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Abstract

Among the large variety of models for large-scale brain activity, effective models achieve a good trade-
off between model accuracy and complexity and can be fit to activity data of individual subjects from
functional magnetic resonance imaging. We will use an effective model of whole-brain dynamics to fit
individual brain activity data from the Human Connectome Project (a large neuroimaging database)
and address the relationship between the model nonlinearity and the ”dynamic functional connectiv-
ity” (temporal variations in the correlation between signals of different areas). In particular, we will
focus on the ”dynamic functional connectivity speed”, a scalar index measuring the rapidity of varia-
tion in connectivity patterns, and investigate whether the model reproduces its empirical distribution
and whether the latter is related to the model’s nonlinearity.

Tra la grande varietà di modelli per l’attività cerebrale su larga scala, gli ”effective models” raggiungono
un buon compromesso tra accuratezza e complessità del modello e possono essere adattati ai dati di
risonanza magnetica funzionale dell’attività dei singoli soggetti. Useremo un modello delle dinamiche
del cervello per analizzare i dati dell’attività cerebrale individuale dal Progetto Human Connectome
(un grande database di neuroimaging) e affronteremo la relazione tra la non linearità del modello
e la ”connettività funzionale dinamica” (variazioni temporali nella correlazione tra i segnali di aree
diverse). In particolare, ci concentreremo sulla ”velocità di connettività funzionale dinamica”, un
indice scalare che misura la rapidità di variazione nei modelli di connettività, e indagheremo se il
modello riproduce la sua distribuzione empirica e se quest’ultima è correlata alla non linearità del
modello.
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Chapter 1

Introduction

1.1 Dynamics of brain activity

Understanding the complexity of brain activity, even during the resting state, is an open challenge in
neuroscience. Large-scale brain activity can be studied by looking at correlations in blood oxygenation-
level dependent (BOLD) signals across different brain regions, which have been shown to exhibit
nontrivial patterns and structured temporal variability [1]. During the last two decades, studies
emphasized that fluctuations in these signals have neurophysiological origins and contain information
about the macro-scale spatiotemporal organization of the brain [1, 2].

To investigate these mechanisms it is common to study the functional connectivity (FC) of functional
magnetic resonance imaging (fMRI), usually during resting state when there are no other contributions
except for the spontaneous dynamics. The FC is defined as the temporal coincidence of spatially distant
neurophysiological events (Friston, 1994) so it measures the statistical relationship between two brain
regional time courses, typically (but not always) by Pearson correlation. It follows that FC measures
are static because they average signals over a certain period. Given an atlas of the brain regions and
the corresponding rs-fMRI time series, the entries of the FC matrix contain the correlation between any
pair of time series (BOLD signals). Note that while structural connectivity emphasizes the existence
of an anatomical connection between neuronal regions, FC refers to time coordination in activity.

The complexity of brain activity suggests that there might be some information beyond the static
FC. The focus of recent research so has shifted from the analysis of the FC averaged over the entire
scanning sessions to the analysis of changes in the FC within the same session. This approach allows
researchers to investigate temporal FC variability, also called dynamic functional connectivity (dFC).
To interrogate dFC is common to use the sliding windows correlation (SWC) analysis. This method
consists of sampling time-dependent FCs from the rs-fMRI time series by sliding a temporal window of
fixed duration and with fixed overlap between successive windows. This approach leads to a sequence
of time-resolved FC matrices, called dFC stream. Changes in brain organization, emerging from FC
fluctuations, can be interpreted as the result of a stochastic exploration of a high-dimensional space.
To quantify the FC variability it is therefore necessary to define a metric of similarity between two
FC matrices and analyze its variation over time. This could be again done with some measure of
correlation.

Generative models are another tool to better understand brain dynamics. They provide a formal
mathematical description of the time evolution of brain activity that can be used to generate surrogate
time series to compare with the actual data. There are several approaches to define these models, based
on either biological observation or data-driven statistical characterization. Some of these approaches
work in linear approximation, while others are inherently nonlinear and dynamic. The aim of these
analyses is to reproduce some features of the actual data (such as the FC or the dFC speed) and study
what are the dynamical mechanisms underlying the observed, complex brain activity time series.
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1.2. ISSUES IN TESTING DFC CHAPTER 1. INTRODUCTION

Figure 1.1: Comparison between static and dynamic functional connectivity matrices. On the left, the static
case is obtained from the full scan time series. On the right, the dFC stream from the SWC analysis.

Used abbreviations

In order to achieve a more readable text, several technical terms will be used with abbreviations. The
following table 1.1 provides a comprehensive overview of the abbreviations used.

Abbreviation Meaning

rs resting state
fMRI functional magnetic resonance imaging
BOLD blood oxygenation-level dependent
FC functional connectivity
dFC dynamic functional connectivity
TR repetition time
SWC sliding window correlations
HCP Human Connectome Project

Table 1.1: List of Abbreviations

1.2 Issues in testing dFC

It is not trivial to understand whether fluctuations in functional connectivity reflect actual dynamic
changes in brain organization or just some type of noise.
It is crucial to explicitly define some terminology: “static” vs. “dynamic” and “time-varying” vs.
“time-invariant”, because a loose use of these terms contributes to possible confusion [3]. The terms
static and dynamic refer to whether or not the model or the measures are invariant to the temporal
re-ordering of data points. For example, Pearson’s correlation coefficients between times series of the
entire fMRI session are static, because permuting the order of some frames won’t change the results.
In this term, standard functional connectivity is a static measure of the temporal coincidence between
activities in neural populations. On the other hand, dFC is inherently dynamic because the sliding
windows correlation analysis is not invariant to the re-ordering of data points.
If some parameters of the model, or some measures, are explicitly functions of time, they are called
time-varying or non-stationary. If they are invariant to time translations they are called time-invariant
or stationary. While being dynamic, dFC is not necessarily time-varying.

Assessing stationarity of fMRI time series is problematic, because this property is well-defined in
the framework of ensemble statistics, and therefore requires multiple realizations of the same random
process to be estimated. However, fMRI data from a multi-subjects dataset are typically considered
single realizations of different random processes, one for each subject (sample statistics). Ideally, we
would like to have access to multiple parallel sessions of the same fMRI scan for the same individual.
Instead, we have single scans from multiple subjects, which represent different random processes to
deal with. While we would be tempted to assume the equivalence of ensemble and sample statics
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CHAPTER 1. INTRODUCTION 1.3. DATA AND PREPROSSESSING

(ergodicity), ergodic processes are by definition stationary so this assumption would jeopardize the
attempt of studying the stationarity/non-stationarity of the system.

Related to this, the mere presence of fluctuation in the FC time series is not even evidence of non-
stationarity. In fact, a large part of the observed variation might be explained by sampling variabil-
ity [4], and also vigilance, arousal, and emotions could interfere with the study of fMRI data [5].
Thus, at least a part of the observed dynamic could be due to accidental conditions or experimental
uncertainties.
Furthermore, stationarity does not imply the absence of distinct brain states (clusters of similar net-
work configurations in the brain organization) or variability in FC data while there are processes,
such as hidden Markov processes, which exhibit transitions between discrete states despite their being
stationary [3].
So, temporal fluctuation does not directly imply the necessity of non-stationary dynamical models.

A typical approach to test stationarity is to generate null data from a procedure that preserves specific
properties of fMRI realizations but that assumes stationarity. Statistically significant deviations of the
real data from the surrogate time series would result in the rejection of the hypothesis of stationarity.
The test procedure should reflect the null hypothesis without introducing any other constraint to the
model. However, the standard techniques cannot test stationarity alone and a rejection of the null
hypothesis only implies non-stationarity or non-linearity or non-Gaussian, or any combination of the
above [3].

As described in the paragraphs above, there are several technical and fundamental issues in testing
dynamical functional connectivity. However, recent researches emphasize how the dynamical and non-
linear characterization of the fMRI sessions can successfully provide some useful tools to understand
the underlying phenomena. Thus, despite the critical aspects, studying the dynamic of brain activities
is an open and florid topic in computational neuroscience.

1.3 Data and preprossessing

We used the 96 unrelated subjects’ subset from the Human Connectome Project (HCP) [6].
For the main analysis, we used the left-right (LR) phase-encoding runs from the first session resting
state fMRI data. We later replicated the analysis for the left-right (LR) phase-encoding runs from the
second session resting state fMRI data.
Recordings had ≈ 15 min duration with a TR of 0.72 sec. The full description of the imaging param-
eters and minimal preprocessing pipeline is given in Ref. [7]. In short, after correction for motion,
gradient, and susceptibility distortions the fMRI data was aligned to an anatomical image. The aligned
functional image was corrected for intensity bias, demeaned, and projected to a common surface space,
which resulted in a cifti-file. All fMRI data were filtered between 0.1 and 0.01 Hz to retain the relevant
frequency range for further analyses of the BOLD signal.
We obtain structural and functional matrices in different spatial scales using the Schaefer parcella-
tion [8], which optimizes local gradient and global similarity measures of the fMRI signal in various
spatial scales. We considered the spatial scale corresponding to 100 regions. In both fMRI datasets
time series were extracted with the help Workbench Command provided by the HCP.
In addition, we considered 19 subcortical regions derived from the FreeSurfer subcortical atlas [9,10].
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Chapter 2

Methods and analysis

2.1 Dynamic functional connectivity

Brain states are operationally described as similar configurations in terms of functional connections
between regions. They can be thought of as clusters in the abstract high-dimensional space of the
possible arrangements. Even if statistical evidence for the non-stationarity of the resting state FC
or the actual existence of discrete and distinct FC states is not conclusive, there is growing evidence
that treating FC as not static but inherently dynamic can be used to develop sensitive biomarkers of
the efficiency and flexibility of cognitive processing. Moreover, dynamic approaches can be used to
characterize pathological alterations or differences between different subjects.

dFC streams

In the context of studying FC dynamics, there is no consensus on whether fluctuations in FC resemble
isolated transitions between discrete states rather than continuous changes. Battaglia et al. [11] tried
to merge these two perspectives considering dFC as the result of a smooth flow across continually
morphing connectivity configurations. This approach may explain deviation both from purely ”order-
driven” dynamics and from a purely ”randomness-driven” scenario.
Conventional analysis on static FC emphasized the spatial structure of neural networks, losing infor-
mation about the time evolution of functional connections and the potential manifestation of some
type of collective emergent dynamics. The proposed approach is the opposite: by evaluating features
obtained from dFC, space is de-emphasized in favor of time. FC networks collapse to a point in
the high-dimensional space of FC possible configurations and their evolution can be interpreted as a
random walk in that space. Fluctuations are treated as the result of ongoing network reconfiguration,
which includes some stochastic exploration of the space of possible steady FC states.

In order to develop quantitative tools to investigate this stochastic walk, we need to define some
attributes of our resting-state BOLD time series (TS ) data.
Firstly, we need to quantify the agreement between different signals from different brain regions. This
can be done with time-averaged functional connectivity matrices. Each matrix entry contains the
correlation between time series from different brain regions i and j in a temporal window of fixed
duration τ .

FCij(t) = Corr[TSi(t
′),TSj(t

′)] over t− τ

2
≤ t′ ≤ t+

τ

2

Correlation is quantified with the zero-lag Pearson coefficient defined in terms of two random variables
(X,Y ) as follows:

Corr(X,Y ) =
E[XY ]− E[X]E[Y ]√

E [X2]− (E[X])2
√
E [Y 2]− (E[Y ])2

where E[X] indicate the expectation values of X. It is the covariance of (X,Y ) normalized for their
standard deviations and quantifies the linear correlation between them.
In the FC matrix, no statistical test is used to assess the significance of single links.
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These correlation matrices are of course symmetric, so a FC state can be identified with the vector
containing the values of the upper triangular matrix. Note that these states depend on the hyperpa-
rameter τ , which tunes the loss of information about dynamical changes in FC.

According to Battaglia et al. [11], we will refer to the sequence of time-dependent FC matrices as
dFC stream. These streams are obtained by sliding a temporal window of size W = τ with no overlap
between contiguous windows (sliding windows correlation, SWC ).

To evaluate transitions between FC states, we need a metric to quantify the similarity between FC
frames observed at different times. The so-called dFC is defined as the plain correlation between the
upper triangular parts of two FC matrices.

dFC(t1, t2) = Corr[UpperTri(FC(t1)),UpperTri(FC(t2))]

The correlation is again based on the Pearson coefficient, however, it would be possible to redefine
this metric with more sophisticated statistical tools.

A visualization of the temporal structure of the similarity between FC(t) networks can be provided
into a dFC matrix, a recurrence matrix whose entries (i, j) report the dFC(ti, tj). These matrices
usually show characteristic patterns composed of square-shaped blocks that reflect the inhomogeneous
speed of variability along the single dFC stream.
These provide a visual tool to understand the stochastic walk across epochs of relative FC stability,
where are displayed sequentially correlated short jumps, and random explorations of other possible
configurations.

Global dFC speed

For quantitative analysis of rates of FC variation over time, it is necessary to measure the amount
of change between two FC observations separated by a fixed amount of time. We thus define the
instantaneous global speed as:

V (t) = 1− dFC(t, t+ τ)

This metric measures the correlation distance between two contiguous FC matrices in a dFC stream.
The term “instantaneous” refers to the fact that the two observations are separated by an amount
of time set to be equal to the window size W , so they are contiguous in the stream. Moreover, the
speed is termed “global” because it is evaluated by comparing the whole-brain FC upper triangular
matrices.

Once again, dFC speed depends on the chosen τ . fMRI sessions generally yield short time series (∼ 10-
15 minutes), and if sliding windows are long (large τ) the number of independent measurements of V
is small. A strategy to increase the statistics by increasing the number of sampled speed observations
and avoid potential aliasing is window pooling. The key idea is that distributions obtained with close
enough τ are very similar and largely overlapped, if not statistically indistinguishable. It is therefore
reasonable to re-sample dFC speed with values of τ ′ close to τ and merge the histograms to achieve
larger samples. Not only does this lead to smoother histograms, but it also allows the severity of the
multiple-comparisons correction (which is more severe for small samples) and it blurs possible spurious
anomalies from artefactual aliasing due to the use of a single window length [12,13].

From histograms of dFC speed one can extract various features of interest that can characterize
different subjects or groups of subjects. For example, the position of their mode can be thought
of as a measure of the typical speed of re-configurations across FC states and can provide a first
indicator of the expected scale of time for network variability along the dFC stream. Moreover, some
measures of dispersion can be useful to understand the behavior of the stochastic exploration of the
high-dimensional space of configurations.

The dFC speed has been shown to highlight group differences when computed for different groups of
subjects. For example, the medians of the distributions correlate negatively with the ages of healthy
subjects over a broad range of window sizes [11]. This shows the slowing of dFC through the human
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adult lifespan that may be linked to a general reduction of FC(t) variance, possibly interpreted as the
fact that aging leads to replacing network complexity with randomness in the stochastic exploration
of possible configurations.
This metric also correlates positively with task and cognitive performance, e.g., in simple visuomotor
tasks. Thus, V yields relevant information not only during the resting state, but also task states [11].
Moreover, dFC speed can also differentiate subjects with sleep deprivation, treated as a reversible
model of cognitive dysfunction [14]. The typical global speed of reconfiguration during the resting
state is significantly slower after sleep deprivation. However, it is not possible to predict small and
specific changes in cognitive performance caused by this type of condition because they are moderate
and diverse for different tasks. More detailed analysis can be done by introducing the so-called
modular dFC speed which allows to quantify rates of fluctuation for each different sub-network of
interest. Performing separate analyses for each module can emphasize correlations between changes
in speed after sleep deprivation and cognitive performance in specific tasks.

Figure 2.1: On the left, the stream of time-resolved FC matrices (dFC stream) obtained by the SWC analysis
with window τ . The dFC speed V (t) quantifies the amount of change between contiguous FC realizations. On
the right, the entries of the dFC matrix report the correlation between pairs of FC states.

2.2 MINDy model

Generative causal models can provide a mathematical description of how the activity of the human
nervous system evolves in time, in terms of spatial and temporal connections between neural structures.
It is an open challenge in the field of computational neuroscience due to the complexity of the system.

Standard approaches can be summarized in two main categories. Firstly, there are generative models
developed by integrating cellular-level observations with a biologically-plausible mechanistic model.
They are based on biophysical studies of small populations of neurons but they often fail to reproduce
individual-level human brain activities. On the other hand, there are data-driven models aiming at
a precise statistical characterization of individual subjects. Typically, they focus on correlations be-
tween activity signals, trying to reproduce higher-level statistical summaries, such as static functional
connectivity. As a result, they are not mechanistic and they might be unable to fully capture the
complexity of brain activity.
Singh et al. [15] tried to merge these perspectives in a nonlinear dynamical model fitted directly to
human brain imaging data. This new modeling approach is called Mesoscale Individualized Neurody-
namic (MINDy).

Description of the model

The MINDy model consists in the mathematical description of connections between hundreds of inter-
acting neural populations and it reproduces the evolution of brain dynamics over time scales commen-
surate with fMRI observations, with which the model is trained. This approach provides an efficient
data-driven fitting procedure with biologically interpretable parameters.
The typical connectivity matrix of rsFC has been expanded to a powerful dynamical model for the
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activity of each region:
ẋ =Wψα(xt)−Dxt + εt

Where ψα is the sigmoid-shaped transfer function defined as:

ψα(xt) =
√
α2 + (bxt + 0.5)2 −

√
α2 + (bxt − 0.5)2

This model is inherently phenomenological and is not directly derived from biophysical first principles.
However, this fact does not preclude the interpretability of its components and parameters [16].

xt: the time-dependent vector storing the brain activity at each anatomical location, according to
the given atlas of the regions of the nervous system.

W : the weight matrix of connections between neural populations that tunes the causal ability of
the mean activity of region A to change the mean activity of region B monotonically. Thus,
increasing (decreasing) the activity in A will never decrease (increase) the activity of region B.
To be captured, the causal effects of an interaction must have a temporal range between 500ms
and 2s, beginning within the duration of one TR (typically ∼ 1s) and last long enough to evoke
an observable metabolic response.
Thus, this matrix describes the effective connectivity rather than the structural one.

ψα: the sigmoidal transfer function that describes the local activity of a neural population and its
relationship with other regions. Although it has to be treated as a phenomenological function,
it could be linked to the probability of neural spiking as a function of excitatory stimuli. Higher
values of its slope may depend on both greater heterogeneities in responses within the population
and greater synchronization of excitatory external inputs.
It is tuned by the fixed global hyperparameter b (set to be b = 20/3) and by α. The latter is
fitted on a subject-wise basis and it is specific for each brain region. It parameterizes the shape
of the curve and the (non)linearity of the responses. Greater values of this parameter correspond
to greater linearity in responses to stimuli.

D: the diagonal decay matrix whose terms describe how quickly the activity of each population
returns to its baseline value. Without considering any other effects or external inputs, the time
course will be exponential. However, this hypothesis is relaxed by the fact that ”self-connections”
are allowed in the connectivity matrixW . The competing nonlinear self-excitation and the linear
self-inhibition lead to a richer spectrum of possible dynamics at the population level.

εt: the process noise, which is assumed to be uncorrelated between parcels. We used a Gaussian
unbiased noise, whose role in dynamics and performances will be investigated.

Figure 2.2: On the left, the MINDy schema about the interaction between two different neural populations.
The correspondent elements of the weight matrix tune the correlation between the parcels. On the right, the
shape of the sigmoidal transfer function and the relationship between α and the non-linearity of the response.

Both for the fitting procedure and the time series prediction it is necessary to approximate the neural
model with a time discretization tuned by a temporal resolution ∆t (related to the sampling TR).

8
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The explicit Euler’s method for numerical integration of ordinary differential equations has been used
as follows:

xt+∆t = xt + (Wψα(xt)−Dxt + εt)∆t

Training and inference

The fitting procedure is beyond the purpose of this work, but it is nevertheless important to emphasize
some of its aspects [16]. The model is fitted by a variant of the stochastic gradient descent, NADAM
(Nesterov-accelerated Adaptive Moment Estimation), which combines the computational efficiency of
classical optimization methods and the ability to handle non-convex surfaces in the space of parame-
ters. NADAM uses a ”momentum” term in the update rule to make the system’s evolution a function
of past gradients too. Thus, together with the parameters, this algorithm evaluates the moving aver-
age of both the gradient and the squared gradient and uses them to prevent over-fitting and improve
cross-validation at each step.
NADAM involves four hyperparameters: the learning rate of the update rule, two decay terms for the
moving averages, and one regularization parameter to stabilize the learning rate and prevent division
by zero.

The connectivity matrix W is decomposed into two terms: one n × n sparse component WS and a
low-dimensional matrix WL = W1W

T
2 in which both W1 and W2 are n × m rectangular matrices,

where n is the number of neural populations and m < n denotes the chosen dimensionality of the
diffuse matrix. Hence, W =WS +WL.

The chosen loss of the minimization problem, including the regularization terms, is defined as:

J =
1

2
ET [||(XT+∆t −XT )− [(WS +WL)ψα(XT )−DXT ]||22]+

+λ1||WS ||1 + λ2Tr(|WS |) + λ3(||W1||1 + ||W2||1) +
1

2
λ4||WL||22

The notation ET denotes the expected value over all time points within the minibatch of each iter-
ation, so the first term corresponds to the mean square error of predictions. The sparsity of WS is
achieved with the L1 regularization penalty depending on the global constant λ1. Also both the diffuse
components are L1 penalized with the same coefficient λ3. The combined WL matrix also receives
L2 penalization. The four regularization terms λi are shared across all subjects and are the most
impactful hyperparameters of the model.

MATLAB code and some documentation for the MINDy model are available via Matthew F. Singh’s
GitHub page. In particular, we used the high-level function MINDy Simple which only needs the
parcellated time-series data as training inputs. In terms of phenomenological significance, the returned
relevant parameters are the weights W , the curvature α, and the decay term D.

Performance of the model

Singh et al. [15] studied the performance of the MINDy model, whose most important aspects will be
described in the following paragraphs.

The model is sufficiently sensitive to retrieve individual differences between subjects in terms of con-
nectivity weights. This has been tested by comparing the weights matrix and the simulated functional
connectivity across different patients. MINDy is able to simulate weight changes that differentiate
individuals and produce accurate rsFC. Furthermore, it has been proved that the goodness of both
single time-step prediction and simulated FC significantly increases when evaluated within the same
subject rather than across different subjects.

The model fitting procedure is also empirically reliable. This aspect was tested by the repetition of
the fMRI scans on two separate days and by measuring the test-retest reliability of the estimated
parameters. So MINDy parameters are both personalized and reliable.

9
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The MINDy model is also been proved robust to the three main sources of measurement noise. Shortly,
it is robust to noise in the BOLD signals (which is also related to the patient’s motion during the scan
session), to post-processing pipelines that attempt to mitigate the noise, and to variation in the used
estimation of the hemodynamic response function.

10



Chapter 3

Results and discussion

3.1 Global speed ground truth

The global dFC speed provides a powerful tool to investigate the similarity between contiguous real-
izations within a dFC stream. It is a measure of the speed in the brain activity reconfiguration within
a scan session. Its distribution depends on the hyperparameter τ , the sampling window length of the
dFC stream. However, it is convenient to pool speed samples into a few histograms, with close enough
τ to return statistically indistinguishable distributions. There are no rules for choosing the window
sizes to pool together, they are a matter of arbitrary choice.

Figure 3.1: Global speed dependence on τ . On the left, every boxplot shows the first quartile, third quartile,
median, and flier points of the VdFC distribution for a given τ in a single subject. On the right, the heights
of the corresponding normalized kernel density estimations provide a graphical visualization of the relationship
between the mean and the standard deviation of every speed distribution.

For the sake of comparison, we decided to form three histograms, corresponding to the same window
length ranges (in seconds) used by Battaglia et al. [11]. Due to the different repetition time (TR) in
our study compared to Battaglia et al. [11], this choice yields different ranges in terms of the number
of frames.

Short range ∼ 6s < τ <∼ 15s (8− 20TRs)

Mid range ∼ 15s < τ <∼ 60s (21− 82TRs)

Long range ∼ 60s < τ <∼ 210s (83− 290TRs)

The aim of this work is not to characterize individual differences, so no distinction has been made
across datasets of different subjects. This approach is equivalent to considering the global speed of
some sort of average subject. So, besides the pooling process within different streams of the same
realization, we merged the histograms of all the different participants. In so doing, we lost possible
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differences that could derive from demographic factors such as age or sex. This could be a limitation
in the case of unbalanced classes.
All sessions have the same temporal length so they are comparable.

Figure 3.2: Comparison of the distribution of the instantaneous global speed VdFC pooled over the three distinct
window-size ranges and merged across subjects. The plot shows the empirical histograms and kernel density
estimations for each range.

Figure 3.2 reports the results of this analysis. The global dFC speed distributions have a clear peak
(i.e. typical dFC ) around the median value. These distributions deviate from Gaussianity for each
range (Lilliefors test with p < 0.05). This can be interpreted as a partial proof of the complex behavior
over different temporal scales. The excess kurtosis it’s negative (≈ −0.3) for both mid and long ranges,
while the short range appears to be leptokurtic (excess kurtosis of ≈ 1.8). The fat tails indicate that
FC reconfiguration events of anomalous rapidity are observed with relatively large probability in the
short temporal scale.
The so-defined speed of reconfiguration slows down when the window size τ is increased. This can be
interpreted as the result of a stochastic exploration of the space of possible configurations which tends
to stabilize itself in longer ranges (so with more aggregated information).

3.2 MINDy behaviors

To fit the MINDy model to the data, we used the MATLAB function MINDy Simple via Matthew
F. Singh’s GitHub page. This function returns the phenomenological parameters of the model: the
weights W , the curvature α, and the decay diagonal matrix D. We fitted the model to every single
subject in order to obtain personalized parameters that could reproduce individual differences in brain
dynamics.

We used the explicit Euler’s method to integrate the ordinary differential equation that characterized
the model and reproduce the BOLD times series for each brain region and in each participant.

xt+∆t = xt + (Wψα(xt)−Dxt + εt)∆t

We used the temporal resolution ∆T = TR and a process Gaussian noise εt, uncorrelated between
parcels, at each time step. The noise depends on the standard deviation σε, whose role will be
investigated afterward.

Two behaviors

Once fitted the model to the datasets and numerically integrated the dynamics, two different behaviors
in the obtained BOLD signals emerged.
Even for σε = 0, simulations of some subjects exhibit a periodic cycle and non-trivial dynamics, while
simulations from others converge to fixed values.

12
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In figure 3.3 we display the differences in the datasets whose dynamics exhibit a limit cycle and whose
simulated BOLD signals converge to a fixed point. In the first column, we report the behavior for
σϵ = 0, so when no noise is added. After some iterations of the explicit Euler’s method, the integrated
dynamics converge from the random initial point to one of the two behaviors described before.

For large enough noise, the dynamic is “activated” in both cases and the model better succeeds in re-
producing the functional connectivity of the whole session. So, both behaviors can correctly reproduce
the static rsFC when a proper σε is used (see the specific subsection). However, models converging to
a fixed point completely fail to reproduce the observed dynamic functional connectivity and are not
able to return the right distribution of the global speed.

Figure 3.3: Comparison of the two behaviors in terms of simulated BOLD signals and static FC. Each column
shows examples of the results of the MINDy model integration for a given σε. The showed signals are just 5
random time series from the 119 available.

Role of sigma in static FC

In the following paragraph we will discuss the role played by the standard deviation σε of the Gaussian
noise for what concerns the static FC. It can be treated as a hyperparameter of the model.
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As shown in figure 3.4, it is necessary to use a proper σε to successfully obtain the simulated functional
connectivity. This was tested by computing the Pearson correlation between the entries of the FC
matrix from the fMRI session and the simulated one. This metric of performance was treated as a
function of σε for each subject (on the left).

Figure 3.4: Full session FC and sigma. On the left, for each subject, the correlation between the FC obtained
from the data and the simulated one as a function of the σε. It is a measure of model performance. On the
right, the violin plot of the correlation for σε = 0.2 for both behaviors: limit cycle (green) and fixed point (blue).

There are differences in the performance of the model between the two behaviors or classes of conver-
gence. Lower performances are obtained for subjects whose simulated time series converge to a fixed
point in the absence of noise.
Both too-small and too-large values of σε fail to reproduce the FC. Thus, as expected, adding some
noise is needed but it must not dominate the dynamics.
The greatest performances are obtained for σε approximately between 0.1 and 0.3. To analyze the
dynamics (section 3.3) we will use σε = 0.2 but the results are robust to small changes of this hyper-
parameter. In figure 3.4, on the right, the corresponding model performances are shown in a violin
plot for both classes. It is important to note the large variance of these in case of convergence to a
fixed point.

Relationship with parameters

The MINDy fitting procedure returns three phenomenological parameters (α, D, and W ) which tune
the dynamics. Each participant has its own set of parameters. It is interesting to study whether or
not they play a role in the distinction between the two behaviors.

To test this hypothesis, we defined a measure of distance between the distributions of the same param-
eter evaluated for different subjects. This metric has been computed between different participants
within the same class of behavior (limit cycle and fixed point) and across classes.
Because the sample of subjects that exhibit convergence to a fixed point is larger, it has been down-
sampled to the same size as the other to avoid distortions in the results.

Parameters α and D are both vectors with lengths equal to the number of the considered neural
populations (the parcels defined by the chosen brain atlas). We chose to compute the Euclidean
distance between pairs of vectors. On the other hand, the weights W are matrices. To quantify the
similarity between them we used the Euclidean distance between pairs of flatten matrices.

If parameter values helped to differentiate between the two classes, we would expect greater distances
across classes rather than within the same class. That would be equivalent to saying that parameters
values leading to the same dynamical behavior are more likely to be similar.
The results are reported in figure 3.5. Among all parameters, the non-linearity of the model, which is

14
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controlled by the parameter α, appears to play a role in characterizing the classes. The convergence
to a limit cycle seems to be related to more uniform values of α, compared to convergence to a fixed
point. However, the distributions of α are very similar for the two classes: the mean value of α is 5.054
in the case of limit cycles (16 subjects), against 5.061 otherwise (80 subjects randomly downsampled
to 16). The standard deviations are 0.047 against 0.052. HWe think that a more reliable statistical
analysis to probe the effect of α (if any exists) would require a larger sample.

Figure 3.5: Distances between pairs of sets of parameters within the same class (limit cycle and fixed point)
and across classes. It has been used the Euclidean distance between pairs of α and D vectors and between pairs
of W flatten matrices.

Linearized model

MINDy is nonlinear due to the definition of the transfer function ψα. However, this does not in-
herently imply that the obtained dynamics are not trivial and differ from models working in linear
approximation.

Important information about the model dynamics can be obtained by evaluating the linearized system
and its eigenvalues. The first order differential equation which defined the model is:

ẋt =Wψα(xt)−Dxt + εt

where ψα is defined as:

ψα(xt) =
√
α2 + (bxt + 0.5)2 −

√
α2 + (bxt − 0.5)2

and whose derivative is:

∂ψα
∂xt

(xt) =
b(bxt + 0.5)√

α2 + (bxt + 0.5)2
− b(bxt − 0.5)√

α2 + (bxt − 0.5)2

More precisely, ψα is a function RN → RN (where N is the number of brain parcels) whose entries
ψα,1, ψα,2, ..., ψα,N depend only on the corresponding value xt,1, xt,2, ..., xt,N . The value xt,i quantifies
the activity of the neural population i at time t. So, its jacobian is diagonal:

Jψ(xt) = diag

(
∂ψα
∂xt,1

(xt,1),
∂ψα
∂xt,2

(xt,2), ... ,
∂ψα
∂xt,N

(xt,N )

)
The systems can be then linearized around an equilibrium x̃ ∈ RN :

ẋt ≈ Ã · xt where Ã =W · Jψ(x̃)−D

Upon completion of the fitting procedure of every dataset, each set of parameters was used to compute
the eigenvalues λ around an equilibrium. We can rule out the hypothesis of trivial dynamics (i.e.,
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convergence to a global stable fixed point attractor) by examining the eigenvalues of the linearized
system at zero. The origin is of course an equilibrium point, corresponding to null activity. Since
all subjects have at least one eigenvalue with positive real part, we can conclude, according to the
analysis reported in [16], that no equilibrium point is globally stable. In fact, the transfer function
is odd (ψ(−x) = −ψ(x)) thus if any xs ̸= 0 is a fixed point, so is its reflection −xs. If xs is stable
and thus possesses an attractive basin V of non-zero measure, then −V is the attractive basin of −xs,
and therefore xs is not a global equilibrium. Moreover, the origin cannot be stable because there is at
least one eigenvalue with positive real part. It follows that any fixed point is not globally stable but
unstable or not unique.

The two behaviors can be described and better characterized in terms of the eigenvalues λ of the
linearized model around an equilibrium point of the corresponding dynamics. In case of convergence
to a fixed point, x̃ was set to be equal to the array of values of the stabilized activity. Otherwise,
the system was linearized around the origin, since the periodic oscillations are centered in zero. This
procedure does clearly not provide a classification method, but eigenvalues of the linearized dynamics
can be useful to better understand the dynamics.
Another valuable tool to visualize the differences between the two behaviors is the phase portrait of
the subjects, so the simulated time series were projected onto the first 3 principal components. This
was implemented with the sklearn.decomposition.PCA function.

Figure 3.6: Comparison of the two behaviors in terms of eigenvalues λ of the linearized system around the
corresponding equilibrium, and phase portrait of the two behaviors. For both classes of behavior, we show
examples of the set of eigenvalues and the projection of the simulated time series onto the first 3 principal
components. In the case of a limit cycle, periodic orbits link neighborhoods of two unstable fixed points.
Otherwise, the systems converge to a single point.

The datasets whose obtained dynamics converge to a fixed point have only eigenvalues with negative
real parts, as follows from the theory of dynamical systems. An important role is played by the
maximum (real part) eigenvalue, whose magnitude characterizes how fast the dynamics reach the
equilibrium.
Figure 3.7 describes the relationship between the maximum eigenvalue of each subject and the number
of points before the convergence, quantified as the number of Euler’s iterations until the difference
between a pair of successive points was lower than a chosen threshold. The speed of convergence is the
same for every time series, as the dynamics are dominated by the maximum eigenvalue. As expected,
the characteristic time of the exponentially fast convergence is proportional to the reciprocal of that
eigenvalue.
On the other hand, in the case of a limit cycle, there is a correlation between the maximum eigenvalue
of the linearized system in the origin and the period of the cycle, as obtained through the fast Fourier
transform (numpy.fft.fft). Moreover, the scatterplots of the eigenvalues in the complex plane suggest
that the eigenvalues with positive real parts have also the greatest imaginary components. As the
imaginary components are related to the period of an (unstable) oscillation around zero, this suggests
that such unstable oscillation is stabilized by non-linear terms in the equation, leading to a stable
limit cycle.
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Figure 3.7: Relationship between the maximum eigenvalue of the linearized system and the dynamics for σε = 0.
On the left, the number of iterations needed to converge to the fixed points. On the right, the period of the
limit cycles. Each dot represents a subject.

3.3 MINDy and dFC

The MINDy model is able to reproduce the functional connectivity of the whole session (as described
before), which is a static feature of the fMRI time series. The performances are better in the case
of convergence to a limit cycle. Moreover, MINDy is able to predict the activity over very short
timescales, comparable to one integration step [15]. This is substantially different from understanding
whether or not this model can predict the actual dynamics of brain activity, which is characterized by
more slowly fluctuating temporal patterns.
Singh et al. [15] successfully tested the model accuracy in capturing longer-term dynamic patterns
using the Dynamic Conditional Correlation (DCC) method and comparing the standard deviation of
the conditional correlation time series with the actual data.
In the following paragraphs, we will discuss the performances of the MINDy model in reproducing the
observed distribution of the global dFC speed V , and the relationship between model performance
and the two behaviors described in section 3.2. The experimental distributions for the three window
length ranges were described in section 3.1.

Using σε = 0.2, we computed the pooled V distribution for each range merging all the subjects within
the same class (figure 3.8). The results are quite unsatisfactory. As evaluated in this aggregate form,
datasets whose dynamics converge to a fixed point completely fail to reproduce the experimental
behavior. The performances are better in the case of limit cycle, but, even in this case, models are far
from matching the empirical distribution of the global speed.

Figure 3.8: Comparison between the distributions (kernel density estimations) obtained by MINDy and the
experimental one. The simulations were computed with σε = 0.2.
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We tested the agreement between the actual dFC speed distributions and the ones obtained by MINDy
and its dependence on the magnitude of the noise (the standard deviation σε). The distances were
quantified by the two-sided Kolmogorov–Smirnov statistics for each range (short, mid, long), imple-
mented by the scipy.stats.kstest function. Note that, unlike in figure 3.4 (role of sigma in static FC),
this is the opposite of a measure of performance. The results are shown in figure 3.9.

Figure 3.9: For each range, two-sided Kolmogorov–Smirnov distances between the actual dFC speed distribu-
tions and the ones obtained by MINDy. The distances, treated as a function of the noise magnitude σε, provide
information about the model performances. This plot also highlights the differences between the two behaviors:
convergence to a limit cycle (green) and to a fixed point (blue).

For the short-range, distances, treated as a function of σε, quickly converge to a fixed value. This
value is different for each subject and it is maintained also for large σε. The actual distributions for
this range peaked at 1 (figure 3.2), which is also the average value obtained for dynamics dominated
by Gaussian noise. Indeed, a set of completely random time series corresponds to a Gaussian dFC
speed profile peaked at 1. Thus, the short-range distances for large σε represent a measure of the
overlap between the ground truth histogram of each subject and the distribution obtained for random
behavior, rather than the actual performances of the model.
In both the mid and the long ranges there are significantly different performances for the two classes
of behavior. In the case of convergence to a fixed point, the distances quickly increase from the value
obtained for σε = 0 to 1. The model is therefore not able to reproduce the correct speed of recon-
figuration. The initial points are interesting because they represent some changes in the FC states
also for apparently flat time series. This is because the time series keep small oscillations anyway,
exponentially smaller at each iteration of the integration method. Removed the initial burn-in period,
these residual fluctuations have a very small magnitude, but Pearson’s correlation, on which the speed
is defined, is normalized by the standard deviations. Thus, the functional connectivity is still defined
but problems may occur due to the round-off precision.
In the case of a limit cycle instead, there are better performances (lower Kolmogorov–Smirnov dis-
tances) when some noise is used. The best performances are again obtained for σε approximately
between 0.1 and 0.3, similar to what happened with the static functional connectivity (figure 3.4).
However, the model cannot be declared successful as the distances remain relatively large.

Figure 3.10 describes the relationship between the eigenvalues of the linearized systems (obtained for
each class as described before) and the Kolmogorov–Smirnov statistics. Similarly to what did in the
static case, we used σε = 0.2 to simulate the BOLD time series.
This analysis confirms the failure of the model in the case of convergence to a fixed value, with few
exceptions that were lost in the aggregate analysis (especially in the long-range). In the case of
convergence to a limit cycle, the plot shows the relationship between the maximum eigenvalue and
the performance of the model. Since the eigenvalues are negatively correlated with the period of the
simulated time series, the greatest performances are obtained with the shortest periods.
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Figure 3.10: Relationship between the maximum (real part) eigenvalue and the two-sided Kolmogorov–Smirnov
test between the experimental dFC speed distributions and the obtained ones for σε = 0.2. Each dot is a
subject.

Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) is a powerful statistical method to detect intrinsic self-similarity
and long-range persistence in a time series [11,17]. The resulting coefficient αDFA (not to be confused
with the MINDy parameter) characterizes the self-correlation of long-memory processes.

Given a time series of N discrete elements x1, x2, ..., xN , to perform the DFA we need to convert it
into an unbounded process via the cumulative sum of its elements:

X(t) =
t∑
i=1

(xi− < x >)

where < x > is the mean of the time series. The subtraction of the mean eliminates the global trend
of the signal.
The time series is then split into M non-overlapping segments q = 1, ...,M of fixed length k each. For
each segment q the squared fluctuation F 2

q (k) was computed as the mean squared difference between
X(t) and its local trend Yq(t). In the linear case, Yq(t) is the regression line of X(t) over the time
interval of the segment q.

F 2
q (k) =

1

k

qk+k∑
t=qk+1

(X(t)− Yq(t))
2

We define the fluctuation strength F (k) as the average Fq(k) over the identically sized segments
q = 1, ...,M . The fluctuation strength is treated as a function of the length k.
We compute F (k) for a set of K different lengths k1 ≈ 4 < k2 < ... < kK ≈ N , roughly equally spaced
on a logarithmic scale (geometric progression). Then, F (k) is fitted with the linear power law:

logF (k) = αDFA log k + C

The obtained αDFA is a generalization of the Hurst exponent, leading to the following interpretation:

• 0 < αDFA < 0.5: the process (time series) has a memory and exhibits anti-correlation.

• α = 0.5: the process is indistinguishable from a random process with no memory. It displays
uncorrelated Gaussian fluctuations (”white noise”).

• 0.5 < αDFA < 1: the process has a memory, and it exhibits positive correlations.

• αDFA > 1: the process is non-stationary.
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We performed the analysis both on the experimental time series and on the surrogate time series.
Figure 3.11 reports some of the obtained results.
For all the subjects, the mean αDFA, averaged on the set of time series, is approximately between
0.55 and 0.80. The experimental datasets whose obtained MINDy dynamics converge to a limit cycle
seem to be characterized by slightly lower αDFA values. This can be observed in the kernel density
estimation on top of the left figure (3.11). Moreover, the self-correlation seems to be unrelated to the
model non-linearity.
The plot on the right shows some negative correlation (r = −0.4) between the obtained maximum
eigenvalue (characterizing the model behaviors) and the experimental self-correlation. However, a
more robust analysis definitely requires more data and more balanced classes.
The MINDy model tends to overestimate and amplify the self-correlations in the data. The perfor-
mances are qualitatively good for the subjects with lower eigenvalues, but they rapidly get worse.

Figure 3.11: On the left, the relationship between the self-correlation (αDFA) and the obtained MINDy non-
linearity (αMINDy). Each dot corresponds to a single subject and reports the average αDFA and αMINDy

from the 119 experimental and surrogate time series, respectively. The plot shows also the distributions of
these two features, both for the fixed point and limit cycle classes. On the right, the relationship between the
obtained max (real part) eigenvalues of the linearized systems and αDFA, both computed for the actual and
simulated time series. The differences between red and purple dots are a measure of the performances of the
model (σε = 0.2) in reproducing the corrected αDFA.
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Chapter 4

Conclusions

In this work, we studied whether and how a particular generative causal model (called Mesoscale
Individualized Neurodynamic, MINDy) can reproduce a scalar feature of the time series from functional
magnetic resonance imaging, the global dynamic functional connectivity speed.

We fitted the model to real datasets (from the Human Connectome Project) and numerically inte-
grated the dynamics with no added noise. Then, we studied the role of the magnitude of the Gaussian
noise in both static and dynamic functional connectivity.
We noticed that two different behaviors emerged in the surrogate BOLD signals: in some cases (fixed
points), the dynamics converge to a stable equilibrium; in other cases (limit cycles), the dynamics
exhibit periodic orbits that link neighborhoods of unstable fixed points in the phase portrait. Both
classes can reproduce the static resting state functional connectivity, but the models converging to a
fixed point fail to return the right distribution of the global speed. The performances increase if the
dynamics converge to a limit cycle, but the model cannot be declared completely successful as the
distances from the ground truth remain relatively large.
The maximum (real part) eigenvalue of the linearized system, when computed around the correspon-
dent equilibrium, plays an important role. It correlates with the performances of the model in the
case of limit cycles and it seems to be related to the self-correlation of the experimental time series.

The main limitation of this work is the fitting procedure, made by the most basic MINDy high-level
function. It could be interesting to better investigate the fitting preprocessing (deconvolution/filtering)
and the role of the hemodynamic response functions. Also, more precise and robust analyses require
more data, especially for what concerns the limit cycles. Finally, a more thorough dynamical analysis
would be required to understand i) how model parameters determine the dynamical behavior ii)
what features of the simulated time series make them unsuitable to correctly reproduce the observed
dynamical functional connectivity speed.
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