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Abstract

Approximating a set of data can be a difficult task but it is very useful in applications.
Through a linear combination of basis functions we want to reconstruct an unknown quan-
tity from partial information. We study radial basis functions (RBFs) to obtain an ap-
proximation method that is meshless, provides a data dependent approximation space and
generalization to larger dimensions is not an obstacle. We analyze a rational approximation
method with compactly supported radial basis functions (Rescaled localized radial basis
function method). The method reproduces exactly the constants and the density of the
interpolation nodes influences the support of the RBFs. There is a proof of the convergence
in a quasi-uniform setting up to a conjecture: we can determine a lower bound for the
approximant of the constant function 1 uniformly with respect to the size of the support
of the kernel. We investigate the statement of the conjecture and bring some practical and
theoretical results to support it. We study the Runge phenomenon on the approximant and
obtain uniform estimates on the cardinal functions. We extend the distinguishing features
of the method reproducing exactly larger polynomial spaces. We replace local polynomial
reproduction with basis functions that decrease rapidly and approximate exactly a polyno-
mial space. This change releases the basis functions from the compactness of the support
and guarantees the same convergence rate (the oversampling problem does not appear). The
rescaled localized radial basis function method can be interpreted in this new framework
because the cardinal functions have global support even if the kernel has compact support.
The decay of the basis functions undertake convergence and stability. In this analysis the
smoothness of the approximant is not important, what matters is the “locality” provided by
the fast decay. With a moving least squares approach we provide an example of a smooth
quasi-interpolant. We continue trying to improve the performance of the method even
when the weight functions do not have compact support. All the new theoretical results
introduced in this work are also supported by numerical evidence.
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Introduction

Approximating a set of data can be a difficult task but it is also very useful and necessary
in applications. Through a linear combination of basis functions we want to reconstruct
an unknown quantity from partial information to study its behavior or to make predictions
about the future. The basis functions in principle must be “simple”: from an academic point
of view we must be able to analyze them to obtain results of uniqueness, convergence and
stability, furthermore numerically they must be implementable effectively and efficiently.

To be more precise we briefly introduce the mathematical setting. Let X = {x1, . . . , xN} ⊆
Ω a data set, {f1, . . . , fN} the discrete information we know on X of a continuous quantity
f : Ω ⊆ Rd → R and {u1, . . . , uN} ⊆ C(Ω) are the basis functions. Our goal is to determine
a ∈ RN such that

sf,X(xi) =

N∑

j=1

ajuj(xi) ≈ fi for i = 1, . . . , N.

If we replace ≈ with = then we are studying an interpolation method, otherwise we call
sf,X quasi-interpolant. Some themes of fundamental importance immediately arise: Is the
method well defined? Is the solution unique? Does the approximant accurately reconstruct
the function f?

We can easily answer these questions using a polynomial basis, but we have to impose
some conditions on the initial data. This request can not always be satisfied in applications
(it is too expensive to resample the function f , the event we want to study can not be re-
peated or the dimensionality of the problem is too high). The approximation method that
we decide to use, in addition to satisfy conditions of technical nature, must be able to deal
with arbitrary data distributions and generalization to larger dimensions must not be an
obstacle. Moreover we must be aware of which functions we can reconstruct exactly, which
functions we can approximate and above all how many nodes we need to obtain coherent
results.

This is precisely the intention of Chapter 1 and Chapter 2. We study radial basis functions
(RBFs) to obtain an approximation method that is meshless and provides a data dependent
approximation space. We aim to investigate the interconnections between reproducing-
kernel Hilbert spaces and positive definite kernels (which are a generalization of radial basis
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functions). In native spaces, which are the natural environment in which to study approxi-
mation methods with RBFs, we can recognize, generalize and abstract classical functional
spaces (e.g. Sobolev spaces). We reserved in-depth analysis to conditionally positive def-
inite functions, that allow us to reproduce exactly a finite-dimensional vector subspace of
continuous functions (in this work we considered polynomial spaces).

In Chapter 3 we use compactly supported radial basis functions as weight functions to
determine convergent approximation methods. We review concepts like local polynomial
reproduction and moving least squares to obtain a quadratic convex optimization problem
that gives us basis functions that guarantee a convergence rate of O(hm+1

X,Ω ) if polynomials
up to degree m can be reconstructed exactly (we work in a quasi-uniform setting). With
these techniques we can gain convergent and stable methods (we are able to determine the
computational costs exactly) but we are restricting ourselves to basis functions with com-
pact support and oversampling problems can arise. Although compact support is effective
in practice it is difficult to reduce numerical schemes in this framework.

We continue with Chapter 4 and Chapter 5 to study the convergence error for RBF methods
and the so-called trade-off principle, linking approximation error, numerical stability, eigen-
values of the interpolation matrix, fill distance and separation radius. Long story short,
when the approximation improves, i.e. the power function decreases, then also the mini-
mal eigenvalue of the interpolation matrix decreases (hence the conditioning of the matrix
increases). A substantial part of these sections is devoted to prove estimates on the con-
ditioning of the interpolation matrix when the native space coincides with a Sobolev space
and when the basis functions are scaled with a parameter δ, which controls their support.

Chapter 6 summarizes several optimality properties of the RBF interpolant and of the
cardinal functions when observed through the native space and its norm.

The discussion concludes with Chapter 7, which also contains most of the original con-
tributions. In [1] is described a rational approximation method with compactly supported
radial basis functions (Rescaled localized radial basis function method). The proposed
method, which can be considered as an instance of Shepard’s method, reproduces exactly
the constants and the main peculiarity is the variability of the support of the RBFs (the size
of the support depends on the density of the interpolation nodes and their mutual position).
This method aims to make the most of the locality guaranteed by the compactness of the
support. If the size of the support remains fixed and the number of nodes increases then
the problem becomes global again. Only numerical evidence were provided to verify the
well-posedness of the method and the linear convergence with respect to the fill distance.
The proof of the convergence in a quasi-uniform setting is due to [2] up to a conjecture:
we can determine a lower bound for the approximant of the constant function 1 uniformly
with respect to the size of the support of the kernel under analysis. It is important to un-
derline that convergence can not be proved with classical inequalities for RBFs because in
a quasi-uniform context the scaled version of the power function does not decrease with the
fill distance. We investigated the statement of the conjecture and brought some practical
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and theoretical results to support it. The research is based on the comparison between the
cardinal functions observed from different perspectives (on the one hand the classic cardinal
functions and on the other the cardinal functions of a method that reproduces exactly the
constants). We analyzed the Runge phenomenon on the approximant and obtained uni-
form estimates on the cardinal functions (the uniform norm is bounded and the constants,
i.e. the polynomials of degree zero, which allow the constant functions to be reproduced
exactly tend to zero as the number of nodes increases). These results can be obtained with
two different approaches, one considers the abstract definition of native space (the space of
functions that make some functionals continuous), while the other uses the matrix algebra.
We also studied the behavior of the constants that appear in [2].

A careful review of [2], with the goal of reproducing exactly larger polynomial spaces, led to
a generalization of the results of Chapter 3. We replaced local polynomial reproduction with
basis functions that decrease rapidly and approximate exactly the same polynomial space.
This change releases the basis functions from the compactness of the support and guaran-
tees the same convergence rate (the oversampling problem does not appear). The rescaled
localized radial basis function method (RL-RBF) can be interpreted in this new framework
because the cardinal functions have global support even if the kernel has compact sup-
port. The decay of the basis functions, governed by a scalar function of distance and of the
separation radius, undertake convergence and stability. In this analysis the smoothness of
the approximant is not important, what matters is the “locality” provided by the fast decay.

With a moving least squares approach we provided an example of a smooth (C∞(Rd))
quasi-interpolant (the Lebesgue constant can be obtained explicitly and the computational
cost is linear in the number of nodes). We want to remark that with the standard construc-
tion with compactly supported RBF the smoothness of the approximant is inherited by the
smoothness of the RBF (if we use Wendland’s functions then the smoothness is limited). We
continued the work trying to improve the performance of the method even when the weight
functions do not have compact support (the matrices that are involved, even if with small
dimensions when the polynomial space to be reproduced is not too large, can be dense and
led to numerical instability). To address the obstacle we replaced a quadratic optimization
problem with a linear program on a polyhedron (warm start techniques, column generation
techniques and the choice of appropriate solvers provide speed in the execution of the ap-
proximation algorithm and a bound on the number of basis functions different from zero in
each point of the domain).

All the new theoretical results introduced in this work are also supported by numerical
evidence (most of the code was produced with MATLAB while for the part concerning the
optimization AMPL was used).

3



Chapter 1

Native Spaces

1.1 Riesz representation theorem

For a better understanding of the reproducing kernels we need to introduce some defini-
tions and results about metric and duality properties of Hilbert spaces. We will follow the
constructions in [3, 4, 5] to introduce these concepts.

Definition 1.1 (Convex sets and distance to a set). A convex set is a subset U of a vector
space V such that for all u, v ∈ U, tu + (1 − t)v ∈ U for all t ∈ [0, 1]. When V is a
normed vector space, we say that the distance from a vector p to a subset U is defined by
dist(p, U) = infq∈U ∥p− q∥.

The following elementary identity of the inner product will be useful to prove a projection
theorem.

Theorem 1.1 (The parallelogram equality) If V is an inner product space with the norm
induced by the inner product then for all vectors u, v ∈ V

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2.

Proof

Distributing over the sums u+ v and u− v, we have

∥u+ v∥2 + ∥u− v∥2 = ⟨u+ v, u+ v⟩+ ⟨u− v, u− v⟩ =
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩+ ⟨u, u⟩ − ⟨u, v⟩ − ⟨v, u⟩+ ⟨v, v⟩ =
= 2⟨u, u⟩+ 2⟨v, v⟩ = 2∥u∥2 + 2∥v∥2.

✷

The following fact does not hold in general for Banach spaces, and indeed the following
proof relies on the parallelogram equality.
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Theorem 1.2 (Hilbert Projection theorem) For a Hilbert spaces V and a closed convex
subset U , the distance to p from U , as in the definition 1.1, is attained by a unique element
of U.

Proof

Let {qn}n∈N be a sequence of vectors in U whose distance to p approach dist(p, U) =
infq∈U ∥p− q∥. We want to prove that this sequence is Cauchy. Applying the parallelogram
equality (Theorem 1.1) to the pair p− qn and p− qm we have

∥(p− qn) + (p− qm)∥2 + ∥(p− qn)− (p− qm)∥2 = 2∥p− qn∥2 + 2∥p− qm∥2.

From this we obtain

∥qm − qn∥2 = 2∥p− qn∥2 + 2∥p− qm∥2 − 4

∥∥∥∥p−
qn + qm

2

∥∥∥∥
2

.

Noting that qn+qm
2 ∈ U by convexity, we get

∥qm − qn∥2 ≤ 2∥p− qn∥2 + 2∥p− qm∥2 − 4dist(p, U)2,

from dist(p, U) ≤ ∥p− qn+qm
2 ∥. Since ∥p− qn∥ and ∥p− qm∥ approach dist(p, U), the right

side of the inequality can be made arbitrarily small by choosing large enough n and m. This
proves that the sequence {qn}n∈N is Cauchy. Since V is an Hilbert space and U is a closed
subset of V , the limit q of the sequence {qn}n∈N is an element of U . The continuity of the
norm ensures that

∥p− q∥ = lim
n→∞

∥p− qn∥ = dist(p, U).

To prove that q in unique, consider two such vectors q and q∗. With the same computation
as above we obtain

∥q − q∗∥2 ≤ 2∥p− q∥2 + 2∥p− q∗∥2 − 4dist(p, U)2 = 0,

which implies q = q∗.

✷

Definition 1.2 (Orthogonal projections) For a vector v and a closed convex subset U of
a Hilbert space V , we use vU to denote the distance-minimizing element of U , called the
orthogonal projection of v into U .

Proposition 1.3 Let V be an Hilbert spaces and U a closed convex subset of V , then
⟨v − vU , u⟩ = 0 for all v ∈ V and u ∈ U .

Proof

For all scalars λ we have ∥v− vU∥2 ≤ ∥v− (vU − λu)∥2, as vU − λu ∈ U and vU is distance-
minimizing. So for any t > 0, choosing λ = −t⟨v − vU , u⟩, we obtain

∥v − vU∥2 ≤ ⟨v − vU + λu, v − vU + λu⟩ = ∥v − vU∥2 + |λ|2∥u∥2 + 2λ⟨v − vU , u⟩.
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Substituting for λ, we get

∥v − vU∥2 ≤ ∥v − vU∥2 + t2|⟨v − vU , u⟩|2∥u∥2 − 2t|⟨v − vU , u⟩|2

which implies, dividing by t > 0,

2|⟨v − vU , u⟩|2 ≤ t|⟨v − vU , u⟩|2∥u∥2.

If t→ 0+ we can conclude ⟨v − vU , u⟩ = 0.

✷

Definition 1.3 (Orthogonal complemets) For a subset U of an inner product space V , we
denote by U⊥ the space of vectors orthogonal to U , called the orthogonal complement of U .
More precisely

U⊥ = {v ∈ V : ⟨v, u⟩ = 0 for all u ∈ U}.

The following proposition will be fundamental when U is a dense subset of V .

Proposition 1.4 Let U be a subset of a Hilbert space V , then

1. U⊥ is a closed subspace of V ,

2. U⊥ = U
⊥

(where the bar denotes the metric closure),

3. (U⊥)⊥ = U , if U is a subspace of V .

Proof

(1) Let {vn}n∈N be a converging sequence of elements of U⊥. Since vn → v ∈ V we have to
prove that v ∈ U⊥. By the continuity of the inner product we obtain

0 = lim
n→∞

⟨vn, u⟩ = ⟨v, u⟩ for all u ∈ U.

(2) Since U ⊆ U we obtain the following inclusion:

U
⊥
= {v ∈ V : ⟨v, u⟩ = 0 for all u ∈ U} ⊆ {v ∈ V : ⟨v, u⟩ = 0 for all u ∈ U} = U⊥.

To prove the reverse inclusion we note that for each u ∈ U there exists a sequence {un}n∈N
of elements of U converging to u. By the continuity of the inner product we obtain

0 = lim
n→∞

⟨v, un⟩ = ⟨v, u⟩ for all u ∈ U and v ∈ U⊥.

(3) We begin to prove that U ⊆ (U⊥)⊥ : by Definition 1.3 if u ∈ U then ⟨u, v⟩ = 0 for all

v ∈ U⊥. With (2) we get U ⊆ (U
⊥
)⊥ = (U⊥)⊥.

We observe that U is a closed subspace when U is a subspace:
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• If {un}n∈N is a converging sequence of elements of U and its limit is u, then ∥λu −
λun∥ ≤ |λ|∥u − un∥ → 0 as n → +∞ for each λ ∈ R. This proves that U is closed
under multiplication by scalar since λun ∈ U for each n ∈ N.

• If {an}n∈N and {bn}n∈N are converging sequences of elements of U and their limits are
respectively a and b, then ∥a+ b− (an + bn)∥ ≤ ∥a− an∥+ ∥b− bn∥ → 0 as n→ +∞.
This proves that U is closed under addition since an + bn ∈ U for each n ∈ N.

Suppose v ∈ (U⊥)⊥. Since U is a closed (convex) subspace we have that vU ∈ U ⊆ (U⊥)⊥,

so v − vU ∈ (U⊥)⊥. By Proposition 1.3 and (2) we have v − vU ∈ U
⊥

= U⊥. Since
v− vU ∈ U⊥ ∩ (U⊥)⊥ we have ∥v− vU∥2 = ⟨v− vU , v− vU ⟩ = 0, which implies v = vU ∈ U .

✷

Corollary 1.5 A subspace U of a Hilbert Space V is dense if and only if U⊥ = ⟨0⟩.

Proof

(⇒) By Proposition 1.4 we can write (U⊥)⊥ = U = V , which implies U⊥ = ⟨0⟩.

(⇐) By Proposition 1.4 we obtain U = (U⊥)⊥ = ⟨0⟩⊥ = V.

✷

Eventually we can prove a fundamental representation result. In general, infinite-dimensional
vector spaces are not isometrically isomorphic to their own dual space, but this is true for
Hilbert spaces.

Theorem 1.6 (Riesz representation theorem) For a continuous linear functional ϕ on a
Hilbert space V , there exists a unique u ∈ V such that ϕ(v) = ⟨u, v⟩ for all v ∈ V . Further-
more, ∥u∥V = ∥ϕ∥V ∗.

Proof

If ϕ is the zero functional, take u = 0. So assume ϕ is non-zero. By continuity, ker(ϕ) =

{v ∈ V : ϕ(v) = 0} = ←−ϕ (0) is a closed subspace of V . Since ker(ϕ) is closed and assumed
not to be all of V from Corollary 1.5 we have that ker(ϕ)⊥ ̸= ⟨0⟩. There exists w ∈ V \ {0}
such that ∥w∥ = 1 and ⟨w, v⟩ = 0 for each v ∈ V such that ϕ(v) = 0. Choose u = ϕ(w)w
and observe that ϕ(w) ̸= 0 since w /∈ ker(ϕ).

Since w is unit length, we have ∥u∥ = |ϕ(w)| and ϕ(u) = ϕ(w)2 = ∥u∥2. For all v ∈ V , we

have ⟨u, v⟩ = ⟨u, v − ϕ(v)
∥u∥2u⟩+ ⟨u,

ϕ(v)
∥u∥2u⟩. Since ϕ applied to v − ϕ(v)

∥u∥2u equals 0, and since u

is orthogonal to any vector in ker(ϕ), we have ⟨u, v⟩ = ⟨u, ϕ(v)
∥u∥2u⟩ = ϕ(v).

To prove uniqueness consider two such vectors u and u∗:

∥u− u∗∥2 = ⟨u− u∗, u− u∗⟩ = ⟨u, u− u∗⟩ − ⟨u∗, u− u∗⟩ = ϕ(u− u∗)− ϕ(u− u∗) = 0,
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that implies u = u∗.

If v ∈ V \ {0} the Cauchy-Schwarz inequality ensures that

|ϕ(v)|
∥v∥ =

|⟨u, v⟩|
∥v∥ ≤ ∥u∥∥v∥∥v∥ = ∥u∥ ⇒ sup

v∈V \{0}

|ϕ(v)|
∥v∥ ≤ ∥u∥.

The last implication is trivial if u = 0, otherwise the upper-bound is obtained when v = u.
This proves that ∥u∥V = ∥ϕ∥V ∗ .

✷

We note that if ϕ(v) = ⟨u, v⟩ then ker(ϕ) = {v ∈ V : ⟨u, v⟩ = 0} = ⟨u⟩⊥. This implies that
ker(ϕ)⊥ = ⟨u⟩ = ⟨u⟩. Also for infinite-dimensional vector space the orthogonal complement
of ker(ϕ) is exactly a one-dimensional vector space. We proved this without explicitly
construct an orthonormal bases like there was in the finite-dimensional case. We have no
suggestion how to construct u.

1.2 Reproducing-kernel Hilbert spaces

We study vector spaces F consisting of real-valued functions f : Ω→ R defined on a quite
arbitrary region Ω ⊆ R. For the error analysis of the interpolation process we want to study
the correspondence between real-valued positive-definite kernels and Hilbert spaces of real-
valued functions. The concept of reproducing-kernel Hilbert space plays a fundamental role
in numerical analysis. Reproducing-kernel Hilbert spaces have been introduced in [6, 7]. A
modern approach with links on radial basis functions can be found in [8, 9, 10, 11]. The
method we decided to follow can be found in [12].

Definition 1.4 Let F be a Hilbert space of functions f : Ω→ R. A function Φ : Ω×Ω→ R

is called reproducing kernel for F if

• Φ(·, y) ∈ F ∀ y ∈ Ω,

• f(y) = ⟨f,Φ(·, y)⟩F ∀ f ∈ F , y ∈ Ω.

Proposition 1.7 Suppose that F is a Hilbert space of functions f : Ω→ R. If Φ1 and Φ2

are reproducing kernel for F then Φ1 = Φ2.

Proof

From the definition 1.4 we obtain that ⟨f,Φ1(·, y)−Φ2(·, y)⟩F = ⟨f,Φ1(·, y)⟩F−⟨f,Φ2(·, y)⟩F =
f(y) − f(y) = 0 for all y ∈ Ω. Setting f = Φ1(·, y) − Φ2(·, y) ∈ F we have that
⟨Φ1(·, y)− Φ2(·, y),Φ1(·, y)− Φ2(·, y)⟩F = 0. This implies Φ1(·, y)− Φ2(·, y) ∀y ∈ Ω.

✷

Theorem 1.8 Suppose that F is a Hilbert space of functions f : Ω→ R. Then the following
statements are equivalent:
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• the point evaluation functionals are continuous, i.e. δy ∈ F∗ for all y ∈ Ω;

• F has a reproducing kernel.

Proof

(⇒) By Riesz representation theorem (Theorem 1.6) and the continuity of the point evalu-
ation functionals, for every y ∈ Ω we can find a Φy ∈ F such that f(y) = δy(f) = ⟨Φy, f⟩F
for all f ∈ F . Thus if we define Φ(x, y) := Φy(x) we obtain f(y) = ⟨f,Φy⟩F = ⟨f,Φ(·, y)⟩F .
This proves that Φ is a reproducing kernel for F .

(⇐) If F has a reproducing kernel we have that δy(f) = f(y) = ⟨f,Φ(·, y)⟩F for all y ∈ Ω.
Since the point evaluation functional δy is linear, we check that it is bounded.

|δy(f)| = |⟨f,Φ(·, y)⟩F | ≤ ∥f∥F∥Φ(·, y)∥F .

✷

If a Hilbert space has a reproducing kernel then the point-wise convergence is necessary for
the convergence in norm.

Theorem 1.9 Suppose that F is a Hilbert space of functions f : Ω → R with reproducing
kernel Φ. Then we have

• Φ(x, y) = ⟨Φ(·, x),Φ(·, y)⟩F = ⟨δx, δy⟩F∗ for x, y ∈ Ω,

• Φ(x, y) = Φ(y, x) for x, y ∈ Ω,

• if f, {fn}n∈N are functions in F such that fn
∥·∥F−−−−−→

n→+∞
f then fn(y) −−−−−→

n→+∞
f(y) for

y ∈ Ω.

Proof

For the point evaluation functional the Riesz representation (Theorem 1.6) F : F∗ → F is
explicit: δy(f) = f(y) = ⟨f,Φ(·, y)⟩F , which implies F (δy) = Φ(·, y). Since F is an isometry
we obtain

⟨δx, δy⟩F∗ = ⟨F (δx), F (δy)⟩F = ⟨Φ(·, x),Φ(·, y)⟩F = Φ(y, x).

The last inequality follows from Definition 1.4. Since ⟨·, ·⟩F is symmetric we can obtain (1)
and (2). Property (3) is a consequence of Definition 1.4 and the Cauchy–Schwarz inequality:

|fn(x)− f(x)| = |⟨fn − f,Φ(·, x)⟩| ≤ ∥fn − f∥F∥Φ(·, x)∥F .

✷

The following result connects reproducing-kernel Hilbert spaces and positive definite kernels.
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Definition 1.5 A continuous function Φ : Rd → C is called positive semi-definite if, for
all N ∈ N, all sets of pairwise distinct centers X = {x1, . . . , xN} ⊆ Rd, and all α ∈ CN ,
the quadratic form

N∑

j=1

N∑

k=1

αjαkΦ(xj − xk)

is non-negative. The function Φ is called positive definite if the quadratic form is positive
for all α ∈ CN \ {0}.
If we restrict to even real-valued function we can check that the real matrix AΦ,X = (Φ(xj−
xk))1≤j,k≤N ∈MN (R) is positive (semi-)definite [13].

In this work we will use even real-valued positive definite functions and this more general
definition allow us to use techniques such as Fourier transforms more naturally.

Theorem 1.10 Suppose F is a reproducing-kernel Hilbert function space with reproducing
kernel Φ : Ω× Ω→ R. Then Φ is positive semi-definite. Moreover, Φ is positive definite if
and only if the point evaluation functionals are linearly independent in F∗.

Proof

If X = {x1, . . . , xN} ⊆ Ω is a set of pairwise distinct centers and α ∈ RN \ {0}, from
Theorem 1.9 we get

N∑

j=1

N∑

k=1

αjαkΦ(xj , xk) =

N∑

j=1

N∑

k=1

αjαk⟨δxj , δxk
⟩F∗ =

=

〈
N∑

j=1

αjδxj ,

N∑

k=1

αkδxk

〉

F∗

=

∥∥∥∥∥∥

N∑

j=1

αjδxj

∥∥∥∥∥∥

2

F∗

≥ 0.

We observe that

N∑

j=1

N∑

k=1

αjαkΦ(xj , xk) =

∥∥∥∥∥∥

N∑

j=1

αjδxj

∥∥∥∥∥∥

2

F∗

= 0⇔
N∑

j=1

αjδxj = 0,

which means that {δxi}i=1,...,N are linearly dependent.

✷

This result shows us that the reproducing kernel of a function space F leads to a real-valued
positive semi-definite kernel. From Definition 1.4, we know that F contains all functions of
the form f =

∑N
j=1 αjΦ(·, xj) with {xj}j=1,...,N ⊆ Ω. With Theorem 1.9, we have

∥f∥2F =

〈
N∑

j=1

αjΦ(·, xj),
N∑

k=1

αkΦ(·, xk)
〉

F

=

=

N∑

j=1

N∑

k=1

αjαk⟨Φ(·, xj),Φ(·, xk)⟩F =

N∑

j=1

N∑

k=1

αjαkΦ(xj , xk).

(1.1)
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This expression will be meaningful when we will construct a reproducing-kernel Hilbert
space for a given positive definite kernel.

The following result on the invariance properties of the Hilbert space F show that radial
basis functions arise quite naturally within the framework of reproducing kernels.

Definition 1.6 Let T be a group of transformations T : Ω→ Ω. We say that F is invariant
under the group T if

• f ◦ T ∈ F for all f ∈ F and T ∈ T ,

• ⟨f ◦ T, g ◦ T ⟩F = ⟨f, g⟩F for all f, g ∈ F and T ∈ T .

The reproducing kernel of F inherits the invariance of the function space.

Theorem 1.11 Suppose that the reproducing-kernel Hilbert function space F is invariant
under the transformations of T , then the reproducing kernel Φ satisfies

Φ(T (x), T (y)) = Φ(x, y) for all x, y ∈ Ω and all T ∈ T .

Proof

From Definition 1.4 and 1.6 we get

f(y) = f ◦ T−1(T (y)) = ⟨f ◦ T−1,Φ(·, T (y))⟩F = ⟨f,Φ(T (·), T (y))⟩F , y ∈ Ω.

Since Φ(T (·), T (y)) = Φ(·, T (y)) ◦ T ∈ F and Proposition 1.7 we can write Φ(x, y) =
Φ(T (x), T (y)) for all x, y ∈ Ω.

✷

Example 1.12 Suppose Ω = Rd. Let T be the group of translations on Rd. If we choose
the translation T (ξ) = ξ − y for a fixed y ∈ Rd then Theorem 1.11 gives us

Φ0(x− y) := Φ(x− y, 0) = Φ(x, y),

i.e. the kernel is translation invariant.

If Ω = Rd and T consists of affine orthogonal transformations. If we fix x, y ∈ Ω we
can find an orthogonal transformation A ∈ Od(R) such that A(x − y) = ∥x − y∥2ν, where
ν is an arbitrary unit vector in Rd. With the previous construction and Theorem 1.11 we
have

ϕ(∥x−y∥2) := Φ0(∥x−y∥2ν) = Φ0(A(x−y)) = Φ0(A(x)−A(y)) = Φ(A(x), A(y)) = Φ(x, y),

i.e. Φ is radial.

11



1.3 Inner product space completion

Following the results in [14] we introduce the completion of a inner product space. This
argument will be useful to give examples of reproducing-kernel Hilbert spaces starting from
positive-definite kernels. The goal of this section is to give a proof of the following theorem.

Theorem 1.13 (Completion) If (V, ⟨·, ·⟩V) is any inner product space, then there exists a
Hilbert space (H, ⟨·, ·⟩H) and a map U : V → H such that

• U is injective

• U is linear

• ⟨U(x), U(y)⟩H = ⟨x, y⟩V
• U(V) = {U(x) : x ∈ V} is dense in H. If V is complete, then U(V) = H.

H is called the completion of V. U gives a isometric correspondence between elements of
V and elements of U(V) so we can think of V as being U(V) ⊆ H. Using this point of
view Theorem 1.13 says that any inner product space can be extended to a complete inner
product space, i.e. it can have its holes filled in.

To guess the shape of H we use a backwards strategy. Suppose that, somehow, we have
found a suitable H with V ⊆ H. Because V is dense in H, each element of H can be written
as the limit of a sequence in V, and each such sequence in Cauchy. Thus specifying an
element of H is equivalent to specify a Cauchy sequence in V. But there is not a one-to-one
correspondence between elements of H and Cauchy sequences in V, because many different
Cauchy sequences in V can converge to the same element of H. To get a one-to-one cor-
respondence, we can identify each x ∈ H with the set of all Cauchy sequences in V that
converges to x.

First we define the set of all Cauchy sequences in V as

V ′ = {{xn}n∈N : {xn}n∈N is a Cauchy sequence in V} .

Next we define two Cauchy sequences {xn}n∈N and {yn}n∈N in V to be equivalent, written
{xn}n∈N ∼ {yn}n∈N, if and only if

lim
n→∞

∥xn − yn∥V = 0.

From this expression we can exploit that any two convergent sequences have the same limit
if and only if they are equivalent: suppose {xn}n∈N and {yn}n∈N have as limit x and y
respectively.

(⇒) Suppose x = y: ∥xn − yn∥V ≤ ∥xn − x∥V + ∥y − yn∥V n→∞−−−→ 0.
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(⇐) Suppose {xn}n∈N ∼ {yn}n∈N: ∥x−y∥V ≤ ∥x−xn∥V +∥xn−yn∥V +∥yn−y∥V n→∞−−−→ 0,
which implies x = y.

Next, if {xn}n∈N ∈ V ′, we define the equivalence class of {xn}n∈N to be the set of all
Cauchy sequence that are equivalent to {xn}n∈N:

[{xn}n∈N] = {{yn}n∈N ∈ V ′ : {xn}n∈N ∼ {yn}n∈N}.

This definition makes sense because ∼ is an equivalence relation.

Proposition 1.14 ∼ is an equivalence relation. In particular, if {xn}n∈N, {yn}n∈N ∈ V ′
then either [{xn}n∈N] = [{yn}n∈N] or [{xn}n∈N] ∩ [{yn}n∈N] = ∅.
Proof

(1) Reflexivity:
{xn}n∈N ∼ {xn}n∈N because ∥xn − xn∥V = 0 for each n ∈ N.

(2) Symmetry:
If {xn}n∈N ∼ {yn}n∈N ⇒ limn→∞ ∥xn − yn∥V = 0⇒ limn→∞ ∥yn − xn∥V = 0⇒ {yn}n∈N ∼
{xn}n∈N.

(3) Transitivity: If {xn}n∈N ∼ {yn}n∈N and {yn}n∈N ∼ {zn}n∈N ⇒ ∥xn − zn∥V ≤ ∥xn −
yn∥V + ∥yn − zn∥V n→∞−−−→ 0.

The last property in the statement is true because equivalence classes of an equivalence
relation provide a partition of V ′.

✷

The Proposition 1.14 suggests us to define

H =
{
[{xn}n∈N] : {xn}n∈N ∈ V ′

}
. (1.2)

Now the goal is to define on H a Hilbert space structure.

Proposition 1.15 If {xn}n∈N, {yn}n∈N ∈ V ′ then limn→∞⟨xn, yn⟩V exists.

Proof

We first observe that

|⟨xn, yn⟩V − ⟨xm, ym⟩V | ≤ |⟨xn, yn⟩V − ⟨xm, yn⟩V |+ |⟨xm, yn⟩V − ⟨xm, ym⟩V | ≤
≤ |⟨xn − xm, yn⟩V |+ |⟨xm, yn − ym⟩V |
≤ ∥xn − xm∥V∥yn∥V + ∥xm∥V∥yn − ym∥V

Since {xn}n∈N and {yn}n∈N are Cauchy sequences then {∥xn∥V}n∈N and {∥yn∥V}n∈N are
bounded (from triangle inequality we obtain |∥xn∥V−∥xm∥V | ≤ ∥xn−xm∥V , so {∥xn∥V}n∈N
is a bounded Cauchy sequence in R) and {∥xn − xm∥V}n,m∈N and {∥yn − ym∥V}n,m∈N
converge to 0 as n,m → +∞. We proved that {⟨xn, yn⟩V}n∈N is a Cauchy sequence in R.
Since R is complete, the considered sequence converges.
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✷

Proposition 1.16 Define, for each [{xn}n∈N], [{yn}n∈N] ∈ H and α ∈ R,

[{xn}n∈N] + [{yn}n∈N] = [{xn + yn}n∈N],
α[{xn}n∈N] = [{αxn}n∈N],

⟨[{xn}n∈N], [{yn}n∈N]⟩H = lim
n→∞

⟨xn, yn⟩V .

Each of these operations is well-defined.

Proof

Let {xn}n∈N ∼ {x∗n}n∈N and {yn}n∈N ∼ {y∗n}n∈N. We obtain

|⟨xn, yn⟩V − ⟨x∗n, y∗n⟩V | ≤ |⟨xn, yn⟩V − ⟨x∗n, yn⟩V |+ |⟨x∗n, yn⟩V − ⟨x∗n, y∗n⟩V | ≤
≤ |⟨xn − x∗n, yn⟩V |+ |⟨x∗n, yn − y∗n⟩V |
≤ ∥xn − x∗n∥V∥yn∥V + ∥x∗n∥V∥yn − y∗n∥V

n→+∞−−−−−→ 0.

The limit relation holds because {∥yn∥V}n∈N and {∥x∗n∥V}n∈N are bounded (Proposition
1.15) and {∥xn − x∗n∥V}n∈N and {∥yn − y∗n∥V}n∈N converge to 0. To conclude the proof we
need the following:

∥(xn + yn)− (x∗n + y∗n)∥V ≤ ∥xn − x∗n∥V + ∥yn − y∗n∥V
n→+∞−−−−−→ 0

∥αxn − αx∗n∥V ≤ |α|∥xn − x∗n∥V
n→+∞−−−−−→ 0.

✷

Proposition 1.17 H with the operations of Proposition 1.16 is a inner product space.

Proof

We need to check that H is a R-vector space and that ⟨·, ·⟩H is a positive definite bi-
linear form. Let us check the positive definiteness of ⟨·, ·⟩H. If [{xn}n∈N] ∈ H and
⟨[{xn}n∈N], [{xn}n∈N]⟩H = 0 then

0 = lim
n→∞

⟨xn, xn⟩V = lim
n→∞

∥xn∥2V ⇒ 0 = lim
n→∞

∥xn∥V = lim
n→∞

∥xn − 0∥V .

We proved that {xn}n∈N ∼ {0}n∈N ⇒ [{xn}n∈N] = [{0}n∈N].

✷

With the results of Proposition 1.16 and Proposition 1.17 we can state the useful result

Proposition 1.18 H is complete.
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Proof

Let {X(n)}n∈N ⊆ H be a Cauchy sequence. We need to prove that it has a limit X ∈ H.
Each X(n) is an equivalence class of Cauchy sequence in V. We will use the following

notation : X(n) = [{x(n)ℓ }ℓ∈N]. We will use a classical diagonal argument.

{x(1)ℓ }ℓ∈N Cauchy ⇒ ∃ ℓ1 ∈ N such that ∀ ℓ ≥ ℓ1 ∥x(1)ℓ − x
(1)
ℓ1
∥V < 1. Choose x1 = x

(1)
ℓ1

.

{x(2)ℓ }ℓ∈N Cauchy ⇒ ∃ ℓ2 > ℓ1 such that ∀ ℓ ≥ ℓ2 ∥x(2)ℓ − x
(2)
ℓ2
∥V <

1

2
. Choose x2 = x

(2)
ℓ2

.

{x(3)ℓ }ℓ∈N Cauchy ⇒ ∃ ℓ3 > ℓ2 such that ∀ ℓ ≥ ℓ3 ∥x(3)ℓ − x
(3)
ℓ3
∥V <

1

3
. Choose x3 = x

(3)
ℓ3

.

...

The example below shows that at each step we choose an element of a Cauchy sequence.

X(1) X(2) X(3) X(4) . . .

x
(1)
1 • x

(2)
1 ◦ x

(3)
1 ◦ x

(4)
1 ◦

x
(1)
2 ◦ x

(2)
2 • x

(3)
2 ◦ x

(4)
2 ◦

x
(1)
3 ◦ x

(2)
3 ◦ x

(3)
3 • x

(4)
3 ◦

x
(1)
4 ◦ x

(2)
4 ◦ x

(3)
4 ◦ x

(4)
4 •

...

Now we prove that {xn}n∈N is a Cauchy sequence. Let ε > 0 by the triangle inequality we
have

∥xn − xm∥V ≤ ∥x(n)ℓn
− x

(n)
ℓ ∥V + ∥x(n)ℓ − x

(m)
ℓ ∥V + ∥x(m)

ℓ − x
(m)
ℓm
∥V = (1.3)

= ∥x(n)ℓn
−x

(n)
ℓ ∥V +

(
∥x(n)ℓ − x

(m)
ℓ ∥V − ∥X(n) −X(m)∥H

)
+∥X(n)−X(m)∥H+∥x(m)

ℓ −x
(m)
ℓm
∥V

for any ℓ ∈ N.

• If ℓ ≥ ℓn the first term is smaller than 1
n .

• By Proposition 1.16, ∥X(n) − X(m)∥H = limℓ→∞ ∥x(n)ℓ − x
(m)
ℓ ∥V . So there exists a

natural number Nn,m such that the second term is smaller than ε
4 whenever ℓ ≥ Nn,m.

• By hypothesis, the sequence {X(n)}n∈N is a Cauchy sequence. So there exists a natural
number Ñ such that the third term is smaller than ε

4 whenever n,m ≥ Ñ .

• If ℓ ≥ ℓm the last term is smaller than 1
m .
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Choose any natural number N ≥ max{Ñ , 4ε}. We want to prove that ∥xn − xm∥V < ε for
n,m ≥ N . Fix such n,m and choose ℓ greater than max{Nn,m, ℓn, ℓm}. Since 1

n ≤ 1
N ≤ ε

4
with the previous choice the claim holds because the four term in equation (1.3) are each
smaller than ε

4 .

Now we claim that X := [{xn}n∈N] = limn→∞X(n). Let ε > 0. By Proposition 1.16
we get

∥X −X(n)∥H = lim
m→∞

∥xm − x(n)m ∥V = lim
m→∞

∥x(m)
ℓm
− x(n)m ∥V .

By the triangle inequality we have

∥x(m)
ℓm
− x(n)m ∥V ≤ ∥x(m)

ℓm
− x

(n)
ℓn
∥V + ∥x(n)ℓn

− x(n)m ∥V . (1.4)

• Since the sequence {xn = x
(n)
ℓn
}n∈N is a Cauchy sequence, there exists N ′ ∈ N such

that the first term is smaller than ε
2 for n,m ≥ N ′.

• The second term is smaller than 1
n whenever m ≥ ℓn.

To complete the proof we choose N ≥ max{N ′, 2ε}. We claim ∥X −X(n)∥H < ε if n ≥ N .
Let n ≥ N . Since 1

n ≤ 1
N ≤ ε

2 , for all m bigger than max{N ′, ℓn}, the two terms in equation
(1.4) are each smaller than ε

2 .

✷

Finally with the following construction we can prove Theorem 1.13.

We define U : V → H by
U(x) = [{x, x, x, . . . , x, . . . }]. (1.5)

Proof of Theorem 1.13

1. U is linear and ⟨U(x), U(y)⟩H = ⟨x, y⟩V for all x, y ∈ V.

The linearity of U follow from equation (1.5) and Proposition 1.16.

⟨U(x), U(y)⟩H = ⟨[{x, x, x, . . . }], [{y, y, y, . . . }]⟩H = lim
n→∞

⟨x, y⟩V = ⟨x, y⟩V .

2. U is injective.

U(x) = U(y)⇔ [{x, x, x, . . . }] = [{y, y, y, . . . }]⇔ lim
n→∞

∥x− y∥V = 0⇔ x = y.

3. U(V) is dense in H.

Let X = [{xn}n∈N] ∈ H. We claim that the sequence {U(xn)}n∈N converges in H
to X. By Proposition 1.16

∥X − U(xn)∥H = lim
m→∞

∥xm − (U(xn))m∥V = lim
m→∞

∥xm − xn∥V .

Since {xn}n∈N is a Cauchy sequence in V, the expression above converges to 0 as
n→ +∞.
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4. If V is complete, then U(V) = H.

Fix X ∈ H. We want to find x ∈ V with U(x) = X. By (3) we obtained that
U(V) is dense in H, so there exists {xn}n∈N ⊆ V such that

X = lim
n→∞

U(xn)

⇒ {U(xn)}n∈N is a Cauchy sequence in H
⇒ By (1) {xn}n∈N is a Cauchy sequence in V
⇒ Since V is complete, there exists lim

n→∞
xn = x ∈ V

⇒ By (1) lim
n→∞

U(xn) = U(x)

⇒ U(x) = X because a metric space is Hausdorff (T2 space).

✷

1.4 Native spaces for positive definite kernels

From Theorem 1.10 we proved that the reproducing kernel of a Hilbert function space is a
positive definite function. In our context it is useful to start with a positive definite function
and it becomes necessary to find the associated function space (i.e. find the Hilbert function
space that has this fixed kernel as its reproducing kernel).

We start with a symmetric positive definite kernel Φ : Ω × Ω → R. Studying equation
(1.1) it is natural to define the following vector space

FΦ(Ω) := ⟨Φ(·, y) : y ∈ Ω⟩, (1.6)

where {Φ(·, y)}y∈Ω are linearly independent. Let X = {x1, . . . , xN} ⊆ Ω a set of pairwise
distinct centers, if we suppose that there esists α ∈ RN such that

N∑

j=1

αjΦ(·, xj) = 0⇒
N∑

k=1

αk

N∑

j=1

αjΦ(xk, xj)

︸ ︷︷ ︸
=0

=

N∑

k=1

N∑

j=1

αkαjΦ(xk, xj) = 0,

that forces α to be 0.

We can equip the space defined in equation (1.6) with the bilinear form
〈

N∑

j=1

αjΦ(·, xj),
M∑

k=1

βkΦ(·, yk)
〉

Φ

=

N∑

j=1

M∑

k=1

αjβkΦ(xj , yk). (1.7)

Theorem 1.19 If Φ : Ω× Ω→ R is a symmetric positive definite kernel then the bilinear
form ⟨·, ·⟩Φ defined in equation (1.7) is a inner product on FΦ(Ω). Furthermore, FΦ(Ω) is
a inner product space with reproducing kernel Φ.
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Proof

The symmetry of ⟨·, ·⟩Φ immediately follows from the symmetry of Φ. Let us prove that
⟨·, ·⟩Φ is positive definite: fix f =

∑N
j=1 αjΦ(·, xj) ̸= 0, which means that α ∈ RN \ {0} if

xj ̸= xi for each j ̸= i.

⟨f, f⟩Φ =

〈
N∑

j=1

αjΦ(·, xj),
N∑

k=1

αkΦ(·, xk)
〉

Φ

=
N∑

j=1

N∑

k=1

αjαkΦ(xj , xk) > 0,

because Φ is a positive definite kernel. The reproducing kernel property follows from

⟨f,Φ(·, y)⟩Φ =

〈
N∑

j=1

αjΦ(·, xj),Φ(·, y)
〉

Φ

=
N∑

j=1

αjΦ(xj , y) =
N∑

j=1

αjΦ(y, xj) = f(y).

✷

With the construction provided in section 1.3 we can isometrically embed the inner product
space FΦ(Ω) in the Hilbert space FΦ(Ω). We note that with the construction provide in
section 1.3 FΦ(Ω) does not contain functions from Ω to R. To interpret this as a candidate
Hilbert function space with reproducing kernel Φ we will use a continuous extension of the
point-evaluation functionals (compare Theorem 1.8).

By the reproducing property of Φ (Theorem 1.19) the point-evaluation functional δx is
continuous on FΦ(Ω):

|δx(f)| = |f(x)| = |⟨f,Φ(·, x)⟩Φ| ≤ ∥f∥Φ∥Φ(·, x)∥Φ.

Since FΦ(Ω) = FΦ(Ω) (Theorem 1.13) is a Hilbert space, the point-evaluation functional δx
with x ∈ Ω can be uniquely extend as a continuous functional on FΦ(Ω).

To be more precise and clear we define the liner map R : FΦ(Ω)→ C(Ω)

R(f) : Ω −→ R

x 7−→ ⟨f,Φ(·, x)⟩Φ.
(1.8)

We stated that R(f)(·) is a continuous function in Ω because

|R(f)(x)−R(f)(y)| = |⟨f,Φ(·, x)− Φ(·, y)⟩Φ| ≤ ∥f∥Φ∥Φ(·, x)− Φ(·, y)∥Φ.

From continuity and symmetry of Φ with equation (1.7) we can conclude

∥Φ(·, x)− Φ(·, y)∥2Φ = Φ(x, x) + Φ(y, y)− 2Φ(x, y).

The function R : FΦ(Ω) → C(Ω) let us to think the elements of FΦ(Ω) as continuous
functions on Ω, indeed

R(f)(x) = ⟨f,Φ(·, x)⟩Φ = f(x) (1.9)

for each f ∈ FΦ(Ω). To make this last observation precise we need the following
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Theorem 1.20 The linear map R : FΦ(Ω)→ C(Ω) defined by equation (1.8) is injective.

Proof

The map R is linear, so we check that ker(R) = 0. Suppose R(f) = 0 for f ∈ FΦ(Ω), which

means that ⟨f,Φ(·, x)⟩Φ = 0 for all x ∈ Ω. Such f ∈ FΦ(Ω)
⊥ = FΦ(Ω)

⊥
= FΦ(Ω)

⊥ = ⟨0⟩.
This proves that f = 0.

✷

Definition 1.7 The native Hilbert function space corresponding to the symmetric positive
definite kernel Φ : Ω× Ω→ R is defined by

NΦ(Ω) := R(FΦ(Ω)).

Where it is defined a inner product inherited from FΦ(Ω) by

⟨f, g⟩NΦ(Ω) := ⟨R−1(f), R−1(g)⟩Φ.

To justify the previous definition we can note that Φ(·, x) = R(Φ(·, x)) because of equation
(1.9). Moreover, if f ∈ NΦ(Ω) and x ∈ Ω

⟨f,Φ(·, x)⟩NΦ(Ω) = ⟨R−1(f), R−1(Φ(·, x))⟩Φ =

= ⟨R−1(f),Φ(·, x)⟩Φ = R(R−1(f))(x) = f(x).

With Theorem 1.10 and Definition 1.7 we established a connection between positive definite
kernels and reproducing kernels of Hilbert function spaces.
If we recall from equation (1.9) that R(FΦ(Ω)) = FΦ(Ω) and that

R : (FΦ(Ω), ⟨·, ·⟩Φ) −→ (NΦ(Ω), ⟨·, ·⟩NΦ(Ω)) (1.10)

is an isometry, then FΦ(Ω) is dense in NΦ(Ω) and

∥f∥Φ = ∥f∥NΦ(Ω) (1.11)

for all f ∈ FΦ(Ω).

Because of Proposition 1.7 it is interesting to investigate the uniqueness of the native space.

Theorem 1.21 Suppose that Φ is a symmetric positive definite kernel and that G is a
Hilbert space of function f : Ω→ R with reproducing kernel Φ. Then G is the native space
NΦ(Ω) and the inner products are the same.

Proof

From definition of reproducing kernel (Definition 1.4) and equation (1.1) we know that
FΦ(Ω) ⊆ G and ∥f∥G = ∥f∥Φ = ∥f∥NΦ(Ω) for all f ∈ FΦ(Ω) (see also equation (1.11)).
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Now fix f ∈ NΦ(Ω), then there exists a Cauchy sequence {fn}n∈N ⊆ FΦ(Ω) converging to
f in NΦ(Ω). By Theorem 1.9 we have that

f(y) = lim
n→∞

fn(y).

Since {fn}n∈N ⊆ FΦ(Ω) is converging in NΦ(Ω) then it is also Cauchy in G. This sequence
converges to g ∈ G because it is complete. The reproducing kernel property of Theorem 1.9
gives

g(y) = lim
n→∞

fn(y) = f(y)

for each y ∈ Ω. This proves NΦ(Ω) ⊆ G and in particular

∥f∥G = ∥g∥G = lim
n→∞

∥fn∥G = lim
n→∞

∥fn∥NΦ(Ω) = ∥f∥NΦ(Ω)

for each f ∈ NΦ(Ω). From this properties we can state that NΦ(Ω) is closed in G (NΦ(Ω)
is an Hilbert space and ∥ · ∥G and ∥ · ∥NΦ(Ω) coincide on NΦ(Ω)).

Suppose by contradiction that NΦ(Ω) ⊊ G. If NΦ(Ω)
⊥G = ⟨0⟩, then by Corollary 1.5

we will have NΦ(Ω) = NΦ(Ω)
G

= G (it is a contradiction). In this setting we can find
an element g ∈ G \ {0} orthogonal to NΦ(Ω). With the reproduction property this means
g(y) = ⟨g,Φ(·, y)⟩G = 0 for all y ∈ Ω. We proved g = 0 and it is a contradiction. We
can conclude that NΦ(Ω) = G and that ∥ · ∥NΦ(Ω) = ∥ · ∥G . We can conclude the proof by
recalling an equality for normed vector spaces with norm induced by a inner product:

⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2).

✷

The following results will have a particular interest in our work because it let us to study
interpolation processes in classical functional spaces.

We need to recall some classical definition and result on Fourier Transform.

Definition 1.8 For f ∈ L1(Rd) we define its Fourier transform [15] by

f̂(x) = f∧(x) := (2π)−d/2

∫

Rd

f(ω)e−i⟨x,ω⟩dω

and its inverse Fourier transform by

f∨(x) := (2π)−d/2

∫

Rd

f(ω)ei⟨x,ω⟩dω.

We underline the fact that with dominated convergence theorem we can prove that f̂ is
uniformly continuous in Rd.

Theorem 1.22 (Plancherel) There exists an isomorphism mapping T : L2(Rd) → L2(Rd)
such that:
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• ∥T (f)∥L2(Rd) = ∥f∥L2(Rd) for all f ∈ L2(Rd),

• T (f) = f̂ for all f ∈ L1(Rd) ∩ L2(Rd),

• T−1(f) = f∨ for all f ∈ L1(Rd) ∩ L2(Rd).

The isomorphism is uniquely determined by these properties.

Now we can state an important result.

Theorem 1.23 Suppose that Φ ∈ C(Rd)∩L1(Rd) is a real-valued positive definite function.
Define

G :=

{
f ∈ L2(Rd) ∩ C(Rd) :

f̂√
Φ̂
∈ L2(Rd)

}

and equip this space with the bilinear form

⟨f, g⟩G := (2π)−d/2

〈
f̂√
Φ̂
,

ĝ√
Φ̂

〉

L2(Rd)

= (2π)−d/2

∫

Rd

f̂(ω)ĝ(ω)

Φ̂(ω)
dω.

Then G is a real Hilbert space with inner product ⟨·, ·⟩G and reproducing kernel Φ(· − ·).
Hence G is the native space of Φ, i.e. G = NΦ(R

d), and both inner product coincide. In
particular, every f ∈ G can be recovered from its Fourier transform f̂ ∈ L1(Rd) ∩ L2(Rd).

To make this result more clear we must mention:

Theorem 1.24 Suppose that Φ ∈ L1(Rd) is a continuous function. Then Φ is positive
definite if and only if Φ is bounded and its Fourier transform is non-negative and non-
vanishing. Moreover, Φ̂ ∈ L1(Rd).

Proof of Theorem 1.23
From Theorem 1.24 we get that Φ̂ ∈ L1(Rd). For f ∈ G this means in particular that
f̂ ∈ L1(Rd) because

∫

Rd

|f̂(ω)|dω =

∫

Rd

|f̂(ω)|√
Φ̂(ω)

√
Φ̂(ω)dω ≤

(∫

Rd

|f̂(ω)|2
Φ̂(ω)

dω

) 1
2 (∫

Rd

Φ̂(ω)dω

) 1
2

< +∞.

Plancherel’s theorem (Theorem 1.22) and the continuity of f and (f̂)∨ allow us to recover
f point-wise from its Fourier transform with

f(x) = T−1(T (f))(x) = (2π)−d/2

∫

Rd

T (f)(ω)ei⟨x,ω⟩dω = (2π)−d/2

∫

Rd

f̂(ω)ei⟨x,ω⟩dω.

where T is the unique isometry of Theorem 1.22. Naturally we can identify T (f) with f̂ .

Since ⟨·, ·⟩G is R-linear, we need to prove that it is real-valued and positive definite: for
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a real-valued f ∈ L2(Rd) its fourier transfrom satisfies f̂(x) = f̂(−x) almost everywhere in
Rd. For the next computation it will be helpful to decompose Rd (up to negligible set) as

Rd = Γ ∪ −Γ

where Γ = {(ω1, ω2, . . . , ωd) : ωi ∈ R for i = 1, . . . , d and ω1 > 0}. We can compute the
bilinear form as

∫

Rd

f̂(ω)ĝ(ω)

Φ̂(ω)
dω =

∫

Γ

f̂(ω)ĝ(ω)

Φ̂(ω)
dω +

∫

−Γ

f̂(ω)ĝ(ω)

Φ̂(ω)
dω =

=

∫

Γ

f̂(ω)ĝ(ω)

Φ̂(ω)
dω +

∫

Γ

f̂(−ω)ĝ(−ω)
Φ̂(−ω)

dω

︸ ︷︷ ︸
change of variable:

ω 7→−ω

=

∫

Γ

(
f̂(ω)ĝ(ω)

Φ̂(ω)
+

f̂(−ω)ĝ(−ω)
Φ̂(−ω)

)
dω =

=

∫

Γ

f̂(ω)ĝ(ω) + f̂(ω)ĝ(ω)

Φ̂(ω)
= 2

∫

Γ

ℜ[f̂(ω)ĝ(ω)]
Φ̂(ω)

∈ R.

The R-bilinear form is positive definite because:

If ⟨f, f⟩G = 0 ⇒
∥∥∥∥

f̂√
Φ̂

∥∥∥∥
L2(Rd)

= 0 ⇒ f̂√
Φ̂

= 0 a.e. in Rd ⇒ f̂ = 0 a.e. in Rd, we can

conclude that f = 0 from Theorem 1.22.

Our next goal is to prove that G is complete. Let us fix a Cauchy sequence {fn}n∈N in

G. This lead us to say that

{
f̂n√
Φ̂

}

n∈N
is Cauchy in L2(Rd). Since L2(Rd) is complete,

there exists g ∈ L2(Rd) such that

f̂n√
Φ̂

∥·∥
L2(Rd)−−−−−−→

n→+∞
g.

Such g has the following property: g
√

Φ̂ ∈ L1(Rd) ∩ L2(Rd).

∫

Rd

∣∣∣∣g(ω)
√

Φ̂(ω)

∣∣∣∣ dω ≤
(∫

Rd

|g(ω)|2dω
) 1

2
(∫

Rd

Φ̂(ω)dω

) 1
2

< +∞.

and ∫

Rd

∣∣∣∣g(ω)
√
Φ̂(ω)

∣∣∣∣
2

dω ≤ ∥Φ̂∥L∞(Rd)

(∫

Rd

|g(ω)|2dω
)

< +∞

because Φ ∈ L1(Rd). With Theorem 1.22 we can define

f(x) := T−1
(
g
√
Φ̂
)
(x) = (2π)−d/2

∫

Rd

g(ω)

√
Φ̂(ω)ei⟨x,ω⟩dω.
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for each x ∈ Rd. With this definition f ∈ L2(Rd), it is well-defined, continuous and satisfies

f̂√
Φ̂

= g ∈ L2(Rd).

Since {fn}n∈N ⊆ G we can bound

|f(x)− fn(x)| ≤ (2π)−d/2

∫

Rd

∣∣∣∣g(ω)
√

Φ̂(ω)− f̂n(ω)

∣∣∣∣ dω =

= (2π)−d/2

∫

Rd

|g(ω)
√
Φ̂(ω)− f̂n(ω)|√
Φ̂(ω)

√
Φ̂(ω)dω ≤

≤ (2π)−d/2

∥∥∥∥∥g −
f̂n√
Φ̂

∥∥∥∥∥
L2(Rd)

∥∥∥Φ̂
∥∥∥

1
2

L1(Rd)
,

which proves that f ∈ G because it is real-valued.

G is complete because

∥f − fn∥G = (2π)−d/4

∥∥∥∥∥
f̂√
Φ̂
− f̂n√

Φ̂

∥∥∥∥∥
L2(Rd)

= (2π)−d/4

∥∥∥∥∥g −
f̂n√
Φ̂

∥∥∥∥∥
L2(Rd)

n→+∞−−−−−→ 0.

To conclude the proof with Theorem 1.21 we need to show that Φ(· − ·) is the reproducing
kernel of G. We comment that Φ is bounded by Φ(0) and in L1(Rd) so it is also in L2(Rd):

∫

Rd

|Φ(x− y)|2dx ≤ ∥Φ∥L∞(Rd)

∫

Rd

|Φ(x− y)|dx = ∥Φ∥L∞(Rd)

∫

Rd

|Φ(x)|dx
︸ ︷︷ ︸
change of variable:

x 7→x+y

< +∞.

Now we study

Φ(· − y)∧(x)√
Φ̂(x)

=
(2π)−d/2

∫
Rd Φ(ω − y)e−i⟨x,ω⟩dω√

(2π)−d/2
∫
Rd Φ(ω)e−i⟨x,ω⟩dω

=

=︸︷︷︸
change of variable:

ω 7→ω+y

(2π)−d/2(
∫
Rd Φ(ω)e

−i⟨x,ω⟩dω)e−i⟨x,y⟩
√
(2π)−d/2

∫
Rd Φ(ω)e−i⟨x,ω⟩dω

.

(1.12)

If we apply | · |2 to the previous expression we obtain

∣∣∣∣∣∣
Φ(· − y)∧(x)√

Φ̂(x)

∣∣∣∣∣∣

2

= (2π)−d/2

∫

Rd

Φ(ω)e−i⟨x,ω⟩dω = Φ̂(x),
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and ∥∥∥∥∥
Φ(· − y)∧√

Φ̂

∥∥∥∥∥

2

L2(Rd)

= ∥Φ̂∥L1(Rd) < +∞.

We proved that Φ(· − y) ∈ G for every y ∈ Rd.

Following the same steps of equation (1.12) we obtain the reproduction property:

⟨f,Φ(· − y)⟩G = (2π)−d/2

∫

Rd

f̂(ω)Φ(· − y)∧(ω)

Φ̂(ω)
dω =

= (2π)−d/2

∫

Rd

f̂(ω)Φ̂(ω)e−i⟨ω,y⟩

Φ̂(ω)
dω =

= (2π)−d/2

∫

Rd

f̂(ω)ei⟨ω,y⟩dω = f(y),

because f ∈ G and Φ̂ is real-valued.

✷

We can finally state that native spaces are generalization of classical function spaces, e.g.
Sobolev spaces. We recall that for s > d

2 the Sobolev space of order s is defined as

Hs(Rd) = W 2,s(Rd) = {f ∈ L2(Rd) ∩ C(Rd) : f̂(·)(1 + ∥ · ∥22)s/2 ∈ L2(Rd)}.

with the following norm

∥g∥Hs(Rd) =

∫

Rd

|ĝ(ω)|2(1 + ∥ω∥22)sdω. (1.13)

If Φ has a Fourier transform that decays only algebraically then its native space is a Sobolev
space.

Theorem 1.25 Suppose that Φ ∈ L1(Rd) ∩ C(Rd) satisfies

c1(1 + ∥ω∥22)−s ≤ Φ̂(ω) ≤ c2(1 + ∥ω∥22)−s ω ∈ Rd

with s > d
2 and two constant 0 < c1 ≤ c2. Then the native space NΦ(R

d) corresponding
to Φ coincides with the Sobolev space Hs(Rd), and the native space norm and the Sobolev
norm are equivalent.

Proof

From Theorem 1.23 we recall that

NΦ(R
d) =

{
f ∈ L2(Rd) ∩ C(Rd) :

f̂√
Φ̂
∈ L2(Rd)

}
.
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If we apply
√· to the hypothesis on the algebraic decay of the Fourier transform we obtain

c
s
2
1√
Φ̂(ω)

≤ (1 + ∥ω∥22)
s
2 ≤ c

s
2
2√
Φ̂(ω)

=⇒ c
s
2
1 f̂(ω)√
Φ̂(ω)

≤ f̂(ω)(1 + ∥ω∥22)
s
2 ≤ c

s
2
2 f̂(ω)√
Φ̂(ω)

,

which implies NΦ(R
d) = Hs(Rd) and

c
1
2
1 ∥f∥NΦ(Rd) ≤ (2π)−

d
4 ∥f∥Hs(Rd) ≤ c

1
2
2 ∥f∥NΦ(Rd).

✷

For our purposes it is useful to scale the basis function in the following way [16, 17]. Let
Φδ defined by

Φδ(x) := Φ
(x
δ

)
, with δ > 0. (1.14)

With this definition the following property on the Fourier transform holds

Φ̂δ(ω) = (2π)−
d
2

∫

Rd

Φδ(x)e
−i⟨x,ω⟩dx

= (2π)−
d
2

∫

Rd

Φ
(x
δ

)
e−i⟨x,ω⟩dx = δd(2π)−

d
2

∫

Rd

Φ(x)e−i⟨δx,ω⟩dx
︸ ︷︷ ︸

change of variable:
x 7→δx

=

= δdΦ̂(δω).

(1.15)

Theorem 1.26 Suppose that Φ ∈ L1(Rd) ∩ C(Rd) satisfies

c1(1 + ∥ω∥22)−s ≤ Φ̂(ω) ≤ c2(1 + ∥ω∥22)−s for each ω ∈ R,

with s > d
2 and two constant 0 < c1 ≤ c2. For every δ ∈ (0, 1] we have NΦδ

(Rd) = Hs(Rd)
and the norm equivalence

c
1
2
1 δ

d
2 ∥f∥NΦδ

(Rd) ≤ (2π)−
d
4 ∥f∥Hs(Rd) ≤ c

1
2
2 δ

d
2
−s∥f∥NΦδ

(Rd).

Proof

From equation (1.15) we get

c1δ
d(1 + δ2∥ω∥22)−s ≤ Φ̂δ(ω) ≤ c2δ

d(1 + δ2∥ω∥22)−s, ω ∈ Rd.

For δ ≤ 1 we can write

(1 + ∥ω∥22)s = δ−2s(δ2 + δ2∥ω∥22)s ≤ δ−2s(1 + δ2∥ω∥22)s.
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If we recall the definition of Sobolev and native space norms (equation 1.13, Theorem 1.23)
with the following chains of inequalities we can conclude.

∥f∥2Hs(Rd) =

∫

Rd

|f̂(ω)|2(1 + ∥ω∥22)sdω ≤ δ−2s

∫

Rd

|f̂(ω)|2(1 + δ2∥ω∥22)sdω ≤

≤ c2δ
d−2s

∫

Rd

|f̂(ω)|2
Φ̂δ(ω)

dω = (2π)
d
2 c2δ

d−2s∥f∥2NΦ(Rd),

∥f∥2Hs(Rd) =

∫

Rd

|f̂(ω)|2(1 + ∥ω∥22)sdω ≥
∫

Rd

|f̂(ω)|2(1 + δ2∥ω∥22)sdω ≥

≥ c1δ
d

∫

Rd

|f̂(ω)|2
Φ̂δ(ω)

dω = (2π)
d
2 c1δ

d∥f∥2NΦ(Rd).

✷
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Chapter 2

Conditionally positive definite
kernels

2.1 Native spaces for conditionally positive definite kernels

The first part of this section can be found at [23, 24, 25, 26, 27].

Definition 2.1 Suppose that P is a finite-dimensional subspace of C(Ω), Ω ⊆ Rd. A con-
tinuous symmetric kernel Φ : Ω × Ω → R is said to be conditionally positive definite on Ω
with respect to P if, for any N pairwise distinct centers x1, . . . , xN ∈ Ω and all α ∈ RN \{0}
with

N∑

j=1

αjp(xj) = 0

for all p ∈ P, then the quadratic form

N∑

j=1

N∑

k=1

αjαkΦ(xj , xk) > 0.

The domain Ω ⊆ Rd can still be quite arbitrary but it should contain at least one P−unisolvent
set (Definition 3.4). We will say that a conditionally positive definite kernel has order m if
it is conditionally positive definite with respect to πm−1(R

d). We note that a function which
is conditionally positive definite of order m then it is also conditionally positive definite of
order ℓ ≥ m. This means that every positive definite function is also conditionally positive
definite of any order.

If we fix ⟨p1, . . . , pQ⟩ a basis of P the conditional positive definiteness of order Q of
a kernel Φ can also be interpreted as the positive definiteness of the matrix AΦ,X =
(Φ(xj − xk))j,k=1,...,N on the vector subspace of Rd that satisfies the linear constraints

N∑

j=1

αjpℓ(xj) = 0 1 ≤ ℓ ≤ Q = dim(P).

27



Now we will explain why it is important that Ω contains a P−unisolvent set. We want to
interpolate the function f : Ω → R on the data set X = {x1, . . . , xN} with an interpolant
of the form

sf,X(x) =
N∑

j=1

αjΦ(x− xj) +

Q∑

k=1

βkpk(x). (2.1)

Since we have N +Q parameters we need N +Q linear equations:

sf,X(xj) = f(xj) 1 ≤ j ≤ N

N∑

j=1

αjpk(xj) = 0 1 ≤ k ≤ Q,

in other words we need to solve

ÃΦ,X

(
α
β

)
=

(
AΦ,X P
P⊤ 0

)(
α
β

)
=

(
f|X
0

)
(2.2)

where AΦ,X = (Φ(xj−xk))j,k=1,...,N ∈MN (R) and P = (pk(xj))j=1,...,N,k=1,...,Q ∈MN,Q(R).
We will start to study the uniqueness of the solution.

Theorem 2.1 Suppose that Φ is conditionally positive definite with respect to P and X =
{x1, . . . , xN} is a P−unisolvent set. Then the linear system described in equation (2.2) is
uniquely solvable.

Proof

Suppose that (α, β)⊤ ∈ ker(ÃΦ,X), so

AΦ,Xα+ Pβ = 0

P⊤α = 0.

If we multiply the first equation by α⊤ we obtain

0 = α⊤AΦ,Xα+ α⊤Pβ = α⊤AΦ,Xα+ β⊤ P⊤α︸ ︷︷ ︸
=0

= α⊤AΦ,Xα.

The second equation and Definition 2.1 imply α = 0 and consequently Pβ = 0. Since X is
P−unisolvent the matrix P is injective and this guarantees β = 0.

✷

To prove uniqueness we used the fact that X is P−unisolvent. This is not necessary if we
need only existence. Let us fix some notation: we will denote with V = range(P ) ⊆ RN

and for brevity A = AΦ,X . The orthogonal complements of V , V ⊤, is the kernel of P⊤.
The system (2.2) admits a solution for every f|X if RN = AV ⊤ + V . We claim that

RN = AV ⊤ ⊕ V . If x ∈ AV ⊤ ∩ V we have that x = Aα = Pβ with α ∈ V ⊤ and β ∈ RQ.
A multiplication by α⊤ of the chain of equalities gives us α⊤Aα = α⊤Pβ = β⊤(P⊤α) = 0,
which implies α = 0 and x = Aα = 0. We note that A : V ⊤ → V ⊤ is injective: if Av1 = Av2
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with v1, v2 ∈ V ⊤ then A(v1 − v2) = 0 and (v1 − v2)
⊤A(v1 − v2) = 0. Since v1 − v2 ∈ V ⊤ we

can write v1 − v2 = 0. We can conclude the claim with a dimension comparison.

N ≥ dim(AV ⊤ + V ) = dim(AV ⊤) + dim(V ) = dim(V ⊤) + dim(V ) = N.

We note that if P = πm(Rd) then the proposed interpolation method reproduces πm(Rd)
exactly.

After justifying our hypotheses we can build the native space. Similarly as in the case
of positive definite kernel we start with a linear subspace of C(Ω):

FΦ(Ω) =





N∑

j=1

αjΦ(·, xj) : N ∈ N, α ∈ RN , x1, . . . , xN ∈ Ω and

N∑

j=1

αjp(xj) = 0 for all p ∈ P



 .

We note that every α ∈ RN such that
∑N

j=1 αjp(xj) = 0 for all p ∈ P uniquely determines
an element of FΦ(Ω):

N∑

j=1

αjΦ(·, xj) = 0⇒
N∑

k=1

αk

N∑

j=1

αjΦ(xk, xj)

︸ ︷︷ ︸
=0

=

N∑

k=1

N∑

j=1

αkαjΦ(xk, xj) = 0, (2.3)

which implies α = 0. If we define a bilinear form on FΦ(Ω) as
〈

N∑

j=1

αjΦ(·, xj),
M∑

k=1

βkΦ(·, yk)
〉

Φ

=

N∑

j=1

M∑

k=1

αjβkΦ(xj , yk),

then FΦ(Ω) becomes an inner product space (the constraints on α and β make the bilinear
form positive definite).

As in the case of positive definite kernels it is useful for this construction to consider the
completion FΦ(Ω) of FΦ(Ω) (Theorem 1.13), which in general is not a space of functions.
This construction is more tricky because it is not true that Φ(·, x) ∈ FΦ(Ω) so it is not clear
how to extend the point-evaluation functional δx in a continuous way.

From now on will be essential that there exists a P−unisolvent set Ξ = {ξ1, . . . , ξQ} ⊆
Ω with #Ξ = dim(P) = Q. With respect to Ξ we can also obtain a Lagrange basis
{p1, . . . , pQ} ⊆ P such that pi(ξj) = δi,j for each i, j = 1, . . . , Q. We define a modified
point-evaluation functional as

δ(x) = δx −
Q∑

k=1

pk(x)δξk for x ∈ Ω. (2.4)

We apply it to Φ(·, y) to obtain

G(·, x) = δy(x)Φ(·, y) = Φ(·, x)−
Q∑

k=1

pk(x)Φ(·, ξk) for x ∈ Ω. (2.5)
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We note that
∑Q

k=1 pk(x)Φ(·, ξk) as a function of x ∈ Ω is the unique function in P that
interpolates on Ξ the map x 7→ Φ(·, x).

We claim that G(·, x) ∈ FΦ(Ω) because the vector in RQ+1 that defines the function is
(1,−p1(x), . . . ,−pQ(x))⊤ and it satisfies

1 · p(x)−
Q∑

k=1

pk(x)p(ξk) = 0 for p ∈ P,

because {p1, . . . , pQ} ⊆ P is a Lagrange basis for Ξ.

If f =
∑N

j=1 αjΦ(·, xj) ∈ FΦ(Ω) then

δ(x)(f) = f(x)−
Q∑

k=1

pk(x)f(ξk) =
N∑

j=1

αjΦ(x, xj)−
Q∑

k=1

pk(x)
N∑

j=1

αjΦ(ξk, xj) =

=
N∑

j=1

αjΦ(x, xj)−
Q∑

k=1

N∑

j=1

pk(x)αjΦ(ξk, xj) =

=

〈
Φ(·, x)−

Q∑

k=1

pk(x)Φ(·, ξk),
N∑

j=1

αjΦ(·, xj)
〉

Φ

=

= ⟨G(·, x), f⟩Φ = ⟨f,G(·, x)⟩Φ,

(2.6)

so |δ(x)(f)| ≤ ∥f∥Φ∥G(·, x)∥Φ, that proves the boundness of δ(x) in FΦ(Ω).

We can uniquely extends δ(x) to FΦ(Ω) and define the linear map R : FΦ(Ω) → C(Ω)
as

R(f) : Ω −→ R

x 7−→ ⟨f,G(·, x)⟩Φ
(2.7)

with f ∈ FΦ(Ω). We claim that R(f) is a continuous function because

|R(f)(x)−R(f)(y)| = |⟨f,G(·, x)−G(·, y)⟩Φ| ≤ ∥f∥Φ∥G(·, x)−G(·, y)∥Φ
and

∥G(·, x)−G(·, y)∥2Φ = ∥Φ(·, x)− Φ(·, y)−
Q∑

k=1

(pk(x)− pk(y))Φ(·, ξk)∥2Φ =

= Φ(x, x) + Φ(y, y)− 2Φ(x, y)−
Q∑

k=1

(pk(x)− pk(y))(Φ(x, ξk)− Φ(y, ξk))+

+

Q∑

j,k=1

(pk(x)− pk(y))(pj(x)− pj(y))Φ(ξj , ξk).

Now we claim that R : FΦ(Ω)→ C(Ω) injects FΦ(Ω) in C(Ω).
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Theorem 2.2 The linear map R : FΦ(Ω)→ C(Ω) defined in equation 2.7 is injective.

Proof

Since R is linear we verify that ker(R) = 0. Suppose that R(f) = 0 with f ∈ FΦ(Ω). We
have that 0 = R(f)(x) = ⟨f,G(·, x)⟩Φ. Fix h =

∑N
j=1 αjΦ(·, xj) ∈ FΦ(Ω) and compute

N∑

j=1

αjG(·, xj) =
N∑

j=1

αjΦ(·, xj)−
N∑

j=1

αj

Q∑

k=1

pk(xj)Φ(·, ξk) =

= h−
Q∑

k=1

Φ(·, ξk)
N∑

j=1

αjpk(xj)

︸ ︷︷ ︸
=0

= h.

Thus we can say that ⟨f, h⟩Φ = 0 for all h ∈ FΦ(Ω), which proves that f ∈ FΦ(Ω)
⊥ =

FΦ(Ω)
⊥
= FΦ(Ω)

⊥ = ⟨0⟩ (Theorem 1.13).

✷

If we follow the same step we have done for positive definite kernels then R(FΦ(Ω)) will be
the candidate native space, but in this situation this does not make sense.

Indeed, if f ∈ FΦ(Ω) then R(f)(ξk) = ⟨f,G(·, ξk)⟩Φ = 0 for k = 1, . . . , Q, because

G(·, ξk) = Φ(·, ξk)−
Q∑

i=1

pi(ξk)︸ ︷︷ ︸
δi,k

Φ(·, ξi) = Φ(·, ξk)− Φ(·, ξk) = 0. (2.8)

In general f(ξk) is not 0 for f ∈ FΦ(Ω) so R(FΦ(Ω)) can not be the candidate native space.

Since we want that the candidate native space contains FΦ(Ω) we study the range of R
when it is applied to this vector subspace. If f =

∑N
j=1 αjΦ(·, xj) ∈ FΦ(Ω) then in equation

(2.6) we showed

R(f)(x) = ⟨f,G(·, x)⟩Φ = f(x)−
Q∑

k=1

f(ξk)pk(x) = f(x)−ΠP(f)(x),

where ΠP(f) ∈ P is the only function in P that interpolates f on Ξ, because {p1, . . . , pQ}
is a Lagrange basis for P with respect to Ξ. For f ∈ FΦ(Ω) it is important to understand
that

f = R−1(f −ΠP(f)). (2.9)

Finally we can define the candidate native space for conditionally positive definite kernels.

Definition 2.2 The native space corresponding to a symmetric kernel Φ that is condition-
ally positive definite on Ω with respect to P is

NΦ(Ω) = R(FΦ(Ω))⊕ P.
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We define on the space NΦ(Ω) the degenerate bilinear form

⟨f, g⟩NΦ(Ω) = ⟨R−1(f −ΠP(f)), R−1(g −ΠP(g))⟩Φ. (2.10)

First of all, R(FΦ(Ω))⊕ P is a direct sum because every element of R(FΦ(Ω)) vanishes on
Ξ (equation (2.8)), but the only element of P that is 0 on Ξ is the zero function.

The degenerate bilinear form in equation (2.10) is well-defined because f −ΠP ∈ R(FΦ(Ω))
for f ∈ NΦ(Ω). Every f ∈ NΦ(Ω) can be written as f = R(g) + p with g ∈ FΦ(Ω), p ∈ P
and f(ξk) = p(ξk) for k = 1, . . . , Q. This description of f permit us to state that p = ΠP(f),
thus f −ΠP(f) = R(g) ∈ R(FΦ(Ω)). The last considerations imply that

{f −ΠP(f) : f ∈ NΦ(Ω)} = R(FΦ(Ω)).

From this we can prove that the null space of ⟨·, ·⟩NΦ(Ω) is P.

If ⟨f, g⟩NΦ(Ω) = 0 for all g ∈ NΦ(Ω) then ⟨R−1(f−ΠP(f)), R−1(g−ΠP(g))⟩Φ = 0 for all g ∈
NΦ(Ω). Since ⟨·, ·⟩Φ is non-degenerate and R is linear we obtain than R−1(f −ΠP(f)) = 0
and consequently f − ΠP(f) = 0, so f ∈ P. The inverse inclusion holds because if p ∈ P
then p−ΠP(p) = 0.

From equation (2.9) if f ∈ FΦ(Ω) we can achieve

|f |2NΦ(Ω) = ⟨f, f⟩NΦ(Ω) = ⟨R−1(f −ΠP(f)), R−1(f −ΠP(f))⟩Φ = ⟨f, f⟩Φ = ∥f∥2Φ. (2.11)

We prove that ⟨·, ·⟩NΦ(Ω) is not an inner product. For this reason we will state a general-
ization of the reproducing kernel property for positive definite kernels.

Theorem 2.3 Suppose that Φ : Ω × Ω → R is a symmetric kernel that is conditionally
positive definite on Ω with respect to P ⊆ C(Ω). Every f ∈ NΦ(Ω) is

f(x) = ΠP(f)(x) + ⟨f,G(·, x)⟩NΦ(Ω),

with G defined in equation (2.5).

Proof

From equation (2.9) we know that G(·, x) = R−1(G(·, x) − ΠP(G(·, x))) because G(·, x) ∈
FΦ(Ω). We proved that every element f ∈ NΦ(Ω) can be written as f = R(g)+ΠP(f) with
g ∈ FΦ(Ω) so R(g)(x) = ⟨g,G(·, x)⟩Φ = ⟨R−1(R(g)), G(·, x)⟩Φ = ⟨R−1(f−ΠP(f)), G(·, x)⟩Φ.
We can compute

f(x) = ΠP(f)(x) +R(g)(x) = ΠP(f)(x) + ⟨R−1(f −ΠP(f)), G(·, x)⟩Φ =

= ΠP(f)(x) + ⟨R−1(f −ΠP(f)), R−1(G(·, x)−ΠP(G(·, x)))⟩Φ =

= ΠP(f)(x) + ⟨f,G(·, x)⟩NΦ(Ω).

✷
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We can think this representation of f ∈ NΦ(Ω) as a Taylor expansion. Theorem 2.3 is a
generalization of Definition 1.7 because if we consider a positive definite kernel with P = ⟨0⟩
then G(·, x) = Φ(·, x) and NΦ(Ω) = R(FΦ(Ω)).

Before continuing we note that if f ∈ NΦ(Ω) and f(ξk) = 0 for k = 1, . . . , Q then
f ∈ R(FΦ(Ω)):

f = R(g) + ΠP(f)⇒ f −R(g) = ΠP(f),

which implies ΠP(f) = 0 because R(g)|Ξ = 0 and Ξ is P−unisolvent.

Theorem 2.4 The bilinear form ⟨·, ·⟩NΦ(Ω) is an inner product on the vector space

XΦ(Ω) = {f ∈ NΦ(Ω) : f(ξk) = 0 for k = 1, . . . , Q} = R(FΦ(Ω)).

Moreover (XΦ(Ω), ⟨·, ·⟩NΦ(Ω)) is an Hilbert space with reproducing kernel

ρ(x, y) = Φ(x, y)−
Q∑

k=1

pk(x)Φ(ξk, y)−
Q∑

ℓ=1

pℓ(y)Φ(x, ξℓ) +

Q∑

k=1

Q∑

ℓ=1

pk(x)pℓ(y)Φ(ξk, ξℓ).

Proof

If f ∈ XΦ(Ω) such that ⟨f, g⟩NΦ(Ω) = 0 for all g ∈ XΦ(Ω) = R(FΦ(Ω)) then ⟨f, g⟩NΦ(Ω) = 0
for all g ∈ NΦ(Ω) = R(FΦ(Ω))⊕P because P is contained in the null space of the bilinear
form. This proves that f ∈ R(FΦ(Ω)) ∩ P = ⟨0⟩.

We study

⟨R(f), R(g)⟩NΦ(Ω) = ⟨R−1(R(f)−ΠP(R(f))), R−1(R(g)−ΠP(R(g)))⟩Φ =

= ⟨R−1(R(f)), R−1(R(g))⟩Φ = ⟨f, g⟩Φ,

that shows that R : FΦ(Ω)→ R(FΦ(Ω)) is an isometry (Theorem 2.2). From the fact that
FΦ(Ω) is the Hilbert completion of FΦ(Ω) follows that R(FΦ(Ω)) is a Hilbert space.

We claim that ρ(x, y) = R(G(·, y))(x). Indeed,

R(G(·, y))(x) = ⟨G(·, y), G(·, x)⟩Φ =

=

〈
Φ(·, y)−

Q∑

k=1

pk(y)Φ(·, ξk),Φ(·, x)−
Q∑

k=1

pk(x)Φ(·, ξk)
〉

Φ

= ρ(x, y)

At this point we know that ρ(·, y) ∈ R(FΦ(Ω)) = XΦ(Ω).

Before proving the reproduction property with Theorem 2.3, we recall from equation (2.9)
that

G(·, x) = R−1(G(·, x)−ΠP(G(·, x))),
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because G(·, x) ∈ FΦ(Ω).

⟨f, ρ(·, x)⟩NΦ(Ω) = ⟨f,R(G(·, x))⟩NΦ(Ω) = ⟨R(R−1(f)), R(G(·, x))⟩NΦ(Ω)
R isometry

=

= ⟨R−1(f), G(·, x)⟩Φ = ⟨R−1(f), R−1(G(·, x)−ΠP(G(·, x)))⟩Φ =

= ΠP(f)(x)︸ ︷︷ ︸
=0

+⟨R−1(f −ΠP(f)︸ ︷︷ ︸
=0

), R−1(G(·, x)−ΠP(G(·, x)))⟩Φ =

= ΠP(f)(x) + ⟨f,G(·, x)⟩NΦ(Ω) = f(x).

✷

The next step is to prove the existence of a reproducing kernel for NΦ(Ω).

Theorem 2.5 The native space NΦ(Ω) of a conditionally positive definite kernel Φ equipped
with the inner product

⟨f, g⟩ = ⟨f, g⟩NΦ(Ω) +

Q∑

k=1

f(ξk)g(ξk)

is a Hilbert space and it admits a reproducing kernel

K(x, y) = ρ(x, y) +

Q∑

k=1

pk(x)pk(y),

where ρ is the kernel of Theorem 2.4.

Proof

The bilinear form ⟨·, ·⟩ is symmetric and non-negative. Let us prove that it is a inner
product: if f ∈ NΦ(Ω) is such that

0 = ⟨f, f⟩ = ⟨f, f⟩NΦ(Ω) +

Q∑

k=1

|f(ξk)|2,

that implies ⟨f, f⟩NΦ(Ω) = 0 and f(ξk) = 0 for k = 1, . . . , Q.

0 = ⟨f, f⟩NΦ(Ω) = ⟨R−1(f −ΠP(f)), R−1(f −ΠP(f))⟩Φ ⇒
⇒ R−1(f −ΠP(f)) = 0⇒ f −ΠP(f) = 0⇒ f = ΠP(f) ∈ P

This condition with f(ξk) = 0 for k = 1, . . . , Q gets f = 0.

Recalling that G(·, ξk) = 0 for k = 1, . . . , N and the characterization of ρ in the proof
of Theorem 2.4 we obtain

ρ(ξk, ·) = ρ(·, ξk) = R(G(·, ξk)) = 0,
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thus

Q∑

k=1

f(ξk)K(ξk, x) =

Q∑

k=1

f(ξk) ρ(ξk, x)︸ ︷︷ ︸
=0

+

Q∑

k=1

f(ξk)

Q∑

ℓ=1

pℓ(ξk)︸ ︷︷ ︸
=δℓk

pℓ(x) =

=

Q∑

k=1

f(ξk)pk(x) = ΠP(f)(x) for f ∈ NΦ(Ω).

From equation (2.9) we obtain that

ρ(·, x) = R(G(·, x)) = G(·, x)−ΠP(G(·, x)),

so
K(·, x)−G(·, x) = K(·, x)− ρ(·, x)︸ ︷︷ ︸

∈P

+ ρ(·, x)−G(·, x)︸ ︷︷ ︸
∈P

∈ P.

The representation for f ∈ NΦ(Ω) given in Theorem 2.3 gives us

f(x) = ΠP(f)(x) + ⟨f,G(·, x)⟩NΦ(Ω) =

= ΠP(f)(x) + ⟨f,G(·, x)−K(·, x)︸ ︷︷ ︸
∈P

⟩NΦ(Ω) + ⟨f,K(·, x)⟩NΦ(Ω) =

= ΠP(f)(x) + ⟨f,K(·, x)⟩NΦ(Ω) =

=

Q∑

k=1

f(ξk)K(ξk, x) + ⟨f,K(·, x)⟩NΦ(Ω) =

= ⟨f,K(·, x)⟩.

The chain of equality holds because the null space of ⟨·, ·⟩NΦ(Ω) is P.

✷

As in Theorem 1.21 we study a uniqueness property of the native space for conditionally
positive definite kernel.

Theorem 2.6 Suppose that G ⊆ C(Ω) carries a semi-inner product ⟨·, ·⟩G with null space
P ⊆ G such that G0 = {g ∈ G : g(ξk) = 0, 1 ≤ k ≤ Q} is a Hilbert space with reproducing
kernel ρ (Theorem 2.4). Then G is the native space corresponding to Φ on Ω.

Proof

Since Ξ = {ξ1, . . . , ξQ} is P-unisolvent then G0 ∩P = ⟨0⟩ : if an element of P vanishes on Ξ
then it is 0. Moreover, for g ∈ G we have

g = g −ΠP(g)︸ ︷︷ ︸
∈G0

+ΠP(g)︸ ︷︷ ︸
∈P

,

because (g −ΠP(g))(ξk) = g(ξk)− g(ξk) = 0 for k = 1, . . . , Q.
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We obtain that G = G0 ⊕ P, so we have to prove that G0 = R(FΦ(Ω)), since NΦ(Ω) =
R(FΦ(Ω))⊕ P. First of all, let us fix f =

∑N
j=1 αjΦ(·, xj) ∈ FΦ(Ω). We study

N∑

j=1

αjG(x, xj) =
N∑

j=1

αj

(
Φ(·, xj)−

Q∑

k=1

pk(xj)Φ(·, ξk)
)
(x) =

=

N∑

j=1

αjΦ(x, xj)−
Q∑

k=1

Φ(x, ξk)

N∑

j=1

αjpk(xj)

︸ ︷︷ ︸
=0

= f(x),

from which we obtain, with equation (2.9) and the representation of ρ in the proof of
Theorem 2.4,

f(x)−ΠP(f)(x) = R(f)(x) = R




N∑

j=1

αjG(·, xj)


 (x) =

=
N∑

j=1

αjR(G(·, xj))(x) =
N∑

j=1

αjρ(x, xj) ∈ G0,

because ρ is the reproducing kernel of G0. We have the inclusion R(FΦ(Ω)) ⊆ G0.

We compute the bilinear form of the two spaces on the subspace R(FΦ(Ω)).

Fix f1 =
∑N

j=1 αjΦ(·, xj), f2 =
∑M

k=1 βkΦ(·, yk) ∈ FΦ(Ω) and compute

⟨R(f1), R(f2)⟩G =

〈
N∑

j=1

αjρ(·, xj),
M∑

k=1

βkρ(·, yk)
〉

G

=

=
N∑

j=1

M∑

k=1

αjβk⟨ρ(·, xj), ρ(·, yk)⟩G =
N∑

j=1

M∑

k=1

αjβkρ(yk, xj),

because of the reproducing property of ρ.

Recalling from theorem 2.4 that R : FΦ(Ω)→ R(FΦ(Ω)) is an isometry we have

⟨R(f1), R(f2)⟩NΦ(Ω) =

〈
R




N∑

j=1

αjG(·, xj)


 , R

(
M∑

k=1

βkG(·, yk)
)〉

NΦ(Ω)

=

=

〈
N∑

j=1

αjG(·, xj),
M∑

k=1

βkG(·, yk)
〉

Φ

=
N∑

j=1

M∑

k=1

αjβk⟨G(·, xj), G(·, yk)⟩Φ =

=

N∑

j=1

M∑

k=1

αjβkR(G(·, xj))(yk) =
N∑

j=1

M∑

k=1

αjβkρ(yk, xj),
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which proves that ⟨R(f1), R(f2)⟩G = ⟨R(f1), R(f2)⟩NΦ(Ω) for f1, f2 ∈ FΦ(Ω).

For every f ∈ R(FΦ(Ω)) there exists a Cauchy sequence {fn}n∈N ⊆ R(FΦ(Ω)) that sat-
isfy

f(x) = lim
n→∞

fn(x),

because FΦ(Ω) = FΦ(Ω), R is an isometry and ρ is the reproducing kernel of R(FΦ(Ω))
(Theorem 2.4). But {fn}n∈N is also a Cauchy sequence in G0, so there exists g ∈ G0 such
that

g(x) = lim
n→∞

fn(x) = f(x),

because of Theorem 1.9 and the reproduction property of ρ in G. The inclusion R(FΦ(Ω)) ⊆
G0 holds. Moreover,

∥f∥2NΦ(Ω) = lim
n→∞

⟨fn, fn⟩NΦ(Ω) = lim
n→∞

⟨fn, fn⟩G = ∥g∥2G = ∥f∥2G

for every f ∈ R(FΦ(Ω)), which implies the equivalence of the inner product on R(FΦ(Ω))
(Theorem 1.21). To conlude the proof we suppose by contradiction that R(FΦ(Ω)) ⊊ G0.
Since R(FΦ(Ω)) is a Hilbert space with respcet to ⟨·, ·⟩NΦ(Ω) (Theorem 2.4) then R(FΦ(Ω))
is closed in NΦ(Ω) and in G. We can find g ∈ G \ {0} that is orthogonal to R(FΦ(Ω)):
if R(FΦ(Ω))

⊥G = ⟨0⟩ then (Proposition 1.4) R(FΦ(Ω)) = R(FΦ(Ω)) = G, which is a con-
tradiction. Finally we obtain for x ∈ Ω: g(x) = ⟨g, ρ(·, x)⟩G = ⟨g,R(G(·, x))⟩G = 0, that
implies the contradiction g = 0.

✷

2.2 Abstract characterization of native spaces

At the beginning of this section we fix a P-unisolvent set Ξ = {ξ1, . . . , ξQ} ⊆ Ω and we used
it to build the native space NΦ(Ω) (Definition 2.2) and the reproducing kernel K (Theorem
2.5) for a conditionally positive definite kernel. A natural question should arise: is the space
NΦ(Ω) independent of the particular choice of Ξ?

To answer this question we need the following definition:

LP(Ω) =

{
λN,α,X =

N∑

j=1

αjδxj :N ∈ N, X = {x1, . . . , xN} ⊆ Ω,

λN,α,X(p) = 0 for all p ∈ P
}
,

(2.12)

that is a set of finitely supported linear functionals on C(Ω) that vanish on P. The last
condition can be read as

N∑

j=1

αjp(xj) = 0 for all p ∈ P.
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If we apply λN,α,X ∈ LP(Ω) to Φ we obtain

λx
N,α,X(Φ(·, x)) =

N∑

j=1

αjΦ(·, xj),

that with equation (2.3) permits us to define the inner product

⟨λN,α,X , λM,β,Y ⟩Φ =

N∑

j=1

M∑

k=1

αjβkΦ(xj , xk).

We note that every {N,α,X} determines uniquely a functional of LP(Ω): we can define a
bijective relation between LP(Ω) and FΦ(Ω).

LP(Ω) −→ FΦ(Ω)

λ 7−→ λx(Φ(·, x)), (2.13)

where λx means action with respect to the variable x.

If λ =
∑N

j=1 αjδxj ∈ LP(Ω) and f =
∑M

k=1 βkΦ(·, yk) ∈ FΦ(Ω) then

λ(f) =

N∑

j=1

αjf(xj) =

N∑

j=1

M∑

k=1

αjβkΦ(xj , yk) =

=

〈
N∑

j=1

αjΦ(·, xj),
M∑

k=1

βkΦ(·, yk)
〉

Φ

=

= ⟨λx(Φ(·, x)), f⟩Φ,
which gives

|λ(f)| = |⟨λx(Φ(·, x)), f⟩Φ| ≤ ∥λx(Φ(·, x))∥Φ∥f∥Φ = ∥λ∥Φ∥f∥Φ,

with equality when f =
∑N

j=1 αjΦ(·, xj). This let us to interpret the norm defined on LP(Ω)
as the dual norm of FΦ(Ω)

∗.

We proved that the functionals in LP(Ω) are continuous in FΦ(Ω), now we want to study
the boundness of these functionals from a different perspective.

Theorem 2.7 Suppose that Φ is conditionally positive definite on Ω with respect to P.
Define

G = {f ∈ C(Ω) : |λ(f)| ≤ Cf∥λ∥Φ for each λ ∈ LP(Ω)}. (2.14)

In this space it is defined the semi-norm

|f |G = sup
λ∈LP (Ω)\{0}

|λ(f)|
∥λ∥Φ

≤ Cf . (2.15)

Then NΦ(Ω) = G and | · |G = | · |NΦ(Ω).
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Proof

Suppose that f ∈ NΦ(Ω). From equation (2.9) we have that FΦ(Ω) ⊆ NΦ(Ω).

If λ =
∑N

j=1 αjδxj ∈ LP(Ω) then

N∑

j=1

αjG(·, xj) =
N∑

j=1

αj

(
Φ(·, xj)−

Q∑

k=1

pk(xj)Φ(·, ξk)
)

=

=
N∑

j=1

αjΦ(·, xj)−
Q∑

k=1

Φ(·, ξk)
N∑

j=1

αjpk(xj)

︸ ︷︷ ︸
=0

=
N∑

j=1

αjΦ(·, xj).
(2.16)

We apply λ to the formula f(x) = ΠP(f)(x) + ⟨f,G(·, x)⟩NΦ(Ω) we proved in Theorem 2.3.

λ(f) =

N∑

j=1

αjf(xj) =

N∑

j=1

αjΠP(f)(xj)

︸ ︷︷ ︸
=λ(ΠP (f))=0

+

N∑

j=1

αj⟨f,G(·, xj)⟩NΦ(Ω) =

=

〈
f,

N∑

j=1

αjG(·, xj)
〉

NΦ(Ω)

=

〈
f,

N∑

j=1

αjΦ(·, xj)
〉

NΦ(Ω)

≤

≤ |f |NΦ(Ω)

∣∣∣∣∣∣

N∑

j=1

αjΦ(·, xj)

∣∣∣∣∣∣
NΦ(Ω)

eq. (2.11)
= |f |NΦ(Ω)

∥∥∥∥∥∥

N∑

j=1

αjΦ(·, xj)

∥∥∥∥∥∥
Φ

=

= |f |NΦ(Ω)∥λx(Φ(·, x))∥Φ = |f |NΦ(Ω)∥λ∥Φ.

(2.17)

This implies |λ(f)| ≤ |f |NΦ(Ω)∥λ∥Φ for all λ ∈ LP(Ω), so f ∈ G and |f |G ≤ |f |NΦ(Ω).

We prove the reverse inclusion. Suppose that f ∈ G so we can define a continuous lin-
ear functional

Ff : FΦ(Ω) −→ R

λx(Φ(·, x)) 7−→ λ(f),

which is well-defined because of the one-to-one correspondence between FΦ(Ω) and LP(Ω)
(equation (2.13)). The continuity follows from the definition of G: |Ff (λ

x(Φ(·, x)))| =
|λ(f)| ≤ Cf∥λ∥Φ = Cf∥λx(Φ(·, x))∥Φ.

We can extend Ff to a continuous functional of FΦ(Ω) because FΦ(Ω) = FΦ(Ω) and FΦ(Ω)
is a Hilbert space (Theorem 1.13). Using Theorem 1.6 there exists Sf ∈ FΦ(Ω) such that

Ff (g) = ⟨g, Sf ⟩Φ for all g ∈ FΦ(Ω).
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If we prove that f −R(Sf ) ∈ P then we can conclude. If µ =
∑N

j=1 αjδxj ∈ LP(Ω) then

µ(R(Sf )) =

N∑

j=1

αjR(Sf )(xj) =

N∑

j=1

αj⟨Sf , G(·, xj)⟩Φ =

〈
Sf ,

N∑

j=1

αjG(·, xj)
〉

Φ

eq. (2.16)
=

=

〈
Sf ,

N∑

j=1

αjΦ(·, xj)
〉

Φ

= ⟨Sf , µ
x(Φ(·, x))⟩Φ = Ff (µ

x(Φ(·, x))) = µ(f),

so µ(f − R(Sf )) = µ(f) − µ(f) = 0. Remembering the equation (2.4) and that Ξ is P-
unisolvent then δ(x) ∈ LP(Ω). We recall that R(Sf ) vanishes on Ξ (equation (2.8)), so
choosing µ = δ(x) we obtain

f(x)−
Q∑

k=1

pk(x)f(ξk) = R(Sf )(x) for all x ∈ Ω,

that implies f ∈ NΦ(Ω).

We need to show that |f |G ≥ |f |NΦ(Ω). We can find a sequence {λj}j∈N ⊆ LP(Ω) such

that λx
j (Φ(·, x))

n→∞−−−→ Sf ∈ FΦ(Ω), because FΦ(Ω) = FΦ(Ω). We can write the following
limit relation:

lim
j→∞

λj(f) = lim
j→∞

Ff (λ
x
j (Φ(·, x))) = lim

j→∞
⟨λx

j (Φ(·, x)), Sf ⟩Φ = ∥Sf∥2Φ,

lim
j→∞

∥λj∥Φ = lim
j→∞

∥λx
j (Φ(·, x))∥Φ = ∥Sf∥Φ.

Before concluding we note that, since P is the null space of ⟨·, ·⟩NΦ(Ω),

|f |2NΦ(Ω) = ⟨f, f⟩NΦ(Ω) = ⟨f −R(Sf )︸ ︷︷ ︸
∈P

+R(Sf ), f −R(Sf )︸ ︷︷ ︸
∈P

+R(Sf )⟩NΦ(Ω) =

=⟨R(Sf ), R(Sf )⟩NΦ(Ω) = ⟨Sf , Sf ⟩Φ = ∥Sf∥2Φ.

If ∥Sf∥Φ ̸= 0, finally

|f |NΦ(Ω) =
∥Sf∥2Φ
∥Sf∥Φ

= lim
j→∞

λj(f)

∥λj∥Φ
≤ lim

j→∞
|λj(f)|
∥λj∥Φ

≤ |f |G .

✷

As a consequence of Theorem 2.7 we can say that the native space NΦ(Ω) of a condition-
ally positive definite kernel is independent of the choice of the P-unisolvent set Ξ (also the
semi-norm | · |NΦ(Ω) is independent).

Now we will introduce some results that shows a sort of optimality of the interpolant sf,X
(equation (2.1)) of a function f in the native space NΦ(Ω).

40



Theorem 2.8 Suppose that X = {x1, . . . , xN} ⊆ Ω is P-unisolvent. Denote the unique
interpolant, based on a conditionally positive definite kernel Φ and the set X, of a function
f ∈ NΦ(Ω) by sf,X (equation (2.1)). Then we have

⟨f − sf,X , s⟩NΦ(Ω) = 0

for every s ∈ (⟨Φ(·, xj) : xj ∈ X⟩ ∩ FΦ(Ω)) + P. In particular

⟨f − sf,X , sf,X⟩NΦ(Ω) = 0.

Proof

From equation (2.9) we know that FΦ(Ω) ⊆ NΦ(Ω). Any such function s can be written
in the form s = λx(Φ(·, x)) + ΠP with a certain linear functional λ =

∑N
j=1 αjδxj ∈ LP(Ω)

and ΠP ∈ P. From Theorem 2.3 follows that

(f − sf,X)(x) = ΠP(f − sf,x)(x) + ⟨f − sf,X , G(·, x)⟩NΦ(Ω) for x ∈ Ω.

From equation (2.16) we get λx(G(·, x)) = λx(Φ(·, x)) that combined with the fact that P
in contained in ker(λ) and in the null space of ⟨·, ·⟩NΦ(Ω) we can write

0 =
N∑

j=1

αj(f(xj)− sf,X(xj)) = λ(f − sf,X) =

=λ(ΠP(f − sf,X)) +
N∑

j=1

αj⟨f − sf,X , G(·, xj)⟩NΦ(Ω) =

=

〈
f − sf,X ,

N∑

j=1

αjG(·, xj)
〉

NΦ(Ω)

= ⟨f − sf,X , λx(G(·, x))⟩NΦ(Ω) =

=⟨f − sf,X , λx(Φ(·, x))⟩NΦ(Ω) =

=⟨f − sf,X , λx(Φ(·, x)) + ΠP⟩NΦ(Ω) − ⟨f − sf,X ,ΠP⟩NΦ(Ω)︸ ︷︷ ︸
=0

=

=⟨f − sf,X , s⟩NΦ(Ω).

✷

From this orthogonality theorem follows some useful property.

Theorem 2.9 With the same hypothesis of Theorem 2.8 we have the estimates

|sf,X |NΦ(Ω) ≤ |f |NΦ(Ω) and |f − sf,X |NΦ(Ω) ≤ |f |NΦ(Ω).
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Proof

Since f = f − sf,X + sf,X , from Theorem 2.8 and the Pythagorean law we obtain

|f − sf,X |2NΦ(Ω) + |sf,X |2NΦ(Ω) = |f |2NΦ(Ω).

The statements of the theorem holds because |f−sf,X |2NΦ(Ω) ≤ |f−sf,X |2NΦ(Ω)+ |sf,X |2NΦ(Ω)

and |sf,X |2NΦ(Ω) ≤ |f − sf,X |2NΦ(Ω) + |sf,X |2NΦ(Ω).

✷

A more practical characterization of the native space is the following.

Theorem 2.10 Let Φ be a conditionally positive definite kernel on Ω with respect to P.
Denote by sf,X the interpolant to a function f ∈ C(Ω) based on a P-unisolvent set X
(equation (2.1)). Then f belongs to the native space NΦ(Ω) if and only if there exists a
constant cf such that |sf,X |NΦ(Ω) ≤ cf for all P-unisolvent set X ⊆ Ω. Moreover, in the
case f ∈ NΦ(Ω) the smallest possible constant cf is given by |f |NΦ(Ω).

Proof

An implication follows from Theorem 2.9, which gives also cf ≤ |f |NΦ(Ω) if cf is the minimal
choice.

Let us prove the other implication. By hypothesis |sf,X |NΦ(Ω) ≤ cf for all P-unisolvent
set X ⊆ Ω. Fix an arbitrary

λN,α,X =

N∑

j=1

αjδxj ∈ LP(Ω),

we can choose a P-unisolvent set Y with X ⊆ Y . If sf,Y ∈ NΦ(Ω) is the interpolant of f
on the set Y then λN,α,X(f − sf,Y ) = 0.

|λN,α,X(f)| ≤ |λN,α,X(f − sf,Y )|+ |λN,α,X(sf,Y )| =

=|λN,α,X(sf,Y )|
Theorem 2.7
≤ |sf,X |NΦ(Ω)∥λN,α,X∥Φ ≤

≤cf∥λN,α,X∥Φ.

Since this is true for all λ ∈ LP(Ω) by Theorem 2.7 we conclude f ∈ NΦ(Ω) and |f |NΦ(Ω) ≤
cf (equation (2.15)).

✷

We briefly return to consider only positive definite kernels. With Theorem 1.23 we proved
that NΦ(R

d) ⊆ L2(Rd). If Ω is compact then we can state a more precise result.

Theorem 2.11 Suppose that Ω ⊆ Rd is compact and Φ is a positive definite kernel on Ω.
Then the native space NΦ(Ω) has a continuous linear embedding into L2(Ω).
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Proof

Since Φ is the reproducing kernel of NΦ(Ω) (Definition 1.7) we get the following chain of
inequalities for f ∈ NΦ(Ω) and x ∈ Ω.

|f(x)|2 = |⟨f,Φ(·, x)⟩NΦ(Ω)|2 ≤ ∥f∥2NΦ(Ω)∥Φ(·, x)∥2NΦ(Ω)

eq. (1.11)
=

= ∥f∥2NΦ(Ω)∥Φ(·, x)∥2Φ = ∥f∥2NΦ(Ω)Φ(x, x).

We can conclude with

∥f∥L2(Ω) ≤
√∫

Ω
Φ(x, x)dx ∥f∥NΦ(Ω).

✷

Now we introduce the integral operator T : L2(Ω)→ L2(Ω) defined by

T (v)(x) =

∫

Ω
Φ(x, y)v(y)d y. (2.18)

First of all, T is well-defined and continuous because since Ω is compact L2(Ω) ⊆ L1(Ω)
(Hölder’s inequality). Indeed,

∫

Ω

∣∣∣∣
∫

Ω
Φ(x, y)v(y)d y

∣∣∣∣
2

dx ≤
∫

Ω

(∫

Ω
|Φ(x, y)v(y)|d y

)2

dx ≤

≤
∫

Ω
∥Φ∥2L∞(Ω×Ω)

(∫

Ω
|v(y)|d y

)2

dx ≤ L(Ω)∥Φ∥2L∞(Ω×Ω)∥v∥2L1(Ω) < +∞,

where L is the Lebesgue measure on Rd. Moreover, T (v) : Ω → R is continuous for every
v ∈ L2(Ω) because of the uniform continuity of Φ in Ω× Ω.

|T (v)(x)− T (v)(z)| ≤
∫

Ω
|Φ(x, y)− Φ(z, y)||v(y)|d y ≤

≤
(∫

Ω
|Φ(x, y)− Φ(z, y)|2d y

) 1
2
(∫

Ω
|v(y)|2d y

) 1
2

.

(2.19)

With Ascoli-Arzelà Theorem we can prove that T is a compact operator, i.e. for every
bounded sequence {vn}n∈N ⊆ L2(Ω) then {T (vn)}n∈N ⊆ L2(Ω) admits a converging subse-
quence. If ∥vn∥L2(Ω) ≤M for all n ∈ N then

|T (vn)(x)| =
∣∣∣∣
∫

Ω
Φ(x, y)vn(y)d y

∣∣∣∣ ≤
∫

Ω
|Φ(x, y)||vn(y)|d y ≤

≤
(∫

Ω
|Φ(x, y)|2d y

) 1
2
(∫

Ω
|vn(y)|2d y

) 1
2

≤ L(Ω)∥Φ∥L∞(Ω×Ω)M for all x ∈ Ω,

which proves that {T (vn)}n∈N is uniformly bounded. Equicontinuity of {T (vn)}n∈N follows
from equation (2.19). From Ascoli-Arzelà Theorem we get that {T (vn)}n∈N is compact in
(C(Ω), ∥ · ∥∞). We can conclude by remarking that the uniform convergence in a bounded
domain Ω implies L2(Ω) convergence.
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Theorem 2.12 Suppose that Φ is a symmetric positive definite kernel of the compact set
Ω ⊆ Rd. Then the integral operator T (equation (2.18)) maps L2(Ω) continuously into the
native space NΦ(Ω). It is the adjoint of the embedding operator of the native space NΦ(Ω)
into L2(Ω), i.e. satisfies

⟨f, v⟩L2(Ω) = ⟨f, T (v)⟩NΦ(Ω), f ∈ NΦ(Ω), v ∈ L2(Ω).

The range of T is dense in NΦ(Ω).

Proof

To prove that T (L2(Ω)) ⊆ NΦ(Ω) we use Theorem 2.7. Fix λ =
∑N

j=1 αjδxj ∈ L(Ω).

We study

λ(T (v)) =
N∑

j=1

αjT (v)(xj) =
N∑

j=1

αj

∫

Ω
Φ(xj , y)v(y)d y =

=

∫

Ω

N∑

j=1

αjΦ(xj , y)v(y)d y =

∫

Ω
λx(Φ(y, x))v(y)d y,

for v ∈ L2(Ω).

From Theorem 2.11 and equation (2.11) we get

|λ(T (v))| ≤ ∥v∥L2(Ω)∥λx(Φ(·, x))∥L2(Ω) ≤
≤ C∥v∥L2(Ω)∥λx(Φ(·, x))∥NΦ(Ω) =

= ∥v∥L2(Ω)∥λx(Φ(·, x))∥Φ = C∥v∥L2(Ω)∥λ∥Φ,

where C is the operator norm of the inclusion. This gives ∥T (v)∥NΦ(Ω) ≤ C∥v∥L2(Ω).

To continue the proof we use a density argument. Fix f =
∑N

j=1 αjΦ(·, xj) ∈ FΦ(Ω).

⟨f, v⟩L2(Ω) =

∫

Ω




N∑

j=1

αjΦ(y, xj)


 v(y)d y =

N∑

j=1

αj

∫

Ω
Φ(y, xj)v(y)d y =

=

N∑

j=1

αj T (v)︸︷︷︸
∈NΦ(Ω)

(xj) =

N∑

j=1

αj⟨T (v),Φ(·, xj)⟩NΦ(Ω) =

=

〈
T (v),

N∑

j=1

αjΦ(·, xj)
〉

NΦ(Ω)

= ⟨T (v), f⟩NΦ(Ω) = ⟨f, T (v)⟩NΦ(Ω).

(2.20)

By density of FΦ(Ω) in NΦ(Ω) (equation (1.10)) and Theorem 2.11 the equation (2.20) holds
for f ∈ NΦ(Ω).
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To finish the proof we claim that ker(ι) = range(T )⊥, where ι : NΦ(Ω) → L2(Ω) is the
inclusion of Theorem 2.11. From equation (2.20) we have

⟨ι(f), v⟩L2(Ω) = ⟨f, T (v)⟩NΦ
,

that proves the claim. Using Proposition 1.4 and ⟨0⟩ = ker(ι) = range(T )⊥ we get

NΦ(Ω) = range(T ).

✷

From Theorem 2.12 we can derive

⟨T (v), v⟩L2(Ω) = ⟨T (v), T (v)⟩NΦ(Ω) ≥ 0,

for every v ∈ L2(Ω). Because of the compactness of T , we can apply Mercer’s theorem [28]
and obtain a countable set of positive eigenvalues {ρn}n∈N ⊆ R≥0 and a countable set of
continuous eigenfunctions {ϕn}n∈N ⊆ L2(Ω) such that ρn ≥ ρn+1 and T (φn) = ρnφn for all
n ∈ N. In particular, {φn}n∈N is an orthonormal basis for L2(Ω) and Φ can be written as
an absolutely convergent series

Φ(x, y) =
+∞∑

n=1

ρnφn(x)φn(y), x, y ∈ Ω.

Before continuing it is important the following proposition.

Proposition 2.13 Suppose {a(j)n }n∈N is a convergent series for j = 1, . . . , N then

M∑

j=1

+∞∑

n=1

a(j)n =
+∞∑

n=1

M∑

j=1

a(j)n .

Proof

∣∣∣∣∣∣

N∑

n=1

M∑

j=1

a(j)n −
M∑

j=1

+∞∑

n=1

a(j)n

∣∣∣∣∣∣
=

∣∣∣∣∣∣

M∑

j=1

(
N∑

n=1

a(j)n −
+∞∑

n=1

a(j)n

)∣∣∣∣∣∣
≤

≤
M∑

j=1

∣∣∣∣∣
N∑

n=1

a(j)n −
+∞∑

n=1

a(j)n

∣∣∣∣∣ −−−−−→N→+∞
0

✷

Now we can give a final characterization of the native space for a positive definite kernel. It
will be useful to improve the error estimates for radial basis function interpolant (equation
(2.1)).
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Theorem 2.14 Suppose Φ is a symmetric positive definite kernel on a compact set Ω ⊆ Rd.
Then its native space is given by

NΦ(Ω) =

{
f ∈ L2(Ω) :

+∞∑

n=1

1

ρn
|⟨f, φn⟩L2(Ω)|2 < +∞

}

and the inner product has the representation

⟨f, g⟩NΦ(Ω) =
+∞∑

n=1

1

ρn
⟨f, φn⟩L2(Ω)⟨g, φn⟩L2(Ω) for all f, g ∈ NΦ(Ω).

Proof

Let us fix some notation. We denote

G =

{
f ∈ L2(Ω) :

+∞∑

n=1

1

ρn
|⟨f, φn⟩L2(Ω)|2 < +∞

}

and

⟨f, g⟩G =
+∞∑

n=1

1

ρn
⟨f, φn⟩L2(Ω)⟨g, φn⟩L2(Ω) for all f, g ∈ G.

Fix f ∈ G. We claim that f ∈ NΦ(Ω). Since {φn}n∈N ⊆ L2(Ω) is a set of continuous
functions that in particular are an orthonormal basis for L2(Ω), f admits the following
form f =

∑+∞
n=1 αnφn. For every m ∈ N we compute

⟨f, φm⟩L2(Ω) =

〈
+∞∑

n=1

αnφn, φm

〉

L2(Ω)

=
+∞∑

n=1

αn⟨φn, φm⟩L2(Ω) = αm.

At this point,

f(x) =
+∞∑

n=1

⟨f, φn⟩L2(Ω)φn(x) for a.e. x ∈ Ω.

We study the absolute convergence of this series for every x ∈ Ω.
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Fix M ∈ N then
∣∣∣∣∣

+∞∑

n=M+1

⟨f, φn⟩L2(Ω)φn(x)

∣∣∣∣∣ ≤
+∞∑

n=M+1

|⟨f, φn⟩L2(Ω)φn(x)| =

=

+∞∑

n=M+1

|⟨f, φn⟩L2(Ω)|√
ρn

|φn(x)
√
ρn| ≤

≤
(

+∞∑

n=M+1

|⟨f, φn⟩L2(Ω)|2
ρn

) 1
2
(

+∞∑

n=M+1

|φn(x)|2ρn
) 1

2

≤

≤
(

+∞∑

n=M+1

|⟨f, φn⟩L2(Ω)|2
ρn

) 1
2 √

Φ(x, x) ≤

≤




+∞∑

n=M+1

|⟨f, φn⟩L2(Ω)|2
ρn

︸ ︷︷ ︸
convergent series




1
2

∥Φ∥L∞(Ω×Ω) <∞.

(2.21)

If M = 0 we proved that f is an absolute convergent series of continuous functions. Let us
focus on the continuity of f .

|f(x)− f(x0)| ≤
∣∣∣∣∣f(x)−

M∑

n=1

⟨f, φn⟩L2(Ω)φn(x)

∣∣∣∣∣+

+

∣∣∣∣∣
M∑

n=1

⟨f, φn⟩L2(Ω)φn(x)−
M∑

n=1

⟨f, φn⟩L2(Ω)φn(x0)

∣∣∣∣∣+

+

∣∣∣∣∣
M∑

n=1

⟨f, φn⟩L2(Ω)φn(x0)− f(x0)

∣∣∣∣∣ < ε.

The first and third term of the right-hand side of the inequality can be made smaller than ε
3

choosing an appropriate M ∈ N (equation (2.21) is independent of x ∈ Ω). When M is fixed
the second term is a difference of continuous functions, so if x is close to x0 we can conclude.

We want to use Theorem 2.7. Fix λ =
∑N

j=1 αjδxj ∈ L(Ω). With proposition 2.13 we
have

λ(f) =

N∑

j=1

αjf(xj) =

N∑

j=1

+∞∑

n=1

αj⟨f, φn⟩L2(Ω)φn(xj) =

=
+∞∑

n=1

⟨f, φn⟩L2(Ω)

N∑

j=1

αjφn(xj) =
+∞∑

n=1

⟨f, φn⟩L2(Ω)λ(φn)
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and

+∞∑

n=1

ρn|λ(φn)|2 =
+∞∑

n=1

ρn




N∑

j,k=1

αjαkφn(xj)φn(xk)


 =

=

N∑

j,k=1

αjαk

+∞∑

n=1

ρnφn(xj)φn(xk) =

N∑

j,k=1

αjαkΦ(xj , xk) = ∥λ∥Φ.

So,

|λ(f)| =
∣∣∣∣∣
+∞∑

n=1

⟨f, φn⟩L2(Ω)λ(φn)

∣∣∣∣∣ ≤
∣∣∣∣∣
+∞∑

n=1

⟨f, φn⟩L2(Ω)√
ρn

λ(φn)
√
ρn

∣∣∣∣∣ ≤

≤
(

+∞∑

n=1

|⟨f, φn⟩L2(Ω)|2
ρn

) 1
2
(

+∞∑

n=1

|λ(φn)|2ρn
) 1

2

= ∥f∥G∥λ∥Φ,

which proves that f ∈ NΦ(Ω) and ∥f∥NΦ(Ω) ≤ ∥f∥G .

Now we will use the density of T (L2(Ω)) in NΦ(Ω). If we fix v ∈ L2(Ω) such that
v =

∑+∞
n=1⟨v, φn⟩L2(Ω)φn then

T (v) =
+∞∑

n=1

⟨v, φn⟩L2(Ω)T (φn) =
+∞∑

n=1

⟨v, φn⟩L2(Ω)ρnφn.

Since {φn}n∈N ⊆ L2(Ω) is an orthonormal basis for L2(Ω), with Theorem 2.12 we obtain

∥T (v)∥2NΦ(Ω) = ⟨T (v), T (v)⟩NΦ(Ω) = ⟨T (v), v⟩L2(Ω) =

=
+∞∑

n=1

⟨v, φn⟩L2(Ω)⟨v, φn⟩L2(Ω)ρn =

=
+∞∑

n=1

|⟨T (v), φn⟩L2(Ω)|2
ρn

= ∥T (v)∥G

(2.22)

This proves that ∥ · ∥NΦ(Ω) and ∥ · ∥G coincide on T (L2(Ω)). From Theorem 2.12 we know
that T (L2(Ω)) is dense in NΦ(Ω), so if f ∈ NΦ(Ω) then there exists a sequence {fj}j∈N ⊆
T (L2(Ω)) such that fj

∥·∥NΦ(Ω)−−−−−→
j→+∞

f . From equation (2.22) we get

N∑

n=1

|⟨fj , φn⟩L2(Ω)|2
ρn

≤ ∥fj∥2NΦ(Ω),

for N, j ∈ N. If we remark Theorem 2.11 and fix N ∈ N, letting j → +∞ we obtain

N∑

n=1

|⟨f, φn⟩L2(Ω)|2
ρn

≤ ∥f∥2NΦ(Ω).

Now letting letting N → +∞, we can conclude ∥f∥G ≤ ∥f∥NΦ(Ω).

✷
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Using Picard’s theorem [29] on the range of a compact operator we can state

Theorem 2.15 Suppose that Φ is a symmetric positive definite kernel on a compact set
Ω ⊆ Rd. Then the range of the integral operator in equation 2.18 is given by

T (L2(Ω)) =

{
f ∈ L2(Ω) :

+∞∑

n=1

1

ρn
|⟨f, φn⟩L2(Ω)|2 < +∞

}
.

For the error analysis of the interpolation process in equation (2.1) will be useful the fol-
lowing theorems, that we will state without proofs. We see that the native space NΦ(Ω) is
not only constituted by continuous function if Φ is smooth.

Theorem 2.16 Suppose that Ω ⊆ Rd is open and that Φ ∈ C2k(Ω × Ω) is a conditionally
positive definite symmetric kernel with respect to P ⊆ Ck(Ω). The function G(·, ·) in equa-
tion (2.5) is k-times continuously differentiable with respect to the second argument, and
for every x ∈ Ω and every α ∈ Nd with |α| ≤ k the function Dα

2 (G(·, x)) ∈ NΦ(Ω). Dα
2

denotes that we differentiate with respect to the second argument.

Similarly to Theorem 2.3 we have

Theorem 2.17 Suppose that Ω ⊆ Rd is open and that Φ ∈ C2k(Ω × Ω) is a conditionally
positive definite symmetric kernel with respect to P ⊆ Ck(Ω). Then NΦ(Ω) ⊆ Ck(Ω) and for
every f ∈ NΦ(Ω), α ∈ Nd with |α| ≤ k and x ∈ Ω

Dα(f)(x) = Dα(ΠP(f))(x) + ⟨f,Dα
2 (G(·, x))⟩NΦ(Ω).

From Theorem 1.25 we know that if

c1(1 + ∥ω∥22)−s ≤ Φ̂(ω) ≤ c2(1 + ∥ω∥22)−s ω ∈ Rd

then NΦ(R
d) = Hs(Rd).

From Fourier inversion formula we obtain

Φ(x) = (2π)−d/2

∫

Rd

Φ̂(ω)ei⟨x,ω⟩dω, for each x ∈ Ω.

From this expression we get that if Φ is a positive definite function in L1(Rd) that satisfies
the condition of Theorem 1.25 with s > k+ d

2 then Theorem 2.16 guarantees that Hs(Rd) ⊆
Ck(Rd), which is Sobolev’s embedding theorem.

2.3 Extension of native spaces

If we decide to work with a domain Ω that is bounded and it has Lipschitz boundary then
we can use an extension theorem for Sobolev spaces [30, 31].
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Theorem 2.18 Suppose that Ω ⊆ Rd is open and it has a Lipschitz boundary. If s ≥ 0
then there exists a linear mapping E : Hs(Ω) → Hs(Rd) and a constant Cs ∈ R>0, such
that

• E(f)|Ω = f for f ∈ Hs(Ω),

• ∥E(f)∥Hs(Rd) ≤ Cs∥f∥Hs(Ω) for f ∈ Hs(Ω).

Since the extension operator in Theorem 2.18 is continuous then we can define an equivalent
norm on Hs(Ω) by the position ∥f∥ = ∥E(f)∥Hs(Rd) because

∥f∥Hs(Ω) ≤ ∥E(f)∥Hs(Rd) ≤ Cs∥f∥Hs(Ω).

This result let us to give a characterization of the norm of the native space NΦ(Ω) of a
positive definite function when the domain Ω ⊊ Rd.

Let us fix some assumptions. We work with two sets Ω1 and Ω2 such that Ω1 ⊆ Ω2 ⊆ Rd.
We consider a conditionally positive definite kernel Φ : Ω2 × Ω2 → R with respect to
P ⊆ C(Ω2). To define the native spaces NΦ(Ω1) and NΦ(Ω2) we need a P-unisolvent set Ξ
that we suppose contained in Ω1.

Theorem 2.19 Each function f ∈ NΦ(Ω1) admits an extension E(f) ∈ NΦ(Ω2) such that
|E(f)|NΦ(Ω2) = |f |NΦ(Ω1).

Proof

We begin by building an isometric embedding between FΦ(Ω1) and FΦ(Ω2). Since Ω1 ⊆ Ω2

we can define

ε : FΦ(Ω1) −→ FΦ(Ω2) ⊆ FΦ(Ω2)

N∑

j=1

αjΦ(·, xj) 7−→
N∑

j=1

αjΦ(·, xj),

with {x1, . . . , xN} ⊆ Ω1 and
∑N

j=1 αjp(xj) = 0 for p ∈ P. ε is a linear isometric embedding

because if f =
∑N

j=1 αjΦ(·, xj) ∈ FΦ(Ω1) then

∥f∥Φ,Ω1 =
N∑

j,k=1

αjαkΦ(xj , xk) = ∥ε(f)∥Φ,Ω2 ,

moreover if f =
∑N

j=1 αjΦ(·, xj) ∈ FΦ(Ω1) and g =
∑m

k=1 βkΦ(·, yk) ∈ FΦ(Ω1) then

⟨f, g⟩Φ,Ω1 =

N∑

j=1

M∑

k=1

αjβkΦ(xj , xk) = ⟨ε(f), ε(g)⟩Φ,Ω2 .

We can extend ε to FΦ(Ω1) in a isometric way: if f ∈ FΦ(Ω1) = FΦ(Ω1) then we impose

ε(f) = lim
n→+∞

ε(fn)

50



with {fn}n∈N ⊆ FΦ(Ω1) a Cauchy sequence that converges is FΦ(Ω1) to f . First of all the
limit is well-defined because {ε(fn)}n∈N ⊆ ε(FΦ(Ω1)) is a Cauchy sequence in the complete
space FΦ(Ω2): ∥ε(fn) − ε(fm)∥Φ,Ω2 = ∥fn − fm∥Φ,Ω1 −−−−→

n,m→0
0. Moreover the value of the

limit does not depend on the sequence {fn}n∈N ⊆ FΦ(Ω1) we choose, indeed if {fn}n∈N and
{f̃n}n∈N are two sequences in FΦ(Ω1) that converge to f ∈ FΦ(Ω1) then

∥ε(fn)− ε(f̃n)∥Φ,Ω2 = ∥fn − f̃n∥Φ,Ω1 ≤ ∥fn − f∥Φ,Ω1 + ∥f − f̃n∥Φ,Ω1

n→+∞−−−−−→ 0,

that implies if ε(f) and ε(f̃) are the limit of {fn}n∈N and {f̃n}n∈N respectively

∥ε(f)−ε(f̃)∥Φ,Ω2 ≤ ∥ε(f)−ε(fn)∥Φ,Ω2 +∥ε(fn)−ε(f̃n)∥Φ,Ω2 +∥ε(f̃n)−ε(f̃)∥Φ,Ω2

n→+∞−−−−−→ 0.

The extension is continuous because

∥ε(f)∥Φ,Ω2 = lim
n→+∞

∥ε(fn)∥Φ,Ω2 = lim
n→+∞

∥fn∥Φ,Ω1 = ∥f∥Φ,Ω1

and it is isometric by

⟨ε(f), ε(g)⟩Φ,Ω2 = lim
n→+∞

⟨ε(fn), ε(gn)⟩Φ,Ω2 = lim
n→+∞

⟨fn, gn⟩Φ,Ω1 = ⟨f, g⟩Φ,Ω1 ,

with {fn}n∈N and {gn}n∈N in FΦ(Ω1) converging to f, g ∈ FΦ(Ω1) respectively. If f ∈
NΦ(Ω1) = RΩ1(FΦ(Ω1)) ⊕ P then f = RΩ1(f̃) + p with f̃ ∈ FΦ(Ω1) and p ∈ P. The
decomposition is unique because RΩ1 is injective (Theorem 2.2), Ω1 contains a P-unisolvent
set and RΩ1(FΦ(Ω1)) ∩ P = ⟨0⟩. We can define an extension operator as

E : NΦ(Ω1) −→ NΦ(Ω2)

RΩ1(f̃) + p 7−→ RΩ2(ε(f̃)) + p,

with f̃ ∈ FΦ(Ω1) and p ∈ P. We claim that E(f)|Ω1
= f for f ∈ NΦ(Ω1) because if x ∈ Ω1

RΩ2(ε(f̃))(x) = ⟨ε(f̃), GΩ2(·, x)⟩Φ,Ω2 = ⟨ε(f̃), ε(GΩ1(·, x))⟩Φ,Ω2 =

= ⟨f̃ , GΩ1(·, x)⟩Φ,Ω1 = RΩ1(f̃)(x).

To finish the proof we show that E : NΦ(Ω1) → NΦ(Ω2) is an isometric embedding. If
f = RΩ1(f̃) + pf and g = RΩ1(g̃) + pg with f̃ , g̃ ∈ FΦ(Ω1) and pf , pg ∈ P then

⟨E(f), E(g)⟩NΦ(Ω2) = ⟨RΩ2(ε(f̃)) + pf , RΩ2(ε(g̃)) + pg⟩NΦ(Ω2) =

=⟨RΩ2(ε(f̃)), RΩ2(ε(g̃))⟩NΦ(Ω2) = ⟨ε(f̃), ε(g̃)⟩Φ,Ω2 = ⟨f̃ , g̃⟩Φ,Ω1 =

=⟨RΩ1(f̃), RΩ1(g̃)⟩NΦ(Ω1) = ⟨RΩ1(f̃) + pf , RΩ1(g̃) + pg⟩NΦ(Ω1) = ⟨f, g⟩NΦ(Ω1),

because P is in the null space of ⟨·, ·⟩NΦ(Ω1) and⟨·, ·⟩NΦ(Ω)
. We remark that RΩ1 and RΩ2

are isometry (Theorem 2.4).

✷
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From Theorem 1.25 we know that a Sobolev space can be thought as a native space, in
the same direction Theorem 2.19 proves that native spaces are a generalization of Sobolev
spaces because the extension operator for native spaces works for general domains and not
only for bounded lipschitz domains (Theorem 2.18).

Theorem 2.20 The restriction f|Ω1
of any function f ∈ NΦ(Ω2) is contained in NΦ(Ω1)

and |f|Ω1
|NΦ(Ω1) ≤ |f |NΦ(Ω2).

Proof

To prove the statement we use Theorem 2.7. If λ =
∑N

j=1 αjδxj ∈ LP(Ω1) then λ ∈ LP(Ω2)

because {x1, . . . , xN} ⊆ Ω1 ⊆ Ω2 and
∑N

j=1 αjp(xj) = 0 for each p ∈ P.

Since

|λ(f|Ω1
)| =

∣∣∣∣∣∣

N∑

j=1

αjf|Ω1
(xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

N∑

j=1

αjf(xj)

∣∣∣∣∣∣
= |λ(f)|

and

∥λ∥Φ,Ω1 =

N∑

j,k=1

αjαkΦ(xj , xk) = ∥λ∥Φ,Ω2

we have

|f|Ω1
|NΦ(Ω1) = sup

λ∈LP (Ω1)
λ ̸=0

|λ(f|Ω1
)|

∥λ∥Φ,Ω1

≤ sup
λ∈LP (Ω2)

λ ̸=0

|λ(f)|
∥λ∥Φ,Ω2

= |f |NΦ(Ω2).

✷

Theorem 2.21 Suppose that Φ : Rd ×Rd → R is a positive definite symmetric kernel with
NΦ(R

d) = Hs(Rd) and that ∥ ·∥NΦ(Rd) and ∥ ·∥Hs(Rd) are equivalent. If Ω ⊆ Rd is a bounded
Lipschitz domain then NΦ(Ω) = Hs(Ω) with equivalent norms ∥ · ∥NΦ(Ω), ∥ · ∥Hs(Ω).

Proof

If f ∈ NΦ(Ω) then by Theorem 2.19 we have that there exists E(f) ∈ NΦ(R
d) = Hs(Rd)

such that f = E(f)|Ω ∈ Hs(Rd)|Ω ⊆ Hs(Ω). By recalling the property of the extension
E(f) given in Theorem 2.19 and the equivalence of ∥ · ∥NΦ(Rd) and ∥ · ∥Hs(Rd) we obtain

∥f∥Hs(Ω) = ∥E(f)|Ω∥Hs(Ω) ≤ ∥E(f)∥Hs(Rd) ≤ c∥E(f)∥NΦ(Rd) = c∥f∥NΦ(Ω).

If f ∈ Hs(Ω) then by Theorem 2.18 there exists E(f) ∈ Hs(Rd) = NΦ(R
d) such that

f = E(f)|Ω ∈ NΦ(Ω) (Theorem 2.20). By remarking the property of the restriction of
Theorem 2.20, the boundness of the extension operator of Sobolev spaces (Theorem 2.18)
and the equivalence between ∥ · ∥NΦ(Rd) and ∥ · ∥Hs(Rd) we can get

∥f∥NΦ(Ω) = ∥E(f)|Ω∥NΦ(Ω) ≤ ∥E(f)∥NΦ(Rd) ≤ c∥E(f)∥Hs(Rd) ≤ cCs∥f∥Hs(Ω).

✷
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If we are in the hypothesis of Theorem 1.26 by carefully analysing the proof of Theorem
2.21 we obtain that NΦδ

(Ω) = Hs(Ω) with

∥f∥NΦδ
(Ω) ≤ (2π)−

d
4Csc

− 1
2

1 δ−
d
2 ∥f∥Hs(Ω) (2.23)

and

∥f∥Hs(Ω) ≤ (2π)
d
4 c

1
2
2 δ

d
2
−s∥f∥NΦδ

(Ω), (2.24)

with Cs the norm of the extension operator in Theorem (2.18).
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Chapter 3

Approximation methods with
polynomial reproduction

3.1 Local polynomial reproduction

This section follows the presentation of [12, 18]. In general, if an approximation process
recover polynomials at least locally then it inherits the local approximation order. To make
this more clear we consider the univariate case: if f has k continuous derivatives around a
point x0 ∈ R then the Taylor polynomial

p(x) =
k−1∑

j=0

f (j)(x0)

j!
(x− x0)

j

has the following local approximation error for |x− x0| ≤ h

|f(x)− p(x)| = |f
(k)(ξ)|
k!

|x− x0|k ≤ Chk

with ξ between x and x0.

We consider a set X = {x1, . . . , xN} of pairwise distinct points in Ω ⊆ Rd and function
values f(x1), . . . , f(xN ). Our goal is to find and approximant s to the unknown function f .

We decide to study an approximant with the following form:

s(x) =

N∑

j=1

f(xj)uj(x),

where uj : Ω→ R for j = 1, . . . , N . If the function {uj}j=1,...,N are cardinal with respect to
X, i.e. uj(xk) = δj,k for 1 ≤ j, k ≤ N we have an interpolant. If the functions {uj}j=1,...,N

are not cardinal then the approximant is called a quasi-interpolant.
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For the error analysis of an approximation process it is important the fill distance, which
is defined in this way: for a set of points X = {x1, . . . , xN} in a bounded domain Ω ⊆ Rd

we call fill distance
hX,Ω = sup

x∈Ω
min

1≤j≤N
∥x− xj∥2.

The fill distance measures how well a set of data sites covers the domain Ω. Each point
x ∈ Ω has a distance from a data site not greater than hX,Ω. This means that each ball
centered in a point of Ω of radius greater than hX,Ω intersects X in at least one point.
We can define more precisely what is a local reproduction property for an approximation
process.

Definition 3.1 A process that defines for every set X = {x1, . . . , xN} ⊆ Ω a family of
functions uj = uXj : Ω → R for 1 ≤ j ≤ N provides a local polynomial reproduction of
degree ℓ on Ω if there exists constants h0, C1, C2 such that

•
∑N

j=1 p(xj)uj = p for each p ∈ πℓ(R
d),

•
∑N

j=1 |uj(x)| ≤ C1 for all x ∈ Ω,

• uj(x) = 0 if ∥x− xj∥2 > C2hX,Ω

are satisfied for all X with hXΩ
≤ h0.

In the Definition 3.1 πℓ(R
d) is the space of polynomials of degree at most ℓ in Rd.

The most important observation is that the constants involved are independent of the
data sites. The second condition guarantees that the process is stable, that is the Lebesgue
constant is bounded. Indeed,

∣∣∣∣∣∣

N∑

j=1

f(xj)uj(x)−
N∑

j=1

f̃(xj)uj(x)

∣∣∣∣∣∣
≤

N∑

j=1

|f(xj)− f̃(xj)||uj(x)| ≤

≤ max
1≤j≤N

|f(xj)− f̃(xj)|
N∑

j=1

|uj(x)| ≤

≤ max
1≤j≤N

|f(xj)− f̃(xj)|C1.

Instead, the first and third conditions concern local polynomial reproduction. In this context
the functions {uj}j=1,...,N are arbitrary (it is not important the smoothness in our analysis).

Theorem 3.1 Suppose that Ω ⊆ Rd is bounded. Define Ω∗ to be the closure of
⋃

x∈ΩB(x,C2h0).

Define sf,X =
∑N

j=1 f(xj)uj, where {uj}j=1,...,N are generated by a process with local poly-

nomial reproduction of order m on Ω (Definition 3.1). If f ∈ Cm+1(Ω∗) then there exists a
constant C = C(C1, C2,m) such that

∥f − sf,X∥L∞(Ω) ≤ Chm+1
X,Ω |f |Cm+1(Ω∗)

for all X with hX,Ω ≤ h0. The semi-norm in the inequality is defined by |f |Cm+1(Ω∗) :=
max|α|=m+1 ∥Dαf∥L∞(Ω∗).
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Proof

Let p be an arbitrary polynomial from πm(Rd). Using Definition 3.1 we obtain

|f(x)− sf,X(x)| ≤ |f(x)− p(x)|+

∣∣∣∣∣∣
p(x)−

N∑

j=1

f(xj)uj(x)

∣∣∣∣∣∣
≤

≤ |f(x)− p(x)|+
N∑

j=1

|p(xj)− f(xj)||uj(x)| ≤

≤ |f(x)− p(x)|+
∑

j:∥x−xj∥2≤C2hX,Ω

|p(xj)− f(xj)||uj(x)| ≤

≤ ∥f − p∥L∞(B(x,C2hX,Ω))


1 +

∑

j:∥x−xj∥2≤C2hX,Ω

|uj(x)|


 ≤

≤ (1 + C1)∥f − p∥L∞(B(x,C2hX,Ω)).

To end the proof we choose p to be the Taylor polynomial of f around x of order m. For
y ∈ B(x,C2hX,Ω) there exists ξ ∈ Ω∗ such that

f(y)−
∑

|α|≤m

Dαf(x)

α!
(y − x)α =

∑

|α|=m+1

Dαf(ξ)

α!
(y − x)α.

Remarking that |(y−x)α| =∏d
i=1 |yi−xi|αi ≤∏d

i=1 ∥y−x∥αi ≤ ∥y−x∥|α| we can conclude

∥f − p∥L∞(B(x,C2hX,Ω)) ≤
∑

|α|=m+1

∥Dαf∥L∞(Ω∗)

α!
(C2hX,Ω)

m+1 ≤ C(C2,m)hm+1
X,Ω |f |Cm+1(Ω∗).

✷

The approximation result given above is local: if f is less smooth in a subregion of Ω,
i.e. it has only ℓ ≤ m continuous derivatives then the approximant has O(hℓX,Ω) as global
convergence rate.

Before introducing Moving least squares we briefly exploit the existence of approximation
schemes with local polynomial reproduction. As we pointed out before, it is not important
that the functions {uj}j=1,...,N are smooth to get convergence. For example if m = 0 we can
define {uj}j=1,...,N in this way: for each x ∈ Ω choose j such that ∥x− xj∥2 is minimal and
define uj(x) = 1 and uk(x) = 0 for k ̸= j. This approximation process satisfy Definition 3.1
for constants with arbitrary h0 (C1 = C2 = 1).

For our purposes it is not restrictive to study domains satisfying an interior cone condition.

Definition 3.2 A set Ω ⊆ Rd is said to satisfy an interior cone condition if there exists
an angle ϑ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω a unit vector ξ(x) exists
such that the cone

C(x, ξ(x), ϑ, r) := {x+ λy : y ∈ Rd, ∥y∥2 = 1, ⟨y, ξ(x)⟩ ≥ cos(ϑ), λ ∈ [0, r]} ⊆ Ω.
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Theorem 3.2 Suppose that Ω ⊆ Rd is compact and satisfies an interior cone condition
with angle ϑ ∈]0, π/2[ and radius r > 0. Fix m ∈ N.Then there exists constants h0, C1, C2

depending on m,ϑ, r such that for every X = {x1, . . . , xN} ⊆ Ω with hX,Ω ≤ h0 and every
x ∈ Ω we can find real numbers {ũj(x)}j=1,...,N with

•
∑N

j=1 p(xj)ũj(x) = p(x) for each p ∈ πℓ(R
d),

•
∑N

j=1 |ũj(x)| ≤ C1,

• ũj(x) = 0 if ∥x− xj∥2 > C2hX,Ω.

We can show explicit values for the constants involved (without restriction we can suppose
ϑ ≤ π/5):

C1 = 2, C2 =
16(1 + sin(ϑ))2m2

3 sin(ϑ)2
, h0 =

r

C2
.

3.2 Moving least squares

To introduce this concept we follow [19, 20, 21, 22]. The crucial point in local polynomial
reproduction (Theorem 3.1 ) is the compact support of the basis functions {uj}j=1,...,N . The
diameters of the supports of the functions {uj}j=1,...,N are bounded by a constant propor-
tional to hX,Ω. Compact support means that data points far away from the current point
of interest x ∈ Ω have no influence on the function value at x. The moving least squares
method provides an efficient method to build families of functions with local polynomial
reproduction.

For our work is not restrictive to consider a domain Ω that respect the interior cone condition
with angle ϑ and radius r (Definition 3.2) The idea of the moving least square approxima-
tion is to solve for every point x ∈ Ω a locally weighted least squares problem. The influence
of the data points is governed by a weight function w : Ω×Ω→ R, which becomes smaller
the greater is the norm of the difference between its arguments. For example w can vanish if
computed at x, y ∈ Ω with ∥x−y∥2 greater than a threshold. We will use a weight function
with the following form:

w(x, y) = Φδ(x− y) = Φ

(
x− y

δ

)
,

where Φ : Rd → R is a compactly supported function.

Definition 3.3 For x ∈ Ω, the value sf,X(x) of the moving least squares approximant is
given by sf,X(x) = p∗(x) where p∗ is the solution of

min

{
N∑

i=1

(f(xi)− p(xi))
2w(x, xi) : p ∈ πm(Rd)

}
. (3.1)
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As anticipated we will use a weight function induced by a compactly supported function
Φ, which is supported in the closed ball B(0, 1) and strictly positive on B(0, 1). With this
properties we can rewrite equation (3.1) as

min




∑

i∈I(x)
(f(xi)− p(xi))

2Φδ(x− xi) : p ∈ πm(Rd)



 , (3.2)

where I(x) = I(x, δ,X) = {j ∈ {1, . . . , N} : ∥x − xj∥2 < δ}. So far it is not clear at all
why moving least squares provides local polynomial reproduction: we need some results on
quadratic optimization.

Theorem 3.3 Let a ∈ R, b ∈ Rn, A ∈ Mn(R) and P ∈ Mn,m(R) be given. For v ∈ Rm

define Mv := {x ∈ Rn : P⊤x = v}. Suppose A = A⊤ is positive definite on M0. If Mv is
not empty the the quadratic function

f(x) := a+ b⊤x+ x⊤Ax

has a unique minimum on Mv.

Proof

We observe that Mv is defined by linear constraints, so it is convex and closed. We claim
that if f is strictly convex on Mv then we obtain uniqueness of the solution: suppose that
there exists x∗ ∈Mv such that f(x∗) ≤ f(x) for all x ∈Mv. Fix x ∈Mv \ {x∗}, then

f(x∗) ≤ f(αx∗ + (1− α)x) < αf(x∗) + (1− α)f(x)⇒ (1− α)f(x∗) < (1− α)f(x),

which implies uniqueness if α ∈]0, 1[.

We claim that since A is positive definite on the vector subspace M0 then there exists
λ̃ > 0 such that x⊤Ax ≥ λ̃∥x∥22.

Suppose M0 = ⟨v1, . . . , vt⟩ ≤ Rn is generated by an orthonormal basis. There exists

T : Rt →M0

ei 7→ vi for each i = 1, . . . t,
(3.3)

which is an isometry. Through T we can define a positive definite bilinear form on Rt.

h(x, y) = x⊤By for x, y ∈ Rt, (3.4)

where B ∈Mt(R) with Bij = T (ei)
⊤AT (ej) for i, j = 1, . . . , N .

We say that h is a symmetric positive definite bilinear form because A is symmetric and
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positive definite on M0.

x⊤Bx =
t∑

i=1

t∑

j=1

xixjBij =
t∑

i=1

t∑

j=1

xixjT (ei)
⊤AT (ej) =

t∑

i=1

t∑

j=1

T (xiei)
⊤AT (xjej)

=
t∑

i=1

T (xiei)
⊤AT




t∑

j=1

xjej


 = T

(
t∑

i=1

xiei

)⊤

AT




t∑

j=1

xjej


 =

= T (x)⊤AT (x) > 0.

(3.5)

With equation (3.5) and taking an orthonormal basis of Rt with respect to h we can write
that

T (x)⊤AT (x) = x⊤Bx ≥ λ̃∥x∥22 = λ̃∥T (x)∥22,
where λ̃ > 0 is the smallest eigenvalue of B (the last equality holds because T is an isometry).

A straightforward computation gives us, for different x, y ∈Mv and λ ∈]0, 1[

(1− λ)f(x) + λf(y)− f((1− λ)x+ λy) =

=(1− λ)x⊤Ax+ λy⊤Ay − (1− λ)2x⊤Ax− λ2y⊤Ay − 2λ(1− λ)x⊤Ay =

=λ(1− λ)(x⊤Ax− 2x⊤Ay + y⊤Ay) = λ(1− λ)(x− y)⊤A(x− y) ≥
≥λ(1− λ)λ̃∥x− y∥22 > 0,

which implies that f is strictly convex on Mv.

To show the existence of the minimum we will use Weierstrass Theorem. Since Mv is
not empty we can fix an x0 ∈Mv and restric the minimization problem to M̃v := {x ∈Mv :

f(x) ≤ f(x0)}. From the continuity of f we obtain that M̃v is closed. From the definition

of Mv and M0 we get that every element x ∈ M̃v has the form x = x0 + z, with z ∈M0.

0 ≥ f(x)− f(x0) = b⊤x+ x⊤Ax− b⊤x0 − x⊤0 Ax0 =

= (b+ 2Ax0)
⊤(x− x0) + (x− x0)

⊤A(x− x0) ≥
≥ −∥b+ 2Ax0∥2∥x− x0∥2 + λ̃∥x− x0∥22.

explains that ∥x∥2 ≤ ∥x−x0∥2+∥x0∥2 is bounded for each x ∈ M̃v. There exists a minimun

x∗ ∈ M̃v for f in M̃v. The identified point is also a minimum for f in Mv.

✷

To make the following statement more clear we introduce a definition.

Definition 3.4 The points X = {x1, . . . , xN} ⊆ Rd with N ≥ Q = dim(πm(Rd)) are called
πm(Rd)-unisolvent if the zero polynomial is the only polynomial from πm(Rd) that vanishes
on X.
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Theorem 3.4 Suppose that for every x ∈ Ω the set {xj : j ∈ I(x)} is πm(Rd)-unisolvent.
In this situation, the problem stated in equation (3.2) is uniquely solvable and the solution
sf,X(x) = p∗(x) can be represented as

sf,X(x) =
∑

i∈I(x)
f(xi)a

∗
i (x),

where the coefficients a∗i (x) are determined by minimizing the quadratic form

∑

i∈I(x)

ai(x)
2

Φδ(x− xi)
(3.6)

under the constraints

∑

i∈I(x)
p(xi)ai(x) = p(x), p ∈ πm(Rd). (3.7)

Proof

Denote a basis of πm(Rd) by p1, . . . , pQ. Suppose our polynomial has the form p =∑Q
j=1 bjpj . This rewrite the minimization problem in the equation (3.2) to find the op-

timal coefficient vector b∗. We will use the following notation:

b = (b1, . . . , bQ)
⊤ ∈ RQ,

f̃ = (f(xi) : i ∈ I(x))⊤ ∈ R#I(x),

P = (pj(xi)) i∈I(x)
1≤j≤Q

∈M#I(x),Q(R),

D = D(x) = diag(Φδ(x− xi) : i ∈ I(x)) ∈M#I(x),#I(x)(R),

R(x) = (p1(x), . . . , pQ(x))
⊤ ∈ RQ.

With this notation we can rewrite the function to minimized in equation (3.2) as

C(b) =
∑

i∈I(x)


f(xi)−

Q∑

j=1

bjpj(xi)




2

Φδ(x− xi) =

=
∑

i∈I(x)
(f̃i − (Pb)i)

2Φδ(x− xi) =

=(f̃ − Pb)⊤D(f̃ − Pb) =

=f̃⊤Df̃ − 2f̃⊤DPb+ b⊤P⊤DPb.

(3.8)

Since C(b) is a quadratic form in b we can apply Theorem 3.3 if P⊤DP is positive definite
on RQ. For clarity of exposition, the instance of Theorem 3.3, that we use, has the matrix
that defines Mv and M0 equals to 0.
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If we analyse

b⊤P⊤DPb = b⊤P⊤D
1
2D

1
2Pb = ∥D 1

2Pb∥22 (3.9)

and suppose that b⊤P⊤DPb = 0, we get that
∑

i∈I(x)Φδ(x− xi)(Pb)2i = 0⇒ Pb = 0 since

Φδ(x − xi) > 0 for each i ∈ I(x). In this situation the polynomial p =
∑Q

j=1 bjpj vanishes
on {xi : i ∈ I(x)}, which is unisolvent (Definition 3.4). So b has to be 0.

Since we are minimizing a differentiable function on a open set with a unique minimun
we determine b∗ ∈ Rd such that ∇C(b∗) = 0.

0 = ∇C(b∗) = (−2f̃⊤DP )⊤ + 2P⊤DPb∗ ⇒ (b∗)⊤ = f̃⊤DP (P⊤DP )−1,

from this we obtain the solution to the minimization problem in equation (3.2):

p∗(x) = (b∗)⊤R(x) = f̃⊤DP (P⊤DP )−1R(x).

To conclude the proof of the statement we study the minimization problem in equation
(3.6) with constraints (3.7). In other words we minimize the function

C(a) =
∑

i∈I(x)

a2i
Φδ(x− xi)

= a⊤D−1a

subjects to

M := =



a ∈ R#I(x) :

∑

i∈I(x)
aip(xi) = p(x) for p ∈ πm(Rd)



 =

=



a ∈ R#I(x) :

∑

i∈I(x)
aipj(xi) = pj(x), 1 ≤ j ≤ Q



 =

= {a ∈ R#I(x) : P⊤a = R(x)}.

We supposed that {xi : i ∈ I(x)} is πm(Rd)-unisolvent so the matrix P ∈ M#I(x),Q(R) is

injective with full column rank. This proves that P⊤ is surjective and M ̸= ∅. Since D−1 is
positive definite we can obtain a unique solution of the problem in equation (3.6) subjects
to the constraints described in equation (3.7) with Theorem 3.3.

To find the solution of a constrained optimization problem we use Lagrange multipliers.

Consider the Lagrange function defined by

L(a, λ) = a⊤D−1a− λ⊤(P⊤a−R(x))

and impose

∇aL(a∗, λ) = 0⇒ 2D−1a∗ − Pλ = 0⇒ 2D−1a∗ = Pλ⇒ a∗ = DPλ/2. (3.10)
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Since a∗ ∈M we get R(x) = P⊤a∗ = P⊤DPλ/2. From the positive definiteness of P⊤DP
(equation (3.9)) we obtain an explicit expression for λ

λ = 2(P⊤DP )−1R(x). (3.11)

In the end we can write

∑

i∈I(x)
a∗i f(xi) = f̃⊤a∗ = f̃⊤DP (P⊤DP )−1R(x) = p∗(x).

✷

We notice that for Theorem 3.1 the smoothness of the functions {uj}j=1,...,N is not involved
in the proof. For some practical application it is necessary to have available a smooth
approximant. The proof of Theorem 3.4 let us to characterize the functions {a∗j}j=1,...,N .

Theorem 3.5 The functions {a∗j}j=1,...,N of Theorem 3.4 have the form

a∗j (x) = Φδ(x− xj)

Q∑

k=1

λk(x)pk(xj)

where {λk(x)}k=1,...,Q are the unique solutions of

Q∑

k=1

λk(x)
∑

j∈I(x)
Φδ(x− xj)pk(xj)pℓ(xj) = pℓ(x), 0 ≤ ℓ ≤ Q. (3.12)

Moreover, if Φ ∈ Ck(Ω) then the approximant sf,X ∈ Ck(Ω).

Proof

Let us fix x ∈ Ω and j ∈ {1, . . . , N} such that ∥x − xj∥2 < δ. With notation of Theorem
3.4 and equation (3.10),

a∗(x) = D(x)Pλ/2,

becomes, since D(x) is diagonal,

a∗j (x) = Φδ(x− xj)(Pλ/2)j = Φδ(x− xj)

Q∑

k=1

λk(x)pk(xj).

For sake of clarity we have identified λ
2 ∼ λ.

We can end the proof by recalling equation (3.11), which gives us

P⊤DPλ = R(x).
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Making the matrices involved explicit we obtain

DP =



Φδ(x− xw1)

. . .

Φδ(x− xw#I(x)
)







p1(xw1) · · · pQ(xw1)
...

...
p1(xw#I(x)

) · · · pQ(xw#I(x)
)


 =

=




Φδ(x− xw1)p1(xw1) · · · Φδ(x− xw1)pQ(xw1)
...

...
Φδ(x− xw#I(x)

)p1(xw#I(x)
) · · · Φδ(x− xw#I(x)

)pQ(xw#I(x)
)


 =

=
(
Φδ(x− xi)pj(xi)

)
i∈I(x),j=1,...,Q

.

From this computation, we can write for ℓ ∈ {1, . . . , Q}

pℓ(x) =

Q∑

k=1

λk(x)(P
⊤DP )ℓ,k =

=

Q∑

k=1

λk(x)
∑

j∈I(x)
pℓ(xj)Φδ(x− xj)pk(xj).

We just proved that the smoothness of sf,X depends on the smoothness of Φ and the

smoothness of {λj}j=1,...,Q. Since Φ is supported in B(0, 1) equation (3.12) becomes

Q∑

k=1

λk(x)

N∑

j=1

Φδ(x− xj)pk(xj)pℓ(xj) = pℓ(x), 0 ≤ ℓ ≤ Q.

That is, with an extended version of the notation of Theorem 3.4,

P⊤DPλ(x) = R(x),

where P ∈ MN,Q(R) and D = D(x) ∈ MN (R). The matrix P⊤DP remains positive
definite and invertible (compare equation (3.9), only some components of Pb are zero, but
this is sufficient to guarantee that b = 0 because of the unisolvent property of {xj : j ∈
I(x)}). λ(·) ∈ RQ is continuous on Ω because each components is a continuous function
of the components of P⊤D(x)P and R(x) divided by det(P⊤DP ). We remark that P is
independent of x ∈ Ω.

✷

With this results we can compute the moving least square approximation method for m = 0.
If we choose {1} as basis of π0(Rd) equation (3.11) gives us

λ

2
= (P⊤DP )−1R(x) = (P⊤DP )−1 =

1∑
i∈I(x)Φδ(x− xi)

,
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because R(x) = 1 and P = (1, . . . , 1)⊤ ∈M#I(x),1. Theorem 3.5 let us to conclude

a∗j (x) =
Φδ(x− xj)∑

i∈I(x)Φδ(x− xi)
for each j ∈ {1, . . . , N}.

For m = 0 the minimization problem described in equation (3.2) has the solution

sf,X(x) =
N∑

j=1

f(xj)
Φδ(x− xj)∑N
i=1Φδ(x− xi)︸ ︷︷ ︸

a∗j (x)

,

which is a particular instance of the Shepard approximation method [22] and it reproduces
constants exactly. If we choose δ to be ChX,Ω with C > 1, then the moving least squares
approximant with m = 0 respect the Definition 3.1 with ℓ = 0, C1 = 1 and C2 = C. The
method is well-defined because the denominantor is different from 0. For each x ∈ Ω there
exists k ∈ {1, . . . , N} such that ∥x−xk∥2 is minimal, which provides ∥x−xk∥2 ≤ hX,Ω < δ.
This proves that xk ∈ I(x) ̸= ∅ and

∑

i∈I(x)
Φδ(x− xi) > 0

With Theorem 3.1 we can prove the existence of a stable quasi-interpolant method with
convergence rate O(hX,Ω). The mentioned method can provide a smooth interpolant as
smooth as Φ.

Before continuing, Theorem 3.5 let us to analyse the computational complexity of the
method for the evaluation of the approximant at a point x ∈ Ω. To compute {λ1(x), . . . , λQ(x)}
we need to solve a Q × Q linear system, so the computational cost is O(Q3). The cost to
build the matrix of the linear system is O(#I(x)Q2) because for each component of the
matrix we perform a number of multiplications and sums proportional to #I(x) (we assume
that the cost for polynomial evaluation is constant). Since the basis functions {a∗1, . . . , a∗N}
are compactly supported we need to calculate only #I(x) of them, so since we perform a
number of multiplications and sums proportional to Q the cost is O(#I(x)Q). After all to
build the basis functions at a point x ∈ Ω the computational cost is

O(Q3 +#I(x)Q2 +#I(x)Q)

and we have to add O(#I(x)) to compute the value of the approximant. Since we are
working in a quasi-uniform setting Theorem 7.3 gives as a uniform upper bound for #I(x)
if δ is proportional to hX,Ω. Under these constraints the cost for the evaluation of the
approximant at a point x ∈ Ω is constant. For each x ∈ Ω we can build #I(x) in O(N)
comparisons, where N is the number of data sites. If we have to compute the value of the
approximant at M points a naive implementation of the algorithm leads to a computational
cost of O(NM). A more refined stratey, that consists to divide the domain in boxes of side
length h and to consider for each x ∈ Ω only the relevant ones, provides a final computa-
tional cost of O(N +M).
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In Theorem 3.5 appears a basis for the polynomial space and, even if it is not relevant
from a theoretical point of view, a careful choice of the basis can lead to a more stable
implementation.

Now we want to prove that the moving least squares approximation method provides local
polynomial reproduction with ℓ = m (Definition 3.1). We will need some new definitions.

Definition 3.5 The separation distance of X = {x1, . . . , xN} is defined by

qX :=
1

2
min
i ̸=j
∥xi − xj∥2.

We note that if i ̸= j then B(xi, qX) ∩ B(xj , qX) = ∅. If by contradiction we suppose that
B(xi, qX) ∩B(xj , qX) ̸= ∅ then there exists z ∈ B(xi, qX) ∩B(xj , qX), which gives us:

2qX ≤ ∥xi − xj∥2 ≤ ∥xi − z∥2 + ∥z − xj∥2 < 2qX .

It is also important to note that qX is the largest possible radius with the property above.

Definition 3.6 A set X = {x1, . . . , xN} is said to be quasi-uniform with respect to a con-
stant cqu > 0 if

qX ≤ hX,Ω ≤ cquqX .

To require qX ≤ hX,Ω instead of cqX ≤ hX,Ω with c < 1 is not a restriction if Ω satisfies
an interior cone condition with radius r > 0 and angle ϑ > 0 (Definition 3.2). If qX ≤ r
then for each xi ∈ X we can find y ∈ Ω with ∥y − xi∥2 = qX , because if ∥z∥2 = 1 and
⟨z, ξ(x)⟩ ≥ cos(ϑ) then

∥xi + λz − xi∥2 = λ ∈ [0, r]

and xi + λz ∈ Ω. For any other xj ∈ Ω

∥y − xj∥2 ≥ ∥xj − xi∥2 − ∥y − xi∥2 ≥ 2qX − qX = qX ,

that gives hX,Ω ≥ qX .

The Definition 3.6 is useful when we consider a sequence of data sets that have the same
constant cqu and the fill distance becomes smaller and smaller.

For quasi-uniform sets we can bound from above and below qX and hX,Ω with functions of
1
N , where N = #X.
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Proposition 3.6 Let Ω ⊆ Rd be bounded and measurable. Suppose that X = {x1, . . . , xN} ⊆
Ω is quasi-uniform with respect to cqu > 0. Then there exists constants c1, c2, c3, c4 > 0 de-
pending only on the space dimension d, on Ω and on cqu such that

c1

(
1

N

) 1
d

≤ hX,Ω ≤ c2

(
1

N

) 1
d

and c3

(
1

N

) 1
d

≤ qX ≤ c4

(
1

N

) 1
d

Proof

From the definition of hX,Ω we have

Ω ⊆
N⋃

j=1

B(xj , hX,Ω).

By the monotonicity and the subadditivity of the Lebesgue measure we have

L(Ω) ≤ NhdX,ΩL(B(0, 1)),

which gives c1 =
(

L(Ω)
L(B(0,1))

) 1
d
. This proves the first inequality.

Since Ω is bounded there exists a ball B(x0, R) such that Ω ⊆ B(x0, R). From triangular
inequality we obtain

N⋃

j=1

B(xj , qX) ⊆ B(x0, R+ qX),

because if y ∈ B(xj , qX) then ∥y − x0∥2 ≤ ∥y − xj∥2 + ∥xj − x0∥2 < qX +R.

We claim that qX ≤ R because if xi, xj ∈ X are distinct then

2qX ≤ ∥xi − xj∥2 ≤ ∥xi − x0∥2 + ∥x0 − xj∥2 ≤ 2R.

Since the balls {B(xj , qX)}j=1,...,N are pairwise disjoint the additivity of the Lebesgue mea-
sure on disjoint sets gives us

NqdXL(B(0, 1)) ≤ (R+ qX)dL(B(0, 1))⇒ NqdX ≤ (R+ qX)d ⇒

⇒ N ≤
(
1 +

R

qX

)d

≤ (2R)d
(

1

qX

)d

.

The last implication is true because 1 ≤ R
qX

and it gives c4 = 2R. From the quasi-uniformity
of X (Definition 3.6) we obtain

N ≤ (2Rcqu)
d

(
1

hX,Ω

)d

and c2 = 2Rcqu. The first inequality for qX follows from the first inequality for hX,Ω and it
produces c3 =

c1
cqu

.

✷
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A careful analysis of the proof of Proposition 3.6 highlights that to prove the first inequal-
ity for hX,Ω and the second inequality for qX we can consider arbitrary X ⊆ Ω. It is not
necessary that X is a quasi-uniform date set.

Let us return to the local reproduction property of moving least squares method.

Theorem 3.7 Suppose that Ω ⊆ Rd is compact a satisfies an interior cone condition with
angle ϑ ∈]0, π/2[ and radius r > 0. Fix m ∈ N. Let h0, C1 and C2 denote the constants of
Theorem 3.2. Suppose that X = {x1, . . . , xN} ⊆ Ω is a quasi-uniform data sets with respect
to cqu > 0 and hX,Ω ≤ h0. Let δ = 2C2hX,Ω. Then the basis functions {a∗j (x)}j=1,...,N of
Theorem 3.5 provide local polynomial reproduction, i.e.

•
∑N

j=1 p(xj)a
∗
j (x) = p(x) for all p ∈ πm(Rd), x ∈ Ω,

•
∑N

j=1 |a∗j (x)| ≤ C̃1,

• a∗j (x) = 0 if ∥x− xj∥2 > C̃2hX,Ω,

with certain constants C̃1, C̃2 that can be derived explicitly.

Proof

The first property is a consequence of equation (3.2) and Theorem 3.4 that define the
moving least squares method. We proved in Theorem 3.5 the a∗j is supported in B(xj , δ)

for j = 1, . . . , N . With our choice of δ the third property holds for C̃2 = 2C2. To prove the
second property we bound two quantities separately.

N∑

i=1

|a∗i (x)| =
∑

i∈I(x)
|a∗i (x)| =

∑

i∈I(x)

|a∗i (x)|√
Φδ(x− xi)

√
Φδ(x− xi) ≤

≤


 ∑

i∈I(x)

|a∗i (x)|2
Φδ(x− xi)




1
2

 ∑

i∈I(x)
Φδ(x− xi)




1
2

.

There exists {ũj(x)}j=1,...,N providing local polynomial reproduction (Theorem 3.2):

p(x) =

N∑

j=1

p(xj)ũj(x) =
∑

j:∥x−xj∥≤C2hX,Ω

p(xj)ũj(x) =
∑

j∈I(x)
p(xj)ũj(x).
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The minimal property stated in Theorem 3.4 gives

∑

i∈I(x)

|a∗i (x)|2
Φδ(x− xi)

≤
∑

i∈I(x)

|ũi(x)|2
Φδ(x− xi)

=
∑

i∈Ĩ(x)

|ũi(x)|2
Φδ(x− xi)

≤

≤ 1

min
y∈B(0,1/2)

Φ(y)

∑

i∈Ĩ(x)

|ũi(x)|2 ≤

≤ 1

min
y∈B(0,1/2)

Φ(y)


 ∑

i∈Ĩ(x)

|ũi(x)|




2

≤

≤ C2
1

min
y∈B(0,1/2)

Φ(y)
,

where Ĩ(x) =
{
j ∈ {1, . . . , N} : xj ∈ B(x, δ2)

}
. For a better understanding of the inequal-

ities, it is useful to remember that ũj(x) = 0 if ∥x − xj∥ > C2hX,Ω = δ
2 and that (·)2 is

superadditive in R≥0.

We can bound the second factor with a volume comparison.

∑

i∈I(x)
Φδ(x− xi) ≤ #I(x)∥Φ∥L∞(Rd).

We have that ⋃

i∈I(x)
B(xi, qX) ⊆ B(x, qX + δ)

because if y ∈ B(xi, qX) for i ∈ I(x) then ∥y − x∥2 ≤ ∥y − xi∥2 + ∥xi − x∥2 < qX + δ.

The additivity of Lebesgue measure on disjoint sets let us to write

#I(x)L(B(0, 1))qdX ≤ L(B(0, 1))(qX + δ)d

because {B(xi, qX)}i∈I(x) are disjoint. Since X is quasi-uniform with respect to cqu we can
conlude that

#I(x) ≤
(
1 +

δ

qX

)d

=

(
1 +

2C2hX,Ω

qX

)d

≤ (1 + 2C2cqu)
d.

✷

Under the hypothesis of Theorem 3.7 we can obtain an error estimate for the moving least
squares method with Theorem 3.1.
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Chapter 4

Error estimates for RBF
interpolation

The most significant results of this section can be found in [8, 9, 10, 11, 27, 32, 33].

4.1 Power function

Our goal in this section is to study the difference between the derivatives of a function
f ∈ NΦ(Ω) and the derivatives of its interpolant sf,X , built with a (conditionally) positive
definite symmetric kernel Φ (equation (2.1)).

The first step in many error estimates techniques is to write the interpolant sf,X of f
in its Lagrangian form.

Choose X = {x1, . . . , xN} ⊆ Ω to be a P-unisolvent set. Let us fix some notation:
AΦ,X = (Φ(xi, xj))i,j=1,...,N ∈ MN (R) and P = (pj(xi))i=1,...,N,j=1,...,Q ∈ MN,Q(R), where
{p1, . . . , pQ} is a basis of P. We will denote R(x) = (Φ(x, x1), . . . ,Φ(x, xN ))⊤ ∈ RN and
S(x) = (p1(x), . . . , pQ(x))

⊤ ∈ RQ.

If (α(j), β(j)) ∈ RN+Q solves the system

ÃΦ,X

(
α
β

)
=

(
AΦ,X P
P⊤ 0

)(
α
β

)
=

(
e(j)

0

)
(4.1)

where e(j) is the j-th unit vector, then

u∗j (x) =
N∑

i=1

α
(j)
i Φ(x, xi) +

Q∑

k=1

β
(j)
k pk(x) (4.2)

satisfies u∗j (xi) = δi,j for i, j = 1, . . . , N .
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We claim that, for each j = 1, . . . , N

u⋆j ∈ (⟨Φ(·, xj) : xj ∈ X⟩ ∩ FΦ(Ω)) + P = VX . (4.3)

From Theorem 2.1 we know that every f ∈ VX is uniquely determined by its values on X
so

f =
N∑

j=1

f(xj)u
∗
j (4.4)

and for f ∈ NΦ(Ω) we have

sf,X =

N∑

j=1

f(xj)︸ ︷︷ ︸
sf,X(xj)

u∗j . (4.5)

The values of the cardinal functions {u∗j}j=1,...,N at x ∈ Ω can be computed simultaneously
by solving a linear system.

Theorem 4.1 Suppose that Φ is a conditionally positive definite kernel with respect to P
on Ω ⊆ Rd. Suppose that X = {x1, . . . , xN} ⊆ Ω is P-unisolvent. Then there exist functions
{u∗1, . . . , u∗N} ⊆ VX such that u∗j (xi) = δi,j for i, j = 1, . . . , N . Moreover, for each x ∈ Ω,
there exists functions {v∗1, . . . , v∗Q} such that

(
AΦ,X P
P⊤ 0

)(
u∗(x)
v∗(x)

)
=

(
R(x)
S(x)

)
.

Proof

For brevity we will use A in place of AΦ,X . The functions {u∗1, . . . , u∗N} ⊆ VX are the cardinal

functions with respect to X. Since P ⊆ VX from equation (4.4) we obtain p =
∑N

j=1 p(xj)u
∗
j

for each p ∈ P, that can be written as P⊤u∗(x) = S(x).

If P = (P1 · · ·PQ), where Pi ∈ RN for i = 1, . . . , Q, then

P (RQ) =

{
Q∑

k=1

vkPk : vk ∈ R for k = 1, . . . , Q

}
⊆ RN

and
P (RQ)⊥ = {γ ∈ RN : P⊤γ = 0}.

We can conclude the proof of the theorem if we can prove that Au∗(x) − R(x) ∈ P (RQ),
because in this case there exists v∗(x) ∈ RQ such that

Au∗(x)−R(x) =

Q∑

k=1

v∗k(x)Pk.
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To achieve this we will prove that Au∗(x)−R(x) ∈ (P (RQ)⊥)⊥ = P (RQ). If we fix γ ∈ RN

such that P⊤γ = 0 the γ⊤R(x) ∈ VX . So, by equation (4.4),

γ⊤R(x) =
N∑

j=1

u∗j (x)γ
⊤R(xj) =

N∑

j=1

u∗j (x)
N∑

i=1

γiΦ(xj , xi)︸ ︷︷ ︸
Φ(xi,xj)

= γ⊤Au∗(x).

We have that γ⊤(Au∗(x)−R(x)) = 0 for each γ ∈ P (RQ)⊥, thus Au∗(x)−R(x) ∈ P (RQ).

✷

From Theorem 2.1 we remark that the solution of the system in Theorem 4.1 is unique. So
if we write the i-th equation of the system in Theorem 4.1 with x = xi we obtain

N∑

j=1

Φ(xi, xj)u
∗
j (xi) +

Q∑

k=1

pk(xi)v
∗
k(xi) = Φ(xi, xi),

which gives us u∗j (xi) = δi,j for j = 1, . . . , N and v∗k(xi) = 0 for k = 1, . . . , Q.

With equation (4.5) we have that the smoothness of sf,X depends on the smoothness of the
cardinal functions {u∗1, . . . , u∗N}, that inherit the smoothness of Φ with respect to the first
argument and that of P. So sf,X ∈ Ck(Ω) if P ⊆ Ck(Ω) and Φ with respect to the first
arguments admits k continuous derivatives.

From Theorem 4.1 we obtain

AΦ,Xu∗(x) + Pv∗(x) = R(x)⇒ P⊤Pv∗(x) = P⊤(AΦ,Xu∗(x)−R(x)).

Since P ∈ MN,Q(R) has full column rank (Q ≤ N) then P⊤P ∈ MQ(R) is invertible. We
proved that also the smoothness of {v∗1, . . . , v∗Q} depends on smoothness of Φ with respect
to the first argument and that of P.

If we denote with Dα(R)(x) = (Dα
1 (Φ(x, x1)), . . . , D

α
1 (Φ(x, xN )))⊤ ∈ RN then we obtain,

with Theorem 4.1, (
AΦ,X P
P⊤ 0

)(
Dα(u∗)(x)
Dα(v∗)(x)

)
=

(
Dα(R)(x)
Dα(S)(x)

)
. (4.6)

Under the assumption of Theorem 2.17 we achieve that NΦ(Ω) ⊆ Ck(Ω) and VX ⊆ Ck(Ω),
so it makes sense to study

Dα(f − sf,X) for |α| ≤ k.

Definition 4.1 Suppose that Ω ⊆ Rd is open and that Φ ∈ C2k(Ω × Ω) is a conditionally
positive definite kernel on Ω with respect to P ⊆ Ck(Ω). If X = {x1, . . . , xN} ⊆ Ω is P-
unisolvent then for every x ∈ Ω and α ∈ Nd with |α| ≤ k the power function is defined
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by

(Pα
Φ,X(x))2 =Dα

1D
α
2Φ(x, x)− 2

N∑

j=1

Dαu⋆j (x)D
α
1Φ(x, xj)+

+

N∑

i,j=1

Dαu∗i (x)D
αu∗j (x)Φ(xi, xj),

where {u∗1, . . . , u∗N} are the cardinal functions with respect to X (equation (4.2)).

To better understand this definition let us fix x,X,Φ and α and replace the constant
vector Dαu∗(x) ∈ RN by an arbitrary vector u ∈ RN . We can define the quadratic form
Q : RN → R by

Q(u) =Dα
1D

α
2Φ(x, x)− 2

N∑

j=1

ujD
α
1Φ(x, xj)+

+

N∑

i,j=1

uiujΦ(xi, xj) u ∈ RN .

With this notation the power function becomes

(Pα
Φ,X(x))2 = Q(Dα(u∗)(x)). (4.7)

The next theorem shows that the Definition 4.1 is well-posed and provides a useful repre-
sentation of the power function.

Theorem 4.2 Suppose that Φ ∈ C2k(Ω×Ω) is a conditionally positive definite kernel with

respect to P ⊆ Ck(Ω). Now suppose that u(α) ∈ RN is a vector that satisfies
∑N

j=1 u
(α)
j p(xj) =

Dαp(x) for all p ∈ P. Then the quadratic form Q has the representation

Q(u(α)) =

∣∣∣∣∣∣
Dα

2G(·, x)−
N∑

j=1

u
(α)
j G(·, xj)

∣∣∣∣∣∣

2

NΦ(Ω)

,

where G appears in equation (2.5).

Proof

From Theorem 2.16 we have that Dα
2G(·, x) ∈ NΦ(Ω). We compute

∣∣∣∣∣∣
Dα

2G(·, x)−
N∑

j=1

u
(α)
j G(·, xj)

∣∣∣∣∣∣

2

NΦ(Ω)

=

=|Dα
2G(·, x)|2NΦ(Ω) − 2

N∑

j=1

u
(α)
j ⟨Dα

2G(·, x), G(·, xj)⟩NΦ(Ω)+

+

N∑

i,j=1

u
(α)
i u

(α)
j ⟨G(·, xi), G(·, xj)⟩NΦ(Ω).

(4.8)
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From G(·, x) ∈ FΦ(Ω) and equation (2.11) we get

⟨G(·, xi), G(·, xj)⟩NΦ(Ω) = ⟨G(·, xi), G(·, xj)⟩Φ,

that with equation 2.5 gives us

⟨G(·, xi), G(·, xj)⟩NΦ(Ω) =Φ(xi, xj) +

Q∑

n,ℓ=1

pn(xi)pℓ(xj)Φ(ξℓ, ξn)+

−
Q∑

n=1

pn(xi)Φ(xj , ξn)−
Q∑

ℓ=1

pℓ(xj)Φ(xi, ξℓ).

If we use the hypothesis
∑N

j=1 u
(α)
j p(xj) = Dαp(x) for all p ∈ P we can compute

N∑

i,j=1

u
(α)
i u

(α)
j

Q∑

n,ℓ=1

pn(xi)pℓ(xj) =

Q∑

n,ℓ=1

N∑

i,j=1

u
(α)
i u

(α)
j pn(xi)pℓ(xj) =

Q∑

n,ℓ=1

Dαpn(x)D
αpℓ(x)

and
N∑

i,j=1

u
(α)
i u

(α)
j

Q∑

n=1

pn(xi) =

Q∑

n=1

N∑

i,j=1

u
(α)
i u

(α)
j pn(xi) =

Q∑

n=1

N∑

j=1

u
(α)
j Dαpn(x).

We can study the third term in equation 4.8

N∑

i,j=1

u
(α)
i u

(α)
j ⟨G(·, xi), G(·, xj)⟩NΦ(Ω) =

N∑

i,j=1

u
(α)
i u

(α)
j Φ(xi, xj) +

+

Q∑

n,ℓ=1

Dαpn(x)D
αpℓ(x)Φ(ξℓ, ξn)+

− 2

Q∑

n=1

N∑

j=1

u
(α)
j Dαpn(x)Φ(xj , ξn).

From Theorem 2.17 we know that Dα
2G(·, x) ∈ NΦ(Ω) and it can be written as (Theorem

2.3)

Dα
2G(y, x)−

Q∑

ℓ=1

Dα
2G(ξℓ, x)pℓ(y) = ⟨Dα

2G(·, x), G(·, y)⟩NΦ(Ω).

We can compute the second term in equation (4.8) as

N∑

j=1

u
(α)
j ⟨Dα

2G(·, x), G(·, xj)⟩NΦ(Ω) =
N∑

j=1

u
(α)
j

(
Dα

2G(xj , x)−
Q∑

ℓ=1

Dα
2G(ξℓ, x)pℓ(xj)

)
.
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If we apply Definition 2.5 to the previous equation we obtain

N∑

j=1

u
(α)
j Dα

2G(xj , x) =
N∑

j=1

u
(α)
j Dα

2Φ(xj , x)︸ ︷︷ ︸
Dα

1 Φ(x,xj)

−
N∑

j=1

Q∑

n=1

u
(α)
j Dαpn(x)Φ(xj , ξn)

and

N∑

j=1

Q∑

ℓ=1

u
(α)
j Dα

2G(ξℓ, x)pℓ(xj) =

N∑

j=1

Q∑

ℓ=1

u
(α)
j Dα

2Φ(ξℓ, x)pℓ(xj)+

−
N∑

j=1

Q∑

ℓ=1

Q∑

n=1

u
(α)
j Dαpn(x)Φ(ξℓ, ξn)pℓ(xj) =

=

Q∑

ℓ=1

u
(α)
j Dα

2Φ(ξℓ, x)D
αpℓ(x)−

Q∑

ℓ=1

Q∑

n=1

u
(α)
j Dαpn(x)Φ(ξℓ, ξn)D

αpℓ(x),

where we used the property of u(α) ∈ RN stated in the hypothesis.

Recalling Theorem 2.17 we have

Dα
1D

α
2G(y, x)−

Q∑

ℓ=1

Dα
2G(ξℓ, x)D

αpℓ(y) = ⟨Dα
2G(·, x), Dα

2G(·, y)⟩NΦ(Ω).

The first term of equation 4.8 becomes

⟨Dα
2G(·, x), Dα

2G(·, x)⟩NΦ(Ω) = Dα
1D

α
2G(x, x)−

Q∑

ℓ=1

Dα
2G(ξℓ, x)D

αpℓ(x).

If we apply Definition 2.5 to the previous equation we obtain

Dα
1D

α
2G(x, x) = Dα

1D
α
2Φ(x, x) −

Q∑

n=1

Dαpn(x)D
α
1Φ(x, ξn)︸ ︷︷ ︸

=Dα
2 Φ(ξn,x)

and

Q∑

ℓ=1

Dα
2G(ξℓ, x)D

αpℓ(x) =

Q∑

ℓ=1

Dα
2Φ(ξℓ, x)D

αpℓ(x)−
Q∑

ℓ=1

Q∑

n=1

Dαpn(x)D
αpℓ(x)Φ(ξℓ, ξn)

Remembering that Φ(x+hei, y)/h = Φ(y, x+hei)/h, we can prove by induction on |α| that
Dα

1Φ(x, y) = Dα
2Φ(y, x) holds.

We can achieve the result in the statement by summing up all the expressions we found.
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✷

If we restrict to positive definite kernels and α = 0 then we can read Theorem 4.2 as

Q(u) = Φ(x, x)− 2

N∑

j=1

ujΦ(x, xj) +

N∑

i,j=1

uiujΦ(xi, xj) =

=

∥∥∥∥∥∥
Φ(·, x)−

N∑

j=1

ujΦ(·, xj)

∥∥∥∥∥∥

2

NΦ(Ω)

.

Finally we can state an important fact that links the power function and the error.

Theorem 4.3 Let Ω ⊆ Rd be open. Suppose that Φ ∈ C2k(Ω×Ω) is a conditionally positive
definite kernel on Ω with respect to P ⊆ Ck(Ω). Suppose that X = {x1, . . . , xN} ⊆ Ω is
P-unisolvent. Denote the interpolant of f ∈ NΦ(Ω) on X by sf,X . Then for every x ∈ Ω
and every α ∈ Nd with |α| ≤ k the error between f and its interpolant can be bounded by

|Dα(f)(x)−Dα(sf,X)(x)| ≤ Pα
Φ,X(x)|f |NΦ(Ω).

Proof

From equation (4.4) we have that
∑N

j=1 p(xj)u
∗
j (x) = p(x) for each x ∈ Ω. If we use equation

(4.5) and we apply Theorem 2.3 to f ∈ NΦ(Ω) then

Dα(sf,X)(x) =

N∑

j=1

f(xj)D
α(u∗j )(x) =

=

N∑

j=1

(ΠP(f)(xj) + ⟨f,G(·, xj)⟩NΦ(Ω))D
α(u∗j )(x) =

= Dα(ΠP(f))(x) +

〈
f,

N∑

j=1

Dα(u∗j )(x)G(·, xj)
〉

NΦ(Ω)

.

If we apply Theorem 2.17 to f ∈ NΦ(Ω) then

Dα(f)(x) = Dα(ΠP(f))(x) + ⟨f,Dα
2 (G(·, x))⟩NΦ(Ω).

Combining these two equations we obtain

|Dα(f)(x)−Dα(sf,X)(x)| =

∣∣∣∣∣∣

〈
f,Dα

2 (G(·, x))−
N∑

j=1

Dα(u∗j )(x)G(·, xj)
〉

NΦ(Ω)

∣∣∣∣∣∣
≤

≤ |f |NΦ(Ω)

∣∣∣∣∣∣
Dα

2 (G(·, x))−
N∑

j=1

Dα(u∗j )(x)G(·, xj)

∣∣∣∣∣∣
NΦ(Ω)

.

We can conclude with Theorem 4.2 and equation (4.7).

✷
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The interpolation error depends on f through |f |NΦ(Ω) (independent ofX) and onX through
Pα
Φ,X (independent of f). If we can bound the power function Pα

Φ,X then we have an explicit
error estimates for f ∈ NΦ(Ω).

We show that the cardinal functions {u∗1, . . . , u∗N} (equation (4.2)) have a minimality prop-
erty.

Theorem 4.4 Let Ω ⊆ Rd be open. Suppose that Φ ∈ C2k(Ω×Ω) is a conditionally positive
definite kernel on Ω with respect to P ⊆ Ck(Ω). Suppose that X = {x1, . . . , xN} ⊆ Ω is
P-unisolvent. Define for x ∈ Ω and α ∈ Nd with |α| ≤ k the function Q : Rd → R by

Q(u) = Dα
1D

α
2Φ(x, x)− 2

N∑

j=1

ujD
α
1Φ(x, xj) +

N∑

i,j=1

uiujΦ(xi, xj) u ∈ RN .

The minimum of the function Q on the set

M =



u ∈ RN :

N∑

j=1

ujp(xj) = Dα(p)(x) for all p ∈ P





is given by the vector Dα(u∗)(x). In other words

(Pα
Φ,X(x))2 = Q(Dα(u∗)(x)) ≤ Q(u) for each u ∈M.

Proof

Using the notation of Theorem 4.1 we can rewrite Q as

Q(u) = Dα
1D

α
2Φ(x, x)− 2u⊤Dα(R)(x) + u⊤AΦ,Xu

and M becomes
M = {u ∈ RN : P⊤u = Dα(S)(x)}.

From equation (4.6) we state that M ̸= ∅. Since Φ is conditionally positive definite on Ω
then AΦ,X is positive definite on M0 = {u ∈ RN : P⊤u = 0}. Theorem 3.3 ensures the
existence and uniqueness of a minimum.

Define the Lagrange function L as

L(u, λ) = Dα
1D

α
2Φ(x, x)− 2u⊤Dα(R)(x) + u⊤AΦ,Xu+ λ⊤(P⊤u−Dα(S)(x))

and impose
∇uL(u∗, λ∗) = 0 and ∇λL(u∗, λ∗) = 0.

These imposed conditions give us

0 = −2Dα(R)(x) + 2AΦ,Xu∗ + Pλ∗

0 = P⊤u∗ −Dα(S)(x),
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that shows with λ∗ = 2v∗

AΦ,Xu∗ + Pv∗ = Dα(R)(x)

P⊤u∗ = Dα(S)(x),

By Theorem 2.1 and equation (4.6) we obtain that the unique solution is u∗ = Dα(u∗)(x)
and v∗ = Dα(v∗)(x).

✷

As a consequence of Theorem 4.4 we can bound the power function Pα
Φ,X(x) (Definition 4.1)

applying to Q (equation (4.7)) a vector ũ(α)(x) ∈ RN such that P⊤ũ(α)(x) = Dα(S)(x).

4.2 Scaling and power function

For our purposes it is useful to scale the (conditionally) positive definite functions we are
considering (equation (1.14)).

We state that
PΦδ ,X(x) = PΦ,X/δ(x/δ). (4.9)

If Φδ is conditionally positive definite with respect to P on Ω then Φ is conditionally positive
definite with respect to Pδ = {p(δ·) : p ∈ P} on Ω/δ.

Suppose that X = {x1, . . . , xN} ⊆ Ω are pairwise distinct points such that

N∑

j=1

αjp
(
δ
xj
δ

)
= 0⇔

N∑

j=1

αjp(xj) = 0

for all p ∈ P then, since Φδ is conditionally positive definite,

N∑

j,k=1

αjαkΦ

(
xj − xk

δ

)
> 0⇔

N∑

j,k=1

αjαkΦ
(xj
δ
− xk

δ

)
> 0.

We also remark that ifX = {x1, . . . , xN} ⊆ Ω is P-unisolvent thenX/δ = {x1/δ, . . . , xN/δ} ⊆
Ω/δ is Pδ-unisolvent. Fix p(δ·) ∈ Pδ with p ∈ P such that

p
(
δ
xi
δ

)
= 0 i = 1, . . . , N ⇒ p(xi) = 0 i = 1, . . . , N ⇒ p = 0⇒ p(δ·) = 0.

Let us fix some notation. From equation (4.2) the cardinal function of Φδ with respect to
X are

u∗j (x) =
N∑

i=1

α
(j)
i Φδ(x− xi) +

Q∑

k=1

β
(j)
k pk(x) =

N∑

i=1

α
(j)
i Φ

(
x− xi

δ

)
+

Q∑

k=1

β
(j)
k pk(x)
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for j = 1, . . . , N where (α(j), β(j)) ∈ RN+Q solves the system in equation (4.1).

We state that {u∗1(δ·), . . . , u∗N (δ·)} are the cardinal function of Φ with respect to X/δ be-
cause

u∗j (δ·) =
N∑

i=1

α
(j)
i Φ

(
· − xi

δ

)
+

Q∑

k=1

β
(j)
k pk(δ·)

︸ ︷︷ ︸
∈Pδ

for j = 1, . . . , N

and
u∗j
(
δ
xi
δ

)
= u∗j (xi) = δi,j .

Finally, from Definition (4.1) we get

(PΦδ ,X(x))2 = Φδ(0)− 2

N∑

j=1

u⋆j (x)Φδ(x− xj) +

N∑

i,j=1

u∗i (x)u
∗
j (x)Φδ(xi − xj) =

= Φ

(
0

δ

)
− 2

N∑

j=1

u⋆j (x)Φ

(
x− xj

δ

)
+

N∑

i,j=1

u∗i (x)u
∗
j (x)Φ

(
xi − xj

δ

)
=

= Φ(0)− 2

N∑

j=1

u⋆j

(
δ
x

δ

)
Φ
(x
δ
− xj

δ

)
+

N∑

i,j=1

u⋆i

(
δ
x

δ

)
u⋆j

(
δ
x

δ

)
Φ
(xi
δ
− xj

δ

)
=

=
(
PΦ,X

δ

(x
δ

))2

From Theorem 1.26 we have to take into account that the native space norm of NΦδ
(Ω)

varies with δ.

4.3 Improved error estimates

In Theorem 4.3 the difference between f and its interpolant sf,X at a point x ∈ Ω is bounded
by the power function PΦδ ,X(x) and the semi-norm |f |NΦ(Ω). We want to improve the error
estimates by getting rid of |f |NΦ(Ω).

If f ∈ NΦ(Ω) then f − sf,X ∈ NΦ(Ω) and it vanishes on X. So, sf−sf,X ,X = 0 with
Theorem 4.3 gives us

|f(x)− sf,X(x)| ≤ PΦ,X(x)|f − sf,X |NΦ(Ω). (4.10)

We restrict our analysis for positive definite kernel on a compact set Ω ⊆ Rd.

Theorem 4.5 Suppose that Φ is a symmetric positive definite kernel on a compact set
Ω ⊆ Rd. Then for every f ∈ T (L2(Ω)) we have

|f(x)− sf,X(x)| ≤ PΦ,X(x)∥PΦ,X∥L2(Ω)∥T−1(f)∥L2(Ω) for x ∈ Ω,

where T is defined in equation (2.18).
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Proof

Fix f = T (v) with v ∈ L2(Ω). By integrating the square of equation (4.10) we obtain

∥f − sf,X∥L2(Ω) ≤ |f − sf,X |NΦ(Ω)∥PΦ,X∥L2(Ω).

We remark that Theorem 2.8 and Theorem 2.12 give us

|f − sf,X |2NΦ(Ω) = ⟨f − sf,X , f − sf,X⟩NΦ(Ω) = ⟨f − sf,X , f⟩NΦ(Ω) =

= ⟨f − sf,X , T (v)⟩NΦ(Ω) = ⟨f − sf,X , v⟩L2(Ω) ≤
≤ ∥f − sf,X∥L2(Ω)∥v∥L2(Ω) ≤ |f − sf,X |NΦ(Ω)∥PΦ,X∥L2(Ω)∥v∥L2(Ω),

that proves
|f − sf,X |NΦ(Ω) ≤ ∥PΦ,X∥L2(Ω)∥v∥L2(Ω).

If we apply this inequality to equation (4.10) we can conclude.

✷

Suppose that we have an estimate for the power function PΦ,X of the form

PΦ,X(x) ≤ r(hX,Ω),

then Theorem 4.3 gives us

∥f − sf,X∥L∞(Ω) ≤ r(hX,Ω)|f |NΦ(Ω)

instead Theorem 4.5 gives us

∥f − sf,X∥L∞(Ω) ≤ r(hX,Ω)
2∥T−1(f)∥L2(Ω)

√
L(Ω), (4.11)

where L is the Lebesgue measure on Rd. We note that if we scale the function Φ with a
parameter δ (equation (1.14)) then the integral operator T (equation (2.18)) depends on δ.
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Chapter 5

Stability

Now we will briefly discuss the stability of the interpolation process with radial basis func-
tions [34, 35, 36, 37, 38, 39].

In this section we will work with a conditionally positive definite kernel Φ : Ω×Ω→ R with
respect to P. We will use the notation introduced in equation 2.2.

To study the stability of the interpolation process we introduce the following quantity:

λmin(AΦ,X) = inf
α∈Rd,P⊤α=0

α⊤AΦ,Xα

α⊤α
(5.1)

Suppose we have two functions f, f̃ : Ω→ Rd and consider (α, β), (α̃, β̃) the solutions of the
system in equation (2.2) with f and f̃ respectively. Then we have that

AΦ,X(α− α̃) + P (β − β̃) = f|X − f̃|X

with
P⊤(α− α̃) = 0.

We can write

(α− α̃)⊤AΦ,X(α− α̃) + (α− α̃)⊤P (β − β̃)︸ ︷︷ ︸
(β−β̃)⊤P⊤(α−α̃)=0

= (α− α̃)⊤(f|X − f̃|X),

that implies

∥α− α̃∥22λmin(AΦ,X) ≤ (α− α̃)⊤AΦ,X(α− α̃) =

= (α− α̃)⊤(f|X − f̃|X) ≤ ∥α− α̃∥2∥f|X − f̃|X∥2.

It is possible to conclude

∥α− α̃∥2 ≤
1

λmin(AΦ,X)
∥f|X − f̃|X∥2, (5.2)
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which explains why it is worth to study a lower bound of λmin(AΦ,X) to understand
the stability of the interpolation scheme. We note that in Theorem 3.3 we proved that
λmin(AΦ,X) > 0 since AΦ,X is positive definite on {x ∈ RN : P⊤x = 0}.

For now restrict our work for symmetric positive definite kernels. In this case the con-
dition number of the interpolation matrix AΦ,X is

cond(AΦ,X) = ∥AΦ,X∥2∥A−1
Φ,X∥2 =

λmax(AΦ,X)

λmin(AΦ,X)
,

where λmax(AΦ,X) and λmin(AΦ,X) denotes respectively the maximum and the minimum
eigenvalue of the matrix AΦ,X .

Suppose that v ∈ RN \ {0} is an eigenvector for the eigenvalue λmax(AΦ,X) then

N∑

j=1

Φ(xi, xj)vj = λmax(AΦ,X)vi for i = 1, . . . , N

and
N∑

j=1
j ̸=i

Φ(xi, xj)vj = (λmax(AΦ,X)− Φ(xi, xi))vi for i = 1, . . . , N.

There exists i ∈ {1, . . . , N} such that |vi| is maximal and strictly positive. We can write

|λmax(AΦ,X)− Φ(xi, xi)| ≤
N∑

j=1
j ̸=i

|Φ(xi, xj)|
|vj |
|vi|︸︷︷︸
≤1

≤
N∑

j=1
j ̸=i

|Φ(xi, xj)| ≤ N∥Φ∥L∞(Ω×Ω). (5.3)

The condition number of the interpolation matrix AΦ,X gives an intuition on the numerical
stability of the interpolation scheme.

If we consider X ⊆ Rd to be quasi-uniform (Definition 3.6) then from Proposition 3.6
we obtain that

λmax(AΦ,X) = O
(

1

hdX,Ω

)
.

5.1 Trade-off principle

In this section we will build a link between the smallest eigenvalue of the main part of the
interpolation matrix and the power function.

Theorem 5.1 If u∗1, . . . , u
∗
N are the cardinal functions defined in Theorem 4.1 then for all

x ∈ Ω \X
P 2
Φ,X(x)

λmin(AΦ,X∪{x})
≥ 1 +

N∑

j=1

|u∗j (x)|2.
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Proof

Let us fix some notation: u∗0(x) = −1 and x0 = x. Definition 4.1 gives

P 2
Φ,X(x) =

N∑

j,k=0

u∗j (x)u
∗
k(x)Φ(xj , xk)

with

p(x) =
N∑

j=1

p(xj)u
∗
j (x) for all p ∈ P ⇒

N∑

j=0

p(xj)u
∗
j (x) = 0 for all p ∈ P.

From equation 5.1 we obtain

P 2
Φ,X(x) ≥ λmin(AΦ,X∪{x})

N∑

j=0

|u∗j (x)|2 = λmin(AΦ,X∪{x})


1 +

N∑

j=1

|u∗j (x)|2



✷

The first consequence of Theorem 5.1 is

λmin(AΦ,X) ≤ min
1≤k≤N

P 2
Φ,X\{xk}(xk),

that with a scaling of Φ (equation (4.9)) holds

λmin(AΦδ ,X) ≤ min
1≤k≤N

P 2
Φ,Ω

δ
\{xk

δ }
(xk
δ

)
.

We can read these inequalities as: an upper-bound for λmin(AΦδ ,X) is the power function
and a lower bound for the power function is λmin(AΦδ ,X). Now we can understand the
trade-off principle because to guarantee a stable interpolation process we need λmin(AΦδ ,X)
to be large but this implies that the power function is large so the error estimates in Theo-
rem 4.3 is bad. Conversely, a small power function leads to an unstable interpolation scheme.

Theorem 5.1 gives us a bound for the Lebesgue function of the interpolation process with
conditionally positive definite kernels, indeed

∣∣∣∣∣∣

N∑

j=1

f(xj)u
∗
j (x)

∣∣∣∣∣∣
≤

N∑

j=1

|f(xj)||u∗j (x)| ≤ ∥f|X∥2∥u∗(x)∥2,

where we can bound ∥u∗(x)∥2 with

∥u∗(x)∥2 ≤
P 2
Φ,X(x)

λmin(AΦ,X∪{x})
− 1.
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5.2 Lower bounds for minimum eigenvalue

From numerical experiments it can be seen that the fill distance hX,Ω is not a good index to
measure stability. A point set X might have a big fill distance and the interpolation process
can be not well-conditioned: if we cover densely only a portion of Ω then the fill distance
can be large and a lot of points are close to each other.

It is more natural to bound λmin(AΦ,X) with the separation distance qX (Definition 3.5).

The idea to bound λmin(AΦ,X) follows from the following inequality:

N∑

j,k=1

αjαkΦ(xj , xk) ≥
N∑

j,k=1

αjαkΨ(xj , xk) ≥ λ∥α∥22, (5.4)

indeed λmin(AΦ,X) ≤ λ. Our goal is to find an appropriate positive definite kernel
Ψ : Ω× Ω→ R.

We focus on conditionally positive definite functions and we will see equation (5.4) from a
different perspective, so we need a different representation for Φ. It is necessary to introduce
some preliminary results.

Definition 5.1 The Schwartz space S [40] consists of all functions γ ∈ C∞(Rd) that satisfy

|xαDβ(γ)(x)| ≤ Cα,β,γ , x ∈ Rd,

for all multi-index α, β ∈ Nd with a constant Cα,β,γ independent of x ∈ Rd.

Definition 5.2 We say that a function f is slowly increasing if there exists a constant
m ∈ N such that f(x) = O∞(∥x∥m2 ).

Definition 5.3 For m ∈ N the set of all functions γ ∈ S (Definition 5.1) that satisfy
γ(ω) = O0(∥ω∥m2 ) will be denoted with Sm.

Definition 5.4 Suppose that Φ : Rd → C is continuous and slowly increasing. A measure
able function Φ̂ ∈ L2

loc
(Rd \ {0}) is called the generalized Fourier transform of Φ of order

m ∈ N if ∫

Rd

Φ(x)γ̂(x)dx =

∫

Rd

Φ̂(ω)γ(ω)dω

holds for all γ ∈ S2m.

Since O0(∥ω∥ℓ2) ⊆ O0(∥ω∥m2 ) for ℓ ≥ m then if Φ̂ has order m then it has also order ℓ.

Theorem 5.2 Suppose that Φ : Rd → C is continuous, slowly increasing and admits a
generalized Fourier transform Φ̂ ∈ C(Rd \ {0}) of order m ∈ N. Then Φ is conditionally
positive definite with respect to Πm−1(R

d) if and only if Φ̂ is non-negative and non-vanishing.
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Theorem 5.3 Suppose that Φ : Rd → C is continuous and slowly increasing. Φ admits a
non-negative and non-vanishing generalized Fourier transform Φ̂ ∈ C(Rd \ {0}) of order m.
Then for all pairwise distinct points x1, . . . , xN ∈ Rd we have

N∑

j,k=1

αjαkΦ(xj − xk) =
1

(2π)
d
2

∫

Rd

∣∣∣∣∣∣

N∑

j=1

αje
i⟨ω,xj⟩

∣∣∣∣∣∣

2

Φ̂(ω)dω,

if
∑N

j=1 αjp(xj) = 0 for all p ∈ Πm−1(R
d).

With Theorem 5.3 if Φ̂(ω) ≥ Ψ̂(ω) for ω ∈ Rd and the order of Ψ̂ is smaller than the order
of Φ̂ then equation (5.4) holds. To build Ψ we need some result on Fourier transform of
radial functions.

Definition 5.5 The Bessel function [41] of the first kind of order ν ∈ C is defined by

Jν(z) =
+∞∑

m=0

(−1)m(z/2)2m+ν

m!Γ(ν +m+ 1)

for z ∈ C \ {0}. Γ is the usual gamma function [42].

Theorem 5.4 If we denote for d ≥ 2 the unit sphere Sd−1 = {x ∈ Rd : ∥x∥2 = 1} then we
have, for x ∈ Rd ∫

Sd−1

ei⟨x,y⟩dS(y) = (2π)
d
2 ∥x∥−

d−2
2

2 J d−2
2
(∥x∥2).

Proof

Suppose that x ∈ Rd then there exists an orthogonal transformation R ∈ Od(R) such that
R(x) = ∥x∥2e1. By recalling the spherical coordinates y = σ(θ1, . . . , θd−1)

y1 = cos(θ1)

y2 = sin(θ1) cos(θ2)

y3 = sin(θ1) sin(θ2) cos(θ3)

...

yd−1 = sin(θ1) · · · sin(θd−2) cos(θd−1)

yd = sin(θ1) · · · sin(θd−2) sin(θd−1)

with θ1, . . . , θd−1 ∈ [0, π] and θd ∈ [0, 2π[ we obtain

dSd−1(θ1, . . . , θd−1) = sin(θ1)
d−2 sin(θ2)

d−3 · · · sin(θd−2)dθ1dθ2 · · · dθd−1.

By recalling that ⟨x,R(y)⟩ = ⟨R(x), y⟩ and R(v1×· · ·×vn−1) = R(v1)×· · ·×R(vn−1) since
R ∈ Od(R) if we parameterize Sd−1 with R ◦ σ then we obtain

∫

Sd−1

ei⟨x,y⟩dS(y) = |Sd−2|
∫ π

0
ei∥x∥2 cos(θ) sin(θ)d−2d θ,
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where

|Sd−2| = 2π
d−1
2

Γ
(
d−1
2

) .

We can continue with

∫ π

0
ei∥x∥2 cos(θ) sin(θ)d−2d θ =

∫ π

0

(
+∞∑

k=0

(i∥x∥2 cos(θ))k
k!

)
sin(θ)d−2d θ =

=
+∞∑

k=0

ik∥x∥k2
k!

∫ π

0
cos(θ)k sin(θ)d−2d θ

︸ ︷︷ ︸
ak

.

By induction we can prove that a2k+1 = 0 for k ∈ N and

a2k =
(2k)!Γ((d− 1)/2)Γ(1/2)

22kk!Γ((2k + d)/2)
.

We can conlude with Definition 5.5,

2π(d−1)/2

Γ((d− 1)/2)

+∞∑

k=0

i2k∥x∥2k2
(2k)!

(2k)!Γ((d− 1)/2)

π1/2

︷ ︸︸ ︷
Γ(1/2)

22kk!Γ((2k + d)/2)
=

=2πd/2
+∞∑

k=0

(−1)k
(∥x∥2

2

)2k 1

k!Γ((2k + d)/2)
=

=2πd/2

(∥x∥2
2

)−(d−2)/2 +∞∑

k=0

(−1)k
(∥x∥2

2

)2k+(d−2)/2 1

k!Γ(k + (d− 2)/2 + 1)
=

=(2π)d/2(∥x∥)−(d−2)/2J(d−2)/2(∥x∥2).
✷

Theorem 5.5 Suppose that Φ ∈ L1(Rd) ∩ C(Rd) is radial, i.e. Φ(x) = φ(∥x∥2) for each
x ∈ Rd. Then its Fourier transform Φ̂ is also radial, i.e. Φ̂(ω) = Fd(φ)(∥ω∥2) for ω ∈ Rd

with

Fd(φ)(r) = r−(d−2)/2

∫ ∞

0
φ(t)td/2J(d−2)/2(rt)d t.
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Proof

Suppose d ≥ 2. Using Theorem 5.4 we have

Φ̂(x) = (2π)−d/2

∫

Rd

Φ(ω)e−i⟨x,ω⟩dω = (2π)−d/2

∫

Rd

φ(∥ω∥2)e−i⟨x,ω⟩dω =

= (2π)−d/2

∫ +∞

0

(∫

∂B(0,t)
φ(∥ω∥2)e−i⟨x,ω⟩dS(ω)

)
d t =

= (2π)−d/2

∫ +∞

0
td−1

(∫

∂B(0,1)
φ(t∥ω∥2)e−i⟨x,tω⟩dS(ω)

)
d t =

= (2π)−d/2

∫ +∞

0
td−1φ(t)

(∫

∂B(0,1)
e−i⟨tx,ω⟩dS(ω)

)
d t =

= (2π)−d/2

∫ +∞

0
td−1φ(t)(2π)

d
2 ∥tx∥−

d−2
2

2 J d−2
2
(∥tx∥2)d t =

= ∥x∥−
d−2
2

2

∫ +∞

0
t
d
2φ(t)J d−2

2
(t∥x∥2)d t.

Instead for d = 1 we have

Φ̂(x) = (2π)−1/2

∫

R

Φ(ω)e−ixωdω = (2π)−1/2

∫

R

φ(|ω|)e−ixωdω =

= (2π)−1/2




∫

R>0

φ(|ω|)e−ixωdω +

∫

R<0

φ(|ω|)e−ixωdω

︸ ︷︷ ︸
change of variable:

ω 7→−ω




=

= (2π)−1/2

(∫

R>0

φ(|ω|)e−ixωdω +

∫

R>0

φ(|ω|)eixωdω
)

=

= (2π)−1/2

∫ ∞

0
φ(ω)(e−ixω + eixω)dω = (2π)−1/2

∫ ∞

0
φ(ω)2 cos(xω)dω =

=

(
2

π

) 1
2
∫ ∞

0
φ(t) cos(t|x|)d t = |x|1/2

∫ ∞

0
φ(t)t1/2

(
2

πt|x|

) 1
2

cos(t|x|)d t.

We can conclude if

J− 1
2
(t) =

(
2

πt

) 1
2

cos(t).
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By Definiton 5.5 we have

J− 1
2
(t) =

+∞∑

m=0

(−1)m(t/2)2m−1/2

m!Γ(m+ 1
2)

=

(
2

t

) 1
2

+∞∑

m=0

(−1)m(t/2)2m

m! Γ

(
m+

1

2

)

︸ ︷︷ ︸
(2m)!
4mm!

π1/2

=

=

(
2

tπ

) 1
2

+∞∑

m=0

(−1)mt2m

(2m)!
=

(
2

tπ

) 1
2

cos(t).

✷

Now we can start to build Ψ.

Theorem 5.6 Let χM be the characteristic function of B(0,M) with M > 0, i.e. χM (x) =
1 if ∥x∥ ≤M and χM (x) = 0 otherwise. Then

χ̂M (x) = (χM )∨(x) = M
d
2 ∥x∥−

d
2

2 J d
2
(M∥x∥2),

where Jν is a Bessel function of the first kind (Definition 5.5).

Proof

We note that χM is radial. First we prove that χ̂M (x) = (χM )∨(x):

χ̂M (x) = (2π)−d/2

∫

Rd

χM (ω)e−ixωdω =

= (2π)−d/2

∫

Rd

χM (−ω)eixωdω
︸ ︷︷ ︸

change of variable:
ω 7→−ω

= (2π)−d/2

∫

Rd

χM (ω)eixωdω = (χM )∨(x).

With Theorem 5.5 we can obtain

χ̂M (x) = ∥x∥−(d−2)/2
2

∫ M

0
td/2J(d−2)/2(∥x∥2t)d t.

Using Definition 5.5 we get

χ̂M (x) = ∥x∥−(d−2)/2
2

∫ M

0
td/2

(
+∞∑

m=0

(−1)m(∥x∥2t/2)2m+(d−2)/2

m!Γ((d− 2)/2 +m+ 1)

)
d t =

= ∥x∥−d/2+1
2

+∞∑

m=0

∫ M

0

(−1)m(∥x∥2t/2)2m+(d−2)/2

m!Γ(d/2 +m)
td/2d t =

= ∥x∥−d/2+1
2

+∞∑

m=0

(−1)m(∥x∥2/2)2m+(d−2)/2

m!Γ(d/2 +m)

∫ M

0
t2m+d−1d t =

= ∥x∥−d/2
2

+∞∑

m=0

(−1)m(∥x∥2/2)2m+d/2(1/2)−1

m!Γ(d/2 +m)

M2m+d

2m+ d
=

= Md/2∥x∥−d/2
2

+∞∑

m=0

(−1)m(M∥x∥2/2)2m+d/2

m!Γ(d/2 +m)(m+ d/2)
= M

d
2 ∥x∥−

d
2

2 J d
2
(M∥x∥2),
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because Γ(d/2 +m+ 1) = Γ(d/2 +m)(d/2 +m).

✷

Finaly we can state and prove the main result of this section.

Theorem 5.7 Let Φ be an even conditionally positive definite function that possesses a
positive Fourier transform Φ̂ ∈ C(Rd \ 0). With the function

φ0(M) = inf
∥ω∥2≤2M

Φ̂(ω)

a lower bound on λmin(AΦ,X) is given by

λmin(AΦ,X) ≥ φ0(M)

2Γ(d/2 + 1)

(
M

23/2

)d

for any M > 0 satisfying

M ≥ 12

qX

(
πΓ(d/2 + 1)2

9

)1/(d+1)

or, a fortiori,

M ≥ 6.38d

qX
.

Proof

Let us define Ψ in equation (5.4) through its Fourier transform in the following way

Ψ̂(ω) = Ψ̂M (ω) =
φ0(M)Γ(d/2 + 1)

2dMdπd/2
(χM ∗ χM )(ω).

We recall that

(χM ∗ χM )(ω) =

∫

Rd

χM (y)χM (ω − y)d y =

∫

B(ω,M)
χM (y)d y,

so if ∥ω∥2 > 2M and y ∈ B(ω,M) then ∥y∥2 ≥ ∥ω∥2︸ ︷︷ ︸
ω=ω−y+y

−∥ω − y∥2 > 2M −M = M .

We proved that Ψ̂ has support in B(0, 2M) and that

0 ≤ (χM ∗ χM )(ω) ≤ L(B(0,M)) ≤ L(B(0, 2M)),

where L is the Lebesgue measure on Rd, because 0 ≤ χM ≤ 1.

For ω in the support of Ψ̂, i.e. ∥ω∥2 ≤ 2M we can write

Ψ̂(ω) ≤ φ0(M)Γ(d/2 + 1)

2dMdπd/2
L(B(0, 2M))︸ ︷︷ ︸

πd/2

Γ(d/2+1)
(2M)d

= φ0(M) ≤ Φ̂(ω).
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It is time to write the radial function Ψ in an explicit form with Theorem 5.6:

ΨM (x) =
φ0(M)Γ(d/2 + 1)

2dMdπd/2
(χM ∗ χM )∨(x) =

=
φ0(M)Γ(d/2 + 1)

2d/2Md
|(χM )∨|2(x) =

=
φ0(M)Γ(d/2 + 1)

2d/2Md
Md∥x∥−d

2 J d
2
(M∥x∥2)2 =

=
φ0(M)Γ(d/2 + 1)

2d/2
∥x∥−d

2 J d
2
(M∥x∥2)2.

We call B ∈MN (R) the matrix whose components Bjk = ΨM (xj − xk) for j, k = 1, . . . , N .
By Gershgorin’s Theorem [43] there exists j ∈ {1, . . . , N} such that

ΨM (0)− λmin(B) ≤ |ΨM (0)− λmin(B)| ≤

≤
N∑

k=1
k ̸=j

|ΨM (xj − xk)| ≤ max
1≤j≤N

N∑

k=1
k ̸=j

|ΨM (xj − xk)|.

We can obtain for α ∈ RN that

α⊤Bα

α⊤α
≥ λmin(B) ≥ ΨM (0)− max

1≤j≤N

N∑

k=1
k ̸=j

|ΨM (xj − xk)|,

that is

N∑

j,k=1

αjαkΨM (xj − xk) ≥ ∥α∥22


ΨM (0)− max

1≤j≤N

N∑

k=1
k ̸=j

|ΨM (xj − xk)|


 .

Since

lim
r→0+

r−dJ2
d/2(r) =

1

2dΓ(d/2 + 1)2
,

then

ΨM (0) =
φ0(M)

Γ(d/2 + 1)2d/2

(
M

2

)d

=
φ0(M)

Γ(d/2 + 1)

(
M

23/2

)d

.

If we prove that

max
1≤j≤N

N∑

k=1
k ̸=j

|ΨM (xj − xk)| ≤
1

2
ΨM (0) (5.5)

then
N∑

j,k=1

αjαkΨM (xj − xk) ≥ ∥α∥22
1

2
ΨM (0),
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that is the thesis in our statement.

Without loss of generality we can suppose that the maximum in equation (5.5) is reached
in x1 = 0, i.e.

max
1≤j≤N

N∑

k=1
k ̸=j

|ΨM (xj − xk)| =
N∑

k=2

|ΨM (xk)|.

We define a sequence of disjoint sets that covers Rd as

En = {x ∈ Rd : nqX ≤ ∥x∥2 < (n+ 1)qX}.

for n ∈ N. Each xj for j = 2, . . . , N is contained in exactly one En with n ≥ 1, because
xj /∈ B(0, qX) = B(x1, qX) for j = 2, . . . , N since {B(xj , qX)}j=1,...,N are pairwise disjoint.

We claim that if xj ∈ En then

B(xj , qX) ⊆ {x ∈ Rd : (n− 1)qX ≤ ∥x∥2 < (n+ 2)qX}.

If y ∈ B(xj , qX) then ∥y∥2 ≤ ∥y − xj∥2 + ∥xj∥2 < qX + (n + 1)qX and nqX − qX ≤
∥xj∥2 − ∥xj − y∥2 ≤ ∥y∥2. We have the following inequality with the Lebesgue measure L

#{xj ∈ En}L(B(0, qX)) ≤ L(B(0, (n+ 2)qX))− L(B(0, (n− 1)qX)),

that let us to achieve

#{xj ∈ En} ≤ (n+ 2)d − (n− 1)d ≤ 3dnd−1.

The last inequality holds for induction on d:

For d = 1 we have n + 2 − n + 1 = 3. Let us suppose that it is true for d, we will
prove the inequality for d+ 1.

(n+ 2)d+1 − (n− 1)d+1 = (n+ 2)(n+ 2)d − (n− 1)(n− 1)d =

=n((n+ 2)d − (n− 1)d) + 2(n+ 2)d + (n− 1)d =

=n((n+ 2)d − (n− 1)d) + 2((n+ 2)d − (n− 1)d) + 3(n− 1)d ≤
≤3dnd + 2 · 3dnd−1 + 3(n− 1)d ≤ 3d+1nd,

where the last inequality holds because by dividing for 3dnd we have

1 +
2

n
+

3

3d

(
n− 1

n

)d

≤ 3,

that for n = 1 becomes 3 ≤ 3, instead for n ≥ 2 is

2

n
+

3

3d

(
n− 1

n

)d

≤ 2

n
+

(
n− 1

n

)d

≤ 2

n
+ 1 ≤ 1 + 1 = 2.
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Since

Jd/2(r)
2 ≤ 2d+2

rπ
for r > 0 and d ∈ N,

we have

|ΨM (x)| ≤ φ0(M)Γ(d/2 + 1)

2d/2
∥x∥−d

2

2d+2

M∥x∥2π
=

=
φ0(M)Γ(d/2 + 1)2d/2+2

Mπ
∥x∥−(d+1)

2 =

=
φ0(M)

Γ(d/2 + 1)

(
M

23/2

)d Γ(d/2 + 1)2

π
4

(
1

M∥x∥2

)d+1

2(1/2+3/2)d =

=
φ0(M)

Γ(d/2 + 1)

(
M

23/2

)d Γ(d/2 + 1)2

π

(
4

M∥x∥2

)d+1

=

= ΨM (0)
Γ(d/2 + 1)2

π

(
4

M∥x∥2

)d+1

.

If x ∈ En with n ≥ 1 then nqX ≤ ∥x∥2 gives us

|ΨM (x)| ≤ ΨM (0)
Γ(d/2 + 1)2

π

(
4

MnqX

)d+1

,

that implies with
∑∞

n=1 n
−2 = π2/6

N∑

k=2

|ΨM (xk)| ≤
+∞∑

n=1

#{xj ∈ En} sup
x∈En

|ΨM (x)| ≤

≤
+∞∑

n=1

3dnd−1ΨM (0)
Γ(d/2 + 1)2

π

(
4

MnqX

)d+1

≤

≤
+∞∑

n=1

n−2ΨM (0)
Γ(d/2 + 1)2

3π

(
12

MqX

)d+1

≤

≤ ΨM (0)
πΓ(d/2 + 1)2

18

(
12

MqX

)d+1

≤

≤ 1

2
ΨM (0),

the last inequality holds because

πΓ(d/2 + 1)2

18

(
12

MqX

)d+1

≤ 1

2
⇔ (MqX)d+1 ≥ πΓ(d/2 + 1)2

9
(12)d+1

is our hypothesis on M .

We can conclude with Stirling’s formula

1 ≤ Γ(x+ 1)√
2πxxxe−x

≤ e
1

12x ,
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which gives us

π

9
Γ

(
d

2
+ 1

)2

≤ π

9
2π

d

2

(
d

2

)d

e−de
1
3d ⇔ π

9
Γ

(
d

2
+ 1

)2

≤ π2

9
dd+1(2e)−de

1
3d .

If we apply (·) 1
d+1 to the inequality we get

(
π

9
Γ

(
d

2
+ 1

)2
) 1

d+1

≤ d

(
π2

9

) 1
d+1

(2e)−
d

d+1 e
1

3d(d+1)

Since d ≥ 1 we can write 1
d+1 ≤ 1

2 ≤ d
d+1 ,

π2

9 > 1, 2e > 1 and 6 ≤ (3d(d + 1)) from which
we obtain

(
π2

9

) 1
d+1

≤
(
π2

9

) 1
2

=
π

3
,
√
2e ≤ (2e)

d
d+1 and e

1
3d(d+1) ≤ e

1
6

that gives us

12

qX

(
π

9
Γ

(
d

2
+ 1

)2
) 1

d+1

≤ d

qX
12

π

3
√
2e

e
1
6 ≤ 6.38

d

qX
.

✷

If we define some constants that will depend on the space dimension d, Theorem 5.7 can be
read as

λmin(AΦ,X) ≥ Cdφ0

(
Md

qX

)
1

qdX

with

Md = 12

(
πΓ(d/2 + 1)2

9

)1/(d+1)

and Cd =
1

2Γ(d/2 + 1)

(
Md

23/2

)d

,

but Md can also be
Md = 6.38d.

Let us apply Theorem 5.7 to a conditionally positive definite function that satisfies the
hypothesis of Theorem 1.26. In the proof of Theorem 1.26 we proved that

Φ̂δ(ω) ≥
c1δ

d

(1 + δ2∥ω∥22)s
,

so

φδ
0

(
Md

qX

)
1

qdX
≥

c1

(
δ
qX

)d
(
1 + δ2

4M2
d

q2X

)s =
c1

(
δ
qX

)d
(
1 +Md

(
δ
qX

)2)s

with Md = 4M2
d . If we impose Kd = Md + 1 then since (Md + 1)x2 ≥ 1 +Mdx

2 for |x| ≥ 1
we obtain

φδ
0

(
Md

qX

)
1

qdX
≥ c1

Ks
d

(
δ

qX

)d−2s
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if δ ≥ qX . We can conclude

λmin(AΦδ ,X) ≥ Cdc1
Ks

d

(
δ

qX

)d−2s

, (5.6)

where the constants involved depend only on the space dimension d and on Φ, in particular
they do not depend on δ. We note that if Φ has compact support contained in B(0, 1) then
Φδ has support in B(0, δ). Under the condition δ < qX then, since B(xi, qX)∩B(xj , qX) = ∅
for i ̸= j, the matrix AΦδ ,X is diagonal with λmin(AΦδ ,X) = Φ(0).
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Chapter 6

Optimal recovery

The importance of radial basis function methods for interpolation arise quite naturally
from Mairhuber-Curtis theorem because with RBFs the interpolation space depends on the
interpolation points.

Definition 6.1 Supose that Ω ⊆ Rd contains at least N points. Let V ⊆ C(Ω) be an N -
dimensional linear space. Then V is called Haar space of dimension N on Ω if for arbitrary
distinct points x1, . . . , xN ∈ Ω and arbitrary f1, . . . , fN ∈ R there exists exactly one function
s ∈ V with s(xi) = fi for i = 1, . . . , N .

Theorem 6.1 (Mairhuber-Curtis [44, 45]) Suppose that Ω ⊆ Rd, d ≥ 2, contains an inte-
rior point. Then there exists no Haar space on Ω of dimension N ≥ 2.

Moreover, we studied in Theorem 1.10 that positive definite kernels appear when we deal
with reproducing-kernel Hilbert spaces. We will show that interpolants built with condi-
tionally positive definite functions are optimal. The goal of this section is to explain the
word “optimal”. In equation (4.3) we defined the interpolation space

VX =





N∑

j=1

αjΦ(·, xj) + p : p ∈ P and

Q∑

j=1

αjq(xj) = 0 for all q ∈ P



 .

Theorem 6.2 Suppose that Φ ∈ C(Ω × Ω) is a conditionally positive definite kernel with
respect to the finite-dimensional space P ⊆ C(Ω). Suppose that X = {x1, . . . , xN} is P-
unisolvent and that f ∈ NΦ(Ω). Then the interpolant sf,X is the best approximation to f
in VX with respect to the native space (semi-)norm, i.e.

|f − sf,X |NΦ(Ω) ≤ |f − s|NΦ(Ω)

for each s ∈ VX . Hence, sf,X is the orthogonal projection of f onto VX (Definition 1.2).
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Proof

From Theorem 2.8 we get

|f − s|2NΦ(Ω) = |f − sf,X + sf,X − s|2NΦ(Ω) =

= |f − sf,X |2NΦ(Ω) + | sf,X − s︸ ︷︷ ︸
∈VX

|2NΦ(Ω) ≥ |f − sf,X |2NΦ(Ω).

✷

Note that for conditionally positive definite function if we add to sf,X and element of P
then

|f − sf,X |NΦ(Ω) = |f − sf,X − p|NΦ(Ω) for each p ∈ P,
because P is the null space of ⟨·, ·⟩NΦ(Ω). We can avoid the non-uniqueness of the orthogonal
projection by changing the inner-product (Theorem 2.5). The interpolant is not only an
orthogonal projection, it minimizes also the native space (semi-)norm.

Theorem 6.3 Suppose that Φ ∈ C(Ω × Ω) is a conditionally positive definite kernel with
respect to the finite-dimensional space P ⊆ C(Ω) and that X = {x1, . . . , xN} is P-unisolvent.
Fix f1, . . . , fN ∈ R then the interpolant sf,X has minimal (semi-)norm | · |NΦ(Ω) under all
functions s ∈ NΦ(Ω) that interpolates {f1, . . . , fN} on X, i.e.

|sf,X |NΦ(Ω) = min{|s|NΦ(Ω) : s ∈ NΦ(Ω) such that s(xj) = fj for j = 1, . . . , N}.

Proof

The iterpolant sf,X ∈ VX , so it admits the form sf,X = λx(Φ(·, x))+q with λ =
∑N

j=1 αjδxj ∈
LP(Ω) and q ∈ P (equation 2.12).

From equation 2.17 we obtain for v ∈ NΦ(Ω) such that v(xj) = 0 for j = 1, . . . , N

0 =
N∑

j=1

αjv(xj) = λ(v) =

〈
v,

N∑

j=1

αjΦ(·, xj)
〉

NΦ(Ω)

=

= ⟨v, λx(Φ(·, x))⟩NΦ(Ω) = ⟨v, λx(Φ(·, x)) + q⟩NΦ(Ω) − ⟨v, q⟩NΦ(Ω)︸ ︷︷ ︸
=0

=

= ⟨v, sf,X⟩NΦ(Ω).

The chain of inequality holds because q ∈ P is in the null space of ⟨·, ·⟩NΦ(Ω).

We can conclude with Pythagorean theorem, indeed

|s|2NΦ(Ω) = |s− sf,X + sf,X |2NΦ(Ω) = | s− sf,X︸ ︷︷ ︸
(s−sf,X)|X=0

|2NΦ(Ω) + |sf,X |2NΦ(Ω) ≥ |sf,X |2NΦ(Ω),

for every s ∈ NΦ(Ω) such that s(xj) = fj for j = 1, . . . , N .
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✷

The last minimal property for radial basis function interpolant involves the cardianal func-
tion of Theorem 4.1. By equation (4.5) we can write the interpolat in cardinal form

sf,X(x) =
N∑

j=1

f(xj)u
∗
j (x).

Theorem 6.4 Suppose that Φ ∈ C2k(Ω × Ω) is a conditionally positive definite kernel
with respect to the finite-dimensional space P ⊆ Ck(Ω) and that X = {x1, . . . , xN} is P-
unisolvent. Fix x ∈ Ω and α ∈ Nd with |α| ≤ k then Dα(u∗)(x) is the solution of the
minimization problem

inf
u∈RN

∑N
j=1 ujp(xj)=Dαp(x)

sup
f∈NΦ(Ω)
|f |NΦ(Ω)=1

∣∣∣∣∣∣
Dα(f)(x)−

N∑

j=1

ujf(xj)

∣∣∣∣∣∣
.

Proof

Fix f ∈ NΦ(Ω). If we apply to Dα(f)(x) Theorem 2.17 and to {f(xj)}j=1,...,N Theorem 2.3
then

Dα(f)(x)−
N∑

j=1

ujf(xj) = Dα(ΠP(f))(x) + ⟨f,Dα
2 (G(·, x))⟩NΦ(Ω)+

−
N∑

j=1

ujΠP(f)(xj)

︸ ︷︷ ︸
Dα(ΠP (f))(x)

−
N∑

j=1

uj⟨f,G(·, xj)⟩NΦ(Ω) =

=

〈
f,Dα

2 (G(·, x))−
N∑

j=1

ujG(·, xj)
〉

NΦ(Ω)

,

from which we obtain∣∣∣∣∣∣
Dα(f)(x)−

N∑

j=1

ujf(xj)

∣∣∣∣∣∣
≤ |f |NΦ(Ω)

∣∣∣∣∣∣
Dα

2 (G(·, x))−
N∑

j=1

ujG(·, xj)

∣∣∣∣∣∣
NΦ(Ω)

.

We can conclude with Theorem 4.2 and Theorem 4.4

sup
f∈NΦ(Ω)
|f |NΦ(Ω)=1

∣∣∣∣∣∣
Dα(f)(x)−

N∑

j=1

ujf(xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Dα

2 (G(·, x))−
N∑

j=1

ujG(·, xj)

∣∣∣∣∣∣
NΦ(Ω)

=
√
Q(u).

The first equality holds if we choose

f(·) =
Dα

2 (G(·, x))−∑N
j=1 ujG(·, xj)∣∣∣Dα

2 (G(·, x))−∑N
j=1 ujG(·, xj)

∣∣∣
NΦ(Ω)

.

✷
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If we consider optimality from an abstract point of view [46, 47], we can show that inter-
polation with radial basis functions is an optimal algorithm.

Let U,V and W be three normed linear spaces. Let K ⊆ U. We assume that we have
some information on the element of K through the linear mapping I : U→ V, called infor-
mation operator. We have another linear operator T : U→W, called target operator. Our
goal is to reconstruct for each x ∈ K the target T (x) ∈W from the information I(x) ∈ V.
In a more mathematical way, we want to find a map, called algorithm, A : I(K) ⊆ V→W

that minimizes
inf
A

sup
x∈K
∥A(I(x))− T (x)∥W. (6.1)

If A∗ minimizes the quantity in equation (6.1) then A∗ is called optimal algorithm (it can
be not linear).

K ⊆ U I(K) ⊆ V

W

I

T
A

In this general setting we can give a sufficient condition on an algorithm A : I(K) ⊆ V→W

to be optimal.

Theorem 6.5 Suppose that K is symmetric, i.e. for each x ∈ K then −x ∈ K. If there
exists a map F : I(K)→ U such that for x ∈ K

• x− F (I(x)) ∈ K

• I(x− F (I(x))) = 0

then T ◦ F : I(K)→W is an optimal algorithm.

Proof

Fix x ∈ K such that I(x) = 0, then using the linearity I(−x) = −I(x) = 0 with −x ∈ K, by
symmetry of K. With such x ∈ K we have, for an arbitrary algorithm A : I(K) ⊆ V→W,

∥T (x)∥W =
1

2
∥T (x)−A(0) + T (x) +A(0)∥W ≤

≤ 1

2
(∥T (x)−A(0)∥W + ∥T (x) +A(0)∥W) ≤

≤ max{∥T (x)−A(0)∥W, ∥T (x) +A(0)∥W} =
= max{∥T (x)−A(I(x))∥W, ∥T (x) +A(I(−x))∥W} T linear

=

= max{∥T (x)−A(I(x))∥W, ∥ − T (−x) +A(I(−x))∥W} ≤
≤ sup

y∈K
∥A(I(y))− T (y)∥W.
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We proved that

sup{∥T (x)∥W : x ∈ K, I(x) = 0} ≤ inf
A

sup
y∈K
∥A(I(y))− T (y)∥W.

We compute, with linearity of T ,

sup
y∈K
∥T ◦ F (I(y))− T (y)∥W = sup

y∈K
∥T (F (I(y))− y)∥W ≤ sup{∥T (x)∥W : x ∈ K, I(x) = 0}

by symmetry of K and hypothesis.

✷

K ⊆ U I(K) ⊆ V

W

I

T

A

F

Theorem 6.5 seems difficult to apply because T ◦ F involves the target operator, which is
unknown.

We give some examples of application of Theorem 6.5 which are useful for our purposes.

We fix U and W to be the native space NΦ(Ω) of a conditionally positive definite ker-
nel Φ : Ω × Ω → R with respect to P. The target map T : U → W is the identity and the
information operator I : U→ V = RN is given by f 7−→ f|X with X = {x1, . . . , xN} ⊆ Ω a
P-unisolvent set of distinct points. For us K is equals to BNΦ(Ω)(0, 1).

Theorem 6.6 Among all maps A : NΦ(Ω)|X → NΦ(Ω), interpolation on X is optimal, i.e.
it minimizes

inf
A

sup
f∈BNΦ(Ω)(0,1)

∥A(f|X)− f∥NΦ(Ω).

Proof

To apply Theorem 6.5 we define as F : RN → NΦ(Ω) by f = (f1, . . . , fN ) 7−→ sf,X . With
this definition we have that

I(f) = (f(x1), . . . , f(xN ))⊤ = I(sf,X) = I(F ((f(x1), . . . , f(xN ))⊤)) = I(F (I(f)))
and

|f − F (I(f))|NΦ(Ω) = |f − sf,X |NΦ(Ω)

Theorem 2.9
≤ |f |NΦ(Ω) ≤ 1,

for f ∈ BNΦ(Ω)(0, 1). We can finish by showing that T ◦ F is the interpolation operator:

T (F (f)) = T (sf,X) = sf,X .

✷
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By keeping the same notation we defined above and changingW to be R and T : NΦ(Ω)→ R

to be the point evaluation functional at x ∈ Ω we can state the following:

Theorem 6.7 Among all maps A : NΦ(Ω)|X → R, the point evaluation at x ∈ Ω of the
interpolant on X is optimal, i.e. it minimizes

inf
A

sup
f∈BNΦ(Ω)(0,1)

|A(f|X)− f(x)|.

Proof

The proof is equivalent to the proof of Theorem 6.6. We can conclude the proof by showing
that T ◦ F is the evaluation at x ∈ Ω of the interpolant:

T (F (f)) = T (sf,X) = sf,X(x).

✷
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Chapter 7

Analyzing the convergence of
RL-RBF method

The purpose of this section is to generalize the findings of [2] and analyze the proofs in this
new context.

7.1 Quasi-uniform Shepard method

The key points of the proofs in [2] suggest this more general definition.

Definition 7.1 Fix a decreasing function φ : R≥0 → R such that limn→+∞
φ(n+1)
φ(n) exists

and it is strictly smaller than 1. A process that defines, for every quasi-uniform set X =
{x1, . . . , xN} ⊆ Ω with respect to cqu, a family of functions uj = uXj : Ω→ R for 1 ≤ j ≤ N
is a quasi-uniform Shepard method with respect to φ if there exists constants h0, C, c > 0
such that

•
∑N

j=1 uj(x) ≥ c for all x ∈ Ω,

• |uj(x)| ≤ Cφ
(
∥x−xj∥2

qX

)
for all x ∈ Ω and j = 1, . . . , N ,

provided hX,Ω ≤ h0.

The process in the Definition 7.1 naturally defines a quasi-interpolation scheme for f ∈ C(Ω)
with constant reproduction as

zf,X(x) =

∑N
j=1 f(xj)uj(x)∑N

j=1 uj(x)
. (7.1)

The quasi-interpolant is well-defined because of the condition on the denominator stated
in Definition 7.1 and if k ∈ R then zk,X = k. The process is interpolatory if the functions
{uj}j=1,...,N are cardinal, i.e. uj(xi) = δi,j for i, j = 1, . . . , N .
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We claim that this quasi-interpolation process admits linear convergence with respect to
hX,Ω, under suitable assumption on the domain Ω, as Shepard method with compactly
supported basis functions (Theorem 3.1,Theorem 3.7).

The following result proves the stability of the method and it will be useful to prove con-
vergence.

Theorem 7.1 Suppose that X = {x1, . . . , xN} ⊆ Rd is a quasi-uniform data set with
respect to cqu and {u1, . . . , uN} is given by a quasi-uniform Shepard process with respect to
φ (Definition 7.1) then for every ℓ ∈ N there exists a constant K = K(ℓ, C, φ, d) such that

N∑

j=1

∥x− xj∥ℓ2|uj(x)| ≤ KhℓX,Ω for x ∈ Ω.

Proof

Fix x ∈ Ω. We define a sequence of sets {En}n∈N that covers Rd as

En = {y ∈ Rd : nqX ≤ ∥y − x∥2 ≤ (n+ 1)qX}.

We note that if xj ∈ En then

B(xj , qX) ⊆ {y ∈ Rd : (n− 1)qX ≤ ∥y − x∥2 ≤ (n+ 2)qX},

because if y ∈ B(xj , qX) then nqX − qX ≤ ∥xj − x∥2 − ∥xj − y∥2 ≤ ∥y − x∥2 ≤ ∥y − xj∥2 +
∥xj − x∥ ≤ qX + (n+ 1)qX . Since {B(xj , qX)}j=1,...,N are pairwise disjoint

⋃

j:xj∈En

B(xj , qX) ⊆ B(x, (n+ 2)qX) \B(x, (n− 1)qX)

a volume comparison as in Theorem 5.7 gives for n ≥ 1

#{xj : xj ∈ En} ≤ (n+ 2)d − (n− 1)d ≤ 3dnd−1 ≤ 3d(n+ 1)d−1,

that holds also for n = 0 because 2d ≤ 3d.

By remarking that if xj ∈ En then n ≤ ∥xj−x∥2
qX

and if we split the sum over the sets
{En}n∈N we obtain

N∑

j=1

∥x− xj∥ℓ2|uj(x)| ≤
+∞∑

n=0

∑

xj∈En

∥x− xj∥ℓ2|uj(x)| ≤
+∞∑

n=0

∑

xj∈En

∥x− xj∥ℓ2Cφ

(∥x− xj∥2
qX

)
≤

≤
+∞∑

n=0

∑

xj∈En

∥x− xj∥ℓ2Cφ(n) ≤
+∞∑

n=0

∑

xj∈En

(n+ 1)ℓqℓXCφ(n) ≤

≤
+∞∑

n=0

3dC(n+ 1)d+ℓ−1qℓXφ(n) ≤ hℓX,Ω 3dC

+∞∑

n=0

(n+ 1)d+ℓ−1φ(n)

︸ ︷︷ ︸
K

.
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The series is convergent because of the ratio test:

(n+ 2)d+ℓ−1φ(n+ 1)

(n+ 1)d+ℓ−1φ(n)
=

(
n+ 2

n+ 1

)d+ℓ−1 φ(n+ 1)

φ(n)

n→+∞−−−−−→ lim
n→+∞

φ(n+ 1)

φ(n)
< 1.

✷

We note that the hypothesis of X to be quasi-uniform is not necessary in this proof, but it
will be fundamental for a convergence result. By Theorem 7.1 we remark that the Lebesgue
function of the quasi-interpolation scheme in equation (7.1) is uniformly bounded by

N∑

j=1

|uj(x)|
|∑N

i=1 ui(x)|
≤ 3dC

c

+∞∑

n=0

(n+ 1)d−1φ(n),

which show that the scheme is stable and by tuning the parameters of the method C, c and
φ it is possible to reach a better stability.

Before proceeding to the proof of convergence we have to add some hypotheses on the
domain Ω.

Definition 7.2 Let Ω be a subset of Rd and f : Ω→ R then we call modulus of continuity
of f the following function

ωf (δ) = sup{|f(x)− f(y)| : x, y ∈ Ω, ∥x− y∥2 ≤ δ}.

Theorem 7.2 [48] Let Ω ⊆ Rd and suppose that there exists γ ≥ 1 such that any two points
x, y ∈ Ω can be joined with a rectifiable curve Γ ⊆ Ω with length |Γ| ≤ γ∥x − y∥2, then if
0 < ε < δ

ωf (δ) ≤ 2⌈γ⌉δ
ε
ωf (ε).

Proof

Since {]mε, (m + 1)ε]}m∈N covers R>0 then there exists m ∈ N \ {0} such that mε < δ ≤
(m + 1)ε (m = 0 implies δ ≤ ε, that is a contradiction). If we prove that ωf ((m + 1)ε) ≤
⌈γ⌉(m+ 1)ωf (ε) then we can conclude because

ωf (δ) ≤ ωf ((m+ 1)ε) ≤ ⌈γ⌉(m+ 1)ωf (ε) ≤ 2⌈γ⌉δ
ε
ωf (ε),

the last inequality hold because

ε(m+ 1) ≤ ε2m ≤ 2δ.

Let us fix x, y ∈ Ω such that ∥x−y∥2 ≤ (m+1)ε and a rectifiable curve Γ in Ω joining x and
y with |Γ| ≤ γ∥x− y∥2 ≤ ⌈γ⌉∥x− y∥2. We can parameterize Γ with a continuous function
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x : [0, |Γ|]→ Ω such that the length of the curve |x|[s,s′]| is |s′ − s| for |Γ| ≥ s′ > s ≥ 0 and
x(0) = y, x(|Γ|) = x. We define the following set of points {s0, . . . , s⌈γ⌉(m+1)} ⊆ [0, |Γ|] as

si = i
|Γ|

⌈γ⌉(m+ 1)
for i = 0, . . . , ⌈γ⌉(m+ 1).

We claim that si − si−1 ≤ ε because

|Γ|
⌈γ⌉(m+ 1)

≤ ⌈γ⌉∥x− y∥2
⌈γ⌉(m+ 1)

≤ ε.

Finally,

|f(x)− f(y)| = |f(x(|Γ|))− f(x(0))| ≤
⌈γ⌉(m+1)∑

i=1

|f(x(si))− f(x(si−1))| ≤ ⌈γ⌉(m+ 1)ωf (ε),

where the last inequality holds because ∥x(si)− x(si−1)∥2 ≤ |x|[si−1,si]| ≤ |si− si−1| ≤ ε for
i = 1, . . . , ⌈γ⌉(m+ 1).

✷

Theorem 7.3 Suppose that X = {x1, . . . , xN} ⊆ Ω is a set of distinct points and fix x ∈ Ω
then

#{xj : ∥x− xj∥2 ≤ δ} ≤
(
1 +

δ

qX

)d

.

Proof

We claim that if ∥xj −x∥2 ≤ δ for a j ∈ {1, . . . , N} then B(xj , qX) ⊆ B(x, qX + δ), because
if y ∈ B(xj , qX) then ∥y − x∥2 ≤ ∥y − xj∥2 + ∥xj − x∥ < qX + δ. Since {B(xj , qX)}j=1,...,N

are pairwise disjoint a volume comparison gives us:

⋃

j:∥xj−x∥2≤δ

B(xj , qX) ⊆ B(x, qX + δ),

that implies
#{xj : ∥x− xj∥2 ≤ δ}qdX ≤ (qX + δ)d.

✷

Theorem 7.4 Suppose that X = {x1, . . . , xN} ⊆ Ω is a quasi-uniform data set with respect
to cqu and {u1, . . . , uN} is given by a quasi-uniform Shepard process with respect to φ. Fix
r0 > 0 and define Ω∗ to be the closure

⋃
x∈ΩB(x, r0). If f ∈ C1(Ω∗) and Ω satisfy the

hypothesis of Theorem 7.2 then there exists a constant K = K(C, c, φ, cqu, d,Ω) such that

∥f − zf,X∥L∞(Ω) ≤ KhX,Ω∥f∥C1(Ω∗),

for hX,Ω < min{r0, h0}.
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Proof

By the constant reproduction property of the scheme in equation (7.1) we have for x ∈ Ω

|f(x)− zf,X(x)| =
∣∣∣∣∣f(x)−

∑N
j=1 f(xj)uj(x)∑N

j=1 uj(x)

∣∣∣∣∣ =
∣∣∣∣∣

∑N
j=1(f(x)− f(xj))uj(x)

∑N
j=1 uj(x)

∣∣∣∣∣ ≤

≤1

c

N∑

j=1

|f(x)− f(xj)||uj(x)| ≤

≤1

c

∑

j:∥x−xj∥2≤hX,Ω

|f(x)− f(xj)||uj(x)|+
1

c

∑

j:∥x−xj∥2>hX,Ω

|f(x)− f(xj)||uj(x)| ≤

≤1

c

∑

j:∥x−xj∥2≤hX,Ω

ωf (hX,Ω) |uj(x)|︸ ︷︷ ︸
≤Cφ(0)

+
1

c

∑

j:∥x−xj∥2>hX,Ω

ωf (∥x− xj∥2)|uj(x)|.

If we apply Theorem 7.3 to the first sum and Theorem 7.2 to the second sum we have

|f(x)− zf,X(x)| ≤ 1

c

∑

j:∥x−xj∥2≤hX,Ω

ωf (hX,Ω) |uj(x)|︸ ︷︷ ︸
≤Cφ(0)

+
1

c

∑

j:∥x−xj∥2>hX,Ω

ωf (∥x− xj∥2)|uj(x)| ≤

≤1

c
Cφ(0)ωf (hX,Ω)

(
1 +

hX,Ω

qX

)d

+
1

c

∑

j:∥x−xj∥2>hX,Ω

2⌈γ⌉∥x− xj∥2
hX,Ω

ωf (hX,Ω)|uj(x)| ≤

≤ωf (hX,Ω)


1

c
Cφ(0)(1 + cqu)

d +
2⌈γ⌉
hX,Ωc

N∑

j=1

∥x− xj∥2|uj(x)|


 ≤

≤ωf (hX,Ω)
1

c
max{Cφ(0)(1 + cqu)

d, 2⌈γ⌉}


1 +

1

hX,Ω

N∑

j=1

∥x− xj∥2|uj(x)|


 ≤

≤ωf (hX,Ω)
1

c
max{Cφ(0)(1 + cqu)

d, 2⌈γ⌉}(1 +K(1, C, φ, d))
︸ ︷︷ ︸

K

,

where the last inequality holds for Theorem 7.1.

We can conclude by remarking ωf (hX,Ω) ≤ hX,Ω∥f∥C1(Ω∗), because if x, y ∈ Ω with ∥x −
y∥2 ≤ hX,Ω then by defining q : [0, 1] → R as q(t) = f(x + t(y − x)) for t ∈ [0, 1] and
applying Lagrange Theorem we have

f(y)− f(x) =
q(1)− q(0)

1− 0
=

d q

d t
(ξ) = ∇f(x+ ξ(y − x)) · (y − x),

with x+ ξ(y − x) ∈ Ω∗ since ∥x+ ξ(y − x)− x∥2 = |ξ|∥y − x∥2 ≤ hX,Ω < r0.

✷
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7.1.1 An example for quasi-uniform Shepard method

The goal of this section is to build a method that satisfies the hypothesis of Definition 7.1.

Let us start by fixing a positive definite function Φ : Rd → R that satisfy the hypothe-
sis of Theorem 1.26 with support in the closure of the unit ball B(0, 1). It is important in
this construction to consider the scaled version of Φ with a parameter δ ∈]0, 1[.

Since we work in the quasi-uniform setting of Definition 3.6 then we have

qX ≤ hX,Ω ≤ cquqX

and we assume that there exists constants γ ∈]0, 1[ and cγ > 1 such that

γcγhX,Ω ≤ δ ≤ cγhX,Ω, (7.2)

which becomes for quasi-uniformity of X

γcγqX ≤ δ ≤ cγcquqX . (7.3)

If we suppose that δ ≥ hX,Ω this implies that every x ∈ Ω is in the support of at least one of
the functions {Φδ(· − xj)}j=1,...,N , because there exists j ∈ {1, . . . , N} such that ∥x− xj∥2
is minimal that implies ∥x− xj∥2 ≤ hX,Ω ≤ δ.

For each quasi-uniform set X = {x1, . . . , xN} with respect to cqu we choose {u1, . . . , uN} of
the Definition 7.1 to be the cardinal functions of Φδ with respect to X (Theorem 4.1).

To continue we analyse the following theorem.

Theorem 7.5 Suppose that Φ ∈ L1(Rd) ∩ C(Rd) has support in B(0, 1) and that satisfies

c1(1 + ∥ω∥22)−s ≤ Φ̂(ω) ≤ c2(1 + ∥ω∥22)−s

with s > d
2 and two constant 0 < c1 ≤ c2. If X = {x1, . . . , xN} is a set of distinct points

then, under the condition δ ≥ qX , we have

∥A−1
Φδ,X
∥2 ≤ C(Φ, d)

(
δ

qX

)2s−d

and ∥AΦδ ,X∥2 ≤
(
1 +

δ

qX

)d

Φ(0),

that implies

cond2(AΦδ ,X) ≤ C(Φ, d)Φ(0)

(
δ

qX

)2s−d(
1 +

δ

qX

)d

.

Proof

The first inequality is a consequence of equation (5.6), indeed

∥A−1
Φδ ,X
∥2 =

1

λmin(AΦδ ,X)
≤ C(Φ, d)

(
δ

qX

)2s−d

.
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From equation (5.3) we have that there exists i ∈ {1, . . . , N} such that

λmax(AΦδ ,X)− Φ(0) ≤ |λmax(AΦδ ,X)− Φδ(0)| ≤
N∑

j=1
j ̸=i

|Φδ(xi − xj)| =

=

N∑

j:∥xi−xj∥≤δ
j ̸=i

|Φδ(xi − xj)| ≤
((

1 +
δ

qX

)d

− 1

)
Φ(0),

that conclude the proof since ∥AΦδ ,X∥2 = λmax(AΦδ ,X).

✷

First of all, since we are working in a quasi-uniform setting, we state that the construction of
the cardinal functions {u1, . . . , uN} has a reasonable computational cost and it is stable. The
matrix AΦ,X in Theorem 4.1 is sparse and each row has an upper bound on the maximum
number of non-zero element: if we apply Theorem 7.3 for j = 1, . . . , N we have

#{xk : ∥xk − xj∥2 ≤ δ} ≤
(
1 +

δ

qX

)d

≤ (1 + cγcqu)
d

and with Theorem 7.5 we achieve

cond2(AΦδ ,X) ≤ C(Φ, d)Φ(0)

(
δ

qX

)2s−d(
1 +

δ

qX

)d

≤

≤ C(Φ, d)Φ(0)(cγcqu)
2s−d(1 + cγcqu)

d,

(7.4)

furthermore, the stability of the interpolation is guaranteed by equation (5.2) since

1

λmin(AΦδ ,X)
= ∥A−1

Φδ ,X
∥2 ≤ C(Φ, d)

(
δ

qX

)2s−d

≤ C(Φ, d)(cγcqu)
2s−d. (7.5)

All these constants are independent of the cardinality of X, that lead the interpolation
scheme to be computationally efficient in the stationary case (the radius of the support δ
is proportional to the separation distance qX).

Another sign of efficiency is given by the point evaluation at x ∈ Ω of the interpolant
of a function f : Ω→ Rd because (equation (2.1))

sf,X(x) =

N∑

j=1

αjΦδ(x− xj) =
∑

j:∥x−xj∥2≤δ

αjΦδ(x− xj)

and the number of non-zero summands are bounded by (1 + cγcqu)
d (Theorem 7.3).

Our goal is to prove that for i = 1, . . . , N

|ui(x)| ≤ K(Φ, d, cγcqu)e
−ν(Φ,d,cγcqu)

∥x−xi∥2
qX .
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To prove this we need a more general definition of matrix, we need a different way to
index its components.

Definition 7.3 We say that a multivariate matrix A is a finitely supported function A :
Zd × Zd → R. If we denote with Aij the scalar A(i, j) we have a natural extension of
symmetry and positive definiteness.

• A is symmetric if Aij = Aji for all i, j ∈ Zd,

• A is positive definite if ∑

i,j∈Zd

yiyjAij > 0

for every finitely supported non-zero real sequence {yj}j∈Zd such that the support of
(yiyj)i,j∈Zd is contained in the support of A

• A is R-banded with R > 0 if Aij = 0 whenever ∥i− k∥2 > R with i, j ∈ Zd.

It has a fundamental importance for our work the following result of [49].

Theorem 7.6 Let A = (Aij)i,j∈Zd be a symmetric, positive definite matrix which is R-

banded with R ∈ N≥1. Then for i, j ∈ Zd

|(A−1)ij | ≤ 2∥A−1∥2µ∥i−j∥2 ,

where

µ =

(√
cond2(A)− 1√
cond2(A) + 1

) 1
R

.

We have to translate AΦδ,X is this new context.

Theorem 7.7 (D. Hensley) Let {z1, . . . , zN} ⊆ Rd such that ∥zj − zk∥2 ≥
√
d if j ̸= k.

Define
νj = (⌊z1j ⌋, . . . , ⌊zdj ⌋) for j = 1, . . . , N.

Then the points {νj}j=1,...,N are pairwise distinct and if ∥νj − νk∥2 ≥ R with R ≥ 4
√
d then

∥zj − zk∥2 ≥ R
2 .

Proof

Suppose by contradiction that νj = νk with j ̸= k. This implies that ⌊zℓj⌋ = ⌊zℓk⌋ for
ℓ = 1, . . . , d. Since for x ∈ R holds ⌊x⌋ ≤ x < ⌊x⌋+ 1 we have that

⌊zℓj⌋ − 1− ⌊zℓk⌋ < zℓj − zℓk < ⌊zℓj⌋+ 1− ⌊zℓk⌋,
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which gives us |zℓj − zℓk| < 1 for ℓ = 1, . . . , d. In this situation we obtain

d ≤ ∥zj − zk∥22 =
d∑

ℓ=1

|zℓj − zℓk|2 < d,

that is a contradiction. To finish the proof we note that

∥νj − νk∥2 ≤ ∥νj − zj∥2 + ∥zj − zk∥2 + ∥zk − νk∥2 < 2
√
d+ ∥zj − zk∥2,

because
∑d

ℓ=1 |⌊zℓi ⌋ − zℓi |2 < d for i = 1, . . . , N . If ∥νj − νk∥2 ≥ R ≥ 4
√
d then

∥zj − zk∥2 ≥ ∥νj − νk∥2 − 2
√
d ≥ R− 2

√
d =

R

2
+

R

2
− 2
√
d ≥ R

2
.

✷

Let us fix some notation. We define

zj =

√
d

2qX
xj for j = 1, . . . , N

and we move the points {zj}j=1,...,N in a unique way to the lattice Zd as

yj = (⌊z1j ⌋, . . . , ⌊zdj ⌋) ∈ Zd for j = 1, . . . , N. (7.6)

The points {yj}j=1,...,N are pairwise distinct because we can apply Theorem 7.7 since for
j ̸= k

∥zj − zk∥2 =
√
d

2qX
∥xj − xk∥2 ≥

√
d.

We define AΦδ ,X by

AΦδ ,X(yi, yj) = Φδ(xi − xj) for i, j = 1, . . . , N. (7.7)

If we define R(cγcqu) = max{cγcqu, 4}
√
d then we claim that AΦδ ,X is R(cγcqu)-banded. By

Theorem 7.7 we can obtain from ∥yi − yj∥2 ≥ R(cγcqu) that

∥xi − xj∥2
2qX

√
d ≥ R

2
≥ cγcqu

√
d

2
,

that implies with equation (7.3)

∥xi − xj∥2 ≥ cγcquqX ≥ δ ⇒ AΦδ ,X(yi, yj) = 0.

Theorem 7.8 Suppose that X = {x1, . . . , xN} is a quasi-uniform data set with respect to
cqu and Φ : Rd → R is a positive definite function with support in B(0, 1) that satisfies the
hypothesis of Theorem 1.26. If we choose δ ≥ hX,Ω as in equation (7.2) then

|(A−1
Φδ ,X

)ij | ≤ C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
∥yi−yk∥2 ,

where {yi}i=1,...,N are defined in equation (7.6). Moreover µ(Φ, d, cγcqu) ∈]0, 1[.
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Proof

We apply Theorem 7.6 to the matrix AΦδ ,X defined in equation (7.7). By the definition
of AΦδ ,X we proved that it is R(cγcqu)-banded with R(cγcqu) = max{cγcqu, 4}

√
d and it is

possible to conclude that

|(A−1
Φδ ,X

)ij | = |(A−1
Φδ ,X

)yiyj | ≤ 2∥A−1
Φδ,X
∥2µ̃∥yi−yj∥2

with

µ̃ =

(√
cond2(AΦδ ,X)− 1√
cond2(AΦδ ,X) + 1

) 1
R(cγcqu)

.

Since the function g(x) = x−1
x+1 is monotonically increasing due to the fact that dg

dx(x) =
2

(x+1)2
> 0 we can bound µ̃ as

µ̃ ≤
(√

C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d − 1√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d + 1

) 1
R(cγcqu)

= µ(Φ, d, cγcqu),

where we use equation (7.4). µ(Φ, d, cγcqu) < 1 because g is increasing and g(x) = x−1
x+1 ↗ 1−

as x→ +∞ . With equation (7.5) we can conclude

C(Φ, d, cγcqu) = 2C(Φ, d)(cγcqu)
2s−d.

✷

We can finally prove the exponential decay of {u1, . . . , uN}.

Theorem 7.9 Suppose that X = {x1, . . . , xN} is a quasi-uniform data set with respect to
cqu and Φ : Rd → R is a positive definite function with support in B(0, 1) that satisfies the
hypothesis of Theorem 1.26. If we choose δ ≥ hX,Ω as in equation (7.2) then there exists
K(Φ, d, cγcqu) > 0 and ν(Φ, d, cγcqu) > 0 such that

|ui(x)| ≤ K(Φ, d, cγcqu)e
−ν(Φ,d,cγcqu)

∥x−xi∥2
qX for x ∈ Rd and i = 1, . . . , N.

Proof

First of all we prove the relation |⌊x⌋ − ⌊y⌋| ≥ |x − y| − 1 for x, y ∈ R. Without loss of
generality we can suppose x ≥ y. Since ⌊x⌋+ 1 > x ≥ y ≥ ⌊y⌋ then ⌊x⌋ ≥ ⌊y⌋, that implies
|x− y| = x− y ≤ ⌊x⌋+ 1− ⌊y⌋ = |⌊x⌋ − ⌊y⌋|+ 1.

To continue we need to prove
√
d∥x∥2 ≥ ∥x∥1 ≥ ∥x∥2 for x ∈ Rd.

d∑

j=1

|xj | =
d∑

j=1

|xj | · 1 = (|x1|, . . . , |xd|) · (1, . . . , 1) ≤

≤ ∥(|x1|, . . . , |xd|)∥2∥(1, . . . , 1)∥2 = ∥x∥2
√
d.
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By recalling that
√
|a|+ |b| ≤

√
|a|+

√
|b| we have

∥x∥2 =

√√√√
d∑

j=1

|xj |2 ≤
d∑

j=1

√
|xj |2 = ∥x∥1.

Now we can obtain the following chain of inequalities

∥yi − yj∥2 ≥
1√
d
∥yi − yj∥1 =

1√
d

d∑

k=1

|⌊zki ⌋ − ⌊zkj ⌋| ≥

≥ 1√
d

d∑

k=1

|zki − zkj | −
d√
d
=

1√
d
∥zi − zj∥1 −

√
d ≥

≥ 1√
d
∥zi − zj∥2 −

√
d =

1

2qX
∥xi − xj∥2 −

√
d.

With Theorem 7.8 we achieve

|(A−1
Φδ ,X

)ij | ≤ C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
∥yi−yk∥2 ≤

≤ C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
∥xi−xj∥

2qX µ(Φ, d, cγcqu)
−
√
d

because log(µ(Φ, d, cγcqu)) < 0. If we fix ν(Φ, d, cγcqu) = −1
2 log(µ(Φ, d, cγcqu)) > 0 we have

|(A−1
Φδ ,X

)ij | ≤ C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
−
√
de

−ν(Φ,d,cγcqu)
∥xi−xj∥

qX .

If x ∈ Rd and ∥x− xj∥2 ≤ δ for j ∈ {1, . . . , N} then

∥xi − xj∥2 ≥ ∥xi − x∥2 − ∥xj − x∥2 ≥ ∥xi − x∥2 − δ.

With Theorem 4.1 we can write

|ui(x)| =

∣∣∣∣∣∣

N∑

j=1

(A−1
Φδ ,X

)ijΦδ(x− xj)

∣∣∣∣∣∣
≤

N∑

j=1

|(A−1
Φδ,X

)ij ||Φδ(x− xj)| =

=
∑

j:∥x−xj∥2≤δ

|(A−1
Φδ ,X

)ij ||Φδ(x− xi)| ≤ ∥Φ∥L∞(Rd)

∑

j:∥x−xj∥2≤δ

|(A−1
Φδ ,X

)ij | ≤

≤∥Φ∥L∞(Rd)

∑

j:∥x−xj∥2≤δ

C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
−
√
de

−ν(Φ,d,cγcqu)
∥xi−xj∥

qX ≤

≤∥Φ∥L∞(Rd)C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
−
√
de

ν(Φ,d,cγcqu)
δ

qX

∑

j:∥x−xj∥2≤δ

e
−ν(Φ,d,cγcqu)

∥xi−x∥
qX ≤

≤∥Φ∥L∞(Rd)C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
−
√
deν(Φ,d,cγcqu)cγcqu(1 + cγcqu)

d

︸ ︷︷ ︸
K(Φ,d,cγcqu)

e
−ν(Φ,d,cγcqu)

∥xi−x∥
qX .

(7.8)

The last inequality holds because of Theorem 7.3. The constants C(Φ, d, cγcqu) and µ(Φ, d, cγcqu)
are defined in Theorem 7.8.
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✷

Theorem 7.10 Suppose that X = {x1, . . . , xN} is a quasi-uniform data set with respect to
cqu and Φ : Rd → R is a positive definite function with support in B(0, 1) that satisfies the
hypothesis of Theorem 1.26. If we choose δ ≥ hX,Ω as in equation (7.2) then there exists
KL(Φ, d, cγcqu, γcγ) > 0 such that

|ui(x)− ui(y)| ≤
KL(Φ, d, cγcqu, γcγ)

qX
∥x− y∥2 for x, y ∈ Rd and i = 1, . . . , N.

Proof

By recalling that ∂k(Φδ(· − xj)) = 1
δ∂kΦ

(
·−xj

δ

)
for j = 1, . . . , N, k = 1, . . . , d then by

substituting ∂kui(x) with ui(x) in equation (7.8) we have

|∂kui(x)| ≤
K(Φ, d, cγcqu)

δ
e
−ν(Φ,d,cγcqu)

∥xi−x∥
qX ≤ K(Φ, d, cγcqu)

δ

for x ∈ Rd, i = 1, . . . , N, k = 1, . . . , d. The constants involved are defined by

ν(Φ, d, cγcqu) = −
1

2
log(µ(Φ, d, cγcqu)) > 0

and

K(Φ, d, cγcqu) = ∥Φ∥C1(Rd)C(Φ, d, cγcqu)µ(Φ, d, cγcqu)
−
√
deν(Φ,d,cγcqu)cγcqu(1 + cγcqu)

d

with C(Φ, d, cγcqu) and µ(Φ, d, cγcqu) as in Theorem 7.8.

Fix x, y ∈ Rd and define q : [0, 1] → R as q(t) = ui(y + t(x − y)) for t ∈ [0, 1] and
i ∈ {1, . . . , N}. From Lagrange Theorem we have

ui(x)− ui(y) =
q(1)− q(0)

1− 0
=

d q

d t
(ξ) = ∇ui(y + ξ(x− y)) · (x− y),

so

|ui(x)− ui(y)| ≤ ∥∇ui(y + ξ(x− y))∥2∥x− y∥2 ≤
√
d
K(Φ, d, cγcqu)

δ
∥x− y∥2.

From equation (7.3) we obtain

KL(Φ, d, cγcqu, γcγ) =
√
d
K(Φ, d, cγcqu)

γcγ
.

✷

If we define φ(x) = K(Φ, d, cγcqu)e
−ν(Φ,d,cγcqu)x for x ∈ R≥0 then φ is decreasing and

φ(n+ 1)

φ(n)
=

K(Φ, d, cγcqu)e
−ν(Φ,d,cγcqu)(n+1)

K(Φ, d, cγcqu)e−ν(Φ,d,cγcqu)n
= e−ν(Φ,d,cγcqu) < 1.

From the facts proved in Theorem 7.9 we can obtain

|ui(x)| ≤ φ

(∥x− xi∥2
qX

)
for i = 1, . . . , N

and if Definition 7.1 holds then Theorem 7.4 guarantees an O(hX,Ω) convergence rate.
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7.1.2 A conjecture for rescaled localized RBFs

Now we can state a conjecture.

Theorem 7.11 We can choose cγ in equation (7.2) that if X = {x1, . . . , xN} is a quasi-
uniform data set with respect to cqu, Φ : Rd → R is a positive definite function with support

in B(0, 1) that satisfies the hypothesis of Theorem 1.26 and δ ≥ hX,Ω as in equation (7.2)
then there exists a constant c > 0 such that

N∑

j=1

uj(x) > c for x ∈ Ω.
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Figure 7.1: Interpolant s1,X,δ on 11 uniformly perturbed equispaced points in [−1, 1] as the
choice of delta varies. The compactly supported RBF is the Wendland’s function ϕ1,1 ∈
C2([−1, 1]) [52, 53].

From Figure 7.1 we notice that when the ratio between δ and hX,Ω gets bigger the approx-
imation gets better. In this case cγ in equation (7.2) is bigger and implies that more nodes
are used locally to produce the approximant. The drawback is that the condition number
of AΦδ ,X increases (equation (7.4)) but the matrix remains sparse.

Now we will give some theoretical intuitions that convinced us of the veracity of Theo-
rem 7.11.

We introduce a result of [49].

Theorem 7.12 With notation of Theorem 7.6 if A = (Aij)i,j∈Zd is a symmetric, positive
definite matrix which is R-banded with R ∈ N≥1 then

∥A−1∥∞ ≤ 2∥A−1∥2
(
1 + µ1/

√
d

1− µ1/
√
d

)d

= 2∥A−1∥2
(
tanh

(
1

2Rd
log

(
κ+ 1

κ− 1

)))−d

,

where

κ =
√
cond2(A) and µ =

(√
cond2(A)− 1√
cond2(A) + 1

) 1
R

.
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Moreover, if ∥A−1∥2 ≤ α and cond2(A) ≤ β then

∥A−1∥∞ ≤ 2α

(
1 + ν

1− ν

)d

with

ν =

(√
β − 1√
β + 1

) 1

R
√
d

.

Theorem 7.12 with equation (7.4), equation (7.5) and construction in equation 7.7 gives us

∥A−1
Φδ,X
∥∞ ≤ C∞(Φ, d, cγcqu). (7.9)

Theorem 7.13 Suppose that X = {x1, . . . , xN} is a quasi-uniform data set with respect to
cqu and Φ : Rd → R is a positive definite function with support in B(0, 1) that satisfies the
hypothesis of Theorem 1.26. If we choose δ ≥ hX,Ω as in equation (7.2) then

∥sf,X,δ∥L∞(Ω) ≤ (1 + cγcqu)
d∥Φ∥L∞(Ω)C∞(Φ, d, cγcqu)∥f∥L∞(Ω).

Proof

By equation (2.1)

sf,X,δ(x) =
N∑

j=1

αjΦδ(x− xj),

where α ∈ Rd solves AΦδ ,Xα = f|X . Thus,

|sf,X,δ(x)| =

∣∣∣∣∣∣

N∑

j=1

αjΦδ(x− xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j:∥x−xj∥2≤δ

αjΦδ(x− xj)

∣∣∣∣∣∣
Theorem 7.3
≤

≤ (1 + cγcqu)
d∥Φ∥L∞(Ω)∥α∥∞ = (1 + cγcqu)

d∥Φ∥L∞(Ω)∥A−1
Φδ ,X

f|X∥∞ ≤
≤ (1 + cγcqu)

d∥Φ∥L∞(Ω)∥A−1
Φδ ,X
∥∞∥f|X∥∞.

We can conclude with equation (7.9).

✷

We proved that there is no Runge phenomenon if we perform interpolation with scaled
compactly supported radial basis function. The scaling has to be proportional to the fill
distance hX,Ω and X is a quasi-uniform data set.

If we apply Theorem 7.13 to f = 1 we have
∣∣∣∣∣∣

N∑

j=1

uj(x)

∣∣∣∣∣∣
≤ (1 + cγcqu)

d∥Φ∥L∞(Ω)C∞(Φ, d, cγcqu),
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where {u1, . . . , uN} are the cardinal functions of Φδ with respect to X (Theorem 4.1). If
there are oscillations in the interpolant s1,X,δ these are bounded.

We can obtain an explicit formula for the difference sf,X,δ − 1. Since Φδ is positive definite
then Φδ is also conditionally positive definite with respect to Π0(R

d) = ⟨1⟩ and we compare
the cardinal functions provided by the two different interpolation method.

The cardinal functions {u1, . . . , uN} of Φδ considered as a positive definite function sat-
isfy

AΦδ ,Xu(x) = R(x),

instead the cardinal functions {ũ1, . . . , ũN} of Φδ considered as a conditionally positive
definite function with respect to Π0(R

d) = ⟨1⟩ satisfy
(
AΦδ ,X P
P⊤ 0

)(
ũ(x)
v(x)

)
=

(
R(x)
S(x)

)
, (7.10)

where R(x) = (Φ(x, x1), . . . ,Φ(x, xN ))⊤ ∈ RN , S(x) = 1 ∈ R and P = (1, . . . , 1)⊤ ∈ RN .

With this relation we obtain

AΦδ ,X(u(x)− ũ(x)) = R(x)−R(x) + Pv(x) = Pv(x), (7.11)

where λ(x) = 2v(x) is the Lagrange multiplier associated to the optimal solution of the
minimization problem in Theorem 4.4 for α = 0. Moreover, v(xj) = 0 for j = 1, . . . , N .

We can write explicitly the difference s1,X,δ − 1 as

N∑

j=1

uj(x)−
N∑

j=1

ũj(x) = P⊤(u(x)− ũ(x)) = P⊤A−1
Φδ ,X

Pv(x),

where v(x) can also be characterized with equation (7.10) as

Nv(x) = P⊤Pv(x) = P⊤(R(x)−AΦδ ,X ũ(x)).

Since Pv(x) = R(x)−AΦδ ,X ũ(x), we note that for j = 1, . . . , N

v(x) = (R(x)−AΦδ ,X ũ(x))j = Φδ(x− xj)−
N∑

i=1

Φδ(xj − xi)ũi(x) =

= Φδ(x− xj)− scΦδ(·−xj),X,δ(x),

(7.12)

where scf,X,δ is the interpolant on X built from Φδ considered as a conditionally positive

definite function with respect to Π0(R
d) = ⟨1⟩. The expression in equation (7.12) as a

function of xj is a function in F c
Φδ
(Ω) if Φδ is a conditionally positive definite function. We

have also for j = 1, . . . , N

v(x) = λ(Φδ(· − xj)) with λ = δx −
N∑

i=1

ũi(x)δxi ∈ L⟨1⟩(Ω) ⊆ L(Ω),
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that with Theorem 2.7 it becomes

|v(x)| ≤ ∥λ∥Φδ
∥Φδ(· − xj)∥NΦδ

(Ω) = Φ(0)∥λ∥Φδ
.

We study ∥λ∥Φδ
with λ = δx −

∑N
i=1 ũi(x)δxi .

∥λ∥2Φδ
= Φδ(x, x)− 2

N∑

i=1

ũi(x)Φδ(x, xi) +

N∑

i,j=1

ũi(x)ũj(x)Φδ(xi, xj) = (P c
Φδ ,X

(x))2,

where P c
Φδ ,X

is the power function of the conditionally positive definite function Φδ with
respect to X.

Finally equation (7.9) and equation (7.11) gives us

∥u(x)− ũ(x)∥∞ = ∥A−1
Φδ ,X

Pv(x)∥∞ ≤ ∥A−1
Φδ ,X
∥∞|v(x)| ≤

≤ C∞(Φ, d, cγcqu)Φ(0)P
c
Φδ,X

(x).

If we can prove that ∥P c
Φ,X∥L∞(Ω) ≤ Kr(hX,Ω) with r :]0,+∞[→ R increasing such that

limx→0+ r(x) = 0 then equation (4.9) gives us

∥u(x)− ũ(x)∥∞ ≤ C∞(Φ, d, cγcqu)Φ(0)P
c
Φ,X/δ(x/δ) ≤

≤ C∞(Φ, d, cγcqu)Φ(0)Kr

(
hX,Ω

δ

)
≤

≤ C∞(Φ, d, cγcqu)Φ(0)Kr

(
1

γcγ

)
< +∞.

Under some conditions, we prove that |ui(x)−ũi(x)| are uniformly bounded for i = 1, . . . , N
and

∑N
j=1 ũj(x) = 1.

A different approach allows us to obtain other similar results.

(
AΦδ ,X P
P⊤ 0

)(
IN −A−1

Φδ ,X
P

0 1

)
=

(
AΦδ ,X −AΦδ ,XA−1

Φδ ,X
P + P

P⊤IN −P⊤A−1
Φδ ,X

P

)
=

(
AΦδ,X 0

P⊤ −P⊤A−1
Φδ ,X

P

)

We note that −P⊤A−1
Φδ ,X

P < 0 because AΦδ ,X is positive definite. Since

〈(
AΦδ ,X 0

P⊤ −P⊤A−1
Φδ ,X

P

)〉
=

〈(
AΦδ ,X 0

0 −P⊤A−1
Φδ ,X

P

)〉

then all the matrix involved are invertible so

(
AΦδ ,X P
P⊤ 0

)
=

(
AΦδ ,X 0

P⊤ −P⊤A−1
Φδ ,X

P

)(
IN −A−1

Φδ ,X
P

0 1

)−1

.
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We can compute

(
AΦδ ,X P
P⊤ 0

)−1

=

(
IN −A−1

Φδ ,X
P

0 1

)(
AΦδ ,X 0

P⊤ −P⊤A−1
Φδ ,X

P

)−1

=

(
IN −A−1

Φδ ,X
P

0 1

)


A−1
Φδ ,X

0
P⊤A−1

Φδ,X

P⊤A−1
Φδ,X

P
− 1

P⊤A−1
Φδ,X

P


 =

=



A−1

Φδ ,X
− A−1

Φδ,X
PP⊤A−1

Φδ,X

P⊤A−1
Φδ,X

P

A−1
Φδ,X

P

P⊤A−1
Φδ,X

P

P⊤A−1
Φδ,X

P⊤A−1
Φδ,X

P
− 1

P⊤A−1
Φδ,X

P


 .

We can exploit

v(x) =
P⊤A−1

Φδ ,X
R(x)

P⊤A−1
Φδ ,X

P
− 1

P⊤A−1
Φδ ,X

P

and

ũ(x) = A−1
Φδ ,X

R(x)−
A−1

Φδ ,X
PP⊤A−1

Φδ ,X
R(x)

P⊤A−1
Φδ ,X

P
+

A−1
Φ,XP

P⊤A−1
Φδ ,X

P
=

= u(x)−
A−1

Φδ ,X
PP⊤A−1

Φδ ,X
R(x)

P⊤A−1
Φδ ,X

P
+

A−1
Φ,XP

P⊤A−1
Φδ ,X

P
.

We can estimate

|v(x)| =
∣∣∣∣∣
P⊤A−1

Φδ ,X
R(x)

P⊤A−1
Φδ ,X

P
− 1

P⊤A−1
Φδ ,X

P

∣∣∣∣∣ ≤
∣∣∣∣∣
P⊤A−1

Φδ,X
R(x)

P⊤A−1
Φδ ,X

P

∣∣∣∣∣+
∣∣∣∣∣

1

P⊤A−1
Φδ ,X

P

∣∣∣∣∣ ≤

≤
∥P∥2∥A−1

Φδ ,X
R(x)∥2

∥P∥22 1
λmax(AΦδ,X

)

+
1

∥P∥22 1
λmax(AΦδ,X

)

≤
∥P∥2 1

λmin(AΦδ,X
)∥R(x)∥2

∥P∥22 1
λmax(AΦδ,X

)

+
1

∥P∥22 1
λmax(AΦδ,X

)

≤

≤ λmax(AΦδ ,X)

λmin(AΦδ ,X)

Φ(0)(1 + cγcqu)
d

√
N

+
λmax(AΦδ ,X)

N
= O

(
1√
N

)
= O

(
h

d
2
X,Ω

)
,

where we used Theorem 7.3 and Theorem 3.6. We proved that v converges to 0 for
hX,Ω → 0+ uniformly in x ∈ Ω.

In the same way

∥ũ(x)− u(x)∥∞ ≤ ∥ũ(x)− u(x)∥2 =
∥∥∥∥∥−

A−1
Φδ ,X

PP⊤A−1
Φδ ,X

R(x)

P⊤A−1
Φδ ,X

P
+

A−1
Φδ,X

P

P⊤A−1
Φδ ,X

P

∥∥∥∥∥
2

≤

≤
∥∥∥∥∥
A−1

Φδ ,X
PP⊤A−1

Φδ,X
R(x)

P⊤A−1
Φδ ,X

P

∥∥∥∥∥
2

+

∥∥∥∥∥
A−1

Φδ ,X
P

P⊤A−1
Φδ ,X

P

∥∥∥∥∥
2

≤

≤
∥A−1

Φδ ,X
∥2∥PP⊤∥2∥A−1

Φδ ,X
∥2∥R(x)∥2

∥P∥22 1
λmax(AΦδ,X

)

+

1
λmin(AΦδ,X

)∥P∥2
∥P∥22 1

λmax(AΦδ,X
)

.
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Since PP⊤ is symmetric and

PP⊤ =



1 · · · 1
...

. . .
...

1 · · · 1


 ∈MN (R)

then
∥PP⊤∥22 = λmax((PP⊤)⊤PP⊤) = λmax((PP⊤)2) = λmax(PP⊤)2 = N2,

where the last equality holds because rank(PP⊤) = N − 1 and (1, . . . , 1)⊤ ∈ RN is an
eigenvector with eigenvalue N .

We can conclude

∥ũ(x)− u(x)∥2 ≤
λmax(AΦδ ,X)Φ(0)(1 + cγcqu)

d

λmin(AΦδ ,X)2
+

λmax(AΦδ ,X)

λmin(AΦδ ,X)

1√
N

,

that is bounded. We note that the constants (polynomials of degree 0) that appears in the
definition of the cardinal functions {ũ1, . . . , ũN} converge to 0 as hX,Ω → 0+. We can also
state that the burden of reproducing the constants is distributed over all the basis functions.

Moreover

NΦ(0) = trace

(
AΦδ ,X P
P⊤ 0

)
= trace(AΦδ ,X) =

N∑

j=1

λj(AΦδ ,X) > 0

and the two matrices can not have the same eigenvalues because they are both invertible.
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Figure 7.2: Comparison of cardinal functions of the interpolation process with the compactly
supported Wendland’s function ϕ1,1 on 11 uniformly perturbed equispaced nodes in [−1, 1]
with δ = 5hX,Ω.

117



Figure 7.2 confirms the theoretical results, in fact the function v tends to zero. We can also
point out that the difference between u(x) and ũ(x) it is not only bounded but also seems
to approach zero.

Now we consider well-known methods to establish convergence. To prove the conjecture
in Theorem 7.11 we can not use standard error estimates not even to prove a bound on the
difference between 1 and s1,X,δ. Theorem 4.3 gives us for f ∈ NΦδ

(Ω) and x ∈ Ω

|f(x)− sf,X,δ(x)| ≤ PΦδ ,X(x)|f |NΦδ
(Ω).

Under some conditions we can prove that there exists an increasing function r :]0,+∞[→ R

such that PΦ,X(x) ≤ Kr(hX,Ω) for x ∈ Ω and K depends on Ω only via its cone condition
angle θ (Definition 3.2). We note that the angle in the cone condition does not change if we
scale the domain Ω. If Ω satisfies an interior cone condition with angle ϑ and radius r then
Ω/δ satisfies an interior cone condition with angle ϑ and radius r/δ, indeed by imposing
ξ(x/δ) = ξ(x) then

x

δ
+ λy ∈ Ω

δ
⇔ x+ δλy ∈ Ω,

that holds if λ ∈ [0, r/δ], ∥y∥2 = 1 and
〈
y, ξ

(
x
δ

)〉
= ⟨y, ξ(x)⟩ ≥ cos(ϑ).

Before continuing we check that
hX,Ω

δ = hX
δ
,Ω
δ
,indeed

hX
δ
,Ω
δ
= sup

x∈Ω
δ

min
1≤j≤N

∥∥∥x− xj
δ

∥∥∥
2
= sup

x∈Ω
min

1≤j≤N

∥∥∥x
δ
− xj

δ

∥∥∥
2
=

hX,Ω

δ
.

From equation (4.9) we obtain for x ∈ Ω

|f(x)− sf,X,δ(x)| ≤ PΦ,X/δ(x/δ)|f |NΦδ
(Ω) ≤ Kr(hX/δ,Ω/δ)|f |NΦδ

(Ω) =

= Kr

(
hX,Ω

δ

)
|f |NΦδ

(Ω) ≤ Kr

(
1

γcγ

)
|f |NΦδ

(Ω).

This proves that in general if the scaling factor δ is proportional to the fill-distance hX,Ω

we do not have convergence. For our purposes it would be enough to have a uniform bound
on δ of | · |NΦδ

(Ω), unfortunately this is not the case because from equation (2.23) we have

∥f∥NΦδ
(Ω) ≤ (2π)−

d
4Csc

− 1
2

1 δ−
d
2 ∥f∥Hs(Ω) (7.13)

where Cs is the norm of the extension operator in Theorem 2.18 and c1 comes from the
initial hypothesis stated in Theorem 1.26. The right-hand side of the inequality in equation
(7.13) diverges as δ → 0+.
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Figure 7.3: Approximation of ∥1∥2NΦδ
([−1,1]) as δ ∈

[
1
28
, 12
]
with ∥s1,X,δ∥2NΦδ

([−1,1]). X consists

of 2500 equispaced nodes in [−1, 1] and Φ is the Wendland’s function ϕ1,1. The blue line
allows us to identify the correct slope (equation (7.13)).

An interesting observation which can be drawn from Figure 7.3 is that the inequality in
equation (7.13) reaches a sharp inequality, so we can not bound ∥1∥NΦδ

([−1,1]) as δ decreases.
This observation makes sense because convergence in the uniform norm implies convergence
in the native space. By recalling that FΦδ

(Ω) = NΦδ
(Ω) (equation (1.11)) then if g ∈ NΦδ

(Ω)
we can choose g̃ ∈ FΦδ

(Ω) such that |f |NΦδ
(Ω)|g − g̃|NΦδ

(Ω) ≤ ε
3 . We can compute

|⟨f, g⟩NΦδ
(Ω) − ⟨sf,X,δ, g⟩NΦδ

(Ω)| =
=|⟨f, g − g̃⟩NΦδ

(Ω) + ⟨f, g̃⟩NΦδ
(Ω) − ⟨sf,X,δ, g̃⟩NΦδ

(Ω) − ⟨sf,X,δ, g − g̃⟩NΦδ
(Ω)| ≤

≤|f |NΦδ
(Ω)|g − g̃|NΦδ

(Ω) + |⟨f, g̃⟩NΦδ
(Ω) − ⟨sf,X,δ, g̃⟩NΦδ

(Ω)|+ |f |NΦδ
(Ω)|g − g̃|NΦδ

(Ω) ≤

≤2

3
ε+ |⟨f, g̃⟩NΦδ

(Ω) − ⟨sf,X,δ, g̃⟩NΦδ
(Ω)|,

where we use |sf,X,δ|NΦδ
(Ω) ≤ |f |NΦδ

(Ω) (Theorem 2.9). If g̃ =
∑N

j=1 αjΦ(·, xj) then by the

reproduction property of NΦδ
(Ω) (Definition 1.7)

⟨f, g̃⟩NΦδ
(Ω) − ⟨sf,X,δ, g̃⟩NΦδ

(Ω) =
N∑

j=1

αj(f(xj)− sf,X,δ(xj)) −−−−−→
hX,Ω→0

0,

that holds for Theorem 4.3 (δ is fixed). Since Riesz Theorem works on NΦδ
(Ω) (Theorem

1.6) then sf,X,δ ⇀ f (convergence in the weak topology) that implies [54]

lim sup
hX,Ω→0

|sf,X,δ|NΦδ
(Ω) ≤ |f |NΦδ

(Ω) ≤ lim inf
hX,Ω→0

|sf,X,δ|NΦδ
(Ω) =⇒ lim

hX,Ω→0

|sf,X,δ|NΦδ
(Ω) = |f |NΦδ

(Ω).

We have also sf,X,δ

|·|NΦδ
(Ω)

−−−−−→
hX,Ω→0

f because

|f − sf,X,δ|2NΦδ
(Ω) = |f |2NΦδ

(Ω) − 2⟨f, sf,X,δ⟩NΦδ
(Ω) + |sf,X,δ|2NΦδ

(Ω) −−−−−→
hX,Ω→0

0
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by weak convergence.

We note that also the restriction of the functions we want to approximate does not lead to
our goal, in fact equation (4.11) gives us under the same conditions on the growth of the
power function

∥f − sf,X,δ∥L∞(Ω) ≤ C2r(hX,Ω)
2∥T−1

δ (f)∥L2(Ω)

√
L(Ω) ≤

≤ C2r

(
hX,Ω

δ

)2

∥T−1
δ (f)∥L2(Ω)

√
L(Ω) ≤

≤ C2r

(
1

γcγ

)2

∥T−1
δ (f)∥L2(Ω)

√
L(Ω),

where L is the Lebesgue measure on Rd and the integral operator Tδ (equation (2.18))
depends on δ. Also in this case we would need a uniform bound on δ and a necessary
condition to use this inequality is a restriction on the functions to approximate:

f ∈
⋂

0<δ≤1

Tδ(L
2(Ω)).

In Theorem 6.3 and Theorem 6.6 we proved some optimality properties of the interpolation
process with (conditionally) positive definite kernel, in particular it holds that

|s1,X,δ|NΦδ
(Ω) = min{|s|NΦδ

(Ω) : s ∈ NΦδ
(Ω) such that s(xj) = 1 for j = 1, . . . , N}.

Since from Theorem 1.26 and Theorem 2.21 we have NΦδ
(Ω) = Hs(Ω) and the norms

∥ · ∥NΦδ
(Ω) and ∥ · ∥Hs(Ω) are equivalent if ∥s1,X,δ∥NΦδ

(Ω) is optimal then we expect that

also ∥s1,X,δ∥Hs(Ω) is almost optimal, which it might mean that the derivatives involved are
almost flat and the interpolant s1,X,δ does not have too much oscillations.

When the native space of a positive definite kernel is also a Sobolev space with equiva-
lent norms the error estimates of the interpolation process can also be obtained with the
so-called sampling inequalities [50].

Suppose that f ∈ Hs(Ω) and Ω ⊆ Rd is a bounded Lipschitz domain then a typical sampling
inequality let us to achieve

∥f∥L∞(Ω) ≤ Ch
s−d/2
X,Ω |u|Hs(Ω) + ∥f|X∥∞. (7.14)

We can apply the inequality of equation (7.14) in our context, since f − sf,X,δ ∈ Hs(Ω),
obtaining

∥f − sf,X,δ∥L∞(Ω) ≤ Ch
s−d/2
X,Ω |f − sf,X,δ|Hs(Ω) ≤ Ch

s−d/2
X,Ω ∥f − sf,X,δ∥Hs(Ω),
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because (f − sf,X,δ)|X = 0. With the optimality properties of the interpolant sf,X,δ we can
get rid of sf,X,δ in ∥f − sf,X,δ∥Hs(Ω), indeed

∥f − sf,X,δ∥Hs(Ω) ≤ (2π)
d
4 c

1
2
2 δ

d
2
−s∥f − sf,X,δ∥NΦδ

(Ω) ≤

≤ (2π)
d
4 c

1
2
2 δ

d
2
−s(∥f∥NΦδ

(Ω) + ∥sf,X,δ∥NΦδ
(Ω))

Theorem 6.3
≤

≤ 2(2π)
d
4 c

1
2
2 δ

d
2
−s∥f∥NΦδ

(Ω) ≤ 2Csc
− 1

2
1 δ−

d
2 c

1
2
2 δ

d
2
−s∥f∥Hs(Ω) =

= 2Csc
− 1

2
1 c

1
2
2 δ

−s∥f∥Hs(Ω),

where we used equation (2.23) and equation (2.24). The constants involved comes from
Theorem 1.26 (c1, c2) and Theorem 2.18 (Cs). Finally we obtain

∥f − sf,X,δ∥L∞(Ω) ≤ Ch
s−d/2
X,Ω 2Csc

− 1
2

1 c
1
2
2 δ

−s∥f∥Hs(Ω) =

= 2CCsc
− 1

2
1 c

1
2
2

(
hX,Ω

δ

)s

h
−d/2
X,Ω ∥f∥Hs(Ω) ≤

≤ 2CCsc
− 1

2
1 c

1
2
2

(
1

γcγ

)s

h
−d/2
X,Ω ∥f∥Hs(Ω).

(7.15)

As we have seen in equation (7.13) also the right-hand side of the inequality in equation
(7.15) diverges as hX,Ω → 0+. Also in this case when the scaling factor δ is proportional to
the fill-distance hX,Ω we can not prove convergence or a bound for the approximation error.

In any case it is worth noting that from equation (7.15) there exists K independent of
f ∈ Hs(Ω) such that

∥f − sf,X,δ∥L∞(Ω) ≤ Kh
s−d/2
X,Ω ∥f∥Hs(Ω), (7.16)

that proves convergence (when δ is fixed) but it suffers the so-called curse of dimension. We

have seen in Theorem 3.6 that when X is quasi-uniform then hX,Ω is proportional to ( 1
N )

1
d

where N = #X that with equation (7.16) gives us

∥f − sf,X,δ∥L∞(Ω) ≤ K

(
1

N

) s
d
− 1

2

.

When the space dimension d becomes larger, with the same number of sampling points, we
have a slower convergence. Also since the smoothness of the Sobolev space Hs(Ω) depends
on s then the inequality 2s > d is restrictive for large d.

7.1.3 Constants analysis for exponential decaying cardinal functions

Numerical evidences (Figure 7.1) show that when cγ grows then s1,X,δ has less oscilla-
tions but the constants that characterize the exponential decay of the cardinal functions
{u1, . . . , uN} (Theorem 7.9) do not have a good behaviour. Since

ν(Φ, d, cγcqu) = −
1

2
log(µ(Φ, d, cγcqu))
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with

µ(Φ, d, cγcqu) =

(√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d − 1√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d + 1

) 1
R(cγcqu)

and R(cγcqu) = max{cγcqu, 4}
√
d, the constant that rules how flat is the exponential can

be written as

ν(Φ, d, cγcqu) = −
1

2

1

max{cγcqu, 4}
√
d
log

(√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d − 1√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d + 1

)
,

which permits us to say that ν(Φ, d, cγcqu) decreases when cγ grows, because 1
max{cγcqu,4}

√
d

is decreasing as function of cγ and also

− log

(√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d − 1√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d + 1

)
> 0

is positive and decreasing (g(x) = x−1
x+1 is monotonically increasing).

Because of the exponential decay of the cardinal functions it seems natural to study

N∑

j=1

uj(x) for x ∈ Ω

as ∑

j:∥x−xj∥≤qX

uj(x) +
∑

j:∥x−xj∥>qX

uj(x)

With similar computations of the proof of Theorem 7.1 we obtain

∑

j:∥x−xj∥>qX

uj(x) ≥ −3dK(Φ, d, cγcqu)
+∞∑

n=1

(n+ 1)d−1e−ν(Φ,d,cγcqu)n,

which does not give an exploitable lower bound because when cγ becomes larger the expo-
nential becomes flatter (ν(Φ, d, cγcqu) decreases), so we can not get a better lower-bound
for the sum of the cardinal functions that are centered far from the point x ∈ Ω.

It is worth noting that from Theorem 7.9 the constant K(Φ, d, cγcqu) seems to grow at
least exponentially with cγ . This is not true because

ν(Φ, d, cγcqu)cγcqu = −1

2

1

max{cγcqu, 4}
√
d
log

(√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d − 1√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d + 1

)
cγcqu

that becomes with cγcqu ≥ 4

−1

2

1√
d
log

(√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d − 1√
C(Φ, d)Φ(0)(cγcqu)2s−d(1 + cγcqu)d + 1

)
,
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which converges to 0+ as cγ → +∞.

Another insight that can be derived from Theorem 4.1 is that

R(x)⊤u(x) = R(x)⊤A−1
Φδ ,X

R(x) ≥ ∥R(x)∥22
λmax(AΦδ ,X)

.

Since R(x) = (Φδ(x− x1), . . . ,Φδ(x− xN )) then

R(x)⊤u(x) =
N∑

j=1

Φδ(x− xj)uj(x) =
∑

j:∥x−xj∥2≤δ

Φδ(x− xj)uj(x),

so

∥R(x)∥2


 ∑

j:∥x−xj∥2≤δ

u2j (x)




1
2

≥ ∥R(x)∥22
λmax(AΦδ,X)

,

which becomes 
 ∑

j:∥x−xj∥2≤δ

u2j (x)




1
2

≥ ∥R(x)∥2
λmax(AΦδ ,X)

.

If x ∈ Ω then there exists j ∈ {1, . . . , N} such that ∥x − xj∥2 ≤ hX,Ω ≤ δ, thus we can
obtain with Theorem 7.3

(1 + cγcqu)
d max
j:∥x−xj∥2≤δ

{|uj(x)|} ≥
miny∈B(0,1/(γcγ)) |Φ(y)|

λmax(AΦδ ,X)

and with Theorem 7.5 we can conclude

max
j:∥x−xj∥2≤δ

{|uj(x)|} ≥
miny∈B(0,1/(γcγ)) |Φ(y)|

(1 + cγcqu)2dΦ(0)
.

7.2 Fast decaying polynomial reproduction

Imitating the Definition 3.1 we want to relax the hypothesis of compact support but to
hope for the same kind of convergence we must guarantee some sort of locality.

Definition 7.4 Fix a decreasing function φ : R≥0 → R such that limn→+∞
φ(n+1)
φ(n) exists

and it is strictly smaller than 1. A process that defines for every set X = {x1, . . . , xN} ⊆ Ω
a family of functions uj = uXj : Ω → R for 1 ≤ j ≤ N provides fast decaying polynomial
reproduction of degree ℓ on Ω with respect to φ if there exists a constant C, h0 such that

•
∑N

j=1 p(xj)uj = p for each p ∈ πℓ(R
d),

• |uj(x)| ≤ Cφ
(
∥x−xj∥2

qX

)
for all x ∈ Ω and j = 1, . . . , N

are satisfied for all X with hX,Ω ≤ h0.
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By carefully reading Theorem 7.1 we can obtain a similar result.

Theorem 7.14 Suppose that X = {x1, . . . , xN} ⊆ Rd is an arbitrary data set and {u1, . . . , uN}
is given by a fast decaying polynomial reproduction method with respect to φ (Definition 7.4)
then for every ℓ ∈ N there exists a constant K = K(ℓ, C, φ, d) such that

N∑

j=1

∥x− xj∥ℓ2|uj(x)| ≤ KhℓX,Ω for x ∈ Ω.

with

K = 3dC

+∞∑

n=0

(n+ 1)d+ℓ−1φ(n).

If f : Ω → R is a function we can build with Definition 7.4 a stable quasi-interpolation
process by

zf,X =

N∑

j=1

f(xj)uj(x) (7.17)

with Lebesgue function bounded by 3dC
∑+∞

n=0(n + 1)d−1φ(n). The quasi-interpolation
method of Definition 7.1 respect the Definition 7.4 for quasi-uniform data sets. Since we
dropped the hypothesis of quasi-uniformity on the distribution of X to get a convergence
result we need stronger assumptions on the function f to reconstruct from X.

Theorem 7.15 Suppose that X = {x1, . . . , xN} ⊆ Ω is an arbitrary data set and {u1, . . . , uN}
is given by a fast decaying polynomial reproduction process with respect to φ of order m ∈ N.
Define Ω∗ to be the closure of the convex hull of Ω. If f ∈ Cm+1(Ω∗) then there exists a
constant K = K(C,φ, d,m) such that

∥f − zf,X∥L∞(Ω) ≤ Khm+1
X,Ω ∥f∥Cm+1(Ω∗),

for hX,Ω ≤ h0.

Proof

Let p be an arbitrary polynomial from πm(Rd). Using Definition 7.4 we obtain

|f(x)− zf,X(x)| ≤ |f(x)− p(x)|+

∣∣∣∣∣∣
p(x)−

N∑

j=1

f(xj)uj(x)

∣∣∣∣∣∣
≤

≤ |f(x)− p(x)|+
N∑

j=1

|p(xj)− f(xj)||uj(x)|

To end the proof we choose p to be the Taylor polynomial of f around x of order m. For
y ∈ Ω there exists ξ ∈ Ω∗ such that

f(y)−
∑

|α|≤m

Dαf(x)

α!
(y − x)α =

∑

|α|=m+1

Dαf(ξ)

α!
(y − x)α.
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Remarking that |(y−x)α| =∏d
i=1 |yi−xi|αi ≤∏d

i=1 ∥y−x∥αi ≤ ∥y−x∥|α| we can conclude
for j = 1, . . . , N

|p(xj)−f(xj)| ≤
∑

|α|=m+1

∥Dα(f)∥L∞(Ω∗)

α!
∥xj−x∥m+1

2 ≤


 ∑

|α|=m+1

1

α!


 |f |Cm+1(Ω∗)∥xj−x∥m+1

2 ,

that gives us

|f(x)− zf,X(x)| ≤


 ∑

|α|=m+1

1

α!


 |f |Cm+1(Ω∗)

N∑

j=1

∥xj − x∥m+1
2 |uj(x)|

≤


 ∑

|α|=m+1

1

α!


K(m+ 1, C, φ, d)|f |Cm+1(Ω∗)h

m+1
X,Ω ,

where K(m+ 1, C, φ, d) comes from the application of Theorem 7.14.

✷

7.2.1 An example for polynomial reproduction with fast decay

We want to build an example for Definition 7.4 with a C∞(Ω) interpolant (equation (7.17)).
As local polynomial reproduction with consider a minimization problem, i.e. moving least
squares. By recalling Definition 3.3 we have for x ∈ Ω that the value zf,X(x) of the moving
least squares approximant is given by zf,X(x) = p∗(x) where p∗ is the solution of

min

{
N∑

i=1

(f(xi)− p(xi))
2e

−ν
( ∥x−xi∥2

δ

)2

: p ∈ πm(Rd)

}
, (7.18)

where ν ∈ R>0 is a fixed parameter and instead δ will depend on the data set X. Since the
weight function is strictly positive

w(x, y) = e
−ν

( ∥x−y∥2
δ

)2

> 0

we can prove a similar result of Theorem 3.4.

Theorem 7.16 Suppose that for every x ∈ Ω the set X = {x1, . . . , xN} is πm(Rd)-unisolvent.
In this situation, the problem stated in equation (7.18) is uniquely solvable and the solution
zf,X(x) = p∗(x) can be represented as

zf,X(x) =

N∑

i=1

f(xi)a
∗
i (x),

where the coefficients a∗i (x) are determined by minimizing the quadratic form

N∑

i=1

ai(x)
2

e
−ν

( ∥x−xi∥2
δ

)2 (7.19)
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under the constraints
N∑

i=1

p(xi)ai(x) = p(x), p ∈ πm(Rd). (7.20)

Theorem 7.16 let us to characterize the shape of the quasi-interpolant zf,X as

Theorem 7.17 The functions {a∗j}j=1,...,N of Theorem 7.16 have the form

a∗j (x) = e
−ν

(
∥x−xj∥2

δ

)2 Q∑

k=1

λk(x)pk(xj)

where {λk(x)}k=1,...,Q are the unique solutions of

Q∑

k=1

λk(x)
N∑

j=1

e
−ν

(
∥x−xj∥2

δ

)2

pk(xj)pℓ(xj) = pℓ(x), 0 ≤ ℓ ≤ Q. (7.21)

Moreover the approximant zf,X ∈ C∞(Ω). In this context {p1, . . . , pQ} is a basis for πm(Rd).

For m=0 Theorem 7.17 let us to conclude

a∗j (x) =
e
−ν

(
∥x−xj∥2

δ

)2

∑N
i=1 e

−ν
( ∥x−xi∥2

δ

)2 for each j ∈ {1, . . . , N}.

For m = 0 the minimization problem described in equation (7.18) has the solution

zf,X(x) =
N∑

j=1

f(xj)
e
−ν

(
∥x−xj∥2

δ

)2

∑N
i=1 e

−ν
( ∥x−xi∥2

δ

)2

︸ ︷︷ ︸
a∗j (x)

,

which is a particular instance of the Shepard approximation method [22] and it reproduces
constants exactly.

In Theorem 3.7 we have a similar result for compactly supported basis functions.

Theorem 7.18 Suppose that Ω ⊆ Rd is compact a satisfies an interior cone condition
with angle ϑ ∈]0, π/2[ and radius r > 0. Fix m ∈ N. Let h0, C1 and C2 denote the
constants of Theorem 3.2. Suppose that X = {x1, . . . , xN} ⊆ Ω is a quasi-uniform data
sets with respect to cqu > 0 and hX,Ω ≤ h0. Let δ be as in equation (7.2). Then the
basis functions {a∗j (x)}j=1,...,N of Theorem 7.17 provide local polynomial reproduction with
fast decay (Definition 7.4), with certain constants C, h0 and function φ that can be derived
explicitly.
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Proof

The first property of Definition 7.4 is a consequence of equation (7.18) and Theorem 7.16
that define the moving least squares method.

To prove the second property we bound the following quantity

N∑

i=1

|a∗i (x)|2

e
−ν

( ∥x−xi∥2
δ

)2 .

There exists {ũj(x)}j=1,...,N providing local polynomial reproduction (Theorem 3.2) such

that ũj is supported in B(xj , C2hX,Ω) for j = 1, . . . , N . The minimal property stated in
Theorem 7.16 gives

N∑

i=1

|a∗i (x)|2

e
−ν

( ∥x−xi∥2
δ

)2 ≤
N∑

i=1

|ũi(x)|2

e
−ν

( ∥x−xi∥2
δ

)2 =
∑

i∈Ĩ(x)

|ũi(x)|2

e
−ν

( ∥x−xi∥2
δ

)2 ≤

≤ 1

e
−ν

(
C2hX,Ω

δ

)2

∑

i∈Ĩ(x)

|ũi(x)|2 ≤

≤ 1

e
−ν

(
C2hX,Ω

δ

)2


 ∑

i∈Ĩ(x)

|ũi(x)|




2

≤

≤ C2
1

e
−ν

(
C2hX,Ω

δ

)2 ≤
C2
1

e
−ν

(
C2
γcγ

)2 ,

where Ĩ(x) =
{
j ∈ {1, . . . , N} : xj ∈ B(x,C2hX,Ω)

}
. With the last computation we ob-

tained for i = 1, . . . , N

|a∗i (x)|2

e
−ν

( ∥x−xi∥2
δ

)2 ≤
C2
1

e
−ν

(
C2
γcγ

)2 ⇒ |a∗i (x)|2 ≤
C2
1

e
−ν

(
C2
γcγ

)2 e
−ν

( ∥x−xi∥2
δ

)2

that gives us

|a∗i (x)| ≤
√√√√ C2

1

e
−ν

(
C2
γcγ

)2 e
− ν

2

( ∥x−xi∥2
δ

)2

≤
√√√√ C2

1

e
−ν

(
C2
γcγ

)2 e
− ν

2

( ∥x−xi∥2
cγcquqX

)2

.

Since e−x2 ≤ ee−x for x ∈ R because

−x2 ≤ −x+ 1⇔ x ≤ x2 + 1

that holds for x ∈ [−1, 1] and x ∈ R \ [−1, 1], we obtain

|a∗i (x)| ≤ e

√√√√ C2
1

e
−ν

(
C2
γcγ

)2

︸ ︷︷ ︸
C

e
−
√

ν
2

∥x−xi∥2
cγcquqX = Cφ

(∥x− xi∥2
qX

)
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for i = 1, . . . , N with

φ(x) = e
−
√

ν
2

1
cγcqu

x
.

✷

In Theorem 3.7 we ask that X is unisolvent locally, which leads to oversampling, instead in
theorem 7.18 X is unisolvent because there are not local arguments.

The same construction that leads to Theorem 7.18 can also be made with

w(x, y) = e−ν
∥x−y∥2

δ > 0

and we obtain

C =

√√√√ C2
1

e
−ν

(
C2
γcγ

) and φ(x) = e
− ν

2
1

cγcqu
x
. (7.22)

The construction that provides Theorem 7.18 can be made more general if

w(x, y) = φ

(∥x− y∥2
qX

)
> 0

and satisfies the hypothesis in Definition 7.4, obtaining

C =

√
C2
1

φ(C2cqu)
and φ̃(x) =

√
φ(x).

For m = 0 the minimization problem that gives us the approximant zf,X(x) has the solution

zf,X(x) =
N∑

j=1

f(xj)
φ
(
∥x−xj∥2

qX

)

∑N
i=1 φ

(
∥x−xi∥2

qX

)

︸ ︷︷ ︸
a∗j (x)

.

For all the previous constructions Theorem 7.17 let us to analyse the computational com-
plexity of the method for the evaluation of the approximant at a point x ∈ Ω. To compute
{λ1(x), . . . , λQ(x)} we need to solve a Q × Q linear system, so the computational cost is
O(Q3). The cost to build the matrix of the linear system is O(NQ2), where N is the num-
ber of data sites. To compute {a∗1(x), . . . , a∗N (x)} we need O(NQ) because for each basis
function we perform a number of multiplications and sums proportional to Q. After all to
build the basis functions at a point x ∈ Ω the computational cost is

O(Q3 +NQ2 +NQ) = O(N)

and we have to add O(N) to compute the value of the approximant. If we have to compute
the value of the approximant at M points the algorithm leads to a computational cost of
O(NM).
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In Theorem 7.17 appears a basis for the polynomial space and, even if it is not relevant
from a theoretical point of view, a careful choice of the basis can lead to a more stable and
efficient implementation.

We point out that also the construction of Theorem 3.7 satisfy the requests of Definition
7.4 because for i = 1, . . . , N we have

|a∗i (x)| ≤
N∑

j=1

|a∗j (x)| ≤ C̃1,

so if we choose K̃ such that C̃1 ≤ K̃e−C̃2 then for x ∈ Ω ∩B(xi, C̃2hX,Ω) we obtain

|a∗i (x)| ≤ C̃1 ≤ K̃e−C̃2 ≤ K̃e
− ∥x−xi∥2

hX,Ω ≤ K̃e
− 1

cqu

∥x−xi∥2
qX .

7.2.2 Numerical test

The purpose of this section is to show some numerical experiments that confirm the theo-
retical results regarding fast decaying polynomial reproduction methods (Definition (7.4)).
As regards basis functions with compact support numerical evidence can be found in [55].
We focus on basis functions which also allow us to construct smooth approximants.

We will start by analyzing the basis functions of Theorem 7.16.
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(c) m=4

Figure 7.4: Basis functions of Theorem 7.16. The weight function coincides with e−x2 ∈
C∞(R) and the approxiomation nodes are 5 uniformly perturbed equispaced nodes in [−1, 1].
From left to right the basis functions reproduce the polynomials of degree 0, 3 and 4 respec-
tively. In this numerical test δ = 5hX,Ω.

We can confirm the results on the differentiability of the basis functions of Theorem 7.17
with Figure 7.4: the basis functions are smooth for each polynomial space they reproduce.
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Figure 7.5: Basis functions of Theorem 7.16. The weight function coincides with e−x ∈ C(R)
and the approxiomation nodes are 5 uniformly perturbed equispaced nodes in [−1, 1]. From
left to right the basis functions reproduce the polynomials of degree 0, 3 and 4 respectively.
In this numerical test δ = 5hX,Ω.

Figure 7.5 points out an interesting consideration. Theorem 7.17 guarantees a priori that
{a∗1, . . . , a∗5} ⊆ C([−1, 1]) and this is confirmed, but when the degree of the polynomials to
be reproduced increases then also the smoothness of the basis functions increases from a
practical point of view. We have seen in Theorem 7.15 that the smoothness of the weight
functions does not affect the convergence rate but a smooth approximant can be useful for
applications.

To produce Figure 7.4 and Figure 7.5 we used the system in Theorem 7.17 and as polyno-
mial basis we choose Chebyshev polynomials of the first kind [56].

Now we discuss some experiments to confirm Theorem 7.15 numerically. We approximate
different functions on equispaced nodes (quasi-uniform data set) in [−1, 1]. We use Theorem
7.17 to get the approximant and the polynomial basis is the Chebyshev polynomial basis
of the first kind. The scaling of δ is constant because it does not influence the convergence
rate even if appropriate choices of the parameter can improve the stability of the method
(Theorem 7.14, equation (7.22)). We fix δ = 5hX,Ω.

As weight functions in equation (7.18) we used

w1(x, y) = e
−
(

|x−y|
δ

)2

and w2(x, y) = e−
|x−y|

δ .

The following numerical experiments approximate the functions

f1(x) = sin(πx),

f2(x) = 6x6 + 5x3 + x2,

f3(x) =
1

1 + 30x2
.

In the following graphs the blue line allows us to check the correct slope of the approximation
error (Theorem 7.15).
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Figure 7.6: Convergence rate of the approximation error ∥f1 − zf1,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 0.

Nodes 17 65 257 1025 4097 Degree

e−x2
5.40e-01 2.37e-01 6.16e-02 1.54e-02 3.86e-03 0

e−x 6.30e-01 3.57e-01 1.09e-01 2.77e-02 6.93e-03 0
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Figure 7.7: Convergence rate of the approximation error ∥f1 − zf1,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 1.

Nodes 17 65 257 1025 4097 Degree

e−x2
4.60e-01 5.85e-02 3.76e-03 2.35e-04 1.47e-05 1

e−x 6.00e-01 1.66e-01 1.48e-02 9.37e-04 5.86e-05 1
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Figure 7.8: Convergence rate of the approximation error ∥f1 − zf1,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 2.

Nodes 17 65 257 1025 4097 Degree

e−x2
2.20e-01 4.58e-03 4.91e-05 7.73e-07 1.35e-08 2

e−x 3.72e-01 5.10e-02 1.24e-03 2.12e-05 3.33e-07 2
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Figure 7.9: Convergence rate of the approximation error ∥f2 − zf2,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 0.

Nodes 17 65 257 1025 4097 Degree

e−x2
7.17e+00 3.22e+00 9.74e-01 2.56e-01 6.49e-02 0

e−x 7.91e+00 4.52e+00 1.61e+00 4.50e-01 1.16e-01 0
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Figure 7.10: Convergence rate of the approximation error ∥f2 − zf2,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 1.

Nodes 17 65 257 1025 4097 Degree

e−x2
3.01e+00 5.22e-01 5.62e-02 3.51e-03 2.19e-04 1

e−x 4.44e+00 1.64e+00 2.02e-01 1.54e-02 1.01e-03 1
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Figure 7.11: Convergence rate of the approximation error ∥f2 − zf2,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 2.

Nodes 17 65 257 1025 4097 Degree

e−x2
1.09e+00 7.76e-02 1.08e-03 1.82e-05 3.14e-07 2

e−x 1.84e+00 5.70e-01 2.34e-02 4.73e-04 7.87e-06 2
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Figure 7.12: Convergence rate of the approximation error ∥f3 − zf3,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 0.

Nodes 17 65 257 1025 4097 Degree

e−x2
6.11e-01 2.01e-01 2.15e-02 1.42e-03 8.94e-05 0

e−x 6.32e-01 3.34e-01 6.56e-02 5.52e-03 3.56e-04 0
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Figure 7.13: Convergence rate of the approximation error ∥f3 − zf3,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 1.

Nodes 17 65 257 1025 4097 Degree

e−x2
6.11e-01 2.01e-01 2.15e-02 1.42e-03 8.94e-05 1

e−x 6.32e-01 3.34e-01 6.56e-02 5.52e-03 3.56e-04 1
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Figure 7.14: Convergence rate of the approximation error ∥f3 − zf3,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 212 + 1]. The approximation method reproduces exactly polynomials of degree 2.

Nodes 17 65 257 1025 4097 Degree

e−x2
4.38e-01 7.72e-02 1.28e-03 6.05e-06 2.33e-08 2

e−x 4.43e-01 2.29e-01 2.28e-02 2.94e-04 1.36e-06 2

Numerical experiments confirm the statement of Theorem 7.15 because when the number
of approximation nodes increases, if the method reproduces exactly πm(Rd), then the con-
vergence rate stabilizes at the value O(hm+1

X,Ω ).

With Figure 7.12 and Figure 7.14 it is worth noting that the convergence rate can be
even better, as happens when we approximate the Runge function f3.

7.3 Approximation with the 1-norm

The approximation scheme in section 7.2.1 is convergent but in general the basis functions
do not have compact support. This feature has negative repercussions when we compute
the value of the approximant (we have to do N multiplications). Moreover, the system in
the Theorem 7.17 is dense and could lead to numerical instability.

We want to construct a new approximant by imitating Theorem 7.16 and substituting
a weighted 2-norm with a weighted 1-norm.

We want an approximant zf,X with the following form

zf,X(x) =

N∑

i=1

f(xi)a
∗
i (x),
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where the coefficients a∗i (x) are determined by minimizing

N∑

i=1

|ai(x)|

e
−ν

( ∥x−xi∥2
δ

)2 (7.23)

under the constraints
N∑

i=1

p(xi)ai(x) = p(x), p ∈ πm(Rd).

Since the optimization problem in equation (7.23) is a feasible bounded linear program
becauseX is πm(Rd)-unisolvent, the approximation method is well-defined and it reproduces
πm(Rd) exactly. Our next step is to prove the same converge rate of Theorem 7.15.

Theorem 7.19 Suppose that Ω ⊆ Rd is compact a satisfies an interior cone condition
with angle ϑ ∈]0, π/2[ and radius r > 0. Fix m ∈ N. Let h0, C1 and C2 denote the
constants of Theorem 3.2. Suppose that X = {x1, . . . , xN} ⊆ Ω is a quasi-uniform data
sets with respect to cqu > 0 and hX,Ω ≤ h0. Let δ be as in equation (7.2). Then the
basis functions {a∗j (x)}j=1,...,N of equation 7.23 provide local polynomial reproduction with
fast decay (Definition 7.4), with certain constants C, h0 and function φ that can be derived
explicitly.

Proof

The first property of Definition 7.4 is a consequence of equation (7.23) that defines the
optimization problem and its constraints.

To prove the second property we bound the following quantity

N∑

i=1

|a∗i (x)|

e
−ν

( ∥x−xi∥2
δ

)2 .

There exists {ũj(x)}j=1,...,N providing local polynomial reproduction (Theorem 3.2) such

that ũj is supported in B(xj , C2hX,Ω) for j = 1, . . . , N . The minimal property stated in
equation (7.23) gives

N∑

i=1

|a∗i (x)|

e
−ν

( ∥x−xi∥2
δ

)2 ≤
N∑

i=1

|ũi(x)|

e
−ν

( ∥x−xi∥2
δ

)2 =
∑

i∈Ĩ(x)

|ũi(x)|

e
−ν

( ∥x−xi∥2
δ

)2 ≤

≤ 1

e
−ν

(
C2hX,Ω

δ

)2

∑

i∈Ĩ(x)

|ũi(x)| ≤

≤ C1

e
−ν

(
C2hX,Ω

δ

)2 ≤
C1

e
−ν

(
C2
γcγ

)2 ,

where Ĩ(x) =
{
j ∈ {1, . . . , N} : xj ∈ B(x,C2hX,Ω)

}
. With the last computation we ob-

tained for i = 1, . . . , N

|a∗i (x)|

e
−ν

( ∥x−xi∥2
δ

)2 ≤
C1

e
−ν

(
C2
γcγ

)2 ⇒ |a∗i (x)| ≤
C1

e
−ν

(
C2
γcγ

)2 e
−ν

( ∥x−xi∥2
δ

)2
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that gives us

|a∗i (x)| ≤
C1

e
−ν

(
C2
γcγ

)2 e
−ν

( ∥x−xi∥2
cγcquqX

)2

.

Since e−x2 ≤ ee−x for x ∈ R because

−x2 ≤ −x+ 1⇔ x ≤ x2 + 1

that holds for x ∈ [−1, 1] and x ∈ R \ [−1, 1], we obtain

|a∗i (x)| ≤ e
C1

e
−ν

(
C2
γcγ

)2

︸ ︷︷ ︸
C

e
−√

ν
∥x−xi∥2
cγcquqX = Cφ

(∥x− xi∥2
qX

)

for i = 1, . . . , N with

φ(x) = e
−√

ν 1
cγcqu

x
.

✷

The same construction that leads to Theorem 7.19 can also be made with

w(x, y) = e−ν
∥x−y∥2

δ > 0

and we obtain

C =
C1

e
−ν

(
C2
γcγ

) and φ(x) = e
−ν 1

cγcqu
x
. (7.24)

The construction that provides Theorem 7.19 can be made more general if

w(x, y) = φ

(∥x− y∥2
qX

)
> 0

and satisfies the hypothesis in Definition 7.4, obtaining

C =
C1

φ(C2cqu)
and φ̃(x) = φ(x).

In this context the computational cost depends on the algorithm we use to solve the op-
timization problem in equation (7.23). We analyse the simplex method [51] so we rewrite
equation (7.23) in standard form.

We will use the following notation:

w(x) =


 1

e
−ν

( ∥x−x1∥2
δ

)2 , . . . ,
1

e
−ν

( ∥x−xN∥2
δ

)2




⊤

∈ RN

is the weight vector, P = (pj(xi))i=1,...,N,j=1,...,Q ∈MN,Q(R
d) and S(x) = (p1(x), . . . , pQ(x))

⊤ ∈
RQ, where {p1, . . . , pQ} is a basis for πm(Rd).
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The optimization problem in equation (7.23) becomes

min

N∑

i=1

wi(x)|ai(x)|

s.t. P⊤a(x) = S(x),

that in standard form is

min w(x)⊤(a+(x) + a−(x))

s.t. P⊤(a+(x)− a−(x)) = S(x)

a+(x) ≥ 0, a−(x) ≥ 0.

(7.25)

If the solution of the linear problem in equation (7.25) is (a+(x), a−(x)) ∈ R2N then the
solution of (7.23) will be a∗(x) = a+(x)− a−(x) ∈ RN .

If we use the simplex method to solve (7.25) then a solution can be a vertex of the polyhe-
dron {a ∈ RN : P⊤a = S(x)}, so the number of non-zero components of a vertex solution
is at most rank(P⊤) = Q. To compute the value of approximant in a point x ∈ Ω we need
to solve (7.25) and then we perform at most Q multiplications and additions.

We state that if the weight function is continuous then under some conditions we can
implement warm-start techniques.

It is useful to rewrite the linear program in (7.25) as

max c(x)⊤α(x)

s.t. Aα(x) = S(x)

α(x) ≥ 0,

(7.26)

where c(x) = (−w(x),−w(x)) ∈ R2N , α(x) = (a+(x), a−(x)) and A = (P⊤,−P⊤) ∈
MQ,2N (R).

The simplex method return us not only a solution of the problem but also a base B ⊆
{1, . . . , 2N} such that |B| = Q, which is admissible for the primal and for the dual, i.e.

S(x) = A−1
B S(x) ≥ 0

cN (x)⊤ = cN (x)⊤ − cB(x)
⊤A−1

B AN ≤ 0,
(7.27)

where N = {1, . . . , 2N} \ B. If at least one of the inequalities in (7.27) does not reach
zero in every component then in a neighborhood of U ⊆ Ω of x the base B is admissible
respectively in the primal or in the dual, so we can restart the algorithm for y ∈ U without
computing a new admissible base.
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In general we want that if ∥x − xi∥2 ≫ 1 then the weight wi(x) ≫ 1 so reasonably we
expect |ai(x)| ≪ 1 or |ai(x)| = 0. This consideration pushes us to analyze a reduction
of the dimensionality of the problem in equation (7.25). We study the column generation
approach.

Consider an equivalent formulation of (7.25)

min c(x)⊤α(x)

s.t. Aα(x) = S(x)

α(x) ≥ 0,

(7.28)

where c(x) = (w(x), w(x)) ∈ R2N , α(x) = (a+(x), a−(x)) and A = (P⊤,−P⊤) ∈MQ,2N (R).

The dual problem of (7.28) is

min S(x)⊤u(x)

s.t. A⊤u(x) ≤ c(x).
(7.29)

To understand the dimensionality reduction is better to write (7.28) and (7.29) more ex-
plicitly.

min

2N∑

i=1

ci(x)αi(x)

s.t.

2N∑

i=1

Aijαi(x) = Sj(x) j = 1, . . . , Q

αi(x) ≥ 0 i = 1, . . . , 2N.

(7.30)

max

Q∑

i=1

Si(x)ui(x)

s.t.

Q∑

i=1

Ajiui(x) ≤ cj(x) j = 1, . . . , 2N.

(7.31)

We fix Ŝ ⊆ {1, . . . , 2N} such that the reduced problem of (7.30) is admissible.

min
∑

i∈Ŝ

ci(x)αi(x)

s.t.
∑

i∈Ŝ

Aijαi(x) = Sj(x) j = 1, . . . , Q

αi(x) ≥ 0 i ∈ Ŝ.

(7.32)
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The dual of (7.32) (that is the reduced problem of (7.31)) becomes

max

Q∑

i=1

Si(x)ui(x)

s.t.

Q∑

i=1

Ajiui(x) ≤ cj(x) j ∈ Ŝ.

If (αi(x))i∈Ŝ is a solution of (7.32) and u(x) ∈ RQ is its dual solution we can extend

(αi(x))i∈Ŝ to an admissible solution of (7.30) imposing αi(x) = 0 if i /∈ Ŝ. We remark that
by duality theory

2N∑

i=1

ci(x)αi(x) =
∑

i∈Ŝ

ci(x)αi(x) =

Q∑

i=1

Si(x)ui(x),

so α(x) is a solution of (7.30) if u(x) is admissible in (7.31).

If u(x) is not admissible then there exits j ∈ {1, . . . , 2N}\Ŝ such that
∑Q

i=1Ajiui(x) > cj(x),

so we iterate the procedure adding to Ŝ the element j.

At each step we solve a problem that has less variable than (7.30) and then we perform
an admissibility check that cost O(N). This procedure can be useful because we can guess
where the non-zero components of the solution of (7.30) are and find the solution with less
computational effort. We remark that a vertex solution has at most Q non-zero components.

We conclude remembering that we can improve the performance of the numerical scheme
described in equation (7.23) using warm-start algorithms and the column generation ap-
proach.

7.3.1 Numerical test

The goal of this section is to show some numerical experiments that confirm the theoretical
results regarding approximation methods with ∥ · ∥1 (equation (7.23)). We will study also
compactly supported weight functions.

We start by analyzing the basis functions of equation (7.23).
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Figure 7.15: Basis functions of equation (7.23). The weight function coincides with
e−x2 ∈ C∞(R) and the approxiomation nodes are 5 uniformly perturbed equispaced nodes
in [−1, 1]. From left to right the basis functions reproduce the polynomials of degree 0, 3
and 4 respectively. In this numerical test δ = 5hX,Ω.
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Figure 7.16: Basis functions of equation (7.23). The weight function coincides with
e−x ∈ C(R) and the approxiomation nodes are 5 uniformly perturbed equispaced nodes
in [−1, 1]. From left to right the basis functions reproduce the polynomials of degree 0, 3
and 4 respectively. In this numerical test δ = 5hX,Ω.

As fast decaying polynomial reproduction methods Figure 7.15 and Figure 7.16 show an
interesting result. We do not know the regularity of the basis functions {a∗1, . . . , a∗5} but
when the degree of the polynomials to be reproduced increases then also the smoothness
of the basis functions increases from a practical point of view. With our numerical exper-
iments this consideration does not depend on the weight functions used. We have seen in
Theorem 7.19 that the smoothness of the weight functions does not affect the convergence
rate but a smooth approximant can be useful for applications. From Figure 7.15 and Figure
7.16 we can underline a characteristic that derives from the method used to solve the linear
optimization problem in equation (7.23). Since we use the simplex method then in each
point of [−1, 1] only m+ 1 basis functions are different from zero.

To produce Figure 7.15 and Figure 7.16 we used as linear optimization solver Gurobi 10
with a tolerance on optimality conditions and constraints of 10−10. As polynomial basis in
equation (7.25) we choose Chebyshev polynomials of the first kind.
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Now we discuss some experiments to confirm Theorem 7.15 numerically. We approximate
different functions on equispaced nodes (quasi-uniform data set) in [−1, 1]. We use Gurobi
10 with a tollerance of 10−10 to get the approximant and the polynomial basis is the Cheby-
shev polynomial basis of the first kind. To interface with the linear solver we use AMPL
as modeling language. The scaling of δ is constant because it does not influence the con-
vergence rate even if appropriate choices of the parameter can improve the stability of the
method (Theorem 7.14, equation (7.24)). We fix δ = 5hX,Ω.

As weight functions in equation (7.23) we used

w1(x, y) = e−
|x−y|

δ and w2(x, y) = ϕ1,1

( |x− y|
δ

)
,

where ϕ1,1(r) = (1− r)3+(3r + 1) is a C2(R)-Wendland’s function [52].

The following numerical experiments approximate the functions

f1(x) = sin(πx),

f2(x) = 6x6 + 5x3 + x2,

f3(x) =
1

1 + 30x2
.

In the following graphs the blue line allows us to check the correct slope of the approximation
error (Theorem 7.15).
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Figure 7.17: Convergence rate of the approximation error ∥f1 − zf1,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 28 + 1]. The approximation method reproduces exactly polynomials of degree 0.

Nodes 9 17 33 65 129 257 Degree

e−x 3.09e-01 1.19e-01 7.37e-02 3.22e-02 1.87e-02 7.91e-03 0

ϕ1,1 3.09e-01 1.19e-01 7.37e-02 3.22e-02 1.87e-02 7.91e-03 0
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Figure 7.18: Convergence rate of the approximation error ∥f1 − zf1,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 28 + 1]. The approximation method reproduces exactly polynomials of degree 1.

Nodes 9 17 33 65 129 257 Degree

e−x 6.82e-02 1.52e-02 4.41e-03 9.31e-04 2.75e-04 5.86e-05 1

ϕ1,1 6.82e-02 1.52e-02 4.41e-03 9.31e-04 2.75e-04 5.86e-05 1
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Figure 7.19: Convergence rate of the approximation error ∥f2 − zf2,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 28 + 1]. The approximation method reproduces exactly polynomials of degree 0.

Nodes 9 17 33 65 129 257 Degree

e−x 4.36e+00 1.03e+00 8.36e-01 2.95e-01 2.23e-01 7.14e-02 0

ϕ1,1 4.36e+00 1.03e+00 8.36e-01 2.95e-01 2.23e-01 7.14e-02 0
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Figure 7.20: Convergence rate of the approximation error ∥f2 − zf2,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 28 + 1]. The approximation method reproduces exactly polynomials of degree 1.

Nodes 9 17 33 65 129 257 Degree

e−x 1.05e+00 2.03e-01 7.01e-02 1.16e-02 4.29e-03 7.32e-04 1

ϕ1,1 1.05e+00 2.03e-01 7.01e-02 1.16e-02 4.29e-03 7.32e-04 1
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Figure 7.21: Convergence rate of the approximation error ∥f3 − zf3,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 28 + 1]. The approximation method reproduces exactly polynomials of degree 0.

Nodes 9 17 33 65 129 257 Degree

e−x 2.31e-01 1.07e-01 8.84e-02 3.21e-02 2.21e-02 7.68e-03 0

ϕ1,1 2.31e-01 1.07e-01 8.84e-02 3.21e-02 2.21e-02 7.68e-03 0
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Figure 7.22: Convergence rate of the approximation error ∥f3 − zf3,X∥L∞([−1,1]). The x-
axis describes the number of equispaced nodes used to produce the approximant. |X| ∈
[23 + 1, 28 + 1]. The approximation method reproduces exactly polynomials of degree 1.

Nodes 9 17 33 65 129 257 Degree

e−x 3.73e-02 2.65e-02 4.37e-03 1.70e-03 2.88e-04 1.07e-04 1

ϕ1,1 3.73e-02 2.65e-02 4.37e-03 1.70e-03 2.88e-04 1.07e-04 1

Numerical experiments confirm the statement of Theorem 7.15 because if the method re-
produces exactly πm(Rd) then the convergence rate is O(hm+1

X,Ω ).

We can note that the approximation errors for the different weight functions w1 and w2

coincide. This can be explained by showing that the basis functions {a∗i }i=1,...,N (equation
(7.23)) coincide when reproducing polynomials of degree 0 and 1.
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Figure 7.23: Basis functions of equation (7.23). The approxiomation nodes are 5 equis-
paced nodes in [−1, 1]. The basis functions reproduce the polynomials of degree 1. In this
numerical test δ = 3hX,Ω.
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7.4 Conclusion

The rescaled localized radial basis function method (RL-RBF) proposed in [1] represents
an efficient numerical scheme to interpolate functions on a scattered set of nodes. If radial
basis functions with compact support are used the main idea is to maintain a limit on the
number of nodes in the support of each function even if the number of nodes increases (we
want to preserve the locality of the problem). We can achieve this by scaling the basis
functions with a parameter δ proportional to the fill distance hX,Ω to control the size of the
support. The algorithm, that is an instance of the Shepard’s method, reproduces exactly
constants functions and for this reason linear convergence with respect to the fill distance is
expected. Numerical evidences show this feature also on large-scale interpolation problems
(the method is suitable for parallel computation). We have to wait for the results of [2]
to read a proof of the convergence for RL-RBF. This proof works up to a conjecture in
the quasi-uniform setting (this assumption is useful to scale all the basis functions with the
same parameter, in a more general context the parameter δ also depends on the density
of the nodes in different areas of the interpolation domain). If we restrict ourselves to a
quasi-uniform framework and the native space of the radial basis function we are studying
coincides with a Sobolev space then the conjecture can be reported as follows: we can deter-
mine a lower bound for the interpolant of the constant function 1 uniformly with respect to
the choice of the parameter δ. The solution of this conjecture is important because we can
obtain a sufficient condition on the number of nodes in the support of each basis function
to guarantee the linear convergence of the numerical scheme. Other relevant properties
concern the stability of the method (the condition number of the interpolation matrix, the
maximum eigenvalue and the inverse of the minimum eigenvalue are bounded by a constant
in a uniform way with respect to the choice of the scaling δ) and the effectiveness of the
implementation (the interpolation matrix is sparse and therefore treatable also for large
dimensions).

In this work we analyzed some practical and theoretical results to support the conjecture.
Thanks to the estimates on the uniform norm of the inverse of the interpolation matrix
we can state that the interpolant does not suffer from Runge’s phenomenon. Moreover,
deepening the relationship between the cardinal functions of a positive definite kernel with
the cardinal functions of the same kernel thought as conditionally positive definite with
respect to the constants we reached inequalities for the uniform norm of the difference of
cardinal functions (we travel two different approaches that led to the same result, the first
one uses the power function and the second exploits matrices properties). The approach
with linear algebra gives us the possibility to estimate the polynomials of degree 0 which
allow us to reproduce exactly the constant functions (the terms just mentioned tend to 0
when the number of nodes increases).

Our work continues generalizing the RL-RBF method by increasing the dimension of the
polynomial space to be reproduced exactly. The goal is to determine a convergent method
whose convergence rate is O(hm+1

X,Ω ) if all polynomials up to degree m can be approximated
correctly. We modified the definition of local polynomial reproduction by replacing the
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compactness of the support with a fast decay of the basis functions. The RL-RBF method
adapts to this new definition, while it does not reproduce polynomials locally because the
cardinal functions have not compact support. In the quasi-uniform setting this new approx-
imation scheme is convergent and stable (the Lebesgue constant depends on the dimension
of the space, the dimension of the polynomial space that is reproduced and on the decaying
of the basis functions). At this point in the analysis, smoothness plays no fundamental role.
In addition to RL-RBF method we proposed a further approximation scheme which provides
smooth quasi-interpolants (C∞(Rd)). The method approximates the value of an unknown
function using the moving least squares technique with a Gaussian as weight function. The
smoothness of the interpolant is inherited from the smoothness of the weight functions. In
this case the decrease of the basis functions is controlled by the inverse of an exponential
function. Since the solution of a moving least squares problem is the solution of a quadratic
optimization problem we are able to analyze the computational cost of the method, which
turns out to be linear in the number of nodes. Numerical tests confirm the theoretical
results of convergence and also the smoothness of the basis functions. With the numerical
tests we obtain an unexpected result: even if the weight function is only continuous, if we
increase the dimension of the polynomial space to be reproduced then the basis functions
turn out to be numerically smooth.

In these analysis and numerical tests we considered functions with global support and
the matrices involved can be dense although small in size when the space to be reproduced
is not too large. To address this difficulty we replaced the quadratic optimization problem
deriving from moving least squares with a linear program on a polyhedron. Also in this
area, with techniques similar to the previous ones, a stable and convergent method can
be achieved with the same convergence rate. A vertex solution of the linear optimization
problem allows us to control the number of non-zero basis functions at each point in the
domain (the basis functions that are different from 0 are at most m + 1 if we reproduce
all the polynomials up to degree m in a space of dimension 1). Since the weight functions
try to locate the optimization problem, we expect that the value of the weight function
corresponding to a node in the domain is large when the considered point is far from the
node. This type of experience leads us to use column generation techniques to reduce the
dimensionality of the problem (we can try to predict the non-zero basis functions because
the number of them is bounded uniformly with respect to the fill distance). If the weight
functions are continuous then warm start techniques in the primal and in the dual problem
are easily applied. The numerical results confirm the theoretical evidences on convergence
and even if we do not have any results on the smoothness of the approximant we get similar
outcomes to the moving least squares method (numerically we can observe that the basis
functions become smooth when the polynomial space to be reproduced gets bigger). The
method has been tested with weight functions with global (exponential function) and com-
pact (Wendland’s functions) support. The convergence results obtained are equivalent.

This work could also be continued in the future by looking for the solution to the con-
jecture and analyzing the optimization problem of the least squares method with different
norms and other weight functions, which guarantee a fast decay of the basis functions.
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