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Abstract

The birthplaces of stars are complex places, where turbulent interstellar gas collapses and frag-
ments into star-forming cores, giving rise to non-trivial substructure. While the formation
process can be modelled with hydrodynamical simulations, these are quite expensive in terms
of computational resources. Moreover, primordial star clusters that are still embedded in their
parent gas cloud are hard to constrain observationally. In this context, most efforts aimed at
simulating the dynamical evolution of star clusters assume simplified initial conditions, such
as truncatedMaxwellian models.
We aim to improve on this state-of-the-art by introducing a set of tools to generate realistic

initial conditions for star clusters by training an appropriate class of machine learning models
on a limited set of hydrodynamical simulations. In particular, we will exploit a new approach
based onGaussianprocess (GP)models, whichhave the advantage of differentiability andof be-
ing more tractable, allowing for seamless inclusion in a downstreammachine learning pipeline
e.g. for inference purposes. The proposed learning framework is a two-step process including
the model training and the sampling of new stellar clusters based on the inference results. We
investigate different sampling approaches in order to find samplers that are able to generate
realistic realizations.
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1
Introduction

The star clusters, groups of stars that are gravitationally bound together, are intensively studied
by astronomers as they provide clues about the formation and evolution of galaxies. A cluster
is a group of at least 12 stars whose volume is not dominated by dark matter [2]. The groups
with fewer stars are called multiple star systems. There are two categories of bound clusters:
open and globular. In the Milky Way, open clusters are located inside the galactic disc. They
are young, low-mass clusters. On the other hand, globular clusters are found in the bulge and
the halo of the galaxy. They are older and more massive than the open clusters [3].

Open clusters are born from the molecular clouds, the densest regions of the interstellar
medium. These clouds are predominantly composed of molecular hydrogen. Their dynamics
and hierarchical morphology are quite complex. There are two scenarios that aim to explain
the mechanism of star formation: the gravoturbulent scenario and the Global Hierarchical
Collapse scenario [3].
The gravoturbulent scenario states that the clouds manifest turbulence, which facilitates

the gravitational equilibrium thanks to the supersonic and isotropic turbulence pressure. This
leads to density fluctuations generating local collapses due to Jeans instability [3]. It is from
these collapses that stars are born according to this scenario.

The second scenario focuses on collapses at multiple scales, starting with the larger cloud
itself andmoving to progressively smaller scales. In the gravoturbulentmodel, turbulence plays
a central role in dictating where and when stars form, while in this case, the hierarchical nature
of collapse across different scales plays a crucial role [3].
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An aspect that is essential in the evolution of young open clusters is the initial phase space
distribution of the stars. In the past years, hydro-dynamical simulations were proposed for cre-
ating new sets of initial conditions [1, 4]. However, the large amount of physical information
needed in running a simulation makes the entire process expensive in terms of the computa-
tional time. Recently, simplemachine learning (ML) techniques have been applied to the study
of star clusters [5], [6]. By using ML algorithms, astronomers can emulate simulations of star
clusters with less computational costs and still taking into account a variety of factors, such as
the initial phase-space distribution, or their mass. Yet, there is still a lack of ML implementa-
tions in this field.

1.1 ModelingstarclusterswithGaussianProcesses

The focus of this thesis is on the Gaussian Processes (GPs) modeling of star clusters. GPs are a
powerful tool for modeling complex systems, including star clusters. The goal of this work is
to generate synthetic star clusters that closely resemble real ones.

Firstly, GPs are statistical models that estimate complex, nonlinear relationships between
variables. In our case, these variables include the positions, velocities, and masses of individual
stars. To generate new synthetic data we need first an adequate dataset. An option can be using
data from hydro-dynamical simulations such those proposed in [1].
Next, it is essential that we establish a pertinent target for training our Gaussian Process

model. We opt to train themodel using the probability density function of the star position in
its feature space. This strategy allows the predictions of novel targets to facilitate the generation
of new star cluster configurations via the implementationof an efficient samplingmethodology.
The feature space depends on the use-case. A direct approachwould be to learn from the seven-
dimensional distributions of the star clusters, which include the mass, the positions and the
velocity components.

Once we develop a model of the relationships between variables within the star cluster, we
can use this model to generate synthetic star clusters. To do this, we experiment on using dif-
ferent sampling methods such as rejection sampling [7], Monte Carlo methods [8] and other
complex algorithms. These methods are briefly described in the third section.

We emphasize the remarkable capability of Gaussian Processes in recreating the initial struc-
ture of the stellar clusters. The framework we propose comprises two parts: the GP modeling
and the sampling process. Both parts are crucial in reaching our goal.
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(a) Pleiades
Credits: NASA, ESA, AURA/Caltech, Palomar Observatory

(b) NGC 4755
Credits: NOAO/AURA/NSF, WIYN Consortium, Inc.

Figure 1.1: Open star cluster images

1.2 Hydrodynamical simulations of star clusters

Stars are created during the gravitational collapse of a massive molecular cloud. During this
process, one can observe the evolution of an embedded stellar cluster [9] that is still surrounded
by the primordial gas and dust, and the star formation is still possible. However, the cloud will
be eventually dispersed and this processwill lead to a young open cluster. These kind of clusters
contain up to a few thousand stars and they are less gravitationally bound than the globular
clusters. This is why open clusters are not necessarily spherical, showing various morphologies.
For example, in Fig. 1.1we see twoopen clusters having an irregular shape. In thefirst subfigure,
there are the Pleiades, a young cluster hosting around 3000 stars. The second cluster is NGC
4755, one of the youngest clusters known.

The fractality observed in stellar cluster systems is a result of the formation process from the
molecular cloud of origin. This property has been studied in the past to understand the mech-
anism of star formation [10]. However, when talking about fractality as a common feature of
star clusters, it is worth mentioning that several studies have shown that clusters can exhibit
different morphologies [11], [12]. As mentioned in [13], this could be a consequence of early
dynamical interactions or the dependence of stellar cluster formationmechanisms on the local
galactic environment.

Substructures of young clusters show complex kinematics [1], which can lead to a certain
dynamical evolution facilitating the formation of interesting objects such as black holes, super-
novae, or massive binary systems. Moreover, the formation of compact object mergers, namely
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binary black holes or binary neutron stars, is a topic of current interest [14].
Fractality has been analyzed for the star clusters formed with hydrodynamical simulations

in [15], [16] and many other studies. In these experiments, the clusters are created from a
turbulentmolecular cloudwhose collapse can be simulated. These clusters form showing high
fractality, but they lose substructures in time due to mergers or other relaxation processes [1].
A well-known parameter, Q, is used by many authors in this context as it is a way to mea-

sure fractality. By definition, Q is a quantitative measure that helps in distinguishing between
a smooth overall radial density gradient and a multi-scale fractal sub-clustering [10]. To com-
pute this parameter, one needs to obtain the Minimum Spanning Tree of the cluster. After
that, Q is computed as the ratio between the mean edge length, m, and the normalised cor-
relation length, s. In the same study [10], they established that substructured clusters have a
Q-parameter smaller than 0.8.

Another star cluster property that has been studied is the rotation. It has been shown that
embedded clusters exhibit rotation inherited from their parent cloud [1], [17], [18]. The ro-
tation of the simulated substructures has been analysed in [1] and [11] by selecting regions of
highest mass density and angular momentum and rescaling them to the center of mass.

Ballone et al [1] have ran 10 hydrodynamical simulations from turbulent molecular clouds.
The turbulence in the simulation is modeled as a divergence-free Gaussian random velocity
field, following the statistical properties described by the Burgers power spectrum. Addition-
ally, each simulation run uses a different turbulence seed as its initial condition to explore differ-
ent possible outcomes and understand the system’s behavior under various starting conditions.
In their study they state that all the simulated clusters are strongly substructured (high frac-
tality) and that the rotation is observed for each simulation. They also have found that the
rotation is more noisy for sub-clusters having fewer stars. In our study, we use the results of
these simulations for the training and validation phases of our models trying to capture both
of fractality and rotation properties.

1.3 Generating artificial clusters

Generating synthetic star cluster realizations can be a challenging task, especially when you
take into account every parameter of each star (mass, coordinates, velocity components). A
straightforwardmethod of generating the positioning of the stars has been used by Cartwright
and Whitworth in [10], where they use random numbers to generate artificial star clusters of
100-300 stars, but without establishing the velocity and themass for each star. They create star
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clusters of type ”3Dα” using the following generative equations:

r = ((3− α)Rr/3)1/(3−α), (1.1)

θ = cos−1(2Rθ − 1), (1.2)

φ = 2πRφ (1.3)

By generating a set of random numbers between 0 and 1 (Rr,Rθ,Rφ), they obtain the polar
coordinates of a star cluster targeting a volume density of n ∝ r−α. This approach is reproduc-
ing clusters having spherical spatial distributions. Thus, it is not a suitable option if one aims
for realistic realizations of young stellar clusters. Asmentioned before, young, open stellar clus-
ters can show different morphologies and sampling according to a power law volume density
is constraining the cluster to a certain morphology.

Therefore, aiming to generate realistic synthetic clusters one needs to take into account re-
producing different morphologies. Using artificial intelligence algorithms is a more suitable
approach. In [5] it is proposed a hierarchical clustering algorithm used to generate new ini-
tial conditions forN-body runs without the necessity of running additional hydro-dynamical
simulations. The algorithm identifies subclusters in the existing set of initial conditions, creat-
ing a tree-like representation of the stellar cluster structure. To generate new realizations, the
model canmodify nodes of the hierarchical tree. The key contribution of this approach is that
it allows for the efficient generation of diverse sets of initial conditions using a simple but fast
algorithm. To test the reliability of the generated sets of clusters, they have ranN-body simu-
lations. They state that these simulations show a comparable evolution to the original clusters,
making them valid initial conditions that can be used in further experiments.

However, clusters generated by [5] exhibit similarities at small scale, preserving the fractal di-
mension. Another limitation is that one can generate only a finite number of new realizations
depending on the amount of training data. The novelty in our approach is that we can gener-
ate an unlimited number of new realizations as a benefit of learning a likelihood distribution
during theGPmodel training. Also, this will lead to new realizations that enclose various small
scale configurations.
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2
Methods

2.1 Gaussian Processes

Gaussian Processes (GPs) are a type of probabilisticmodel that can be used tomake predictions
about the value of a function at a given point based on noisy observations of the function
[19]. GPs can be used to model a wide range of phenomena, even when the available data is
limited [20], making them amore suitable choice than the deep neural networks in this type of
scenarios.

Togenerate new star cluster realizationone canmodel the distributionof stars in a cluster as a
function of the physical parameters that govern the cluster, such as the star masses, coordinates
and velocities. GPs can learn the relationships between these parameters and the distribution
of stars in the cluster in order to generate synthetic clusters that are consistent with the learned
relationships.

There are several advantages of using GPs here. They can model complex, nonlinear rela-
tionships between variables and can account for uncertainty in the observations making them
a powerful tool for modeling complex physical systems.

TheGPmodel is definedby amean function,μ(x) = E[f(x)] and akernel funcionK(x, x’) =
E[(f(x)−μ(x))(f(x’)−μ(x’))], where f(x) is the target distribution and x are the input features
[21],

f : X→ Y
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The GP modeling is done through Bayesian inference. It allows us to update our beliefs
about the parameters of the model in light of new observations. Given some observed data,
Bayesian inference allows it to compute the posterior distribution over the model parameters.
This posterior distribution reflects the updated beliefs about the parameters given the observed
data and allows us tomake predictions about the distribution of stars with differentmasses and
locations in the phase-space. This helps in order to generate new synthetic realizations of the
cluster that are consistent with the observed data.
The model parameters include the hyperparameters of the kernel function, which include

the lengthscale, and amplitude of the covariance function. The noise level is also considered a
trainable parameter. Further, I briefly describe these key parameters of the GPmodel:

• The amplitude of the covariance function is the scale of the variation in the target
function that is captured by the model. The covariance function gives us the degree of
similarity between stars (as input points) and, therefore, determines how much influ-
ence each star has in the predictions involving other stars from the same cluster. One of
the most used kernel functions is the squared exponential (radial basis function - RBF
kernel),

K(xp, xq) = σfexp(−
1
2l2
|xp − xq|2)

Let us considerE[f(x)] = 0, then we can write the prior as

p(f|x, θ) = N (0,K(x, x))

• The lengthscale, l, determines the distance overwhich the covariance function between
stars decays to zero. A shorter length scale captures fine-grained details in the data, while
a longer scale length results in a smoother function that captures larger-scale trends [22].

• The signal variance, σf, can be considered the vertical scale length, while lmeasures the
scale length on the horizontal direction. It measures the signal amplitude.

• The noise, σn, is typicallymodeled as a separate term in the target function. It is relevant
as it takes into account errors. Usually, this noise term is aGaussian distributedwith zero
mean and a fixed variance. The noise level behaves as a trainable parameter during the
modeling process. We need to define a likelihood function that takes into account the
noise,

p(y|f) ∼ N (f, σ2nI)

The noise level is not established in advance, but estimated during training by minimiz-
ing the loss function. The loss function is obtained from the mapping function distri-
bution, p(y, f|x, θ) = p(Y|f)p(f|x, θ). One can marginalize this distribution to obtain
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the expression of the loss function,

logp(y|X) = − 1
2
yT(K+ σ2nI)−1y− 1

2
log|K+ σ2nI| −

n
2
log2π

2.2 Density Estimator

In order to obtain the target distribution for training the GPmodel one can approximate it by
computing the star density for each star location in the feature space. The k-nearest neighbors
(k-NN) density estimator, proposed in [23], is a simple approach to estimate the density based
on a sample of observations. The idea behind k-NN density estimation is to estimate the den-
sity of a point as a function of the distance between that point and its k-th nearest neighbor. A
point is more likely to belong to a higher density region if it is closer to many other points than
if it is far away from most points. An advantage of the k-NN density estimator is that it does
not require any assumptions about the underlying distribution of the data.

The k-NNdensity estimator works as follows: given a sample of observations, the algorithm
first calculates the distances between all pairs of points. Then, for each point in the sample,
it finds the k-nearest neighbors based on the distance metric used (in our case, the Euclidean
distance). Finally, the density of each point is estimated as:

d =
kΓ(n/2+ 1)

πn/2rn

where n is the dimensionality, r is the distance from a given data point to its k-th nearest neigh-
bor, and Γ is the gamma function. The dimensionality, n, signifies the total number of fea-
tures or independent variables we use to describe each data point. When training a seven-
dimensionalGPmodel, the dimensionality corresponds to the number of parameters that char-
acterize each star. Therefore, if we use seven distinct parameters for every star in our dataset,
our analysis would occur in a seven-dimensional space, meaning that n = 7, and the density
of each point will be estimated computing the volume of a seven-dimensional hyper-sphere of
radius r.
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2.3 SamplingMethods

The choice of sampling method is a key aspect when generating new realizations. We experi-
ment with several Monte Carlo methods [8], [24],[7].

2.3.1 Markov ChainMonte-Carlo

Markov ChainMonte-Carlo (MCMC) sampling involves constructing aMarkov chain whose
stationary distribution is the target distribution. It generates samples by running the Markov
chain for a sufficient number of steps and collecting samples from the chain. This method
can be efficient if the Markov chain mixes well, but may be slow to converge to the stationary
distribution. The key reason of choosing MCMC is the capability of generating correlated
samples, which is essential in the context of the complex physical systems (i.e. star clusters).
In such systems, parameters, like the positions and velocities of stars, are not independently
dispersed but they are correlated based on underlying physical laws.

We implement MCMC sampling using the Metropolis-Hastings algorithm [25]. We pro-
vide the complete pseudo-code in Algorithm 2.1.

An important parameter of the Metropolis algorithm is the step size. It refers to the size
of the random jumps taken in the feature space by the Markov Chain at each iteration. It
determines how far the chain moves from the current state to the next state. The step size
affects the acceptance rate of new samples and can have a significant impact on the convergence
and efficiency of the algorithm. If the step size is too small, the chain will take a long time
to explore the parameter space and the sampler may get stuck in local minima. On the other
hand, if the step size is too large, the chain may not be able to effectively explore the space and
the acceptance rate may be low. A good choice of step size balances these considerations to
achieve a high acceptance rate and efficient exploration of the parameter space.

Notice that in thisMCMCalgorithm versionwe do not generate any sample if the proposed
sample is rejected.

We explore several variants of this algorithm:

• RandomWalk MCMC (RWMC) - this algorithm samples the step size from a normal
distribution. The algorithm resambles a random walk.

• Non-Markovian Monte-Carlo (NMMC) - in this version we do not sample the new
star using the features of the star generated previously, but we go back by a random
number of iterations. This sampling approach is not Markovian anymore as we take

10



Algorithm 2.1MCMC sampling withMetropolis-Hastings algorithm
Require: s > 0,N ∈ N
samples← empty array to store N samples
counter← 1
samples[0]← x0
prob← GP(samples[0]) {Use GPmodel to predict the probability}
oldProb← prob
while counter < N

newStar← N (samples[counter− 1], s)
prob← GP(newStar)
r← U(0, 1)
if r < min(1, prob/oldProb)

samples[counter]← newPoint
counter← counter+ 1
oldProb← prob

end if
end while

into account the process history. So, in this new variant we choose each time a random
star from the previously generated ones, andwe use it to sample a new candidate star (see
Alg. 2.2). Also, we implement the random walk version of this algorithm.

Algorithm 2.2NMMCAlgorithm
r_idx← U(0, counter− 1)Generate a random integer
new_star← N (samples[r_idx], s)
d← GP(new_star)

2.3.2 Approximate Posterior Ensemble Sampler

Approximate Posterior Ensemble Sample (APES) is a novel sampling algorithm proposed by
Viventi and Barroso in 2023 [24]. This approach exhibits faster convergence than traditional
MCMCmethods and it is scalable to higher dimensions making it an alternative solution for
sampling complex target distributions.
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Introduction

In traditional MCMC methods, at each step we sample a single n-dimensional candidate, x.
On the other hand, in APES we sample using ensembles of L candidates,

X = (x1, x2, ..., xL)

Each point in the ensemble is considered a walker for which new proposals are made based on
an approximate distribution of the target π(x). The approximate distribution for the walker
x′i, π̃(x|X[i]), is conditioned on the set created using the other walkers, i.e. X[i] is obtained by
removing the i-th walker from X.
Let us consider a walker, xi. If we update xi to x′i, the new ensemble becomes

X′ = (x1, x2, ..., x′i, ..., xL)

Thismeans that one needs to compute the approximate distributionL times serially. However,
APES aims to parallelize this sampling procedure.

Viventi and Barroso [24] propose that the ensemble could be divided in two parts of length
L/2, such that X = (X1,X2). In this way, we can compute the approximate distributions,
π̃(x|X1) and π̃(x|X2), and use them to sample in parallel the walkers from both sub-ensembles.

The approximate distribution

A key aspect of this algorithm is computing the approximate distribution. Good ensembles
will lead to an approximate distribution close to π(x), meaning that the sampling procedure
goes in the right way.

To compute π̃(x|Xe) with e ∈ {1, 2}, we firstly determine the Mahalanobis distances be-
tween the walker points as described in [24],

D2
k(x, xk) = (x− xk)TC−1

k (x− xk) (2.1)

for all xk ∈ Xe, and, then,

π̃(x|Xe) =
∑
k

wk

hn
Kk

[Dk(x, xk)
h

]
(2.2)

whereCk is a positive definite squarematrix that can be computed using an unbiased estimator
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on the sub-ensemble, h is a bandwidth parameter,w a set of weights, andK is a kernel function.

The acceptance probability

At each iteration, the acceptance probability of the candidate, yi, is computed for every walker,
xi as

αi(Xe, yi) = min
(
1,
π̃(xi|Xe)π(yi)
π̃(yi|Xe)π(xi)

)
(2.3)

whereXe is the sub-ensemble that does not contain the walker xi. If the sample is accepted, the
walker is updated, otherwise it remains unchanged.

Algorithm description

A strength of APES is that we can implement this algorithm using parallelized loops. Each
walker in a sub-ensemble can be updated independently from the other walkers of the same
cluster, but at the same time it takes into account the approximated distribution π̃ by using the
other sub-ensemble as a reference.

A pseudo-code of the sampling procedure is given in Algorithm 2.3. The algorithm takes
as inputs the maximum number of iterations,N, the length of the ensemble, L, and the initial
ensemble, X0. Before each parallelized loop, we draw a new set of candidates,

Yt+1
e = {yi| for each iwith xi ∈ Xe

t}

The sub-ensemble is updated later after calculating the acceptance rates in the for loop.

2.3.3 Rejection Sampling

Rejection sampling involves generating samples uniformly at random from the sample space,
and accepting them with a probability proportional to their density. This method can be in-
efficient if the density varies significantly across the sample space and it generates uncorrelated
samples. Therefore, this method could be relevant as a baseline, as it should lead to lower per-
formances than the other methods.
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Algorithm 2.3 APES algorithm
Require: N, L, X0
1: Separate the walkers in two sub-ensembles: X1,X2
2: t← 0
3: while t =< N
4: Compute π̃(x|Xt

2) and draw new candidates Yt+1
1

5: for xi ∈ X1
6: Compute αi(Xt

2, yt+1
i )

7: end for
8: UpdateXt+1

1
9: Compute π̃(x|Xt+1

1 ) and draw new candidates Yt+1
2

10: for xi ∈ X2
11: Compute αi(Xt+1

1 , yt+1
i )

12: end for
13: UpdateXt+1

2
14: t← t+ 1
15:
16: end while
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3
Energy basedMarkov ChainMonte-Carlo

3.1 Introduction

Training a GP model in a seven-dimensional space might not be reliable for sampling star sys-
tems in close interaction, i.e. binary systems, as the probability to propose candidate stars very
close to each other in the physical space is low. This would lead to erroneous modeling of the
cluster at small scale.

A possible solution to this problem could be incorporating some physical laws or rules. We
propose a novel approach based on sampling energy states of star pairs. An energy state takes
into account the gravitational potential energy of the pair and the kinetic energies of both stars.

We aimour focus on the binary stars by selecting pairs of nearest neighbors. For each star, we
select the nearest neighbor, andwe continue creating another pair from its nearest neighbor. By
selecting these pairs sequentially, we create a chain of pairs. Therefore, we obtain several pairs,
N− 1, whereN is the number of stars in the cluster.

In this way, if one follows the chain of energy states that is created, there will be two types
of pairs of stars: that are bound gravitationally, and that are not bound. Both are equally im-
portant in order to sample a realistic cluster.

If we consider all the pairs possible, we will find N(N − 1)/2 pairs. Taking into account
thatN ≈ 3000, then the GP model training will be costly computationally. Moreover, most
of these pairs will be associated with states having low potential energies, close to zero and the

15



kinetic energies will become redundant. Thence, training on this enormous amount of data
will not help in the sampling process.

3.2 Incorporated physics

Let us consider that our objective is to sample a stellar cluster withN stars. Each star σiwill have
a position vector r⃗i, velocity v⃗i, and massMi, with i ∈ 1,N. We aim to sample the stars one
by one following a energy chain estimated by the GPmodel. We start with an initial star σ1 for
which we know r⃗1, v⃗1, andM1. At the moment, we will consider that these features are chosen
arbitrarily. We sample the next stars based on the estimated potential and kinetic energy. Thus,
at step i, when sampling σj, we can write

Uij = −G
MiMj

rij
(3.1)

Ki =
1
2
Miv2i (3.2)

Sampling from the probability distribution function given by GP(Uij,Ki,Kj), one can find
the modulus of the relative distance, rij = |rj⃗ − ri⃗| between two stars σi and σj. The sampling
approach is Markovian, the current state is defined by the star σi. Thus, we can determine the
following quantities:

Mj/rij = −
Uij

GMi
(3.3)

rijv2j = −
2GMiKj

Uij
(3.4)

As it is a stellar cluster, one can assume that there is a relationship between the velocity and the
position vector. We can model this relationship using another GP model.

Thus, by using (Eq. 3.4) we can find the most probable position of σ2 in the phase space
sampling from GP(r⃗, v⃗). Its mass is simply calculated using (Eq. 3.3) afterwards. However,
this approach can be difficult to implement as we have to explore a six-dimensional space in
order to solve Eq. 3.4.

Alternatively, we could sample from a mass distribution given by GP(M). In this way, we
can calculate rij and vj, and using GP(r⃗, v⃗), we can find the most probable position of σ2 by
searching for the optimal directions of the vectors r⃗ and v⃗.

16



3.3 Algorithm description

There are several steps that we need to follow in order to implement Energy based Markov
ChainMonte-Carlo (EMCMC).

3.3.1 Define an energy space

The energy space is defined by a set of energies – kinetic energies of each star (Ki and Kj) and
themutual potential energy of the two-star pair (Uij). This forms a 3-dimensional energy space.
The set of energies is constructed based on the nearest neighbors of the stars as showed in Al-
gorithm 3.1.

Algorithm 3.1 Calculate energies
1: N,D← shape of cluster
2: r← array of coordinates
3: v← array of velocity magnitudes
4: m← array of masses
5: distMatrix← compute distance matrix from r, fill diagonal with∞
6: sortedCluster,U,K1,K2 ← initialize empty arrays
7: currentStarIdx← start from the star with minimal x+y+z
8: visited← initialize boolean array of lengthN as False
9: i← 0
10: while i < N− 1
11: visited[currentStarIdx]← True
12: sortedCluster[i]← cluster[currentStarIdx]
13: nnDist← distMatrix[currentStarIdx]
14: nnDist[visited]←∞
15: nnIdx← argmin(nnDist) {index of the nearest neighbor}
16: dr← nnDist[nnIdx] {distance to the nearest neighbor}
17: U[i]← m[nnIdx] ∗m[currentStarIdx]/dr
18: K1[i]← m[currentStarIdx] ∗ v[currentStarIdx]2/2
19: K2[i]← m[nnIdx] ∗ v[nnIdx]2/2
20: currentStarIdx← nnIdx
21: i← i+ 1
22: end while
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3.3.2 Gaussian Processes modeling

We define a dataset by gathering data for several stellar clusters and compute the energy state
chains as described in the previous subsection. Then, we train several GPmodels for predicting
the probability distributions of the star features in the energy space GP(Uij,Ki,Kj) and the
phase space GP(r⃗, v⃗), and for the star masses GP(M).

3.3.3 Sampling procedure

AnMCMC algorithm is implemented to draw samples from GP(Uij,Ki,Kj). At each step of
the MCMC, the current state of the system (i.e., the set of energies) is used to propose a new
energy state. The new energy state is accepted or rejected based on a probability criterion that
takes into account the energies of the current and proposed states and the physics of the star
system.

In Algorithm 3.2 we present the pseudocode of the EMCMC sampling algorithm. The
algorithm takes as inputs the step-size, s, the number of stars that we aim to sample,N, the GP
model, GP(Uij,Ki,Kj) , and findNewStar, a function that incorporates the physics needed in
finding a new star based on the sampled energy state, energyState, and the previous sampled
star, prevStar. We consider the universal gravitational constant equal to 1, because its value
does not affect the training and sampling process. The energy space is scaled before training,
and rescaled before applying the physical equations incorporated in Algorithm 3.3.

The function findNewStar (see Algorithm 3.3) uses the mass and phase-space GP models,
GP(M) and GP(r⃗, v⃗). Also, we need a function, randomDirection (see Algorithm 3.4), that
generates a random direction based on two random generated numbers, Rθ and Rφ, which
are used to generate pairs of angles (θ,φ) that correspond to directions sampled uniformly on
a three dimensional sphere. These directions are used to generate new candidates for the new
star that we aim to sample.

We define two hyper-parameters, maxJump and Nc. The first parameter is used to control
the maximum distance between two stars sampled consecutively. The other parameter, Nc, is
the number of star candidates we generate randomly based on the values of |r⃗ij| and |v⃗j|. We
use GP(r⃗, v⃗) afterwards to find the best candidate, the star having the most probable position
in the phase-space.
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Algorithm 3.2 EMCMCAlgorithm
Require: s > 0,N ∈ N, GP(Uij,Ki,Kj), findNewStar
1: samples← empty array to store N samples
2: energyStates← empty array to store N energy states
3: counter← 1
4: samples[0]← x0
5: prob← GP(Uij,Ki,Kj)(energyStates[0])
6: oldProb← prob
7: while counter < N
8: newEnergyState← N (energyStates[counter− 1], s)
9: newEnergyState← energyStates[counter− 1][2]
10: prob← GP(Uij,Ki,Kj)(newEnergyState)
11: r← U(0, 1)
12: if r < min(1, prob/oldProb)
13: energyStates[counter]← newEnergyState
14: oldProb← prob
15: newSample←findNewStar(samples[counter− 1], newEnergyState)
16: if newSample
17: samples[counter]← newSample
18: counter← counter+ 1
19: end if
20: end if
21: end while
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Algorithm 3.3 findNewStar
Require: prevStar, energyState, GP(M) , GP(r⃗, v⃗) , randomDirection,maxJump,Nc
1: mj ←MCMC(GP(M))
2: mi, r⃗i, v⃗i ← prevStar
3: Uij,Ki,Kj ← energyState
4: |r⃗ij| ←

mimj
Uij

5: if |r⃗ij| > maxJump
6: return null
7: end if
8: |v⃗j| ←

√
2Kj
mj

9: candidates← empty array to storeNc candidates
10: for each candidate in candidates
11: λ⃗r⃗ ← randomDirection()
12: λ⃗v⃗ ← randomDirection()
13: r⃗j = r⃗i + |r⃗ij|λ⃗r⃗
14: v⃗j = |v⃗j|λ⃗v⃗
15: candidate← mj, r⃗j, v⃗j
16: end for
17: probs← GP(r⃗,v⃗)(candidates)
18: bestCandidateIdx← argmax(probs)
19: return candidates[bestCandidateIdx]

Algorithm 3.4 randomDirection
1: θ← 2πRθ
2: φ← cos−1(2Rφ − 1)
3: xdir ← sin(φ)cos(θ)
4: ydir ← sin(φ)sin(θ)
5: zdir ← cos(φ)
6: return [xdir, ydir, zdir]

20



4
Results

4.1 Processing pipeline

4.1.1 Dataset

We use a dataset of ten clusters generated by [1] using hydro-dynamical simulations of molec-
ular clouds. Each cluster has a number of roughly 2500-4000 stars and an order of 104M⊙ in
the total mass. Table 4.1 summarizes the properties of these clusters. The dataset is split in a
training set of seven clusters and a validation set of three clusters.

We show the inter-particle distance, velocitymagnitude, andmass distribution for three clus-
ters: m1e4, m4e4, and m9e4 in Fig. 4.1. We use these distributions as a baseline when evaluat-
ing the results obtained with our methods.

4.1.2 Models and training

To implement the models we use gpytorch library [26] which is an efficient and modular im-
plementation of GPs supporting GPU acceleration. The GPU used in all the experiments is
NVIDIA GeForce RTX 3060. We train the GP model using RBF kernel, exact marginal log
likelihood for the loss function and Gaussian likelihood for computing the posterior distribu-
tion. A zero prior mean is used for all the models. Using simulations data we get the features
needed for training our models. We train several GP models:
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cluster # stars mass (103M⊙) virial ratio # binaries
m1e4 2523 4.2 1.19 400
m2e4 2571 6.7 1.32 515
m3e4 2825 10.3 1.48 545
m4e4 2868 14.4 1.47 546
m5e4 2231 14.1 1.47 490
m6e4 3054 20.4 1.69 671
m7e4 4214 31.5 1.50 797
m8e4 2945 28.3 1.60 561
m9e4 3161 30.5 1.52 666
m1e5 3944 38.0 1.46 757

Table 4.1: Statistics over the clusters obtained via hydrondynamical simulations by Ballone et al. [1]

(a) (b) (c)

Figure 4.1: Distributions of inter‐particle distances (a), velocity (b), and mass (c) for three simulated clusters: m1e4, m4e4,
and m9e4 [1]

22



model best epoch time/epoch (s) l σn
GP(M, r⃗, v⃗) 32 7.2 1.6205 0.1445
GP(r⃗, v⃗) 53 6.1 1.4506 0.0752

GP(Uij,Ki,Kj) 12 1.4 0.5034 0.3965
GP(M) 69 1.0 1.5523 0.0040

Table 4.2: Training results. Columns: model (1), best epoch (2), training time per epoch (3), the lengthscale, l (4), the noise
level, σn (5)

• GP(M, r⃗, v⃗), a seven-dimensional model from which we can sample directly new clus-
ters.

• GP(r⃗, v⃗), a six-dimensional model that estimate the probability density function of the
star position in the phase-space

• GP(Uij,Ki,Kj), a three-dimensional model that estimate the probability density func-
tion of the energies stored by pairs of stars that are in close interaction

• GP(M), a one-dimensional model used to sample stellar masses

After defining the features for eachmodel, we have to calculate the target distributionwhich
is a probability density distribution. We use k-NN density estimators to determine the target
distributions. Then, the model is trained and used in the sampling procedure afterwards. An
overview of the processing pipeline that we develop is presented in Figure 4.2.

We train each model using cross-validation [27] and early stopping [28] with a patience of
10 epochs. In Figure 4.3 we show the training and validation losses with respect to the epoch
number. One epoch corresponds to seven iterations on the training set and three iterations on
the validation set. A summary of the training session results is presented in Table 4.2. The best
epoch corresponds to the best loss computed on the validation set. The lengthscale, l, and the
noise level, σn, are two of the key parameters learned by the model.

4.1.3 Data pre-processing

Before training a star cluster model, we adjust the center of mass (CM) position and velocity
of the data.

We center the data so that the CM of the star cluster is at (0, 0, 0). This is done easily by
subtracting the CM position from the position coordinates (x, y, z) of all stars. The velocity
of the CM is actually the bulk motion of the entire cluster. Ideally, the CM velocity should
be close to (0, 0, 0), indicating that the cluster is not undergoing significant overall motion. If
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Figure 4.2: Processing pipeline overview
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(a) (b)

(c) (d)

Figure 4.3: Training and validation losses plotted with respect to the epochs. The losses are computed as the mean value
of the losses obtained for each cluster of the training/validation set in one epoch. The shadowed areas correspond to the
standard deviation.
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the CM velocity is significantly non-zero, it could indicate that there is an external influence
affecting the cluster. We remove this influence, because it can affect negatively the training
process.
By doing these operations, we ensure that the model focuses on the internal structure and

we do not affect the cluster dynamics as we just apply some shifts to the data. We avoid r⃗ and v⃗
data as it can alter the cluster dynamics. Also, we do not scale the mass values as scaling them
back to the initial space is an issue when training onmultiple star clusters having differentmass
distributions.

Logarithmic feature scaling and standardization are performed for the energy values in the
training process of GP(Uij,Ki,Kj). The new energy values become

U∗
ij =

logUij − E(logU)√
Var(logU)

K∗
i =

logKi − E(logK)√
Var(logK)

(4.1)

Weuse logarithmic scaling to reduce the skewness of the feature and standardization to improve
the training process. We scale them back after the sampling procedure as we use these values in
computing other physical values for determining the parameters of the stars we sample.

For each GP model, we estimate the probability density function values using a k-NN den-
sity estimator with k = 50. After running the estimator on the discrete set of features of one
star cluster, the estimated values are normalized using the following procedure,

y∗i =
Nyi∑N
j=1 yj

(4.2)

The values y∗ will be the target distribution of the GPmodel.

4.1.4 Sampling and evaluation

We explore several sampling methods including rejection sampling, MCMC methods, and
APES for sampling with the 7-dimensional GPmodel and EMCMC sampling combined with
three GPmodels (energy, mass, and phase-space models).

For each sampling method, we implement the Metropolis acceptance condition. As we do
not know where to start the sampling, we use a burn-in [29] of 500 iterations for finding a
high density region. The target distribution of the sampling algorithm is given by the density
outputs of the GPmodel.

We do not evaluate the cluster during sampling. We run the algorithm until we sample a
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number of N stars. In our experiments, we set N = 3000. Therefore, we obtain clusters
of 3000 stars. We evaluate these clusters by computing several distributions or macroscopic
quantities such as the virial ratio, the total mass of the stars, and the number of binaries.
The virial ratio is a dimensionless quantity that describes the dynamical state of a star cluster.

It is defined as αvir = 2K/W ([30]), where K is total kinetic energy (the sum of the kinetic
energies of all the stars) andW is the total potential energy of the cluster (given by the sum of
the gravitational potential energies of all pairs of stars in the cluster).

The virial ratio is a useful tool for studying the evolution of stellar clusters and can be used
to understand their dynamical state and the physical processes that drive their evolution. If
αvir = 1, then the cluster is in a state of dynamical equilibrium. Otherwise, if it is greater than
1, then the cluster is in a state of expansion, or if it is lower than 1, then there is a contraction
state.

The number of binaries is computed as the total number of stars that are bound gravitation-
ally to another star. This is verified by comparing the potential energy between two stars to the
sumof their kinetic energies, computedwith respect to their center ofmass. IfK1+K2 < |U12|,
then the system is bound. By computing this quantity, we do not count separately the number
of binary star systems, triple star systems, and so on.

4.2 Sampling from 7Dmodel

4.2.1 Rejection sampling

Thismethod is straightforward and does not need parameter tuning. However, thismeans that
we cannot control in anyway the density distribution of the sampled clusters andwenotice that
its results are very far from what we expect. We have sampled a cluster containing 3000 stars
obtaining a virial ratio of 41.4, total mass of 128.3 solar masses and two binaries. Comparing
these values to the statistics retrieved from the simulated clusters (Table 4.1), we notice that the
clusters sampled via rejection are categorically unreliable.

4.2.2 Metropolis algorithm

Here we analyze the properties of the new generated clusters Monte-Carlo methods based on
the Metropolis-Hastings algorithm.

Firstly, we try different step sizes between 0.1 and 1.0 for the MCMC sampling algorithm.
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We notice that the step size does not have a visible effect on the acceptance rate. We define the
acceptance rate as the ratio between the total number of accepted samples, i.e. the number of
stars in the final cluster, N, and the total number of star candidates, N + R, where R is the
number of the rejected candidates according to the Metropolis-Hastings rule.

We perform another runs trying different variants of the samplingmethod. We try sampling
the step size from a normal distribution,N (μ, σ) (randomwalk - RWMC).We set μ to 0.5 and
1.0. The standard deviation σ is set to 0.5. Next, we implement a non-Markovian approach
(NMMC), by sampling each time with respect to a randomly sample accepted previously. We
try this approach with and without random walk.

The sampling points are boundby the average of the upper and lower limits of the features of
each training cluster. For each implemented Monte-Carlo method, the new points are drawn
from a truncated normal distribution such that we do not exceed these bounds.

For each sampled cluster, we compute several macroscopic physical quantities. The virial
ratio, the number of binaries, and the total mass. In Table 4.3, we present a summary of all of
these results, computed for different sampling approaches that use the Metropolis algorithm.
One can notice a broad spectrum of results.

The virial ratio shows an increasing trend with respect to the step size for the MCMC algo-
rithmwith fixed step size (clusters 1-5), whereas the number of binaries is decreasing. However,
we can see that for small step sizes, the number of binaries is clearly too high. If we are compar-
ing to the statistics of the simulated clusters (Table 4.1), cluster 4 has a reasonable number of
binaries, but the virial ratio is not suitable. The same is also valid for the clusters sampled with
RWMC (6 and 7). However, cluster 9 seems interesting. In this case, the number of binaries is
slightly lower than the average fromTable 4.1, but the virial ratio and the total mass are compa-
rable. Cluster 8 has been obtained with the same method (NMMC) as cluster 9 but different
step-size. Thus, the step size can be a decisive parameter when sampling.

If we observe the in-depth morphology of cluster 9, we see that there is a gap of low inter-
particle distances (Figure 4.4 (a)). This gap exists for all the generated clusters in Table 4.3.
Thus, all the binaries we count are distant binaries. If the stars forming a binary system are
far away from each other, the potential energy is not high enough to keep the system bound
because they could be subject to the external forces from the background stars. Considering the
dynamical evolution of the cluster, we could expect these pairs to unbound after a certain time
or to get closer in distance forming a stable binary system. Therefore, the number of binaries
shown in Table 4.3 is an upper limit of the stable binaries. Even if this upper limit is large, the
lack of low inter-particle distances can lead to a few stable binaries.
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# Markovian step size random walk acc. rate αvir # binaries M (103M⊙)
1 3 0.10 7 0.3312 0.60 2980 13.2
2 3 0.25 7 0.3373 5.27 2334 20.7
3 3 0.50 7 0.3407 18.2 1679 68.4
4 3 0.75 7 0.3306 14.1 441 56.6
5 3 1.00 7 0.3419 43.5 361 102.5
6 3 N (0.5, 0.5) 3 0.3305 13.2 1111 98.9
7 3 N (1.0, 0.5) 3 0.3271 11.1 371 180.2
8 7 0.50 7 0.3279 0.09 2554 63.5
9 7 1.00 7 0.3320 1.87 216 23.3
10 7 N (0.5, 0.5) 3 0.3338 0.32 1730 44.8
11 7 N (1.0, 0.5) 3 0.3376 3.61 99 19.8

Table 4.3: Monte‐Carlo sampling results using Metropolis algorithm. The generated clusters contain 3000 stars. Columns:
(1) Markovian methods, (2) the step size, (3) random walk methods, (4) the acceptation rate, (5) the virial ratio, (6) the
number of binaries, (7) the total mass of the sampled cluster.

(a) (b) (c)

Figure 4.4: Distributions of inter‐particle distances (a), velocity (b), and mass (c) for the cluster generated by NMMC with
step size 1.0 (blue line). Simulated clusters [1] are represented for comparison: m4e4, and m9e4.

We see in Figure 4.4 (b) that the distribution of the velocity magnitudes is comparable to
those computed from simulations. However, regarding the mass distribution in Figure 4.4 (c),
we see that the there are more massive stars than what we would expect from simulations.

4.2.3 APES algorithm

We implement APES using themultiprocessing library of Python *. To approximate the distri-
bution π̃, we use the same methods as presented in [24]. We implement both Gaussian and
Student’s t kernels. The weights are updated during each iteration solving the NNLS prob-

*https://docs.python.org/3/library/multiprocessing.html
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algorithm parameters cluster data
# L N kernel acc. rate # stars virial ratio M (M⊙) # binaries
1 50 100 Student 0.5880 3315 5.95 9.6 331
2 60 85 Student 0.7135 3639 5.94 15.2 492
3 80 55 Student 0.6534 2874 6.45 7.9 276
4 100 45 Student 0.6522 2935 4.56 8.4 343
5 80 55 Gauss 0.7411 3261 11.07 20.3 532
6 50 100 Gauss 0.7323 3296 15.75 20.8 536

Table 4.4: Results of APES algorithm runs using different ensemble lengths, L, and kernels. The maximum number of
iterations,N, is set such that we sample a number of stars around 3000. For the generated clusters, we determine the
virial ratio, total mass,M, and the number of binaries.

lem, min||Kw − π||2, subject to w ≥ 0. For that, we use the nnls function implemented by
scipy.optimize. The full implementation is available on the GitHub repository †.

Our approach isMarkovian, the new candidate samples are drawn from a truncated normal
distribution with a standard deviation of 0.5 for position and velocity components, and 1.0
for the mass. The phase space bound is a sphere with the radius of 15 pc. The mass is bound
between 0.1 and 100 solar masses. The initial ensemble is drawn from a similar distribution
centered on the origin of the phase space. For all the runs, we set a burn in of 25 iterations.

We use ensemble of different lengths from 50 to 100. As it is shown in Table 4.4, the accep-
tance rate for Student kernel varies between 58% and 71%, whereas the use of aGaussian kernel
leads to higher acceptance rates. The maximum number of iterations, N, varies according to
the ensemble length, L, as we aim to sample clusters that contain around 3000 stars. The total
number of stars depends on the acceptance rate as we do not know how many walkers will ac-
cept the new candidates. Certainly, one can modify the algorithm to discard the extra samples
accepted by the ensembles, but it involves the risk of losing correlated samples.

We see that the clusters created via Gaussian kernels are hyper-kinetic with an unrealistic
virial ratio around 10-15. One might observe that the Student kernel yields lower virial ratios,
suggesting clusters that are closer to a bound state. On the other hand, taking a look over the
distributions of the physical quantities, wenotice that the gapproblempersists in the case of the
low inter-particle distances. In Figure 4.5 we plot these distributions for the cluster 4 from Ta-
ble 4.4. We observe thatAPES samples bettermass distributionswith respect to theMetropolis
algorithm.

†https://github.com/prodangp/star-clusters-gen
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(a) (b) (c)

Figure 4.5: Distributions of inter‐particle distances (a), velocity (b), and mass (c) for a cluster with 2935 stars generated by
APES with an ensemble of length 100 and Student kernel. Simulated clusters [1] are represented for comparison: m1e4,
and m4e4.

4.3 Energy based sampling

Wetest the sampling algorithmpresented inChapter 3 (EMCMC)using theGPmodels trained
on the clusters generated from the hydrodynamical simulations performed by Ballone et al [1].
The energy states and themasses are sampled usingMetropolis algorithm. Firstly, we fine-tune
the algorithm parameters. We continue on running several experiments and analyze the gener-
ated clusters. We compare the performances of EMCMC to the other methods presented in
the previous section.

4.3.1 Hyper-parameters tuning

We start by fine-tuning the EMCMC hyperparamenters: the step-size, s, the maximum jump
between two consecutive sampled stars in the position space J, and the number of direction
proposals,Nc, when sampling the candidates in the phase-space. We have observed that a step-
size between 0.2 and 0.4 leads to an optimal exploration of the energy space.
For different values of J, we run the algorithm without inserting the noise generated by the

likelihood function of the GP model. The probability distributions are given by the posterior
mean calculated using theGPmodels. In thisway, we have a better focus on the effect produced
by the hyperparameter, J. We show in Figure 4.6, the virial ratio and the upper limit of the
stable binaries with respect to the maximum jump size. One can notice an ascending trend for
the virial ratio and a descending one for the number of binaries. As expected, constraining to
smaller jump sizes results in clusters that are more tightly bound and have a greater number of
binaries. The acceptance rate slightly varies between 70% and 75%.
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Figure 4.6: The effects of the maximum jump size allowed during EMCMC sampling (s = 0.4,Nc = 1000) on the
generated clusters. The virial ratio (blue, left axis) and the number of binaries (red, right axis) are plotted with respect to the
maximum jump size.

Varying the parameterNc, we have observed that the optimal value is around 1000. We have
noticed that smaller values around 100 affect the results negatively, because the exploration
of the phase-space is limited. In contrast, better exploration with N = 5000 leads to similar
results, but longer runs as theGPmodel has to computemore predictions. Taking into account
these aspects, we consider thatNc = 1000 is optimal in terms of exploration capability and time
consumption.

4.3.2 Newly generated clusters

Wecontinue ourEMCMCexperiments inserting the noise in the predictions of theGPmodels.
Ten clusters are sampled using theNc = 1000, small J values, and step size of 0.2 or 0.4. The
results are presented in Table 4.5. With respect to the previous runs, we observe a drop in the
acceptance rate by 20 − 30% due to the noisy predictions. Most of the generated clusters are
close to stability with virial ratios between 1 and 2. The total mass depends on the constraint
we have used for the mass distribution. The clusters 1-5 have a lower bound for the masses of
0.1M⊙. For the other clusters the lower bound is 0.5M⊙, but different sampling step sizes have
been used to obtain diverse distributions.

The number of binaries is high for every cluster in Table 4.5. However, the inter-particle
distancedistributiondoesnothave any gapwith respect to the simulations data 4.7. Thismeans
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algorithm parameters cluster data
# J (pc) s acc. rate virial ratio M (103M⊙) # binaries
1 0.75 0.4 0.3925 2.73 7.2 1739
2 1 0.2 0.5691 1.57 7.2 2078
3 1.25 0.4 0.4105 2.8 7.2 1757
4 1.5 0.2 0.5667 1.69 7.2 2089
5 2 0.2 0.4663 4.16 7.2 1721
6 0.75 0.4 0.4652 2.78 6.6 2012
7 1 0.2 0.4419 1.82 7.6 2204
8 1.25 0.2 0.5285 1.07 11.6 2359
9 1.5 0.2 0.5097 1.08 13.5 1334
10 1 0.4 0.3534 1.21 32.2 1401

Table 4.5: Results of EMCMC Metropolis runs using different sets of hyper‐parameters: J, s andNc set to 1000. We show
the acceptance rate of the algorithm forN = 3000 stars. For the generated clusters, we determine the virial ratio, total
mass,M, and the number of binaries.

that the chance is high that some of the counted binaries are also stable. Further simulations
are needed to confirm this.

4.3.3 Comparison to other methods

The advantage of EMCMC algorithm is the capability of sampling clusters exhibiting an ap-
propriate spectrum of inter-particle distances. As we have seen previously, sampling directly
in the 7-dimensional feature space of the stars leads to improper inter-particle distance distri-
butions. However, we have seen that in APES algorithm, the virial ratio and the inter-particle
distance distribution of the generated clusters are influenced by the kernel. There is a possiblity
of finding the right kernel for this sampling problem that can lead to better results in the case
of APES. At the moment, we have not made any attempt to find such a kernel.

Regarding the virial ratio, rejection andAPESgenerate realizationswith anunusual dynamic
having virial ratios of above 5. Metropolis algorithm provides clusters having a variety of dy-
namical states, with one out of ten clusters having a realistic virial ratio. The only method that
is consistent in generating cluters having realistic virial ratios is EMCMCMetropolis. From 10
generated clusters, 6 have a virial ratio in the interval [1, 2]. Also, the other virial ratios are up
to a value of 4.

All of the experiments are performed for generating clusters with a number of 3000 stars.
Therefore, it is possible to make a comparison of the computational performances. Table 4.6
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Figure 4.7: Distributions of inter‐particle distances (a), velocity (b), and mass (c) for a cluster with 3000 stars generated by
EMCMC with a step size of, s = 0.2, maximum jump size, J = 1.5, andNc = 1000. The mass distribution has a lower
bound of 0.1. Simulated clusters [1] are represented for comparison: m1e4, and m4e4.

Algorithm Runtime (min) Memory GPU (GB) Memory CPU (GB)
rejection 7.5± 1.0 1.0 1.1
Metropolis 6.5± 1.5 1.0 1.1

APES (3 workers) 14.5± 2.5 1.2
APES (4 workers) 10.5± 1.5 1.4
APES (5 workers) 9.0± 1.0 1.6

EMCMC (Nc = 200) 8.5± 1.5 1.1 1.0
EMCMC (Nc = 1000) 16.0± 3.5 1.2 1.0
EMCMC (Nc = 5000) 47.0± 6.5 1.9 1.0

Table 4.6: Time and memory analysis of the sampling algorithms. There are provided the average values and standard
deviations of the runtime, the GPU memory usage and CPU memory usage. No GPU memory values are shown for APES,
because the GPU is not used in that case. We show the runtime and CPU memory usage for different number of workers
used in the parallelized loops of APES. For EMCMC, we present the results for different values ofNc parameter.

shows a summary of the time andmemory analysis of the algorithms. It seems thatMetropolis
algorithm is the fastest option, while APES uses multiprocessing reducing the runtime, with-
out consuming at all GPU resources. The GPU used is NVIDIAGeForce RTX 3060, and the
CPU is provided by a 12th Gen Intel Core i7-12700H with 4.70 GHz frequency.
In Figure 4.8 we show the density distribution in xy-plane of coordinates. We observe that

MCMC sampling generates distributions that are focused in several branches having different
geometric properties with respect to the simulations. NMMC and APES provide more spher-
ical distributions, but the spatial density of the stars is lower than the one of the simulated
clusters. On the other hand, the resemblance of EMCMC-generated clusters to the training
set stands out (last three subfigures of Fig. 4.8). Visually, as Figure 4.8 elucidates, the disparity
in the spatial density and geometry between the methods is evident.
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Figure 4.8: Density distribution in the xy‐plane of coordinates for various sampling methods. The first three subfigures
correspond to simulated clusters from [1]. Next three subfigures are for Monte‐Carlo generated clusters, the step‐size,
s, is shown for NMMC and MCMC methods, and for APES the ensemble length, L. The MCMC realization demonstrate
distributions with distinct geometric branches, while NMMC and APES depict more spherical distributions with sparser
spatial densities. In contrast, the geometry and spatial density of EMCMC closely align with the properties of the training
dataset clusters, as showcased in the last three subfigures, where J is the maximum jump size when sampling andM the
total mass of the emulated cluster.
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5
Conclusion

The learning frameworkwepropose,GPmodeling of star clusters and sampling from the target
distribution for generating new clusters, is a two-step process that involves building a statistical
model of the data using Gaussian processes (GPs) and then using this model to generate new
samples from the underlying distribution. We saw that the process of sampling from the target
distribution is indeed challenging and careful exploration is needed to fine-tune the algorithms
used.
The GP model was trained on the probability density function of the stars in the cluster,

and different sampling methods such asMonte Carlo methods or APES were used to generate
new star cluster realizations. In the endeavor to sample clusters with distinctive spatial distribu-
tions and dynamical states, the EMCMC algorithm has presented itself as a particularly adept
solution, especially when considering the critical spectrum of inter-particle distances. Direct
sampling in the expansive 7-dimensional space can, without the right precautions, yield unde-
sired distance distributions—apitfall that certainmethods likeAPESmight avoidwith optimal
kernel choices, though such kernels remain to be identified.
While most traditional sampling methods largely operate on a mathematical or heuristic ba-

sis, EMCMC goes a step further by leveraging the underlying physical principles that dictate
the behavior andproperties of star clusters. This inclusion of physics ensures that the generated
samples are not justmathematically plausible, but also physicallymeaningful. It is this infusion
of real-world principles that contributes to the EMCMC’s consistent ability to generate clus-
ters with realistic virial ratios and spatial distributions.
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One potential alternative to this two-step process is to use a single deep learning model to
model the data distribution and generate new samples. This way we can also learn the pa-
rameters involved in sampling new clusters without the need of exploring different sampling
approaches. Deep learning models, such as generative adversarial networks (GANs) [31] or
variational autoencoders (VAEs) [32], can learn complex and high-dimensional distributions
directly from data. While a single deep learning model could replace the two-step process of
GP modeling and sampling from the target distribution for generating new star clusters, it is
important to carefully consider the limitations and potential trade-offs of this approach as well.

Another difficultywe found is how to validate themodel’s performance or assess its accuracy,
as there may be no explicit mathematical representation of the data distribution. This also
would apply for deep learning models.

Overall, the use of machine learning techniques and statistical models such as GPs can sig-
nificantly reduce the computational costs and time needed to generate diverse sets of initial
conditions for N-body simulations, providing a valuable tool for astronomers in this field of
study.
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