes at birth and performances

Below we show our set of two functions responsible for simulating sizes at birth.

1 -- sizeAtBirth :: series length -> StateT state Monad resultComputation

2 sizeAtBirth :: Int -> StateT SimulationParameters Root LogSize

3 sizeAtBirth 0 = gets (xBirth . params)

4 sizeAtBirth n = do

5 paramDraw <- get

6 let cdfParams = params paramDraw

7 let currentTs = accumulatedDraw paramDraw

8 let gen = generator paramDraw

9 let (unif , gen ’) = randomR (0,1) gen

10 newDraw <- lift $ drawCDF cdfParams unif

11 let newTs = currentTs |> newDraw

12 put $ paramDraw {generator = gen ’, accumulatedDraw = newTs , params =

cdfParams{xBirth = newDraw }}

13 sizeAtBirth (n-1)

1 simulate :: Int -> SimulationParameters -> Root (Seq Double)

2 simulate n paramDraw = accumulatedDraw <$> execStateT (sizeAtBirth n)

paramDraw

With the simulate functions that is just returning the final state of our sizeAtBirth
function and selecting the accumulatedDraw parameter of our SimulationParameters data
type.
Note that we are not exactly using the state monad but instead a state transformer from [35]
whose only di↵erence is that it works smoothly with a computation that involves another
monad i.e. the Root monad in our case.
Except for the di↵erent utility functions that are specific of the already introduced libraries
and can be found in their respective documentation, the thing we have not yet discussed is
the do notation but that is nothing other that syntactic sugar for the (>>=) operator that
allows us to avoid complicated lambda functions. The use of the Data.Sequence library [31]
in the definition of the TimeSeries data type and highlighted in the listing above by the
appending operator |> has proven to be key to obtain competitive performances due to
its O(1) (amortized) asymptotic behaviour in the append operation due to the structure of
Data.Sequence that is similar to doubly linked lists. For example the Data.Vector library [32]
while outperforming Data.Sequence in indexing su↵ers in appending (O(n)).

Now that we have our Haskell function in place we can compare its performances to a
plain Python implementation. To do this we run the two programs producing lineages of
various lengths (100k, 200k, 300k, 500k, 750k and 1 million) and measuring the time taken
to finish the procedure. For each length 50 iterations are run, mean and standard deviation
in seconds are shown in Fig. 26.
Fig. 26 shows how Haskell consistently outperforms Python providing the queried
performance improvement. The scattered points represent the mean of 50 iterations, the
error bar are instead 1 standard deviation.

40

Figure 26: Mean time and standard deviation of 50 Python (blue) and Haskell
(orange) runs are showed for di↵erent lineage lengths.

10.8 Custom data types and type synonyms

The type synonyms defined for this thesis and that are useful for understanding the code
shown in this section are shown below.

1 type LogSize = Double

2

3 type RandomNumber = Double

4

5 type Bracket = (Double , Double)

6

7 type TimeSeries = S.Seq LogSize

8

9 type Size = Double

All of them have the purpose of improving code readability e.g. when we are writing a
function that, given a random draw, returns a new log-size for our lineage its type won’t be
a generic Double -> Double but a much nicer RandomNumber -> LogSize.
The Bracket defining a tuple of Doubles is mainly used in the context of root finding
with Haskell’s numericRootFinding library [15] from the containers package. Finally we
define a TimeSeries as a sequence of LogSizes (or of Sizes equivalently) where S.Seq is
the sequence’s data constructor of the Data.Sequence library [31]. As previously discussed,
Data.Sequence has been chosen over for example Data.Vector for its very e�cient (O(1))
append operation.

Defining new types in Haskell can be done with the data keyword [9]. To be honest it
can be done also with the newtype keyword but that’s true only if the type has only one
constructor with exactly one field in it and it’s usually used along with dummy constructors
when we have a type synonym that we want to make an instance of something (e.g. an
instance of the monad class), so we won’t focus on this specific case.
Next we show our custom data types

1 data CdfParameters = CdfParameters

2 {xBirth :: Double , gammaValue :: Double , hValue :: Double}

3 deriving (Show)

4

5 data SimulationParameters = SimulationParameters

6 {params :: CdfParameters , generator ::StdGen , accumulatedDraw :: TimeSeries}

deriving (Show)

41

where record syntax is used, which makes easier to understand which type uses which
property [9]. For a proper introduction to record syntax we refer to the several resources
available online.
The CdfParameters type contains the minimal set of parameters needed to define our CDF

while SimulationParameters represents the current state of our simulation with generator
being the random generator used for sampling uniformly u ⇠ U [0, 1].
Record syntax comes in handy also because it automatically defines functions to retrieve
each parameter e.g. if param is an instance of the CdfParameter type we can retrieve its
hValue with a function whose name is (not surprisingly) hValue.

42

43

References

[1] Amir A. Cell Size Regulation in Bacteria. Phys Rev Lett. 2014 May;112:208102.
Available from: https://link.aps.org/doi/10.1103/PhysRevLett.112.208102.

[2] Osella L Nugent. Concerted control of Escherichia coli cell division. PNAS. 2014
February;111. Available from: https://www.pnas.org/doi/full/10.1073/pnas.
1313715111.

[3] Held J, Lorimer T, Pomati F, Stoop R, Albert C. Second-order phase transition
in phytoplankton trait dynamics. Chaos: An Interdisciplinary Journal of Nonlinear
Science. 2020 05;30(5):053109. Available from: https://doi.org/10.1063/1.
5141755.

[4] Solé RV, Manrubia SC, Benton M, Kau↵man S, Bak P. Criticality and scaling in
evolutionary ecology. Trends in Ecology Evolution. 1999;14(4):156-60. Available from:
https://www.sciencedirect.com/science/article/pii/S0169534798015183.

[5] Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, et al. Robust Growth
of Escherichia coli. Current Biology. 2010;20(4):1099–1103. Available from: https:
//www.cell.com/current-biology/pdf/S0960-9822(10)00524-5.pdf.

[6] Yu T, Anand P, Heungwons P. A noisy linear map underlies oscillations in cell size
and gene expression in bacteria. Nature. 2015;(523):357–360. Available from: https:
//www.nature.com/articles/nature14562#citeas.

[7] Stawsky A, Vashistha H, Salman H, Brenner N. Multiple timescales in bacterial
growth homeostasis. iScience. 2022;25(2):103678. Available from: https://www.
sciencedirect.com/science/article/pii/S2589004221016485.

[8] Graham H. Programming in Haskell. London: Cambridge University Press; 2007.
Available from: http://www.cs.nott.ac.uk/~pszgmh/book-old.html.

[9] Kurt W. Get Programmung with Haskell. 20 Baldwin Road PO Box 761 Shelter
Island, NY 11964: Manning; 2018. Available from: https://www.manning.com/books/
get-programming-with-haskell.

[10] Moggi E. Notions of computation and monads. Information and Computation.
1991;93(1):55-92. Selections from 1989 IEEE Symposium on Logic in Computer
Science. Available from: https://www.sciencedirect.com/science/article/pii/
0890540191900524.

[11] Banavar JR, Green JL, Harte J, Maritan A. Finite Size Scaling in Ecology. Phys
Rev Lett. 1999 Nov;83:4212-4. Available from: https://link.aps.org/doi/10.1103/
PhysRevLett.83.4212.

[12] Orlandini E, Pagano A. Lecture Notes of Statistical Mechanics; 2020. University of
Padova.

[13] Panlilio M, Grilli J, Tallarico G, Iuliani I, Sclavi B, Cicuta P, et al. Threshold
accumulation of a constitutive protein explains E. coli cell-division behavior in nutrient
upshifts. Proceedings of the National Academy of Sciences. 2021;118(18):e2016391118.
Available from: https://www.pnas.org/doi/abs/10.1073/pnas.2016391118.

[14] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods. 2020;17:261-72. Available from: https://docs.scipy.org/doc/scipy/.

[15] O’Sullivan B, Khudyakov A. math-functions: Collection of tools for numeric
computations; 2018. Available from: https://hackage.haskell.org/package/
math-functions-0.3.4.2/docs/Numeric-RootFinding.html.

44

https://link.aps.org/doi/10.1103/PhysRevLett.112.208102
https://www.pnas.org/doi/full/10.1073/pnas.1313715111
https://www.pnas.org/doi/full/10.1073/pnas.1313715111
https://doi.org/10.1063/1.5141755
https://doi.org/10.1063/1.5141755
https://www.sciencedirect.com/science/article/pii/S0169534798015183
https://www.cell.com/current-biology/pdf/S0960-9822(10)00524-5.pdf
https://www.cell.com/current-biology/pdf/S0960-9822(10)00524-5.pdf
https://www.nature.com/articles/nature14562#citeas
https://www.nature.com/articles/nature14562#citeas
https://www.sciencedirect.com/science/article/pii/S2589004221016485
https://www.sciencedirect.com/science/article/pii/S2589004221016485
http://www.cs.nott.ac.uk/~pszgmh/book-old.html
https://www.manning.com/books/get-programming-with-haskell
https://www.manning.com/books/get-programming-with-haskell
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://link.aps.org/doi/10.1103/PhysRevLett.83.4212
https://link.aps.org/doi/10.1103/PhysRevLett.83.4212
https://www.pnas.org/doi/abs/10.1073/pnas.2016391118
https://docs.scipy.org/doc/scipy/
https://hackage.haskell.org/package/math-functions-0.3.4.2/docs/Numeric-RootFinding.html
https://hackage.haskell.org/package/math-functions-0.3.4.2/docs/Numeric-RootFinding.html

[16] Inc WR. Mathematica, Version 13.3;. Champaign, IL, 2023. Available from: https:
//www.wolfram.com/mathematica.

[17] Brent RP. Algorithms for Minimization without Derivatives, Englewood Cli↵s.
Englewood Cli↵s, NJ: Prentice-Hall; 1973. Chapter 4: An Algorithm with Guaranteed
Convergence for Finding a Zero of a Function.

[18] Ridders C. A new algorithm for computing a single root of a real continuous function.
IEEE Transactions on Circuits and Systems. 1979;26(11):979-80. Available from:
https://ieeexplore.ieee.org/abstract/document/1084580.

[19] Susman L, Kohram M, Vashistha H, Nechleba JT, Salman H, Brenner N. Individuality
and slow dynamics in bacterial growth homeostasis. Proceedings of the National
Academy of Sciences. 2018;115(25):E5679-87. Available from: https://www.pnas.
org/syndication/doi/10.1073/pnas.1615526115.

[20] Yang D, Jennings AD, Borrego E, Retterer ST, Männik J. Analysis of factors
limiting bacterial growth in PDMS mother machine devices. Frontiers in microbiology.
2018;9:871. Available from: https://www.frontiersin.org/articles/10.3389/
fmicb.2018.00871/full.

[21] Marlow S, et al. Haskell 2010 language report. Available online (May 2011). 2010.
Available from: http://www.haskell.org/.

[22] Kitagawa G. Introduction to time series modeling. CRC press; 2010. Available
from: https://www.taylorfrancis.com/books/mono/10.1201/9781584889229/
introduction-time-series-modeling-genshiro-kitagawa.

[23] Grinstein G, Muñoz MA, Tu Y. Phase Structure of Systems with Multiplicative Noise.
Phys Rev Lett. 1996 Jun;76:4376-9. Available from: https://link.aps.org/doi/10.
1103/PhysRevLett.76.4376.

[24] Graham R, Schenzle A. Carleman imbedding of multiplicative stochastic processes.
Phys Rev A. 1982 Mar;25:1731-54. Available from: https://link.aps.org/doi/10.
1103/PhysRevA.25.1731.

[25] Seabold S, Perktold J. statsmodels: Econometric and statistical modeling with
python. In: 9th Python in Science Conference; 2010. Available from: https:
//www.statsmodels.org/stable/index.html.

[26] Christopher M B. Pattern Recognition and Machine Learning. 233 Spring Street, New
York, NY 10013, USA: Springer Science+Business Media, LLC; 2006. Available from:
https://link.springer.com/book/9780387310732.

[27] Foreman-Mackey D, Hogg DW, Lang D, Goodman J. emcee: the MCMC hammer.
Publications of the Astronomical Society of the Pacific. 2013;125(925):306. Available
from: https://iopscience.iop.org/article/10.1086/670067/meta.

[28] Koch KR. Introduction to Bayesian statistics. Springer Science & Business Media;
2007.

[29] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of
state calculations by fast computing machines. The journal of chemical physics.
1953;21(6):1087-92. Available from: https://doi.org/10.1063/1.1699114.

[30] Allegra M. Notes on information theory and inference; 2022. University of Padova.

[31] Paterson BFDFR, Straka M. containers: Assorted concrete container types; 2014.
Available from: https://hackage.haskell.org/package/containers-0.6.7/docs/
Data-Sequence.html.

[32] Khudyakov RLAKA, Lelechenko A. vector: E�cient Arrays; 2008. Available from:
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector.
html.

45

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://ieeexplore.ieee.org/abstract/document/1084580
https://www.pnas.org/syndication/doi/10.1073/pnas.1615526115
https://www.pnas.org/syndication/doi/10.1073/pnas.1615526115
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00871/full
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00871/full
http://www.haskell.org/
https://www.taylorfrancis.com/books/mono/10.1201/9781584889229/introduction-time-series-modeling-genshiro-kitagawa
https://www.taylorfrancis.com/books/mono/10.1201/9781584889229/introduction-time-series-modeling-genshiro-kitagawa
https://link.aps.org/doi/10.1103/PhysRevLett.76.4376
https://link.aps.org/doi/10.1103/PhysRevLett.76.4376
https://link.aps.org/doi/10.1103/PhysRevA.25.1731
https://link.aps.org/doi/10.1103/PhysRevA.25.1731
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://link.springer.com/book/9780387310732
https://iopscience.iop.org/article/10.1086/670067/meta
https://doi.org/10.1063/1.1699114
https://hackage.haskell.org/package/containers-0.6.7/docs/Data-Sequence.html
https://hackage.haskell.org/package/containers-0.6.7/docs/Data-Sequence.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector.html

[33] Gill A. mtl: Monad classes for transformers, using functional dependencies;
2001. Available from: https://hackage.haskell.org/package/mtl-2.3.1/docs/
Control-Monad-State-Lazy.html.

[34] Jones MP. Functional programming with overloading and higher-order polymorphism.
In: Advanced Functional Programming: First International Spring School on Advanced
Functional Programming Techniques B̊astad, Sweden, May 24–30, 1995 Tutorial Text
1. Springer; 1995. p. 97-136.

[35] Gill A. transformers:Concrete functor and monad transformers; 2001. Available
from: https://hackage.haskell.org/package/transformers-0.6.1.1/docs/
Control-Monad-Trans-State-Lazy.html.

[36] Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the
biosphere: integrating terrestrial and oceanic components. science. 1998;281(5374):237-
40.

[37] ElGamel M, Vashistha H, Salman H, Mugler A. Multigenerational memory in bacterial
size control; 2023.

46

https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-State-Lazy.html
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-State-Lazy.html
https://hackage.haskell.org/package/transformers-0.6.1.1/docs/Control-Monad-Trans-State-Lazy.html
https://hackage.haskell.org/package/transformers-0.6.1.1/docs/Control-Monad-Trans-State-Lazy.html

	Introduction
	Theoretical framework
	Single-cell models
	Markov jump process
	Observable scaling laws
	Single-trait models: size only
	Two trait models: a licensing protein triggering division

	Numerical simulations
	Sampling sizes at birth
	Small sizes approximation

	Single-cell data
	Outliers

	Results: numerical simulations
	Autocorrelation's oscillations
	 critical exponent
	 critical exponent
	Correlation length's scaling

	Results: experimental data
	Correlation length
	Comparison with experimental data: moments' scaling

	Conclusions
	Appendix A
	Hazard rate and survival probability relation
	Survival derivation
	Passing to log-space

	Appendix B
	Anomalous scaling, higher moments
	Bayesian Inference
	Metropolis-Hastings algorithm
	Bayesian inference for our model

	Appendix C: Haskell implementation
	A safe programming language leads to recursion
	Dealing with computations that may fail: the Maybe type and finding the root of a function
	Monads in Haskell
	The functor type class
	The applicative type class
	Finally Monads
	Sampling sizes at birth and performances
	Custom data types and type synonyms

