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Abstract

Generative models and biometric systems are two of the most prominent technologies cur-
rently investigated both in industry, academia and cyberthreat intelligence. Generative mod-
els are gaining significant attention as the potential catalyst for the next industrial revolution
(DALL- E, ChatGPT, Midjourney, etc), while biometric systems serve as efficient and widely
adopted means of authentication across various devices and systems. Since automated sample
generation can be useful to solve privacy and data scarcity issues that usually affect learned bio-
metric models, such technologies are becoming widely spread in this field as well.

This thesis aims at investigating an extended privacy protection assessment for neural net-
works, focusing on vulnerabilities related to databases of fingerprints, which have increasingly
gained significance in various domains, including banking operations and daily smartphone
usage. The research efforts were focused on assessing the vulnerabilities of generative machine
learningmodels, particularly those trainedonfingerprint images (bynature andpurpose harder
to recover, and thus, often linked to less generalized and smaller datasets), because they are es-
pecially prone to specific privacy inferring attacks. The objective is to examine the black box
vulnerabilities arising from privacy concerns associated with these models. Through a compre-
hensive evaluation based on the training and testing of several different networks, it is possible
to understand the potential privacy risks faced by generative models and contribute to the de-
velopment of effective defense strategies for safeguarding sensitive biometric data.

The analysis assessed the vulnerabilities of generative machine learning models concerning
identity protection by designing and testing identity inference attack strategies on fingerprint
datasets carriedbymeans of attackingnetwork, engineered andfine tunedwith the sole purpose
of gathering relevant information from the “victim” models .

Several different attack strategies have been carried, based on the vulnerability (member-
ship/identity inference) intended to be exploited and the models (Generative Adversarial Net-
works / Autoencoders) target of the attacks.

By testing and analyzing these frameworkswith custommembership inference attacks (MIA)
and user-level membership attacks, that are modified and renamed as identity inference attacks
(IIA), it was possible to assess the quality of some proposed defensive mechanism and employ
the gathered information to improve the robustness of the models and the aforementioned
defenses.

Experimental results show that the proposed solutions prove to be effective under different
configurations and easily extendable to other biometric measurements.
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1
Introduction

1.1 Biometrics

Biometrics refers to the science and technology of identifying and verifying individuals based
on their unique physical, chemical, and behavioral characteristics.

Such characteristics, also known as biometric traits, serve as distinctive identifiers that can
be acquired, processed, and compared to establish the identity of a personwith a certain degree
of accuracy.

These technologies represent a useful tool for security and authentication, as they provide
an efficient and powerful alternative to traditional systems.

Indeed, we can divide authentication means by the relationship these last share with the
users.

Shortly,

1. What the user knows

2. What the user owns

3. What the user is

Thefirst category represents themost traditional andpracticalmeans: passwords, pins, code-
words, etc. These ones are really efficient, easily spreadable and scalable through large Access
Control Systems (ACS).
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The second one introduces the concept of physical ownership of the authentication means
tokens, smartcards, etc. These are often more secure than passwords, nevertheless, they intro-
duce some issues about the need of being always carried by the user when required, implying
worsened scalability as well.

Finally, biometrics represent precisely the last category of authentication means. What the
user is; physically, biologically, behaviourally. There are several ways of additionally dividing
biometrics categories as well. For instance [1] provides a distinction between hard biometrics,
soft biometrics, and hidden biometrics. Recently, on top of these more traditional means, the
behavioral category was introduced as well.

1. Hard biometrics: These are considered the most classic or traditional, such as, for in-
stance: faces, fingerprints, and the ones related to eyes, like iris, retina, sclera, etc.

2. Soft biometrics : these vary among weaker identifiers from the ones related to the head,
as skin color, hair color or facial measurements, to the whole body, as height or weight,
and even in some cases to accessories, such as glasses/hats/specific clothing and orna-
ments.

3. Hidden biometrics: These are also named intrinsic biometrics, and they are basically
related to medical data, such as biosignals, MRI images, or X-Ray images. These iden-
tifiers represent very informative information, even though are by nature way harder to
acquire, process, and share.

4. Behavioural biometrics: novel kinds of traits, based on the way each individual differ-
entlymoves and carries his body around the space. Some of themain examples are voices,
gestures, and gait, which refer to the position and the movements exhibited by the hu-
man body during the process of walking, running, and more generally, moving.

Even though these means can be used jointly to improve reliability and security, second or
third levels of authentication can introduce the issues of slowing down thewhole access control
and increasing the costs of the related technologies and systems.

Several biometric characteristics are being evaluated in different scenarios and applications.
Each biometric identifier carries its own perks and flaws, therefore, choosing to use a specific
biometric trait or another for a particular application depends on a variety of issues besides
its matching performance and economic costs. Jain et al. [2] have identified seven factors that
determine the suitability of a physical or a behavioral trait to be used in a biometric application.

1. Universality. Every individual requiring access to the application should possess the
trait and should be able to provide it to analysis in the same fashion.
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2. Uniqueness. Each biometric trait from an individual should be sufficiently different
across other individuals in the population.

3. Permanence. The trait should be sufficiently invariant over a relevant period of time
with respect to the same (or similar)matching algorithms. A trait that introduces several
significant changes over time is not a useful nor reliable identifier.

4. Measurability. It should be possible to acquire and digitize the biometric trait using
suitable devices that do not cause unexpected inconvenience to the individuals. Further-
more, the acquired raw data should be suitable for processing andmanipulation in order
to extract representative feature sets and key point descriptors.

5. Performance. The recognition accuracy and the resources required to achieve such ac-
curacy should meet the constraints imposed by the applications and the systems of the
specific task.

6. Acceptability. Individuals in the target population thatwill utilize the application should
bewilling to present their biometric trait to the systemwithout discomfort or annoyance
with respect to their moral, social, religious, and ethical beliefs.

7. Circumvention. The trait of an individual should introduce significant challenges in
being imitated using artifacts (e.g., synthetic fingers, deep fakes, etc.), in the case of phys-
ical traits, and mimicry, in the case of behavioral traits (audio manipulations, forged
signatures, etc). [3]

No biometric identifier should be expected to effectivelymeet every single requirement (e.g.,
accuracy, practicality, cost) imposed by all applications (access control, surveillance, diagnosis,
etc.). Therefore, no biometric trait is ”the best” but many are ”suitable” for the task. The effec-
tiveness of different identifiers with respect to a specific application is established depending
on the nature and requirements of the application and the related systems, and the properties
of the biometric characteristics.

1.1.1 Fingerprints

During this work, the efforts are specifically focused on fingerprints, as they are known to be
among the most used and reliable biometric systems.

Fingerprints are constituted by the raised papillary ridges that run across the skin’s surface.
Humans andothermammals display themon their fingers, thumbs, andpalms, jointlywith the
toes and soles of the feet. Ridges are an evolutionary trait developed to provide friction in order
to aid grip and locomotion. Their flow usually builds patterns, but often ridges themselves
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don’t run continuously due to the presence of some breaks and deviations in their structure
(i.e. where the ridges end or deviate, known asminutiae) [4].

A fingerprint can therefore be defined as a distinct pattern of ridges and valleys on the finger
surface of an individual.

1. Ridge: single curved segment whereas

2. Valley: area between two adjacent ridges.

So, in a given sample, the dark areas of the fingerprint are the ridges while the white areas
between them are the valleys[5].

In an identification system based on fingerprints, the captured image needs to be matched
against the stored fingerprint templates of every user present in the database. This eventually
involves several computations and complex searching loops. Therefore there is a need for a fin-
gerprint classification system that restricts the size of the challenged templates database. To ac-
complish this, theminutiae features are first extracted and thenmatched against the fingerprint
submitted in the system. The template size of fingerprint biometric systems is often limited and
compact as most of these identification systems are based on minutiae.

The ridge patterns and minutiae occurrences are random in nature and are used as the ba-
sis for establishing the identity of individuals. This is accurately efficient because given two
different skin regions (bearing papillary ridge systems) the same arrangement of minutiae has
never been found (not even in the case of monozygotic twins). This is due to environmental
factors that affect their development inside the womb, hence it’s absolutely impossible even
for identical twins to have the exact same fingerprints. [6] ). Similarly, the same concept holds
true for palmprints as well, but the area of ridged skin is much larger, containing more detail.
This means that expanding the acquisition area will also significantly increase the dimension
and cost requirements for the sensor modules.

Instead, on fingerprints,minutiae are themajor features of each sample and canbe efficiently
used in the matching process. Indeed, minutiae key points are used to determine the unique-
ness of a given fingerprint image. A good quality (both the devices and the skin are sufficiently
clean) fingerprint image can have between 25 to 80 minutiae. This depends on the acquiring
system scanner resolution and the way the finger was placed upon the sensor. [5]

Generally speaking, minutiae can be defined as the points where the ridge lines end or fork.
So the minutiae points can be seen as the local ridge discontinuities and can be of many types.
Let’s introduce the most common:

4



Figure 1.1: Common Minutiae Classification

1. Ending is the point where the ridge ends suddenly.

2. Bifurcation is the point where a single ridge branches out into two or more ridges.

3. Dots are very small ridges.

4. Islands: slightly longer than dots and occupy a middle space between two diverging
ridges.

5. Ponds or Lakes: empty space between two diverging ridges.

6. Spurs: notch protruding from a ridge.

7. Bridges: small ridges that join two longer adjacent ridges.

8. Crossovers: when two ridges cross each other.

Endings and bifurcations are themost common among all the different types, moreover, the
other minutiae are based on a combination of these two types. Figure 1.1 displays some of the
commonminutiae patterns.

Biometric recognition systems acquire and digitize the minutiae arrangement and the flow
and orientation of the ridges to create the biometric template. These templates are then stored
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in the final dataset that will provide the required information to carry either the verification or
identification, upon the application usage.

Fingerprints can be acquired through different means and technologies.

1. Previously, a widely spread method was using ink and paper but scalability, efficiency,
and comfort suggested the development of novel systems.

2. scanning allows for different sample acquisitions, either when the fingers are placed
upon the scanner or when they get rolled across a specific platen.

3. Additional practicality, both concerning the quality of the impressions and hygienic reg-
ulations introduced the contactlessmethod that captures the required level of detail at
a proximal distance.

MatchingModelization

A biometric system can be generally modeled by four main modules[3]: a sensor module; a
quality assessment and feature extractionmodule; a matching module; and a database module.

1. Sensor module: A suitable biometric reader or scanner is required to acquire the raw
biometric data of an individual. The sensor module defines the human-machine inter-
face and is, therefore, pivotal to the performance of the biometric system. A poorly de-
signed interface can result in an acquisition failure and, consequently, deny acceptability.
Since most biometric modalities are acquired as images (differently from voice which is
audio-based and odor which is chemical-based), the quality of the raw data is impacted
by the characteristics of the employed camera technology.

2. Feature extraction module: The quality of the biometric data acquired by the sensor
is first assessed in order to determine its suitability for further processing. Typically, the
acquired data is subjected to a signal enhancement algorithm in order to improve the
sample. However, often, the quality of the data may be too poor for the system (resolu-
tion/noise/dirt, etc.) and the user is then asked to submit the biometric data again. After
additional processing, a set of salient discriminatory features is extracted to represent the
underlying trait.

3. Matching module: The extracted features are compared against the stored templates
to generate matching scores. The matching score may be moderated by the quality of
the presented biometric data. Thematcher module also encapsulates a decision-making
module, where the matching scores are stored and evaluated to either validate a claimed
identity for verification or provide a ranking of the enrolled identities for identification
(I’ll explain more about the difference soon).
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4. Database module: The database acts as the repository of biometric data. During en-
rollment, the feature set extracted from the raw biometric sample (i.e., the template) is
stored in the database (possibly) alongwith some biographic information (such as name,
Personal IdentificationNumber (PIN), address, etc.) characterizing the user. The acqui-
sition process may or may not be supervised by a human depending on the application.

As metioned earlier, depending on the applications, a biometric system may operate either
in verification or identificationmode (see Figure 1.3).

1. In verificationmode, the system validates someone’s identity by comparing the biomet-
ric data acquired in a givenmoment with the related biometric template(s) stored in the
system database. This way, an individual who desires to be recognized is claiming an
identity, and the system conducts a one-to-one comparison to determine whether such
a claim is true or not. Verification is typically used for what is called positive recognition,
where the aim is to preventmultiple people from accessing resources granted to the same
identity.

2. In identificationmode, the system aims at recogniziing an individual by looking up to
the templates of all the users present in the database in order to find amatch. Therefore,
differently from the verification mode, the system is tasked with a one-to-many com-
parison to establish someone’s identity without the subject having to claim an identity
(usually, if the system is not able to find anymatch at all, the process is terminated with a
failed identification outcome). Identification is hence employed in what is referred to as
”negative recognition” applications, where the system is taskedwith establishing fairness
when an individual denies being related to a certain identity in favor of another. The
purpose of negative recognition is to prevent a single person from using multiple iden-
tities. Identification may also be used in positive recognition for convenience (the user
is not required to claim an identity). While traditional methods of personal recognition
such as passwords, PINs, keys, and tokens may work for positive recognition, negative
recognition can only be established through biometrics.
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Figure 1.2: Identification vs Verification mode
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To evaluate how accurate a biometric system is, i.e. to measure its biometric performance,
many genuine and fraudulent attempts are made with the system, and all the matching scores
are saved. By applying a varying scoring threshold to such scores, pairs of outcome instance
ratings can be calculated and different reliability/usability assessments about the system can be
made.

Figure 1.3: General Performance Problem

Let’s define some of the most useful and common rating methods.

1. FMR - False Match Rate Proportion of fraudolent attempts that are falsely declared to
match a template of another object.

2. FNMR - False NonMatch Rate Proportion of genuine attempts that are falsely de-
clared not to match a template of the same object.

3. FTA - Failure to Acquire Rate Proportion of the attempts for which the system fails
to produce a sample of sufficient quality.

4. FAR - False Accept Rate and FRR - False Reject Rate. Similar to FMR and FNMR
respectively, but the definition distinguishes between attempts and transactions. A trans-
action may consist of a sequence of attempts. Depending on the system configurations
the outcome of individual attempts may affect the transaction differently. FAR and
FRR also consider the FTA. In the case of a transaction consisting of exactly one at-
tempt, FAR and FRR are computed as follows:

FAR = FMR · (1− FTA) , FRR = FTA+ FNMR · (1− FTA)

9



5. EER - Equal Error Rate When the proportion of False Matches is the same as False
NonMatches (FNMR = FMR).

There are two common ways of using these rates to plot performance-evaluating results:

1. DET (Detection Error Tradeoff) graph plots. FRR on the y-axis and FAR on the x-
axis, i.e. false negative vs. false positive rate, often employing a logarithmic scale (at least
for the FAR axis). As the y-axis shows the number of match errors, the closest curve to
the bottom of the plot corresponds to the best biometric performance.

2. ROC(ReceiverOperatingCharacteristic) graphplots truepositive (1 - FRR) and false
positive (FAR) rates. In these, the best biometric performance can be observed near the
top of the plots. DET curves are generally better at highlighting areas of interest and
critical operating levels. Therefore the former is the most commonly used [7].

Biometric performance evaluation is actually standardized by ISO/IEC in the 19795 series
of standards.

Performance evaluationmaybe divided according to three aspects: technology, scenario, and
operational evaluation.

1. Technology: the evaluation uses the saved data, e.g. previously acquired fingerprint
images.

2. Scenario: The evaluation of the whole end-to-end system adopts a prototype, almost
digital twin or simulated environment.

3. Operational: The performance of a complete biometric system is determined in a spe-
cific application environment with a specific population.

The first one is by far the most common and often most feasible [7]. Since this type of
evaluation is carriedoutusing already saved samples, the results are reproducible at anymoment
with any system, and the evaluation is not overly time-consuming nor complex.

Nevertheless, the main disadvantage of technology evaluations is that they don’t necessarily
represent the exact conditions of the system that will eventually be used. Therefore it could
be beneficial to collect a dedicated set of samples trying to mimic the specifics of the target
application when carrying out an evaluation.
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1.2 AI-driven Vulnerabilities

In the last several years biometric identifiers have become crucial means for authentication and
reliability, with continual daily usage (smartphones, laptops, banking operations and trans-
actions, job establishment access, etc.). Therefore, the need for (person-tailored) identifica-
tion methods have widely and commonly spread. Tracking devices, surveillance cameras, and
biomedical smart apps constantly collect, use, and share people’s vulnerable information.

Identity inference (I.I.) represents a group of strategies allowing us to understand and con-
nect (infer) the profile of individuals (identity), using different pieces of information. In rela-
tion to cybersecurity and privacy issues, this capability becomes highly critical when related to
multimedia content. Pictures, videos, and audio are easily shared through the internet, espe-
cially due to the diffusion of social networks, and are constantly exploited by investigators and
malicious actors to extract specific knowledge about targeted profiles.

Training and tuning of big data algorithms requires, as the name suggest, huge quantity
of data samples. This implies that softwares trained to optimize acquisition and processing
of biometric information (smartphones sensors, camera quality adjustments, etc.) are deeply
data hungry and lead to a significant increase of privacy issues when insufficient samples are
provided. Indeed, when machine learning models needs to deal with data scarcity, they often
introduce either worsened quality results or specific predictable patterns, both related to the
overfitting problem.

Such tendency can be exploited by an attacker to gain relevant information about themodel
and its the training set. Therefore, when the training set concerns biometric data, such vulner-
abilities directly translate in privacy inference attacks.

In the next chapters, an extended analysis of these issues is going to be carried out, providing
a complete assessment of the risks of such inferences.

1. Firstly, the second chapter will discuss the state of the art in the generation of artificial
fingerprints and the related security concerns, with a particular focus on the adversarial
assessment of data re-identification and the related privacy leaking issues.

2. Starting in the third chapter with the introduction of a general, standard dataset, the
information about the data available in this researchwill be discussed and the processing
and data transformations required to provide the best scalability and generality possible
will be shown.

3. The fourth chapter will then explain the details of the employed models from their the-
oretical introduction to the custom engineering choice specified for the following tasks.
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4. In the fifth chapter, several attacking strategies are going to be introduced, as well as how
different models were targeted by different means, and the related malicious objectives.

5. Eventually, the last chapter will analyze the results of these attacks and finally suggest
some protective mechanisms to mitigate the discussed vulnerabilities.
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2
RelatedWorks

2.1 Synthetic Fingerprint Generation

As introduced earlier, there are many reasons why the artificial generation of biometric data
spread so much. These kinds of samples, and therefore the related datasets, are not trivial to
recover and share, due tomany privacy regulations and different legal systems incompatibilities.
Training, validating, and testing software and models based upon such data has become an
increasingly harder task since state-of-the-art systems require huge amounts of data, significant
data preprocessing, and many other requirements about the reliability of the samples, their
distribution, and their characteristics.

As a matter of fact, in the past, institutions such as NIST have even taken down some of
their previously public fingerprint datasets (NIST SD27, NIST SD14, andNIST SD4) due to
stringent privacy regulations. [8]

Employing synthetic data may allow a free manipulation of biometric data by AI-driven
technologies. The main issues are obviously related to the need for reliable and representative
artificial samples (otherwise the quality of the new data won’t be good enough or may intro-
duce unrealistic features or distributions in the datasets) andmust be secure (it needs to be safe
against privacy attacks, such as membership inference, which may reveal private information
of the people whose samples trained such models).

Severalmethods have been suggested for the generation of synthetic fingerprints. These tech-
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niques can be broadly divided into:

1. Model-based strategies

2. Learning-based approaches

Although learning-basedmethodsdemand substantial volumesof trainingdata, they excel in
generating fingerprints that closely resemble reality, surpassing the capabilities of model-based
counterparts [8].

The limitations of existing model-based approaches encompass the following:

1. Pre-assumption of independent ridge orientations and minutiae models. Conse-
quently, minutiae distributions might be generated without a valid ridge orientation
field.

2. Assumption of a fixed fingerprint ridge-width, whereas actual fingerprints exhibit di-
verse ridgewidths. In these cases, theymay report really high accuracies in discriminating
real fingerprints from synthetic ones using only a couple of ridge spacing characteristics,
not modeling realistic distributions.

3. Use of masterprints in the ridge structure model. Owing to Gabor filtering and the
AM/FMmodels, the generated masterprints have inconsistent ridge flow patterns, lead-
ing to implausible fingerprint images.

4. Generation of unrealistic minutiae configurations. Often minutiae models do not
account for local minutiae arrangements. Notably, researchers in [30] demonstrated
the ability to completely differentiate between genuine and synthetic [21] fingerprints
based solely on minutiae configurations.

None of these techniques are known to produce fingerprint datasets comparable in size
to extensive operational datasets.
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2.1.1 Gans

Generative Adversarial Networks (GANs) [9] emerged as a breakthrough in the field of arti-
ficial intelligence and machine learning, offering innovative approaches to the generation of
realistic diverse data.

These gained widespread attention due to their remarkable capability to synthesize highly
realistic data that can get to the point of being virtually indistinguishable with respect to au-
thentic samples. GANs revolutionized the field of generative modeling by adopting a novel
adversarial training paradigm that employs jointly a generator and a discriminator network to
engage in a min-max game [9]. This adversarial process leads to the generation of data that
captures intricate underlying patterns and distributions, making GANs invaluable for various
applications, including image synthesis, style transfer, data augmentation, and many others.

The core architecture of a GAN consists of two neural networks: the generator and the dis-
criminator. The generatornetwork takes noise froma randomdistribution as input, generating
fake data that aims tomimic the real distribution. Meanwhile, the discriminator network serves
as a binary classifier, distinguishing between genuine data and data produced by the generator.
Through a competitive feedback loop, these networks engage in an adversarial exchange, where
the generator strives to improve its output to deceive the discriminator, while the discriminator
aims to enhance its ability to differentiate between real and generated samples.

The adversarial training process in GANs can be conceptualized as a minmax game between
the generator and the discriminator. The generator aims tominimize the discriminator’s ability
to correctly classify its outputs as fake, while the discriminator seeks tomaximize its accuracy in
distinguishing real data from generated data. This dynamic balance between the two networks
results in a Nash equilibrium, where (if successfully trained) the generator produces data that
closely approximates the real data distribution.

Several loss functions can be employed to train GANs effectively, the most common are the
following:

1. Binary Cross-Entropy (BCE) Loss
The BCE loss is used in GANs for binary classification. For real samples, the discrimina-
tor loss (LD) and the generator loss (LG) are defined as:
For real samples:

LD = − log(D(x))

For fake samples:
LG = − log(1−D(G(z)))
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2. Least Squares Loss (LSGAN)
LSGAN uses mean squared error (MSE) loss for both the discriminator and generator.
The loss functions are:

For real samples:
LD = (D(x)− 1)2

For fake samples:
LG = (D(G(z)))2

3. Wasserstein Loss (WGAN)
WGANuses theWasserstein distance and introduces a critic. The critic loss (Lcritic) and
the generator loss (LG) are:

For the critic:

Lcritic = −

(

1
m

m
∑

i=1

D(xi)−
1
m

m
∑

i=1

D(G(zi))

)

For the generator:

LG = −
1
m

m
∑

i=1

D(G(zi))

4. Hinge Loss (HINGE GAN)
Hinge loss is another modification of the GAN loss using the hinge function. The dis-
criminator loss (LD) and generator loss (LG) are defined as:

For the discriminator:

LD = max(0, 1−D(x)) +max(0, 1+D(G(z)))

For the generator:
LG = −D(G(z))

5. Feature Matching
Finally, Featurematching is an auxiliary loss function that encourages feature alignment.
The feature matching loss is defined as follows:

LFM = ∥E[f(x)]− E[f(G(z))]∥2

The generator’s loss is typically defined by ameasure of dissimilarity between the discrimina-
tor’s predictions for generated samples and the genuine data. Commonly used loss functions
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include the Binary Cross-Entropy Loss (BCE) and the Wasserstein distance. The discrimina-
tor’s loss, on the other hand, is designed to maximize its accuracy in classifying real and fake
samples. The overall training objective involves alternating between updating both networks
to achieve stable convergence.

Since their inception, GANs witnessed significant advancements. Progressive GANs intro-
duced by Karras et al. employ amulti-stage training process to generate high-resolution images
progressively [10]. CycleGANs, proposed by Zhu et al., enable unpaired image-to-image trans-
lation through a cycle-consistency loss [11]. StyleGAN and StyleGAN2, pioneered by Karras
et al., allow for fine-grained control over generated images’ style and attributes [12]. These
developments underscore GANs’ adaptability and potential across several different fields.

Concerning the learning-based generation of fingerprints, GANs have been widely used in
the literature as a tool to generate new fingerprints with high-quality minutiae [13, 8, 14, 15]
or to reconstruct partially degraded ones [16, 17].

While several of thesemethodologies enhance the authenticity of fingerprint images through
substantial training datasets of real fingerprints, they overlook the distinctiveness and individ-
uality of the generated fingerprints. In the absence of additional guidance, a generator might
repeatedly fabricate a limited subset of fingerprints, corresponding toonly a few identities. This
phenomenon was quantitatively proved in [18], where search accuracy against real fingerprint
galleries was inferior to that against synthetic fingerprint galleries.

In [8], they extend the capabilities of cutting-edge learning-based synthesis algorithms to
capitalize on their enhanced realism. They also incorporate supplementary guidance (identity
loss) to incentivize the production of fingerprints representing distinct identities. Following
enhancements to both the distinctiveness and realism of synthetic fingerprints, they are able to
generate a dataset of 100 million fingerprints (the largest gallery documented in existing liter-
ature) for an extensive fingerprint search assessment. The authors use I-WGAN [18] together
with an identity loss that allows generating fingerprints from the same user.
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Figure 2.1: 100mil Samples

In [13] they propose a synthetic fingerprint generation framework based on deep convolu-
tional generative adversarial networks (DC-GAN) [19], which is able to generate realistic fin-
gerprint images, which are hard to be distinguished from real ones. They additionally provide
a connectivity regularization loss to generate faithful fingerprint images with a suitable term to
the GAN loss function, imposing generated fingerprints to improve line connection. Empiri-
cally, they achieve such an outcome by adding the total variation [21] of the generated images
to the loss function.

Figure 2.2: Finger‐gan Samples
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In [14], fingerprints are generated in a StyleGAN2 and CycleGAN based dual generative
adversarial networks (GAN) system:

1. A StyleGAN-2 [20] basedmodel is used to generates distinct fingerprint skeletons from
preprocessed data.

2. ThenCycleGAN [21] is applied to perform style transfer and transform these skeletons
into actual realistic images.

Figure 2.3: Fingan Samples

This model can generate high-quality 256 by 256 fingerprints that can be turned into a vari-
ety of fingerprint styles. Synthesized fingerprints from thismodel also retain features of real fin-
gerprints that can be used in the related search system. Experimentation of the model includes
visual image quality, quantitative image quality, distinctiveness test, and human perception
test.
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Lastly, the approach in [15] also uses Style-GAN2 to generate samples, but the input signal
is created by an encoder that allows for selecting the position of the minutiae thus generating
fingerprints with consistent identities.

Theypropose a novel fingerprint synthesis and reconstruction frameworkbased on the Style-
Gan2 architecture joined with the derivation of a computational approach, to modify the at-
tributes of the generated fingerprint while preserving their identity. This allows for the simul-
taneous synthesis of multiple different fingerprint images per finger.

They are therefore able to introduce the SynFing synthetic fingerprints dataset consisting
of a hundred thousand image pairs, each pair corresponding to the very same identity. Their
proposed framework focused on both fingerprint synthesis and reconstruction. The authors
remark on the realism of the generated fingerprints, both visually and in terms of their ability
to spoof fingerprint-based verification systems.

Figure 2.4: Generative Process
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2.2 Membership Inference

Lately, industry leaders like Google, Microsoft, and Amazon introduced the provision of APIs
to afford customers convenient access for integrating machine learning functionalities into
their applications. Businesses can leverage the capabilities of this paradigm, referred to as Ma-
chine Learning as a Service (MLaaS) in frameworks developed to externalize many complex
processes, such as training classifiers, analyzing predictions, and carrying out clustering tasks.
Moreover, they can enable external parties to query models trained on their proprietary data,
often involving a corresponding expense [22].
Nevertheless, the potential exposure of training data utilized to develop these models to ma-

licious actors introduces a critical issue.
This scenario can lead to severe consequences due to the potential exposure of sensitive in-

formation. Notably, organizations have limited influence over the architectural aspects of the
models and the specifics of training parameters within the MLaaS platform. This lack of con-
trol raises the possibility of stimulated overfitting, a situationwhere amodel’s effectiveness pur-
posely diminishes outside the scope of its training data to gather relevant information. Conse-
quently, attackers can exploit this vulnerability to query and reconstruct training data [23].

Given a set of data points, and a machine learning model, the Membership Inference At-
tack (MIA) consists in guessing which of the samples were used to train the algorithm i.e. are
members of the training set.

Generally, the MIA is said to be

1. White-box if the attacker has access to the weights of the model

2. Black-box if he can only analyze the predictions. This can be further subdivided by
incrementally removing information (e.g. when attacking a model that only returns the
top-n predicted classes w.r.t. a model that returns the probabilities for each class.).

One of the first works to introduce MIAs is [24] where “machine learning as a service” clas-
sification models were targeted.

In this investigation, the researchers quantitatively explore the phenomenon of information
leakage from machine learning models, specifically pertaining to the individual data records
used for their training. The primary focus of the study centers on the analysis of the basic
membership inference attack. This attack involves the task of determining, with only black-
box access to a model, whether a given data record was included in themodel’s training dataset.
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To execute the membership inference attack on a chosen target model, they adopt an ad-
versarial approach by creating their own inference model, trained to detect disparities in the
predictions made by the target model. Such processes are assessed between inputs that the tar-
get model was trained on and those that it was not.

The evaluationof their inference techniques is conducted empirically. The researchers specif-
ically consider classificationmodels that have been trained by commercial ”machine learning as
a service” providers, such as Google and Amazon. The study incorporates real-world datasets
and practical classification tasks, amongwhich is a hospital discharge dataset that holds privacy-
sensitivemembership information. The outcomes of the investigation reveal that thesemodels
are indeed susceptible to membership inference attacks.

Additionally, the researchers delve into an analysis of the factors that contribute to this form
of information leakage. They proceed to examine strategies aimed at mitigating the identified
risks associated with membership inference attacks.

This is a good example of a solely black box setting since even the Machine Learning (ML)
algorithm is unknown to the attacker. The authors’ own strategy was to trainmultiple shadow
models (one for each class) to mimic the behavior of the attacked one. Afterward, they addi-
tionally train a classifier to assess the membership of the samples using the shadowmodels as a
proxy for the attacked one allowing the classifier to be later used to attack the actual black box
cloud API.

Following this idea, manyworks have proposed increasingly reliable and effective attacks and
counter-measures [25, 26, 27]. In [26] the correctness of the prediction and the loss value are
used as discriminative factors. This work examines the impact of overfitting and its influence
on an attacker’s ability to gain insights into the training data occurring via attacks involving
membership inference or attribute inference. Through a combination of formal analysis and
empirical investigations, the paper establishes a distinct correlation between these factors and
the ensuing privacy risks associated with various well-knownmachine learning algorithms.

The study reveals that overfitting alone can provide attackers with the means to conduct
membership inference attacks. Moreover, in cases where the target attribute adheres to specific
influence conditions, it can also facilitate attribute inference attacks. Intriguingly, the formal
analysis unveils that overfitting isn’t a prerequisite for such attacks, hinting at the presence of
other contributing factors that warrant exploration.

Lastly, the paper delves into the interrelation between membership inference and attribute
inference, showcasing deep connections between the two, with such connections pave the way
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for innovative attack strategies.

In [27] the techniques allow the removal of some stright assumptionsmade in the aforemen-
tioned work. As the authors state, others include the utilization of multiple ”shadowmodels,”
possessing knowledge about the structure of the target models with additional access to huge
fragments of the original datasets,mirroring the distribution of the targetmodel’s training data.
In their study, they purposely relax these critical assumptions. By doing so, they try to reveal
significantly broader applicabilitywith lower cost and complexities of implementation, thereby
presenting a more significant risk than previously perceived.

This research presents an extensive examination of the evolving inference threats, surpassing
previous endeavors. They accomplish this by employing eight diverse datasets, which collec-
tively highlight the potential of the proposed attacks across various domains. Furthermore,
this paper introduces the first effective defense mechanisms against this expanded category of
membership inference attacks. Thesemechanismsmanage to uphold the utility of themachine
learning model at a high level, addressing the pressing need for protective measures.

Additionally, many other MIAs have been designed to work on different types of models
(e.g.generative ones). For example in [22] the authors propose the first MIA attack on GANs.
In the white-box scenario, the authors use the discriminator prediction confidence as the dis-
criminative factor between members and non-members, while, in the black-box scenario, they
train a GAN to mimic the target model and then they exploit the newly trained discriminator
to perform the white-box attack.

In this study, the researchers explore the viability of membership inference attacks directed
at generative models as is important to note that membership inference on generative models
tends to be more intricate compared to discriminative models (as highlighted in [24]).

Discriminative models are designed to predict labels based on input data, allowing attackers
to leverage the model’s prediction confidence for the attack. However, generative models lack
such signals, posing challenges in both detecting overfitting and deducing membership infor-
mation. The absence of this signal makes it difficult to achieve both tasks effectively within the
realm of generative models.

The central question therefore involves determining whether an attacker, armed with access
to a generative model and an individual data record, can discern if the specific record was em-
ployed during the model’s training phase.

Still about generative models inference, in [28] the authors use Monte Carlo integration to
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approximate the probability that the item is a member.
The paper introduces two advanced information leakage attacks that surpass previous ef-

forts in the realm of membership inference against generative models. The first attack stands
out by enabling membership inference without imposing assumptions about the specific type
of generative model used. Notably, unlike past evaluation metrics like Kernel Density Estima-
tion, this approach exclusively focuses on samples generated by themodel that closely resemble
training data records.

The second attack is tailored specifically for Variational Autoencoders (VAEs), demonstrat-
ing notably high accuracy in membership inference. Moreover, a shift in perspective is advo-
cated – moving beyond single-record membership inference adversaries to incorporate regula-
tory actors performing set membership inference. This extension allows for the identification
of specific datasets employed for training, offering a broader context for assessment.

The efficacy of these attacks is evaluated across two prevalent generativemodel architectures,
namely Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), us-
ing standard image datasets. The results underscore the superior success rates achieved by these
two attacks compared to prior endeavors, even under comparatively mild assumptions. These
findings suggest potential applications, particularly when combined with formalized member-
ship inference attack strategies. This combination could prove beneficial in maintaining data
privacy standards and automating the evaluation of model quality within machine learning as
service setups.

Notably, this research encourages theutilizationofGenerativeAdversarialNetworks (GANs)
due to their demonstrated resilience against information leakage attacks, coupled with their
ability to produce intricate and detailed samples.

ExpandingMIAs, some researchers have shown that it is not only possible to assess themem-
bership of a sample in the training set but also the user depicted in the photo himself. In partic-
ular, in [29] it is shown that it is possible to get to a point of understanding if photos of a user
were used to train a metric embedding learned system by looking at how tightly some images
of the person are clustered by the network. Additionally, these images don’t even need to have
been used as training samples, showing that the model is actually memorizing the user identity
in its weights.

Additional works concerning other multimedia content apart from images have also shown
that IIAs can be carried out to assess the authorship of samples used to train language models
[30] and even to audio signals, by finding out if someone’s voice was used to train some voice
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services [31].

2.3 Codecs

All the purposes of fingerprint (and in general, biometric) employment requireminimumqual-
ity levels mandated by the systems and the institutions that develop the frameworks for the re-
lated technologies. This means that the manipulation of such data needs to oblige specific and
accurate requirements. This can cause a bottleneck in machine-learning-related implementa-
tions, as the quantity of data and its quality are often restricted by their encoding.

Data compression is the process of reducing the size of data to save storage space or trans-
mission bandwidth while preserving its essential information. Traditional compression tech-
niques, such as Huffman coding [32] and Lempel-Ziv-Welch (LZW) algorithms [33], have
been widely used to achieve this goal. Nevertheless, as introduced in [34], several machine
learning models, as Variational Autoencoders (VAEs), offer an innovative approach to data
compression. These models leverage their capacity to learn patterns and representations from
training data. In [35] the idea of exploiting neural networks for end-to-end optimized image
compression has been presented, where both encoding and decoding processes are jointly op-
timized. This approach enhances compression efficiency and demonstrates the adaptability of
machine learning techniques. Lossy image compression has always been discussed using several
methods, including recently those based on machine learning [36]. It highlights the progress
made in leveragingmachine learning for data compression and its relevance inmodern applica-
tions.

Machine learning-based data compression involves training models on a dataset containing
representative samples of the data to be compressed. As explained in ”Data Compression and
Machine Learning: ATutorial Overview” byHinton and Salakhutdinov (2006), these models
learn to capture and represent the inherent patterns and redundancies within the data. Once
trained, such models can then be used to compress new data by encoding it into a more com-
pact representation. Whendecompression is required, themodel is used to decode the compact
representation and reconstruct the original data. This process aligns with the minimum de-
scription length principle, as discussed in [37], where themodel’s learned representation serves
as a succinct description of the original data.

These as some of the reasonswhymachine learningmodels offer a promising avenue for data
compression by learning to efficiently represent and reconstruct data, leveraging their ability to
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capture intricate patterns and structures. As thefield ofmachine learning continues its advance,
further innovations in data compression techniques can be expected, combining the strengths
of both traditional methods and modern machine learning approaches.

Even though they are being developed in the state of the art of the field, additional strategies
andmodels introduce additional vulnerabilities, especially in relation to privacy threats, and as
later is going to be shown, require further attention and assessments.

During the experiments introduced in this thesis, the work was built upon the TensorFlow
(TF) implementation of the TensorFlowCompression (TFC) [38]. This library has been de-
veloped to build own ML models with end-to-end optimized data compression built in. It’s
useful to find storage-efficient representations ofmultiple data (images, features, examples, etc.)
while only sacrificing a small fraction of the model performance.

2.3.1 Mean and scale hyperprior model

During this work, the mean and scale hyperprior model [39] has been employed, retrained,
and tuned. It is described as an end-to-end trainable codec for image compression based on
variational autoencoders. The model incorporates a hyperprior to effectively capture spatial
dependencies in the latent representation. This solution is being adopted in themost advanced
learned codecs using artificial neural networks (ANNs). Unlike existing autoencoder compres-
sionmethods, this model trains a complex prior jointly with the underlying autoencoder. This
model leads to state-of-the-art [39] image compression when measuring visual quality using
theMS-SSIM index, and yields remarkable rate–distortion performance when evaluated using
a more traditional metric based on squared error (PSNR).
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3
Dataset

3.1 Biometric Data

When it comes to evaluating the performance of biometric systems, such as fingerprint recog-
nition, it’s important to recognize that errors in these evaluations are not evenly distributed
among individuals. Some individuals possess biometric features that are inherently challeng-
ing to capture accurately. For instance, factors like:

1. worn friction ridges due to manual labor,

2. dry skin caused by cold weather,

3. skin diseases such as dermatitis or psoriasis.

can all contribute to issues in obtaining reliable biometric data.
Furthermore, there are caseswhere individuals present fingerprintswith limitedunique char-

acteristics. This could be due to too fewminutiae in the ridge pattern or an inability to provide
a proper or complete portion of their fingers, often only revealing the top part with fewer char-
acteristic structures.

Indeed, in the pursuit of calculating biometric performance, one approach to consider is
selectively removing the worst samples from a database. This can lead to an improvement in
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the overall performance of the system. However, it’s essential to note that the resulting per-
formance metrics are often derived from a subset of the database, which may not accurately
represent the system’s performance across all individuals.

In this context, it’s also worth mentioning that metrics already introduced, like the Failure
toAcquireRate (FAR) and themethods used to filter out low-quality samples play a significant
role in assessing system reliability. Ignoring these aspects can render performance evaluations
less informative and relevant.

These consideration are the reasonwhymodels forfingerprints requirehuge, variable datasets,
built upon the contribution of several subjects and acquired after accurate, thoughtful and sys-
tematic planning.

3.1.1 Casia

Portions of the research in this thesis use the CASIA-FingerprintV5, collected by the Chinese
Academy of Sciences’ Institute of Automation (CASIA) [40].

The CASIA Fingerprint Dataset Version 5.0 (or CASIA-FingerprintV5) contains 20.000
fingerprint images of 500 subjects. The fingerprint images of CASIA-FingerprintV5 were cap-
tured using theURU4000 fingerprint sensor in one single session. The volunteers that allowed
the acquisitions for the CASIA-FingerprintV5 include graduate students, workers, and other
collaborators. Each volunteer contributed 40 fingerprint images per finger.

Theywere asked to rotate their fingers with different levels of pressure to generate significant
intra-class variations.

All the fingerprint images in the original dataset are 8-bit gray-level BMP files and the image
resolution is 328*356 and showsignificantdifferences in thequality of thedifferent acquisitions
(some of them are partial, some display cuts and bruises, others introduce a lot of dirt, some
are blurry).

The first preprocessing step carried out during this work was about converting the images
into PNGs, allowing to display and manipulate better the data samples better. That enabled
an improvement regarding the ease of monitoring the quality and the additional usability of
the computer vision Python libraries. During the research, particular attention was paid to
keeping the images consistent within all the transformations that the experiments introduced,
from the processing to the training and the evaluations (e.g., synthetic generation, compres-
sion, decompression). Please notice that this constant and accurate compatibility assessment
was provided whether they were the original data samples from the CASIA or the images we
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artificially generated through the use of the GANs that will be introduced later on.
Training the attacking strategies and the different models required a specific partitioning of

the dataset.
The first division regarded the processed CASIA as 16 thousand available samples and 4

thousand ”leftovers”.
The reason is that such a split was used to train aCodec on all the 16k images and a 2k subset

of these, in order to evaluate the potential and vulnerabilities of these different models.
Additionally, From the 16k images, a second splitting strategy was employed as well, by tak-

ing exactly 3 acquisitions per finger. These allowed to create both a training query for the
Gans (starting from 9600 samples) and a query specifically meant for identity inference (start-
ing from 5400 samples).

The 4k images that were left untouched are needed as validation and testing samples for the
different attack strategies and defense assessments.
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(a) 011_L1_0 (b) 011_L1_1

(c) 011_L1_2 (d) 011_L1_3

(e) 011_L1_4

Figure 3.1: 5 impressions of the same fingerprint: The left index of the 11th person.
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4
Models

4.1 GANs

DifferentConvolutional Gans (C-GANs)were trained in the experimental setup, using the im-
pressions from the CASIA-FingerprintV5 dataset. These networks represented the backbone
both for the simulations of industrial APIs (the image-generating services we may want to pro-
vide) and themalicious attacking networks, trying to uncover the highest information available
by the victim networks.

Convolutional Generative Adversarial Networks (cGANs) [9] represent a relevant advance-
ment within the domain of generative modeling, encapsulating the enforcement of convolu-
tional neural networks (CNNs) with the adversarial framework. Such fusion develops genera-
tive modeling capabilities providing improved intricate and authentic data samples.

cGANs employ deep convolutional architectures in both the generator and discriminator
components. The generator, designed as a deconvolutional neural network, effectively tra-
verses the inverse path of convolutional layers, progressively crafting data samples with increas-
ing complexity. [19].
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The convolutional architecture employed in cGANs effectively captures spatial hierarchies
and correlations present in the data, and thereby holds a distinct advantage over fully con-
nected architectures [41]. This spatial awareness and local feature extraction capability endow
cGANs with the prowess to generate coherent and realistic data samples, focusing on preserv-
ing global structures and fine-grained details. The generator, implemented using transposed
convolutional layers, progressively transforms random noise into data samples that adhere to
the training data distribution, whilst the task of the related discriminator is to underpin the
interpretability of convolutional layers [42] in unraveling the visual elements detected by the
network. The implementations that allowed for the best quality of fingerprint was evaluated
with respect to the Inception Score (IS) [43]. The former is shown in figure 4.1, whilst the
latter can be observed in figure 4.2.
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Figure 4.1: Generator
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Figure 4.2: Discriminator
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4.1.1 Inception Score

The IS seeks to capture two properties of a collection of generated images:

1. Image Quality. Evaluating if the images look visually appealing with respect to the ob-
jects intended to be generated. Thereforemages that containmeaningful objects should
have a conditional label distribution p(y|x)with low entropy.

2. Image Diversity. Evaluating if the generated images are representing a wide enough
range of required objects, so the marginal

∫

p(y|x = G(z))dz should have high entropy.

It leverages a pre-trained deep convolutional neural network (CNN) called InceptionV3,
which was originally designed for image classification tasks.

Combining all the requirements, the score proposed in [43] is:

exp(Ex[KL(p(y|x)||p(y)])

, where:

1. KL is the Kullback–Leibler divergence (also known as relative entropy), denoted by
DKL(P||Q), is a type of statistical distance which measures how much the probability
distribution P is different from a second, reference probability distribution, Q.

2. The results are modeled through exponentiation to allow easier comparisons between
values.
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4.1.2 Victim

The attacked architecture is defined in Figure 4.3.

Figure 4.3: General Network Scheme

LeakyReLU was used as an activation function making exceptions for

1. the last layer of the generator whereTANHwas chosen:

f(x) = tanh(x) =
e2x − 1
e2x + 1

2. the last layer of the discriminator where Sigmoidwas employed:

f(x) =
1

1+ e−x

(these implementation choices are rather generic and shared by most of the GAN architec-
tures in the literature).

Using the hyperbolic tangent (TANH) activation function as the last layer in the generator
of a GAN is a common choice for several reasons:
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1. Output Range: TANH outputs values ∈ [-1, 1], which is often desired in image gen-
eration tasks. Many image datasets normalize pixel values to the [-1, 1] range, so this
function ensures that the generator’s output matches such a range, making it easier to
directly compare it with real images.

2. Symmetry and Zero centering: TANH being an odd function implies it’s symmet-
ric around the origin. Such symmetry can help the generator learn to produce images
with more balanced features, opposed as favoring too much either positive or negative
values.This can also help in generating images with a better contrast.

3. Smoothness: TANH is a smooth and differentiable function. This differentiability is
crucial for training GANs using techniques like backpropagation and gradient descent.
Smoothness also helps in generating images with smooth transitions between different
features, resulting in visually pleasing outputs.

On the other hand, the sigmoid activation function as the last layer in the discriminator of
these networks is common choice because:

1. Binary Classification: The discriminator’s primary task is binary classification: distin-
guishing between real and fake data. The sigmoid function maps its input to the range
[0, 1], which is suitable for modeling binary classification problems. The output of the
sigmoid can be interpreted as the probability that the input data is real (close to 1) or
fake (close to 0).

2. Probability Interpretation: with this function, the output of the discriminator can be
interpreted as a probability score. Such score makes it easier to assess the confidence of
the discriminator in its classification decision.

3. Smoothness: as TANH, the sigmoid function is a smooth and differentiable function
as well. This properties are essential for gradient-based optimization methods, allowing
the discriminator to be trained effectively usingmany useful commonmethods, as back-
propagation and stochastic gradient descent.

4. Compatibility with common Loss Functions: The sigmoid output naturally fits with
the binary cross-entropy loss that was mainly used in this work, which is also very a com-
mon choice for training binary classifiers. As stated, such a loss function properly quan-
tifies the difference between predicted probabilities and the true labels, making it well-
suited for training the discriminator in a GAN setup.

5. Consistency with the Generator’s Output: Using a sigmoid output, remarkable con-
sistency is obatined with the choice of TANH activation in the generator’s output layer.
Indeed, as TANH activation maps the generator’s output to the [-1, 1] range, the sig-
moid activation in the discriminator maps it back to the [0, 1] probability space.
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In order to assess the robustness of the trained models against MIAs, the considered C-
GANs were retrained using all the dataset splits specified in 4.1. Nevertheless, only 3 acqui-
sitions per finger were kept in the training dataset in all the data splits, while the others are
added to the IIA query dataset. These choices will be thoroughly explained in the next chapter
as they are intentionally planned to provide the best environment for the attacks.

Name Real Images D1 D2 D3 D4
Samples / Users / F.prints 2000/50/5 9600/400/3 4800/200/3 2400/100/3 1200/50/3

ISMean 1639.2 1620.13 1563.79 1570.89 1571.28
IS STD 7.92 11.95 15.99 18.66 10.29

Table 4.1: Datasets splits and inception score metrics on the trained GANs for each of them
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(a) GAN 9600 (b) GAN 4800

(c) GAN 2400 (d) GAN 1200

Figure 4.4: Generated fingerprint from GANs trained with variable numbers of samples
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4.1.3 Attacker

The attacking GANs share similar architectures with respect to the victim. This is due to the
similarity of the best implementation available using the researched framework and the fact
that, even though the dataset size is different in each experiment, the data distribution and the
types of layers used in the networks were the same in all experiments. This has obviously led to
the best models (selected using Inception score [43] as the discriminating factor) with similar
hyperparameter and thus similar network architectures. Such a model was trained using the
Adam optimizer [44] and the standard Binary Cross-Entropy (BCE) losses.

However, it was noticed that the discriminator was producing a very skewed prediction dis-
tributionmaking it hard to distinguish between samples that had high and low confidence. To
address this issue, a label smoothing with a smoothing factor equal to 0.2 was implemented as
displayed in figure 4.2, which immediately provided more significant predictions. The latter is
an effective regularization tool for deep neural networks, that generates soft labels by applying
a weighted average between the uniform distribution and the hard label [45] (e.g. replacing the
0 and 1 targets for a classifier with smoothed values, like .9 or .1, was recently shown to reduce
the vulnerability of neural networks to adversarial examples [43]) .

Figure 4.5: Attacking GANs losses

Concerning the “attackers”, model selection was performed using the IS metric (as men-
tioned above) following the logic of what a black-box attacker would need to do in a real sce-
nario (i.e., training his own networks until the generated images resembled the attacked ones
to a certain degree. This way, the attacker can assume enough information could have been
retained in order for the discriminator to provide valid inferences). As a result, diverse archi-
tectures with different parameters were created, depending on the dataset that was originally
used to train the specific generator and discriminator (the various dataset splits). Also in this
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case, the networks were obtained by stacking convolutional layers (with a structure similar to
the one of the attacked GAN) whose number was varied in order to satisfy the IS criterion.

The advancement of cGANs urged scientific investigation to handle many training issues
such as mode collapse, where the generator converges to produce a limited variety of samples.
Strategies proposed in [43] have been adapted to cGANs, introducing stability to training and
enhancing the diversity of generated samples. These issues challenges the attackers as much as
the victims, as they need to eventually avoid the malicious discriminator models being biased
on predictions/inferences related to a limited/specific amount of features, in order to provide
effective attacks.

As discussed, overfitting poses a serious concern inherent to any machine learning model
and can affect these cGANs as well. Indeed, in [46] the author provides insights into overfit-
ting phenomena in neural networks, which may resonate with cGANs when generating data
samples that excessively mimic the training data.

This is actually the reason for the different dataset splits. Several models trained with differ-
ent tuning on a different, scalable amount of data allowed to highlight which properties led to
more vulnerable models. Understanding which of these provide the highest degree of vulnera-
bility is a main concern in the realm of model explainability.
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4.2 Codec

As shown in the introduction, the Codec studied in this work was based on themean and scale
hyperprior (bmshj2018)model [39] and the dataset employed for its retraining wasmade of 16
thousand samples to provide the best generalization possible.

Figure 4.6 represents the network architecture of the hyperprior model. The left side shows
an image autoencoder architecture, the right side corresponds to the autoencoder implement-
ing the hyperprior. The analysis and synthesis transforms ga and gs use the classical symmetrical
hourglass architecture often found in autoencoders.

The Q block performs quantization of the latents to obtain symbols that can be entropy
coded, while AE and AD represent arithmetic encoder and arithmetic decoder, respectively
[39].

The hyperprior architecture is a variational autoencoder used to estimate the symbol prob-
abilities of the latents thus allowing for a better modelization of their probability distribution
which in turn leads to a smaller compressed bitstream.

Figure 4.6: BMSHJ2018 hyperprior model

Most of the hyperparameters selected during the re-training have been left as proposedby the
authors ofTensorFlow compression (TFC), to try to replicate a faithful and general framework
that could have been used by anyone (so as to avoid being too dependent on specific configura-
tions that may not be translated to real-life scenarios).
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Figure 4.7: Codec custom command

Obviously considering the scope of this research and the differences betweenCASIA and the
Datasets used to train theMeanand scale hyperprior (MSH) in thefirst place, some adjustments
regarding the number of epochs and updates per epoch were still introduced to better fit the
properties of the fingerprint dataset. In figure 4.7 the custom encoding strategy implemented
from the TFC library can be observed.

The Convolutional Autoencoders were tested for quality of compression over 4 different
lambda values (which controls the trade-off between bitrate and distortion that the model will
be optimized for):

1. λ = 0.01

2. λ = 0.001

3. λ = 0.003

4. λ = 0.0003

The retrained Codec reached proper convergence, providing consistent and stable compres-
sions and decompressions at different lambda values. This is proved both by the side by side
comparisons provided in figure 4.8 and in the following plots, that displays the relationships
between the lambda values and the compression metrics. In figure 4.9 are shown the clusters
representing the compression rate and the psnr (Peak Signal to Noise Ratio) for each image
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tested, colored by the different λ value. In figure 4.10 are shown the averages of such clusters
and their linear approximation.

(a)Original (b) λ = 0.01 (c) λ = 0.001

(d) λ = 0.003 (e) λ = 0.0003

Figure 4.8: Same fingerprint compression comparison
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(a) PSNR vs BPP plot for the different lambda values

(b)MSE vs BPP plot for the different lambda values

Figure 4.9: Compression clusters
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(a) average of the previous clusters

(b) linearized approximation of the previous averages

Figure 4.10: Clusters averages
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5
Attacks

Inorder to evaluate the feasibility of identity inference for biometric generativemodels, the con-
sidered Convolutional Generative Adversarial Networks (C-GANs) approaches represent the
most frequently adopted in biometric applications and allow to generalize the obtained results
to the whole family of models. The black box attack carried out against all the trained models
is inspired by the one proposed in [22] (see scheme in figure 5.1). The main assumptions are
that the attacker has access to some APIs that allow generating from the target C-GANGa,Da

as many samples as he wants (the structure of the target model is not known) and he/she is in
possession of a dataset containing some of the samples used to train Ga, Da (called the query
dataset in order of confidence). The attacker trains a shadow GAN Gs, Ds to mimic Ga, Da.
More precisely, Gs is trained to generate samples as close as possible to those produced by Ga,
while the discriminatorDs classifies whether the sample was generated byGa orGs. In this way,
Ds will infer some peculiar features that Ga inadvertently introduces in the generated samples
(likely due to overfitting). At this point, the confidence values predicted byDs make it possible
to sort the samples in the query dataset. Ideally, the top-k samples are going to have a higher
likelihood of being members of the training set, thus achieving a successful membership infer-
ence attack. The main intuition behind this attack is that it should be able to better recognize
images used to trainGa,Da since they should present features that are more similar to the ones
displayed in samples generated byGa. In [22] the authors showhow the attack performance im-
proves with the training time, but knowing in advance a sufficient number of iterations allows
for the reduction of the computational burden.

47



In this work, by exploiting the Inception Score (IS) [43] as the metric for early stopping, is
possible to obtain remarkableMIA performance. In particular, the training was stoppedwhen
the IS of the shadowmodel reached a similar outcome as the one of the attacked one.

Lastly, Identity Inference Attacks are developed as well. In this case, the aim is not only to
determine if a given impression was used during training but also to infer if the specific finger
(i.e., identity) itself was used in the training process. Here, the assumptions formulated above
are slightly changed. In particular, the query dataset is modified so that it does not contain the
same impression of the finger used in the training datasets. This is amore realistic scenario since
it is unlikely for an attacker to use the same biometric samples. The black box attack remains
exactly identical to the one carried out in the MIA case since also in IIA the objective is forDs

to recognize features of the fingerprints that were present in the training set, and thus also on
other impressions of the same fingerprints.
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Figure 5.1: Attack scheme
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5.1 Results

First experimental considerations concern the quality of the generated images and the effective-
ness in using IS as a termination criterion.

Figure 4.4 shows that the generated fingerprint images consistently present level 1 (ridge
orientation and singular points) and 2 (minutiae) features, with the sporadic presence of level
3 (pores) features as well.

This is further highlighted by the IS values showed accordingly in table 4.1. In figure 5.2 4
generated fingerprints impression are proposed. On the left, highest confidence fingerprints
that are actual members. On the right, highest scoring images that are different impressions
of training samples. (Gan 2400 and Gan 4800) obtained on the generated images, which are
comparable to those computed on fingerprints. It is also possible to notice that the lower the
amount of training images the lower the IS value.

Figure 5.2: Highest Inference results side by side comparison

In table 5.1 it is possible to find the number of members and corresponding fingerprints
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found in the top 20/200/2000 samples by confidence (except for the cases where the training
set size is smaller than 2000). It is possible to see that for all the trained GANs the percentage
of samples in the first n ∈ 20, 200, 2000 is always above 50 %, showing that this type of attack
actually allows to gather some information about the training dataset since it achieves better
performance than random guessing. Additionally, it is possible to see that the performance of
the attack is only slightly worse when performing IIA compared to MIA indicating that, even
if this kind of attack is more challenging, it can be carried out with significant success.

This demonstrates the effectiveness of both MIA and IIA in detecting sample and finger
membership in the training dataset for a GAN. As a matter of fact, the attacks lead to near-
perfect recognition of many fingerprints as belonging to the targeted sample in both scenarios.

An additional proof that the success of the attack is provided by a visual inspection of images
whereDs confidence suggests that they are more likely to belong to the training dataset. These
indeed exhibit various similarities especially within the Level 1 features as can be seen from
figure 5.2.

Remarkable results can be observed especially in the case of the GAN trained on 4800 sam-
ples, wher out of the 20 flagged images with the highest scores, 19 of them are indeed from the
training dataset.

Once the actual training images are swapped with a set of ”remaining” acquisitions, i.e., dif-
ferent samples of the same fingers, the result remains highwith 18 out of 20 correctly identified
showing howmuch information these types ofmodels can actually leak even though they were
designed in the first place to avoid privacy concerns.

MIA IIA
GAN top 20 top 200 top 50% top 20 top 200 top 50%
Gan_9600 14/20 126/200 1172/2000 12/20 114/200 1161/2000
Gan_4800 19/20 144/200 1133/2000 18/20 140/200 1133/2000
Gan_2400 12/20 108/200 869/1600 13/20 105/200 869/1600
Gan_1200 13/20 132/200 526/800 12/20 137/200 540/800

Table 5.1: MIA and IIA Results.
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6
Conclusion

This work illustrates the main vulnerabilities of generative adversarial networks as means to
solve the data shortage and privacy issues for learned biometric architectures. More precisely,
Membership and Identity Inference Attacks on fingerprint GANs are described and evaluated
showing how it is possible to infer users’ identity from a trained black box model. This is the
first work to notice the severity of the problem on fingerprint data showing that it is possible to
assess membership of a sample and to detect if a person contributed to the creation of a dataset
without having access to any of the training data.

6.1 FutureWorks

In future works, researchers should analyze how this problem affects other kinds of biometric
samples and architectures. Additionally, some defense strategies should be designed in order
to make fingerprint generation a truly secure way to solve the data shortage problem in the
biometric field.

In the last efforts of this thesis somework has been already developed to extend theMember-
ship/Identity Inference Analysis over the convolutional autoencoders for data compression as
well (i.e. the Codecs defined priorly).

Such models represent a novel and really interesting technology that is remarkably keen to
many different vulnerabilities, but also introduces stochastic properties that can provide several
obfuscation techniques to shield generative models from the attacks assessed in this work.
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This time the privacy attacking strategy concerning overfitting is based on the quality of the
compression/decompression systems, measured through the means of MSE, PSNR and the
losses defined for the models.

The idea is to adapt the MIA attack to these different kind of network, applying the simi-
lar concept inherited by the previous literature but generalized over the different self-imposed
tasks. Indeed, with this model an attacker looks at leveraging the different quality of the com-
pression that the codecs exhibits. Therefore the attack is going to be based on quality inference
of the differences in compression/decompression of images already observed - and images never
observed - expecting to capture different remarkable tendencies. An experimented model of
this kind of attack can be observed in figure 6.1.

Figure 6.1: Compression‐quality based attack

Currently, when applying the same attacking strategy described in this thesis, it is already
possible to observe a really interesting behaviour as reported in table 6.1, as the different sets of
images are indeed introducing a statistically relevant difference between compression quality of
data used to train theCodecs anddata that themodel never saw. (I reported themost explicative
results, based on the lambda values λ = {0.01, 0.001, 0.003}, which consistently with the IS
logic for gans, provided the best compressions, as noticeable in figure 4.8).
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MIA
GAN top 20 top 200 top 50%
Codec_0.01 17/20 164/200 1203/2000
Codec_0.001 14/20 142/200 1122/2000
Codec_0.003 16/20 147/200 1163/2000

Table 6.1: MIA results for the experimental codec attack

The issue with this approach at the moment is that sometimes a better compression/decom-
pression performance on images not used to train theCodecswas found. At themoment differ-
ent experimenting techniques are being carried to figure the reason of this strange underfitting
and sometimes random outcomes.

Nevertheless, the fact that most of the times the models actually inherited some intrinsic di-
vergences between the two sets outcome similar results to the GANs’ ones, proving how close
this strategy is to figure a systemic and generalized way to accurately infer and motivate such
differences, hence proving again the efficiency of these attacks (and therefore the need for pro-
tection).

Once such vulnerabilitieswill be generalized and assessed, the need tofind away toneutralize
the inference capabilities of these attacks will come along.

As the crowning strategy of all this research, the defense mechanism could combine these
models together by re-introducing the GAN as a twin model to defend the Codecs.
As proved, different GANs training provide different levels of vulnerability, and this remark

will pose itself as the base of a privacy preserving generation of images that will be able to addi-
tionally protect a Codec, by becoming the actual training set of the latter.
This will imply that the Codec will be trained on generated images (not actual/real finger-

prints), and these generated images will be created by an already privacy aware GAN (tested
with the most efficient and secure techniques introduced in this thesis) that will still generate
high level samples (that will not significantly affect the quality of the compressions).

Indeed, during this work the generated images have always been checked for the quality and
reliability of the models and of the attack/defense strategies in both a quantitative and quali-
tative way. The GANs are therefore going to be tested again using the methods already thor-
oughly described. Moreover, the Codecs are assessed by the joint analysis over mse,psnr,bpp
and the model losses themself (providing the same level of analysis displayed in the ”model”
chapter).

55



Additionally, to prove the effectiveness of the compression standards, the statistical proper-
ties of the key features of the fingerprints (cores,ridges,minutiae, etc) [47] are going to be tested
as well, to prove the feasibility in the real world application of the proposed processes.
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