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Bayesian Account of Perceptual Decision-Making 

I. Di Pietro 

September 10, 2023 

Abstract 

By making predictions, learning from mistakes, and updating memories to include new information, the 
brain enables adaptive behaviour in daily activities. For instance, in perceptual decision-making tasks, it is 
critical to rapidly select the best behaviours based on current sensory inputs, that are frequently ambiguous 
or masked by noise. Using random dot motion (RDM) tasks, previous research on perceptual decision-
making emphasised the role of sensory information in directing behaviour by varying simply the stimulus 
coherence and analysed the data using models that more or less explicitly presuppose bottom-up processing 

(e.g., drift-diffusion models). However, accumulating evidence (e.g., Bayesian models and the Free Energy 
Principle applications) suggests that the brain approximates optimal Bayesian inference rather than simply 
being a passive information filter. As a result, we need to shed light on the computations involved in goal-
directed decision-making, with a focus on the predictive mechanisms at work in volatile experimental 
contexts. Here we used a probabilistic Random Dot Kinematogram (pRDK) in which the probability of 
witnessing a rightward/leftward motion changes throughout the task. Furthermore, to operationalise the 

predictions of the left and right dot motion in each trial based on previous information, an Ideal Bayesian 
Observer was used. This allowed us to study top-down predictions' impact on decision-making. The 
behavioural analyses revealed a substantial impact on behaviour from both coherence levels and 
probabilistic contexts. Specifically, a significant interaction between the probability of motion and 

direction was found, indicating faster responses when predictions matched what was presented.  

Keywords: Perceptual decision-making, Bayesian Inference, Random Dot Motion, Top-down 

predictions  

1 Introduction 

1.1 Decision-Making 

In the realm of human cognition and behaviour, decision-making stands as a cornerstone 

process that shapes our lives in multifaceted ways. Every day, individuals confront a myriad 

of choices, ranging from the mundane to the life-altering, and the process of decision-making 

is what enables us to navigate these choices effectively. Whether it is choosing between a 

healthy salad or a tempting burger for lunch, deciding on a career path, or making complex 

financial investments, our decisions reflect the intricate interplay of various cognitive, 

emotional, and situational factors. Indeed, decision-making is a pivotal skill that plays a central 

role in daily life, empowering individuals to adapt to their environment and exercise personal 

autonomy (Morelli et al., 2022). Hence, gaining insight into the mechanics and neural 

underpinnings of this ability has become crucial. As a consequence, multiple scientific 
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disciplines, including cognitive psychology and neuroscience as well as economics, computer 

science, and neuropsychology, have extensively studied decision-making, employing various 

theoretical models as references (Broche-Pérez et al., 2016; Edwards, 2000; Tversky & 

Kahneman, 1977, von Neumann and Morgenstern, 1944).  

In cognitive neuroscience and psychology, decision-making can be defined as a multifaceted 

executive function (Rosenbloom et al., 2012) that involves the cognitive processes of 

evaluating and selecting a stimulus or course of action from a range of possible alternatives 

(Broche-Pérez et al., 2016; Morelli et al., 2022). Thus, it consists of the mental operations 

through which individuals make choices based on available information, preferences, goals, 

and potential outcomes (Doya, 2008; Morelli et al., 2022). Ernst & Paulus (2005) have 

proposed a fundamental framework for decision-making organised around an input–process–

output–feedback structure and encompassing well-defined stages: (a) presentation of multiple 

stimuli that predict measurable outcomes (input); (b) evaluation of the various options and the 

establishment of preferences (process); (c) selection of actions based on the presented stimuli 

(output); (d) assessment of the outcomes which provides valuable feedback to refine future 

decision-making (feedback).  

Decision-making can be based on individual preferences and beliefs (value-based decision-

making) or objective characteristics (perceptual decision-making). Thus, two different types of 

decision-making can be distinguished: value-based and perceptual decision-making.  

1.1.1 Value-based decision-making and its neural correlates  

Theoretical frameworks, such as the Expected Utility Theory1 (Von Neumann & Morgenstern, 

1944), Prospect Theory (Kahneman & Tversky, 1979)2, and computer science's reinforcement 

learning (RL) theories (Sutton & Barto, 1998), appear to share a common argument: decision-

makers combine the different characteristics of a choice to derive a single measure of its 

subjective value and then select the most valuable option. Furthermore, this process is often 

 
1 Each possible outcome is assigned a numerical value representing the likelihood of occurrence (i.e., expected 

utility). 
2 The work of Kahneman and Tversky on the psychology of valuation and choice emphasises the importance of 

intuitive over deliberative decision-making and challenges basic economic assumptions of rationality. Thus, 

individuals are more risk-averse when provided with decisions presented as losses, but they are more risk-averse 

when presented with decisions framed as profits, giving the two options equal value. 
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influenced by factors such as reward expectation, risk aversion, and the integration of value-

related information (Doya, 2008). 

From an anatomical perspective, value-based decision-making involves intricate interactions 

among multiple brain regions that encode, represent, and process subjective values. Two brain 

regions that were associated with value-based decision-making are the orbitofrontal cortex 

(OFC) and the anterior cingulate cortex (ACC). In addition to encoding and representing the 

subjective worth of various options, the OFC processes reward-related characteristics and 

guides decision-making based on reward expectancy and outcome valuation (Broche-Pérez et 

al., 2016; Roesch & Olson, 2005; Wallis, 2007). Moreover, the OFC's bidirectional connections 

with the temporal sensory association cortex, amygdala, and hippocampus enable emotional 

processing (Broche-Pérez et al., 2016). The OFC also interacts with the basal ganglia, 

providing support for reward-related learning, as these regions are part of the striatal dopamine 

system (Krawczyk, 2002). However, it is important to note that the OFC is not the sole brain 

region responsible for reward processing. Indeed, Doya's review (2008) reveals that, when a 

high reward is expected, individuals tend to choose an action despite the presence of a 

considerable cost. This behaviour is linked to dopamine-mediated activity in the ACC. 

Additionally, the ACC, along with the ventral striatum (Hare et al., 2008), has been found to 

encode prediction errors3 with activity increasing in response to mistakes and positive feedback 

(Morelli et al., 2022). These findings highlight the involvement of multiple brain regions, 

including the OFC, ACC, and ventral striatum, in the complex process of value-based decision-

making. 

As mentioned earlier, the OFC and the ACC are intricately connected to the dopaminergic 

reward circuit, contributing to decision-making processes at various levels, including pleasure 

(reward-driven approach), subjective value (value-based decision), and goal-directed control 

(Doya, 2008). Early investigations by Schultz (1997) have already laid the groundwork by 

demonstrating that dopaminergic neurons encode a reward prediction error signal, aligning 

with the concepts proposed by temporal-difference learning models (TD-models4, Sutton & 

Barto, 1998). Subsequently, numerous pieces of evidence have consistently supported these 

 
3 Prediction errors refer to the discrepancy between expected and actual rewards or outcomes; they are positive 

every time something better than expected happens, and negative when the opposite occurs (Schultz et al., 1997; 

Sutton and Barto, 1998). 
4 TD-models assume that the agent predicts and evaluates future rewards based on the difference between the 

predicted and actual rewards obtained during interactions with the environment at different time steps.  
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findings, suggesting that dopaminergic neurons in the midbrain carry a "teaching signal", 

facilitating the learning of the subjective value of actions (Sharpe & Schoenbaum, 2018). 

1.1.2 Perceptual decision-making and its neural correlates 

While value-based decision-making relies on subjective preferences, perceptual decision-

making involves the integration of objective sensory information to make judgments about the 

external world (Hauser & Salinas, 2014). It is grounded in objective perceptual data, where 

incoming sensory signals are gathered through the senses, evaluated and interpreted to 

determine the most suitable response.  

Perceptual decision-making is a complex cognitive ability that hinges on a dynamic interplay 

of both bottom-up processes, involving the representation of sensory evidence, and top-down 

processes, encompassing the integration of this sensory evidence (Hauser & Salinas, 2014). A 

consensus among several studies highlights the presence of two foundational principles 

underpinning this intricate capacity: (1) perceptual competition (Gold & Shadlen, 2001; Hauser 

& Salinas, 2014) and (2) the accumulation of evidence (Gold & Shadlen, 2007). The principle 

of perceptual competition (1) establishes a relationship between the choice made and 

specialised sensory neurons tuned to attributes characteristic of each decision option (Gold & 

Shadlen, 2001; Heekeren et al., 2008). According to the accumulation of evidence framework 

(2), on the other hand, a decision involving two alternatives unfolds through the parallel 

accumulation of corresponding evidence, ultimately culminating in a response as soon as one 

of the decision thresholds is hit. Thus, Reaction Times (RTs) denote how long it takes for a 

decision signal to be accumulated until a certain threshold is reached, triggering a response. A 

compelling illustration of this hypothesis is evident when examining responses to noisy 

psychophysical stimuli such as a Random Dot Kinematogram (RDK, i.e., a typical stimulus 

used to study motion perception; see details below). Drift-diffusion and sequential sampling 

models (Ratcliff & Smith, 2004), as well as some Bayesian models (e.g., Bitzer et al., 2014) 

encapsulate this process of information accumulation, offering a foundation to comprehend 

perceptual inference in an environment characterised by sensory uncertainty.  

Consistently, in real-life scenarios, the information at hand is often laden with noise and 

uncertainty, necessitating the engagement of decision-making and inference processes. 

Consider a situation where we encounter a person on the street and need to determine if we 

know him\her or not. On a clear day, effortlessly, we can discern whether the person is familiar 
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or a stranger and promptly decide whether to greet or ignore him\her. However, during a 

rainstorm, the sensory input becomes noisier, requiring us to observe for a longer duration to 

gather more sensory data for deciding about the person's identity and selecting an appropriate 

behavioural response. This type of decision-making process is essential not only for everyday 

situations, like the one described above, but also for more biologically and socially significant 

circumstances (Heekeren et al., 2008). Interestingly, the source of the noise is not solely 

external but can also emerge from the sensory system itself. While RT durations have 

conventionally been associated with information accumulation, some researchers have 

proposed that the observed variability in RTs stems from internal sensory and neural 

mechanisms (Genest et al., 2016). To investigate this hypothesis, Genest and colleagues (2016) 

employed a Random Dot Tachistogram task. A spatially randomised array of dots is very 

briefly presented, followed by a single displacement to the left or right (as opposed to the 

continuous and longer movement seen in RDK). Consequently, this task necessitates the rapid 

integration of information occurring virtually instantaneously, precisely at the moment of 

transition between dot positions. The findings reveal that, although this stimulus does not 

introduce a consistent flow of noise (temporal noise) into the decision-making system as the 

RDK does, it still induces variability in RTs. This observation reinforces the notion that such 

variability originates intrinsically within the system itself (Genest et al., 2016).  

Another model that puts forth hypotheses regarding the mechanisms underlying perceptual 

decision-making is the one by Sugrue et al. (2005). Initially, a sensory transformation occurs, 

translating primary sensory input into a representation of a more complex stimulus aspect (e.g., 

visual motion). Subsequently, a decision transformation establishes a connection between this 

sensory representation and the likelihood of various possible responses. The conclusive phase 

of processing culminates in the concrete binary decision, transforming the continuous 

probabilistic representation into the execution of motor actions. However, as demonstrated in 

a study conducted by Heekeren et al. (2008), the mechanism underlying perceptual decision-

making does not conform to a solely hierarchical model unfolding in a linear progression of 

perception, decision, and action implementation. Instead, it can be better understood as a 

system comprising four discrete neural processing modules, forming a heterarchical 

architecture (shown in Fig. 1). The initial module is crucial for the accumulation and 

representation of sensory evidence (such as the Middle Temporal, MT, area for motion 

perception). The second module is responsible for identifying perceptual uncertainty or 

difficulty and signalling the need for increased attentional resources to accurately implement a 
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task (associated with regions like the anterior insula and inferior frontal gyrus). The third 

module encapsulates the representation of decision variables5 including structures such as the 

dorsolateral prefrontal cortex (DLPFC) and encompasses motor and premotor regions. Lastly, 

the fourth module is dedicated to performance monitoring, detecting errors and recognizing 

when adjustments in decision strategies are essential to optimise the overall performance. The 

principal brain area associated with error monitoring is the posterior medial prefrontal cortex 

(pmPFC). Its activity was related to detecting discrepancies between intended outcomes and 

actual results, allowing individuals to rectify mistakes and enhance future performance 

(Ridderinkhof et al., 2004).  

 

Figure 1 | Heterarchical architecture of the four neural models underlying perceptual decision-making (Heekeren 
et al., 2008). [FFA: fusiform face area; PPA: parahippocampal place area; DLPFC: dorsolateral 
prefrontal cortex; alns: anterior insula; iFG: inferior frontal gyrus; pmPFC: posterior medial prefrontal 

cortex]. 

Consistently, a wealth of evidence supports the involvement of the lateral prefrontal  and 

parietal cortex in the selection and execution of choices from a range of available alternatives 

(Gold & Shadlen, 2007; Kable & Glimcher, 2009, 2009; Schall, 2001). More specifically, the 

DLPFC emerges as intricately tied to decision-making processes (Philiastides et al., 2011), 

assuming a specialised role in integrating diverse information sources and exercising cognitive 

control (Kim & Shadlen, 1999; Rosenbloom et al., 2012). In parallel, the posterior medial 

frontal cortex appears implicated in performance monitoring and error detection (Heekeren et 

al., 2008; Ridderinkhof et al., 2004), elucidating its contribution to evaluating outcomes and 

detecting discrepancies. 

 
5 The decision variable is a composite measure that integrates various sources of information, including prior 

knowledge, sensory evidence, and subjective value, into a single quantity. This quantity is then used by a 
decision rule or process to make a choice or decision (Heekeren et al., 2008). 
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Ever since the notion that decision-making involves intricate mechanisms connecting sensation 

and action (rather than simple reflexes) emerged, neurophysiologists have diligently sought to 

comprehend the formation of these links and the transformative processes involved (Shadlen 

& Gold, 2004). Initially, this endeavour led to the investigation of the visual and oculomotor 

systems in the primate brain. One of the pioneering demonstrations showcasing the correlation 

between the activity of individual cortical neurons and perceptual decisions resulting in actions 

was conducted by Shadlen & Newsome (1996). Their study has illustrated that specific neurons 

in monkeys’ lateral intraparietal area (LIP) conveyed signals seemingly reflecting the 

integration of sensory information, leading to a decision suitable for guiding movement. Firstly, 

LIP neurons receive significant input from direction-selective neurons in the MT area, 

indicating a flow of information related to motion processing (Hauser & Salinas, 2014; Lewis 

& Van Essen, 2000). In this case, LIP is regarded to be critical for integrating the noisy MT 

outputs across trials, resulting in a more accurate decision (Shadlen & Newsome, 1996). 

Secondly, LIP neurons project to the superior colliculus and the Frontal Eye Fields (FEF), 

which are responsible for generating movements, especially in the context of eye movement 

responses (Hauser & Salinas, 2014; Heekeren et al., 2008; Paré & Wurtz, 1997; Shadlen & 

Newsome, 1996). Lastly, many LIP neurons show sustained and spatially selective activity 

when a monkey is instructed to make a delayed eye movement, suggesting their involvement 

in decision-related processes and working memory (Lewis & Van Essen, 2000; Shadlen & 

Newsome, 1996). These findings collectively support the role of the LIP as a critical neural 

hub for motion-related decisions.  

1.1.3 Random Dot Kinematogram (RDK) task 

To investigate perceptual decision-making, researchers have primarily employed two 

alternative forced-choice paradigms (Hauser & Salinas, 2014) where the subject must use 

available sensory information to give a dichotomous response. The probably most utilised task, 

in both humans and nonhuman primates, is the Random Dot Motion (RDM). Random Dot 

Motion is a broader term that refers to any visual stimulus involving randomly moving dots. It 

includes the concept of Random Dot Kinematogram (RDK) but is not limited to that specific 

experimental design. In an RDK task, participants typically have to discriminate a cloud of 

moving dots according to whether it moves in one of two opposing directions (Britten et al., 

1992; Pilly & Seitz, 2009) and express their decision through eye movements or motor 

responses. To manipulate the level of difficulty and sensory uncertainty, the coherence of the 
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dot motion is often varied (from weak to strong strength of motion6, as illustrated in Fig. 2). 

Coherence refers to the proportion of dots that move in a consistent direction, while the 

remaining dots move randomly (referred to as noise dots). For example, for a 25% level of 

coherence, only 25% of the dots move in the same direction while the other 75% of the dots 

(i.e., noise dots) move in random directions.  

 

Figure 2 | A random-dot motion stimulus with different levels of motion coherence (Palmer et al., 2005). No dots 
are moving in the same direction when the motion coherence is 0%. As the percentage of coherent dots 
increases (e.g., 25% and 50% motion coherence), the global motion becomes less noisy, and detection 

or discrimination performance improves with higher accuracy and shorter Response Times. 

 

As one would expect, higher coherence levels make it easier for participants to perceive the 

global motion direction, while lower coherence levels introduce more ambiguity\uncertainty, 

thus subjects respond slower and make more errors (Gold & Shadlen, 2007; Palmer et al., 2005; 

Shadlen & Gold, 2004). Although the RDK task may appear as an oversimplified 

representation of how our brain processes continuous, complex sensory input and categorises 

it into multiple distinct categories, this task has yielded a plethora of valuable insights into the 

mechanisms underlying perceptual decision-making (Heekeren et al., 2008).  

As mentioned earlier, a critical characteristic of the RDK tasks is the deliberate introduction of 

a level of sensory noise in the stimuli. Historically, one way to quantify the decision formation 

about noisy sensory signals involves the trade-off between speed and accuracy. Deciding 

quickly can lead to the risk of overlooking essential information while taking more time allows 

for the acquisition of additional or higher-quality signals, but it may result in time being wasted. 

To measure how the level of noise influences the subjects’ RT and accuracy, stimuli strength 

(i.e., coherence) can be varied from trial to trial so that the proportion of correct response and 

the mean RT can be plotted as a function of this strength (Palmer et al., 2005).  

 
6 Weak and strong strength of motion refer respectively to the majority of dots moving in a random direction or 

to the majority of dots moving coherently in a single direction. 
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To visualise this kind of relationship, one can create a chronometric function (measurements 

of RT as a function of stimulus strength) and a psychometric function (measurements of the 

proportion of correct response as a function of the stimulus strength) illustrated in Fig. 3.  

 

Figure 3 | The impact of motion coherence on accuracy and mean RT (Gold & Shadlen, 2007). The proportion 
of accurate responses on a log scale is shown in the top panel (psychometric function), and the mean 

RT for correct responses is shown in the bottom panel (chronometric function).   

 

Figure 4 | The psychometric function is defined by four key parameters: the threshold, slope, upper asymptote, 
and lower asymptote. Performance at lower stimulus intensities is defined by the lower asymptote. 
Meanwhile, the slope parameter, which typically represents the gradient at the threshold point, 
determines the rate of change in response probability per unit of variation in stimulus level (Gilchrist 

et al., 2005). The sensitivity threshold refers to the minimum level of stimulus intensity or 
information required to trigger a response or detection in a sensory or decision-making system 
(Kontsevich & Tyler, 1999).  
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It is important to note that psychophysical experiments utilise the psychometric function 

(whose parameters are depicted in Fig. 4) because it enables the description of the transition 

from non-detectability to detectability in a gradual manner. What is particularly informative is 

the slope of this function and not only the sensitivity threshold (Gilchrist et al., 2005; 

Kontsevich & Tyler, 1999). Indeed, in the study presented in this thesis work, an adaptive and 

Bayesian procedure was used to estimate the psychometric slope and threshold of each subject 

(see adaptive phase in the method section). 

The Signal Detection Theory (SDT) is a valuable conceptual framework employed in 

experiments involving this type of stimulus manipulation. It facilitates the interpretation of how 

stimulus strength influences accuracy performance (Gold & Shadlen, 2007; Green & Swets, 

1966). According to SDT, decision-makers receive evidence information (e)7, which is often 

derived from sensory inputs in perceptual psychophysics experiments. This evidence is 

influenced by both the manipulated state of the stimulus (e.g., its absence or presence, as 

controlled by the experimenter) and by noise inherent in the system. As a result, "e" becomes 

a random variable, described through conditional probability distributions (Gold & Shadlen, 

2007), such as the likelihood of the evidence (e) given a specific alternative or hypothesis (h), 

denoted as 𝑃(𝑒|ℎ). The decision is made by comparing a sample from this random variable to 

a criterion (Gold & Shadlen, 2007; Palmer et al., 2005). Thus the objective is to ascertain which 

hypothesis or alternative is responsible for generating the observed evidence. Even though SDT 

is a strong analytical tool, early research was limited owing to the need for more powerful 

computers (Hauser & Salinas, 2014). On the other hand, modern research frequently integrates 

psychophysical findings with concurrent neurophysiological data from the same individual, 

augmented by comprehensive computer analysis and model simulations. This integrated 

approach allows for the introduction of the so-called drift-diffusion model (Palmer et al., 2005; 

Ratcliff & Smith, 2004).  

1.1.4 Accumulation of evidence in bottom-up models of perceptual decision-

making 

Ratcliff's (1978) diffusion model technique has shown to be particularly effective in explaining 

RT and accuracy data in two-choice RT tasks. For instance, this modelling approach has 

 
7 In this context, by "evidence," I am referring to information that guides us in determining when or whether to 

commit to a specific option. 
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successfully accounted for phenomena such as the distribution of RTs heavily skewed toward 

longer durations and the intricate balance between speed and accuracy (Bogacz et al., 2006) . 

Diffusion models propose that decisions are formed by continuously accumulating sensory 

information until an upper or lower bound is hit, which triggers a response (Heekeren et al., 

2008; Palmer et al., 2005; Voss et al., 2013). This accumulation of information begins at the 

starting point and can be considered as a counter running in a corridor between the two bounds 

and pushed in opposing directions by information supporting one alternative rather than the 

other (Voss et al., 2013). In more technical terms, noisy momentary evidence favouring one or 

the other alternative displaces a decision variable (DV) in either a positive or negative direction. 

However, due to random noise, the trajectory of the decision path (as depicted in Fig. 5) varies 

from trial to trial with a random fluctuation (Voss et al., 2004, 2013). In addition, the 

momentary evidence is distributed as a unit-variance Gaussian whose mean is proportional to 

the coherence of the stimulus (Doya et al., 2006). Thus, in a basic diffusion model, such as the 

one depicted in Fig. 5, the characterization of performance involves several key components. 

These components comprise an initial starting point (depicted as '0' in Fig. 5), which serves to 

accommodate any pre-existing biases within the decision-making process. Additionally, a drift 

rate parameter (represented as 'µ' in Fig. 5) is employed to quantify the speed at which 

information is assimilated, as established by Voss et al. in 2013. Furthermore, distinct bounds 

are established for each available alternative, denoted as 'A' and '-A' in Figure 5. 

 

Figure 5 | Illustration of a simple drift-diffusion model (Palmer et al., 2005). The drift-diffusion parameters are 

the starting point (at 0), mean drift rate (µ) and a bound for each response (A and -A).  
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As indicated before, by adjusting the starting point, it is possible to model the response biases. 

This parameter encapsulates the disparity in the quantity of information required before a 

decision threshold is reached and a response is executed. In essence, a greater distance between 

the starting point and the decision threshold leads to a lengthier decision process (Voss et al., 

2004). On the other hand, the drift rate indicates the relative amount of information assimilated 

per unit of time (Voss et al., 2004). Consequently, it can be considered as a measure of 

perceptual sensitivity. For instance, a clear stimulus (characterised by a low level of noise) 

imparts more sensory data compared to a degraded one, thus resulting in a higher drift rate. 

To summarise, the brain continuously acquires a constant piece of evidence from the input, 

known as drift, which is subject to noise, or diffusion8. Hence, the evidence accumulates over 

time, leading the decision-maker to either commit to one of the two options or await further 

pieces of evidence (Doya et al., 2006). Finally, the accumulation process concludes once 

sufficient evidence is gathered, and the final choice is determined by the specific bound that is 

crossed, with the decision time dependent on the time it takes to cross that bound.  

Importantly, drift-diffusion models have been employed for behavioural data and to analyse 

neurophysiological signals as well. For example, Gold & Shadlen (2007) delved into the neural 

mechanisms underlying perceptual decision-making in nonhuman primates, revealing that 

activity (i.e., mean firing dynamics of single neurons) in the LIP and FEF correlates with the 

accumulation of sensory evidence (i.e., drift-diffusion model mean trajectories) and subsequent 

visuo-saccadic decision-making. 

Earlier research on perceptual decision-making underlined only the relevance of sensory 

information in driving behaviour. These studies have extensively investigated perceptual 

decision-making using models that implicitly or explicitly assume bottom-up processing and a 

simple accumulation of sensory information over time (e.g., the drift -diffusion model). 

However, while exploring the physical properties of a stimulus is crucial, it is equally essential 

to examine how other factors can impact perceptual performance. In line with this perspective, 

recent experiments have grown more ambitious, delving into the manipulation of reward 

amounts, temporal constraints (Hauser & Salinas, 2014) and reward probabilities (Behrens et 

al., 2007). These findings strongly suggest that sensory processing receives feedback regarding 

ongoing decision-making and that environmental statistics (e.g., the probability of a stimulus 

 
8 Formally, diffusion is a scaling parameter, thus it is not a parameter to be estimated but it has to be fixed to 

any constant value (Voss et al., 2004). 
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occurring) also affect behaviour. Furthermore, when sensory information is noisy, expectations 

can influence perception, altering not just how well, but also what is perceived (de Lange et 

al., 2018). For instance, the perceived direction of motion can exhibit a bias induced by an 

implicit prediction (or equivalently here, expectation) of the most probable direction, rooted in 

prior trial experiences. Indeed, within the scope of this thesis, a novel version of the RDM task 

was employed, referred to as the probabilistic Random Dot Kinematogram (pRDK). This task 

introduces a dynamic element by changing the probability of witnessing rightward motion 

throughout the task. By doing so, we aimed to explore perceptual decision-making capacity 

concerning predictive processing. Our experimental setup indeed places significant emphasis 

on the role of predictive processing, which assumes a pivotal stance in comprehending how 

individuals formulate decisions by assimilating the available information and their future event 

expectations. 

1.2 From brain as a passive filter to brain as a predictive 

machine 

Despite the early recognition of the importance of predictive mechanisms in both psychology 

and neuroscience (Clark, 2013; Doya et al., 2006; Rao & Ballard, 1999), typical approaches to 

understanding cognitive processes have often assumed a sequential flow from sensory input to 

executive functions and then to overt behaviour. For a long time, the prevailing belief about 

the brain was that its primary role is to passively receive and process sensory information, 

lacking any significant role in shaping or influencing the perceived evidence. This view can be 

traced back to the original behaviourist ideas, which emphasised a linear progression from 

sensory stimulation to observable behaviour (stimulus-response). These views also had an 

impact on early information-processing cognitivist theories, which sought to understand how 

information was processed step-by-step in the human mind. Such view proposes that perceived 

sensory data follows a hierarchical pattern of analysis by distinct feature detectors in sequential 

stages. This serial processing implies that one operation must be finished before the next may 

begin, similar to how a computer works. Thus, the brain was often regarded as a filter, 

extracting essential information from sensory inputs while discarding irrelevant details. 

Although these models provided valuable insights at the time, contemporary research now 

acknowledges the brain's dynamic and interactive nature, involving feedback loops (Rao & 

Ballard, 1999), parallel processing (Hinton & Anderson, 2014), and complex interactions 
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between different brain regions. According to current views (e.g., Rao & Ballard, 1999), the 

brain actively predicts its sensory information and bottom-up processes encode prediction 

errors, namely the mismatch between the prediction and the sensory input. Indeed, when there 

is this discrepancy, the brain triggers responses that may involve the generation of new 

predictions. These updated perspectives provide a more comprehensive understanding of 

cognitive functioning and the brain's remarkable ability to flexibly integrate information from 

diverse sources (Babic et al., 2010). Moreover, scholars argue that even classical conditioning 

has a predictive nature (Sutton & Barto, 1981). Within the classical conditioning framework, 

learning entails the understanding that the occurrence of one stimulus predicts the occurrence 

of another. Although behaviourism, as a theoretical perspective, focuses solely on analysing 

explicit behaviour, a notable development emerged: the Rescorla-Wagner model (R-W model). 

This model introduced a mathematical representation of associative learning and was the first 

to propose a global error term as a fundamental element in the learning process (Soto et al., 

2023). It analyses how the discrepancy between expected and actual consequences promotes 

learning and hypothesises how the magnitude of the prediction error affects the associations 

between events (Bubic et al., 2010). In other words, learning occurs when what happens differs 

from what is expected, underlining the importance of surprise9. Therefore, rather than passively 

processing sensory inputs, the brain is now understood to play a dynamic and constructive role 

in forming representations of the world. This perspective aligns with the concept of predictive 

processing, where the brain continually generates expectations about incoming sensory 

information based on prior knowledge and experience. These predictions are actively compared 

with the actual sensory input, allowing the brain to refine and adjust its understanding of the 

world in an ongoing feedback loop. As a result, we are currently witnessing a fundamental 

theoretical shift in neuroscience, as the prevailing view considers the brain as a predictive 

organ. One essential model that marks this shift is undoubtedly the Predictive Coding model. 

  

 
9 Here surprise is intended as the difference between what really occurs and what is expected 
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1.2.1 Predictive Coding  

Following von Helmholtz10’s observations (Westheimer, 2008), the predictive coding 

framework challenges the traditional notion that the brain constructs its understanding of the 

world solely by accumulating sensory information in a bottom-up fashion. The predictive 

Coding model indeed emphasises the relevance of predictions (or contextual information) and 

prediction errors in brain processing. Learning happens through prediction refinement based 

on sensory feedback. Thus, the brain is viewed as continually generating and updating an 

internal model of the environment through a reciprocal exchange of top-down and bottom-up 

information across multiple hierarchical levels (Friston, 2005, 2009; Rao & Ballard, 1999). 

Therefore, instead of directly representing visual stimuli, it is more efficient for the brain to 

encode prediction errors. This error signal is what gets transmitted to higher brain areas. 

However, when the brain's predictions match the incoming sensory information, there is no 

need to send signals or "spikes" to higher brain regions because everything aligns with 

expectations. This efficient coding strategy helps the brain conserve energy and process 

sensory information more effectively 

Predictive coding has been applied to various domains, including vision, providing a plausible 

explanation for how visual responses are influenced by the context and accounting for 

modulatory effects beyond the traditional receptive field. The idea of predictive coding was 

translated into a computational model of vision by Rao & Ballard in the late 1990s (Rao & 

Ballard, 1999). Their model demonstrated that a generative model of a scene (top-down 

processing), coupled with feedback through error signals, leads to the updating and refining of 

predictions. As depicted in Fig. 6, each higher level attempts to predict the activity at the lower 

levels via feedback connections. When there is a mismatch (i.e., prediction error) between the 

prediction and the actual activity of the lower level, the error signal is propagated to the higher 

level via feedforward pathways. These prediction errors are vital because they serve as signals 

for the predictive estimator (PE; shown in Fig. 6), enabling it to adjust and refine its current 

estimate of the input signal and generate subsequent predictions accordingly (thus, “explaining 

away” or cancel out the prediction errors). In other words, while feed-forward connections 

convey input-related information, feedback activities allow the transmission of “contextual 

effects”. 

 
10 From Helmholtz comes the idea that sensory systems developed to infer the reasons for changes in sensory 

inputs (Clark, 2013). 
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This computational model aligns well with the known neuroanatomy and physiology of the 

visual system and also explains phenomena like extra-classical receptive field effects such as 

end-stopping11 (Friston, 2005). 

 

Figure 6 | Schematic representation of the hierarchical Predictive Coding Model by Rao & Ballard (1999) 

 

However, during that time, there was a need for a more comprehensive and all-encompassing 

theory, especially one that could address the challenging task of modelling distal causes of 

sensory input as well as uncertainty. Indeed, in everyday life, we often lack complete 

information to fully comprehend the causes behind incoming sensory stimuli. As a result, we 

rely on making inferences using the limited or partial information available to us. This is where 

Bayesian theories come into play. The next subsection is dedicated to Bayesian theories but, in 

essence, these theories suggest that to forecast the future, the brain constantly updates an inner 

hierarchical generative model of its sensory inputs in a (roughly) Bayes-optimal fashion (Clark, 

2013; Friston, 2005, 2009, 2010; Friston et al., 2017; Doya et al., 2006).  

1.2.2 The Bayesian Brain Hypothesis  

In recent years, an increasing body of research has embraced Bayesian models to delve into 

different cognitive processes (for a comprehensive and historical review, see Clark, 2013). This 

rise of interest stems from the understanding that the cognitive system faces the challenge of 

dealing with uncertainty across various experimental tasks and everyday situations. Central to 

this exploration is the so-called “Bayesian Brain” Hypothesis (Friston, 2005; Doya et al., 2006; 

 
11 In end-stopping receptive fields the neuron's response to a visual stimulus is maximal when the stimulus is of 

a certain length or within a specific range of lengths. However, if the stimulus extends beyond this optimal 
length or size, the neuron's response decreases or even ceases altogether (Friston, 2005). 
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Knill & Pouget, 2004), which portrays the brain as an active inference machine adept at 

representing sensory information in the form of probability distributions. This probabilistic 

representation allows us to describe uncertainty, extending beyond the simple true/false logic 

to a realm of continuous plausibility. Indeed, numerous studies have demonstrated the 

effectiveness of Bayesian inference in modelling information processing under uncertainty 

(e.g., Chater et al., 2010; de Lange et al., 2018; Friston et al., 2017). Furthermore, it is essential 

to recognize that uncertainty is not always inherent to our physiology; rather, it may arise due 

to our limited knowledge or partial observations. Therefore, updating our beliefs about the 

environment as we gather more evidence becomes vital, and Bayesian inference serves as a 

powerful tool to connect the inner world models with the supporting evidence, thus 

accommodating prior beliefs. For example, in the context of a sensory-motor task, a prior may 

represent the predicted probability of encountering a specific stimulus. Certain beliefs might 

be ingrained since birth, while others exhibit a more adaptable nature, being formed through 

experiences, or even fluctuating from one trial to the next in response to shifts in sensory input 

(Ma & Jazayeri, 2014). 

More formally, a Bayesian model necessitates the integration of four distinct components 

depicted in Fig. 7 (Bitzer et al., 2014): (1) A generative input process responsible for the 

conversion of sensory input into noisy observations of the stimuli; (2) An internal12 generative 

model designed to generate predictions, against which sensory samples are assessed to refine 

the beliefs about underlying causes generating the input; (3) a Bayesian inference process 

which allows translating noisy observations into posterior beliefs over the stimulus causes. This 

translation is executed using the generative models corresponding to each decision option; (4)  

A decision policy based on the posterior beliefs from the Bayesian inference.  

Specifically, within cognitive neuroscience experiments, the input process (1) given to the 

model often comprises the experimental data themselves  (Bitzer et al., 2014). Because we 

cannot quantify the real noisy values computed by the brain, it is assumed that they are drawn 

by a Gaussian distribution whose parameters are estimated using experimental data.  

Furthermore, the internal generative model (2), which can also be specified by a Gaussian 

density, characterises the estimation of how the external world generates these inputs.  

 

 
12 This generative model is internal because it reflects the individuals’ beliefs  
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Figure 7 | A schematic diagram, following Bitzer et al. (2014), outlines a basic Bayesian model. Through sensory 

processes, the stimuli are transformed into abstracted observations (x t). The input model (i) 

approximates this transformation by associating the decision alternative Ai (out of M alternatives) with 

a value xt drawn from a Gaussian distribution. Its mean (µ i) signifies the value derived by the brain 

under conditions of noise-free observations. However, real-world observations are noisy, and the 

variance σ2 encapsulates the magnitude of this noise. The process of Bayesian inference (iii) operates 

recursively to calculate posterior beliefs, incorporating past beliefs [P(Aj|X1:t-1)] and the internal 

generative models (ii) associated with each alternative (out of M alternatives). Decisions are 

subsequently enacted using a decision policy (iv) grounded in the computed posterior beliefs and a 

designated threshold λ. In this particular context, the concept of a "threshold" closely resembles the 

boundaries used in drift-diffusion models. In this Bayesian model, decisions are reached by evaluating 

the posterior beliefs associated with different alternatives. When any of these posterior beliefs surpasses 

a predetermined threshold or bound, a decision is made in favour of the alternative with the highest 

posterior belief. 

Thus, the generative model can be broken down into two components: the likelihood, 

representing the probability of sensory data (𝑥) given their causes or states (𝑠) [𝑃 (𝑥|𝑠)], and 

the prior, reflecting the a priori probability of those causes13 [𝑃(𝑠)]. Consequently, as 

highlighted by Friston (2010), perception can be understood as the process of inversely using 

the likelihood model (mapping from causes to sensations) to access the posterior probability 

of the causes, given the available sensory data (mapping from sensations to causes). In practice, 

during a given trial, a Bayesian model effectively approximates the posterior beliefs of 

decision-makers regarding the underlying causes or states (s) that give rise to the observed 

input or observation (x).  

 

 
13 Also called in the literature hypotheses or states (s) 
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This approximation is achieved through the utilisation of Bayes' theorem: 

𝑃 (𝑠|𝑥) ∝  𝑃 (𝑥|𝑠)  𝑃(𝑠) 

Hence, Bayes' rule provides a formal framework for the decision maker exposed to a specific 

set of observations, to allocate probabilities (representing degrees of belief) to presumed states 

of the world. In essence, the brain makes use of prior beliefs and combines them with sensory 

evidence to form posterior probabilities. These posterior beliefs can be computed recursively 

over time using Bayes’ theorem. This iterative process, commonly known as Bayesian 

updating, assumes that the observations (𝑥𝑡) arrive sequentially over time. In the context of a 

standard RDM paradigm featuring two opposing directions of motion (for instance 𝑠1and  𝑠2), 

and under the assumption of independent consecutive observations, the Bayesian updating 

equation takes the subsequent form (Bitzer et al., 2014):  

𝑝(𝑠| 𝑋1:𝑡)  ∝  𝑝(𝑥𝑡| 𝑠) 𝑝(𝑠|𝑋1:𝑡−1) 

In this equation, the posterior belief over the 𝑠 state is computed by weighting the likelihood 

of observation 𝑥𝑡 under alternative 𝑠 with the previous posterior belief 𝑝(𝑠|𝑋1:𝑡−1). Thus, it 

represents the brain’s updated beliefs after taking new sensory information into account.  

Hence, it is postulated that the decision-maker endeavours to align its internal generative 

models with those of the input process, to optimise its responses. Indeed, events that align with 

our initial expectations can be predicted to optimise behaviour. On the other hand, events that 

deviate from our expectations are considered surprising, often resulting in behavioural costs 

(e.g., slower responses) and prompting an update of the internal model to enhance future 

predictions (Itti & Baldi, 2009).  

The process of revising an internal model of the external world due to a surprising event finds 

expression in the amplitude of the Event-Related Potential (ERP) component called P3 (Kopp, 

2008; Kopp et al., 2016, 2020; Visalli et al., 2021, 2023), predominantly attributed to signalling 

from the locus coeruleus (LC) and the noradrenergic (NA) pathways (Bland & Schaefer, 2012). 

Interestingly, some studies have tried to analyse surprise and updating as distinct phenomena. 

For instance, O’Reilly and colleagues (2013) utilised a task manipulation that enabled the 

isolation of a subset of surprising events that did not trigger updates. They observed that 

surprise was associated with the posterior parietal cortex, while the ACC was related to 

Bayesian updating. In contrast, divergent findings have situated the updating process within 

the frontoparietal network (FPN), as evidenced by studies conducted by Kobayashi & Hsu, 

(2017); Schwartenbeck et al., (2016) and Visalli et al., (2019). The alignment between Visalli's 
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temporal findings and earlier non-temporal research underscores the conclusion that the 

frontoparietal network (FPN) encodes updating, regardless of the type of information being 

updated. Moreover, in the study by Visalli et al. (2019), it was observed that the cingulo-

opercular network (CON) exclusively correlated with surprise. 

Yu & Dayan (2005) extensively examined a particular form of surprise: unexpected 

uncertainty. Indeed, these authors proposed an interesting division between expected and 

unexpected uncertainty14. The former arises from acknowledging the inherent unreliability of 

predictions within a familiar context. Acetylcholine (ACh) signalling is associated with this 

form of uncertainty. In contrast, unexpected uncertainty emerges when the environment 

undergoes significant changes that defy pre-established expectations. Noradrenaline (NA) 

might be linked to this sort of unexpected alteration. Specifically, the NA activity 

corresponding to unexpected uncertainty seems to manifest in a phasic manner, whereas 

prolonged unexpected uncertainty, like volatility, may be indicated by sustained or tonic levels 

of NA activity, rather than these brief phasic bursts (for an in-depth exploration of the various 

facets of uncertainty refer to Bland & Schaefer, 2012). The degree to which a surprising event 

induces a change in beliefs is determined by different factors, including the volatility of the 

environment (Behrens et al., 2007; Nassar et al., 2010) and the precision of our existing beliefs 

(confidence) (Courville et al., 2006; Meyniel, 2020). This kind of confidence is of paramount 

importance for discerning when updates to our environmental model are warranted and when 

they are not. For example, when dealing with sporadic train delays, it is prudent to avoid 

making the unrealistic assumption that trains are consistently late (Meyniel, 2020). 

Interestingly, Meyniel’s study illustrated how confidence in predictions affects beta-range (15–

30 Hz) EEG oscillations and pupil-linked arousal, specifically tonic pupil size.  

Thus far, I have elucidated three primary models that have been utilised for the examination 

and analysis of decision-making behaviours and correlated neural activity: the Drift-Diffusion, 

Predictive Coding, and Bayesian Models. Predictive coding stands as the initial framework that 

accentuates the inherent predictive nature of the brain, as well as its iterative procedure for 

minimising predictive errors. On the other hand, Bayesian models underscore the brain's 

aptitude for integrating pre-existing beliefs with sensory data to employ adaptive behaviours. 

In contrast, the drift-diffusion model concentrates on the dynamics of evidence accumulation 

only through a bottom-up process. The crucial advantage of the Bayesian model over the other 

 
14 To see the difference between informational uncertainty from expected uncertainty and the similarities 

between environmental uncertainty and unexpected uncertainty, see Mathys et al 2014. 
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two is its foundation in an accurate delineation of the inner models of how sensory input is 

formed, accommodating prior beliefs. Notably, Bayesian models organically encompass the 

observer's perceptual uncertainty as a fundamental parameter for explicating behavioural 

patterns. Furthermore, Predictive coding and Bayesian inference share a common 

understanding of the significance of integrating sensory input with predictions. However, they 

differ in the type of data they utilise. Bayesian models excel in mathematically comput ing 

predictions, whereas predictive coding is more focused on neural mechanisms and 

representations, particularly hierarchical interactions between forward and feedback signals 

driving information processing and learning. To fully harness the strengths of these 

frameworks, we may have to await further insights from the Free Energy Principle (FEP). 

Indeed, hierarchical predictive coding approaches, which were initially developed in the 

domain of perception, have recently been extended by Friston and others to include action (i.e., 

policy selection) and to propose a unifying theory explaining how the brain works (Friston, 

2009, 2010). If this unifying model is accurate, perception and action are inextricably linked 

and work together to reduce prediction error by shaping and selecting sensory inputs.  

1.2.3 The Free Energy Principle  

The Free Energy Principle (FEP; Friston et al., 2009; Friston, 2010), is a unifying theory that 

promises to bring perception, cognition, attention and action together within a common 

framework. Friston and his colleagues hypothesised that perception and action mechanisms 

share similarities; however, the key distinction is that motor error signals are not cancelled out 

by neuron mediating mechanisms (see Predictive coding). Instead, this cancellation occurs 

through the interaction of the organism with the environment, leading to changes in sensory 

input and proprioceptive information.  

Formally, FEP is a mathematical description of how adaptive systems (i.e., biological agents) 

resist a natural tendency towards disorder, and thus how they maintain their states and structure 

in a constantly dynamic environment (both internal and external; Friston, 2010). It is crucial to 

highlight that this framework is not referring only to brains and individuals but, as Friston and 

colleagues (2023) recently have affirmed, “FEP allows one to simulate and predict the sentient 

behaviour of a particle, person, artefact or agent”.  

The reasoning is that excellent expected world models help us maintain our structure and 

organisation, and the better the fit between what we predict and what actually is, the smaller 
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the free energy. In the realm of reinforcement learning (RL) and optimal decision theory, 

learning was traditionally believed to revolve around minimising prediction error (Friston, 

2010). As a result, many computational frameworks derived from these theories view the 

brain's role as an optimization process aimed at minimising certain functions. Notably, Friston 

and colleagues introduced the concept of free energy, suggesting that all these quantities can 

be viewed as essentially the same, and under certain simplifying assumptions, free energy can 

be equated with prediction error (Friston, 2009).  

According to FEP, the long-term need to preserve physiological conditions translates into the 

short-term avoidance of surprise. A general brain function is thus to update prior beliefs to 

build accurate predictive models that minimise surprise between recently acquired information 

and prior beliefs. In this sense, surprise can be defined as the computed improbability of a 

sensory condition given an environment model (more formally, it is the negative log probability 

of an outcome; Clark, 2013; Friston, 2009, 2010). To avoid it, biological agents can assess their 

free energy, which is a function of two variables that the agent has access to (1) its sensory 

states and (2) the probabilistic representation of what caused a particular sensation (recognition 

density) encoded by its internal states (for example, neuronal activity; Friston, 2009, 2010). 

Thus, agents that minimise free energy also minimise surprise (Friston, 2010), since better 

models of the world make better predictions. In statistical terminology, free energy 

minimization is a sort of approximation of Bayesian inference in which model parameters are 

modified to maximise prediction accuracy starting with a generative model inferred by the 

biological system structure.  

A corollary of the free energy principle, namely the active inference, explains better the 

relationship between perception and action. Following this perspective, the minimization of the 

free energy may be accomplished in two ways: the brain could optimise the internal generative 

models through inference and learning, or it can act on the environment to change the sensory 

input so that it is more compatible with the predicted model (Friston et al., 2017; Parr & Friston, 

2019). This requires the existence of a shared objective function (variational free energy) for 

action and perception that evaluates the fit between an internal model and reality (Parr & 

Friston, 2019).  

In the past years, a multitude of computational models has endeavoured to approximate 

subjects' beliefs from their observable decisions. Yet, this pursuit encountered challenges due 

to the so-called Inverse Bayesian Decision Theory (IBDT) dilemma: the updating of Bayesian 
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beliefs necessitates the computation of intricate integrals thus becoming analytically complex 

(Daunizeau et al., 2010). However, recent theoretical breakthroughs have illuminated a path 

forward by enabling computationally efficient approximations of exact Bayesian inference 

during learning (Daunizeau et al., 2010; Friston, 2009; Friston et al., 2023; Mathys et al., 2011, 

2014). These advances represent a specific instantiation within the broader Bayesian brain 

hypothesis, potentially manifesting also as an application of the Free Energy Principle. 

1.3 Bayesian modelling of decision-making and volatility 

Over the past two decades, the boundary between neuroscience and computational models has 

become increasingly blurred. The integration of computational models into neuroscience is 

crucial, serving to rigorously test alternative hypotheses and yield novel predictions (Griffiths 

et al., 2012). Importantly, to achieve this, it is important to employ models that go beyond 

simple curve-fitting and truly capture the complexity of the data. Computational models offer 

a notable advantage in that sense because they allow for the optimization of unknown 

parameters within a model based on observed behaviour and experimental events. This 

optimization process enables the exploration of latent variables that play a role in mediating 

performance.  

As previously mentioned, Bayesian algorithms have been harnessed for the modelling of 

decision-making processes (Behrens et al., 2007; Mathys et al., 2011; Nassar et al., 2010).  

To provide a concrete example, Bitzer et al. (2014) leveraged the perceptual decision-making 

dataset from Philiastides et al. (2011), encompassing accuracy and reaction time 

measurements. This dataset was employed to estimate the parameters of a Bayesian model. The 

authors also have modelled the process of how noisy sensory evidence is accumulated within 

a single trial (indeed, participants were required to distinguish between noisy stimuli depicting 

faces or cars). Nevertheless, in real-world scenarios, certain stimuli hold a higher probability 

of being observed than others. Hence, it becomes imperative to incorporate and model these 

types of variables and the predictive mechanisms involved. For instance, the perceived 

direction of motion in a RDK task often displays biases influenced by implicit predictions 

drawn from previous trial experiences. This is an area where Bayesian models can potentially 

shine, as they can elegantly integrate such direction probabilities into their framework. While 

Bitzer et al.'s study was deficient in manipulating stimulus occurrence probabilities, the work 

by Behrens et al. (2007) did involve the manipulation of probabilities. This work was of 
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paramount importance for the emergence of the volatility concept within decision-making 

experiments. Behrens et al. (2007) highlighted that learning processes are also determined by 

the estimated environmental volatility. Volatility is defined as a change in the frequency of 

existing circumstances over time (Behrens et al., 2007; Bland & Schaefer, 2012). Intriguing 

insights propose that humans navigate a volatile decision-making environment through the 

application of Bayesian principles (Behrens et al., 2007; Nassar et al., 2010). Updates to our 

estimations of environmental volatility are directly related to prediction errors regarding 

stimulus probabilities. Likewise, our estimations of stimulus probabilities are adjusted based 

on prediction errors associated with actual stimulus occurrences. Notably, Behrens et al. (2007) 

revealed that employing an ideal Bayesian model empowers human participants to optimally 

assess volatility leading to adaptive adjustments in value-based decision-making strategies. 

The task administered was a one-armed bandit task where participants were required to choose 

between blue and green stimuli. Participants must repeatedly choose between these options 

over multiple trials to maximise their cumulative rewards. The task encompassed trials 

featuring a stable 75% probability of a blue stimulus as the winning option, as well as trials 

where reward probabilities alternated between 80% blue and 80% green every 30 or 40 trials, 

constituting an unstable and volatile condition. The hypothesis was that the optimal agent is 

the one who makes the best use of previous data to track reward probabilities, calculating the 

value of each new piece of information they receive. Moreover, after a surprising event, the 

observer may allocate greater significance to unexpected information to recalibrate their 

expectations and decisions (Wilson et al., 2010). A sequence of unexpected events raises 

estimated volatility, and hence the learning rate (Behrens et al., 2007). Behrens’ study 

exemplified the crucial understanding that achieving optimal decisions goes beyond mere 

integration of recent reward outcomes into a single action-outcome association. Instead, it 

necessitates a continuous monitoring of the environmental statistics to gauge the significance 

of each incoming piece of information. It is important to note, however, that while this model 

addressed value-based decision-making processes, it conspicuously lacked the manipulation of 

probability in the context of perceptual decision-making. Indeed, the overarching aim of the 

present thesis was to furnish empirical validation regarding how probabilities exert influence 

on behaviour within the realm of perceptual decision-making.   
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2 Aims and Hypotheses 

The primary objective of this study was to investigate how predictions concerning probabilistic 

contexts influence perceptual decision-making in a motion detection task. Our research seeks 

to augment the existing body of knowledge in several critical ways.  

Firstly, while prior research on perceptual decision-making has primarily concentrated on how 

sensory information guides behaviour — often by exclusively modelling sensory uncertainty 

(e.g., Bitzer et al., 2014) — and has employed models that assume a bottom-up processing 

approach and straightforward accumulation of evidence (e.g., drift-diffusion models), our 

inquiry delves into how top-down predictions impact participants’ performance in a volatile 

environment. Secondly, we employ a Bayesian computational model, which confers a unique 

advantage by allowing us to operationalize predictions about left and right dot motion in each 

trial based on past information. The resulting variable was harnessed to examine the effect of 

predictions regarding the most probable motion on behaviour. The model used was the 

Hierarchical Gaussian filter model (Mathys et al., 2011), which allowed us to generate an Ideal 

Bayesian Observer.  

Aligned with the Free Energy Principle (FEP) and the broader Bayesian Brain framework, our 

hypothesis posits that a fundamental cognitive function involves continually updating prior 

beliefs to construct precise predictive models while minimising the disparity between new 

information and existing beliefs. To this end, our experimental design places considerable 

emphasis on predictive processing, scrutinising how perceived motion direction can be biased 

due to an implicit prediction of the most probable direction, rooted in previous trial 

experiences. Indeed, our study employs a novel version of the random dot motion (RDM) task 

known as the probabilistic Random Dot Kinematogram (pRDK). This task introduces volatility 

by manipulating the probability of observing rightward motion throughout the task. We 

postulate that when evidence skewed in one direction is presented, participants expect to 

encounter trials in the most frequent direction, leading to enhanced performance. 

Consequently, according to our experimental hypothesis, participants will demonstrate shorter 

RTs when the presented stimulus aligns with their expectations. Conversely, a performance 

decline is expected when there is an incongruence between the predictions and the observed 

stimulus. Furthermore, we hypothesise that observers will predominantly rely on prior 

expectations when they are reliable, particularly in scenarios of ambiguous stimuli (i.e., low 

coherence levels).   
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3 Methods  

This thesis encompasses two studies: Experiment 1 and Experiment 2 (pilot study). While 

rooted in a similar design framework, these two endeavours exhibit nuanced variations.  

3.1 Experiment 1 

The primary purpose of the first experiment was to determine whether predictions about motion 

direction impact participants' behaviours within an RDK task. Therefore, the effect of 

probabilistic manipulation on the RTs of participants was explored. To control motion direction 

predictions, the percentage of trials displaying RDK with a rightward direction varies 

throughout the task. Furthermore, we utilise an adaptive procedure to ensure that all 

participants perceive the global dot motion, hence ensuring participant learning of the direction 

probabilities (further elaborated upon in the Adaptive procedure section). This study involved 

a computerised task and took place in a controlled laboratory setting. 

Participants  

The final participant sample comprised 41 adults [25 females; mean age: 21,76 years (standard 

deviation, SD = 1,51), range: 20–26 years]. All of them were assessed with the Edinburgh 

Handedness Inventory (Oldfield, 1971) [mean: 78.21; standard deviation, SD = 27.49]. They 

all reported having a normal or corrected-to-normal visual acuity, being in good health and 

with no history of neurological or psychiatric illness. The procedures involved in this study 

were approved by the Local ethical committee. Moreover, participants gave their written 

informed consent before the experiment, in accordance with the Declaration of Helsinki (World 

Medical Association, 2013). 

Procedure 

Once arrived at the laboratory, participants were asked to provide personal information (name, 

age, sex and level of instruction), complete a questionnaire on hand dominance (the Edinburgh 

Handedness Inventory; Oldfield, 1971), and confirm the absence of any neurological or 

psychiatric diagnoses as well as the absence of any pharmacological treatments that could 

compromise cognitive functioning within the past 5 years. Furthermore, they were asked to 

sign the informed consent, where they were provided with information about the study and its 

requirements. Subsequently, they were taken to a soundproofed environment and positioned at 
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57 cm from a 52 x 29 cm monitor with a 60 Hz refresh rate and 1080x220 resolution. The 

experiment started with the presentation of instructions which comprise examples of the stimuli 

as well. The instructions were displayed within various frames and read as follows: “Stai per 

eseguire un compito di percezione del movimento. Ad ogni prova vedrai dei puntini che si 

muovono al centro dello schermo. Una parte di essi si muoverà coerentemente verso destra o 

verso sinistra. Gli altri si muoveranno in direzione tutte diverse e casuali. Il tuo compito è 

semplice: premi F se ti sembra di percepire un movimento verso sinistra; premi J se ti sembra 

di percepire un movimento verso destra. Posiziona le mani sulla tastiera mettendo l’indice 

destro sul tasto J e l’indice sinistro sul tasto F. Cerca di rispondere il più velocemente possibile 

e cercando di non commettere errori. Non c’è pratica. Se è tutto chiaro premi la barra per 

iniziare”; [English version: “You are about to perform a motion perception task. In each trial, 

you will see dots moving in the centre of the screen. Some of them will move coherently to the 

right, and others will move in various random directions. Your task is simple: press 'F' if you 

perceive motion to the left and 'J' if you perceive motion to the right. Place your hands on the 

keyboard with your right index finger on the 'J' key and your left index finger on the 'F' key. 

Try to respond as quickly as possible while minimizing errors. There is no practice session. If 

everything is clear, press the spacebar to begin"]. During the experiment, participants’ 

responses were recorded.  

Experimental Design 

The experimental paradigm was implemented in MATLAB (The MathWorks, Inc., Natick, 

Massachusetts, United States) using the Psychophysics Toolbox extensions (Brainard, 1997; 

Kleiner et al., 2007; Pelli, 1997). Each trial featured a centrally presented RDK st imulus 

comprising 600 moving dots. Examples of RDKs with different coherence levels are visually 

depicted in Figure 8.  

On each trial, participants had to respond as quickly as possible to the leftward/rightward 

direction of dots moving coherently within background noise (dots moving with random 

directions). Participants responded by pressing the "F" key with their index finger if they saw 

a left direction and the "J" key if they saw a right direction. No feedback was provided in case 

of an erroneous response. A trial started with the presentation of a red fixation spot for 500 ms 

followed by 600 moving dots lasting 100 ms and the response time was 1500 ms after the offset 

of the stimulus (this experimental design is illustrated in Fig. 9). Because of the short duration 

of the stimulus, information must be integrated almost instantly. As a result, it avoids 
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introducing persistent noise (i.e., temporal noise) into the decision-making system, which has 

been observed in longer Random Dot Kinematograms (RDKs) as demonstrated by Genest et 

al., 2016. 

 

Figure 8 | Example of RDKs with different levels of coherence (25%; 50%; 75%). A percentage of dots move 

coherently in the same direction (indicated by the green arrows), while the remaining dots move in 

random directions. Note that these levels of coherence were not fixed in this experiment (see text for 

more details). 

 

Figure 9 | Experimental design experiment 1. Each trial started with the presentation of a fixation spot 

followed by 600 RDK dots that moved in the centre of the screen. A part of them moved consistently 

to the right or the left. The others moved in different and random directions (random dots). The task 

was to press F if a movement to the left was perceived and to press J if a movement to the right was 

perceived. 

Since we aimed to test the effect of probabilistic contexts on behaviour, we used a novel 

paradigm known as pRDK. To control the prior expectations on motion direction, we used a 

block design: the probability of perceiving rightward motion was manipulated so that the 

probability of observing it changed over time. The trials were grouped into 12 experimental 
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blocks and 4 runs. Each run included three experimental blocks with varying probabilities of 

right movement [P(right)]: 0.2, 0.5, and 0.8, which corresponded to the relative frequency of 

the specific direction (left or right) within each experimental block. 

𝑃(𝑟𝑖𝑔ℎ𝑡) =  0.2. The 0.2 refers to the block in which the proportion of trials presenting RDK 

with a rightward movement is 20% while the percentage of trials with leftward motion 

is 80%.  

𝑃(𝑟𝑖𝑔ℎ𝑡) =  0.5. The number of trials presenting an RDK with the coherent movement to the 

right or left is the same (50%-50%).  

𝑃(𝑟𝑖𝑔ℎ𝑡) = 0.8. Finally, the experimental trials with the right probability set at 0.8 relate to 

the presentation of RDK trials with the right direction of movement being 80% and the 

probability of presentation of RDK trials with the left direction of movement being 

20%.  

It is worth noting that the participants were not aware of the varying degrees of rightwards 

probability, and information about the starts and endings of the various experimental blocks 

was not provided. In conclusion, by presenting participants with a scenario in which one event 

noticeably outweighs its opposite counterpart (observed under the conditions P(Right)=0.2 and 

P(Right)=0.8), we expected to induce an anticipatory expectation that the more frequent event 

would persist in future trials. 

Because the computational parameters of the learning process are dependent on the precise 

ordering of trials (Vossel et al., 2015), we decided to present each subject with the same 

sequence of trials, as typical of other computational research of trial-by-trial learning (e.g., 

Behrens et al., 2007; Iglesias et al., 2013). This guarantees that changes in model parameters 

may be ascribed to subject-specific rather than task-specific aspects.  

This experiment was divided into two phases: the adaptive phase, and a subsequent testing 

phase (experimental phase). The total duration of the experiment was about 40 minutes marked 

by 5 fixed pauses each of 30 seconds signalled by a countdown. The first break was positioned 

at the end of the adaptive phase, while the subsequent pauses punctuated four distinct runs of 

the experimental phase. 
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Adaptive phase 

After instructions, 200 trials of a Psychophysical Bayesian adaptive procedure were presented 

with the sampling of different coherence levels and the right direction probability set at 50% 

(hence, half of the trials showed a left motion and the other half a right motion). No training 

was presented before the beginning of the task because the first trials were used for this adaptive 

procedure. Specifically, we used Luigi Acerbi's MATLAB implementation of the PSI method 

(https://github.com/lacerbi/psybayes) by Kontsevich and Tyler (1999), extended to include the 

lapse rate (Prins, 2012). This method allows for the acquisition of both the sensitivity threshold 

and slope of the psychometric function for each subject. As a result, estimated accuracy values 

are obtained for each coherence value. If the accuracy value at 100% coherence falls below 

90% on the plotted psychometric curve, this phase is deemed unsuccessful. Failure to pass the 

adaptive phase led to the termination of the experiment. 

In essence, the purpose of this phase was to “standardise” the task's difficulty level for all 

participants and ensure that all individuals perceive the global movements presented in the  

subsequent phase.  

Experimental Phase 

After the adaptive phase, 400 experimental trials were presented. The trials were grouped into 

12 experimental blocks and 4 runs. Between one run and the next one, there were fixed pauses 

of 30 seconds each, and every run contained 3 experimental blocks with varying right 

movement probabilities: 0.2, 0.5, and 0.8.  

In terms of the coherence that characterises the RDKs, only one level of coherence was chosen 

in this phase based on the coherence that allowed for 90% accuracy in the adaptive phase. This 

makes it possible to have a stimulus with little sensory uncertainty. Thus, during the 

experimental phase, the level of coherence remains constant while the probability of motion 

direction changes. 

3.2 Experiment 2 (Pilot study) 

This experiment served as a preliminary investigation preceding a forthcoming main study, 

which will combine high-density electroencephalography (hd-EEG) with eye tracking and 

pupillometry. The objective extended beyond testing the influence of probability context on 
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behaviour; it also included the first steps towards understanding the intricate interaction 

between coherence levels and the predictions of rightward\leftwards occurrence. It involved a 

computerised task and took place in a controlled laboratory setting. 

Participants 

The final participant sample consisted of 18 adults [13 females; mean age: 21.6 years (standard 

deviation, SD = 2.3), range: 19–26 years]. All participants attested to possessing normal or 

corrected-to-normal visual acuity, maintaining good overall health, and lacking any history of 

neurological or psychiatric conditions. The research procedures undertaken in this study were 

granted ethical approval by the Local Ethical Committee. In alignment with the principles 

outlined in the Declaration of Helsinki (World Medical Association, 2013), participants 

provided written informed consent before they participated in the experiment. 

Procedure  

The participants arrived in the laboratory and were asked to provide personal information 

(name, age, sex and level of instruction). They all confirmed the absence of any neurological 

or psychiatric diagnoses as well as the absence of any pharmacological treatments that could 

compromise cognitive functioning within the past 5 years. Furthermore, they were asked to 

sign the informed consent. Subsequently, they were taken to a soundproofed environment and 

positioned at 64 cm from a 52 x 29 cm monitor with a 60 Hz refresh rate and 1080x220 

resolution. Participants' heads were stabilised using a chin and forehead rest. To 

comprehensively capture gaze data and pupillometry, a video-based eye tracker was employed. 

It is noteworthy that an ongoing analysis of this dataset is currently underway. The instructions 

mirrored those from experiment 1, inclusive of illustrative examples of the stimuli. During the 

experiment, participants’ responses were recorded. After completing the study, their 

impressions and feedback about it were collected in a debriefing phase, and participants were 

asked if they had noticed that the probability direction varied during the task. 

Experimental Design 

The experimental paradigm was implemented in MATLAB (The MathWorks, Inc., Natick, 

Massachusetts, United States) using the Psychophysics Toolbox extensions (Brainard, 1997; 

Kleiner et al., 2007; Pelli, 1997).  
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Analogous to Experiment 1, a probabilistic Random Dot Kinematogram (pRDK) task was 

administered, and we used a block design to control the prior expectations on motion direction. 

The probability of rightward motion was meticulously partitioned into three discrete levels:  

0.25, 0.5, and 0.75. In contrast with experiment 1, here the task solely encompassed the 

experimental phase due to its pilot nature, which aimed to evaluate the eye-tracker recording 

process and the interaction between direction probability and motion coherence. Consequently, 

the RDK stimuli were configured to exhibit three discrete coherence levels: 15%, 25%, and 

100%. Precisely, half of the trials (50%) featured stimuli with complete coherence (100%), 

while a quarter (25%) showcased stimuli with a coherence level of 25%. The remaining 25% 

of trials were designed with a coherence level of 15%. Thus, this comprehensive design 

facilitated a nuanced exploration of the impact of coherence level as well as context probability 

on behaviour.  

On each trial, participants had to respond as quickly as possible to the leftward/rightward 

direction of dots moving coherently within background noise (dots moving with random 

directions). Participants responded by pressing the "F" key with their index finger if they saw 

a left direction and the "J" key if they saw a right direction. No feedback was provided in case 

of an erroneous response. 

 

Figure 10 | Experimental design experiment 2. Each trial started with the presentation of a fixation point 

followed by 600 RDK dots that moved in the centre of the screen. Among these dots, a portion 

exhibited consistent movement to the right or left, while the remainder moved in diverse and random 

directions, constituting the random dots. Participants were tasked with the assignment of pressing the 

'F' key when perceiving leftward movement and the 'J' key for rightward movement. Notably, 

responses could be provided even during the ongoing stimulus presentation. To avoid eye-tracking 

bad data, a green fixation point was introduced, encouraging participants to attempt blinking during 

this specific interval and not before. 
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The sequence of task events unfolded in the following manner (shown in Fig. 10): an initial 

fixation screen persisted for a duration of 600 ms, succeeded by a fixation-absent screen lasting 

300 ms. Subsequently, the Random Dot Kinematogram (RDK) stimulus appeared and persisted 

for 700 ms. Participants had the flexibility to initiate their response either during the RDK 

stimulus presentation or subsequently, with a time window of 1000 ms remaining for the 

response after the offset of the stimulus. It is noteworthy that an extension in the stimulus 

duration was implemented compared to Experiment 1, which was needed to facilitate the 

capture of saccadic movements during eye-tracking recording. 

3.3 Data Analysis 

The analysis aimed to test the effect of the probability of the rightward direction (specifically, 

the Bayesian rightwards probability; prx) on the participant’s behaviour and the interaction 

between the probability of motion direction and coherence levels. To analyse the RT data, a 

linear mixed model (fitted by minimising the Restricted Maximum Likelihood criterion; 

REML) was chosen because it allows the investigation of the relationship between trial -wise 

direction probability and response speed while considering the variability in mean performance 

among participants through random effects and controlling for confounders. Crucially, LMM 

provides the opportunity to analyse data from repeated measures as well as incorporate 

sequential dependencies into the model's definition. Additionally, they might yield a slight 

enhancement in statistical power and provide improved safeguards against Type II errors 

(Baayen & Milin, 2010). The analysis was implemented in R Statistical Software (v4.1.2; R 

Core Team 2021) using the lme4 package (Bates et al. 2022). 

Model-based measure of predictions using an Ideal Bayesian Observer  

To operationalize the predictions of the left and right dot motion in each trial based on previous 

information, an Ideal Bayesian Observer was used. The resulting measure was called Bayesian 

rightwards probability (prx) which will be then utilised in the data analysis to test the effect of 

predictions on behaviour. This variable was created using the MATLAB Hierarchical Gaussian 

Filter (HGF) toolbox (Mathys et al., 2011, 2014), open-source code available as part of the 

TAPAS software collection (Frässle et al., 2021). A theoretical framework of this method is 

presented in Figure 11. This toolbox allows predicting the value of a hidden and moving 

variable based on the information gathered up to that moment. Indeed, it is unlikely that the 

brain processes directional motion probabilities discretely at the block level, where the initial 
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trial within a block directly corresponds to the overall rightwards probability of the entire block. 

A more plausible hypothesis is that the brain develops its expectations for future events 

gradually and on a trial-by-trial basis, as depicted by the continuous black line in Figure 12. 

 

Figure 11 | Operating within a well-defined framework, the toolbox (Frässle et al., 2021) facilitates the 

formalisation of interactions between an agent and its environment. This dynamic involves the agent 

receiving a sequential stream of inputs (u). These inputs are pivotal in the process of deducing 

concealed states of the world, encapsulated as beliefs (λ). This inference procedure is rooted in the 

utilisation of a perceptual model, parameterized by χ. The outcome of this modelling effort is an 

estimated set of perceptual parameters, which in turn enables the generation of simulated trajectories 

tracing the evolution of beliefs about hidden external states (illustrated in Fig. 11) trial -by-trial.  

 

Figure 12 | Based on the input, the HGF toolbox infers the agents’ beliefs (posterior probabilities) about the 

probability that the next outcome will be 1 (right motion) or 0 (left motion). Black: posterior 

probability of the input u=1; µ̂, (trial-wise rightwards probability). Red: the block-wise manipulated 

probability of the input (right direction probability). Blue: sensory input (µ) of motion direction (0 

refers to left direction and 1 refers to right direction). 
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Central to this toolbox's functioning is the HGF, a concept rooted in the works of Mathys et al. 

(2011) and (2014), which employs variational Bayesian techniques to update the probability of 

an event (in this case, the right motion) on each trial. This toolbox introduced a methodological 

avenue for fitting time series models through the lens of Bayesian inference. To describe a 

continuous uncertain quantity (such as the probability of occurrence of a rightwards or 

leftwards motion), this model uses Gaussian random walks. In essence, it computes two 

primary parameters, which are the learning rate and a measurement of environmental volatility. 

The volatility parameter grows if the probability of an input occurrence varies, hence it is 

determined by the probability of direction transitions. The term volatility dates back to Behrens 

et al. (2007) and in Mathys et al. (2011) it is defined as the variance of a time series per unit of 

time. For a more comprehensive explanation of how this model specifically works, see Mathys 

et al., (2011) and (2014) papers, as well as its applications, such as those illustrated by Iglesias 

et al. (2013), Visalli et al. (2023) and Voss et al. (2013). 

Using the toolbox, we discerned the perceptual parameters that yield the minimal cumulative 

surprise for the given input sequence (i.e., the sequence of presented movement directions 

which is the same for each subject). Thus, the ideal observer minimises the surprise, namely, 

the prediction errors. The process of parameter estimation was executed via the fitModel 

function, thoughtfully configured with the following arguments: 

● An empty array representing observed responses (i.e., []). Since we are only interested 

in constructing an Ideal Bayesian model, the specification of observed responses is 

unnecessary (cf. Mathys et al., 2014 to see other applications). 

● List of movement directions presented to the subjects in the experimental phase as input 

u 

● The type of perceptual model was the binary enhanced Hierarchical Gaussian Filter 

(eHGF). 

● Bayes_optimal_binary, which gauges the surprise generated by new inputs based on 

the prevailing perceptual state. 

● The quasi-newton optimization algorithm, a variant of the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. This algorithm is harnessed to ascertain maximum-a-

posteriori (MAP) parameter estimates. 

By inverting the model from sensory inputs (i.e., the trial list of motion directions) alone we 

obtain trajectories and parameters which represent an ideal Bayesian agent, where “ideal” 
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means experiencing the least surprise about sensory inputs. The visualization of the simulated 

state/beliefs trajectory (posterior probability) of the ideal observer is shown in Fig. 12. 

The resulting variable (i.e., the Bayesian right probability, more technically the posterior 

probability of the input u=1; µ̂) follows both Bernoulli and binomial distributions. In essence, 

the Bernoulli distribution is characterised by a mean and a variance which is intricately linked 

to the mean (Mathys et al., 2011). This variance assumes a bell-shaped curve, where increased 

variance corresponds to diminished predictive precision. Notably, when variance is high, it is 

associated with a situation of uncertainty (0.5 probability of right motion), while a stronger 

inclination towards either event 0 or 1 enhances predictive accuracy, manifesting as reduced 

variability. This concept harmonises seamlessly with our experimental design.  

3.3.1 Experiment 1 

RTs were transformed into inverse RTs (iRTs), that is, -1/RT, to mitigate the influence of non-

normally distributed and skewed data. iRTs were then analysed using Linear Mixed Models 

(LMM). Data from error trials were not included. LMM analysis was conducted on RTs to test 

for the effect of the probabilistic direction conditions on RTs with the formula:  

𝑖𝑅𝑇 ~ 𝑅𝑢𝑛(𝑧) ∗ 𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧) +  𝑝𝑟𝑒𝑖𝑅𝑇 +  𝑝𝑟𝑥 ∗ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + (𝑝𝑟𝑥 ∗  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛|𝑖𝑑) 

In detail, as fixed-effects terms, we entered as confounders the four runs (𝑅𝑢𝑛(𝑧)), the order 

of trials (𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧)), and their interaction (specified by an asterisk), as well as the inverse 

RT at the preceding trial (preiRT). On the other hand, as effects of interest the right Bayesian 

probability (prx), the direction of the moving dots (direction) and their interaction were 

included. The random part of the model (specified between parentheses) included the by-

subject random intercepts and correlated by-subject random slopes for the Bayesian probability 

(𝑝𝑟𝑥), the dots’ movement direction (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛), and their interaction. All these continuous 

predictors were Z-scored to facilitate model convergence. Nonetheless, 𝑝𝑟𝑥 was excluded from 

z-scoring due to its computation based on the HGF ideal model. 𝑃𝑟𝑥 already incorporates a 

sigmoid transformation, rendering it a continuous variable inherently centred around zero. 

While it might not conform to the SD=1 normalisation, the value of zero holds significance, 

representing the 0.5 (50%) right motion probability. 

We included variables such as 𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧) and 𝑝𝑟𝑒𝑖𝑅𝑇 in the model not only to avoid 

violating linear modelling assumptions of observation independence and to capture possible 
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effects of learning and fatigue but also to improve the fit as well as to bring temporal 

dependencies under control (Baayen & Milin, 2010). 

3.3.2 Experiment 2 (Pilot study)  

First, generalised linear mixed model (GLMM) analysis was conducted on accuracy, after a 

logit transformation, with the formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦~𝑅𝑢𝑛 (𝑧) ∗ 𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧) + 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑝𝑟𝑥

+ (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 + 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑝𝑟𝑥| 𝐼𝐷) 

As fixed-effects terms, we entered as confounders the runs (Run (z)), the order of trials 

(𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧)), and their interaction while as effects of interest the right Bayesian probability 

(𝑝𝑟𝑥), the direction of the moving dots (Direction), the z-scored level of coherence 

(𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒) and their interaction was included. The random part of the model included the 

by-subject random intercept and correlated by-subject random slopes for the Bayesian 

probability, the dots’ movement direction, and their interaction as well as the level of coherence 

(𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒). The three-way interaction 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑝𝑟𝑥 was excluded from 

the random component due to convergence issues with the model. Consequently, we simplified 

the model by removing this interaction. This decision was driven by the fact that the 

interpretability of 𝑝𝑟𝑥 depends exclusively on its interaction with motion direction, which led 

us to eliminate the interactions with the coherence. After removing this interaction, the model 

successfully converged. 

Then, LMM analysis was conducted on RTs which were transformed into iRTs to mitigate the 

influence of non-normally distributed and skewed data. Data from error trials, trials with errors 

to the previous trial and anticipations were not included. This analysis was conducted with the 

formula: 

𝑖𝑅𝑇~𝑅𝑢𝑛(𝑧) ∗ 𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧) + 𝑝𝑟𝑒𝑖𝑅𝑇 + 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑝𝑟𝑥

+ (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 + 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑝𝑟𝑥|𝐼𝐷) 

In detail, as fixed-effects terms, we entered as confounders the runs (𝑅𝑢𝑛(𝑧)), the order of trials 

(𝑡𝑟𝑖𝑎𝑙 𝑟𝑢𝑛(𝑧)), and their interaction, as well as the inverse RT at the preceding trial (preiRT). 

On the other hand, as effects of interest the right Bayesian probability (𝑝𝑟𝑥), the direction of 

the moving dots (Direction), the z-scored level of coherence (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒) and their interaction 

was included. The random part of the model included the by-subject random intercepts and 
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correlated by-subject random slopes for the Bayesian probability, the dots’ movement 

direction, and their interaction as well as the level of coherence (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒). The three-way 

interaction 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑝𝑟𝑥 was not included in the random part for the same 

reason presented above in the GLMM. Also here, we included variables such as 𝑅𝑢𝑛 (𝑧) and 

𝑝𝑟𝑒𝑖𝑅𝑇 in the model to bring temporal dependencies under control (Baayen & Milin, 2010). 
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4 Results 

4.1 Experiment 1 

Trials with absolute standardised residuals greater than 2.5 SD were considered outliers and 

were deleted, as suggested by Baayen & Milin, 2010. After that, the model was re-fitted, and 

the key results are summarised in Table 1. Importantly, this analysis excludes error trials and 

the term [180] denotes leftward motion. 

Table 1 | Experiment 1- Summary output of the final LMM model on iRTs. 

Predictors Estimates CI p 

(Intercept) -2.79 -2.92 – -2.65  < .001 

Run (z) -0.03 -0.4 – -0.02  < .001 

Trial run (z) 0.02 0.01 – 0.03 < .001 

PreiRTs 0.14 0.13 – 0.15 < .001 

Prx -0.10 -0.13 – -0.08  < .001 

Direction [180] 0.04 -0.02 – 0.10 .217 

Run (z)* trial run (z) -0.01 -0.02 – 0.00 .274 

Prx * Direction [180] 0.19 0.14 – 0.24 < .001 

 

Notes: Run refers to the z-scored run while Trial Run indicates the order of trials in each run. (z) refers to 

the predictors that were z-scored before analysis. PreiRTs refer to the inverse reaction times at the 

preceding trial. Prx refers to the Bayesian probability of right motion computed through HGF. [180] 

indicates left dot motion. The bold p-values indicate when statistical significance was reached.  

The principal outcomes underscore the significant effect of the probability of rightward motion 

(𝑝𝑟𝑥) on 𝑖𝑅𝑇𝑠. Moreover, a significant interaction materialises between the probability of 

rightward motion (𝑝𝑟𝑥) and the motion direction (𝑝𝑟𝑥 ∗  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛; this interaction is 

graphically depicted in Figure 13). In particular, when the direction was rightwards, individuals 

were faster if the probability of a rightwards direction was large (𝑝𝑟𝑥 = 1). On the contrary, 

when the probability of such motion being to the right was low (𝑝𝑟𝑥 = −1), the iRTs were 

prolonged. This pattern similarly holds when considering the leftward direction. This means 

that when the direction of motion and the high probability match, participants’ responses are 

faster (i.e., shorter iRTs). 
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Figure 13 | Interaction effect between the direction and rightwards Bayesian probability (prx) on inverse 

RTs. The plot shows the conditional effect of Rightwards Bayesian probability (prx) on inverse RTs 

at the rightwards (blue line) and leftwards (orange line) direction of motion. Shaded error bars 

indicate confidence intervals. 

4.2 Experiment 2 (Pilot study) 

The pivotal findings concerning accuracy are succinctly outlined in Table 2.  

Table 2 | Experiment 2 summary output of the final GLMM model on Accuracy. 

Predictors Odds Ratio CI p 

(Intercept) 73.73 40.72 – 133.51  < .001 

Run (z) 0.90 0.81 – 1.00  .043 

Trial run (z) 1.00 0.91 – 1.11 .927 

Direction 1.26 0.82 – 1.94 0.294 

Coherence 3.71 2.20 – 6.26 < .001 

Prx 1.00 0.78 – 1.27 .977 

Run (z)* trial run (z) 0.88 0.80 – 0.98 .015 

Direction*Coherence 1.02 0.75 – 1.39  .903 

Direction * Prx  1.07 0.56 – 2.05 .844 

Coherence * Prx 0.89 0.72 – 1.09 .249 

(Direction*Coherence)*Prx 0.96 0.63 – 1.46 .841 

 

Notes: Run refers to the z-scored run while Trial Run indicates the order of trials in each run. (z) refers to 

the predictors that were z-scored before analysis. Coherence refers to the coherence level of the RDK. 

PreiRTs refer to the inverse reaction times at the preceding trial. Prx refers to the Bayesian probability of 

right motion computed through HGF. [180] indicates left dot motion. The bold p-values indicate when 

statistical significance is reached.  
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As the trials unfold throughout a 𝑅𝑢𝑛 (𝑧), a noticeable trend emerges wherein accuracy 

diminishes, implying an increased occurrence of errors made by participants (negative 

association between the run and accuracy defined by an odds ratio less than 1). Furthermore, 

as expected, the greater the level of coherence, the higher the accuracy (significant effect of 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 on 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦). Finally, a significant interaction was found between 𝑅𝑢𝑛 and the 

order of trials (𝑇𝑟𝑖𝑎𝑙 𝑟𝑢𝑛 (𝑧)). Notably, the probabilistic conditions (𝑃𝑟𝑥), the direction of 

motion (𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) and their interaction has no significant effect on accuracy. 

Regarding the RT analysis, with the results summarised in Table 3, trials exhibiting absolute 

standardised residuals exceeding 2.5 standard deviations (SD) were identified as outliers and 

subsequently removed, as suggested by Baayen & Milin, 2010. After removing these outliers, 

the model was re-fitted.  

Table 3 | Experiment 2 Summary output of the final LMM model on iRTs. 

Predictors Estimates CI p 

(Intercept) -1.21 -1.28 – -1.14  < .001 

Run (z) -0.02 -0.02 – -0.02  < .001 

Trial run (z) -0.00 -0.01 – -0.00 .012 

PreiRT 0.02 0.02 – 0.02 < .001 

Direction -0.02 -0.04 – -0.00 .014 

Coherence -0.04 -0.05 – -0.04 < .001 

Prx -0.00 -0.01 – 0.00 .278 

Run (z)* trial run (z) 0.00 0.00 – 0.01 .010 

Direction*Coherence -0.01 -0.01 – 0.00  0.041 

Direction * Prx  -0.04 -0.06 – -0.02 < .001 

Coherence * Prx 0.00 -0.00 – 0.01 .143 

(Direction*Coherence)*Prx -0.01 -0.02 – -0.01 .001 

 

 

Notes: Run refers to the z-scored run while Trial Run indicates the order of trials in each run. (z) refers to 

the predictors that were z-scored before analysis. Coherence refers to the coherence level of the RDK. 

PreiRTs refer to the inverse reaction times at the preceding trial. Prx refers to the Bayesian probability of 

right motion computed through HGF. [180] indicates left dot motion. The bold p-values indicate when 

statistical significance was reached.  

Beyond the influence of control predictors on RTs, the findings revealed a noteworthy 

influence of both Direction and coherence levels (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒) on response speed. Specifically, 

there is a substantial impact of Direction, indicating a preference for responding more to one 

direction compared to the other. This bias is also visually evident in Figure 14. Additionally, 

interactions involving coherence (𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒) and direction, as well as direction and 
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rightwards probability (𝑃𝑟𝑥), exhibited a statistically significant effect on behaviour. Thus, 

participants exhibit quicker RTs to a right movement as the probability of a rightward motion 

increases (indicated by the dark blue line in Fig. 14). Furthermore, the sky-blue line illustrates 

a corresponding trend, wherein participants display enhanced speed in left responses as the 

probability of a leftward motion rises.  

 

Figure 14 | Interaction plots of right bayesian probability (prx) and direction of motion (Direction) effects 

on inverse RTs at different coherence levels (15%; 25%; 100%). Participants exhibit quicker RT 

to a right movement as the probability of a rightward motion increases (indicated by the dark blue 

line). Furthermore, the sky-blue line illustrates a corresponding trend, wherein participants display 

enhanced speed in left responses as the probability of a leftward motion rises. Shaded error bars 

indicate confidence intervals. 
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5 Discussion  

The current investigation delves into a pivotal aspect of how the probability of occurrence of 

events can be learned and subsequently impact perceptual decision-making performance. 

Although numerous studies predominantly manipulate sensory noise, it is crucial to consider 

that real-life scenarios involve stimuli with diverse occurrence probabilities that can be 

predicted to adjust our behaviour. In line with contemporary theories, the brain is now 

understood as a "predictive machine", engaging in optimal Bayesian inference rather than 

acting as a passive filter (Clark, 2013; Friston, 2005, 2009, 2010; Friston et al., 2017; Doya et 

al., 2006; Knill & Pouget, 2004). Given these insights, a comprehensive understanding of the 

computational processes underlying perceptual decision-making is needed, particularly 

focusing on the predictive mechanisms at work within dynamic experimental contexts (volatile 

environment). For instance, Behrens et al. (2007) manipulated reward probabilities to examine 

how volatility influences subjects' learning rates. Despite this progress, a gap remains in 

demonstrating the impact of volatile event probabilities on perceptual decision-making. Thus, 

in the current study, we deliberately manipulated the probability of stimulus presentation — 

specifically, the frequency of RDK stimuli directed towards the right or left. This manipulation 

skewed the prevalence of one direction within certain experimental blocks. Our goal was to 

explore the influence of these probabilities and the resulting volatility on the processes 

underlying perceptual decision-making. Through two experiments, we illustrated the role of 

top-down predictions in shaping behaviour: when subjects encountered a rightward motion and 

the probability of this happening was high, their response times decreased. Similarly, this 

pattern emerged for leftward motion when the probability of leftward movement was high. In 

essence, when predictions aligned with sensory evidence, responses were notably faster. This 

underscores the necessity of continuously monitoring environmental statistics to attain optimal 

decision-making behaviour. 

Drawing from prior research that has effectively demonstrated the applicability of Bayesian 

inference in modelling information processing within uncertain contexts (Chater et al., 2010; 

de Lange et al., 2018; Friston et al., 2017), as well as in the context of volatility (Behrens et al., 

2007), we employed a sophisticated approach to translate the discrete manipulated probability 

of rightwards motion into a continuous variable. Specifically, we leveraged a hierarchical 

Bayesian model, termed the Hierarchical Gaussian filter (Mathys et al., 2011), to operationalize 

an ideal Bayesian observer’s prediction generating a trial-wise rightwards probability. 
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Given these considerations, I shall present the main results of the current studies in what 

follows. 

In the first study, our focus was on examining the influence of probability on RTs. To achieve 

this, we intentionally maintained a low and consistent sensory noise level. As indicated before, 

the results revealed a significant interaction between motion direction and the probability of 

rightward motion. Participants exhibited shorter RTs when their predictions were in accordance 

with the presented motion direction. Conversely, unexpected events were associated with 

longer responses. This finding aligns with the information-theoretic framework, which posits 

that unexpected events require greater cognitive effort, as evidenced by longer RTs (Zénon et 

al., 2019). This result was replicated in the second experiment. In this pilot study, we expanded 

our investigation by manipulating not only the probability of rightward motion but also the 

level of sensory noise (i.e., motion coherence). Consistent with well-established research on 

the impact of sensory uncertainty in motion perception, a clear pattern emerged, revealing that 

increased coherence levels correlated with faster responses (i.e., shorter RTs) and greater 

accuracy. Furthermore, following a visual inspection of the interaction plots, another 

noteworthy pattern becomes evident: the interaction between direction and probability of 

motion direction becomes more pronounced as the coherence level increases. This pattern is in 

contrast with our initial hypothesis, which posited that observers predominantly lean on 

predictions when stimuli have a high level of sensory noise.  

Nevertheless, this observation can be elucidated through the foundational tenets of drift-

diffusion models. Within sensory noisy situations, individuals are more likely to wait longer, 

delaying their decision-making to accumulate more evidence. A noisy stimulus—illustrated by 

the conditions of 15% and 25% motion coherence in this study— by virtue of containing 

minimal evidence compared to a noise-free signal (100% motion coherence), prolongs the 

information uptake (i.e., "drift rate" in drift-diffusion model terminology). Indeed, participants 

seemed to adopt a strategy of withholding their responses in situations of ambiguity, rather than 

exclusively relying on their predictions. In an uncertain and changing environment, individuals 

have a propensity to flexibly switch between strategies, for example transitioning from 

exploitation to exploration strategies (Aston-Jones & Cohen, 2005; Laureiro-Martínez et al., 

2015). Consequently, individuals might opt to explore new behavioural avenues (exploration) 

while simultaneously capitalising on established knowledge (exploitation) and predictive inner 

models. It can be speculated that even if the participant holds expectations regarding the most 

probable direction, the presence of noisy stimuli causes the inherent sensory uncertainty to 



45 
 

overshadow the influence of the predictions on behaviour. In fact, the identification of 

unexpected uncertainty stands out as a significant cue, signalling the necessity to foster 

exploratory tendencies, and it assumes a pivotal role in the cultivation of adaptive behaviours 

within dynamically evolving environments (Bland & Schaefer, 2012). This does not negate the 

possible existence of a probability-induced effect on performance; rather, participants appear 

inclined toward information acquisition rather than unreservedly relying on predictions. This 

behaviour could also be viewed as adaptive because it may imply a recognition that the 

environment lacks stability (i.e., high volatility), meaning that, even if predictions hold 

temporarily, they could eventually lose accuracy. Conceivably, if the probabilities would have 

remained constant throughout the entire task (i.e., low volatility), the participant might find 

complete confidence in their inner predictive model, particularly in conditions of sensory 

uncertainty. A stable environment, as established by Behrens et al. (2007) does yield highly 

accurate predictions, leading to greater confidence in one's expectations (Meyniel, 2020). It is 

crucial to note that this study is preliminary in nature, and thus further tests and analyses are 

imperative to validate these observations.  

Limitations and Future Directions  

One limitation of the second study was the absence of manipulation concerning coherence 

levels other than those set at 15%, 25%, and 100%. The proximity between the 15% and 25% 

conditions limited the depth of insights that could be gained from their differences. Particularly 

intriguing is the potential to ascertain whether this trend of diminished predictive influence 

within conditions of high sensory uncertainty can be observed across other levels of motion 

coherence. Therefore, the inclusion of a coherence level situated between 100% and 25% will 

show potential for providing further insights into this phenomenon.  

Furthermore, Experiment 2 does not include an adaptive procedure. As mentioned earlier, this 

technique plays a crucial role in "standardising" the task's difficulty across all participants, 

guaranteeing that each individual adequately perceives the global movements presented in the 

subsequent phase (experimental phase). This is essential to ensure participants’ learning of the 

direction probabilities. Nonetheless, employing a linear mixed model enabled us to account for 

both the fixed effects (assumed to be uniform across all subjects) and, more importantly, the 

random effects (assumed to capture predictor effects specific to each subject).  

Another drawback lies in the Bayesian model utilised. Since it is an ideal observer the right 

Bayesian probability does not consider the possibility that each participant might learn the 
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experimental volatility in a diverse manner. Furthermore, delving into the interplay between 

predictions about stimulus occurrence probability and sensory uncertainty calls for an approach 

surpassing behavioural analysis. Indeed, another limitation of this study resides in its 

behavioural nature, providing a partial glimpse into cognitive mechanisms, as it does not 

encompass their underlying processes at the neural level. 

To gain a comprehensive understanding of the role that predictions play in decision-making, 

our next step will involve harnessing electroencephalogram (EEG) and eye-tracking 

methodologies. For instance, leveraging eye-tracking analysis can elucidate whether pre-

existing expectations concerning motion direction contribute to the refinement of accuracy in 

smooth pursuit eye movements15. The predictive components of smooth pursuit eye movements 

have indeed been an area of exploration in previous research (e.g.,  Kim et al., 2019; Kowler 

et al., 2014). Moreover, pupillometry could shed light on the arousal state in the brain (de Gee 

et al., 2014; McGinley et al., 2015; van Kempen et al., 2019). Recent research has shown that 

central arousal variability has a significant impact on decision-making. The global arousal state 

is controlled by modulatory neurotransmitter systems such as the noradrenergic locus coeruleus 

(LC) and the cholinergic basal forebrain (de Gee et al., 2014, 2017; Larsen & Waters, 2018; 

Pfeffer et al., 2018; van Kempen et al., 2019). Recent inquiries have delved into the intriguing 

interplay between pupil dilation and nuanced facets of decision-making, such as decision 

uncertainty16 (Urai et al., 2017), decision bias17 (de Gee et al., 2014, 2017), surprising events 

(Preuschoff et al., 2011) and volatility (Bland & Schaefer, 2012). Furthermore, considering the 

distinct temporal scales at which these neuromodulatory systems function might elucidate the 

timing at which each piece of information is employed for deciding (de Gee et al., 2017). This, 

in turn, facilitates a heightened precision in the analysis of the relationship between predictions 

and sensory uncertainty. Pupil metrics can also predict the influence of new data on subsequent 

inferences. Tonic pupil response (i.e., baseline pupil diameter) was related to the reliability of 

the current data to be representative of the current state of the data (Nassar et al., 2010). Bland 

& Schaefer, (2012) suggested that the tonic activity of locus coeruleus (LC) may potentially 

mirror environmental volatility resulting from frequent shifts in behavioural strategies. Given 

 
15 Smooth pursuit eye movements are a type of controlled, continuous, and fluid ocular motion that individuals 

use to track and follow moving objects. 
16 Decision uncertainty is defined by Urai et al. (2017) as “the probability a choice is correct, given the available 

evidence”. As a consequence, it is closely intertwined with the level of confidence an individual has in a 
decision. 
17 De Gee et al. (2017) defined decision bias as “the degree to which an observer’s choice deviates from the 

objective sensory evidence.” 
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the described effect of volatility context on learning rate (Behrens et al., 2007), the purpose of 

the next step will be to correlate HGF parameters with participants’ pupil response. 

Specifically, the RTs will be inserted as a response model in the HGF to estimate the learning 

rate parameters for each subject and to correlate these measures to their tonic pupil responses. 

This will enable us to harness the capabilities of HGF, which can avoid assuming a uniform 

fixed learning process across all subjects by extracting parameters tailored to each individual. 

Furthermore, the goal will also be to examine if the prediction trajectory of the ideal Bayesian 

observer correlates with the phasic pupil responses.  

An additional avenue for future exploration involves the integration of EEG recordings. 

Concerning EEG activity associated with various aspects of decision-making, Kopp and 

colleagues (2016) provided an overview of ERP studies. From the experiments analyses 

emerged that amplitude fluctuations in the frontally distributed P3a are linked to Bayesian 

updating, indicating changes in prior probabilities due to the gradual accumulation of new 

evidence. In contrast, amplitude fluctuations in the parietally distributed P3b are associated 

with surprise, reflecting the unexpected nature of the evidence. Furthermore, Kelly & 

O’Connell (2013) employed a continuous version of the Random Dot Kinematogram (RDK), 

transitioning from incoherent to coherent motion. Their investigation revealed that the ERP 

component called centroparietal positivity (CPP) exhibited a gradual accumulation, leading to 

a standardised waveform pattern upon commitment to a selected alternative. This correlated 

with the strength of sensory evidence and predicted RTs.      

Conclusions 

In summary, our findings have illustrated that perceptual decision-making is not solely driven 

by bottom-up processes but predictions also play a pivotal role in performance as postulated 

by the Bayesian brain hypothesis. Given the limitations of our studies, future research will take 

a more comprehensive approach to examining these phenomena of interest. This will involve 

recording and analysing ERPs and spectral perturbations to meticulously study pre-stimulus 

oscillatory activity and functional connectivity. The objective is to elucidate how the internal 

states of the inner predictive model manifest in the states of the brain, thereby shaping 

subsequent model updating. Furthermore, given the influence of neuromodulators on brain 

states (de Gee et al., 2014, 2017; Larsen & Waters, 2018; Pfeffer et al., 2018; van Kempen et 

al., 2019), a comprehensive exploration will encompass investigating trial-to-trial fluctuations 

in eye movements and pupil dilation.  
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In conclusion, this thesis has illuminated the profound influence of predictions on behaviour 

within the context of a visual motion task. Our findings align with the Bayesian perspective, 

offering empirical evidence for the notion that perceptual decision-making is a product of the 

intricate interplay between bottom-up and top-down processes. Throughout our investigation, 

we have unveiled the remarkable capacity of the human cognitive system to autonomously and 

continuously monitor the underlying statistical patterns that govern our environment, even 

when explicit instructions are absent. Predictions and the assessment of volatility have emerged 

as pivotal components within the framework of perceptual decision-making, reshaping our 

understanding of this field in a manner that was previously overlooked. While the assertion 

regarding the impact of prediction on decision-making may appear self-evident, previous 

investigations have traditionally omitted the incorporation of top-down cognitive processes or 

the integration of learning regarding volatility. This conspicuous gap in the literature 

underscores the novelty and importance of our findings. Our research contributes to a deeper 

comprehension of perceptual decision-making processes and underscores the imperative need 

for future investigations to consider these critical factors. Consequently, the substantial impact 

of predictive mechanisms on behaviour opens new avenues for exploring the role of predictions 

in various aspects of decision-making and paves the way for future investigations into the 

neural underpinnings of these processes.   
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