
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Thesis

Solution of Schrödinger Equation for Quantum

Systems via Physics-Informed Neural Networks

Internal supervisor, Università di Padova Candidate

Prof. Marco Baiesi Paolo Zinesi

External supervisors, Fraunhofer IISB

Philipp Brendel

Dr. Simon Mundinar

Academic Year 2022/2023

Abstract

The numerous successes achieved by machine learning techniques in many
technical areas have sparked interest in the scientific community for their ap-
plication in science. By merging the knowledge of machine learning experts and
computational scientists, the field of scientific machine learning has shown its
ability to greatly improve the performance of existing computational methods.
One possible approach to developing physics-aware machine learning is the
inclusion of physical constraints in the training of a machine learning model.
Physics-Informed Neural Networks are an example of such an approach, as
they can incorporate prior physical knowledge into their architecture, enabling
them to learn and simulate complex phenomena while respecting the under-
lying physics principles. Possible constraints are physical laws, symmetries,
and conservation laws. Compared to other machine learning models, Physics-
Informed Neural Networks do not require substantial input data, with the
exception of initial and boundary conditions to correctly formalize the prob-
lem.

In this Thesis, we exploit the advantages of Physics-Informed Neural Net-
works to efficiently simulate one-electron quantum systems. The simulations
rely on the direct solution of the eigenvalue equation represented by the
Schrödinger equation. Traditional methods for solving the Schrödinger equa-
tion often rely on approximations and can become computationally expensive
for nontrivial systems. The mesh-free Physics-Informed Neural Networks
approach avoids the need for discretization, as the residuals computed with
respect to the physical constraints are minimized during training for a given
set of points within the domain.

The solution of the Schrödinger equation allows one to calculate important
physical quantities of the physical system under study, such as the ground
state energy, the electronic wavefunction, and the associated electron density.
These quantities are compared with the estimations present in the quantum
chemistry literature to assess the performance of the Physics-Informed Machine
Learning approach.

iii

iv

Contents

Introduction vii

1 Ab initio simulations of quantum systems 1

1.1 Schrödinger equation . 2
1.2 Hartee-Fock and post-Hartree-Fock methods 3
1.3 Variational Monte Carlo . 4

1.3.1 Variational Monte Carlo and machine learning 6

2 Physics-Informed Machine Learning 9

2.1 Biases . 10
2.2 Physics-Informed Neural Networks 13

2.2.1 Mathematical formulation 13
2.2.2 Losses . 14
2.2.3 Network . 15
2.2.4 Training . 16

2.3 Motivations and advantages . 17
2.4 Limitations . 19
2.5 Software . 20

3 Quantum systems simulations with physics-informed neural
networks 21

3.1 Literature review of existing physics-informed approaches 21
3.2 Proposed approach and methodology 24

3.2.1 Architecture . 25
3.2.2 Training . 33

v

CONTENTS

4 Results 35
4.1 Metrics and datasets . 35
4.2 One-dimensional H atom . 37

4.2.1 No eigenvalue estimation 37
4.2.2 With eigenvalue estimation 38

4.3 Three-dimensional H atom . 43
4.3.1 No eigenvalue estimation 44
4.3.2 With eigenvalue estimation 47

4.4 Importance of training distributions 53
4.5 Three-dimensional H+

2 molecule 58
4.5.1 Eigenvalue estimation 58

5 Conclusions and Outlooks 63

Bibliography 74

vi

Introduction

Since the first formulation of quantum mechanics, our understanding of the
fundamental nature of the physical universe has changed completely. The
detailed study of the laws underlying our physical universe showed that the
classical laws, formulated until the end of the 19th century, were not descriptive
enough of the true behavior of matter at small scales. At microscopic scales,
matter behaves according to laws that seem to go beyond common intuition.
Superposition of states and entanglement are examples of such nonintuitive
phenomena that are related to physical systems at small scales [1].

Despite the seemingly unusual nature of this new theory of quantum me-
chanics, scientists proposed different formalisms capable of describing the be-
havior of quantum systems. For example, Heisenberg matrix mechanics in-
terpreted the physical properties of particles as matrices that evolve in time
[2]. However, a crucial moment in the development of quantum mechanics
came with the formulation of the Schrödinger equation by Erwin Schrödinger
in 1925 [3]. This groundbreaking theory introduced a wave-based description
of particles, replacing the classical deterministic view with one that embraced
uncertainty and wave-particle duality. This description was no longer based on
deterministic trajectories in the space-time domain, but rather on a field-like
quantity known as the wavefunction of the system. Today, the Schrödinger
equation is still a fundamental tool for analyzing microscopic phenomena and
for predicting the evolution of quantum systems. The solution of the equation
yields exactly the wavefunction of the physical system, from which prediction
of physical observables can be performed straightforwardly. The theory has
revolutionized fields such as chemistry, physics, and materials science, allowing
for unprecedented accuracy in the prediction of the properties of the physical
systems.

vii

INTRODUCTION

Theoretical physicists have spent a great deal of effort in finding analytical
solutions to the Schrödinger equation for the most common quantum systems.
However, closed-form analytical solutions cannot be found in systems of many
interacting particles. This problem is called the many-body problem in quan-
tum physics [4, 5] and is analogue to the n-body problem that arises in classical
mechanics. In the absence of an analytical solution, scientists have designed
computational methods to solve the Schrödinger equation for more complex
quantum systems. Those computational methods require a large amount of
computation time and memory given the difficulty of simulating interacting
systems [6], which is also true beyond the physical sciences. In fact, the sim-
ulation of an interacting system cannot be simplified into the simulations of
its components, since the correlations between the different components might
have a strong impact on the overall solution. In quantum systems, in particu-
lar, by not considering the entanglement between different components of the
system, the performances of the simulations are compromised. At the same
time, the simulation of entangled systems is expensive. For these reasons,
in the decades following the formulation of the Schrödinger equation, many
optimized algorithms have been proposed to accurately and efficiently simu-
late these intricate systems. These algorithms span from simple mean-field
approaches to more complicated approaches such as quantum Monte-Carlo
(QMC) algorithms [7], Density Functional Theory (DFT) methods [8, 9], and
Tensor Network methods [10, 11].

One novel approach to simulate quantum systems relies on the use of Neural
Networks (NNs) to approximate the wavefunction of the physical system under
study [12]. By transferring knowledge and optimized algorithms from the ad-
vanced field of Machine Learning (ML) [13], under some specific assumptions,
the problem of finding the ground-state solution of the Schrödinger equation
can be formulated as an unsupervised ML problem. The most common ap-
proach is to use the NN as a wavefunction ansatz and to compute the energy of
the wavefunction as a function of the network parameters. This approach takes
the name of Neural Network Quantum States (NNQS) [14] and is a particu-
lar example of variational approach. Therefore, gradient-based optimization
routines can be used to find the best set of network parameters that minimize
any given loss function. When the goal is to retrieve the ground-state wave-

viii

INTRODUCTION

function of the system, the energy represents a valid unsupervised loss, which
minimization leads to the ground-state solution of the Schrödinger equation.

This thesis is devoted to the solution of the Schrödinger equation for quan-
tum systems using Physics-Informed Neural Networks (PINNs), a class of NN
function approximators that incorporate prior physical knowledge into their
learning scheme [15, 16]. The wavefunction is parametrized using an artificial
neural network, as in the NNQS approaches, but the training is performed
following a physics-informed loss that depends on the Schrödinger equation.
This loss encodes all the physical constraints of the system and is conceptu-
ally different from the energy loss of NNQS, because the PINN formulation
does not depend on a problem-specific quantity as the ground-state energy
of the system. Therefore, the PINN approach has the potential to general-
ize the current simulation methods beyond ground-state simulations, since the
physics-informed loss does not make any assumption on the ground-state na-
ture of the computed eigenvalue. Moreover, the physics-informed framework
allows one to easily integrate prior knowledge or experimental data into the
ML model, thus improving the performance of NNQS models.

The field of physics-informed learning promises to revolutionize and
improve scientific computing thanks to ML techniques. On the one hand,
PINNs improve traditional scientific computing approaches, which do not
require input data, by avoiding the creation of expensive point meshes,
typically used to discretize a function. PINNs compute derivatives using
Automatic Differentiation (AD) [17], and therefore do not need the particular
structure of point meshes to compute the desired derivatives. On the other
hand, PINNs can improve data-driven ML solutions by taking into account
physical constraints in the training process. The communication between
the fields of scientific computing and machine learning generates a set of
algorithms that improve the methods of both.

The thesis is structured as follows. In Chapter 1, ab initio methods to
simulate quantum systems are briefly reviewed. A particular focus is given to
the Variational Monte Carlo algorithms and their successful combination with
machine learning variational classes. In Chapter 2, the framework of Physics-
Informed Machine Learning is presented, describing the possible strategies to

ix

INTRODUCTION

integrate specific physics-informed biases into a traditional machine learning
problem. The specific PINN architecture and the loss components used to solve
a Partial Differential Equation are then introduced. In Chapter 3, PINNs are
applied to simulations of quantum systems. At first, previous physics-informed
approaches to simulate simple systems are described and reviewed. Then, the
architecture used in this thesis is explained in detail, and the different loss
components are defined and motivated theoretically. Chapter 4 presents the
results of physics-informed simulations of the hydrogen atom H and of the
hydrogen molecule ion H+

2 . For the hydrogen atom case, in one and three
dimensions, the simulations are first performed by fixing the eigenvalue variable
to the analytical value. Then, this condition is relaxed, and no knowledge of
the true eigenvalue is assumed. The simulations of the hydrogen molecule ion
are, instead, performed only without fixing the eigenvalue variable, since no
analytical solution for that system is available. In addition, some experiments
are performed to assess the importance of the size of the neural network, the
number of domain points, and the distribution of training points. Finally, in
Chapter 5 the results are summarized and future developments discussed.

x

Chapter 1

Ab initio simulations of quantum
systems

The physical properties of a quantum system are completely characterized by
its wavefunction, which contains all the information about the state of a sys-
tem and allows probabilistic predictions of the physical observables of interest
[3, 18]. The wavefunction depends on the Hamiltonian of the system and is ob-
tained by solving the Schrödinger equation. Theoretical researches conducted
on the solution of the Schrödinger equation show that analytical solutions are
available only for simple systems and simple Hamiltonians. Therefore, the solu-
tion of the Schrödinger equation for more complex systems requires numerical
methods.

The focus of this thesis is on the study of quantum systems in their ground-
state. In particular, simple atoms and molecules are the main systems of
interest. At first, this chapter reviews the well-established quantum chemistry
methods that are commonly employed to simulate such systems. The emergent
ML approaches are then introduced. In this context, the joint use of the
Variational Monte Carlo (VMC) algorithm and a NN wavefunction ansatz
allows electronic wavefunction calculations that are significantly more accurate
than VMC calculations using other approaches [14, 19].

1

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

1.1 Schrödinger equation
A system composed of N electrons and M ions is described by the Hamiltonian

Ĥtot =−
1

2

N∑
i=1

∇2
i −

1

2

M∑
I=1

∇2
I

+
N∑
i=1

N∑
j=i+1

1

|ri − rj|
−

M∑
I=1

N∑
i=1

ZI

|ri −RI |
+

M∑
I=1

M∑
J=I+1

ZIZJ

|RI −RJ |
,

(1.1)

where {ri}i=1...N are the spatial coordinates of the electrons, {RI}I=1...M are
the spatial coordinates of the ions, and {ZI}I=1...M denotes the nuclear charges
of the ions. Calculations are performed in the Born-Oppenheimer approxima-
tion [20], where nuclear positions are fixed input parameters, and Hartree
atomic units are used. Therefore, the Hamiltonian Ĥtot of the whole system is
simplified to the electronic Hamiltonian

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j=i+1

1

|ri − rj|
−

M∑
I=1

N∑
i=1

ZI

|ri −RI |
, (1.2)

in which the coordinates {RI}I=1...M are fixed and the ion-ion interaction terms
have been traced out. The solution of the time-independent Schrödinger equa-
tion,

Ĥ Ψ(x1, . . . ,xN) = EΨ(x1, . . . ,xN), (1.3)

gives as results the ground-state wavefunction Ψ(x1, . . . ,xN) and the ground-
state energy E. The coordinates xi = {ri, σi} are defined as the combination
of the spatial coordinates ri ∈ R3 and the spin variable σi ∈ {↑, ↓}. Since
the Hamiltonian is spin-independent, the wavefunction Ψ(x1, . . . ,xN) does
not depend on the spin variables. As Ĥ is Hermitian and time-reversal in-
variant, its eigenvalues and eigenfunctions are real. The wavefunction must
be normalized, i.e.,

∫
dx1 · · · dxN |Ψ(x1, . . . ,xN)|2 = 1, and |Ψ(x1, . . . ,xN)|2

is interpreted as the probability distribution of finding the electrons in the
positions (x1, . . . ,xN) when the system is measured.

Although the Hamiltonian is spin-independent, the electron spin does play
a role in the simulations because the wavefunction must obey the Fermi-Dirac
statistics. The wavefunction must be antisymmetric under the exchange of the

2

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

coordinates of any pair of electrons,

Ψ(. . . ,xi, . . . ,xj, . . .) = −Ψ(. . . ,xj, . . . ,xi, . . .) ∀ i ̸= j, (1.4)

and this constraint restricts the set of wavefunction ansätze. The desired
antisymmetry is typically imposed by designing particular ansätze, such as
the Slater determinants, in which the desired property is enforced as a hard
constraint. However, soft constraint approaches can also be applied in those
simulations that rely on the minimization of a cost function.

1.2 Hartee-Fock and post-Hartree-Fock meth-
ods

The Hartree-Fock (HF) method is the starting point of all quantum chemical
calculations, as it is the simplest theory that incorporates the antisymmetry
of the wavefunction [21]. The simplest wavefunction with the required anti-
symmetry is a Slater determinant,

D(x1, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕ1(xN)

...
...

ϕN(x1) · · · ϕN(xN)

∣∣∣∣∣∣∣∣∣ , (1.5)

where ϕ1, . . . , ϕN are one-electron orbitals, usually assumed to be products
of spatial and spin factors, ϕi(xj) = ϕi(rj)δσi,σj

. The HF method uses a
single Slater determinant as a variational trial function, and this trial function
is optimized by minimizing the expectation value of Ĥ with respect to the
orbitals ϕi(rj). With this approach, a set of coupled self-consistent equations
is obtained for the orbitals ϕi [22].

The HF method is able to retrieve the exchange effects arising from the anti-
symmetry of the many-electron wavefunction, but relies on the strong approxi-
mation of neglecting the correlations caused by the electron-electron Coulomb
repulsion. Even if the electron correlation energies only account for a frac-
tion of the total energy of the system, they can lead to large deviations from
the experimental measurements. Post-Hartree-Fock methods propose different

3

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

strategies to include this correlation energy, improving the mean-field assump-
tion of the HF method. Examples of these methods are the Møller–Plesset
perturbation theory (MP), in which the energy correlations are treated as
a small perturbation of the total energy, and configuration interaction (CI)
methods, which use a linear combination of Slater determinants as a varia-
tional ansatz for the true many-electron wavefunction. The CI is expensive
in general, as very large numbers of determinants are needed to describe the
wavefunction accurately. In fact, the number of required determinants grows
exponentially with the system size, and thus the full CI (FCI) method can be
applied effectively only to small molecules. Moreover, many determinants are
needed to describe the gradient discontinuities that arise when two electrons
are in the same position. A possibility to reduce the number of determinants is
to choose only the most important ones, i.e., the determinants with the largest
overlaps with the true ground state wavefunction. These determinants are typ-
ically chosen from the low-energy excitations of the reference HF determinant
(i.e., of the HF wavefunction), but also other wavefunctions can be used. A
more advanced approach is the coupled cluster (CC) method, which implicitly
includes all excitations of the reference wavefunction by applying the exponen-
tial of a cluster operator T to the reference wavefunction. The choice of the
cluster operator T is crucial to guarantee the size consistency of the solution.
Coupled cluster methods are capable of retrieving accurate results, but they
are still very expensive in large systems. For example, a CC calculation with
single and double excitations (i.e., CCSD) scales as N6.

1.3 Variational Monte Carlo

An alternative approach to model many-body wavefunctions is given by the
large family of Quantum Monte Carlo (QMC) algorithms. Algorithms be-
longing to this family are diverse and propose different methods to solve the
many-body problem, but they all rely on the use of Monte Carlo integration
techniques to handle the multi-dimensional integrals. We focus here on the
specific Variational Monte Carlo algorithm (VMC), as it is particularly effec-
tive in solving the many-body problem when neural networks are used as a
wavefunction ansatz.

4

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

In VMC, the first step is to define a wavefunction ansatz, Ψθ(x1, . . . ,xN),
that depends on the parameters θ [23]. The expected energy of the system is
given by the Rayleigh quotient:

Eθ =
⟨Ψθ| Ĥ |Ψθ⟩
⟨Ψ2

θ⟩
= Ex∼Ψ2

θ

[
Ψθ(x)

−1 Ĥ Ψθ(x)
]
= Ex∼Ψ2

θ
[EL(x)] , (1.6)

in which the shorthand x = (x1, . . . ,xN) is used for clarity and the symbol
Ex∼Ψ2

θ
denotes the average over points sampled from the distribution Ψ2

θ. The
term EL(x) = Ψ(x)−1 Ĥ Ψ(x) is known as the local energy. In other words,
the expected energy is the average of the local energy EL(x). Samples from
the distribution proportional to Ψ2

θ are generated using Monte Carlo methods,
and with these samples an estimation of Eθ is computed for a given θ. This
estimation can be used to optimize the ansatz with respect to the parameters
θ to ultimately find the best approximation of the ground-state wavefunction.

Naturally, the key component is the choice of the wavefunction parame-
terization, since the evaluation of the wavefunction and its derivatives is the
most computationally expensive task. In quantum chemistry problems, trial
wavefunctions are commonly chosen within the Slater-Jastrow ansatz [21, 24],

Ψ(x) = eJ(x)
∑
k

Dk(x), (1.7)

which takes a truncated linear combination of Slater determinants,
∑

k Dk,
and multiplies it by a Jastrow factor, eJ(x). Each determinant Dk is calculated
using a set of one-particle orbitals {ϕk

1, . . . , ϕ
k
N}, that is a subset of length N

of a larger set of one-particle orbitals {ϕ1, . . . , ϕN ′}, with N ′ ≥ N . Instead,
the multiplicative Jastrow factor eJ(x) captures close-range correlations and
includes the cusps that arise in the equations when two electrons are in the
same position. The form of the J(x) function depends on the desired field
of application and on the order of correlations of the electron-electron and
electron-nuclear interactions to be considered. The Jastrow factor is symmet-
ric and non-negative, and thus the total wavefunction is still antisymmetric.
An additional improvement to this ansatz is the application of a backflow
transformation prior to orbital evaluation, which changes the position of every
electron by an amount that depends on the position of nearby electrons [25].

5

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

The accuracy provided by the Slater-Jastrow-backflow ansatz allows it to be
nowadays the default ansatz for many-electron problems in three dimensions.

1.3.1 Variational Monte Carlo and machine learning

By exploiting the recent advances of ML and deep learning techniques, in
2017 Carleo and Troyer combined the VMC algorithm with an artificial neu-
ral network ansatz for the wavefunction [14]. Quantum states defined by this
variational class are called Neural Network Quantum States (NNQS). Key ad-
vantages over previous approaches is the theoretical convergence guarantee of
NN approximations and the possibility to increase the accuracy of the ap-
proximation by increasing the number of trainable parameters. The original
work of Carleo and Troyer is focused on the application of NNQS to one- and
two-dimensional spin systems, but successive studies have highlighted the pos-
sibility to apply this approach also to the many-electron Schrödinger equation
[19, 26, 27]. The principal achievement of these studies is the explicit encoding
of the fermionic symmetry inside the wavefunction ansatz, enabling electronic
structure calculations that are significantly more accurate than other VMC
calculations.

In particular, the Fermionic Neural Network, or FermiNet [19], ansatz ob-
tains a remarkable advantage over previous VMC approaches by allowing a
greater flexibility in the choice of orbitals that appear in the Slater deter-
minants (see the ϕi(xj) orbitals of Eq. (1.5)). In particular, more general
electron-electron interactions can be encoded in the ansatz by generalizing the
single-particle orbitals, ϕi(xj), to orbitals that depend on the coordinates of
all the electrons, ϕi(xj; {x/j}). The notation {x/j} indicates the set of all
the coordinates except xj. Of course, the orbitals ϕi(xj; {x/j}) have to be
invariant to any change in the order of the variables in {x/j} to conserve the
antisymmetry of the total wavefunction Ψ. The innovation of FermiNet is the
construction of a set of functions that satisfy this permutation invariance us-
ing neural networks. Remarkably, the orbitals obtained with this procedure
allow to introduce arbitrary correlations between electrons in the many-body
wavefunction.

Other studies have successively focused on the improvement of the Fer-
miNet results. For example, the PauliNet ansatz is designed to incorporate

6

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

the multireference HF method as a baseline [28]. In PauliNet, the ad-hoc func-
tional forms previously used for the Jastrow factor and the backflow transfor-
mations are replaced by NN representations. For this reason, the convergence
of PauliNet is more robust and the iterations are faster than in the FermiNet.
More recent approaches, such as the Psiformer [23] and the QiankunNet [29],
propose to exploit the recent success of transformer architectures in natural
language processing tasks to capture the electron-electron correlations more
efficiently and without imposing a fixed functional form.

7

CHAPTER 1. AB INITIO SIMULATIONS OF QUANTUM SYSTEMS

8

Chapter 2

Physics-Informed Machine
Learning

Algorithms able to combine data-driven learning with prior knowledge on
the properties and symmetries of the problem are not new in the field
of machine learning. By designing problem-specific network architectures
and optimization algorithms, model training can be drastically simplified,
both in terms of computational time and memory resources. In addition,
the embedding of prior information reduces the amount of data needed
during training. One notable example of ML architecture that simplifies
the training procedure by exploiting the features of the input data is the
Convolutional Neural Network (CNN) architecture [30–32]. In CNNs, the
highly-overparametrized architecture of Fully Connected Neural Networks
(FCNNs) is substituted by an architecture that optimizes a set of filters
(or kernels) that slide along input features. When kernels are slid along
the input features, they provide translation-equivariant responses known
as feature maps. Then, feature maps are usually down-sampled and the
described process is iterated according to the network architecture. During
the training step, CNNs recognize patterns present in the training dataset
and store them in the kernel weights, and during the evaluation step those
patterns are used to scan new input data. The sliding mechanism of the
kernels allows CNNs to spot a pattern also in a different position with respect
to the position in the training dataset, whereas the FCNNs require the exact
matching of the pattern positions in the training data. Therefore, despite the

9

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

fact that exact translational invariance is not achieved in CNNs because of
the down-sampling transformations, invariance to input features’ translations
is retrieved in practice. Therefore, input data can be analyzed more effi-
ciently by neglecting redundant features arising from symmetry considerations.

The CNN example shows in practice how a well-known symmetry can pos-
itively impact a learning model if that symmetry is taken into account in the
architecture of the model. Convolutional Neural Networks exploit what is
called an inductive bias to simplify the model. In this chapter, after a general
introduction of the possible ways to induce a bias in physics-informed learning,
we focus on the particular case of Physics-Informed Neural Networks that em-
ploy a different type of bias, the learning bias, to simulate dynamical systems
in the small data regime.

2.1 Biases

Every predictive model needs some assumptions to allow generalization, as in
the absence of those assumptions the model tends to reproduce exactly the
input data. This behavior is a well-known issue in the field of machine learn-
ing and is commonly known as overfitting [33]. This issue usually arises when
the complexity of the model that is being learned is not supported by a suffi-
cient amount of training data. The predictions of an overfitted model poorly
generalize to input data not belonging to the training set, as the intricate cor-
relations of data cannot be approximated by a model that tends to reproduce
the training data.

In order to reduce overfitting and accelerate training, biases need to be
included in the architecture and in the training of ML models. In physics-
informed learning, three types of bias can be recognized [16].

• Observational biases. This is the most common type of bias and is re-
sponsible for the recent success of ML. An observational bias is enforced
in an ML model by providing enough data to cover the input domain
of a given task. Thanks to the constant growth of sensor networks able
to gather data at different spatio-temporal scales, we are able to gather
a consistent amount of data and to use it to develop increasingly accu-

10

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

rate models. To effectively bias learning, training data should reflect the
underlying physical principles that dictate their generation. Observed
data can indirectly encode these principles into ML models, provided
that a large amount of data is available and that these data are repre-
sentative of the whole input domain. However, observational data might
be generated by expensive experiments or large-scale computations, and
consequently, the acquisition of a consistent amount of data might be
infeasible. This issue limits the advantages of purely data-driven ap-
proaches in those tasks and requires one to consider additional sources
of bias to successfully train an ML model.

• Inductive biases. Another possibility to encode prior knowledge into
ML models is to design NN architectures that implicitly embed knowl-
edge of the system. As already discussed above, CNNs are the most
prominent example of the effectiveness of inductive biases, but there ex-
ists a multitude of architectures that apply the same principle, such as
graph neural networks [34] and equivariant networks [35] . These ar-
chitectures can be generalized to satisfy more general symmetries, e.g.,
rotations, reflections, and more general gauge symmetries. In the study
of Hamiltonian systems, specific architectures can be designed to pre-
serve their symplectic structure [36]. In quantum many-body systems,
the anti-symmetry on the exchange of input variables can be hard coded
in the network by transforming the input variables using a determinant
of a matrix-valued function [19]. In the solution of differential equa-
tions, input variables can be transformed to satisfy initial conditions and
boundary conditions [37, 38]. Despite their conceptual simplicity, induc-
tive biases can be effectively implemented only for a limited set of simple
and well-defined symmetries, while implicitly encoding more complicated
symmetries or conservation laws is still a difficult task.

• Learning bias. Prior information can also be embedded in the learning
process by penalizing solutions that do not satisfy some constraints [15,
39, 40]. This strategy aims to impose those constraints in a soft manner
by adding a loss that depends on the deviations from the constraints.
The network is trained by minimizing a loss that is composed of differ-
ent terms, each of them associated to a particular condition that has to

11

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

be satisfied. There is a great flexibility in the choice of soft penalty con-
straints, and therefore the soft constraint is a good candidate to impose
symmetries and conservation laws that cannot be easily implemented
with an inductive bias. However, this advantage comes at the cost of
an increased training complexity. The trained ML model is, in fact, a
compromise between all the loss terms that have to be minimized si-
multaneously. If a solution that simultaneously satisfies all these con-
straints does not exist, then the trained model will depend on the entity
of each loss component during the minimization of the loss. This issue
is traditionally tackled by tuning the weights associated with each loss
component and by computing the final loss as a weighted loss. This bias
is at the core of a very important class of physics-informed models, the
Physics-Informed Neural Networks (PINNs) [15], to which Section 2.2 is
dedicated.

In general, good performances can be obtained when a combination of the
three aforementioned biases is used. For instance, a dynamical system might
be simulated by combining knowledge of the system at certain space-time
instances with partial information regarding the equations that govern its
dynamics. Alternatively, the evolution of a system governed by a well-known
Partial Differential Equation (PDE) might be simulated only by knowing
the initial and boundary conditions of the PDE, without requiring any
observational data. Physics-informed ML is able to unify under a common
framework both the cases of completely known physical laws in the small-data
regime and of partially known physical laws in the big-data regime.

To simplify the learning process, all the prior information available must
be encoded in the training procedure. Examples of such prior knowledge are

• Equations (e.g., trajectories, kinematics, and other laws).

• Differential equations (e.g., ordinary/partial/stochastic differential equa-
tions).

• Physical constraints (e.g., conservation of energy/momentum/-
mass/probability, boundary/surface conditions, positive definition of
certain variables).

12

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

• Symmetries (e.g., translations/rotations equivariance, many-body sym-
metries, and other group symmetries).

2.2 Physics-Informed Neural Networks

After having introduced the general framework of physics-informed learning,
the particular architecture of PINNs is analyzed [15, 16], and the components
of learning are delineated. The PINN structure is particularly suited to infer
deterministic functions compatible with an underlying physical law when a
limited number of observations is available. In particular, Multi-Layer Percep-
tron (MLP) architectures can be applied to different problems because they
do not incorporate any specialized inductive biases. Other architectures, e.g.,
CNN or Fourier Feature Networks, can be applied when a specialized inductive
bias is desired. In the following, the term PINNs is improperly used to refer to
the particular architecture of physics-informed MLP, which is the main focus
of this thesis.

2.2.1 Mathematical formulation

Consider a PDE of the following form

N [u](x) = f(x), x ∈ Ω, (2.1)

B[u](x) = g(x), x ∈ ∂Ω, (2.2)

where N [·] is a differential operator acting on the domain Ω ⊂ Rn and B[·]
formalizes the boundary conditions in ∂Ω. The function u : Ω −→ R is the
quantity of interest that is governed by Eq. (2.1)-(2.2). The formalism can
also consider vector-valued functions for u(x), but only the real-valued case
is presented for simplicity. Time-dependent problems can be incorporated
into this formalism by considering time as a special component of x and by
treating the initial conditions as a special kind of boundary condition. The
function u(x) is approximated by a neural network uθ(x), where θ defines the
parameters of the network that are updated during the training phase.

13

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

2.2.2 Losses

After the initialization of the network parameters θ, the physics-informed
model is trained by minimizing the loss function L(θ). When Eq. (2.1)-(2.2)
are the only training data available for the solution of the PDE, the loss func-
tion is

L(θ) = ωN LN (θ) + ωB LB(θ), (2.3)

where LN and LB express the residuals of Eq. (2.1) and (2.2), respectively, as
a function of θ. More precisely,

LN (θ) =
1

Nf

Nf∑
i=1

[
N [uθ](x

f
i)− f(xf

i)
]2

, {xf
i }i=1...Nf

∈ Ω, (2.4)

LB(θ) =
1

Ng

Ng∑
i=1

[B[uθ](x
g
i)− g(xg

i)]
2 , {xg

i }i=1...Ng ∈ ∂Ω, (2.5)

where {xf
i }i=1...Nf

and {xg
i }i=1...Ng are batches of training points belonging

to the computational domain. These points are randomly sampled within
the computational domain to enforce a uniform approximation of u(x) in the
domain and prevent overfitting. The loss weights ωN , ωB define the relative
importance of each loss component.

Other information available on the PDE solution can be enforced as addi-
tional terms in L(θ). For instance, a regularization loss Lreg(θ) or a supervised
loss Lu(θ) can be added to the total loss with their respective weights ωreg, ωu.
While the supervised loss is conceptually similar to the PDE losses of Eq. (2.4)-
(2.5), it is different from the latters because the supervised loss of u(x) relies on
the presence of a dataset {xu

i , ui}i=1...Nu of the true solution. The supervised
loss can be expressed as

Lu(θ) =
1

Nu

Nu∑
i=1

[uθ(x
u
i)− ui]

2 , (2.6)

and the total loss is defined as a weighted sum of all the loss terms,

L(θ) = ωN LN (θ) + ωB LB(θ) + ωu Lu(θ) + ωreg Lreg(θ). (2.7)

14

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

All the previous losses have been defined using the mean-squared error (MSE)
metric to define the contribution of each residual point to the loss, but other
metrics such as the mean-absolute error (MAE) metric can be used as well.

ℒ𝒩 = 𝒩 𝑢𝜽 𝒙 − 𝑓 𝒙 2

𝜎
𝑥1

𝑢𝜽(𝒙)

ℒ

Loss Function

 Back-Propagation (Weight-Update)

Problem Domain
(Spatial / Temporal)

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝒩

ℬ

𝑥𝑛

…

ℒℬ = ℬ 𝑢𝜽 𝒙 − 𝑔 𝒙 2

ℒ𝑢 = 𝑢𝜽 𝒙 − 𝑢(𝒙) 2

ℒreg

AD
PINN

+

𝜔𝒩

𝜔ℬ

𝜔𝑢

𝜔reg

Figure 2.1: Scheme of a PINN

2.2.3 Network

The core of the PINN is a fully connected neural network that takes as input
the components of x, {x1, . . . , xn}, and returns the function uθ evaluated at x.
A schematic view of the network is presented in the dashed “PINN” rectangle
of Fig. 2.1.

The approximation capabilities of the network depend on the size of the
network, since a larger network stores more parameters in the weights of layer-
to-layer connections. Complex functions need large networks to properly ap-
proximate them, but training large networks requires a great deal of computa-
tional resources. Each problem has its own ideal network size. Small networks
give rise to underparametrized models, which fail to capture the complex struc-
ture of the underlying function, whereas large networks generate models that
are too expensive to be trained. The trade-off between these two extreme
scenarios is the ideal network size. Current researches on PINNs use shallow
networks of a few hidden layers with approximately a hundred of neurons in
each layer [41].

15

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

Another feature of the network that impacts the learning process is the
activation function. In ML, the activation function has the important role of
introducing nonlinearities in the NN model. The choice of activation function
is crucial for the good performance of the NN model because gradients are
propagated in different ways through different activation functions. In tra-
ditional ML problems, activation functions are chosen to be fast to compute
and to avoid problems such as vanishing or exploding gradients. The Rec-
tifier Linear Unit (ReLU) is one of the most used activation functions, and
it can be computed with a simple comparison operator [42]. However, most
of the activation functions used in traditional ML problems are not infinitely
differentiable, as they usually have a point of non-differentiability at the ori-
gin. Physics-informed ML models comprehend situations in which higher-order
derivatives are required, and therefore the activation functions have to be dif-
ferentiable infinitely many times. Typical activation functions used in PINNs
are the hyperbolic tangent (tanh), the sigmoid, and the Sigmoid Linear Unit
(SiLU, also known as swish) [43].

The output layer of the NN might also be transformed to satisfy hard
constraints or to simplify the convergence of the network.

2.2.4 Training

Once the architecture of the NN and the loss function have been defined, the
PINN is trained by minimizing the loss function L as a function of the NN
parameters θ. The update of the NN parameters can be written as

θ ←− θ − η∇θL(θ), (2.8)

where η > 0 is the learning rate and the partial derivative with respect to
the components of θ is computed efficiently using AD. Usually, this update
rule is performed by advanced and efficient optimization algorithms that can
quickly converge to the optimal solution without getting trapped in local min-
ima. The Adam optimizer is typically used in modern ML applications [44].
The convergence properties of the training procedure can also be tuned by
decreasing the learning rate η during training. This learning rate decrease
allows the optimization to asymptotically stabilize and is a good method to

16

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

prevent continual fluctuations around an optimal point. However, the learning
rate has to be decreased slowly to allow the optimizer to completely explore
the parameter space. An example of scheduled learning rate decrease is the
inverse time decay, η(s) ∼ 1/s, for which

∑
s η(s) = +∞ and therefore all the

parameter space can be reached.
Since the PINN approach comprehends both data-driven and data-free

problems, a strategy is necessary to autonomously generate training data. For
the solution of PDEs, inner and boundary points can be sampled, respectively,
inside the domains Ω and ∂Ω, and the output of the PINN is evaluated at
these points. Automatic Differentiation techniques allow the computation of
derivatives of arbitrary order with respect to the input variables x. Unlike tra-
ditional mesh-based approaches, training data can be randomly sampled inside
the domains following a given distribution. Therefore, the PINN method is
compatible with non-uniformly distributed training data, since the distribution
of training points does not impact the computation of the derivatives with AD.
Thanks to the intrinsic randomness of the training set, the training points can
be resampled during the training in order to reduce overfitting and to speed
up convergence, improving generalizability.

2.3 Motivations and advantages

This novel approach improves considerably many aspects of modern ML tech-
niques.

First, as already stated in the preceding sections, combining prior
knowledge and data allows one to constrain the learning process to a
lower-dimensional manifold of possible models, requiring less training data
with respect to a purely data-driven approach. This aspect brings consistent
advantages when data are scarce or absent in a particular range of inputs.
Although traditional ML models retrieve excellent interpolation performances
with an adequate training set, their performance usually drops when the
model is evaluated outside the domain of training data. Embedding the
physical principles can help the ML model to generalize better and to succeed
in both interpolation and extrapolation tasks.

Second, physics-informed ML can efficiently approximate the solution of

17

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

both direct and inverse problems by exploiting partial prior information and
noisy or incomplete data. The trustworthiness of training data is fundamen-
tal in traditional ML approaches, in which uncertainties that affect the data
are also transferred to the final model. Instead, physics-informed ML models
can combine incomplete prior knowledge and imperfect data to outperform ex-
isting numerical grid-based methods for ill-posed direct problems and inverse
problems [45], whereas this advantage is less prominent in well-posed problems
that do not require any data assimilation.

Third, physics-informed learning can exploit highly optimized routines and
Automatic Differentiation techniques, contained in specialized libraries such as
TensorFlow [46] and PyTorch [47], in the field of scientific computing, with con-
sequent performance advantages. Fundamental connections between ML and
scientific computing can also be found at the theoretical level. Interestingly,
most successful architectures in ML are analogous to established numerical
algorithms. For example, CNNs are analogous to finite difference methods in
translationally equivariant PDE discretizations [48], while recurrent NN archi-
tectures are analogous to Runge-Kutta schemes [49]. The discovery of such
analogies can potentially be a spark in the implementation of new ML archi-
tectures, informed by long-standing traditional computational schemes.

Finally, the ability of ML to tackle high-dimensional problems can solve the
curse of dimensionality that characterizes traditional computational methods.
In fact, the precision of mesh-based computational approaches (e.g., finite-
difference methods for solving PDEs) decreases for high dimensions because of
the exponential increase in the number of function evaluation points. In ML,
mesh-free approaches can be designed instead, thanks to the ability of comput-
ing derivatives with respect to any point in the domain space using Automatic
Differentiation. Meshless approaches allow for great flexibility in the choice
of domain points distribution along each dimension, potentially favoring some
dimensions over others in the domain space. Alternatively, a recent work by
Hu et al. presents a strategy to tackle the curse of dimensionality directly
at the backpropagation step, by updating at each step only a selection of di-
mensions in order to speed up convergence and to avoid the instantiation of
high-dimensional points [50].

18

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

2.4 Limitations

The capabilities of physics-informed learning techniques are accompanied by
certain limitations that need to be taken into account to design and train
effective physics-informed models.

Most importantly, training a physics-informed ML model is a difficult task
because of the complicated structure of the loss. When the loss is composed of
many terms that have to be minimized simultaneously, the total loss becomes
highly non-convex, and its minimization is complicated by the different loss
components competing with each other. The weights of each loss component
must be chosen accurately to avoid the predominance of one loss component
over the others [51]. Without this preliminary step, the training algorithm
might focus only on minimizing the largest loss component. The problem can
be mitigated by designing appropriate model architectures and new training
algorithms specific to these non-convex minimization problems. However, the
current physics-informed learning approach requires users to design effective
NN architectures and to tune most of the hyperparameters empirically, which
are very time-consuming processes.

Training a physics-informed ML model is not only a difficult task due to
the complex structure of the loss landscape, but is also computationally ex-
pensive. Deep networks can store a large amount of model parameters, which
are updated at each training step by estimating the gradient of the loss with
respect to every parameter. This set of operations is at the core of the success
of ML and the speed up of those operations is therefore crucial to enhance the
performances of ML architectures. Specialized hardware such as GPUs and
TPUs can drastically reduce the training time of some specific architectures,
but for large physics and engineering problems the computational resources
are still inadequate to solve ML problems of high complexity.

Furthermore, in the current stage, traditional computational techniques
still outperform physics-informed ML in some specific tasks, such as PDE
diffusion problems with high convection or viscosity parameters [52]. More
generally, using physics-informed ML as a drop-in replacement for traditional
methods does not always lead to better performance, and a more careful pre-
liminary study of the physical problem is needed to improve the quality of the
physics-informed ML model [53, 54].

19

CHAPTER 2. PHYSICS-INFORMED MACHINE LEARNING

Moreover, the performance of physics-informed ML is strongly affected by
the training time [54]. Physics-informed ML models are convenient for tasks
that allow the exploitation of the fast inference times, while they are of limited
use when a relative small amount of evaluations is needed.

2.5 Software

The efficient implementation of PINNs requires highly optimized routines to
run the most common and expensive operations, such as backpropagation of
gradients. At present, there are a variety of ML libraries, like TensorFlow [46],
PyTorch [47], Keras [55], and JAX [56], that offer efficient implementations
of the most common ML functions. On top of those libraries, also specific
physics-informed ML libraries have been developed to exploit effectively the
low-level routines of ML libraries, while providing additional features that are
useful in the field of physics-informed learning. Some of the libraries developed
so far include DeepXDE [57], SimNet [58], NeuroDiffEq [59], and ADCME [60].
Most of the libraries for physics-informed ML are written in Python, as it is
the dominant programming language in ML, but some others are written in
Julia. Libraries such as DeepXDE, SimNet, and NeuroDiffEq can be used as
solvers, i.e., users only need to define the problem, and the libraries manage
the implementation details in the background. Alternatively, libraries such as
ADCME only wrap low-level functions of ML libraries into high-level functions,
and users have to implement the solution of the physics-informed problem
autonomously. Regardless of the details, the main task of these libraries is
to provide utilities to access AD algorithms contained in specialized software
such as TensorFlow.

20

Chapter 3

Quantum systems simulations with
physics-informed neural networks

This section presents different methods for simulating quantum systems with
physics-informed approaches. After a first review of existing approaches, the
PINN architecture employed in this thesis is explained in all its components.

3.1 Literature review of existing physics-
informed approaches

In Sect. 1, a first ML approach to solve the Schrödinger equation for quantum
systems is formulated using a VMC algorithm. An alternative approach to the
solution of the many-body Schrödinger equation consists in reformulating the
objective function to be minimized in terms of a physics-informed loss of the
kind of Eq. (2.7). The physics-informed method is still a variational approach,
since the trial wavefunction belongs to the class of functions parametrized by an
artificial neural network. However, the physics-informed loss L(θ) differs from
the typical VMC objective function because L(θ) is a quantity that depends
on the residuals of the Schrödinger equation. To be more precise, the loss term
LN (θ) introduced in Eq. (2.4) is evaluated as

LN (θ) =
1

Nf

Nf∑
i=1

[
Ĥ Ψθ(r

i)− EΨθ(r
i)
]2

, (3.1)

21

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

where the 3N -dimensional points {ri}i=1...Nf
are sampled inside the computa-

tional domain. Although PINNs have demonstrated remarkable results in the
solution of PDEs, the application of physics-informed algorithms to eigenvalue
problems has received little attention until now. The necessity of simultane-
ously computing the eigenvalue E and the eigenfunction Ψθ complicates the
training procedure, and an extension of the traditional physics-informed ap-
proach is required to efficiently compute the eigenvalue E.

The first demonstration of the possibility of solving eigenvalue problems
with neural networks and physics-informed loss is the work of Lagaris et al.
[12]. In that paper, the authors use a neural network ansatz for the trial
wavefunction and define a loss function proportional to Eq. (3.1), although
the concept of physics-informed learning was not yet formulated at the time
the paper was published. Differently from the definition in Eq. (3.1), however,
the loss function of [12] is divided by the squared norm of the wavefunction,
∥Ψθ∥2 =

∫
Ω
d3r |Ψθ(r)|2, where the integral is computed over the computa-

tional domain Ω. This loss function can be interpreted as the average of a
mean squared error operator for a quantum system described by an unnormal-
ized wavefunction Ψθ, and therefore the loss definition is physically motivated.
However, this loss requires the calculation of two integrals at every iteration,
one for the squared norm of the wavefunction and one for the calculation of
the eigenvalue E as the average value of the Hamiltonian operator. Lagaris et
al. [12] simplify the calculations by eliminating the dependence of these inte-
grals on the parameters θ that define a given wavefunction, but in principle
also the contribution of these integrals have to be taken into account in the
backpropagation of the gradients. Despite the simplicity of the approach and
the use of a single hidden layer in the MLP architecture, this algorithm is able
to efficiently retrieve eigenvalues and eigenfunctions for single-particle prob-
lems. The approach can also be easily extended to estimate energies above the
ground state.

The idea of using neural networks to solve the eigenvalue problem in quan-
tum mechanics has been proposed again recently by Jin et al. [61] in the
novel framework of PINNs. In that paper, the authors propose the architec-
ture shown in Fig. 3.1 to compute the wavefunction Ψθ and the eigenvalue E

simultaneously. Similarly to the work of Lagaris et al. [12], the output of the

22

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

𝜎

𝑥

𝒩𝜽(𝑥)

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝐸

PINN architecture of Jin et al. (2022)

1

Ψ𝜽(𝑥)Parametrization

Figure 3.1: PINN architecture for solving eigenvalue problems in [61, Figure 1]
(adapted).

MLP is the desired wavefunction. More specifically, the eigenvalue is generated
from an affine transformation (i.e., a linear transformation composed with the
addition of a bias term) of a constant input of ones and then fed to the PINN
together with the input data x. The parameters of the affine transformation
determine the eigenvalue and are updated during training. With this approach,
the eigenvalue is computed very quickly at each iteration step and the expen-
sive evaluation of an integral is avoided. The loss function designed by Jin et
al. [61] is composed of a PDE loss, a normalization loss, and an orthogonality
loss. While the PDE loss is comparable to the loss of Eq. (2.4), the other
two losses are regularization terms that simplify convergence. The orthogo-
nality loss, in particular, is useful in determining new eigenfunctions that are
orthogonal to the eigenfunctions already discovered. Although applied only to
one-dimensional systems, this algorithm shows good performance in discover-
ing eigenvalues, and the authors suggest the possibility of implementing the
same algorithm in more complicated systems.

In a successive article, the architecture of [61] is expanded to simulate
the H+

2 molecule as a function of the coordinates of the electron and the
internuclear distance [62]. The simulation of H+

2 focuses on the ground state
and, therefore, only the PDE loss and the normalization loss are required to
train the PINN. The energy for a given distance of the nuclei is now computed
by an NN that takes as input the nuclei coordinates. During training, this
energy NN learns a continuous representation of the eigenenergy as a function

23

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

of the nuclei coordinates. At the same time, another network is devoted to the
estimation of the wavefunction. This other network is necessary to compute
the PDE loss, which combines the wavefunction and the energy and updates
the parameters of both networks. To simplify training, prior information is
added to the network architecture. For example, the output of the network
uses the Linear Combination of Atomic Orbitals (LCAO) approximation as a
baseline, and the network learns the difference from this baseline. Moreover,
a feature transformation unit transforms the input coordinates into hydrogen
atom s-orbitals and gives them to the actual MLP unit. The combination
of all these transformations allows to reduce the total number of parameters
required to obtain a good simulation and to speed up convergence consistently.

In the next section, an architecture inspired by [61, 62] is employed to
simulate the prototypical systems of H and H+

2 with PINNs. A study on
the features of the physics-informed approach is conducted to estimate the
most crucial aspects that will allow to scale up the algorithm to more complex
systems.

3.2 Proposed approach and methodology

For the hydrogen atom, the many-electron Hamiltonian depicted in Eq.(1.2)
simplifies to

Ĥ = −1

2
∇2 − 1

|r|
, (3.2)

where r ∈ R3 denotes the spatial coordinates of the electron, and the position of
the proton is used as the origin of the reference frame. Instead, the Hamiltonian
of the hydrogen molecular ion is

Ĥ = −1

2
∇2 − 1

|r−R1|
− 1

|r−R2|
, (3.3)

where r ∈ R3 is once again the spatial coordinates of the electron and R1,2 ∈ R3

are the positions of the two nuclei (i.e., the position of the two protons). Hamil-
tonians (3.2) and (3.3) are defined in Hartree atomic units and, therefore, all
calculations performed in this thesis are consistent with this unit system. In

24

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

particular, the unit of energy is the Hartree (Eh) and the unit of length is the
Bohr radius (a0). Therefore, all variables defined in atomic units are nondi-
mensionalized, which is a standard procedure in PINNs to normalize inputs
and outputs and simplify training. To perform the calculations, the entire R3

domain of the spatial coordinates r is restricted to a smaller box-shaped sub-
set Ω in which the particle can be found almost certainly. The computational
domain is chosen as large as possible to avoid introducing approximation er-
rors, but at the same time as narrow as possible to increase the density of
the collocation points sampled inside the domain. The domain used here for
one-dimensional radial problems is Ω = [0, 10], and the domain used for three-
dimensional problems is Ω = [−10, 10]3.

The output of interest is the wavefunction Ψθ(r), which is computed to be
as close as possible to the true ground-state wavefunction, Ψ(r). The ultimate
goal of the PINN model is to solve the Schrödinger equation,

Ĥ Ψ(r) = EΨ(r), (3.4)

by estimating Ψ(r) and E simultaneously. Differently from the general treat-
ment of Section 1, the specific systems of the hydrogen atom and of the hydro-
gen molecular ion contain only one electron, and thus the wavefunction does
not depend on the spin of the electron.

3.2.1 Architecture

The architecture proposed to solve the eigenvalue problem of Eq. (3.4) is a
slight modification of the model presented in Fig. 3.1. The main difference
from the architectures proposed in the literature is that our PINN model uses
an external trainable variable to store the eigenvalue. This choice is justi-
fied by the remarkable results obtained by PINNs in inverse problems [63], in
which the trainable variables are used to estimate unknown parameters of the
PDEs. However, the discreteness of the eigenvalue spectrum introduces some
additional complications with respect to traditional inverse problems. In the
context of eigenvalue equations, the energy variable is updated during training
according to the backpropagated gradients of the losses and using the same
gradient descent rule described in Eq. (2.8). An intuitive explanation of the

25

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

ℒ𝒩 = 𝐻 Ψ𝜽 𝒓 − 𝐸Ψ𝜽(𝒓)
2

𝜎
𝑟1

𝑁𝜽(𝒓)

ℒ

Loss Function

 Backpropagation (Weight-Update)

Problem Domain
(Spatial / Temporal)

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝒩

𝑟𝐷

… ℒnorm = Ψ𝜽
2 − 1

ℒ𝐸

AD

PINN

+

𝜔𝒩

𝜔norm

𝜔𝐸

𝐸

Ψ𝜽(𝒓)

Trainable
variable

Figure 3.2: PINN architecture for solving eigenvalue problems of H and H+
2 .

ability of the network to find the correct eigenvalue is as follows. PINNs solve
direct problems by minimizing the residuals, as is clear from the PDE loss
of Eq. (2.4). When the direct problem is well defined, the training procedure
scans the whole parameter space in search of the best approximation of the true
PDE solution. Under such conditions, the loss curve typically flattens when
the approximation capabilities of the NN are saturated, and no improvements
are possible without increasing the complexity of the model (i.e., without in-
creasing the number of parameters of the network). However, if the eigenvalue
equation is solved with the same strategy used for direct problems, the choice
of the eigenvalue is crucial to avoid learning false solutions. False solutions are
clearly visible from the loss landscape because the PDE loss quickly reaches
a plateau and it starts oscillating around that value. If we now freeze the
NN variable and make the eigenvalue trainable to minimize the residuals of
Eq. (2.4), the variable tends to another eigenvalue and the process can be
started again. This iterative approach is analogous to a self-consistent (or
fixed-point) algorithm, but with the difference that the energy is not com-
puted exactly at each step. This simplification allows to speed up the training
consistently, but has the drawback of having an eigenvalue that might change
too quickly.

26

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

The underlying NN architecture used in this thesis is a MLP with 3 dense
hidden layers and 64 neurons in each layer, unless different values for these
parameters are specified. The activation function for each intermediate neuron
is the hyperbolic tangent.

Along with the explanation of the training loss components, some code
snippets that cover the implementation in the DeepXDE library [57] are pro-
vided. The code is written in TensorFlow 2.10 and DeepXDE 1.9, and it is
executed by the DeepXDE library using the Tensorflow 1.x backend and the
compatibility routines provided by TensorFlow 2.10.

PDE loss

The PDE loss is almost equivalent to the loss described in Eq. (3.1),

LN (θ, E) =
1

Nf

Nf∑
i=1

[
Ĥ Ψθ(r

i)− EΨθ(r
i)
]2

, (3.5)

but the dependence on the eigenvalue variable is made explicit here. The
collocation points {ri}i=1...Nf

are sampled inside the computational domain Ω

according to the Hammersley sequence, a low-discrepancy (or quasirandom)
sequence [64]. Low-discrepancy sequences are typically used as a replacement
of uniformly distributed random numbers in tasks such as numerical integra-
tion, because the points from a low-discrepancy sequence are more evenly
distributed than pseudorandom numbers.

def pde(x, y):
"""
Input:

- x: tf.Tensor , shape [num_domain , 1].
Coordinates of the training points.

- y: tf.Tensor , shape [num_domain , 1].
Predictions of the network.

Output:
- residuals: list of tf.Tensor.

Residuals for each PDE loss (only 1 in this case).
"""

residuals = []
radial Schroedinger equation (Hydrogen atom)

27

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

du_drr = dde.gradients.hessian(y, x, i=0, j=0)

residuals.append(
-0.5 * du_drr
-(1.0/tf.norm(x, axis=1, keepdims=True)) * y[: ,0:1]
- energy * y[: ,0:1]

)
return residuals

Code 3.1: Function that defines the PDE loss in the radial Schrödinger
equation for the H atom.

Boundary conditions

The computational domain is chosen large enough to contain the electron al-
most certainly. Therefore, the boundary conditions of Eq. (2.2) are translated
into this model by setting to zero the wavefunction at the boundary points,
i.e.,

Ψθ(r) = 0, r ∈ ∂Ω, (3.6)

so that the probability of finding the electron around the domain boundaries
is approximately null. As already remarked, this approximation becomes in-
creasingly better as the computational domain enlarges. Despite the possibil-
ity of imposing this boundary condition with a boundary loss, similar to the
loss defined in Eq. (2.5), the output of the network can be parametrized to
satisfy the Dirichlet boundary condition of Eq. (3.6) by design. The chosen
parametrization is of the form

Ψθ(r) = Ir/∈∂Ω ·Nθ(r), (3.7)

where Ir/∈∂Ω is an arbitrary function that vanishes at the boundary ∂Ω and
Nθ(r) is the output of the neural network before the transformation [39]. The
boundary conditions enforced in this way are called hard boundary conditions.
This approach is generalizable to more complex boundary conditions [38], but
this parametrization is enough for our model. The parametrization chosen in

28

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

the present model is

Ψθ(r) =

[
D∏
i=1

(
1− e−α(ri−rL)

) (
1− e−α(rR−ri)

)]
·Nθ(r), (3.8)

where rL < rR are the left and right coordinates, respectively, of the compu-
tational domain along each dimension and ri denotes the i-th component of
r. The number of dimensions D is left implicit to fit both one- and three-
dimensional problems within this definition. The coefficient α is chosen to
be equal to α = 10/(rR − rL) to ensure a fast decay of the exponential far
from the boundary. This particular choice of the function Ir/∈∂Ω allows to have
a null wavefunction at the boundary, while the NN output is not influenced
by this parametrization in the bulk of the computational domain. The coeffi-
cient α is tunable, but it cannot be too large to avoid large gradients during
backpropagation.

def output_transform(x, y):
"""
Input:

- x: tf.Tensor , shape [num_domain , 1].
Coordinates of the training points.

- y: tf.Tensor , shape [num_domain , 1].
Predictions of the network before parametrization.

Output:
- y_out: tf.Tensor , shape [num_domain , 1].

Parametrized predictions of the network.
"""
y_out = (

(1-tf.exp (-10.0*(x - x_min))) *
(1-tf.exp (-10.0*(x_max - x))) *
y[: ,0:1]

)
return y_out

Code 3.2: Function that parametrizes the network output in the radial
Schrödinger equation for the H atom.

The use of a hard boundary condition avoids the use of an additional loss
function of the type of Eq. (2.5), namely a soft boundary condition. In fact,
with the addition of any new loss the training becomes less stable due to the

29

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

competition with all the other losses in the training procedure. When the num-
ber of boundary conditions enforced in a soft way grows, a consistent balancing
effort is needed to allow the simultaneous optimization of all the soft bound-
ary conditions. However, hard boundary conditions are easy to implement only
for relatively simple domains (e.g., multidimensional rectangles, hyperspheres,
etc.), while soft boundary conditions are easier to implement for more complex
domain geometries.

In conclusion, no loss is required to satisfy the boundary conditions in this
model.

Normalization loss

Unlike objective functions described in the Sect. 1.3 of VMC algorithms, the
loss function in Eq. (3.5) does not impose any condition on the normalization
of the wavefunction. It is well known from the linearity of the Schrödinger
equation that an unnormalized wavefunction can be normalized at the end
of the calculations without changing the structure of the solution. However,
when simulating the Schrödinger equation with PINNs, the normalization of
the wavefunction impacts the quality of the solutions consistently. In fact, the
solution Ψθ(r) = 0 is a valid solution of Eq. (3.4) and minimizes exactly the
PDE loss in Eq. (3.5). Therefore, in the absence of any other regularization,
the PINN tends to learn the null function with a very high probability.

An additional loss is added to remove the null solution from the possible
solutions of the model. In particular, the normalization of the wavefunction is
imposed through the normalization loss

Lnorm(θ) =
∣∣∥Ψθ∥2 − 1

∣∣ , (3.9)

where ∥Ψθ∥2 =
∫
Ω
dDr |Ψθ(r)|2. The critical part in the evaluation of this nor-

malization loss is the estimation of the D-dimensional integral. In fact, there
is not currently a standard way of implementing this integral in TensorFlow,
and all the traditional integration routines do not support the backpropaga-
tion of gradients. This problem is typically handled by specific architectures,
such as the Tensor Neural Network (TNN) architecture defined in [65, 66], or
by Monte Carlo (MC) methods, as in VMC algorithms.

30

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

In our PINN approach, the collocation points {ri}i=1...Nf
are sampled in-

side the computational domain Ω following the Hammersley low-discrepancy
sequence [64]. Quadrature schemes such as the Gaussian quadrature rule in-
crease the computational cost of the algorithm, because additional collocation
points need to be sampled to perform the integrations correctly. Also, the
application of one-dimensional integration algorithms (e.g., Simpson’s rules)
for each dimension is not possible when the domain points are randomly dis-
tributed in space. For these reasons, in this thesis the integrals are estimated
by exploiting the properties of the low-discrepancy distribution of collocation
points in Ω. Integration methods that use low-discrepancy sequences are de-
noted quasi-Monte Carlo methods. The prefix “quasi” indicates that the inte-
grals are evaluated using deterministic quasirandom sequences instead of pseu-
dorandom number. The advantages are two. First, no new collocation points
are sampled since the training points already belong to a low-discrepancy dis-
tribution. Second, quasi-MC methods have better convergence rates than tra-
ditional MC methods if Nf is large enough [67]. In practice, the integral is
approximated as

∥Ψθ∥2 =
∫
Ω

dDr |Ψθ(r)|2 ≈
Nf∑
i=1

V (Ω)

Nf

∣∣Ψθ(r
i)
∣∣2 := ∥Ψθ∥2Nf

, (3.10)

where the symbol ∥Ψθ∥2Nf
denotes the approximated value computed over Nf

collocation points and V (Ω) is the volume of the computational domain. The
normalization loss used in the simulation then takes the form

Lnorm(θ) =
∣∣∣∥Ψθ∥2Nf

− 1
∣∣∣ =

∣∣∣∣∣∣V (Ω)

Nf∑
i=1

1

Nf

∣∣Ψθ(r
i)
∣∣2 − 1

∣∣∣∣∣∣ , (3.11)

in which an accurate estimation of the integral is computed at each step ef-
ficiently. This additional loss effectively implements a regularization on the
wavefunction that prevents the PINN to learn the null solution.

def normalization_loss(y):
"""
Input:

- y: tf.Tensor , shape [num_domain , 1].

31

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

Predictions of the network (after parametrization).
Output:

- norm_loss: tf.Tensor , shape [1].
Parametrized predictions of the network.

"""
norm_loss = tf.math.abs(

geom_volume * tf.reduce_mean(y) - 1.0
)
return norm_loss

Code 3.3: Function that defines the normalization loss.

However, this loss only enforces a soft constraint on the norm of the wave-
function, and the final wavefunction might be unnormalized nevertheless. The
main task of the normalization loss is, therefore, to ensure that the norm of the
wavefunction is finite and as close as possible to 1. At the end of training, un-
normalized wavefunctions can be eventually normalized by computing a more
precise integral with traditional integration techniques, since no backpropa-
gation is required after the training has finished. This final normalization is
a heavy computational task but is computed only once, while the estimation
of the integral in the training loop is less accurate but fast. A study on the
approximation performance of ∥Ψθ∥2Nf

is carried out in Sect. 4.4.

Eigenvalue losses

The last ingredient necessary for our PINN architecture is the ability to vary
the eigenvalue during training. Without a specific eigenvalue loss, the updates
of the eigenvalue variable would be determined only by the PDE loss, and
no specific behavior can be imposed on the eigenvalue evolution. Experiments
performed with only LPDE and Lnorm have shown that the eigenvalue behaves in
an unpredictable way if the function is not properly normalized (see Sect. 4.2.2
and 4.3.2).

Therefore, an additional loss is added to the model to specifically target the
eigenvalue. Ideally, an eigenvalue loss for the problem of finding the ground-
state energy should be identically zero where the eigenvalue is equal to the
true ground-state energy. If the true ground-state energy is known exactly,
then the whole problem becomes a simpler direct problem. Of course, we are
interested in solving the full eigenvalue problem, in which the true ground-

32

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

state eigenvalue has to be computed by the PINN in an unsupervised way.
Therefore, the eigenvalue loss must try to minimize the eigenvalue as much
as possible, without knowing the lowest valid eigenvalue. Two different losses
have been investigated in this model:

LE1(E) = E, (3.12)

LE2(E) = (E − Eref)
2, (3.13)

which are both possible to influence the eigenvalue evolution. For example, the
loss LE1 decreases the eigenvalue by a fixed amount at each iteration, since the
gradient of LE1 with respect to the eigenvalue E is constant and equal to 1.
The loss LE1 is not a traditional loss, as it is not null when the true eigenvalue is
found, but is useful to lower the eigenvalue during training. Otherwise, the loss
LE2 is more robust but it needs a reference energy Eref. The only requirement
is that this reference energy must be closer to the ground-state energy than
to any other valid eigenvalue. Therefore, LE2 allows to restrict the eigenvalue
range, and the width of such range can be tuned by the weight loss of LE2.
Interestingly, this same approach is generalizable to discover wavefunctions and
excited energies above the ground-state energy. Also the loss L(E) = exp(E),
suggested in [41], has been tested, but the evolution of the eigenvalue with this
loss is less stable than with other losses.

3.2.2 Training

The generic loss described in Eq. (2.7) takes the form

L(θ, E) = ωN LN (θ, E) + ωnorm Lnorm(θ) + ωE LE(E), (3.14)

and the goal of the training procedure is to minimize this loss. The initial values
of the NN parameters θ are given by the random Glorot uniform initializer [68].
The update rule for the network parameters θ is analogous to the update rule
of Eq. (2.8), and the update rule for the eigenvalue variable E is

E ←− E − η
∂L(θ, E)

∂E
, (3.15)

33

CHAPTER 3. QUANTUM SYSTEMS SIMULATIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

where η > 0 is the same learning rate used to update θ and is indicated without
any dependence on the training progress to simplify the notation. Actually, in
the present approach, the learning rate η is decreased during training as

η(s) = η(0) · [1 + s/∆s]−1 , (3.16)

where s ∈ [0, stot − 1] indicates the index of the current training iteration, stot

is the total number of training iterations, η(0) is the starting learning rate, and
∆s is the decay step parameter that characterizes the velocity of the decay. In
an iteration of the gradient descent algorithm, the loss (3.14) is calculated on
all the training points sampled within the computational domain Ω. This single
iteration is called “epoch”, in analogy with the terminology used in traditional
ML algorithms because the PINN learning algorithm computes the loss L(θ, E)

over all the training points. All the simulations are performed using the Adam
optimizer [44]. As already stated in the PDE loss defined above, the training
points are sampled following the Hammersley low-discrepancy sequence [64],
unless otherwise specified. Training points are resampled 10 times during the
whole training procedure.

34

Chapter 4

Results

This section is dedicated to the analysis of the results obtained with the PINN
architecture for the simulation of the H atom and of the H+

2 molecule. The
quality of the simulations is assessed by considering quantitative metrics, and
the results are compared with the values present in the literature.

4.1 Metrics and datasets

If a reference solution is defined as {ri,Ψi}i=1...Nr , the predictions of the PINN
evaluated at the same domain points are {ri,Ψθ(r

i)}i=1...Nr . The Mean Abso-
lute Error (MAE) of the wavefunction squared,

ϵL1 =
1

Nr

Nr∑
i=1

∣∣∣∣∣Ψθ(r
i)
∣∣2 − ∣∣Ψi

∣∣2∣∣∣ , (4.1)

is the metric used to evaluate the performance of the PINN models in this
thesis. The advantage of using this metric is that it has the same units of the
wavefunction squared, and this loss can be easily compared with the typical
values of the wavefunction.

The number of samples Nr typically depends on the available datasets. The
ground-state energy and the wavefunction of the H atom are known analyt-
ically, so Nr = 100 and Nr ∼ (50)3 uniformly distributed points have been
chosen to evaluate the metric in the one- and three-dimensional cases, respec-
tively. For the case of the hydrogen molecular ion, H+

2 , the predictions of our

35

CHAPTER 4. RESULTS

PINN have been compared with the prediction in [62]. This choice is moti-
vated by the excellent agreement between the energy predictions of [62] and
the reference energies reported in the literature [69], for different values of the
internuclear distance between the two nuclei of the H+

2 molecule. The dataset
for H+

2 has Nr = 150 points sampled along the line that passes through the
two nuclei.

The simulations are run on a NVIDIA Quadro RTX 5000 GPU with 16 GB
of memory. The training times are referred to simulations run with this setup.

36

CHAPTER 4. RESULTS

4.2 One-dimensional H atom

The first system to be investigated is the one-dimensional hydrogen atom. By
exploiting the angular symmetry of the problem, the Schrödinger equation
in Eq. (3.4) with Hamiltonian (3.2) can be simplified to the one-dimensional
equation [

−1

2

∂2

∂r2
− 1

r

]
R(r) = E R(r), (4.2)

defined in terms of the radial coordinate r = |r| and of the auxiliary radial
function R(r). The function R(r) depends on the total wavefunction Ψ(r) as
R(r) = rΨ(r) [1]. This auxiliary function is convenient because it avoids the
singularity at r = 0, since it is possible to demonstrate that R(r) must satisfy
limr→0+ R(r) = 0 to be a valid solution. Therefore, the boundary conditions are
that R(r) must vanish at the boundary of the domain [0,∞), which is restricted
to the computational domain Ω = [0, 10]. A parametrization of the type of
Eq. (3.8) ensures that R(r) vanishes at the boundary by construction. The
parametrized output of the network is indicated as Rθ(r), with the subscript
θ indicating the dependence on the network parameters. The normalization
condition is recast in terms of the radial function as

∫
Ω
dr [Rθ(r)]

2 = 1. The
analytical ground state solution is

R(r) = 2 r e−r, (4.3)

which corresponds to the ground state energy E = −0.5. Simulations of the
one-dimensional hydrogen atom use these references to assess the performance
of the PINN approach.

4.2.1 No eigenvalue estimation

The Schrödinger equation for the radial component of the wavefunction is first
solved by fixing the eigenvalue E to the analytical value of the ground state
energy, E = −0.5. Therefore, the Schrödinger eigenvalue equation becomes a
simpler one-dimensional equation that can be easily solved in the framework
of PINNs, as already demonstrated in the literature [61]. In this setup, the
loss is composed by the PDE loss LN and the normalization loss Lnorm.

The training of the PINN model gives the results of Fig. 4.1 and 4.2. The

37

CHAPTER 4. RESULTS

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5
Simulation
Analytical

(a) Radial function squared.

0 2 4 6 8 10

0

0.001

0.002

0.003

0.004

0.005

0.006

(b) Absolute error.

Figure 4.1: Results for the one-dimensional H atom with fixed eigenvalue.

absolute errors of Fig. 4.1b show a shape similar to the estimated wavefunction,
probably because the norm of the solution is different from 1. In fact, no final
rescaling of the solution is performed to keep the simulation results intact, but a
rescaling operation can surely increase the quality of the results. Furthermore,
the training is interrupted after 50k epochs, but the loss curves of Fig. 4.3
suggest that a longer training might benefit the accuracy of the trained model.

The final metrics are shown in the first row of Tab. 4.2.

4.2.2 With eigenvalue estimation

Hyperparameter Values
Initial energy [-1, -0.75, -0.5, -0.25]

Initialization period [0, 10k, 20k]

Table 4.1: Hyperparameters used to assess the importance of the initialization
energy for the one-dimensional H atom with eigenvalue estimation.

In this model, the eigenvalue E is a trainable variable, and its value evolves
during training. This model is substantially different from the one with eigen-
value fixed to E = −0.5, as the estimation of the eigenvalue adds an additional

38

CHAPTER 4. RESULTS

0 2 4 6 8 10

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

1 Simulation
Analytical

(a) Radial function squared (log scale).

0 2 4 6 8 10

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

(b) Absolute error (log scale).

Figure 4.2: Results for the one-dimensional H atom with fixed eigenvalue (log
scale).

layer of complexity to the usual PINN training. In fact, the updates of the
wavefunction parameters θ and the updates of E are deeply correlated. The
additional degree of freedom given by E allows the PINN to converge more
easily to a solution, but there is no guarantee that the final solution corre-
sponds to the lowest eigenvalue. In this context, the choice of the initialization
value of the energy variable is fundamental in determining the energy to which
the training converges. In the simulations of Fig. 4.4-4.6, the model converges
to the ground state solution if E = −1.0 is chosen as the initialization value
of the energy trainable variable.

A typical training of this model proceeds as follows. If the initialization
value of E is below the ground state energy, the first part of training shows
an increase in the value of E. During this first phase, the norm of the wave-
function is close to zero, as is visible in Fig. 4.5, where the normalization loss
is flat for the first ∼ 20k epochs. At the same time, the value of E slowly
increases. Until a valid eigenvalue is found, the PINN minimizes the total loss
by giving as output a wavefunction which norm is close to zero. Figure 4.6
shows the evolution of the trainable eigenvalue variable during training. The
same behavior has been observed in many experiments performed with this
one-dimensional model when E is fixed below the true ground state. When

39

CHAPTER 4. RESULTS

0 10k 20k 30k 40k 50k
10 −7

10 −6

10 −5

10 −4

10 −3

10 −2 PDE loss
Norm. loss

Epochs

Lo
ss

Figure 4.3: Evolution of PDE and normalization losses along epochs for the
one-dimensional H atom with fixed eigenvalue.

E approaches a valid eigenvalue, the model starts to learn the true ground
state wavefunction with the correct normalization. In Fig. 4.4a and 4.4b, the
squared wavefunction and the absolute errors with respect to the true solution
show that the results are comparable with the results of Sect. 4.2.1. The esti-
mation of the eigenvalue in the second row of Tab. 4.2 is computed as the mean
and the standard deviation of the E value in the last 20% training epochs.

Figure 4.7 shows the impact that a value of the initial energy has on the
simulation. Different experiments have been performed by fixing the energy
variable to the initialization value for 0, 10k, or 20k iterations. After this ini-
tialization period, the training is performed as usual, the only difference being
that the wavefunction starts from a different initialization than the random one
when the number of initialization epochs is greater than 0. The ϵL1 metrics in
Fig. 4.7a demonstrate that the initialization period does not impact the per-

40

CHAPTER 4. RESULTS

0 2 4 6 8 10

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

1 Simulation
Analytical

(a) Radial function squared (log scale).

0 2 4 6 8 10

10 −6

10 −5

10 −4

(b) Absolute error (log scale).

Figure 4.4: Results for the one-dimensional H atom with eigenvalue estimation
(log scale).

formance of the training procedure in one-dimensional problems. Instead, the
initial energy is of fundamental importance in determining the results of the
simulation. In fact, Fig. 4.7b clearly shows that for initial energies E ≤ −0.5,
the final energy is close to the true ground state energy E = −0.5. For initial
energies above this value, the eigenvalue tends to a value of E close to −0.125,
which is the energy of the first excited state of the hydrogen atom. Conse-
quently, also the ϵL1 metrics corresponding to the initial energy E = −0.25 are
two orders of magnitude higher than those from the other simulations, since a
solution associated with a different eigenvalue is discovered.

In synthesis, the current PINN architecture is able to simulate the one-
dimensional eigenvalue problem without the need to calculate the energy of the
wavefunction at each iteration. The simplicity of the one-dimensional problem
allows us to obtain good simulations without enforcing any of the eigenvalue
losses presented in Sect. 3.2.1. Any additional loss would further stabilize the
simulations and give more control over the dynamic of the eigenvalue [61]. The
one-dimensional eigenvalue simulations are highly dependent on the choice of
the initialization energy, which ultimately determines the eigenvalue of the
final solution. The selection of the correct eigenvalue might be enforced by
adding a Le2(E) = (E−Eref)

2 loss, which penalizes energies that are far away

41

CHAPTER 4. RESULTS

0 10k 20k 30k 40k 50k

10 −10
10 −9
10 −8
10 −7
10 −6
10 −5
10 −4
10 −3
10 −2
10 −1 PDE loss

Norm. loss

Epochs

Lo
ss

Figure 4.5: Evolution of PDE and normalization losses along epochs for the
one-dimensional H atom with eigenvalue estimation.

from the reference energy Eref. This approach works if Eref is closer to the
true energy than to any other energy in the spectrum, therefore, only partial
knowledge of the true energy is needed to enforce such a constraint.

ϵL1 E ∥Ψθ∥2N ′
f

Training time

Fig. 4.1-4.2 1.2 · 10−3 −0.5 (fixed) 1.012 30 s
Fig. 4.4 1.1 · 10−4 −0.49998± 0.00006 0.999 90 s

Table 4.2: Simulation metrics of the one-dimensional H atom.

42

CHAPTER 4. RESULTS

0 10k 20k 30k 40k 50k

−1

−0.9

−0.8

−0.7

−0.6

−0.5

Epochs
Figure 4.6: Evolution of eigenvalue along epochs for the one-dimensional H
atom.

4.3 Three-dimensional H atom

The next model under investigation is the three-dimensional hydrogen atom.
The Schrödinger equation in Eq. (3.4) is not simplified to a one-dimensional
equation as in the previous section, but the full three-dimensional problem is
considered to learn how a larger number of dimensions can impact the training
of the model. The Schrödinger equation is, therefore, identical to Eq. (3.4)
with Hamiltonian (3.2). The computational domain is Ω = [−10, 10]3 and the
wavefunction Ψθ(r) vanishes at the boundary. The normalization condition is∫
Ω
d3r |Ψθ(r)|2 = 1 and the analytical ground state solution is

Ψ(r) =
1√
π
e−|r|, (4.4)

43

CHAPTER 4. RESULTS

−1 −0.75 −0.5 −0.25

10 −4

10 −3

10 −2

10 −1
Initialization
epochs

0

10000

20000

Initial energy
(a) Metric ϵL1 as a function of the initial-
ization energy for different initialization
periods.

−1 −0.75 −0.5 −0.25

−0.5

−0.4

−0.3

−0.2

−0.1
Initialization
epochs

0

10000

20000

Initial energy
Fi

na
l e

ne
rg

y

(b) Correlation between initialization en-
ergy and final energy for different initial-
ization periods.

Figure 4.7: Importance of the initialization energy for the one-dimensional H
atom with eigenvalue estimation.

which corresponds to the ground state energy E = −0.5.

4.3.1 No eigenvalue estimation

The three-dimensional simulations of the hydrogen atom are more complex
than the one-dimensional simulations of the same system, as a larger domain
Ω is required and more domain points are needed to cover the entire domain.
As shown in Fig. 4.9a, the precision of the three-dimensional simulation de-
creases around the origin of the system, where the nucleus of the hydrogen
atom is located. Around this particular point, |r| = 0, the potential energy of
the electron becomes infinity and the wavefunction is not differentiable. This is
a common problem in quantum chemistry, and is aggravated in many-electrons
systems. In the simple case of one-electron systems, a slightly modified po-
tential can help to avoid divergences at the origin. In these simulations, the
potential within a cutoff distance rmin = 10−7 from the origin is fixed to the
value of the potential at |r| = rmin to avoid divergences.

Different simulations have been performed to assess whether simulation er-
rors at the origin are an effect of this modified potential or an intrinsic effect

44

CHAPTER 4. RESULTS

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(a) Nf = 3k, 5 dense layers.

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(b) Nf = 30k, 5 dense layers.

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(c) Nf = 300k, 5 dense layers.

Figure 4.8: Results for the three-dimensional H atom with fixed eigenvalue for
different numbers of domain points Nf . The other coordinates are x = 0, y = 0.

of the PINN approximations. Simulations presented in Fig. 4.8-4.9 explore the
effect of increasing the domain points or the number of NN dense layers on
the ability to correctly simulate the wavefunction at the origin. The results
confirm the expected behavior: more domain points and larger networks im-
prove the simulation results at the origin, but the training time consequently
increases (see Fig. 4.11 and the training times in Tab. 4.5). Figures 4.10a

45

CHAPTER 4. RESULTS

and 4.10b show a collection of ϵL1 metrics from different simulations. The
hyperparameters varied during these simulations are shown in Tab. 4.3. Sur-
prisingly, simulations performed with larger networks (i.e., with more dense
layers and/or more neurons per layer) are not always associated with better
results, but we expect that the repetition of those experiments would trace out
stochastic fluctuations. However, the trends observed in the data allow us to
prove that large values of Nf always increase the quality of the simulations.
In Fig. 4.10a, models with more neurons in each dense layer perform better
when the training data are sufficient (i.e., for Nf > 30k), while the PINN
model undergoes overfitting when training data are scarce. At the same time,
models with less neurons in each dense layer provide already good results for
Nf ∼ 3k compared to more complex models, but their quality improves only
slightly for larger Nf . A similar behavior can be observed in Fig. 4.10b, in
which the complexity of the model is tuned by increasing the depth of the
network, i.e., the number of dense layers. Similarly, the complex model under-
performs the two simpler models when Nf < 10k, while the ϵL1 error of the
complex model decreases monotonically for Nf ≥ 10k. The behavior of the
ϵL1 metrics of the models with 3 and 4 dense layers is, instead, less regular for
Nf ≥ 10k compared to the ϵL1 metrics of the model with 5 dense layers. The
first part of Table 4.5 shows that the best model is the one of Fig. 4.9c and 4.8c,
but is also the model that requires the longest training. Overall, the PINN
model has demonstrated its ability to correctly approximate the cusp in the
wavefunction at |r| = 0, provided that the network is large enough and that
enough domain points are sampled. Of course, increasing these two hyperpa-
rameters requires more computational resources for training, and therefore the
choice of hyperparameters must depend on the desired level of accuracy and of
the available resources. In more complex systems, an alternative to avoid the
rapid increase of required resources is to use approximations such as LCAO as
a baseline. Nevertheless, this study is fundamental to understand the typical
number of domain points and network sizes required to perform a simulation
in three-dimensional domains.

46

CHAPTER 4. RESULTS

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(a) Nf = 300k, 3 dense layers.

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(b) Nf = 300k, 4 dense layers.

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(c) Nf = 300k, 5 dense layers.

Figure 4.9: Results for the three-dimensional H atom with fixed eigenvalue for
different numbers of dense layers. The other coordinates are x = 0, y = 0.

4.3.2 With eigenvalue estimation

The same strategy used to estimate the radial solution of the hydrogen atom
in Sect. 4.2.2 is applied at first to the H atom simulations in three dimen-
sions. An example of these results are presented in Fig. 4.12a and 4.13a. The

47

CHAPTER 4. RESULTS

Hyperparameter Values
Nf [1k, 3k, 10k, 30k, 100k, 300k]

Dense layers [3, 4, 5]
Neurons per layer [64, 128, 256]

Table 4.3: Hyperparameters used to assess the importance of Nf and of the
network size for the three-dimensional atom with fixed eigenvalue.

1000 3000 10k 30k 100k 300k

10 −5

10 −4

Neurons
64

128

256

(a) Metric ϵL1 as a function of domain
points and neurons in each layer, for 3
dense layers.

1000 3000 10k 30k 100k 300k

10 −5

10 −4

Dense layers
3

4

5

(b) Metric ϵL1 as a function of domain
points and dense layers, for 64 neurons in
each layer.

Figure 4.10: Importance of Nf and network size for the three-dimensional H
atom with fixed eigenvalue.

PINN clearly learns a solution that is not the ground state solution, even
if the initial value of the energy variable is well below E = −0.5. In the
analogous one-dimensional simulations, the convergence value of E completely
depends on the initial value of the energy variable. Therefore, while in the one-
dimensional simulations the problem of convergence to an higher eigenvalue is
solved by initializing the energy variable to a value below E = −0.5, in the
three-dimensional simulations the simple initialization of the energy variable
is not enforcing any condition on the eigenvalue of convergence. Figure 4.14a
clearly shows that the eigenvalue converges in a fraction of the total iterations
to an high eigenvalue close to 0. Many experiments run with different learn-

48

CHAPTER 4. RESULTS

1000 3000 10k 30k 100k 300k

10 3

10 4

Dense layers
3

4

5

Figure 4.11: Training time as a function of domain points Nf and network
size, for 64 neurons in each layer and for the three-dimensional H atom with
fixed eigenvalue.

ing parameters and/or at different initialization energies always show a similar
eigenvalue dynamics.

We propose a strategy to improve the control on the eigenvalue dynamics,
and we use the results that demonstrate the validity of this strategy to have
precious insights on the training process. The strategy is to initialize the wave-
function at a low initial E for some number of epochs and then repeat the usual
training with the initialized wavefunction. The idea is that the random initial-
ization of the network parameters θ causes the initial random wavefunction
Ψθi

to randomly oscillate around the null value. The true energy associated
to such a random wavefunction is likely to be very close to E = 0, therefore,
in the early training steps the initialization value of E quickly tends to this
high energy thanks to the gradients derived from the PDE loss of Eq.(3.5).

49

CHAPTER 4. RESULTS

Hyperparameter Values
Initial energy [-1, -0.75, -0.5]

Initialization period [20k, 50k, 100k]
η(0) [0.0003, 0.001]
∆s [1k, 3k]

Table 4.4: Hyperparameters used to assess the importance of the wavefunction
initialization for the three-dimensional H atom with eigenvalue estimation.

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(a) Without initialization.

−10 −5 0 5 10
10 −5

10 −4

10 −3

10 −2

10 −1
Simulation
Analytical

(b) With 20k initialization epochs.

Figure 4.12: Results for the three-dimensional H atom with eigenvalue esti-
mation for different numbers of initialization epochs. The other coordinates
are x = −1, y = 0.

At the same time, a low initial value of E modifies the shape of the wave-
function towards a more compact wavefunction centered at the origin. After
a transient phase, these two effects compensates and the eigenvalue reaches
the convergence value. In the one-dimensional system, this effect is not visible
because the training is simple and the wavefunction converges quickly, while
in the three-dimensional system the convergence of the wavefunction is more
slow. Therefore, in three dimensions the initial random wavefunction causes E
to converge to an high value. A preliminary initialization of the wavefunction
can instead drive the wavefunction to be more compact around the origin, espe-
cially if the initialization value of E is well below the true ground state energy.

50

CHAPTER 4. RESULTS

−10 −5 0 5 10
−10

−5

0

5

10

−5

−4

−3

−2

−1

log10(Psi^2)

(a) Without initialization.

−10 −5 0 5 10
−10

−5

0

5

10

−5

−4

−3

−2

−1

log10(Psi^2)

(b) With 20k initialization epochs.

Figure 4.13: Wavefunction squared at z = 0 for the three-dimensional H atom
with eigenvalue estimation for different numbers of initialization epochs.

After this initialization phase, the eigenvalue variable is released and is more
likely to converge to the true ground state energy E = −0.5. Figure 4.12b and
4.13b show the results after a preliminary initialization of 20k epochs at the
value E = −1.0, and Fig. 4.14b shows that the eigenvalue oscillates around
E = −0.5 in the last part of training, and the eigenvalue variable is likely to
converge to the true value after a longer training. The second part of Table 4.5
clearly shows that the preliminary initialization of the wavefunction is able to
simplify the convergence of the simulation towards the correct ground-state
energy.

Different simulations have been performed to assess the effect of the simple
initialization of the wavefunction in the simulation results. Figure 4.15a shows
the effect of different initialization energies in the determination of the final
energy, with and without initialization of the wavefunction. Hyperparameters
used to perform these simulations are presented in Tab. 4.4. Interestingly,
while all uninitialized simulations converge to a final value of the energy close
to ∼ −0.1, the initialization process allows the convergence to the true value
for some values of the hyperparameters. By properly tuning these hyperpa-
rameters, it is possible to make the convergence to the true ground state more
robust, but our focus here is only on the demonstration of the beneficial effects

51

CHAPTER 4. RESULTS

0 20k 40k 60k 80k 100k

−1

−0.8

−0.6

−0.4

−0.2

0

Epochs
(a) Without initialization.

0 20k 40k 60k 80k 100k 120k

−1

−0.8

−0.6

−0.4

−0.2

0

Epochs
(b) With 20k initialization epochs.

Figure 4.14: Evolution of eigenvalue along epochs for the three-dimensional H
atom with eigenvalue estimation for different numbers of initialization epochs.

of the wavefunction initialization. Figure 4.16 shows the improvements of the
metric ϵL1 thanks to a preliminary initialization of the wavefunction. The dif-
ference of ϵL1 between the uninitialized and the initialized cases is interpreted
so that positive differences are associated with an improvement of the initial-
ized case over the uninitialized case. Figure 4.16 shows that, for the same
hyperparameters, the initialization of the wavefunction improves the quality
of the final solutions.

ϵL1 E ∥Ψθ∥2N ′
f

Training time

Fig. 4.8a 1.1 · 10−4

−0.5 (fixed)

0.180 10 min
Fig. 4.8b 9.5 · 10−6 0.963 40 min
Fig. 4.9a 2.0 · 10−5 0.970 230 min
Fig. 4.9b 7.7 · 10−6 0.966 310 min

Fig. 4.8c, 4.9c 4.5 · 10−6 0.966 400 min
Fig. 4.12a 2.2 · 10−4 −0.0328± 0.0003 0.969 25 min
Fig. 4.12b 1.1 · 10−5 −0.492± 0.007 0.963 15 min

Table 4.5: Simulation metrics of the three-dimensional H atom.

52

CHAPTER 4. RESULTS

−1 −0.75 −0.5
−1

−0.8

−0.6

−0.4

−0.2

0

Energy estimation
strategy

None

initialize

Initial energy

Fi
na

l e
ne

rg
y

(a) Correlation between initial energy and
final energy. Initialized for 100k epochs.

−0.5 −0.25 0

10 −5

10 −4

Energy estimation
strategy

None

initialize

Final energy
(b) Correlation between final energy and
ϵL1 metric. Initialized for 100k epochs.

Figure 4.15: Effect of wavefunction initialization for the three-dimensional H
atom with eigenvalue estimation. Different points with the same symbol are
associated with different η(0) and ∆s (both plots) and different initial energies
(only right plot), see Tab. 4.4.

4.4 Importance of training distributions

Hyperparameter Values
Nf [1k, 2k, 3k, 5k, 10k, 20k, 30k, 50k, 100k]

Training distribution [Hammersley, uniform, pseudorandom]

Table 4.6: Hyperparameters used to assess the importance of the training point
distribution in the estimation of ∥Ψθ∥2 for the three-dimensional H atom with
fixed eigenvalue.

An evaluation of the norm estimation and of the quality of the final so-
lutions is performed for different training distributions. The use-case under
evaluation is the three-dimensional hydrogen atom, and the training focuses
on the solution with known eigenvalue, i.e., on the same model of Sect. 4.3.1.
Compatibly with the definition in Sect. 3.2.1, the squared norm of the wave-
function computed at each training iteration is denoted as ∥Ψθ∥2Nf

. As already
described, the normalization loss Lnorm depends on the estimation of ∥Ψθ∥2Nf

in each training iteration. Since the estimation of the norm has to be repeated

53

CHAPTER 4. RESULTS

0 10 20 30

−200μ

−150μ

−100μ

−50μ

0

50μ

100μ

150μ

200μ

Initialization
period

20000

50000

100000

Index
Figure 4.16: Difference of metrics ϵL1 with and without initialization for the
three-dimensional H atom with eigenvalue estimation. For the experiments
without initialization, the “initialization period” variable has no effect.

many times, using a low number of domain points Nf is more convenient to
decrease the training time, but at the same time it decreases the quality of the
approximation ∥Ψθ∥2 ≈ ∥Ψθ∥2Nf

. A large Nf is better in terms of the quality
of the norm approximation, but significantly increases the training time. A
trade-off must be found between these two extremes.

In these experiments, at the end of the training, the squared norm of
the final wavefunction is evaluated on a larger number of domain points
N ′

f , with N ′
f ≫ Nf . For the present simulations, the norm squared ∥Ψθ∥2N ′

f

is considered as the “true” squared norm of the wavefunction and is used
as a reference to assess the quality of ∥Ψθ∥2Nf

. The reference ∥Ψθ∥2N ′
f

is
computed on a regular grid of N ′

f = 1003 = 106 domain points using the same
approximation of Eq. (3.10). This simplistic approach is motivated by its

54

CHAPTER 4. RESULTS

10 2 10 3 10 4 10 5

10 −5

10 −4

Distribution
Hammersley

pseudo

uniform

Figure 4.17: Metric ϵL1 as a function of domain points Nf for different distribu-
tions of training points for the three-dimensional H atom with fixed eigenvalue.

good performance relative to other more sophisticated integration routines.
For the simulations of this thesis, the reference ∥Ψθ∥2N ′

f
has demonstrated a

similar performance to SciPy integration routines, with relative differences
≤ 0.1% , while taking only a fraction of the evaluation time. At the same
time, the typical relative differences between ∥Ψθ∥2Nf

and ∥Ψθ∥2N ′
f

are of the
order of ∼ 3%, and thus ∥Ψθ∥2N ′

f
is considered a good estimation of the true

squared norm ∥Ψθ∥2 of the wavefunction.

Figures 4.17-4.19 show the relations between the number of domain points
Nf , the squared norm ∥Ψθ∥2N ′

f
of the final wavefunction evaluated on N ′

f = 106

domain points, and the ϵL1 metric with respect to the analytical solution. The
relative error on the norm estimation, presented in Fig. 4.19b in absolute value,
is defined as (∥Ψθ∥2Nf

−∥Ψθ∥2N ′
f
)/∥Ψθ∥2N ′

f
. The hyperparameters used in these

55

CHAPTER 4. RESULTS

0.2 0.4 0.6 0.8 1 1.2 1.4

10 −5

10 −4

Distribution
Hammersley

pseudo

uniform

Figure 4.18: Correlation between the metric ϵL1 and the norm squared ∥Ψθ∥2N ′
f

for different distributions of training points for the three-dimensional H atom
with fixed eigenvalue. Different points with the same symbol are associated
with different Nf , see Tab. 4.6.

simulations are described in Tab. 4.6. The “Hammersley” distribution samples
the training points in Ω according to the low-discrepancy Hammersley sequence
[64], the “uniform” distribution samples the points in a regular grid, and the
“pseudo” distribution samples the training points randomly. Figure 4.17 shows
that the best simulations, evaluated in terms of the metric ϵL1, are obtained
with the Hammersley distribution. The metrics of the simulations performed
with Hammersley decrease monotonically when the number of domain points
increases, but this trend stops for Nf ≥ 20k domain points. A similar pattern
is also observed for the pseudorandom distribution, but with higher metrics
with respect to the Hammersley simulations with the same hyperparameters.
Instead, no clear pattern is observable for the simulations with “uniform” do-

56

CHAPTER 4. RESULTS

10 3 10 4 10 5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Distribution
Hammersley

pseudo

uniform

(a) Norm squared ∥Ψθ∥2N ′
f
.

1000 10k 100k

10 −3

10 −2

10 −1

1

Distribution
Hammersley

pseudo

uniform

(b) Relative error of ∥Ψθ∥2Nf
≈ ∥Ψθ∥2N ′

f
.

Figure 4.19: Quality of the norm estimation as a function of Nf and training
point distribution for the three-dimensional H atom with fixed eigenvalue.

main points distribution. A possible explanation is that, for large values of Nf ,
the benefits of increasing the domain points are saturated and other factors
limit the further improvement of the model. Figure 4.18 demonstrates that the
simulations with the best metric are also the simulations with ∥Ψθ∥2N ′

f
closer

to 1. The simulations performed with the Hammersley distribution have, on
average, a squared norm that is closer to 1 than the simulations performed
with other distributions (see Fig. 4.19a). The relative error (in absolute value)
of the approximation ∥Ψθ∥2Nf

≈ ∥Ψθ∥2N ′
f

is instead depicted in Fig. 4.19b for
different distributions. This picture allows us to understand how the preci-
sion on the estimation of the true squared norm ∥Ψθ∥2 (evaluated at the end
of training over N ′

f samples, as explained above) scales with the number of
domain points Nf . While the uniform distribution simulations always com-
mit an error ≥ 10% on the estimation of the norm, the pseudorandom and
Hammersley distributions reach precisions of a few percents for large values of
Nf . The non-monotonic behavior over the number of domain points Nf that
characterizes Fig. 4.19b might be corrected by taking averages over different
repetitions of the experiments.

In synthesis, Fig. 4.17-4.19 support the choice of the Hammersley distribu-
tion to sample training points.

57

CHAPTER 4. RESULTS

4.5 Three-dimensional H+
2 molecule

Finally, the knowledge acquired on the H atom models are applied to the three-
dimensional hydrogen molecular ion H+

2 . The Hamiltonian (3.3) describes the
physical system. We fix the positions of the nuclei to R1,2 = (±R, 0, 0), where
R is defined as half the internuclear distance. The computational domain is
Ω = [−10, 10]3 and the wavefunction Ψθ(r) vanishes at the boundary. The
normalization condition is

∫
Ω
d3r |Ψθ(r)|2 = 1. No analytical solutions of this

system exist, so we use the simulations in the quantum chemistry literature as
a reference. In particular, the table in [69] is used as a reference for the energy,
and the wavefunctions of [62], evaluated along the internuclear line, are used
as a reference solution. To simplify convergence, the LCAO approximation
is used to give a baseline for the wavefunction and the network is trained
to learn the corrections to this approximation. Given the nonexistence of
analytical solutions of this system, only the study of the eigenvalue problem is
performed.

4.5.1 Eigenvalue estimation

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25
Simulation
Reference

(a) R = 1.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25
Simulation
Reference

(b) R = 2.

Figure 4.20: Results for the three-dimensional H+
2 molecule with eigenvalue

estimation for different internuclear distances. The other coordinates are y =
0, z = 0.

58

CHAPTER 4. RESULTS

−10 −5 0 5 10
−10

−5

0

5

10

−5

−4

−3

−2

−1

log10(Psi^2)

(a) R = 1.

−10 −5 0 5 10
−10

−5

0

5

10

−5

−4

−3

−2

−1

log10(Psi^2)

(b) R = 2.

Figure 4.21: Wavefunction squared at z = 0 for the three-dimensional H+
2

molecule with eigenvalue estimation for different internuclear distances.

After the demonstration in Sect. 4.3.2 that a preliminary initialization of
the wavefunction is beneficial in three-dimensional systems, this section is de-
voted to the solution of the eigenvalue equation with the eigenvalue controlled
by the loss Le2(E) = (E − Eref)

2, defined in Eq. (3.13). The main difference
of this strategy with respect to the initialization strategy is that the use of
a quadratic loss on the eigenvalue requires the knowledge of a reference en-
ergy Eref to which the eigenvalue E is kept close. In the hydrogen atom case,
the reference energy is also the true analytical energy, but in more complex
systems, such as H+

2 , approximate energies are valid candidates for Eref. In
fact, the true ground state energies differ from the energies predicted by the
Hartree-Fock or LCAO approximations only by a small fraction of the total
energy. Using these approximations as a reference value and properly tuning
the loss weight ωE corresponding to Le2, the width of the explored eigenvalue
range can be tuned. A large value of ωE tends to restrict the explored range
of eigenvalues considerably, and thus the true ground state energy might be
penalized if the range is too narrow. Instead, a small value of ωE tends to
enlarge the explored range of eigenvalues, and more than one valid eigenvalues
can be found in such a large range. Therefore, the choice of ωE is a crucial hy-
perparameter. Other losses similar to Le2 can be designed to satisfy particular

59

CHAPTER 4. RESULTS

0 50k 100k 150k 200k
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

Epochs
(a) R = 1.

0 50k 100k 150k 200k
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

Epochs
(b) R = 2.

Figure 4.22: Evolution of eigenvalue along epochs for the three-dimensional
H+

2 molecule with eigenvalue estimation for different internuclear distances.

0 50k 100k 150k 200k

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2
PDE loss
Norm. loss
Eigenv. loss

Epochs

Lo
ss

(a) R = 1.

0 50k 100k 150k 200k

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2
PDE loss
Norm. loss
Eigenv. loss

Epochs

Lo
ss

(b) R = 2.

Figure 4.23: Evolution of PDE, normalization, and eigenvalue losses along
epochs for the three-dimensional H+

2 molecule with eigenvalue estimation for
different internuclear distances.

constraints on E. For example, if Eref is an upper limit for the true ground
state energy, an asymmetric loss can penalize the eigenvalues above this refer-
ence energy more strongly. However, the width of the eigenvalue needs to be

60

CHAPTER 4. RESULTS

tuned for every choice of the eigenvalue loss.
Figures 4.20 and 4.21 show the results of the simulations for R = 1 and

R = 2. Comparisons in Fig. 4.20 with the reference solutions obtained by [62]
show that our simulations are compatible with the reference solution, even
if the simulation with R = 1 slightly overestimates the electron density in
the region between the two nuclei. This effect is less visible for the R = 2

simulations, as the LCAO baseline becomes more correct for more distant
nuclei. However, the planar distributions of Fig. 4.21 taken at the z = 0

plane show an opposite pattern. In fact, the distribution of Fig. 4.21a has the
desired shape on the z = 0 plane, while the distribution of Fig. 4.21b shows
two additional lobes on the same plane. This inaccuracy is probably caused by
a wrong estimation of the eigenvalue for R = 2, as happens in the simulation
of Fig. 4.13a, but in this case the error is mitigated by the presence of the
LCAO baseline. As expected, the final eigenvalue for R = 2 overestimates
the value in the literature by approximately 2%, while the final eigenvalue for
R = 1 underestimates the value in the literature by 1%. Simulations have been
carried out using the energy values in the literature as a reference energy for
the loss Le2, to simplify the training as much as possible. Figure 4.22 shows
the evolution of the losses for the two values of R. In both plots, the eigenvalue
curve has a transient behaviour in which tends to increase the eigenvalue, but
after this phase the curve stabilizes. Also, both of the curves start drifting to
the direction of the true eigenvalue (either up or down), so the discrepancies
with respect to the literature energies can be in principle reduced with a longer
training. Also, the effect of the loss weight ωE has not been explored for the
current simulations, but we can expect to improve the quality of the current
H+

2 simulations with a dedicated hyperparameter tuning.

ϵL1 Eref E ∥Ψθ∥2N ′
f

Training time

Fig. 4.20a 2.5 · 10−3 −1.103 −1.115± 0.001 0.975 230 min
Fig. 4.20b 1.7 · 10−3 −0.7961 −0.7810± 0.0006 0.970 230 min

Table 4.7: Simulation metrics of the three-dimensional H+
2 .

61

CHAPTER 4. RESULTS

62

Chapter 5

Conclusions and Outlooks

In this thesis, a physics-informed architecture is proposed to simulate the
Schrödinger equation for one-electron quantum systems with a data-free ap-
proach.

The simulations of the radial one-dimensional Schrödinger equation for the
hydrogen atom demonstrate that the proposed architecture can easily solve
one-dimensional quantum problems. With the addition of a trainable variable,
the traditional physics-informed approach is extended to retrieve the eigenvalue
of the simulated wavefunction, effectively requiring only partial information
on the eigenvalue to be able to simulate the system. This additional trainable
variable increases the potentiality of the network. Still, it also complicates the
training process as many wavefunctions corresponding to different eigenvalues
become valid solutions associated with local minima in the loss landscape. A
practical way to simplify convergence to the ground state wavefunction in our
one-dimensional problem is to choose a sufficiently low initial eigenvalue, but
this strategy might not be as robust in more complicated systems.

The possibility of simulating the three-dimensional Schrödinger equation
for the hydrogen atom has also been demonstrated with the proposed architec-
ture. The problem is more complex, even if the underlying system is the same,
and these simulations are used to understand the difficulties encountered when
scaling up the number of dimensions. In particular, the three-dimensional
problem with fixed eigenvalue has a divergence at the position of the nucleus.
Therefore, the precision of the neural network predictions decreases in proxim-
ity to this point. The precision of the simulations improves when the number

63

CHAPTER 5. CONCLUSIONS AND OUTLOOKS

of network parameters increases and when more training data are sampled
inside the computational domain. Thus, the inaccuracies can be alleviated
with more computational resources. Similarly to the one-dimensional case,
the three-dimensional model with fixed eigenvalue is generalized to estimate
the eigenvalue of the solution. The convergence is less robust than in the one-
dimensional case, and initializing the eigenvalue variable to a low value does
not work in this scenario. The solution is to freeze the eigenvalue for some
number of epochs, and it is demonstrated that the quality of the solutions
improves.

Finally, the more complex system simulated in this thesis is the hydrogen
molecule ion, composed of two protons and one electron. The simulations
are greatly simplified by using the Linear Combination of Atomic Orbitals
solution as a baseline and by learning the difference from this solution. For
this reason, no initialization of the wavefunction is required to converge close
to the true eigenvalue when a baseline wavefunction is provided. Instead, the
evolution of the eigenvalue is controlled by adding a loss term to restrict the
possible eigenvalues. The results of the hydrogen molecular ion are promising
but still require more careful analysis to reach the same performance obtained
in the simulations of the hydrogen atom in three dimensions.

The natural next step in simulating quantum systems with a physics-
informed neural network is the generalization to systems with more than one
electron. The physics-informed approach presented in this thesis requires some
modifications to be adapted to many-electron systems, such as a neural net-
work architecture designed explicitly for the many-electron problem. Previous
work in the literature might inspire the design of such architectures [19, 28].
Moreover, when many electrons are added to the system, an efficient and dif-
ferentiable integration strategy is required to evaluate the normalization loss.
The current integration approach is fast and accurate for the systems treated in
this thesis. Still, a careful performance analysis in more than three dimensions
is required to assess its scalability. The stability of the eigenvalue estima-
tion can be enhanced by implementing more sophisticated networks with more
parameters, as suggested in other works [62].

Overall, the idea of implementing physics-informed learning into ab initio

64

CHAPTER 5. CONCLUSIONS AND OUTLOOKS

simulations of quantum systems promises to increase the efficiency and flexi-
bility of the simulations, but the research is currently at an early stage. More
research in this field will lead to further advances in exploiting physics-informed
principles and increase the efficiency of quantum systems simulations.

65

CHAPTER 5. CONCLUSIONS AND OUTLOOKS

66

Bibliography

[1] David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Me-
chanics. 3rd ed. Cambridge University Press, 2018. isbn: 9781316995433.

[2] W. Heisenberg. “Über quantentheoretische Umdeutung kinematischer
und mechanischer Beziehungen.” In: Zeitschrift für Physik 33 (1925),
pp. 879–893. doi: 10.1007/BF01328377.

[3] E. Schrödinger. “An Undulatory Theory of the Mechanics of Atoms and
Molecules”. In: Phys. Rev. 28 (6 1926), pp. 1049–1070. doi: 10.1103/
PhysRev.28.1049.

[4] David J. Thouless. The quantum mechanics of many-body systems.
Courier Corporation, 2014. isbn: 978-0126915600.

[5] Alexander L. Fetter and John Dirk Walecka. Quantum theory of many-
particle systems. Courier Corporation, 2012. isbn: 9780070206533.

[6] Norbert Nemec. “Diffusion Monte Carlo: Exponential scaling of com-
putational cost for large systems”. In: Physical Review B 81.3 (2010),
p. 035119. doi: https://doi.org/10.1103/PhysRevB.81.035119.

[7] Brian L. Hammond, William A. Lester Jr, and Peter James Reynolds.
Monte Carlo methods in ab initio quantum chemistry. World Scientific,
1994. isbn: 9789810203221.

[8] W. Kohn and L.J. Sham. “Self-Consistent Equations Including Exchange
and Correlation Effects”. In: Phys. Rev. 140 (4A 1965), A1133–A1138.
doi: 10.1103/PhysRev.140.A1133.

[9] R.G. Parr and Y. Weitao. Density-Functional Theory of Atoms and
Molecules. International Series of Monographs on Chemistry. Oxford Uni-
versity Press, 1994. isbn: 9780195357738.

67

https://doi.org/10.1007/BF01328377
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRev.140.A1133

BIBLIOGRAPHY

[10] Román Orús. “A practical introduction to tensor networks: Matrix prod-
uct states and projected entangled pair states”. In: Annals of Physics 349
(2014), pp. 117–158. doi: https://doi.org/10.1016/j.aop.2014.06.
013.

[11] Simone Montangero. Introduction to tensor network methods : numerical
simulations of low-dimensional many-body quantum systems. Springer
Cham, Switzerland, 2018. isbn: 9783030014094.

[12] Isaac E. Lagaris, Aristidis Likas, and Dimitrios I. Fotiadis. “Artificial
neural network methods in quantum mechanics”. In: Computer Physics
Communications 104.1-3 (1997), pp. 1–14. doi: https://doi.org/10.
1016/S0010-4655(97)00054-4.

[13] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, et al. “Machine learning
and the physical sciences”. In: Reviews of Modern Physics 91.4 (2019),
p. 045002. doi: https://doi.org/10.1103/RevModPhys.91.045002.

[14] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body
problem with artificial neural networks”. In: Science 355.6325 (2017),
pp. 602–606. doi: https://doi.org/10.1126/science.aag2302.

[15] Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. “Physics-
informed neural networks: A deep learning framework for solving for-
ward and inverse problems involving nonlinear partial differential equa-
tions”. In: Journal of Computational physics 378 (2019), pp. 686–707.
doi: https://doi.org/10.1016/j.jcp.2018.10.045.

[16] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, et al. “Physics-
informed machine learning”. In: Nature Reviews Physics 3.6 (2021),
pp. 422–440. doi: https://doi.org/10.1038/s42254-021-00314-5.

[17] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
et al. “Automatic Differentiation in Machine Learning: a Survey”. In:
Journal of Machine Learning Research 18.153 (2018), pp. 1–43. url:
http://jmlr.org/papers/v18/17-468.html.

[18] Paul Adrien Maurice Dirac. “Quantum mechanics of many-electron sys-
tems”. In: Proceedings of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical and Physical Character 123.792 (1929),
pp. 714–733. doi: https://doi.org/10.1098/rspa.1929.0094.

68

https://doi.org/https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/https://doi.org/10.1016/S0010-4655(97)00054-4
https://doi.org/https://doi.org/10.1016/S0010-4655(97)00054-4
https://doi.org/https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/https://doi.org/10.1126/science.aag2302
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1038/s42254-021-00314-5
http://jmlr.org/papers/v18/17-468.html
https://doi.org/https://doi.org/10.1098/rspa.1929.0094

BIBLIOGRAPHY

[19] David Pfau, James S. Spencer, Alexander G.D.G. Matthews, et al. “Ab
initio solution of the many-electron Schrödinger equation with deep neu-
ral networks”. In: Physical Review Research 2.3 (2020), p. 033429. doi:
https://doi.org/10.1103/PhysRevResearch.2.033429.

[20] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In:
Annalen der Physik 389.20 (1927), pp. 457–484. doi: https://doi.
org/10.1002/andp.19273892002.

[21] W.M.C. Foulkes, Lubos Mitas, R.J. Needs, et al. “Quantum Monte Carlo
simulations of solids”. In: Reviews of Modern Physics 73.1 (2001), p. 33.
doi: https://doi.org/10.1103/RevModPhys.73.33.

[22] John A. Pople and Robert K. Nesbet. “Self-consistent orbitals for rad-
icals”. In: The Journal of Chemical Physics 22.3 (1954), pp. 571–572.
doi: https://doi.org/10.1063/1.1740120.

[23] Ingrid von Glehn, James S. Spencer, and David Pfau. A Self-Attention
Ansatz for Ab-initio Quantum Chemistry. 2023. arXiv: 2211 . 13672
[physics.chem-ph].

[24] Robert Jastrow. “Many-body problem with strong forces”. In: Physical
Review 98.5 (1955), p. 1479. doi: https://doi.org/10.1103/PhysRev.
98.1479.

[25] Richard P. Feynman and Michael Cohen. “Energy spectrum of the exci-
tations in liquid helium”. In: Physical Review 102.5 (1956), p. 1189. doi:
https://doi.org/10.1103/PhysRev.102.1189.

[26] Jiequn Han, Linfeng Zhang, and E. Weinan. “Solving many-electron
Schrödinger equation using deep neural networks”. In: Journal of Com-
putational Physics 399 (2019), p. 108929. doi: https://doi.org/10.
1016/j.jcp.2019.108929.

[27] Kenny Choo, Antonio Mezzacapo, and Giuseppe Carleo. “Fermionic
neural-network states for ab-initio electronic structure”. In: Nature
communications 11.1 (2020), p. 2368. doi: https://doi.org/10.1038/
s41467-020-15724-9.

69

https://doi.org/https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/https://doi.org/10.1002/andp.19273892002
https://doi.org/https://doi.org/10.1002/andp.19273892002
https://doi.org/https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/https://doi.org/10.1063/1.1740120
https://arxiv.org/abs/2211.13672
https://arxiv.org/abs/2211.13672
https://doi.org/https://doi.org/10.1103/PhysRev.98.1479
https://doi.org/https://doi.org/10.1103/PhysRev.98.1479
https://doi.org/https://doi.org/10.1103/PhysRev.102.1189
https://doi.org/https://doi.org/10.1016/j.jcp.2019.108929
https://doi.org/https://doi.org/10.1016/j.jcp.2019.108929
https://doi.org/https://doi.org/10.1038/s41467-020-15724-9
https://doi.org/https://doi.org/10.1038/s41467-020-15724-9

BIBLIOGRAPHY

[28] Jan Hermann, Zeno Schätzle, and Frank Noé. “Deep-neural-network solu-
tion of the electronic Schrödinger equation”. In: Nature Chemistry 12.10
(2020), pp. 891–897. doi: https://doi.org/10.1038/s41557-020-
0544-y.

[29] Honghui Shang, Chu Guo, Yangjun Wu, et al. Solving Schrödinger Equa-
tion with a Language Model. 2023. arXiv: 2307.09343 [quant-ph].

[30] Les Atlas, Toshiteru Homma, and Robert Marks. “An Artificial Neural
Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme
Classification”. In: Neural Information Processing Systems. Ed. by D.
Anderson. American Institute of Physics, 1987.

[31] Yann LeCun and Yoshua Bengio. “Convolutional Networks for Images,
Speech, and Time Series”. In: The Handbook of Brain Theory and Neu-
ral Networks. Cambridge, MA, USA: MIT Press, 1998, 255–258. isbn:
0262511029.

[32] R. Venkatesan and B. Li. Convolutional Neural Networks in Visual Com-
puting: A Concise Guide. Data-Enabled Engineering. CRC Press, 2017.
isbn: 9781498770408.

[33] Xue Ying. “An Overview of Overfitting and its Solutions”. In: vol. 1168.
2. IOP Publishing, 2019, p. 022022. doi: 10.1088/1742-6596/1168/2/
022022.

[34] Michael M. Bronstein, Joan Bruna, Yann LeCun, et al. “Geometric deep
learning: going beyond euclidean data”. In: IEEE Signal Processing Mag-
azine 34.4 (2017), pp. 18–42. doi: 10.1109/MSP.2017.2693418.

[35] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, et al. “Gauge equivari-
ant convolutional networks and the icosahedral CNN”. In: International
conference on Machine learning. PMLR. 2019, pp. 1321–1330.

[36] Pengzhan Jin, Zhen Zhang, Aiqing Zhu, et al. “SympNets: Intrinsic
structure-preserving symplectic networks for identifying Hamilto-
nian systems”. In: Neural Networks 132 (2020), pp. 166–179. doi:
https://doi.org/10.1016/j.neunet.2020.08.017.

70

https://doi.org/https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/https://doi.org/10.1038/s41557-020-0544-y
https://arxiv.org/abs/2307.09343
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/https://doi.org/10.1016/j.neunet.2020.08.017

BIBLIOGRAPHY

[37] Zeyu Liu, Yantao Yang, and Qingdong Cai. “Neural network as a func-
tion approximator and its application in solving differential equations”.
In: Applied Mathematics and Mechanics 40.2 (2019), pp. 237–248. doi:
https://doi.org/10.1007/s10483-019-2429-8.

[38] Pola Lydia Lagari, Lefteri H. Tsoukalas, Salar Safarkhani, et al. “Sys-
tematic construction of neural forms for solving partial differential equa-
tions inside rectangular domains, subject to initial, boundary and in-
terface conditions”. In: International Journal on Artificial Intelligence
Tools 29.05 (2020), p. 2050009. doi: https://doi.org/10.1142/
S0218213020500098.

[39] Isaac E. Lagaris, Aristidis Likas, and Dimitrios I. Fotiadis. “Artificial
neural networks for solving ordinary and partial differential equations”.
In: IEEE transactions on neural networks 9.5 (1998), pp. 987–1000. doi:
https://doi.org/10.1109/72.712178.

[40] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, et al.
“Physics-constrained deep learning for high-dimensional surrogate mod-
eling and uncertainty quantification without labeled data”. In: Journal
of Computational Physics 394 (2019), pp. 56–81. doi: https://doi.
org/10.1016/j.jcp.2019.05.024.

[41] Henry Jin, Marios Mattheakis, and Pavlos Protopapas. Unsupervised
Neural Networks for Quantum Eigenvalue Problems. 2020. arXiv: 2010.
05075 [physics.comp-ph].

[42] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rec-
tifier neural networks”. In: Proceedings of the fourteenth international
conference on artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings. 2011, pp. 315–323.

[43] Dan Hendrycks and Kevin Gimpel. “Gaussian Error Linear Units
(GELUs)”. In: (2023). arXiv: 1606.08415 [cs.LG].

[44] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

71

https://doi.org/https://doi.org/10.1007/s10483-019-2429-8
https://doi.org/https://doi.org/10.1142/S0218213020500098
https://doi.org/https://doi.org/10.1142/S0218213020500098
https://doi.org/https://doi.org/10.1109/72.712178
https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.024
https://arxiv.org/abs/2010.05075
https://arxiv.org/abs/2010.05075
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[45] Liu Yang, Xuhui Meng, and George Em Karniadakis. “B-PINNs:
Bayesian physics-informed neural networks for forward and inverse PDE
problems with noisy data”. In: Journal of Computational Physics 425
(2021), p. 109913. doi: https://doi.org/10.1016/j.jcp.2020.
109913.

[46] Martín Abadi, Paul Barham, Jianmin Chen, et al. “TensorFlow: a sys-
tem for Large-Scale machine learning”. In: 12th USENIX symposium on
operating systems design and implementation (OSDI 16). 2016, pp. 265–
283.

[47] Adam Paszke, Sam Gross, Francisco Massa, et al. “PyTorch: An Im-
perative Style, High-Performance Deep Learning Library”. In: Advances
in Neural Information Processing Systems. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, et al. Vol. 32. Curran Associates, Inc., 2019.

[48] Raul González-García, Ramiro Rico-Martìnez, and Ioannis G.
Kevrekidis. “Identification of distributed parameter systems: A neural
net based approach”. In: Computers & chemical engineering 22 (1998),
S965–S968. doi: https://doi.org/10.1016/S0098-1354(98)00191-4.

[49] R. Rico-Martinez, I. Kevrekidis, and K. Krischer. Nonlinear system iden-
tification using neural networks: dynamics and instabilities. 1995.

[50] Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, et al. Tackling
the Curse of Dimensionality with Physics-Informed Neural Networks.
2023. arXiv: 2307.12306 [cs.LG].

[51] Rafael Bischof and Michael Kraus. “Multi-Objective Loss Balancing
for Physics-Informed Deep Learning”. In: (2021). arXiv: 2110 . 09813
[cs.LG].

[52] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, et al. “Characteriz-
ing possible failure modes in physics-informed neural networks”. In: Ad-
vances in Neural Information Processing Systems 34 (2021), pp. 26548–
26560.

[53] Stefano Markidis. “The old and the new: Can physics-informed deep-
learning replace traditional linear solvers?” In: Frontiers in big Data 4
(2021), p. 669097. doi: 10.3389/fdata.2021.669097.

72

https://doi.org/https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00191-4
https://arxiv.org/abs/2307.12306
https://arxiv.org/abs/2110.09813
https://arxiv.org/abs/2110.09813
https://doi.org/10.3389/fdata.2021.669097

BIBLIOGRAPHY

[54] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, et al.
“Scientific machine learning through physics–informed neural networks:
Where we are and what’s next”. In: Journal of Scientific Computing 92.3
(2022), p. 88. doi: https://doi.org/10.1007/s10915-022-01939-z.

[55] Francois Chollet. Keras. 2015. url: https://github.com/fchollet/
keras.

[56] Roy Frostig, Matthew James Johnson, and Chris Leary. “Compiling ma-
chine learning programs via high-level tracing”. In: Systems for Machine
Learning 4.9 (2018).

[57] Lu Lu, Xuhui Meng, Zhiping Mao, et al. “DeepXDE: A deep learning
library for solving differential equations”. In: SIAM review 63.1 (2021),
pp. 208–228. doi: 10.1137/19M1274067.

[58] Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, et al.
“NVIDIA SimNet™: An AI-accelerated multi-physics simulation frame-
work”. In: International conference on computational science. Springer.
Springer International Publishing, 2021, pp. 447–461. doi: https://
doi.org/10.1007/978-3-030-77977-1_36.

[59] Feiyu Chen, David Sondak, Pavlos Protopapas, et al. “Neurodiffeq: A
python package for solving differential equations with neural networks”.
In: Journal of Open Source Software 5.46 (2020), p. 1931. doi: https:
//doi.org/10.21105/joss.01931.

[60] Kailai Xu and Eric Darve. “ADCME: Learning Spatially-varying Physi-
cal Fields using Deep Neural Networks”. In: (2020). arXiv: 2011.11955
[math.NA].

[61] Henry Jin, Marios Mattheakis, and Pavlos Protopapas. “Physics-
Informed Neural Networks for Quantum Eigenvalue Problems”. In: 2022
International Joint Conference on Neural Networks (IJCNN). 2022,
pp. 1–8. doi: 10.1109/IJCNN55064.2022.9891944.

[62] Marios Mattheakis, Gabriel R. Schleder, Daniel T. Larson, et al. First
principles physics-informed neural network for quantum wavefunctions
and eigenvalue surfaces. 2022. arXiv: 2211.04607 [cs.LG].

73

https://doi.org/https://doi.org/10.1007/s10915-022-01939-z
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1137/19M1274067
https://doi.org/https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/https://doi.org/10.21105/joss.01931
https://doi.org/https://doi.org/10.21105/joss.01931
https://arxiv.org/abs/2011.11955
https://arxiv.org/abs/2011.11955
https://doi.org/10.1109/IJCNN55064.2022.9891944
https://arxiv.org/abs/2211.04607

BIBLIOGRAPHY

[63] Shengze Cai, Zhicheng Wang, Frederik Fuest, et al. “Flow over an
espresso cup: inferring 3-D velocity and pressure fields from tomo-
graphic background oriented Schlieren via physics-informed neural
networks”. In: Journal of Fluid Mechanics 915 (2021), A102. doi:
doi:10.1017/jfm.2021.135.

[64] J.M. Hammersley and D.C. Handscomb. Monte carlo methods. Springer
Netherlands, 1964. isbn: 9780412158704.

[65] Yifan Wang, Pengzhan Jin, and Hehu Xie. Tensor Neural Network and
Its Numerical Integration. 2023. arXiv: 2207.02754 [math.NA].

[66] Yifan Wang, Yangfei Liao, and Hehu Xie. Solving Schrödinger
Equation Using Tensor Neural Network. 2022. arXiv: 2209 . 12572
[physics.comp-ph].

[67] Rudolf Schürer. “A comparison between (quasi-) Monte Carlo and
cubature rule based methods for solving high-dimensional integration
problems”. In: Mathematics and computers in simulation 62.3-6 (2003),
pp. 509–517. doi: https://doi.org/10.1016/S0378-4754(02)00250-
1.

[68] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Ed. by
Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine
Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010,
pp. 249–256. url: https://proceedings.mlr.press/v9/glorot10a.
html.

[69] H. Wind. “Electron energy for H2+ in the ground state”. In: The journal
of chemical physics 42.7 (1965), pp. 2371–2373. doi: https://doi.org/
10.1063/1.1696302.

74

https://doi.org/doi:10.1017/jfm.2021.135
https://arxiv.org/abs/2207.02754
https://arxiv.org/abs/2209.12572
https://arxiv.org/abs/2209.12572
https://doi.org/https://doi.org/10.1016/S0378-4754(02)00250-1
https://doi.org/https://doi.org/10.1016/S0378-4754(02)00250-1
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/https://doi.org/10.1063/1.1696302
https://doi.org/https://doi.org/10.1063/1.1696302

	Introduction
	Ab initio simulations of quantum systems
	Schrödinger equation
	Hartee-Fock and post-Hartree-Fock methods
	Variational Monte Carlo
	Variational Monte Carlo and machine learning

	Physics-Informed Machine Learning
	Biases
	Physics-Informed Neural Networks
	Mathematical formulation
	Losses
	Network
	Training

	Motivations and advantages
	Limitations
	Software

	Quantum systems simulations with physics-informed neural networks
	Literature review of existing physics-informed approaches
	Proposed approach and methodology
	Architecture
	Training

	Results
	Metrics and datasets
	One-dimensional H atom
	No eigenvalue estimation
	With eigenvalue estimation

	Three-dimensional H atom
	No eigenvalue estimation
	With eigenvalue estimation

	Importance of training distributions
	Three-dimensional H2+ molecule
	Eigenvalue estimation

	Conclusions and Outlooks
	Bibliography

