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Abstract

A localization task by amobile agent is considered, where the sensing and themotion actions are performed exclu-
sively with respect to each other, meaning that sensing the target is not available during the agent movement. To
formalize this scenario the system is modeled on the 1D line and a control law with a timer and a logic variable, to
allow switching between the operatingmodes of sensing the target andmoving towards it, is designed. A Stochas-
tic Hybrid System in standard form is obtained, satisfying the StochasticHybrid Basic conditions, and the overall
closed-loop system behavior is then studied.

An extension to the 2D plane is also proposed and its behavior is analyzed. Finally, the 2D control law is tested
for a simulated Search & Rescue task in an unknown indoor environment under some simplifying hypotheses.
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1
Introduction

The work of this thesis stems from the search for applications of Hybrid Systems theory in Active Sensing prob-
lems. This seems to be an unexplored combination in the literature, and the aim of the work is to explore possible
results at the intersection of these two fields.

1.1 Active Sensing

1.1.1 Overview
Active Sensing (AS) involves the control of a system, possessing both actuation and sensing parts, inwhich control
decisions about the sensing are also needed. We may say that, in the AS framework, the control of aspects related
to the system sensing is as central as the control of the actuators. An interplay between estimation, perception and
control arises. Thismakes AS highly relevant in automation and robotics tasks in the literature. It is employed, for
instance, in Search & Rescue missions, environmental mapping and exploration, path planning, optimal sensor
coverage [1].

1.1.2 Localization tasks
In the Active Sensing for Search and Tracking review by Luca Varotto et al. [1], three main types of tasks are
distinguished: Active Search, Active Localization and Active Tracking.

Active Search involves making data-collection decisions in order to find objects of interest (targets) which have
not been detected yet. In Active Localization, the purpose is to estimate the location of static targets that have
already been detected [2] [3] [4]. Finally, Active Tracking involves non-stationary targets, which require a contin-
uous update of the changing position estimate.
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In this context, the task we deal with in the thesis is an Active Localization task. We in fact assume the target
to be present, stationary, and only care about finding its location and moving towards it.

1.2 Stochastic Hybrid Systems

1.2.1 Hybrid Systems

Consider the distinction between continuous and discrete time dynamical systems. Those two classes are well
suited for the modeling and study of distinct problems. Sometimes, however, there are dynamical systems whose
description can benefit both of continuous-time laws, and of discontinuous transitions of the state. As an exam-
ple, consider electronic circuits where switching quantities are of core importance to their behavior (e.g. power
electronics), or mechanical systems such as a bouncing ball that (with a simplified model) instantly inverts the
direction of its velocity vector on collision with the ground [5].

Hybrid Systems allow the descriptionof suchdynamical systems, and thefield arising from their studyprovides
very useful tools for understanding their behavior and properties. In particular, various stability concepts have
been defined and Lyapunov-based results, alongside invariance principles, are available [5].

1.2.2 Stochasticity in Hybrid Systems

Stochastic Hybrid Systems (SHSs) also allow for stochastic behavior. For instance, a diffusion process might re-
place the deterministic flow, the jumps might happen at random instants, or the jumpmapmay depend on some
random quantity. Not all results available for deterministic Hybrid Systems have currently been obtained for
SHSs [6], however the literature provides useful results for specific classes of such systems, for instance [7]. The
2014 survey from Teel et al. [6] provides an overview of the current results.

1.3 Audio sensing and selected task

The first step involved seeking a suitable task to explore the intersection between AS and Hybrid Systems.
The idea originated from the application of sound sensing to localization tasks. An example scenario could

be a Search & Rescue mission in a devastated building, where the goal is to localize and rescue the victims (by
driving towards them) with the aid of a sound sensing device. On first sight, this is an interesting idea, since other
sensing modalities might suffer in such environments. Consider, for instance, visual sensing: if there is a lot of
dust and/or smoke, the cameramight not detect a victim in the room. Moreover, if there is no direct sight between
the autonomous agent, no information can be provided by such type of sensor.

There is already various work in the literature involving Search and Localization tasks with the aid of audio
sensing, for instance [8] [9] [10] [11] [12], together with various work on design and improvement of sound
source Direction Of Arrival (DOA) estimation through microphone arrays [13] [14].
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With audio sensing, it might also be possible to drive towards a victim in an unknown environment evenwhen
the agent and victim are not in direct sight, due to the sound waves propagating in corridors and through doors
and walls. This is better discussed towards the end in chapter 4.

However, another peculiarity of this sensing modality, applied to mechanical autonomous agents, is that the
agent actuation disturbs the sound readings. Previous work also references this issue in the literature [8] [9] [15]
[16].

There have been attempts to process the audio signals and remove the agent's self-generated noise [15], and
to combine audio, visual and motion information [16] for a more accurate estimate. One might also argue that
improvements in mechanical actuators might mitigate this issue but, for instance, in the hypothesis of a Search &
Rescue task in adevastatedbuilding,weobserve that the soundsproducedby the interactionof the agent actuation
and the environment (like driving or walking over debris and obstacles) cannot be entirely controlled.

Then the solution explored in this work is based on the pessimistic assumption that the mechanical noise pro-
duced by the actuation completely invalidates themeasurements. This lays the ground for an interesting problem
to tackle withHybrid Systems tools, which have already proven useful for the design of switching control laws for
tasks requiring online optimization decisions [17] [18].

In this work, we will not deal with the challenges related to the design of sound source DOA estimators, but
will instead assume that noisy DOA readings are available (with an appropriate simplified model) when the agent
is stationary.

We abstract the problem by moving it from the specific modality of audio sensing and obtain a description
which considers noisy position readings to only be available when the agent is not moving. Those could also
originate from electromagnetic sensing or other physical phenomena, but we preserve the important assumption
of exclusivity between the two actions of measuring and moving. We might then extend the ideas developed in
this work to other tasks where this tradeoff is present.
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2
One-dimensional task

2.1 Description and modeling
In this section, we describe the first simplified scenario that was considered for the thesis work. It involves a single
autonomous agent tasked with localizing a target (which we might think of as the victim in a Search & Rescue
task) whose position is unknown but stationary. Moreover, themeasurements are noisy and are unavailable while
the agent is moving.

The fundamental assumptions for the problem are then the following:

Assumption 1 (A1): The task happens inR1: the agent and the target are located on a one-dimensional space and
their positions in time are xA(t) ∈ R and xT(t) ∈ R respectively.

Assumption 2 (A2): The agent movement is controlled through the velocity input signal u(t) [m/s], so we have
ẋA(t) = u(t).

Assumption 3 (A3): The target is assumed to be stationary, that is ẋT(t) ≡ 0 ∀t.

Assumption 4 (A4): The distance sensing unit of the agent doesn't work when ẋA(t) 6= 0, that is when the agent
is moving.

Assumption 5 (A5): A distance measure requires Tm time to be ready, during which the condition of A4 must
hold.

Assumption 6 (A6): Distance measurements provided by the agent's distance sensing unit are noisy, and more
specifically, the additive noise is normally distributed with variance σ2d > 0. The additive Gaussian errors are
independent from each other.

The objective is for the autonomous agent to drive towards the target, subject to the constraints outlined by
the assumptions above.
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2.1.1 Task setup inR1

Following the description above, and starting from A1, we define the distance between the agent and the target
as:

d(t) := xT(t)− xA(t) (2.1)

Considering A2 and A3, we obtain the following dynamical equation for the agent-target distance:

ḋ(t) = ẋT(t)− ẋA(t) (2.2)

= −u(t) (2.3)

which makes it clear how the agent can minimize d(t), thus driving towards xT(t), with the control signal u(t)
(assuming d(t) is known).

However, the distance is not known, but as we outlined above, it can be measured through the sensing unit.
We denote a measurement taken at time t as d̃(t), and we consider A6 to write the following:

d̃(t) = d(t) + e(t) where e(t) ∼ N (0, σ2d), e(t1) ⊥ e(t2) ∀t1 6= t2 (2.4)

2.1.2 Switched mode control
A4 and A5 suggest that the controller must choose between two different incompatible behaviors:

1. moving the agent with u(t) 6= 0, physically progressing towards the target, preventing however the avail-
ability of distance measurements;

2. taking measurements, thus acquiring information about the target position, but without moving and
thus physically progressing towards it.

It is critical to notice that both behaviors are necessary for the task completion: it is true that the agent can com-
plete the task by driving towards the target (1.), however this can only happen if the agent has some information
about its location, which can only be obtained inmode (2.).

We then introduce the two following operating modes for the controller, associated with a logical variable that
we define as q(t) ∈ {0, 1} and will be part of the controller state:

• q = 0: Measurement mode

• q = 1: Movement mode

The main design areas for the controller will be the switching conditions for the two modes, and the feedback
law for u(t).

2.1.3 Timed measurements
Before working on the switching conditions and the agent velocity input control law, we focus on modeling the
timing of the measurements and the fusion of the information they provide.
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A5 requires that Tm time elapses, during which it must be u(t) ≡ 0, for a measurement to be available. We
then introduce a timer state variable in the controller so that it can keep track of this required time period while
the measurement mode is active. Let this variable be

τ(t) ∈ [0,Tm] ⊂ R (2.5)

which is defined on a compact subset ofR. We assume that the timer increments as

τ̇(t) = 1 (2.6)

when in measurement mode, and we will design the hybrid system so that τ(t) = Tm leads to a jump that will
both

• reset the timer to τ+(t) = 0,
• consider the measurement d̃(t) from the sensor.

2.1.4 Information fusion
We now formalize the way we perform information fusion with the RBE approach to keep an on-line estimate of
the agent-target distance.

We will differentiate between measurement and movement mode, since the assumptions about the available
information and underlying dynamics are different: in the first case, the target and the agent (and consequently
their distance) are stationary, with measurements being available. In the second case, instead, measurements are
not available and the distance is changing due to agent movement.

At the end of this section, it will be clear that the scheme we adopt is a Kalman filtering one [19], and the two
operating modes of the control law will exclusively leverage either the prediction or the update mechanism of this
technique.

While in measurement mode

Let us assume that the agent is in measurement mode for a given time interval, during which distance measure-
ments happen. Asdescribed in theprevious section, thesemeasurementswill be equally spaced in timewithperiod
Tm. Let us define

{ti ∈ R+}i=1,...,N, ti+1 = ti + Tm ∀i < N (2.7)

for some integerN number of measurements. The ordered times ti denote the instants at which measurements
happen.

Following A6, we define the p.d.f. of the measurement d̃ti = d̃(ti) at the time ti as:

p(d̃ti | dti) =
1√
2πσ2d

exp

(
− 1
2
(d̃ti − dti)2

σ2d

)
(2.8)

7



which, in particular, depends on the current state of the system dti . The dynamical model of the agent-target
distance in the measurement phase (ḋ(t) = 0) leads to the distance d(t) being constant, and the discrete-time
process {dti} obtained by repeated sampling, being Markov. That is

p(dti | dti−1 , . . . , dt0) = p(dti | dti−1) (2.9)

in particular, since there is no uncertainty in the actuation, and no process noise in the target dynamic, we can
write

p(dti | dti−1) = δ(dti − dti−1) (2.10)

where δ(·) is the measurable Dirac delta generalized function.
We now proceed with the standard reasoning for implementing RBE, for instance, as in [20].
We are looking for p(dti | d̃ti , . . . , d̃t0), which represents the p.d.f. of the agent-target distance given the mea-

surements up to the current time ti. We expand the expression as follows:

p(dti | d̃ti , . . . , d̃t0) = p(dti | d̃ti , d̃ti−1 , . . . , d̃t0) (2.11)

=
p(d̃ti | d̃ti−1 , . . . , d̃t0 , dti)p(dti | d̃ti−1 , . . . , d̃t0)

p(d̃ti | d̃ti−1 , . . . , d̃t0)
(2.12)

=
p(d̃ti | dti)p(dti | d̃ti−1 , . . . , d̃t0)

p(d̃ti | d̃ti−1 , . . . , d̃t0)
(2.13)

∝ p(d̃ti | dti)p(dti | d̃ti−1 , . . . , d̃t0) (2.14)

where, in the last expression (2.14), we have the product of the likelihood and the prior.
Moreover, using the dynamical prior of Equation (2.10) in the Chapman-Kolmogorov equation applied to

Markov chains [21, chapter 2.2]:

p(dti | d̃ti−1 , . . . , d̃t0) =
∫

p(dti | dti−1)p(dti−1 | d̃ti−1 , . . . , d̃t0) ddti−1 (2.15)

=

∫
δ(dti − dti−1)p(dti−1 | d̃ti−1 , . . . , d̃t0) ddti−1 (2.16)

= p(dti−1 | d̃ti−1 , . . . , d̃t0)
∣∣∣
dti−1=dti

(2.17)

by the sampling property of the Dirac delta generalized function.
Let us assume that, initially, due to absence of any information, the p.d.f. of the estimate dt0 at time t0, with

the first measurement d̃t0 being available, is the same as the p.d.f. of the measurement

p(dt0 | d̃t0) := p(d̃t0 | dt0) (2.18)

=
1√
2πσ2d

exp

(
− 1
2
(d̃t0 − dt0)2

σ2d

)
(2.19)

=
1√
2πPt0

exp

(
− 1
2
(μt0 − dt0)2

Pt0

)
(2.20)
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and is thus a Gaussian p.d.f., where we defined

μt0 := d̃t0 Pt0 := σ2d (2.21)

to highlight that they characterize the initial estimate at time t0. The prediction step with Equation (2.17) leads
to

p(dt1 | d̃t0) = p(dt0 | d̃t0)
∣∣∣
dt0=dt1

(2.22)

=
1√
2πPt0

exp

(
− 1
2
(μt0 − dt0)2

Pt0

)∣∣∣
dt0=dt1

(2.23)

=
1√
2πPt0

exp

(
− 1
2
(μt0 − dt1)2

Pt0

)
(2.24)

which is still a Gaussian p.d.f. with mean μt0 and variance Pt0 , as expected due to the constant dynamic. The
update step, which happens with the newmeasurement d̃t1 being available, leads to

p(dt1 | d̃t1 , d̃t0) ∝ p(d̃t1 | dt1)p(dt1 | d̃t0) (2.25)

=
1√
2πσ2d

exp

(
− 1
2
(d̃t1 − dt1)2

σ2d

)
1√
2πPt0

exp

(
− 1
2
(μt0 − dt1)2

Pt0

)
(2.26)

that is, a p.d.f. proportional to the product of two Gaussian p.d.f. of means μt0 and d̃t1 , and variances Pt0 and σ2d,
respectively. It is a known result that such a product is a p.d.f. proportional to a Gaussian one, and the normal-
ization factor at the denominator that we neglected in the last step of Equation (2.14) leads to the new posterior
estimate at time t1 being a Gaussian p.d.f.:

p(dt1 | d̃t1 , d̃t0) =
1√
2πPt1

exp

(
− 1
2
(μt1 − dt1)2

Pt1

)
(2.27)

with

μt1 =
Pt0 d̃t1 + σ2dμt0

Pt0 + σ2d
Pt1 =

Pt0σ2d
Pt0 + σ2d

(2.28)

Iteratively it should be intuitive to understand that Equation (2.28) is the update equation for the information
fusion that happens each time a newmeasurement arrives. We can generalize it for any generic update time ti as

μti =
Pti−1 d̃ti + σ2dμti−1

Pti−1 + σ2d
Pti =

Pti−1σ2d
Pti−1 + σ2d

(2.29)

and, in particular, we can rewrite it as

μti = K(Pti−1)d̃ti + (1− K(Pti−1))μti−1
Pti = K(Pti−1)σ

2
d (2.30)

9



where we define the Kalman gain

K(P) :=
P

P+ σ2d
(2.31)

It is then clear that the estimate of the agent-target distance at some specific time in the measurement phase is
represented by aGaussian randomvariable. The parameters that characterize this randomvariable can be updated
on measurements with Equation (2.30). It follows naturally that we introduce the two state variables

μ(t) ∈ R (2.32)

P(t) ∈ R+ (2.33)

to encode the current normally distributed estimate of d(t).

While in movement mode

In the movement phase, the measurements are not available. Instead, we have

ẋA(t) = u(t) 6= 0 (2.34)

=⇒ ḋ(t) 6= 0 (2.35)

Here, the dynamical model differs from before, and Equation (2.10) doesn't hold anymore. Moreover, the dy-
namic is now continuous in time, in contrast to the previous case of themeasurements happening instantaneously
in some specific time instants.

Instead, we may introduce dt > 0 very small and write:

p(dt+dt | dt) = δ(dt+dt − (dt + ḋt dt)) (2.36)

We then recall the p.d.f. of the estimate of d(t) = dt at time t:

p(dt) =
1√
2πPt

exp
(
− 1
2
(dt − μt)

2

Pt

)
(2.37)
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and expand on p(dt+dt) as follows:

p(dt+dt) =

∫
p(dt+dt | dt)p(dt) ddt (2.38)

=

∫
δ(dt+dt − (dt + ḋt dt))p(dt) ddt (2.39)

=

∫
δ((dt+dt − ḋt dt)− dt)p(dt) ddt (2.40)

= p(dt) ddt
∣∣∣
dt=dt+dt−ḋt dt

(2.41)

=
1√
2πPt

exp

(
− 1
2
(dt+dt − ḋt dt−μt)

2

Pt

)
(2.42)

=
1√
2πPt

exp

(
− 1
2
(dt+dt − (μt + ḋt dt))2

Pt

)
(2.43)

We then conclude that the new estimate at time t+ dt is represented by

Pt+dt = Pt (2.44)

μt+dt = μt + ḋt dt (2.45)

In particular Equation (2.45) implies that

μ(t+ dt)− μ(t) = ḋ(t) dt . (2.46)

and, dividing by dt and taking the limit for dt→ 0 of both sides of this last equation, we obtain

lim
dt→0

μ(t+ dt)− μ(t)
dt

= lim
dt→0

ḋ(t)��dt
��dt

(2.47)

μ̇(t) = ḋ(t) (2.48)

We then recall the equation for ḋ(t) from the task setup described in subsection 2.1.1 and obtain the continuous-
time RBE prediction equation for μ(t) to be used in movement mode:

μ̇(t) = −u(t) (2.49)

togetherwith the followingprediction equation forP(t), obtainedwith the sameprocedure fromEquation (2.44):

Ṗ(t) = 0 (2.50)

This result is compatible with the one obtained by continuous-time Kalman filtering [19].
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Observations

• Due to the absence of process noise, as long as the agent controller is in measurement mode (q = 0) the
variance P(t) of the distance estimate will be monotonically decreasing and become arbitrarily small as
t→∞. This is because in Equation (2.30) the variance Pti updates through the map

P 7−→ (1− K(P))P

where
1− K(P) =

σ2d
P+ σ2d

< 1

since σ2d > 0 and P ≥ 0. The map is then a contraction with P∗ = 0 as fixed point.

• When the agent controller is instead in movement mode (q = 1), the variance will stay constant.

• Wewill use μ(t) as the ``best'' estimate value of d(t), which is the result we obtainwith both themaximum-
likelihood and the minimum variance criteria.

2.1.5 Control input and movement action
We now proceed with the design of a feedback law for the movement phase. The goal is to drive the distance d(t)
towards zero.

Recall that ḋ(t) = −u(t). We might be tempted to choose a feedback law such as

u(t) = αd(t) (2.51)

with α > 0 which would guarantee exponential convergence d(t)→ 0.
However, this is not possible, since the quantity d(t) is not known by the agent. In its place, we instead use the

mean of its estimate p.d.f., which is part of the state of the RBE subsystemwe designed in the previous subsection,
following the last observation we made about it being the MVE andMLE:

u(t) = αμ(t) (2.52)

In this way, we are closing the loop with the value provided by the estimator.

2.1.6 Mode switching conditions and reset
Finally, we are left with the design of the mode switching conditions: like we described in subsection 2.1.2, it is
necessary for the agent to make use of both operating modes. We may say that the purpose of the measurement
mode is to perform distance measurements to obtain an estimate of the agent-target distance. This estimate is of
critical importance since it drives the movement in the homonymous operating mode. It then makes sense that
the controller will stay in measurement mode until the estimate is deemed ``good enough''. Of course, we must
define what we mean by ``good enough''.

12



The first thing that comes to mind is that the estimate variance P(t) is monotonically decreasing during the
measurement phase and is inversely proportional to the quality of the estimate. It seems reasonable to design the
measurement-to-movementmode switch so that it happens when the estimate variance P(t) goes below a specific
threshold.

Conversely, in movement mode, it seems reasonable to keep moving while the (estimated1) distance to the
target is above a given threshold, being the feedback law in Equation (2.52) designed to make the distance strictly
monotonically decreasing. We then expect to end the movement mode when μ(t) goes below a specific threshold.

To design the thresholds, we start with the observation that
√
P(t) is the standard deviation of the Gaussian

estimate. We can multiply this quantity by some positive scalar coefficient and obtain a value in the meter SI
physical unit. Moreover, such quantity represents a confidence interval around the estimate of the agent-target
distance. It then made sense to choose the movement-to-measurement switching condition as

|μ(t)| ≤ b
√
P(t) (2.53)

where b ∈ R+ is a parameter of the control law. In this way, the comparison is physically meaningful (both
quantities are in meters) and we obtain an interesting behavior: the more accurate the estimate of d(t) is, the
closer we drive before we stop the movement with respect to the mean of the distance estimate μ(t).

With reference to the switching condition we just found, and the previous discussion regarding the idea of
choosing a threshold on P(t) so that we wait for it to be ``small enough'', we may propose the following specular
condition for the measurement-to-movement mode switch:

a
√

P(t) ≤ |μ(t)| (2.54)

with a ∈ R+ being another parameter for the controller. As before, this leads to an interesting behavior: the
closer we are to the target, the lower the threshold we require on the variance P(t), or equivalently, the higher we
require the estimate accuracy to be.

To ensure there is some hysteresis between the mode switches, and there is no possibility of overlap in the
conditions, we start bynoticing that the opposite inequalities (that thus imply that the controller does not perform
any mode switch and keeps running, instead, in the current mode), are|μ(t)| ≥ b

√
P(t)

a
√

P(t) ≥ |μ(t)|
(2.55)

1Recall that the true distance d(t) is not available to the agent, and the reasonable thing we do is consider the
mean of its estimate μ(t) in its place.
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and we combine both expressions to highlight that it must be2

a
√

P(t) ≥ |μ(t)| ≥ b
√
P(t) (2.56)

a ≥ |μ(t)|√
P(t)

≥ b (2.57)

and so, for there to be a region in the space of μ,P of continuous operation without mode switches, wemust have

a > b (2.58)

and, finally, the conditions will be expressed by taking the square of both sides of (2.53) and (2.54) as follows:

μ2(t) ≤ b2P(t) a2P(t) ≤ μ2(t) (2.59)

Moreover, we design the system so that a movement-to-measurement mode switch leads to a reset of the RBE
subsystem. This is a key feature of the control scheme, since it allows the system to recover from bad estimates.
Those can happen especially if the initial state of the estimator is not meaningful with respect to the true distance.
Consider, as an example, the case of

d(0) = 10m μ(0) = 2m P(0) = 0.01 (2.60)

which encodes a confidence region of±0.3m at 0.997 probability, with d(0) being way outside of such interval.
It is not difficult to see that the switched mode controller, assuming a scenario with σ2d � P(0), cannot correct
for the bad initial state during the measurement phase, due to the Kalman gain (Equation (2.31)) being small.
Moreover, it will switch quite soon to the movement phase (this depends on the choice of the parameter a, of
course) with μ(ts) ∼ μ(0) = 2 ≁ d(ts) = d(0) at the time ts of the switch and consequently it will not converge
close to d(∞) = 0, but instead at d(∞) ∼ 8 = d(0) − μ(0). This behavior can be observed in Figure 2.4b
where the final closed-loop system is simulated with a similar initial condition (the initial variance P(0) is not as
small, but it is small enough that the described behavior is observed).

Aswehinted at thebeginning, the chosen solution is toperforma reset of the estimator statewith themovement-
to-measurement mode switch. The details of how this is done in the final standard form SHS will be discussed
later. For the time being, it can be intuitively explained by setting3 the variance of the estimate P(t+r ) = ∞ after
themode switch and reset jump at time tr. With such a choice, the nextmeasurement update at time ti0 = tr+Tm,
with still P(ti0) = P(t+r ) =∞, will lead to

lim
P(ti0 )→∞

K(P(ti0)) = lim
P(ti0 )→∞

P(ti0)
P(ti0) + σ2d

= 1 (2.61)

2In the manipulations that followed, we assumed P(t) > 0, but the reasoning can be extended by continuity
by taking the limit for P(t)→ 0+.

3We can't of course set the state variable to∞, since it is not part of R+, but the reasoning is done with this
notation abuse for simplicity, and is treated later in a formally correct way.
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which allows to obtain the re-initialization of the RBE state with the first measurement data:

μ(t+i0 ) = lim
P(ti0 )→∞

K(P(ti0))d̃(ti0) + (1− K(P(ti0)))μ(ti0) (2.62)

= d̃(ti0) (2.63)

P(t+i0 ) = lim
P(ti0 )→∞

(1− K(P(ti0)))P(ti0) (2.64)

= lim
P(ti0 )→∞

σ2d
P(ti0) + σ2d

P(ti0) (2.65)

=

(
lim

P(ti0 )→∞

P(ti0)
P(ti0) + σ2d

)
σ2d (2.66)

= σ2d (2.67)

Finally, we chose to perform the mode switch when the timer τ = 0. This is especially relevant for the
measurement-to-movement mode switch and, in fact, allows, for instance, the following sequence of events to
happen cleanly and in a well-defined way:

• the system performs a reset;

• after Tm units of time have elapsed, a measurement is taken and, the system being in the reset state, set as
the current estimate μ;

• the measurement-to-movement mode switch threshold triggers immediately, and the system switches to
movement mode.

2.1.7 Closed-loop system
We now describe the final closed-loop SHS by defining its data with the same notation as in [7], and later proving
that it satisfies the Stochastic Hybrid Basic Conditions. At the end of the section Figure 2.3 shows a block diagram
of the system that was described, with each block roughly mapping to each one of the previous sections that
discussed the different parts. The diagram of Figure 2.2 illustrates the mode switching behavior of the system
with reference to the sets and maps that we will soon introduce.

Let the system state be

x =


τ
d
μ
E
q

 ∈ X = [0,Tm]× R× R× [0, 1]× {0, 1} ⊂ R5 (2.68)

with the relation

E = e−1/P ∈ [0, 1] P =
1

ln(E−1)
∈ [0,+∞] (2.69)
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Table 2.1 briefly describes all the state variables and lists their physical unit.

Wewill useE andP interchangeably to refer to the variance of the estimate in its encoded vs. original representa-
tion, respectively. We imply the use of the invertible change of variable, with the needed extensions by continuity,
when we refer to E instead of P, and vice versa. Figure 2.1 plots this continuous mapping for a limited range of
P > 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

P

E

Continuous invertible mapping between P and E

Figure 2.1: Plot of the continuousmapping betweenP andE.

Some additional observations about the state variable E are made:

• E = 1 encodes the condition of ``zero knowledge'' (P = ∞), and is the way we solve the issue we hinted
at before of P = ∞ not being a valid state value. In fact, observe that the previous reasoning about
the behavior of such value of P in the first measurement update after a reset involved taking the limit for
P→∞, and we have

lim
P→∞

e−1/P = e0 = 1 (2.70)

The reset jump will set E(t+r ) = 1 and the measurement jumpmap is designed such that

E(t) = 1 =⇒

{
μ(t+) = d̃(t)
E(t+) = e−1/σ2d

(2.71)

• E = 0 encodes the condition of ``perfect knowledge'' (P = 0), in fact

lim
P→0+

e−1/P = lim
z→∞

e−z = 0 and lim
E→0+

1
ln(E−1)

= lim
z→∞

1
ln(z)

= 0 (2.72)

We finally proceed to define the jump and flow sets, the jumpmaps and the flow vector field of the SHS.

Let us define, in a compact way (which assumes extension of the sets by continuity of the comparison func-
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x ∈ C0 x ∈ C1

g01(x, ν)

g10(x, ν)

gm(x, ν)

Figure 2.2: State transition diagram of the closed-loop stochastic hybrid system, with respect to the two flow setsC0 and

C1, tied to themeasurement andmovementmodes, respectively. The transitions coincide with the jumps, which are state-

driven, andmap the state through the function on the edge label.

tions), the following sets

Dm = {Tm} × R× {E ≥ e−a2/μ2} × {0} (2.73)

C0 = [0,Tm]× R× {E ≥ e−a2/μ2} × {0} D01 = {0} × R× {E ≤ e−a2/μ2} × {0} (2.74)

C1 = {0} × R× {E ≤ e−b2/μ2} × {1} D10 = {0} × R× {E ≥ e−b2/μ2} × {1} (2.75)

with the following meaning

• Dm is the jump set related to measurement jumps;

• D01 is the jump set related to measurement-to-movement mode switches;

• D10 is the jump set related to movement-to-measurement mode switches, or reset jumps;

• C0 is the flow set for measurement mode;

• C1 is the flow set for movement mode.

The jump and flow set of the system is then obtained by unions of these sets:

C := C0 ∪ C1 ⊂ X D := Dm ∪D01 ∪D10 (2.76)

We state that the above sets Dm, C0, D01, C1, D10 are closed, and a proof of this fact is given in Proposition A.3.
Consequently, C andD, being the union of closed sets, are closed.

The jumpmaps are defined as

gm(x, ν) =
[
0 d ME(μ,E, d+ ν) NE(E) 0

]T
x ∈ Dm (2.77)

g01(x, ν) =
[
0 d μ E 1

]T
x ∈ D01 (2.78)

g10(x, ν) =
[
0 d μ 1 0

]T
x ∈ D10 (2.79)

where ν ∼ N (0, σ2d) is sampled at each jump and represents the i.i.d. Gaussian measurement errors, and the
functionsME andNE are defined to compact the notation and represent the update expressions of the RBE.
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Their derivation starts from defining the functionsM(μ,P, d̃) andN(P), which serve the same purpose with
the non-encoded representation of the variance P, and originate from Equation (2.29):

M(μ,P, d̃) :=
σ2d

P+ σ2d
μ+

P
P+ σ2d

d̃ = μ+ (2.80)

N(P) :=
σ2d

P+ σ2d
P = P+ (2.81)

then, applying the change of variables of Equation (2.69) from P to E for the arguments, from E to P for the
domain ofN(P), and taking care of the needed extensions for continuity, we obtain

ME(μ,E, d̃) :=


−σ2d ln(E)
1−σ2d ln(E)

μ+ 1
1−σ2d ln(E)

d̃ if E > 0

μ if E = 0
(2.82)

NE(E) := e−1/σ2dE (2.83)

which are used above in Equation (2.77) for defining the jumpmaps.
We finally define the flow vector field f(x) as follows

f(x) =


1− q
−αμq
−αμq
εq
0

 ∈ R5 x ∈ C0 ∪ C1 (2.84)

With reference to the definition of the state vector x in Equation (2.68), observe that

• fτ(x) = 1− qmakes the timer increase only during measurement mode, where q = 0;

• fd(x) and fμ(x) are both equal to −u(t)q, so the movement ``activates'', impacting on the agent-target
distance d and updating the estimator state μ, only in movement mode, that is when q = 1;

• fq(x) ≡ 0 as the current mode only changes during jumps.

Moreover, notice that fE(x) = εq. This is necessary to avoid the system getting stuck in the following subset
of the state space:

F = {x ∈ C1 | τ = 0,E = 0, q = 1} (2.85)

= {0} × R× R× {0} × {1} (2.86)

⊂ C1 (2.87)

In fact, without the above correction, the above subset would be forward-invariant: the condition for the system
to exit C1 is x(ts) ∈ D10 for some ts. However, considering the definitions of the set in (2.75), we have

x ∈ D10 =⇒ E ≥ e−b2/μ2 > 0 ∀b > 0, μ ∈ R (2.88)
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so we can write x ∈ D10 =⇒ E > 0, the logical inverse of which is4

E = 0 =⇒ x /∈ D10 (2.89)

and then it is clear that since

x ∈ F =⇒ E = 0 =⇒ x /∈ D10 (2.90)

the system will never jump outside of F ⊂ C1. The term fE(x) = εq breaks the forward-invariance of F for
any choice of ε > 0. We can then choose an arbitrarily small value of ε and argue that this additional dynamical
component does not impact on the performance of the system (more specifically, on the behavior of the estimator).

It is only left to formally define the distribution function

λ : B(R)→ [0, 1] (2.91)

ω 7→ λ(ω) =
∫
ω

1√
2πσ2d

exp
(
− 1
2
x
σ2d

)
dx (2.92)

which is a Normal distribution of mean 0 and variance σ2d, representing the measurement errors that are sampled
at each jump.

To sum up, in equation (2.68) we define the state space of the system, equations (2.73), (2.74) and (2.75)
define the flow and jump sets, in (2.77) the jump maps are defined, in (2.84) the flowmap is provided and (2.91)
defines the random distributions related to the jumps. This completes the description of the SHS in the form
considered in [7], with the specific characteristics of not having a set-valued flow map, the distribution function
not dependent on the state, and its transitions being entirely state driven (there are no spontaneous ones).

Finally, tables 2.1, 2.2 and 2.3 summarise and describe all the state variables, system parameters and controller
parameters that characterize the system.

State variable Description Unit
τ Measurement timer, only enabled while q = 0 s
d True agent-target distance m
μ Mean of the Gaussian estimate of the agent-target distance m
P Variance of the Gaussian estimate of the agent-target distance m2

q Operating mode: q = 0 measurement, q = 1 movement -

Table 2.1: State variables of the closed-loop SHS for the 1D task.

4Together with E ≥ 0 which follows from the definition of the state variables in Equation (2.68).
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Parameter Description Unit Properties
Tm Time between measurements s > 0
σ2d Variance of the distance measurements m2 > 0
ε Positive derivative of E during movement > 0,� 1

Table 2.2: Parameters of the 1D system.

Parameter Description Unit Properties
α Approach rate in movement mode > 0
b Movement to measurement mode switch threshold − > 0
a Measurement to movement mode switch threshold − > b

Table 2.3: Parameters of the 1D control law.

∫Agent-target distance dynamic

y
Distance sensor

RBE

μ P

Switching
conditions

Movement
controller

Tm
timerτ

τ

τ = Tm

4

reset

en

d d̃

R

S

q

resetu μ

en

Figure 2.3: Block diagram of the 1D closed-loop SHS. The red color denotes logical signals. The agent-target dynamic is

modeled as an integrator on the velocity control inputu that is provided by the control law. Then the distance sensor is

modeled as a sampler block with additive noise, triggered by the timer τ reaching its maximum valueTm. The RBE block is

at the entry of the control scheme, and is a hybrid block: measurements trigger an instantaneous state update, while during

movement, the update of its state is continuous. In general, it monitors themeasurements and the velocity signal, together

with the current operatingmode. The switching is realized with the Switching conditions block, that monitors μ,P from the

estimator, and a SR flip-flop, that keepsmemory of the current mode. When q = 0 the enable signal on themovement

controller forces its output to zero, and theTm timer is forced reset (with the counter τ at 0). Otherwise, the timer ticks

from 0 toTm, resetting to zero by itself.

2.2 Simulations and behavior
While there are algorithms for generating solutions of general Stochastic Hybrid Systems [6], the proposed SHS
has been simulated with an ad hoc algorithm, which samples solutions from their measurable set Ω provided
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an initial condition x0 [7]. For a description of the algorithm, refer to Algorithm A.1 in the appendix. A faster
version of the algorithm, which neglects the checks regarding x ∈ C ∪ D, has also been used and is described by
Algorithm A.3 in the appendix. The implementation shown in listing A.1 covers both variants.

2.2.1 Behavior in time
The first simulation results that we present are in the shape of plots of some random solutions of the SHS in time.

Figure 2.4a shows one such experiment, with an initial choice of the most critical parameters as a = 2.5,
b = 0.6, σ2d = 0.25 and α = 0.1. Please note that, unless otherwise stated, we always assume unitary Tm = 1s
and a small ε = 1× 10−9. This experiment is a good example of the typical system behavior: let us comment on
the events that happen as time progresses.

• The system starts at t0 = 0 in measurement mode, with no knowledge of the target position (E(t0) = 1,
P(t0)→∞which in the plot is represented by themissing segment of the

√
P(t) line) and initial estimate

compatible with the true distance5. The timer is at τ(t0) = 0 and starts increasing, awaiting the time
required for a measurement to be available to elapse.

• At time ts1 = 1 the system performs the reset measurement with the reset jump due to x ∈ D10, ending
up with μ(ts1) ' d(t0). The timer is reset to zero, and E+ < 1 (in particular P+ = σ2d).

• Immediately after, the condition x ∈ D01 for the measurement-to-movement mode switch is fulfilled.
This happens because the mode switching conditions take into consideration the current (relatively) big
distance of the system from the target, leading to a quite conservative threshold on E, which is already
fulfilled.

• From time ts1 = 1 to time ts2 = 35.75, the agent moves towards the target, until the next mode switching
condition x ∈ D10 is met. This movement phase ends with the agent closer to the target: d(ts2) ' 0.6.

• Amovement-to-measurement mode switch, or reset jump, happens again at ts2 . The estimator is signaled
again for the need of a reset measurement with E+ = 1. The system enters the measurement mode with
the timer τ(ts2) = 0, which starts to increase again.

• The system stays inmeasurementmode from time ts2 to time ts3 = 39.75, performing information fusion
of the incoming measurements. Observe that P(t) decreases monotonically at each measurement jump.
The timer ensures the correct timing between the measurements.

• At time ts3 themovementmode is entered again. This time, thanks to themore accurate estimate that was
obtained in the previous measurement phase, the mode-switching conditions allow the system to move
closer to the target, ending up at d(ts4) ' 0.05, ts4 = 55.54.

• At time ts4 the measurement mode is entered again. This time, due to the smaller distance between the
agent and the target, the mode-switching conditions require a higher precision estimate before entering
the next movement phase. In the limit of the 100s of total simulation time that is depicted, this does not
happen, even though the variance of the estimate is decreasing at every measurement jump. The agent,
however, is very close to the target at the end of the considered time frame.

5The initial value μ(t0) is actually not important, since the system as such is ready for a reset measurement, as
designed in subsection 2.1.6
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Figure 2.4: Behavior in time of the 1D system, obtained by sampling a random solution. All state variables are plotted, with

the current mode q(t) being depicted through the differently colored background segments. The parameters are chosen as

α = 0.1, ε = 1× 10−9, σ2d = 0.25, a and b as in the plot title. The ``good'' and ``bad'' x0 cases, with reference to the initial
condition, are compared.
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We can then observe that the dynamic we designed is able to approach the target gradually, switching between
the twomodes and trying (depending on the parameters choices) to react early when enough information is avail-
able. The true distance is improved upon, cycle after cycle. At the beginning, big improvements are achieved,
while later progressively smaller adjustments are performed.

Figure 2.4b shows instead the results of an experiment where a ``bad'' initial condition was used. In particular,
the initial estimate has been initializedquite differentlywith respect to the true agent-target distance. This scenario
is the one previously described in subsection 2.1.6 thatmotivated the introduction of the resetmechanism. Notice
in the plot that while the agent initially ends up in a bad location (at the end of the first movement phase), it is
able to quickly recover and approach the target arguably well, in a reasonable time. Please note that the two
experiments of Figure 2.4 depict only two random solutions of the closed-loop stochastic hybrid system, so the
fact that the distance ends up closer after only one movement phase following the reset, with respect to the two
movement phases of the previously discussed experiment, is just a random outcome and is not indicative of better
performance with bad initial conditions in general.

In fact, it is important, when observing some quantitative aspect of the system behavior, to consider the ex-
pected value over all possible solutions. In the next section, we will indeed try to understand what happens to the
localization performance with respect to the choices of the parameters a, b for various choices of σ2d.

2.2.2 Effect of parameters on task completion metrics
Let us assume that σ2d, which characterizes the quality of the measurements, is given and fixed. As stated before,
the time required for a measurement to be ready is Tm = 1s and α = 0.1, ε = 1× 10−9.

It is interesting to study the effect of the controller parameters a and b on some performance metrics of choice.
For this purpose, two metrics will be considered:

1. the final distance, after some fixed time, between the agent and the target;

2. the time required for the agent to switch back tomeasurement mode with the true distance below a given
threshold.

The motivation for experimentally measuring this last quantity originates from the possibility of the agent,
tasked to also rescue the target, to be provided with some kind of sensing unit capable of detecting with very high
confidence the presence of the target in a given short range6. In such case we might consider the rescue task to be
completed.

For the first metric, we fix the final time tf = 100s and estimate the expected value of the final distance as
follows:

E
[
|d(tf)|

]
= E

x∈Sr(x0)

[
sup
j

{
|xd(tf, j)|

}]
(2.93)

= E
x∈Sr(x0)

[
|xd(tf)

∣∣] (2.94)

' 1
N

N∑
i=1

|xd(ωi)(tf)| (2.95)

6This could be visual and/or infrared thermal sensing, for instance.
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Figure 2.5: Expected value of the 1D final distanceE
[
|d(tf)|

]
, with respect to the choice of the two parameters a, b, in the

presence of low, medium and highmeasurement noise σ2d. The final time has been chosen as tf = 100s and the parameters

as α = 0.1, ε = 1× 10−9,Tm = 1s. The ``good'' and ``bad'' x0 cases, with reference to the initial condition, are compared,

where the good x0 =
[
0 10 10 1 0

]T
and the bad x0 =

[
0 10 2 0.01 0

]T
. The crosses denote the

location of the local minima in the considered parameter range.

wherex ∈ Sr(x0) is amapping fromΩ to the set of hybrid arcs and represents a random solution starting from x0
[7]. In (2.94) we omitted the sup operation and the indexing on j since, in the system we are generating solutions
of, there are no jumps that change the value of the distance: x(t) ∈ D =⇒ xd(t+) = xd(t). The samplesωi ∈ Ω
in (2.95) are obtainedby randomly sampling values from the distribution functionλ(·)defined inEquation (2.91)
at each jump, as performed byAlgorithmA.3which is used for theseMonteCarlo estimations. In all experiments,
it was chosenN = 500.

Figure 2.5 plots the resulting value of the estimate described by Equation (2.95) for different values of the
parameters a and b in a limited range around the origin, in the three cases of low, medium and high measurement
noise. A cross denotes the location where the minimum value has been measured.

As for the secondmetric, the procedure is similar. This time, however, theMonte Carlomethod approximates

E
x∈Sr(x0)

[
tR := min

{
t ≥ 0

∣∣ xq(t) = 0, |xd(t)| ≤ dR
}]

(2.96)

that is, the ``reach time'' tR defined as the first time instant (from the task starting time) where the agent is within
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Figure 2.6: Expected value of the 1D approach timeE [tR], tR := min{t ≥ 0
∣∣ q(t) = 0, |d(t)| ≤ dR}, where

dR = 0.5m, with respect to the choice of the two parameters a, b, in the presence of low, medium and highmeasurement

noise σ2d. Themaximum operating time is bounded at 500s and the parameters chosen as α = 0.1, ε = 1 × 10−9

andTm = 1s. The ``good'' and ``bad'' x0 cases, with reference to the initial condition, are compared, where the good

x0 =
[
0 10 10 1 0

]T
and the bad x0 =

[
0 10 2 0.01 0

]T
. The crosses denote the location of the local

minima in the considered parameter range.

the chosen range dR of the target, and the measurement mode is active. In this way, we are observing how much
time is needed for the rescue task to complete, given a fixed final distance threshold. For all experiments, it has
been chosen dR = 0.5m.

Figure 2.6 plots the resulting value of the estimate of Equation (2.96) for different values of the parameters
a and b, in the three cases of low, medium and high measurement noise. As before, a cross denotes the location
where the minimum value has been measured.

Finally, note that, for each scenario and for bothmetrics, two initial conditions are considered: a favorable one
with a meaningful estimator initial state, and a misleading one with a bad estimator state.

2.2.3 Observations

We now comment on the experimental results of the previous section.
Looking at the expected value of the two performance criteria in figures 2.5 and 2.6, we visually observe that
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there are two local minima in the considered range of the parameter space (a, b)7.
The leftmost local minimum location does not look to be dependent on the kind of initial condition, but its

position does instead change based on the value of σ2d. The rightmost one, instead, changes its location also based
on whether x0 is favorable or not. Figure 2.7 plots a solution of the system with σ2d = 25 and this second set of
locally optimal parameters, obtained in the final distance experiment of Figure 2.5 with σ2d = 25 and a good initial
condition.

We observe indeed that this set of parameters leads to a good performing execution with a favorable x0 (Fig-
ure 2.7a), but does not perform as well with a misleading initial condition (Figure 2.7b). This can be intuitively
explained by the fact that such a choice, in particular with a� 0 and b� a, tune the system so that themeasure-
ment phase lasts longer8 and the movement phase tries to stop the agent very close to the estimated position of
the target. It should be clear that such behavior is well suited if the system is correctly initialized, with the variance
P(0) encoding the real variance of the estimate μ(0) (or, as in the experiment of Figure 2.7a, with x(0) being a
reset state). If the initial estimator state is instead not representing the true mean and variance, like previously
discussed in subsection 2.1.6, the system will need to perform a reset jump before being able to correctly perform
the task as designed. A big value of the parameter a increases the time required for this to happen, and leads to
worser performance (in reach time and final distance at a given limit time) as we can clearly observe in Figure 2.7b.

The leftmost local optimum, instead, tunes the control law differently, leading to a typical execution which
solves the issue that was just described. Now that a is not much bigger than b, the mode switching happens more
often. Figure 2.8 plots two solutions of the closed-loop SHS with σ2d = 25 and the locally optimal parameters
a = 2.4 and b = 1.1 from the experiments with σ2d = 25 of Figure 2.5.

Weobserve that this leads tomore frequent reset jumps, allowing the system to recover earlier fromamisleading
x0. This can be observed in Figure 2.8b where within the initial 15s, a reset happens which leads to a (relative to
the previous case) quickly converging distance dynamic. We also observe that, by comparing the two random
solutions of Figure 2.7a and Figure 2.8a, the performance of the task execution is qualitatively slightly worse, in
this specific instance, with this second set of parameters. Wemay argue that this is not a coincidence, since itmakes
sense that this local minimum for the two classes of initial conditions may only be the global minimum for the
misleading x0 case.

Another observation is that, in the reach time experiment, the leftmost local optimum is always very close to the
diagonal a = b (of course it must be a > b). Intuitively a small difference δ := a− b� 1 leads to more frequent
switching, and themotivation for the system to prefer such behavior is that, given the experiment setup previously
explained in section 2.2, this leads to statistically more opportunities for the task to be considered complete: it is
in fact required that the system switches back to measurement mode for this condition to happen. In Figure 2.9
we observe this behavior.

Figure 2.9b in particular depicts an interesting way of acting, where the time spent in measurement mode is
very short, and as such, the movement mode starts with a very high variance of the estimated distance. We may
describe the approach that arises with such set of parameters as one resembling a random walk around the target
d = 0, with frequent switching tomaximize the chance of terminating the task. Moreover, looking at the location

7This is especially well visible in the final distance experiment, and for high values of σ2d in the reach time
experiment.

8More specifically, so that the variance of the estimate grows smaller, thus requiring amore accurate estimated
value.
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Figure 2.7: Behavior in time of the 1D systemwith highmeasurement noise and the first optimal set of parameters a, b
obtained by the experiment of Figure 2.5 in the case σ2d = 25. The parameters are chosen as α = 0.1, ε = 1 × 10−9,

σ2d = 0.25, a and b as in the plot title. The ``good'' and ``bad'' x0 cases are compared, and by looking at these two random

solution samples we observe that this set of parameters is only optimal for the case of favorable x0.
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Figure 2.8: Behavior in time of the 1D systemwith highmeasurement noise and the first optimal set of parameters a, b
obtained by the experiment of Figure 2.5 in the case σ2d = 25. The parameters are chosen as α = 0.1, ε = 1 × 10−9,

σ2d = 0.25, a and b as in the plot title. The ``good'' and ``bad'' x0 cases are compared, and by looking at these two random

solution samples we observe that this set of parameters makes the system behavewell with both classes of initial conditions.
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Figure 2.9: Behavior in time of the 1D systemwith low and highmeasurement noise with the optimal sets of parameters a, b
for minimal reach time, obtained by the experiments of Figure 2.6 in the cases σ2d = 0.25 and σ2d = 25.
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of the leftmost local minima in Figure 2.6 across the different values of σ2d, we notice that the optimal values of
a ∼ b decrease as σ2d increases. This might initially seem counterintuitive, since we would expect the system
to require a higher estimate accuracy (a � 1) with an increasing measurement noise variance, but can now be
explained by the appearance of this second style of operation that we observe in Figure 2.9b, which is measurably
better at minimizing the reach time as defined in Equation (2.96).

2.3 Stochastic Hybrid Basic Conditions
We proceed by proving that the Hybrid Basic Conditions [5] [7] hold for the system described in section 2.1.

Proposition 1 For the system with data (2.68), (2.76), (2.77), (2.84) and (2.91) the Hybrid Basic Conditions hold,
namely

1. The sets C and D are closed.

2. The set-valued mapping F : R5 ⇒ R5 is outer semicontinuous, locally bounded, and for each x ∈ C the
value F(x) is nonempty and convex.

3. The set-valued mapping G : R5 × R ⇒ R5 is locally bounded and x 7→ G(x, ν) is outer semicontinuous
∀ν ∈ R.

Proof We proceed by proving the three points

1. Proven by Proposition A.3.

2. We construct the set-valued mapping F(x) := {f(x)} ∀x ∈ C and observe that ∀x ∈ C the value F(x)
is trivially nonempty and convex. Moreover, being F(x) obtained from the continuous, locally bounded
function

f(x) =
[
1− q −αμq −αμq εq 0

]T ∈ R5 x ∈ C = C0 ∪ C1 (2.97)

it is outer semicontinuous and locally bounded [5, section 5.2].

3. Recall the definitions of the jump sets in (2.76):

Dm = {Tm} × R× {E ≥ e−a2/μ2} × {0} (2.98)

D01 = {0} × R× {E ≤ e−a2/μ2} × {0} (2.99)

D10 = {0} × R× {E ≥ e−b2/μ2} × {1} (2.100)

and notice that they are pair-wise disjoint. We then define the set-valued jumpmapG(x, ν) as follows

G(x, ν) =


{gm(x, ν)} if x ∈ Dm

{g01(x, ν)} if x ∈ D01

{g10(x, ν)} if x ∈ D10

∅ otherwise

(2.101)
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with the definitions of the jump maps previously given in (2.77). It is then clear that the value of G(x, ν)
is either empty or singleton ∀x, ν ∈ dom(G). Consider

g01(x, ν) =
[
0 d μ E 1

]T g10(x, ν) =
[
0 d μ 1 0

]T (2.102)

and notice they are continuous and locally bounded in x, ν. Then, consider

gm(x, ν) =
[
0 d ME(μ,E, d+ ν) NE(E) 0

]T x ∈ Dm (2.103)

and recall the definitions

ME(μ,E, d̃) :=

{
−σ2d ln(E)
1−σ2d ln(E)

μ+ 1
1−σ2d ln(E)

d̃ if E > 0
μ if E = 0

(2.104)

NE(E) := e−1/σ2dE (2.105)

to verify thatNE(E) is continuous and locally bounded ∀E ∈ [0, 1] (recall σ2d > 0), and

lim
E→0+

−σ2d ln(E)
1− σ2d ln(E)

μ+
1

1− σ2d ln(E)
d̃ = μ (2.106)

We notice that the two fractions are always∈ [0, 1], ∀E ∈ [0, 1], and conclude thatME is locally bounded
in x, ν. Moreover, for all given ν, x 7→ ME(x, ν) is continuous. We conclude that G(x, ν) is a locally
bounded set-valued mapping and is outer semicontinuous w.r.t. x, as requested. ■

Moreover, we prove that the Stochastic Hybrid Basic Condition holds [7].

Proposition 2 For the system with data (2.68), (2.76), (2.77), (2.84) and (2.91) the Stochastic Hybrid Basic Con-
dition holds, namely the set-valued mapping ν 7→ graph(G(·, ν)) is measurable.

Proof We have that G : Rn × R ⇒ Rn is outer semicontinuous, then ν 7→ graph(G(·, ν)) is measurable [7,
appendix A.2]. ■
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3
Two-dimensional task

3.1 Extending the one-dimensional model

Thework of the previous chapter has also been extended to the 2Dplane, leveragingmost of the results previously
found. In this chapter, we explain the changes needed to obtain a closed-loop model, similar to the previous one,
but in two dimensions.

3.1.1 Task setup inR2

We now have the agent and target positions as vectors, together with the angle representing the current agent
bearing:

x⃗A(t) =

[
xA(t)
yA(t)

]
∈ R2 θA(t) ∈ S1 (3.1)

x⃗T(t) =

[
xT(t)
yT(t)

]
∈ R2 (3.2)

The agent-target distance is now defined as the vector

d⃗(t) = x⃗T(t)− x⃗A(t) ∈ R2 (3.3)

and we denote the length of this vector, which is the scalar distance, as

d(t) = ‖d⃗(t)‖2 (3.4)
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Figure 3.1: 2D task setup in the plane, where the agent is located at (xA, yA) and the target at (xT, yT). The agent bearing
is denoted by θA, and d⃗ is the agent-target distance 2D vector. φ is the angular pointing error. The agent model is assumed

to be that of the unicycle.

together with the pointing error between the agent and the target:

φ(t) = atan2
(
d⃗y(t), d⃗x(t)

)
− θ(t) (3.5)

Figure 3.1 shows all these quantities geometrically in the two-dimensional plane, which is the context of this 2D
version of the localization task. We assume the sensing unit to provide the following noisy measurements:

d̃(t) ∼ N (d(t), σ2d) (3.6)

φ̃(t) ∼ vonMises(φ(t), κφ) (3.7)

where κφ characterizes the measurement quality of the pointing error between the agent and the target. The
continuous distribution of the angle measurements is chosen as the von Mises, which is defined on S1, and is
described in a later section. We already hint at the fact that the choice of this distribution is motivated by previous
work in the literature regarding audio sensing [13], and we will later expand upon this.

3.1.2 Control input and movement action

The agent actuation now includes the driving velocity v(t) and the steering velocityω(t) in the agent's body frame.
We are in fact assuming the agent dynamic to be represented by the unicyclemodel [22] and Figure 3.2 shows how
the two inputs act on the agent subsystem.
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Figure 3.2: Actuation of the 2D agent, modeled as the unicycle. The scalar v specifies the driving velocity along the agent's
sagittal axis, depicted in red in the picture. The scalarω denotes the steering velocity, that is how fast the agent bearing θA
changes.

The dynamical equations of the agent are then
ẋA(t) = cos(θA(t))v(t)

ẏA(t) = sin(θA(t))v(t)

θ̇A(t) = ω(t)

(3.8)

and we obtain the following dynamic in d(t):

ḋ =
d
dt

[√
(xT − xA)2 + (yT − yA)2

]
(3.9)

=
1
2
1
d

(
d
dt

[
(xT − xA)2

]
+

d
dt

[
(yT − yA)2

])
(3.10)

= − 1
d
(
(xT − xA)ẋT + (yT − yA)ẏT

)
(3.11)

= − 1
d
(
dx cos θA + dy sin θA

)
v (3.12)

= −

(
d⃗
d

)T

·

[
cos θA
sin θA

]
v (3.13)

= − cos (φ) v (3.14)

since φ(t) is the angle between the vector d⃗(t) and the agent pointing direction and both vectors in the inner
product of Equation (3.13) are of unit length.
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The dynamic of φ(t) is instead obtained, starting from Equation (3.5), and for d(t)⃗ 6= 0⃗, as follows:

φ̇ =
d
dt
[
atan2

(
dy, dx

)]
− θ̇A (3.15)

=
dyẋA − dxẏA
d2x + d2y

− θ̇A (3.16)

=
v(cos(θA)dy − sin(θA)dx)

d2
− θ̇A (3.17)

=
vd(cos(θA) sin(θA + φ)− sin(θA) cos(θA + φ))

d2
− θ̇A (3.18)

=
sin(φ)
d

v− ω (3.19)

where we used the definitions of subsection 3.1.1 and the additional relations

dx(t) = d(t) cos(θA(t) + φ(t)) (3.20)

dy(t) = d(t) sin(θA(t) + φ(t)) (3.21)

followed by the trigonometric identity

sin(α− β) = sin(α) cos(β)− cos(α) sin(β) (3.22)

3.1.3 von-Mises distribution for bearing and 2DRBE
Themeasured angles belong to S1 and, as such, adopting a distribution defined on this space is helpful. While we
might initially choose to represent angles as scalars in [0, 2π] ⊂ R, care would be required when using the opera-
tors of the real field on such quantities, especially when performing information fusion under the RBE paradigm.
Using a distribution defined on S1 helps to alleviate this issue and also shows that, in the way wemodeled the task,
we can adopt different distributions for the information fusion part under the RBE framework. The von Mises
distribution, also known as the circular normal distribution or Tikhonov distribution, can in fact be regarded as
the circular analogue of the normal distribution on the line [23].

Moreover, previous work [13] has highlighted that the output of DOA estimation algorithms can be inter-
preted as a multi-modal p.d.f. on S1. While the referenced work by Bush and Xiang adopted Laplace density
functions for fitting the DOA output data and obtaining the multi-modal p.d.f. through a linear combination of
them, we could fit a linear combination of von Mises densities for the same purpose. If the sound source is only
one, like in the scenario we are considering, the directional output of the sound sensing subsystemwould then be
a vonMises distribution that encodes the uncertain measurement of the angular error between the agent bearing
and the body-frame target direction.

The density function of a vonMises random variable X is defined as

pX(θ) =
1

2πI0(κ)
exp (κ cos(θ− μ)) (3.23)

where I0(x) is the modified Bessel function of the first kind and order zero. The parameter μ coincides with the
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Figure 3.3: Examples of vonMises density functions, in polar coordinates, for different increasing values of the parameter κ,
all of which are centered at μ = π

2 .

peak and expected value of the distribution on the circle, and the concentration parameter κ can be assimilated to
the reciprocal σ−2 of the variance of a normal distribution. Figure 3.3 plots some p.d.f.s for different values of the
parameters, using polar coordinates to highlight the nature of the distribution.

Notice in fact that for κ = 0 the distribution is well defined and coincides with the uniform distribution on
the circle:

pX(θ)|κ=0 =
1

2πI0(0)
e0 =

1
2π

(3.24)

and, for large values of κ, the density can be approximated by a Gaussian density function with σ2 = κ−1 [24]

pX(θ)|κ→∞ ∼
1√

2πκ−1
exp
(
− 1
2
(θ− μ)2

κ−1

)
(3.25)

As stated previously, the mean of the distribution is E[X] = μ, while the variance is

Var[X] = 1− I1(κ)
I0(κ)

(3.26)

The product of two vonMises density functions, the computation of which is needed for performing Recur-
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sive Bayesian Estimation, is also (proportional to) a vonMises density function:

pX1(θ) · pX2(θ) ∝ exp
(
κ1 cos(θ− μ1) + κ2 cos(θ− μ2)

)
(3.27)

= exp (κ̂ cos(θ− μ̂)) (3.28)

where

κ̂ =
√
(κ1 cos μ1 + κ2 cos μ2)2 + (κ1 sin μ1 + κ2 sin μ2)2 (3.29)

μ̂ = atan2
(
κ1 sin μ1 + κ2 sin μ2, κ1 cos μ1 + κ2 cos μ2

)
(3.30)

Care will have to be taken when using the above expressions for the case[
κ1 sin μ1
κ1 cos μ1

]
+

[
κ2 sin μ2
κ2 cos μ2

]
= 0⃗ (3.31)

for which the angle computed with the atan2(y, x) function is not defined. In such case, the concentration value
would be κ̂ = 0, which is the special case ofmaximum entropy that was discussed above. Given the context where
the expressions are used, a meaningful way to handle this scenario may be found.

The convolution of two von Mises density functions is not, however, a von Mises density function. But the
result of the convolution can be approximated well by a vonMises density [24], and success has been shown with
the use of this approximation in RBE schemes for bearing tracking tasks [25]. That is, the full expression of the
p.d.f. of X = X1 ∗ X2 being

pX1∗X2(θ) =
1

2πI0(κ1)I0(κ2)
I0
(√

κ21 + κ22 + 2κ1κ2 + cos(x− (μ1 + μ2))
)

(3.32)

can be approximated by the vonMises p.d.f. of a random variable X̂ ∼ vonMises(μ̂, κ̂)with

μ̂ = μ1 + μ2 (3.33)

κ̂ = A−1(A(κ1)A(κ2)) (3.34)

A(κ) =
I1(κ)
I0(κ)

(3.35)

This can be helpful if we need to consider process noise, for instance, arising from uncertainty in the rotational
movement of the agent, which can be it toomodeled with a vonMises distribution, and requires the convolution
in the prediction step. In this thesis, this result will not be used, and as such, we will not study the analytical
properties of the function defined in Equation (3.34).

We now proceed with the adaptation of the Recursive Bayesian estimator to the 2D task. The systemwill now
require two more states to encode the belief of φ(t), and we will denote those new state variables as μφ andK.
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While in measurement mode

As before, we assume the agent is stationary, due to q = 0, and the measurements to be available at time interval
Tm. In general, please refer to subsection 2.1.4 for the setup and notation details of the RBE information fusion,
since only the main differences between the 1D and 2D cases are presented here.

We want to perform RBE of the agent-target distance and bearing, so we introduce the following two p.d.f.s

p(dti | d̃ti , . . . , d̃t0) =
1√
2πPti

exp

(
− 1
2
(μd, t0 − dti)2

Pti

)
(3.36)

p(φti | φ̃ti , . . . , φ̃t0 , κφ, ti , . . . , κφ, t0) =
1

2πI0(Kti)
exp
(
Kti cos(φti − μφ, ti)

)
(3.37)

which encode the beliefs at time ti given the previous measurements with the estimator state variables μd(t), P(t)
and μφ(t),K(t).

The update of the distance estimate, following a new measurement d̃ti at time ti, is performed as before with
the maps defined in Equation (2.29). The update of the bearing estimate is instead performed, similarly to the
case of the 1D task, by computing the product of the vonMises p.d.f. of the prior (belief at time ti−1) and the von
Mises p.d.f. of the measurement. We find, starting from the relations of Equation (3.29), the update map for the
bearing estimate p.d.f. to be

Kti+1 =
√
(Kti cos μφ, ti + κφ cos φ̃ti)

2 + (Kti sin μφ, ti + κφ sin φ̃ti)
2 (3.38)

μφ, ti+1
= atan2

(
Kti sin μφ, ti + κφ sin φ̃ti ,Kti cos μφ, ti + κφ cos φ̃ti

)
(3.39)

The case outlined before by Equation (3.31) can be easily handled in this context of RBE estimation. If such
condition were to hold, then we can set the updated estimate as follows

Kti+1 = 0 (3.40)

μφ, ti+1
= μφ, ti (3.41)

and thus set the next RBE state to the one of maximum entropy (zero-knowledge). This is also equivalent to
performing a reset of the estimator, as it will be clear later when the full hybrid dynamic is described.

In particular, we again have that there exists a ``reset state'', which is characterized by K = 0 and P → ∞,
and with the property that a measurement update with such prior belief leads to the estimator state (μd,P, μφ,K)
being set to the values (d̃, σ2d, φ̃, κφ)of the incomingmeasurement. This can be verifiedwith the above expressions.

While in movement mode

Since there is no agent actuation uncertainty and the target is assumed to be stationary, as in the 1D case of the
previous chapter, the continuous-time update of the distance belief is obtainedwith the same procedure as before,
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but with the results previously computed for the 2D setup in Equation (3.9). Then we obtain

μ̇d(t) = ḋ(t)|φ=μφ (3.42)

= − cos(μφ(t))v(t) (3.43)

where we use the mean μφ(t) of the estimate of φ(t) instead of the true unknown quantity. As for the variance of
the distance estimate, we have

Ṗ(t) = 0 (3.44)

as before. From (3.15) we then obtain the continuous-time update equation for the mean of the estimate of φ(t)
as

μ̇φ(t) = φ̇(t)|d=μd, φ=μφ (3.45)

=
sin
(
μφ(t)

)
μd(t)

v(t)− ω(t) (3.46)

where we again used the mean of the estimates of d(t) and φ(t) in place of their true unknown value.

Regarding the continuous-time update of the pointing angle estimate concentrationK, itmakes intuitive sense
that as we get closer to the estimated target position, the confidence regions of the p.d.f. increase in angular size,
and vice versa if the agent is driving away. We find the continuous-time update law for the parameterK as follows:
we start from the property that the von Mises density can be approximated by a Gaussian density as outlined in
Equation (3.25), under which we have that the variance is K−1(t). Then we compute the arc-length ℓ(t) tied to
γ > 0 standard-deviations of the angular error on the circle of radius μd(t) as

ℓ(t) = γ
√

K−1(t)μd(t) (3.47)

and enforce ℓ̇(t) = 0, so that this quantity stays constant. By neglecting γ and differentiating both sides, we find

0 = − 1
2
K− 3

2 (t)K̇(t)μd(t) + K− 1
2 (t)μ̇d(t) (3.48)

then, solving for K̇(t), we obtain

K̇(t) =
K− 1

2 (t)
1
2K

− 3
2 (t)μd(t)

μ̇d(t) =
2K(t)
μd(t)

μ̇d(t) (3.49)

= −2K(t)
μd(t)

cos(μφ(t))v(t) (3.50)

where we also performed the substitution of the expression for μ̇d(t) obtained above.
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3.1.4 Control input and movement action
We adopt the control law presented by Siciliano et al. [22, chapter 11.6 ``Motion Control''] for Cartesian reg-
ulation, once the agent enters movement mode. The equations are rewritten with the quantities we have been
designing with, to then obtain the following feedback equations

v(t) = αμd(t) cos(μφ(t)) ω(t) = βμφ(t) (3.51)

where, as usual, the mean of the beliefs of the true quantities are used, since their true values are unknown and
only estimated through the measurements by the RBE subsystem. The above equations are of clear geometrical
interpretation, since the linear velocity is obtained as the projection on the sagittal axis of the agent-target distance
vector and the angular velocity is such that the pointing error φ(t) converges to zero.

Nevertheless, the above control law is formally proven to make the agent converge to the target position1 with
Lyapunov based arguments and the quadratic function

V(d) =
1
2
d2 (3.52)

along with Barbalat's lemma [22].

3.1.5 Two-dimensional switching conditions
To design the mode switching and reset conditions for the 2D control scheme, we recall the geometrical interpre-
tation we presented in subsection 2.1.6, and try to intuitively extend the quantities to the 2D case.

We initially consider the threshold relative to the measurement-to-movement mode switch, which happens
when the estimate is considered accurate enough. For such purpose, the quantity a

√
Pwas selected, with a ∈ R+

being a tunable parameter of the control law, since it represents a distance inmeters whose value is proportional to
the uncertainty. This positive value was then compared to the absolute value of the current (estimated) distance
|μ(t)|.

A way to extend those two quantities to the 2D case might be to consider a two-dimensional vector2with the
two components tied to the two variables being estimated, that is the distance d(t) and the pointing error φ(t).
Let us then define the following uncertainty vector:

s⃗(t) =

[
a
√
P(t)

a
√

K−1(t)|μd(t)|

]
(3.53)

where a ∈ R+ is a parameter of the control law, as before. The value of the second vector component repre-
sents the length of the arc of the circle of radius μd(t) and angle a

√
K−1(t) and, as such, is a quantity in meters

that is tied to the uncertainty of the estimate of φ(t). The vonMises Gaussian approximation presented in Equa-

1The estimated target position, in this case.
2Beware that the space that thisuncertainty vector belongs to is not to be confusedwith the 2Dplane (and its as-

sociated cartesian coordinates vector space) where the task happens, that is the one introduced in subsection 3.1.1.
The space, moreover, is a cone, since the two components are positive semi-definite.
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(a) Length of the components of the vector s⃗, tied to the
uncertainty of the estimation.

x⃗A

x̂T

|μd|
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φ
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(b) Length of the components of the Vector T⃗, tied to the
distance to travel andwhose length is used as a threshold.

Figure 3.4: Geometrical representation of the 2D uncertainty and threshold vectors.

tion (3.25) has been used to obtain a simpler expression with the approximation of the variance for large values of
the concentration parameter κ. Then we introduce a threshold vector that, similarly to the 1D case, has its length
proportional to the (estimated) distance, and belongs to the positive semidefinite cone ofR2:

T⃗(t) =

[
|μd(t)|

|μφ(t)μd(t)|

]
(3.54)

The second component is, similarly to before, obtained by considering the arc length of the circle of radius μd(t)
and angle μφ(t). Figure 3.4 depicts a geometrical interpretation of these two vectors.

To trigger the jump from the measurement to the movement mode, we then compare the length of these two
vectors and wait for the following condition to happen

‖s⃗(t)‖2 ≤ ‖T⃗(t)‖2 (3.55)

which, by taking the square on both sides, is equivalent to

‖s⃗(t)‖22 ≤ ‖T⃗(t)‖
2
2 (3.56)

a2P(t) + a2K−1(t)μ2d(t) ≤ μ2d(t) + μ2φ(t)μ
2
d(t) (3.57)

a2
(
P(t) + K−1(t)μ2d(t)

)
≤ μ2d(t)

(
1+ μ2φ(t)

)
(3.58)

Following the intuition developed on the design of the 1D switching conditions, the condition for themovement-
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to-measurement mode (reset) switch is defined as

b2
(
P(t) + K−1(t)μ2d(t)

)
≥ μ2d(t)

(
1+ μ2φ(t)

)
(3.59)

We again manipulate the complementary conditions of equations (3.58) and (3.59) to highlight that for the con-
troller to not switch and keep operating in the current mode, it must hold

b2 <
μ2d(t)

(
1+ μ2φ(t)

)
P(t) + K−1(t)μ2d(t)

< a2 (3.60)

and as such, it must again, in the choice of the parameters, hold the following condition:

b < a (3.61)

since a, b ∈ R+.

As a final note, these conditions have been proposed since they experimentally proved to be well performing
and simple enough. Various variants may be obtained, for instance by choosing different factors ad, aφ and bd, bφ
for obtaining the components of s⃗(t). Moreover they are very similar, especially in the tunable parameters, to the
ones for the one-dimensional task, and so they seem to represent a good higher-dimensional extension.

A note about an interesting behavior that arises with the choice of using ‖T⃗(t)‖ as a threshold with respect to
(multiples of) ‖s⃗(t)‖, instead of just the distance |μd(t)|, is made later in subsection 3.2.3.

3.1.6 Closed-loop system

The closed-loop SHS for the 2D variant is then formalized similarly to the 1D case in subsection 2.1.7.

The state of the system is defined as

x =
[
τ d φ μd E μφ F q

]T
(3.62)

∈ X = [0,Tm]× R \ {0} × S1 × R× [0, 1]× S1 × [0, 1]× {0, 1} ⊂ R8 (3.63)

with the same continuous, invertible mapping from P to E introduced before in Equation (2.69), and the addi-
tional mapping

F = e−K ∈ [0, 1] K = ln(F−1) ∈ [0,+∞) (3.64)

with appropriate extensions by continuity as before.

Again, the value E = 1 encodes the condition of zero-knowledge regarding the estimate of the agent-target dis-
tance d(t), whileE = 0 translates to perfect knowledge of such quantity. The value of F = 1 similarly encodes the
condition of zero-knowledge of the pointing error φ(t), and F = 0 translates to an arbitrarily high concentration
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of the p.d.f. of the estimate, in fact

lim
F→0+

ln(F−1) = +∞ (3.65)

ln(F−1)|F=1 = 0 (3.66)

Figure 3.5 plots the continuous invertible mapping.

0 1 2 3 4 5
0

0.25

0.5

0.75

1

K

F

Continuous invertible mapping betweenK and F

Figure 3.5: Plot of the continuousmapping betweenK andF.

We adapt the flow and jump sets as follows:

Dm = {Tm} × R \ {0} × S1 × {a2(PK+ μ2d) ≥ μ2d(1+ μ2φ)K} × {0} (3.67)

C0 = [0,Tm]× R \ {0} × S1 × {a2(PK+ μ2d) ≥ μ2d(1+ μ2φ)K} × {0} (3.68)

D01 = {0} × R \ {0} × S1 × {a2(PK+ μ2d) ≤ μ2d(1+ μ2φ)K} × {0} (3.69)

C1 = {0} × R \ {0} × S1 × {b2(PK+ μ2d) ≤ μ2d(1+ μ2φ)K} × {1} (3.70)

D10 = {0} × R \ {0} × S1 × {b2(PK+ μ2d) ≥ μ2d(1+ μ2φ)K} × {1} (3.71)

where the thresholds on the estimator variables μd, P, μφ, K have been obtained from (3.58) and (3.59) so that
they are defined in the entire domain of the variables. Given the mappings from E and F to P and K that are
continuous and invertible, with appropriate care, they may be rewritten as a function of them, but for clarity
reasons, we currently leave them in this form.
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The jumpmaps are defined as

gm(x, ν⃗) =
[
0 d φ Md, E(μd,E, d+ ν1) Nd, E(E) Mφ,F(μφ, F,φ+ ν2) Nφ,F(F) 0

]T
(3.72)

g01(x, ν⃗) =
[
0 d φ μd E μφ F 1

]T
(3.73)

g10(x, ν⃗) =
[
0 d φ μd 1 μφ 1 0

]T
(3.74)

where we used the previous definitions ofME, NE from Equation (2.82) that have been renamed toMd, E and
Nd, E respectively to highlight that they now only refer to the RBE update of the d estimate, and the following
new definitions have been used

Mφ(μφ,K, φ̃) :=

atan2
(
K sin μφ + κφ sin φ̃,K cos μφ + κφ cos φ̃

)
ifNφ(μφ,K, φ̃) 6= 0

μφ ifNφ(μφ,K, φ̃) = 0
(3.75)

Nφ(μφ,K, φ̃) :=
√
(K cos μφ + κφ cos φ̃)2 + (K sin μφ + κφ sin φ̃)2 (3.76)

from Equation (3.38), and their counterpart after the change of variables fromK to F:

Mφ, F(μφ, F, φ̃) :=

Mφ(μφ, ln(F
−1), φ̃) if F 6= 0

limK→∞ Mφ(μφ,K, φ̃) = μφ if F = 0
(3.77)

Nφ, F(μφ, F, φ̃) :=

exp
(
−Nφ(μφ, ln(F

−1), φ̃)
)

if F 6= 0

limK→∞ exp
(
−Nφ(μφ,K, φ̃)

)
= 0 if F = 0

(3.78)

Moreover, ν⃗ ∈ R2 is now a vector, and its two components refer to the independent measurement noises of the
distance and angular sensing, respectively.

Finally, the vector field for the continuous-time flow is

d
dt



τ
d
φ
μd
E
μφ
F
q


= f(x) :=



1
0
0
0
0
0
0
0


(1− q) +



0
−α cos(φ) cos(μφ)μd

α sin(φ) cos(μφ)μd/d− βμφ
−α cos2(μφ)μd

ε

α sin(2μφ)/2− βμφ
2αF ln(F−1) cos2(μφ)

0


q x ∈ C0 ∪ C1 (3.79)

where we assume the extension by continuity of the second-to-last component in F = 0, that is the full expression
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would be

fF(x) =

2αF ln(F−1) cos2(μφ) if F > 0

0 if F = 0
(3.80)

for formal correctness.
The expressions of the vector field above have been obtained from equations (3.9), (3.15), (3.42) and (3.45) by

substituting equation (3.51) of the control law. Simplifications have been made whenever possible.
Notice that d = 0 is not part of the flow and jump sets, and consequently of the state space, since the change

of variables from cartesian to polar coordinates that was introduced in subsection 3.1.1 is not invertible for such
value. This is not an issue since, were the value of d to reach 0, the solution would exit the flow and jump sets and
stop. However, the condition d = 0 coincides with the one of task completion.

Moreover, there is no need for the correction

Ḟ(t) = (. . .) + ε (3.81)

as we instead did for the variable E. In fact, by studying the conditions in the definitions of the jump sets of
equations (3.67)-(3.70), it is easy to check that the only critical scenario is when K → ∞ ∧ P = 0, since with
reference to the condition of the sets C1,D10 in Equation (3.70):

lim
K→∞

b2(PK+ μ2d)
K

∣∣∣∣
P=0

= b2P |P=0 (3.82)

= 0 (3.83)

≥ μ2d(1+ μ2φ) ⇐⇒ μ2d = 0 ∧ μ2φ = 0 (3.84)

but the feedback law is not designed to reach such condition in finite time. The system then never switches back to
measurementmodewith a reset jump. It is enough to ensure thatP exits the subspaceP = 0 for this to not happen,
and for the reset condition to trigger as designed. Also note, in this regard, that while it is true that the term fF(x)
is always greater than or equal to zero (since F ln(F−1) ≥ 0 and 2α cos2(μφ) ≥ 0), and it might then seem that
this term is enough to make the F(t) variable drift away from the origin, we actually have F = 0 =⇒ fF(x) = 0,
as we indeedmade explicit above in Equation (3.80). Thus, the previous reasoning is still important since F(t) has
an (unstable) equilibrium in F = 0.

It is only left to define the distribution function for the stochastic random jumps, as we did for the 1D system
in Equation (2.91):

λ : B(R× S1)→ [0, 1] (3.85)

ω 7→ λ(ω) =
∫
ω

1√
2πσ2d

exp
(
− 1
2
x1
σ2d

)
· 1
2πI0(κφ)

exp
(
κφ cos(x2)

)
dx⃗ (3.86)

obtained by integrating the product of the p.d.f.s of the two independent random variables that characterize the
distance measurement Gaussian noise, and the angular measurement vonMises noise, on the set ω ∈ B(R× S1)
of the event.
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Asbefore, tables 3.1, 3.2 and3.3 summarise anddescribe all the state variables, systemparameters and controller
parameters that characterize the system. The state transition diagram in Figure 2.2, relative to the 1D system, still
holds for this proposed 2D extension.

State variable Description Unit
τ Measurement timer, only enabled while q = 0 s
d True agent-target distance m
φ True pointing error rad
μd Mean of the Gaussian estimate of the agent-target distance m
P Variance of the Gaussian estimate of the agent-target distance m2

μφ Mean of the vonMises estimate of the pointing error rad
K Concentration of the vonMises estimate of the pointing error
q Operating mode: q = 0 measurement, q = 1 movement

Table 3.1: State variables of the closed-loop SHS for the 2D task.

Parameter Description Unit Properties
Tm Time between measurements s > 0
σ2d Variance of the distance measurements m2 > 0
κφ Concentration parameter of the pointing error measurements > 0
ε Positive derivative of E during movement > 0,� 1

Table 3.2: Parameters of the 2D system.

Parameter Description Unit Properties
α Cartesian regulation controller linear velocity gain in movement mode > 0
β Cartesian regulation controller angular velocity gain in movement mode > 0
b Movement to measurement mode switch parameter > 0
a Measurement to movement mode switch parameter > b

Table 3.3: Parameters of the 2D control law.

It is also worth noticing, looking at equations (3.75), that the von Mises measurement update equations are
essentially performing a vector addition, starting from the polar coordinates (Kti−1 , μφ, ti−1

) of the prior vector
and the polar coordinates (κφ, φ̃ti) of the measurement vector. Thus, we could equivalently store the cartesian
coordinates of the vector associated to the vonMises p.d.f. of the belief, and greatly simplify the jumpmap expres-
sions. This, however, would come at the cost of more complex expressions for the RBE prediction, which drive
the state in continuous-time during the measurement mode, and more complex expressions for the regulation
feedback control that takes action in movement mode.
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Nevertheless, a final interesting observation regarding the behavior of this proposed 2D variant of the system is
that the concentrationK of the pointing errorφ estimate is notmonotonically increasing even during themeasure-
ment mode. This is easy to understand by considering the above comment relative to the vector representation of
the probability density function.

3.2 Simulations and behavior
As before, the proposed 2D closed-loop system has been simulated with Algorithm A.1 and its faster variant de-
scribed by Algorithm A.3 for the Monte Carlo simulations.

3.2.1 Behavior in time
We initially show some results regarding the behavior in time of the state variables. As before, we select two differ-
ent initial conditions, which in this case have been chosen as

xgood(0) =
[
0 10 − π

4 10 1 − π
4 1 0

]T
(3.87)

xbad(0) =
[
0 10 − π

4 2 0.01 + π
4 e−1000 0

]T
(3.88)

so that we either start from a correct estimate, in the reset condition, or we start with a misleading estimate of d
and φ to ensure that the system can recover from this condition. Figures 3.6 and 3.7 show the results of these two
scenarios.

3.2.2 Effect of parameters on task completion metrics
As for the 1D case, we run Monte Carlo simulations to estimate the expected final distance after tf = 100s of
operation, for both types of initial conditions, and for the expected time required to reach the target within a
radius of dR = 0.5 and with the controller jumping back to measurement mode. The expected values of both
metrics are again estimated as a functionof the twoparametersa > b > 0 that characterize the switchingbehavior.
For all simulations, α = 0.1, β = 0.4, ε = 1× 10−9 and the number of samples for the Monte Carlo estimation
isN = 250. Figure 3.8 depicts the results for the final distance metric, and Figure 3.9 is relative to the reach time.

Please refer to subsection 2.2.2 for the definitions and details of how these performance metrics are computed.

3.2.3 Observations
As before, we discuss interesting behaviors that we observe from the simulation results shown above.

We start with the simulations of the behavior in time of the system of subsection 3.2.1. Figure 3.6 shows the
state trajectory in the first case of good initial conditions, and we observe that the system cleanly converges to
d = 0 and φ = 0. More in detail, the system switches to movement mode as soon as the first measurement
is processed by the RBE estimation, since the condition of Equation (3.58), given the choice of the parameter
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Figure 3.6: Behavior in time of the 2D system, obtained by sampling a random solution. All state variables are plotted,

with the current mode q(t) being depicted through the differently colored background segments. The parameters are

chosen as α = 0.1, β = 0.4, ε = 1 × 10−9, and σ2d, κφ, a, b as in the plot title. The initial condition is set to
x0 =

[
0 10 − π

4 10 1 − π
4 1 0

]T
.
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Figure 3.7: Behavior in time of the 2D system, obtained by sampling a random solution. All state variables are plotted,
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chosen as α = 0.1, β = 0.4, ε = 1 × 10−9, and σ2d, κφ, a, b as in the plot title. The initial condition is set to
x0 =

[
0 10 − π

4 2 0.01 + π
4 e−1000 0

]T
.
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Figure 3.8: Expected value of the 2D final distanceE
[
|d(tf)|

]
, with respect to the choice of the two parameters a, b,

in the presence of low, medium and highmeasurement noise σ2d and κφ. The final time has been chosen as tf = 100s
and the parameters as α = 0.1, ε = 1 × 10−9,Tm = 1s. The ``good'' and ``bad'' x0 cases, with reference to
the initial condition, are compared, where the good x0 =

[
0 10 − π

4 10 1 − π
4 1 0

]T
and the bad

x0 =
[
0 10 − π

4 2 0.01 + π
4 e−1000 0

]T
. The crosses denote the location of the local minima in the

considered parameter range.

a = 16, deems valid to begin the approach of the target even with just the initial accuracy of the estimates, given
the estimated agent-target distance. After this first movement phase ends, the system goes back to measurement
mode and, this time, waits for a more accurate estimate. This is followed by another movement phase that brings
the system very close to the target. The system ends its operation at tf = 100s still being in measurement mode,
trying to obtain an even more accurate estimate to drive closer, and more precisely, provided enough time.

Figure 3.7 shows the state trajectory in the second case of incorrect initial condition, and we indeed observe
that the system ends its first movement phase at d ' 7 and φ ' − π

2 . The pointing error angle has even increased
in magnitude from its initial value of φ(0) = − π

4 . Nevertheless, we observe that the reset mechanism behaves
as expected and, after only one measurement, the system switches back to movement mode with a meaningful
estimate of the target distance. The controller then behaves similarly to before, switching back and forth between
the movement and the measurement phases to decrease the distance to the target as time progresses.

It is also interesting to notice that, while the value ofP(t) is constant during themovement phase as in the previ-
ous case of the 1D system, the concentrationK(t) is nowmonotonically decreasing in time, due to the continuous-
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Figure 3.9: Expected value of the 2D approach timeE [tR], tR := min{t ≥ 0
∣∣ q(t) = 0, |d(t)| ≤ dR}, where

dR = 0.5m, with respect to the choice of the two parameters a, b, in the presence of low, medium and highmeasurement

noise σ2d and κφ. Themaximum operating time is bounded at 500s and the parameters chosen as α = 0.1, ε = 1 × 10−9

andTm = 1s. The ``good'' and ``bad'' x0 cases, with reference to the initial condition, are compared, where the good

x0 =
[
0 10 − π

4 10 1 − π
4 1 0

]T
and the bad x0 =

[
0 10 − π

4 2 0.01 + π
4 e−1000 0

]T
.

The crosses denote the location of the local minima in the considered parameter range.

time update of the belief described by Equation (3.50) and discussed above at the end of subsection 3.1.3. Also
in subsection 3.1.6 it was made clear that Ḟ(t) ≥ 0, and in particular

q = 1 ∧ F /∈ {0, 1} ∧ μd /∈
{
π
2
+ πk, k ∈ Z

}
=⇒ Ḟ(t) > 0 (3.89)

which proves the behavior we observe. Figure 3.10 plots the derivative of F as a function of F, in its domain, to
further highlight its dynamical behavior.

If we finally focus on the first movement-to-measurementmode switch of Figure 3.6, around ts2 = 20s, we ob-
serve that the difference betweenφ and μφ is increasing inmagnitude as the distance gets smaller. This is physically
meaningful, and shows that the correction introduced by Equation (3.50) is indeed important to keep a coherent
estimator state.

We now focus on the results relative to the performance metrics as a function of the parameter choices.

In general we observe a similar outcome to the 1D case, which was thoroughly discussed in subsection 2.2.3,
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Figure 3.10: Plot of the component fF(x) of the 2D vector field, with respect toF and α = 1, μφ = 0.

with reference to the presence of two localminima that get closer if the starting initial condition ismisleading, and
in general move towards higher values of a and b as the measurement noise increases. Actually, this phenomenon
can only be observed in the case of the 2D expected final distance depicted in Figure 3.8. We also note that in such
experiment, in the specific case of high measurement noise, it is not possible to validate this hypothesis due to the
data being very noisy3. Finally, we note that this effect is not visible in the experiments related to the reach time
shown in Figure 3.9, and we can only observe a single local minima.

The sharp changes that are visible in the surface plots of figures 3.8 and 3.9, and appear to the eye as vertical
lines, have been investigated. To highlight the nature of the phenomenon, we plot two system solutions, in time,
that are on two different sides of such jumps in the expected value surface. Without loss of generality, we consider
the case of the expected final distance with lowmeasurement noise and favorable initial condition, that is the top-
left case of Figure 3.8. We fix the value of b = 2.15 and study the cases a1 = 18.5 and a2 = 19.5, which lead to
a quite different expected final distance value. Two hybrid arcs relative to those two cases have been sampled and
are shown in Figure 3.11a and Figure 3.11b respectively.

We observe that the difference is caused by the system initially performing a different number of measurement
updates before entering thefirstmovementphase. In thefirst case of Figure 3.11a only onemeasurement is enough
for the measurement-to-movement jump condition to be satisfied, while in the second case of Figure 3.11b two
measurements are fused together. In particular, this results in a different value of P at the end of the first measure-
ment phase, which stays constant during the movement phase4 and, thus, makes the movement-to-measurement
condition trigger at a different time and at a different agent-target distance. This, in turn,makes the followingmea-
surement phase longer, due to the design of the switching conditions, as previously discussed in subsection 2.1.6.
This causes the system, at the limit time tf = 100s that characterizes the analysis, to be at two different final
distances.

Wefinally look at the reset jump condition of Equation (3.59), and rewrite it as a function ofμ2d in the following

3Increasing the number of samples of theMonteCarlo estimationwas difficult due to computational reasons.
4Without considering the effect of the correction Ė = εwhich is designed to be neglectable.
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Figure 3.11: Two random solutions of the 2D systemwith slightly different values of the parameter a, at the left or right side
of the discontinuity vertical lines of figures 3.8 and 3.9, that lead to quite different final distances (in expected value).
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way:

μ2d ≤
b2P

1+ μ2φ − b2K−1 (3.90)

forK > 05. We notice that the threshold on the squared distance estimate is inversely proportional to the squared
pointing error estimate. We might then say that the threshold on the absolute value of the distance increases as
the absolute value of the pointing error decreases, and this can be interpreted as a preference of the control law
for a zero pointing error to the target. In fact, we might state that the switching threshold accepts a higher agent-
target distance for the end of the movement phase, if the pointing error is smaller. If the directional sensing unit
of the agent were to perform better when oriented towards the target, that is their performance is anisotropic
(like in the case considered by Varotto et. al [3]) then the switching condition that was designed is intuitively also
optimizing for this characteristic of the agent. We could then also tune this effect by introducing a multiplicative
factor ψ ≥ 0 for μφ, which would be equivalent to scaling by ψ the second component of the threshold vector
defined in Equation (3.54), obtaining inequalities like

b2(PK+ μ2d) ≥ μ2d(1+ ψ2μ2φ)K (3.91)

in the case ofD10 (which we recall is the jump set related to the movement-to-measurement mode switch). In the
limit scenario of ψ = 0 we remove the effect, and we might then conclude that such case is better suited in the
absence of anisotropy of the DOA sensing performance.

In any case, the above reasoning is useful for developing some intuitive understanding of how the switching
conditions might be modified to optimize the hybrid control law switching under additional characteristics and
limitations of the system.

5Otherwise, in its original form of Equation (3.70), forK = 0 the outcome is for the condition to trigger since
it always holds, ∀μd ∈ R, that b2μ2d ≥ 0.
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4
Localization with sound sensing in

unknown environments

As a final experiment, the 2D control law was tested in a simulated Search & Rescue (SAR) scenario under some
additional simplifying hypotheses related to the sensing and the navigation. In particular, the peculiarities of
sound sensing are exploited, as touched upon in the introductory section 1.3.

An indoor unknown environment is considered, where there are different rooms and corridors. We assume
that there exists a path between the agent and the target, which is the victim. Moreover, we assume that the sound
waves propagate inside the environment through the corridors and room-to-room or room-to-corridor openings,
also along the victim-to-agent path that we assume to exist. We expect the sensing unit to perform some kind of
information fusion between the sound DOA estimation data, lidar local mapping data, vision data and/or other
sensing modalities, and to provide distance and pointing error measurements (d̃(t), φ̃(t)) that locally represent
the location of the perceived sound source in the current room or corridor. For instance, in the initial scenario of
Figure 4.1, we expect the sensing unit to measure the location of the sound source at the opening connecting the
room to the corridor, due to the following reasons:

• By theHuygens-Fresnel principle, wemight state that each opening behaves as a source of spherical waves,
like we suppose the real victim to behave as. This can be iteratively applied along the entire victim-agent
path.

• The combined audio, visual and/or lidar sensing will detect the opening as the only meaningful local
source of the sound. This effectively implements an initial form of navigation inside the unknown en-
vironment, with some simple obstacle-avoidance properties.

The simulation is set up for the described scenario, and the pictures in Figure 4.2 are screenshots of the real-
time interactive simulator graphical output. The visual elements that are used to depict the simulation state are
the following:
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Figure 4.1: Snapshot of the unknown environment 2D simulation at the initial state.

• The indoor environment is outlined on the right of the screen, with thick black walls that separate the
rooms and the corridor.

• The agent is shown as a green triangle, to highlight the pointing direction, with a black dot in the middle
that coincides with its position x⃗A in the plane.

• The victim is shown as a big red circle and is located in the bottom room.

• The currently locally perceived location of the victim, which is (in general) different to the real victim
location (following the reasons we just outlined), is shown as a yellow circle.

• The last measurement is shown as a small green cross.

• The current estimated target position, obtained from μd and μφ, is drawn as a big blue cross.

• Two semi-transparent blue circles, centered at the current target estimate, denote (with their radii) the
estimated agent-target distances so that

– if the agent goes outside of the bigger circle, the measurement-to-movement mode switch is trig-
gered;

– if the agent goes inside of the smaller circle, the movement-to-measurement mode switch is trig-
gered.

The two circles are drawn only if the estimate is valid, that is E 6= 1 ∧ F 6= 1.

• A plot of the current pointing error p.d.f. is shown at the bottom left of the screen.

58



Parameter Description Value Unit
Tm Time between measurements 0.5 s
σ2d Variance of the distance measurements 7.81 m2

κφ Concentration parameter of the pointing error measurements 19.67
ε Positive derivative of E during movement 1× 10−9

α Cartesian regulation controller linear velocity gain in movement mode 0.5
β Cartesian regulation controller angular velocity gain in movement mode 2.0
b Movement to measurement mode switch parameter 2.0
a Measurement to movement mode switch parameter 16.0

Table 4.1: Parameters of the 2D SHS used for the unknown environment simulation.

Figure 4.2 captures noteworthy instants of the simulation state and comments through their progression. A
yellow frame denotes a snapshot taken while the measurement mode was active (q(t) = 0), while a red frame
indicates that the movement mode was active (q(t) = 1). So, with the support of the captions relative to the
various states shown in the figure, we only briefly comment on the results at a high-level. We observe that the
task is completed after three cycles of measurement and movement phases. The first cycle makes the agent go
through the room-corridor passage on the top right, which was the initial perceived target location. This allows
the agent to now perceive the target at the next opening, that is the passage between the bottom room and the
corridor (Figure 4.2d). The second cycle of measurement and movement phases brings the agent almost through
the second opening (Figure 4.2i). This finally allows the sensing unit to perceive the real victim position, that the
agent reaches at the end of this last cycle (Figure 4.2l).

The parameters used for the simulation are listed in Table 4.1, and by considering the values of σ2d and κφ we
might locate the simulated scenario, in terms of magnitude of the measurement noise, as between the medium
noise and high noise cases of the experiments in subsection 3.2.2.

We finally notice that the control law does not require the knowledge of the agent state xA, yA, θA in the plane.
This is not surprising, and given the reasoning at the beginning of this section, we remark this property to high-
light that it should be possible, with appropriate tuning and additional work (mainly related to audio-visual in-
formation fusion and obstacle avoidance), to exploit the 2D control law designed in this chapter for SAR tasks in
unknown environments, without an (indoor) absolute positioning system.
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(a) The first measurement is taken. (b)Measurement tomovementmode switch.

(c)Halfway through themovement phase, waiting to hit the

boundary of the smaller circle.

(d) The perceived target positionmoves to the next open-

ing.

(e) First measurement is taken after the reset. (f)Measurement tomovementmode switch.

Figure 4.2: Snapshots of the unknown environment 2D simulation at different times.
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(g)Halfway through themovement phase, waiting to hit the

boundary of the smaller circle.

(h) The perceived target position is now the real victim

position.

(i) First measurement is taken after the reset. (j)Measurement tomovementmode switch.

(k)Halfway through themovement phase, waiting to hit the

boundary of the smaller circle.

(l) Themovement phase is about to end, the perceived

position is the real one, and thus the task is completed.

Figure 4.2: Snapshots of the unknown environment 2D simulation at different times (continued).
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5
Conclusion

5.1 Obtained results

Starting from the idea of audio sensing for localization tasks and its peculiarity of being disturbed while the agent
actuation is enabled, a SHS in standard form has been obtained in subsection 2.1.7 thatmodels inR1 the behavior
of the proposedmode-switched control law. The system behavior has been studied, both from a theoretical point
of view (with the explanations justifying its design in the initial phase, in sections 2.1.2-2.1.6) and fromanumerical
point of view (with the simulations in time andof theperformancemetrics of sections 2.2.1 and2.2.2). The system
has been observed to perform qualitatively well at reaching the target under different measurement noise levels.

By adopting the StochasticHybrid Systems formalism formodeling, the proposed 1D system of this thesis lays
the ground for future work that exploits the tools of SHSs to reason about the behavior and prove properties of
the control laws. The design of the system so that the closed-loop is in standard form and satisfies the Stochastic
Hybrid Basic Conditions [7] is a first step in this regard. Moreover, the design of the system is such that the subset

A = [0,Tm]× {0} × {0} × [0, 1]× {0, 1} (5.1)

which we intuitively understand to exhibit some kind of stability property, is compact. This is an useful prereq-
uisite for various results which may be useful in this context [5] [7].

The 2D case has then been considered and a suitable control law obtained, starting from the one-dimensional
design. Insight is given in the 2D case on how to adapt (or design from scratch) switching thresholds that lead to
different behaviors and might be more or less optimal under different scenarios and specifications.

Finally, the 2D control law has been tested in a simulated environment for a Search & Rescue mission with
an appropriately modeled simplified audio-visual sensing device to show the potential applications of the work
extended to the two-dimensional plane.
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In conclusion, we might state that, in the space of all control laws for such a control task, a class of Stochastic
Hybrid control laws is found, with its switching behavior being parametrised by two positive scalars (a, b), and its
movement behavior being parametrised by an appropriate set of gains (α, β) (or just α, depending on the dimen-
sionality of the problem). Neglecting the gains α and β associated to the cartesian regulation law, whose tuning we
may argue only depends on the agent actuation, this allows to optimize the performance in a smaller space, more
specifically

{a > b > 0 | a ∈ R, b ∈ R} ⊂ R2 (5.2)

which then makes computationally easier to search for an optimal law for a given system and task specifications.

5.2 Possible extensions

During the initial research phase, various extensions of the work have been identified, which are briefly described
here as a reference for possible future work.

5.2.1 Movement uncertainty
The agent actuation has been assumedwithout noise, and the victim dynamic to be constant. An extensionmight
include the process noise arising from the actuation uncertainty of the agent and/or the random walking of the
target. This may only require the RBE to account for the increase of the estimate variance.

5.2.2 Measurement noise dependent on distance
The measurement noise has been assumed constant, but it might be interesting to model it as a function of the
agent-target distance. In the one-dimensional case, for instance, we might assume that there exists some positive
constant c such that

σ2d(x) ≤ c|d| (5.3)

In the two-dimensional case, we might model some kind of relation between the pointing error measurement
uncertainty and the agent-target distance, whichmight be due to the specific implementation ofDOA estimation
and/or information fusion performed by the sensing unit.

5.2.3 Intermittently detectable target
We might assume that the target is not always detectable. That is, it is not enough for the agent to disable the
actuation for the detection to happen, but there is also an hidden state of the target (which might be modeled as
an additional boolean logic variable) which determines whether its position can be measured or not.
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Wemayhypothesize, for instance, that this hidden logic variable is driven by aHybrid System so that it switches
in a specific pattern. The control lawmight then bemodified to also account for this behavior, and try to schedule
the measurement phases so that they happen only when the target is detectable.

An additional challenge might be tomodel the detectable state of the target as being driven by aMarkov Jump
Process, with its transitions happening at random times (which are characterized by specific random variables).
The controller might then try to predict the detectability changes of the target to, as in the previous example,
synchronize the measurement phase with the intervals during which the target is detectable.

5.2.4 Multi-agent and multi-target scenario
We might consider the presence of more than one target, which would then require the agent to prioritize the
detections with some appropriate criteria.

Finally, a multi-agent setup might also be considered, where the agents might detect themselves as candidate
targets (with audio sensing, for instance, the movement of one agent will produce noise that is detected by other
agents and interpreted as a target). Assuming some form of communication, some strategy might be considered
to avoid interference and achieve some form of (optimal) coordination between the agents.
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A
Appendix

A.1 1D SHS properties

For the SHS designed in section 2.1, we formally prove some properties of its data.

First off, we consider the following description of the sets, where the extensions by continuity have beenmade
explicit taking care of critical values of μ andE. Moreover, we rewrite the inequalities so that that the thresholds for
D10 and C1 are relative to the estimate μ (which is the quantity driving the movement, and is strictly decreasing):

Dm = {Tm} × R× ({μ 6= 0,E ≥ e−a2/μ2} ∪ {μ = 0})× {0} (1)

D01 = {0} × R× ({μ 6= 0,E ≤ e−a2/μ2} ∪ {E = 0, μ = 0})× {0} (2)

D10 = {0} × R× ({E 6= 0,E 6= 1, μ2 ≤ b2/ ln(E−1)} ∪ {E = 0, μ = 0} ∪ {E = 1})× {1} (3)

C0 = [0,Tm]× R× ({μ 6= 0,E ≥ e−a2/μ2} ∪ {μ = 0})× {0} (4)

C1 = {0} × R× ({E 6= 0,E 6= 1, μ2 ≥ b2/ ln(E−1)} ∪ {E = 0})× {1} (5)

We can then prove the following

Proposition A.3 The sets Dm, D01, D10, C0 and C1 are closed inR5.

Proof We only prove the property for C0, since the closedness of the other sets can be proven in a similar way.
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Consider the set Σ and its following equivalent definitions

Σ = {μ,E | μ 6= 0,E ≥ e−a2/μ2} ∪ {μ,E | μ = 0} (6)

= {μ,E | f(μ,E) ≥ 0} (7)

= f−1([0,+∞)) (8)

⊂ R× [0, 1]

given a > 0 and introducing the function f : R× [0, 1]→ R as

f(μ,E) =

E− e−a2/μ2 if μ 6= 0

E if μ = 0
(9)

Notice that f(μ,E) is a continuous function. In particular μ 7→ e−a2/μ2 is continuous inR\{0}, being obtainable
by the function composition of continuous functions. Moreover

lim
μ→0+

E− e−a2/μ2 = E ∀ E ∈ [0, 1] (10)

We can then highlight that Σ = f−1([0,+∞)) is a closed set, being the preimage of a closed set through a contin-
uous function. Finally we have thatC0 = [0,Tm]×R×Σ×0 is the cartesian product of closed sets and, as such,
is closed. ■

A.2 SHS solutions generation algorithms
AlgorithmA.1 is used to sample random solutions of the stochastic hybrid systems presented in this thesis. A list
of samples of the hybrid arc of the solution [5] is returned, and the algorithm takes as parameters

• the initial condition x0 ∈ Rn,

• the flow vector field f : Rn → Rn,

• the flow set C ⊂ Rn,

• pairs of jump sets and maps J = {(Di, gi(·))},

• a random variable λ to be sampled during jumps,

• a termination condition T(·) which is function of the current hybrid time (t, j) and the current state
x(t, j).

The algorithm exploits the procedure A.2 that simulates the continuous-time deterministic flow of the system
for a small time interval dt while checking that the state is still inside of the given flow set C. If the procedure
detects that this is not true, even in the middle of the flow, it returns earlier with a possibly shorter (in time) flow
result. This is made possible by the implementation details of the Runge-Kutta method, which has been selected
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Algorithm A.1 STOCHASTIC_HYBRID_SIMULATE(x0, f(·), C, J, λ, dt, T(·))
x← x0
t← 0
j← 0
result← [ ]
result.append((t, j, None, x))
while not T(t, j, x)

jumped← false
for all (Di, gi(·)) ∈ J

if x ∈ Di
ν← SAMPLE(λ)
x← gi(x, ν)
j← j+ 1
result.append((t, j, ν, x))
jumped← true

end if
end for
maybe_flowed_to← RK2_FLOW_INSIDE(x, f, C, dt)
if maybe_flowed_to is Some(dtf, xf)

x← xf
t← t+ dtf
result.append((t, j, None, x))

else
if jumped

continue # Couldn't flow, but jumped
else

break # Couldn't flow, didn't jump
end if

end if
end while
return result

Procedure A.2 RK2_FLOW_INSIDE(x0, f(·), C, dt)
if x0 /∈ C

return None
end if
x1 ← x0 + f(x0)

( 1
2 dt
)

if x1 /∈ C
return Some

( 1
2 dt, x1

)
end if
x2 ← x0 + f(x1) dt
return Some (dt, x2)
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of order 2, and as such is also known as the Midpoint method. This feature of the flow procedure is exploited by
Algorithm A.1 to ensure the correct generation of solutions whose hybrid time domain is bounded [5].

Please note that, in the actual implementation and usage of the algorithm, some slack is expected in the defi-
nitions of the flow and jump sets. This ensures proper behavior of the algorithm without resorting to very small
values of dt which would otherwise make the execution very computationally expensive.

In particular, when the slack in the sets definitions is enough, and the system data is sufficiently well-behaved1,
a faster version of the algorithm can be used. This variant is described by Algorithm A.3, together with its helper
procedure A.4. The differences are that the faster version doesn't check for the state to be inside Cwhen flowing,
and only allows for multiple jumps at the same t if their ``instructions'' are checked in the correct sequential order
in the collection J.

Algorithm A.3 STOCHASTIC_HYBRID_SIMULATE_FAST(x0, f(·), J, λ, dt, T(·))
x← x0
t← 0
j← 0
result← [ ]
result.append((t, j, None, x))
while not T(t, j, x)

for all (Di, gi(·)) ∈ J
if x ∈ Di

ν← SAMPLE(λ)
x← gi(x, ν)
j← j+ 1
result.append((t, j, ν, x))

end if
end for
x← RK2_FLOW(x, f, dt)
t← t+ dt
result.append((t, j, None, x))

end while
return result

Procedure A.4 RK2_FLOW(x0, f(·), dt)
x1 ← x0 + f(x0)

( 1
2 dt
)

x2 ← x0 + f(x1) dt
return x2

With care for the limitations that were just described, this variant has proven very useful and better performing
(likely thanks to a lower stress on the CPU branch predictor unit) for running a high amount of simulations of
the systems presented in this work.

1Those characterizations, with respect to the system data, are given in a qualitative way, and asserting them
has been mainly performed experimentally.
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Listing A.1 Stochastic Hybrid solutions generation algorithm implementation in Rust.
use rand::Rng;

pub fn hybrid_sim<
const N: usize, // dimension of the state space
const K: usize, // number of jump sets and maps
JS: Fn([f64; N], &P) -> bool, // type of the jump sets
JM: Fn([f64; N], f64, &P) -> [f64; N], // type of the jump maps
FS: Fn([f64; N], &P) -> bool, // type of the flow set
F: Fn([f64; N], &P) -> [f64; N], // type of the flow vector field
D: rand::distributions::Distribution<f64>, // distribution for random jumps
T: Fn(f64, u64, [f64; N], &P) -> bool, // type of the termination condition
P, // type of the user provided system parameters

>(
x0: [f64; N],
p: &P, f: F, flow_set: FS, jumps: [(JS, JM); K], lambda: D,
dt: f64, terminate: T

) -> Vec<(f64, u64, Option<f64>, [f64; N])> {
let mut x = x0;
let mut (t, j) = (0.0, 0);
let mut rng = rand::thread_rng();
let mut res = vec![(t, j, None, x)];

while !terminate(t, j, x, p) {
let mut jumped = false; // check for jumps
for (jump_set, jump_map) in &jumps {

if jump_set(x, p) {
let nu = rng.sample(&lambda);
x = jump_map(x, nu, p);
j += 1;
res.push((t, j, Some(nu), x));
jumped = true;

}
}

#[cfg(debug)] // in debug mode we use the complete version with checks
{

match rk2_flow_inside(x, p, &f, &flow_set, dt) {
Some((fdt, xf)) => {

x = xf;
t = t + fdt;
res.push((t, j, None, x));

}
None if jumped => continue; // couldn't flow, but jumped
None if !jumped => break; // couldn't flow, didn't jump

}
}
#[cfg(not(debug))] // in release mode we use the faster version
{

x = rk2_flow(x, p, &f, dt);
t = t + dt;
res.push((t, j, None, x));

}
}

return res;
}
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The algorithms have been implemented in the Rust programming language, which offers a highly optimizing
AOT compiler, leading to a high performance simulator which allows to quickly generate a big number of solu-
tions. This is critical forMonte Carlo experiments. The implementation of the algorithms is shown in listing A.1
and exploits generics and trait bounds so that the compiler can specialize the code for the specific system being
simulated, which is identified by the provided jump sets, jumpmaps, flow set, flowmap and random distribution.
The implementation also allows to provide custom parameters for the system, as a reference to a value of a generic
type Pwhich is accepted by the function.
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