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Abstract

A standard Neurofeedback approach to mitigate the working memory decline in

some fragile groups (elderly, subjects affected by stroke or Alzheimer’s disease) can

be suboptimal for some patients. The goal of this research is to investigate which

visual stimulus (among colour, geometrical shape, direction, and symbol) is the

most suited for each of the six healthy participants and which brain areas are the

most discriminative, during the maintenance of a presented stimulus in a retro-cue-

based working memory experiment. In order to identify the most discriminative

stimulus, the single-trial classification accuracies of some Support Vector Machines,

trained on the theta, alpha and beta electroencephalography power bands, have been

compared; while, in order to identify the most involved brain regions, three machine

learning feature reduction techniques have been explored: the first based on amassive

univariate analysis, the second based on multivariate filtering and wrapping, and

the last one based on Frequency-based Common Spatial Pattern. The results have

shown that the univariate approach, more than the others, managed to clearly identify

for each participant at least one preferential type of stimulus and a brain region of

discriminative electrodes during the maintenance of the stimulus. These promising

results can be interpreted as a further step to optimize the Neurofeedback working

memory enhancement through a personalised approach.

Keywords

Visual working memory; Personalised neurofeedback; Visual stimulus; Targeted

brain region.
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Sammanfattning

En vanlig Neurofeedback-metod för att mildra försämringen av arbetsminnet i vissa

bräckliga grupper (äldre, patienter som drabbats av stroke eller Alzheimers sjukdom)

kan vara suboptimal för vissa patienter. Målet med denna forskning är att undersöka

vilken visuell stimulans (blandat färg, geometrisk form, riktning och symbol) som är

mest lämpad för var och en av de sex friska deltagarna och vilka hjärnområden som är

mest diskriminerande under upprätthållandet av en presenterad stimulus i ett retro-

cue-baserat arbetsminnesexperiment. För att identifiera den mest diskriminerande

stimulansen har klassificeringsnoggrannheten i enstaka försök för vissa Support

Vector Machines, tränade på theta-, alfa- och beta-elektroencefalografi-effektbanden,

jämförts; medan, för att identifiera de mest inblandade hjärnregionerna, har tre

tekniker för reducering av maskininlärningsfunktioner utforskats: den första baserad

på en massiv univariat analys, den andra baserad på multivariat filtrering och

inpackning, och den sista baserad på Frequency-based Common Rumsligt mönster.

Resultaten har visat att det univariata tillvägagångssättet, mer än de andra, lyckades

tydligt identifiera för varje deltagare åtminstone en föredragen typ av stimulans och

en hjärnregion av diskriminerande elektroder under upprätthållandet av stimulansen.

Dessa lovande resultat kan tolkas som ett ytterligare steg för att optimera förbättringen

av Neurofeedback- arbetsminnet genom ett personligt tillvägagångssätt.

Nyckelord

Visuellt arbetsminne; Personlig neurofeedback; Visuell stimulans; Riktad

hjärnregion.
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Chapter 1

Introduction

Leaving an item at the supermarket after shopping has happened to everyone,

forgetting the keys at home while answering the phone can be annoying, but finding

yourself in the middle of a roomwithout knowing why you entered could be a different

case. It can indicate a Working memory (WM) decline. Working memory is a very

important cognitive function that allows the temporally storing of information for

further processing [1]. Therefore, it is an essential function to perform planning,

reasoning, problem-solving, and reading comprehension [2]. Nonetheless, some brain

disorders such as Schizophrenia, Alzheimer’s disease, and major depression have

been associated with deficits in this cognitive function [3, 4, 5, 6]. Despite some

approaches, such as neuromodulation and neurofeedback [7, 8], having managed to

promisingly mitigate this decline [9], almost 30% of the participants did not result in

improvements with these techniques. Therefore, some authors [10, 11] highlighted the

necessity to define for each patient a personalised stimulus and targeted brain region

to reduce the number of non-responders. Indeed, the identification of individual-

specific stimuli and relative discriminative regions could maximise the classifiers’

capability of decoding task-related brain activities and, therefore, improve the clinical

outcome.

The goal of this research is to investigate whether some Electroencefalography

(EEG) related differences across subjects are present during the working memory

maintenance of an item (after its disappearance) depending on the visual stimulus

(among colour, geometrical shape, direction, and symbol), and to define which are the

most discriminative areas in a single trial classification. To answer these questions,

1



CHAPTER 1. INTRODUCTION

six healthy participants have been involved in a working memory experiment based

on a retro-cue paradigm. These differences have been assessed considering the single-

trial performances, especially in terms of generalisability, of some Machine Learning

models, and by investigating the position of the EEG electrodes responsible for such

discrimination. The tested models were Support Vector Machines mainly trained on

the theta, alpha, and beta powers of the pre-processed signals, while the discriminative

areas have been investigated using three different methods: the first has been based

on amass univariate approach, the second has been based on amultivariate technique

that exploits filtering and wrapping to reduce the number of features, and the final one

has been based on a spatial filter. Not only future neurorehabilitation research could

benefit from these findings to comprehend the importance of a personalised approach,

but also neurocognitive experts could benefit from this comparison across stimuli as a

first step to study the volitional control of workingmemorywithNeurofeedback during

cognitive tasks.

The rest of the present document has been organised following this structure: firstly,

in theBackground section, the choice of the EEG as the acquisitionmethod (compared

to the other classical methods), and the differences between an averaged approach and

single-trial decoding have been described. Secondly, in theMethodology section, the

experimental paradigm, the pre-processing, and the processing steps have been listed.

Moreover, the three explored machine learning techniques have been explained in a

more detailed way. Then, in the Results section, the behavioural and physiological

performances have been reported, specifically describing one random participant as a

representation of the obtained results. Finally, in theDiscussion section, the coherence

with previous results and the importance of the individualised analysis have been

highlighted. Whilst the limitations of the studyhave beendiscussed in theFutureWork

section, and a final summary has been reported in the Conclusion section.
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Background

Working memory refers to the capability of a brain system to temporarily store and

manipulate the information necessary for such complex cognitive tasks as language

comprehension, learning, and reasoning [1]. Visual working memory (VWM) acts

in the same way: maintaining and processing visual information [12]. While VWM

decline has been associated with age [13], early stages of Alzheimer’s disease [14], or

as a consequence of brain injury [15, 16] or stroke [17, 18]; some novel techniques

such as Neuromodulation [19, 20] or Neurofeedback [21] has shown some benefits

for healthy elderly [22] and young [23] subjects; and for patients who suffer from

Mild Cognitive Impairment [24]. Hence, more and more attention has been given

to the study of these techniques as possible treatments for mitigating WM neural

decline [22, 24]. Neurofeedback, specifically, is a technique that allows subjects

to self-regulate their brain activity in a closed-loop scenario relying on humans’

learning abilities and on brain plasticity by activating reinforcement learning networks

[25]. This modulation can be achieved during a cognitive task through real-time

visual and/or audio information about brain waves as feedback [22] (Figure 2.0.1).

Therefore, cerebral activity is recorded during a cognitive task through a non-invasive

system (such as EEG), and some features (such as electrode powers) are used to classify

among experimental conditions. Finally, the features are reported, depending on the

classifier outputs, through visual (such as filling bars or moving circles) or auditory

(such as changing continuous tones) feedback. This neurocognitive training technique

has already been adapted to other clinical applications [21]: for the treatment of

attention deficit hyperactivity disorders, anxiety, depression, epilepsy, insomnia, drug

addiction, schizophrenia, learning disabilities, dyslexia, and dyscalculia. Despite all
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these findings in different areas, most of the benefits have been shown at a group

level; some authors [10, 11] pointed out the presence of almost 30% of Neurofeedback

non-responders for VWM enhancement, highlighting the necessity to have individual-

specific targets (both in terms of cerebral area under investigation and suited feedback)

in order to achieve proper individualised benefits [26].

Figure 2.0.1: Neurofeedback scheme – the EEG signals have been acquired, pre-
processed, and the extracted features have been used to train a classifier. The
classification performances have been reported to the participant in real-time.

The traditional methodologies to investigate the brain areas active during a visual

workingmemory task are Functionalmagnetic resonance imaging (fMRI), Intracranial

electroencephalography (iEEG), Magnetoencephalography (MEG), and EEG). fMRI is

a spread technique in neuroimaging, and it is commonly applied to determine which

brain areas have changed their concentration of Deoxy and Oxy haemoglobin (BOLD

signal) over an interval of time; hence, it relies on the assumption that activations

of specific brain regions are followed by a difference in the blood supply. In the

VWM context, this technique has been used, for example, to predict if a group

of participants is going to remember or forget the targeted item [27]. The main

advantage of fMRI is the optimal spatial resolution (2mm); In contrast, the low

temporal resolution (seconds), the high cost, the neurovascular coupling, and possible

experimental constraints (due to the MRI scanner) lead it to be not the best candidate

to follow the brain activity during neurofeedback. iEEG acquisitions on monkeys have
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revolutionised the current understanding of working memory through the decoding of

the activity of single neurons or groups of neurons (Local Field Potential [28]). These

high temporal and spatial resolution data acquisitions have allowed overcoming the

classical view of working memory as led by the sustained activity of neurons within

the prefrontal cortex [29]; revealing high dynamicity of the representation over time

[30], and “activity-silent” configuration in which the memory could be maintained

during silent phases due to short-term plasticity [31]. However, the insertion of

such electrodes in the human brain requires surgical operations, and the high risk

of infections allows the implantations only for medical reasons (to detect epileptic

seizures [32]). MEG and EEG are non-invasive recording methodologies sensitive

to the electromagnetic synchronous activity of large populations of cortical neurons.

Even if these scalp measures are not a unique representation of the generating sources

[33], scalp topographies can be compared to different spatial patterns generated by

different neuronal populations [34]. Both have a high temporal resolution, while

the better spatial resolution of MEG is counterbalanced by its high cost, and by the

instrument dimensions that bring it to be hardly used on large populations or in out-of-

lab environments. Despite the low spatial resolution, the low signal-to-noise ratio, and

the high inter and intra-subject variability of the EEG, some experiments managed to

build reliable classifiers to predict subject-specific performances in working memory

tasks [9, 35, 36]. Considering its low cost and portability [37], it resulted to be the

optimal candidate for the purpose of this analysis.

Some previous iEEG, fMRI, MEG and EEG studies have permitted the decoding of

specific objects information from neural activity. Colour and Orientation encoding

information has been invasively recorded from many cortical areas of macaques, and

in non-invasive electrophysiological acquisitions from macaques and monkeys [38].

The encoding of the items with non-invasive techniques has been reached mainly

with Multivariate pattern analysis (MVPA), investigating the time-by-time classifier

performances. This methodology has been used to successfully decode orientation

[39, 40, 41], location, frequency, motion orientation, colour [42, 43, 44, 45], and colour

and luminance [46]. It is important to note, that spatial stimuli (orientation, location,

frequency, and motion orientation) have been shown to be strongly susceptible to eye

movements (spatial biases inmicro-saccades), leading to biased results [47, 48]. Some

fMRI studies tried to individuate the active brain regions with different VWM stimuli.

Lee S. and Baker C. (2016) [49], for example, reviewed some fMRI studies highlighting
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the general role of the Visual Cortex during WM maintenance for different stimuli,

but also the presence of some Frontal and Parieto-Occipital activations for specific

stimuli (Position and Direction). Whilst Christophel T. et al. [50] showed the role

of the same brain areas to decode shapes during VWM maintenance. About MEG

and EEG, only a few works have compared the encoding of different visual stimuli

like Hajonides et al. (2021) [51] (in his Supplementary Materials section) who found

above-chance decoding during the stimulus encoding of colour, but not of orientation

after averaging all contralateral posterior electrodes. Moreover, Ratcliffe et al. (2022)

[52] were able to classify objects against scenes during the encoding (mainly driven

by Parieto-Posterior regions) and maintenance (mainly driven by Centro-Posterior

regions functionally coupled with Fronto-Medial Theta). Even fewer papers have

examined the possibility of decoding both encoding and maintenance among different

stimuli. Bocincova A. and Johnson J. (2019) [53] investigated both Colour and

Orientation decoding to follow the temporal evolution of these two activities for task-

relevant and irrelevant features in WM. It resulted in above-chance classification

for task-relevant features during the encoding of colour and orientation, but only

orientation was above chance during the maintenance period (mainly due to the total

power of the alpha band).

All these previous studies have focused on disentangling group-level differences. For

this reason, to improve the signal-to-noise ratio, they have averaged several trials

in the same subject and the classifier performances across subjects. Trial averaging

is a great strategy to reveal phase-locked activity (present during encoding), but it

is not appropriate for the induced activity (Figure 2.0.2, left) that is present during

maintenance. Nobre A. and Ede F. [54] pointed out the issues that can be born

from assuming trial-wise variability as noise, and treating its average as a prototypical

reflection of the underlying dynamics because the same averaged representation can

arise from different causes such as changes in amplitudes, rate, or duration (Figure

2.0.2, right). Furthermore, this average approach among subjects could have hidden

individual differences in the perceiving and maintaining of the items, for example,

Zimmer H. and Fisher B. [55] showed differences in behavioural capacities during a

visual WM task with Chinese people compared to German. Nonetheless, the better

performances for the first group were limited in distinguishing changes in characters’

shape, but not in other aspects of these symbols such as colour or font type.
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Figure 2.0.2: Averaging of non-phase-locked activity (Left) and differences in the
average representation due to different causes (Right).

With the purpose of identifying decodable EEG correlates of working memory

maintenance in an experimental paradigm involving different visual stimuli for future

neurofeedback personalised approach, this work differs from previous related papers

for:

1. Working at a single trial level (without averaging trials) as in real-time

neurofeedback.

2. Treating each subject independently and not as a part of a population, identifying

for each participant the different performances in colour, geometrical shape,

orientation, and character decoding.

3. Targeting not only the possibility to decode the stimulus, but also investigating

which brain areas are the main drivers of the decoding.
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Chapter 3

Methodology

Themethodology sectionhas beenwritten following the scheme inFigure 3.0.1. Firstly,

the experimental design has been described in ”3.1 Experiment Design”; Secondly,

the considered behavioural parameters have been explained in “3.2 Behavioural

Performances”, whilst the physiological data have been pre-processed as expressed in

“3.3 Data Preprocessing” and processed following what stated in “3.4 Power Spectral

Density Estimate”. Finally, the extracted features have been used in support vector

machine classifiers “3.5 Classification” to investigate the differences across subjects

or within the same subjects in “3.6 Cross Subjects Generalisation” and the different

methodologies to identify the significant areas have been explained in ”3.7 Subject

Specific Feature Selection”.

Figure 3.0.1: Methodology scheme.

8



CHAPTER 3. METHODOLOGY

3.1 Experiment Design

3.1.1 Pilot Studies

This experiment has been designed based on two pilots (more details available in the

10. Appendix | Pilots) that have explored:

a The effect of the duration of the experiment (see “B.1 Interview on the

Feasibility of the Experimental Design” and “B.2 Behavioural Performances”

- “B. Appendix | Pilots).

b The visual fatigue of the participants (see “B.1 Interview on the Feasibility of the

Experimental Design” and “B.3 Eye-Artefact and ICA Component Removal” -

“B. Appendix | Pilots).

c The effects of different mental modalities on the performances of the classifiers

and on the most discriminative areas (see “B.5 Subject 14 – Effects of Different

Mental Modalities - Univariate Analysis” - “B. Appendix | Pilots).

The duration of the experiment is an essential decision to ensure the goodness of

the results. In fact, the dimensions of the dataset are important to build a reliable

classifier to distinguish among items [51], but a long experiment could tire the

participants leading to a decrease in the performances and in the quality of the

data. For the same reason, a good trade-off between the intensity of the stimuli

and visual fatigue should be reached. In fact, Sutter et al. (2021) [46] showed the

performances in colour decoding during encoding as dependent on luminance. Finally,

investigating the effects of different mental modalities is essential to ensure reliable

results in this analysis. This was assessed, for example, by Hajonides et al. (2021)

[51] considering the posterior activity contralateral to the object as a probe of the

object identification (without verbal labelling). This approach is not feasible with the

current analysis because the stimuli have been presented in the centre of the screen

to minimise eye movement confounders. The reason for this discrimination between

object identification and its verbal labelling is under the assumption that different

discriminant areas are expected depending on if the memorisation is mainly driven

by object remembering or by verbal labelling [49]. The mental modalities reported by

each participant during the real experiment have been listed in “A.1Mental Strategies”

– 9. Appendix | Real experiment.
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3.1.2 Participants

All 6 participants are young (mean:24, std:4) men, right-handed, without any

pathological condition, with normal or corrected-to-normal vision, and without colour

impairment (assessed by the book “Ishihara Test for colour deficit”). They have

been recruited without monetary compensation. Before the experiment started, they

completed 5 trials per type of stimulus (20 total trials) to increase their confidence in

the experimental paradigm (to understand the importance, see “10.1 Interview on the

feasibility of the experimental design” - “B. Appendix | Real Experiment).

3.1.3 Experiment Description

Eachparticipant undertook 4 sessionswith different visual stimuli (colour, geometrical

shape, direction, and symbols) in the same order. Even though some learning effects

have been associated with task training [56], the decision to keep them in the same

order has been made to ensure comparison among subjects. Between sessions, the

subject had enough time to rest, and the following part started with his decision. Each

session was composed of 3 blocks of 30 trials. Among the trials, a pause of 30 seconds

was present, and the participant could decide when to start the next block. Each trial

had a global duration of 8.5 sec for a total time of the session which was below 15

minutes (summarised in Figure 3.1.1. This amount of time has been considered short

enough to avoid the effects of participant fatigue (See “B.2 Behavioural Performances”

- “B. Appendix | Pilots). Each trial was based on a retro cue paradigm, in which

2 objects were presented and a retro cue will have informed on which object will

have been tested. Hence, each trial was composed of the same sequence of events

(summarised in Figure 3.1.2):

1. Fixation: 500 msec with a white cross in the centre of the screen.

2. First stimulus: 300 msec with the first stimulus in the centre of the screen.

3. First delayed period: 1200-1400 msec (jittered interval) with a white cross in

the centre of the screen, during which the participants were asked to memorise

the First stimulus, thinking mainly at the stimulus itself and less about its verbal

label (See “B.5 Subject 14 – Effects of Different Mental Modalities - Univariate

Analysis ” - “B. Appendix | Pilots).

4. Second stimulus: 300 msec with the second stimulus in the centre of the screen.
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5. Second delayed period: 1200-1400 msec (jittered interval) with a white cross in

the centre of the screen, the same as 2), but thinking about the second stimulus.

6. Retro-Cue: 300 msec with a white number in the centre of the screen. “1” or “2”

indicated which stimulus will have been probed.

7. Third delayed period: 2000 msec with a white cross in the centre of the screen,

the same as 2), but thinking about the cued stimulus.

8. Response: 1500 msec in which both the stimuli were presented, and the

participant had to indicate which was the cued item pressing up or down

depending on its position on the screen. After the response, the stimuli

disappeared. If the participant did not answer in this time interval, the answer

would have beenmarked as “NaN”. Importantly, participants were asked to non-

answer if they did not remember the cued item.

9. Rest: The total time of the trial was fixed at 8500 msec, so after the response the

subject could rest before the beginning of the following trial.

Figure 3.1.1: Experimental design, 4 sessions with 3 blocks or 30 trials each.

Figure 3.1.2: Single-trial design | Example with colour, the cued itemwas the first item
(red circle), so the participant had to press up.
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Considering the design of the experiment, 3 objects have been presented in each

session. Therefore, for each of the 5 time intervals under investigation (presentation of

the first stimulus, first short delay, second stimulus, second short delay, and the final

long delay), at most 30 samples have been collected for each object.

Artefacts that are confounded with one stimulus could be considered the main source

of discriminability for a classifier [37]. This could be, for example, when one item is

perceived as more tiresome compared to another. Some common EEG artefacts can

include eye blinks, eye movements [57, 58] and muscle movements [37]. To avoid

these possible confounders, participants were asked to blink, move their eyes, and

move (only if necessary) during the period between the response and the fixation of

the following trial. To ensure this, the subjects were recorded with an eye tracker

and four electrodes were placed to measure the Electroculogram (EOG). To reduce

the predictability of the objects, the appearance of the two presented items has been

randomly shuffled for each trial. Hence, they have been equally distributed among

trials and between the first and second stimuli. For the same reason, also the cues (“1”

or “2”) and the position of the cued item (“up” or “down”) have been equally distributed.

Finally, to avoid anticipatory potentials [59], the first and second delayed periods were

jittered; and, to avoid the effects of possible lateralisation during the third delay period

due tomotor anticipatory potentials [60], the subjectswere asked to press the keyboard

with both hands.

3.1.4 Materials

The experiment was run on a DELL E2422H monitor (1920x1080 resolution, refresh

rate of 60Hz, 53x30 cm), colour profile D6500. The participant had his head placed on

a chin rest which was 60 cm distant from the screen. The presented stimuli have been

created by MATLAB Psychophysics Toolbox Version 3 [61]. The trial background was

grey [RGB: 128, 128, 128], while the cross and the cue were white [RGB: 230, 230, 230],

with a dimension of 2.86° of visual angle. All the stimuli had a dimension of 5.24° of

visual angle and were:

1. Circles of different colours: Red [RGB: 230, 40, 40], Green [RGB: 40, 230, 40], and

Blue [RGB: 40, 40, 230].

2. White [RGB: 230, 230, 230] geometrical shapes: Triangle, Square, and Pentagon.
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above and below the right eye tomonitor the verticalmovements. Eyemovements have

been registered by GP3 Eye Tracker with a sampling rate of 60 Hz.

3.2 Behavioural performances

The probability of a correct random answer during the response phase is 50%. To

ensure all the analyses are related only to the real cognitive process, participants

were asked not to answer if they did not remember the item, and only the trials

that led to the correct answer have been considered. Task accuracy, number of non-

responses, and response time have been registered for each participant to monitor

their behavioural cognitive performances and to quantify the perceived cognitive load

among the sessions.

3.2.1 Fatigue and Willingness to Repeat

To ensure the protocol can be applied in real scenarios, participants were asked to

report their level of visual and general fatigue before and after the experiment on a

scale from 1 to 10 where 1 is related to a low level of fatigue and 10 to a high level of

fatigue. Moreover, they were asked if they would have been in favour of repeating it in

the future.

3.3 Data Preprocessing

The collected data have beenprocessedwithMATLABR2021a andEEGLAB toolbox (v.

2022.1). The signals of the 64 active electrodes have been referenced to the algebraic

average of the left and right mastoid, and an EEGLAB cap template (Standard-10-20-

Cap81.ced) has been taken as the location for the channels. From this file, the unused

electrodes have been removed, and their sequence has been sorted according to the

acquisition configuration file of the EEG system. The analysis of the signals taken

from the 64 active electrodes will be described in more detail in the next session.

It includes downsampling, temporal filtering, artefact removal (Segmentation, Bad

channel interpolation, and Independent Component Analysis (ICA) decomposition),

trial extraction and trial rejection. The data pre-processing has been described in a

detailed way because it can influence a lot the results, especially when the data are not

averaged as in our analysis. Bocincova A. and Johnson J. (2019) [53], for example,
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tested that the decoding of orientation during maintenance was no longer possible

using raw data, even if the decoding was above chance during encoding.

Importantly, EOG signals have not been exploited during these analyses, because the

number of trials with eye-related artefacts was expected to be big enough to exclude the

possibility of trial removal in dependence on ocular activity (see “B.3 Eye-Artefact and

ICA Component Removal” - “B. Appendix | Pilots). Moreover, also eye-tracker data

have not been explored because they weremissing for the second session of subject 22,

and the fourth session of subject 26.

3.3.1 Downsampling

The data has been downsampled from 2048 to 512 Hz. This is a common practice

used to reduce the high-frequency noise and the computational cost for the following

analysis [37]. This step has been judged as not critical considering 2milliseconds short

enough to study the dynamic of the ongoing processes.

3.3.2 Frequency Filtering

The expected activations for aWMtask aremainly in themedium (theta and alpha) and

high-frequency bands (beta and gamma) [53]. Nonetheless, considering the purpose

of a single-trial classification (so without the possibility to mediate across trials), the

noise is expected to be very high. The EEG power spectral density follows the 1/f power

law [62]; therefore, the signal-to-noise ratio is expected too low in the gamma band to

extract reproducible results. Hence, the following analysis is mainly focused on theta

(4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) bands. To remove very high and low

frequencies, a 4-order Butter Bandpass filter with 0.5 and 40 Hz [53, 63] as cut-off

frequencies have been applied. Filtfilt() MATLAB function has been used to produce a

zero-phase filter to avoid introducing temporal shifts. The low cut-off frequency of 0.5

Hz has been decided instead of lower ones (like 0.01 Hz) because otherwise the slow

temporal shift would have been considered as the main source of variability for ICA

decomposition. However, some possible temporal peak shifts are not critical for this

power analysis.
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3.3.3 Segmentation of the Data

From the whole data, only the parts of stimulus presentations and delayed periods

are under investigation. Hence, only the portions of data from the first stimulus

appearance to the end of the long delay have been conserved to avoidmisinterpretation

or artefact injection during artefact removal.

3.3.4 Bad Channel Interpolation

Bad channels have been examined considering both their standard deviation and their

time series. As expected, the standard deviation of the frontal electrodes is generally

higher due to eye-related artefacts. After these considerations and the visual inspection

of the time series, only the P2 channel of subject 23 has been interpolated through a

spherical interpolation (pop_interp() eeglab function). This deviation was systematic

for all his sessions, possibly because the electrode has been not placed correctly during

the acquisition

3.3.5 Independent Component Analysis

Infomax ICA algorithm (pop_runica() eeglab function) has been applied to decompose

the signal and delete possible artefacts. This algorithm has been considered more

stable (reliably across runs) than fastICA [64] to detect eye artefacts, even though

more computationally expensive. For each subject, the specific components to remove

have been chosen by visual inspection of the ICA-component time course, spectral

content, and topographic map. ICA is not an algorithm that can be used for online

applications, but trial rejection would have brought an imbalance of data across

sessions, considering the opposite effects of learning and patients’ fatigue (see “B.3

Eye-Artefact and ICA Component Removal” - “B. Appendix | Pilots). Once identified

the neural correlates (the target) and the stimulus (the feedback) that are suited

for each participant, a shrunk trial can be used. Moreover, some pilot participants

reported having automatically learned when to blink over trials or with training (see

““B.1 Interview on the Feasibility of the Experimental Design”. An example of eye-

artefact (inside the red rectangle) removed through acICA decomposition is reported

in Figure 3.3.1 (pre-ICA reconstruction on the left, and post-ICA reconstruction on the

right), which reported trial 5 (identified as 105) of the first session of subject 26.
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Figure 3.3.1: Example of eye-artefact (in the red block) removed through ICA. Before
(Left) and after (Right) ICA reconstruction. Subject 26, Session 1, trial 5 (identified as
105).

3.3.6 Trial Extraction

The data obtained from ICA reconstruction has been segmented into three

categories: stimulus presentation, short-delayed period, and long-delayed period. The

segmentation has been performed to ensure that the following processing (e.g., power

spectral density (PSD) computing) would not interferewith the classifier performances

due to residual effects (i.e., considering the temporal sequence of stimulus presentation

and short delay period, compute the power spectral density along the whole period

would have increased the correlation between their powers biasing the cross-interval

classifier performances). With this procedure, the data have been segmented to obtain

periods of 300 msec for the stimulus presentation, 1000 msec for the short delay, and

2000msec for the long delay. Some authors have used longer segments before PSD to

avoid edge effects, and to normalise the post-stimulus activity with the pre-stimulus

baseline [46]. For this analysis, edge effects have not been considered critical because

no other filtering steps have been applied. On the other hand, pre-stimulus baseline

normalisation has not been considered due to the structure of the experimental design:

in fact, a rest period was present only at the beginning of the trial and the duration of

the whole trial (8.5 sec) was too long to consider it as a stable baseline. Moreover, it

has been a period with a lot of eye-related artefacts (participants stopped to blink at

the appearance of the white cross).
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3.3.7 Trial Removal

To examine the possibility of undesired components resistant to ICA decomposition,

all the trials have been visually inspected before and after ICA reconstruction. If

a trial had some resistant artefacts that were present in all the subpart (stimulus

presentations, short and long delays), it was removed before ICA reconstruction to

avoid artefact injection; while if it had some resistant artefacts thatwere present only in

some subparts, those parts were removed after ICA reconstruction. Table 3.3.1 reports

the Mean absolute [and percentage relative to the number of correct trials] and the

standard deviation values across sessions for each participant and experimental time

segments (Stimulus Presentation (SP), Short Delay (SD), and LongDelay (LD)). As can

be seen, subject 22 has the highest number of rejected trials.

Table 3.3.1: Mean Absolute value [Percentage with respect to the number of correct
trials] ± Standard Deviation of rejected portions of trials (SP=Stimulus Presentation,
SD=Short Delay, LD=Long Delay) for each subject.

Subject ID
Mean [%] ± Std

rejected SP

Mean [%] ± Std

rejected SD

Mean [%] ± Std

rejected LD

21 0.0[0]± 0.0 0.3[0.2]± 0.5 0.3[0.4]± 0.5

22 18.3[10.3]± 4.5 21.5[12.1]± 7 10.5[11.9]± 3.4

23 1.8[1]± 1.0 1.0[0.6]± 2.0 0.5[0.6]± 1.0

24 0.5[0.3]± 1.0 0.5[0.3]± 1.0 0.0[0.0]± 0.0

25 2.0[1.1]± 2.3 1.8[1.0]± 1.5 0.5[0.6]± 0.6

26 0.0[0]± 0.0 0.0[0]± 0.0 0.0[0]± 0.0

3.4 Power Spectral Density Estimate

Endogenous cerebral activity is not expected to be phase locked. For this reason,

Event-Related Potentials or Evoked power activities have not been considered in this

pipeline, differently from all previous work [42, 46, 51]. This primary analysis was

focused on the stable frequency components over time, even if WM maintenance is

considered a highly dynamic process [30]. The static power spectral density estimate

is based on the strong assumptions of the stationarity of the ongoing processes.
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3.4.1 Welch Method

To extract the power in the desired bands, the Welch method [65] has been applied

to estimate the power spectral density. This method mitigates the leakage effects

by averaging overlapping segments of the same window [66]. For the stimulus

presentation, a window of 125 msec and an overlap of 62.5 msec has been used; whilst

for the delayed period, a window of 500 msec and an overlap of 250 msec has been

applied. The PSD has been computed on equispaced support (with steps of 0.05 Hz)

of frequencies from 1 to 40 Hz, but only the data from 4.1 to 30 Hz have been used for

the following analysis (518 frequency points).

3.4.2 Power Spectral Density Normalisation

The power spectral density has been normalised by the total power from 4.1 to 30

Hz. It has been obtained by integrating the PSD in this frequency interval. This

normalisation has been applied to avoid the effects of possible outliers during the

creation of the decision boundaries of the classifiers. Figure 3.4.1 represents the

grand average (averaging among all the trials within the specific object) for each object

(columns of the figure) of the power in theta (left), alpha (centre), and beta (right) in

each time interval (rows of the figure) for the first session of Subject 26.

Figure 3.4.1: Example of Grand Average – Power in Theta (T), Alpha (A), and Beta (B)
during Stimulus Presentation (SP), Short Delay (SD), and Long Delay (LD) | Subject
26 | Session 1.
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3.5 Classification

In order to identify some possible reliable individual-specific neural correlates, some

classical Machine Learning steps of feature reduction, classifier training and testing

in an independent dataset, and statistical analysis have been performed. The train

test stratified division is essential to avoid the model overfitting on the training set.

Therefore, to allow the generalizability of the model in unseen data, the dataset has

been divided following the traditional 70/30 train test division.

3.5.1 Feature Reduction

Feature reduction is an important step to reduce the noise for the classifier [37, 67];

more important the aim of this work is to find some possible reliable neural correlates.

A classic methodology to perform feature reduction is to perform a 5-fold cross-

validation in the training set, in order to avoid circularity issues [37]. This means that

the training set is divided into 5 stratified folds and, for each of the five iterations, only

one fold is considered as the validation set, while the others as the training set (Figure

3.5.1).

Figure 3.5.1: 5-fold Cross Validation scheme after train test division (70/30).
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3.5.2 Support Vector Machine

Among Linear classifiers, such as Support Vector Machine (SVM) [68] and Linear

Discriminant Analysis, the second has been discarded because it relies on the

assumption of homoscedasticity of the distributions [69], even if it is commonly

applied in these analyses [51, 52, 53] due to its low computational training time.

Moreover, SVM generally provides better performances compared to other classifiers

when dealing with many features [36, 37].

A Support Vector Machine is a discriminant algorithm that maximises the separation

between two classes. ConsideringX1, X2,…, Xn the training data, b the bias, andW the

classifier weights; the highest separation is achieved by minimising the cost function

J(W ) (3.1), subject to the constraint (3.2).

J(W ) =
1

2
∗ ||W ||2 (3.1)

Yi(W ’ ∗Xi − b)≥1; ∀i = 1, . . . , n (3.2)

Indicating the class label with ω ∈ Ω, the classification rule is obtained by (3.3) where

the class k ∈ Ω is discriminant against the rest [70].

ω

ß ∈ k if W T ≥ b

̸∈ k if W T < b
(3.3)

For this analysis, the MATLAB function fitcsvm() has been applied with the default

parameters.

3.5.3 Statistics

Considering the limited number of samples in this design, the performances of the

classifiers have been evaluated using a non-parametric permutation test. In fact, with

small datasets, the general threshold of chance level ismore than 50% for binary [71] or

33% for ternary classification. To overcome this issue, the permutation test generates

a null distribution from N random permutations of the data of the same dataset. The

final p-value has been obtained considering the number of chance classifiers (trained

and tested on shuffled data) which performs better than the real classifier (trained
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and tested on the real data) divided by the number of permutations (N). The only

assumption of this test is the data point independence [71]. The p-value has been

evaluated by comparing the accuracies of the chance classifiers with the test accuracy.

For this analysis, 1000 permutations have been applied, so the final sensitivity of the

p-value is 0.001.

3.5.4 Multiple Comparison Correction

The Multiple Comparisons Problem is typical of EEG-MEG data because, due to the

high number of statistical comparisons, it is not possible to control the so-called

family-wise error rate (FWER) [72]. In this field, a common approach to overcome

this issue is the Clustering correction under the assumption of spatial correlation

across electrodes, and of time-frequency correlation across time-frequency samples

[72]. This correction methodology cannot be applied in the current analysis, due to

the calculation of the powers in large and not-overlapping frequency bands. Another

classical methodology is the Bonferroni correction, but it relies on the assumption of

the independence of the tests which is not coherent with the present correlation across

channels. Therefore, also considering the limited number of statistical tests, False

Discovery Rate (FDR) correction has been applied only during the univariate analysis

(described below).

3.6 Cross Subjects Generalisation

From a Neuroscientific perspective, all five time intervals are under investigation

(considering that the neural circuits related to the second stimulus may be different

when the first is kept in memory).

In order to identify for eachparticipant and sessionwhether the extracted featureswere

able to discriminate the specific objects, some ternary classifiers have been trained for

each time interval of interest. Considering the total number of features extracted for

each participant and time interval (33152 features = 64 channels x 518 frequencies)

with a dataset which has at most 30 trials per item, the features have been reduced by

calculating the powers in the specific bands by integrating the normalised PSD from4.1

to 8 Hz for the theta band, from 8.1 to 13 Hz for the alpha band, and from 13.1 to 30 Hz

for the beta band. With this step, the number of features has been reduced to 192 (64
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channels x 3 frequency bands). Moreover, 8 brain areas have been considered in this

first analysis corresponding to the Left and Right Frontal, Central, Parieto-Occipital,

and Temporal regions (Figure 3.6.1). Therefore, the powers have been averaged in

each region, reducing the number of features to 24 (8 brain areas x 3 frequency bands).

Finally, the data have been log transformed to increase the Gaussianity.

Figure 3.6.1: Channel division in Brain regions: Left and Right Frontal, Central,
Temporal, and Parieto-Occipital areas.

In a ternary classification with SVM, two possible configurations can be exploited. In

a “1vsAll” configuration, three classifiers (one for each class) are considered. Each

of these classifiers is trained considering one class as the first class and all the other

classes as the second one (Figure 3.6.2, Right, Up). On the other hand, in a “1vs1”

configuration, three classifiers (one for each couple) are considered. Each classifier

is trained considering these couples (Figure 3.6.2, Right, Down). A “1vs1” approach

has been used in this section, considering it more like the following analysis (which is

based on binary classifiers for each pair of objects).

Figure 3.6.2: Example of a three-class problem with SVM. Data distributions (Left),
1vsAll approach (Right, Up), 1vs1 approach (Right, Down).
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3.6.1 Across Subjects Analysis

To understand if some common representations were shared across participants, for

each session and time interval a 3-fold cross-subject validation has been applied

(therefore, for each iteration the classifier has been trained on four subjects

and tested in the remaining two). For the statistical analysis, the mean cross-

subjects test accuracy has been compared to the N mean cross-subjects random test

accuracies.

3.6.2 Within Subjects Analysis

Working at the participant level, for each session a ternary classifier has been trained in

a time interval and tested in another one. Moreover, the performances within the same

time interval have been evaluated through a stratified 5-fold cross-validation. Also in

this condition, for the statistical analysis, the mean cross-validation test accuracy has

been compared to the N mean cross-validation random test accuracies. To test the

possibility of different mental representations depending on the sequence of events,

themean cross-validation test accuracies of the first and second stimulus presentation,

and of the first and second delay periods have been compared through a parametric

paired-sample t-test or a non-parametric Wilcoxon Rank Sum test, depending on the

Gaussianity of the distribution, assessed through a Lilliefors test.

3.7 Subject Specific Feature Selection

From a Rehabilitation perspective, only three of the five-time intervals are under

investigation (presentation of the stimulus, short delay, and long delay), considering

the objective of distinguishing the specific object independently on the order of the

events. Moreover, to enhance the treatments of workingmemory, only the two delayed

periods are the most significant even if the final long period could have been affected

by the cue and some anticipatory potentials [59]. Nonetheless, to keep into account

possible different brain representations related to the sequence of the events, the

samples of the stimulus presentation and short delay have been pooled in a stratified

way in each partition (train-test division or cross-validation if present) of the datasets.

Hence, the number of samples of these time intervals has been equally partitioned.

Finally, it is important to point out, that the lower number of trials for the long delay
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(30 trials at most per object), led to that analysis being less reliable compared to the

other time intervals (60 trials at most per object).

In order to identify some possible reliable individual-specific neural correlates, for

each time interval and for each object comparison (1vs2, 2vs3, and 1v2), three

different classification methodologies have been explored: a mass univariate analysis,

a multivariate analysis based on Filtering and Wrapping methods, and a multivariate

analysis based on Frequency Common Spatial Pattern (FCSP) [73]. The univariate

analysis offers the advantage of immediate interpretability of results; in contrast, the

high number of statistical tests requires important Multiple Comparison Corrections,

and it is generally less robust to noise compared to multivariate approaches [74]. On

the other hand, the physiological meaning of the multivariate analysis is not trivial. In

fact, only for linearmodels, the reconstruction of the activation patterns can be reached

throughWeight Projection fromclassifierweights [74], or through the interpretation of

the activation patterns of the CSP filter. Importantly, a weakness of weight projection

is that the reliability of the patterns depends on the performances of the classifier

[37].

3.7.1 Univariate Analysis

For the univariate analysis, for each electrode, the powers in the specific bands have

been calculated in the theta, alpha and beta bands. Then, the data have been log

transformed to increase the Gaussianity. After the train-test division, only the 10

features that had provided the best mean validation accuracy were kept (Figure 3.7.1).

This number of 10 has been chosen to reduce the computational time and the number

of statistical comparisons, under the assumption that the best features (selected by the

CV mean validation accuracy) are the best to describe the dataset. This analysis has

been performed under the hypothesis that each channel has the same probability to

be significant, even if the most robust results are expected to be related to clusters of

significant activity.
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Figure 3.7.1: Univariate analysis scheme, from the cross-validation, the 10 features
with the highest mean validation accuracy have been selected.

3.7.2 Multivariate Analysis, Filtering and Wrapping

For this multivariate analysis, the powers in the specific common bands (theta, alpha,

and beta) have been calculated as for the univariate analysis and the data have been

log-transformed. After the train-test division, filtering methods have been applied

in the training set to extract a subset of discriminating features. In particular, only

the 10 features which provide the best Fisher Score (FS), Minimum Redundancy

Maximum Relevance (mrmr), or Kendall’s Tau Score (KS) were kept. These scores are

common filtering methods for continuous data and categorical responses [67]. After

this first discrimination, a stratified 5-fold cross-validation has been applied in the

training set to extract the wrapped features from Linear Support Vector Machines.

The decided wrapping algorithm has been a forward sequential feature selection with a

Loss function that minimised the SVM-Cross-Validation validation error [36] (Figure

3.7.2).
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Figure 3.7.2: Multivariate analysis scheme, after the filtering on the training set and
thewrapping on the cross-validation of the training set, the selected features have been
tested in the test set.

Fisher Score

Fisher Score is a measure of distinctiveness between two classes a and b. For each

feature k, a score is calculated following (3.4). Where µa,k represents the mean value

obtained from class a for the feature k, while σa,k represents the standard deviation

value obtained from class a for the feature k.

FSk =
µa,k − µb,k√
σa,k

2 + σb,k
2
; (3.4)

The most discriminant features have been considered those which had the highest

FSk.

27



CHAPTER 3. METHODOLOGY

Minimum Redundancy Maximum Relevance

Minimum Redundancy Maximum Relevance is a score based on Mutual Information.

The mutual information (I) between the discrete random variables X and Z is defined

as (3.5).

I(X,Z) =
∑
i,j

P (X = xi, Z = zi) ln
(

P (X = xi, Z = zi)

P (X = xi) ∗ P (Z = zi)

)
(3.5)

Indicatingwith Vx: the relevance of feature xwith respect to a response variable y (3.6),

andWx: the redundancy of feature x with respect to a response variable y and the set

of features S (3.7). This algorithm calculates for each feature x theMutual Information

Quotient (MIQ) as expressed in (3.8).

Vx = I(x, z) (3.6)

Wx =
1

|S|
∑
z∈S

I(x, z) (3.7)

MIQx =
Vx

Wx

(3.8)

The features which have been considered more discriminant and less redundant have

been those which had the highest MIQx.

Kendall’s Tau

Kendall’s Tau is a Parametrical statistic test that counts the number of (i, j) pairs, for

i < j , for which Xa,i–Xa,j and Ya,i–Ya,j have the same sign. For the a column Xa in

matrixX and the a column Y a in matrix Y , KS can be calculated through (3.9), (3.10),

(3.11). Where n is the number of columns ofX and Y .

ξ(Xa,i, Xa,j, Ya,i, Ya,ij) =

{ 1 if (Xa,i, Xa,j) ∗ (Ya,i, Ya,j) > 0

0 if (Xa,i, Xa,j) ∗ (Ya,i, Ya,j) = 0

−1 if (Xa,i, Xa,j) ∗ (Ya,i, Ya,j) < 0

(3.9)
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Ka,b =
n−1∑
i=1

n∑
j=i+1

ξ(Xa,i, Xa,j, Ya,i, Ya,j) (3.10)

τa,b =
2Ka,b

n(n− 1)
(3.11)

The features which have been consideredmore discriminants have been those with the

lowest p-value.

3.7.3 Multivariate Analysis, Frequency Common Spatial
Pattern

For the multivariate analysis with FCSP, after the train-test division, the training set

has been used to determine the projection matrix V [73] (Figure 3.7.3). Considering

the matrices of the normalised Power Spectral Density (PSD) coefficients from 4.1 to

30 Hz (after the subtraction of the mean PSD for each channel and trial): X1 with

dimensions (num_trials1 (=k1) x num_channels x num_frequencies) and X2 with

dimensions (num_trials2 (=k2) x num_channels x num_frequencies). For each trial

i and class (1 or 2), the normalised spatial covariance matrices have been calculated

through (3.12), in order to compute the mean spatial covariance matrices (3.13), and

the overall spatial covariance matrix (3.14).

C1,i =
X1,i ∗XT

1,i

Tr(X1,i ∗XT
1,i)

C2,i =
X2,i ∗XT

2,i

Tr(X2,i ∗XT
2,i)

(3.12)

C1 =
1

k1

k1∑
i=1

C1,i C2 =
1

k2

k1∑
i=1

C2,i (3.13)

C = C1 + C2 (3.14)

After the eigenvalue decomposition of C (3.15 and the whitening process (3.16, the

common eigenvectors can be calculated through (3.17, and the CSP projection matrix

V (num_channels x num_channels) have been obtained with (3.18).
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C = Uo ∗ Σ ∗ UT
o (3.15)

P =
√
Σ−1 ∗ UT

o (3.16)

S1 = U ∗ Σ1 ∗ UT S2 = U ∗ Σ2 ∗ UT with Σ1 + Σ2 = I (3.17)

V = UT ∗ P (3.18)

This matrix has been applied to filter each trial i of the data X (num_trialstotal

x num_channels x num_frequencies) obtaining Z (matrix of the spatially filtered

signals) through (3.19).

Z = V ∗X (3.19)

For each trial, only the first (=z1) and the last column (=z2) of ZT were kept

(corresponding to the most discriminative features for one class and for the other);

then, the final features (f1 and f2) have been obtained from the log-transformation of

the normalised variance over the frequencies (3.20).

fi = ln

(
var(zi)∑2
j=1 var(zj)

)
(3.20)

Figure 3.7.3: Multivariate analysis scheme, after the creation of the projection matrix
V on the training set, the test data has been filtered and the log relative variance has
been extracted.
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Results

4.1 Behavuoiral Performances

For each session and participant, accuracies, number of non-responses, and response

time have been reported in Figure 4.1.1. These behavioural data have been summarised

in Table 4.1.1 which describes the participant performances across sessions, while

in Table 4.1.2 the performances during each session (across participants) have been

reported. Some individual differences can be highlighted across participants, for

example, subjects 22 and 23 achieved the highest accuracies and the smallest response

time, while subject 24 has the lowest accuracy and the longest response time. On the

other hand, these parameters have proved to be enough stable across sessions.

Figure 4.1.1: Behavioural Accuracy and Number of Non-Responses (Left) and
Response Time (Right) among subjects and sessions.
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Table 4.1.1: Behavioural Accuracy, Number of Non-Responses, and Response Time for
each Participant across sessions.

Subject

ID

Accuracy [%]

Mean ± Std

NaN

Mean ± Std

Resp. Time [sec]

Mean ± Std

21 94, 8± 1.7 2.0± 1.2 0.7± 0.1

22 98, 4± 1.4 0.0± 0.0 0.6± 0.0

23 98, 9± 1.3 0.5± 1.0 0.6± 0.1

24 86, 7± 2.4 3.5± 2.4 1.0± 0.0

25 96, 7± 3.5 0.3± 0.5 0.7± 0.1

26 94, 5± 3.8 1.5± 0.6 0.6± 0.0

Table 4.1.2: Behavioural Accuracy, Number of Non-Responses, andResponse Time for
each Session across participants.

S1

Mean ± Std

S2

Mean ± Std

S3

Mean ± Std

S4

Mean ± Std

Accuracy [%] 95.4± 4.1 94.8± 6.3 95.2± 4.01 94.5± 5.5

NaN 1.3± 1.2 1.0± 1.3 1.8± 2.6 1.0± 1.3

Response

Time [Sec]
0.6± 0.2 0.7± 0.1 0.8± 0.1 0.7± 0.2

4.1.1 Fatigue and Willingness to Repeat

The level of visual and general fatigue has been assessed on a scale from 1 to 10 (Table

4.1.3); where 1 represents no fatigue and 10 is a high level of fatigue.
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Table 4.1.3: Level of Visual and General Fatigue, and Favourability to repeat the
experiment in the future.

Subject

ID

Level of

Visual Fatigue

Level of

General Fatigue

Favourable to Repeat

in the Future

21 3.0–4.5 6.0–5.0 Y es

22 2.5–9.0 3.0–7.0 No

23 4.0–6.0 4.0–5.0 Y es

24 4.5–6.0 3.0–5.0 Y es

25 1.5–2.5 2.0–2.5 Y es

26 2.0–4.0 2.0–3.0 Y es

4.2 Cross Subjects Generalisation

4.2.1 Across Subjects Analysis

Figure 4.2.1 illustrates the mean test 3-fold cross-subjects validation test accuracy for

each session. No statistically significant performances have been reached in none of

the comparisons.

Figure 4.2.1: Mean 3-fold cross-subjects validation test accuracy for each session.

4.2.2 Within Subjects Analysis

Figure 4.2.2 describes the performances of each participant (rows of the image) and

session (column of the image). The rows of each matrix represent the time intervals

in which the classifier has been trained, while the columns of each matrix represent

the time intervals in which the classifier has been tested. When the dataset was the

same (the diagonal of the matrices), the mean 5-fold cross-validation test accuracy has
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been reported. The significant performances (p-value<0.05) have been represented

with a white star in the top right corner of each comparison. Within the same time

interval, some above-chance classifications have been highlighted especially during

the session with direction as the stimulus. Instead, across the different time intervals,

some significant performances have been reported with different patterns across

participants.
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Figure 4.2.2: For each subject (row) and each session (column) a 5x5 matrix reports:
the mean 5-fold cross-validation test accuracy on the diagonal, and the test accuracy
of the classifier trained of the i time interval and tested in the j time interval in the i,j.
position. The white stars indicate the accuracies with a p-value<0.05.

Figure 4.2.3: Test accuracies comparisons between the first (S1) and second (S2)
Stimulus Presentation, and the first (D1) and second (D2) Delay periods. Black dashed
lines indicate the theoretical chance level with three classes.
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4.3 Subject Specific Feature Selection

The following analysis will describe in detail the physiological performances of

one random subject (ID:26) for each of the three classification methods and each

session. Each figure reports the analysis related to the three-time segments (stimulus

presentation, short delay, and long delay; rows of the figures) and each of the

three object comparisons (1vs2, 2vs3, and 1vs3; columns of the figures). A detailed

description of each subject is available in “A.2 Identification of significant areas” - “A.

Appendix | Real experiment).

4.3.1 Univariate Analysis

For each figure, the test accuracies (bar plots) of each of the 10 features selected

according to the Cross-Validationmean validation and their topographical distribution

(topographical scalp plots) have been reported. In the topographical representation,

the symbol “.” indicates the selected discriminant channels and bands, while

“*” represents the ones (among these discriminant features) which are statistically

significant (significance threshold of α=0.05) after the FDR correction. The channels

have been evaluated in theta, alpha or beta band; therefore, the channels have

been represented depending on their frequency bands (green=theta, red=alpha,

blue=beta, dark yellow=theta+alpha, light blue= alpha+beta, violet=theta+beta,

black=thata+alpha+beta).

During the colour session (Figure 4.3.1), a significant area can be identified in the

Frontal region during the short delays, mainly driven by alpha activity; while the

long delay has been decoded by Frontal alpha and Temporo-Parietal-Occipital theta.

Whilst, during the geometrical shape session (Figure 4.3.2), Parieto-Occipital theta

activity is responsible for the decoding during the stimulus presentation and the short

delay. Similarly, during the geometrical direction session (Figure 4.3.3) some Parieto-

Occipital theta activity is responsible for the decoding during the short and long delay.

Finally, during the symbol session (Figure 4.3.4) some Frontal beta activity can decode

the stimulus presentation, while a massive Parieto-Occipital activity (mainly in beta)

is responsible for the decoding during all the three-time intervals.
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Figure 4.3.1: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 1 | Univariate analysis.

Figure 4.3.2: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 2 | Univariate analysis.
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Figure 4.3.3: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 3 | Univariate analysis.

Figure 4.3.4: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 4 | Univariate analysis.
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4.3.2 Multivariate Analysis, Filtering and Wrapping

Considering the same subject as before as an example; The following representation

is very similar to the previous one with the difference that only the subset of

wrapped features has been considered, and the significance has not been corrected

bymultiple comparisons (considering that only 1 statistical test has been used for each

comparison). Moreover, over the topographical representation, the reconstruction of

the activation patterns has been reached through Weight Projection from classifier

weights [74]. In fact, the activation pattern Atest can be reconstructed following

(4.1).

Atest = Cov(Xtest) ∗ w (4.1)

Where Atest is the NxM matrix of the test data (N: number of trials; M: number of

features) and w is the vector of the classifier weights. If some channels have been

selected in different bands, their activation patterns have been summed.

During the colour session (Figure 4.3.5), some above-chance classification has been

reached only during the long delay by the Occipital region. Whilst, during the shape

session (Figure 4.3.6), only the Occipital region has been considered significant during

the stimulus presentation. While, during the direction session (Figure 4.3.7), the

mixed activity of the Frontal and Occipital regions has been responsible for the

decoding of the long delay. Finally, during the symbol session (Figure 4.3.8), the

Parieto-Occipital region allowed the above-chance decoding of the long delay.
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Figure 4.3.5: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 1 | Multivariate analysis.

Figure 4.3.6: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 2 | Multivariate analysis.
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Figure 4.3.7: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 3 | Multivariate analysis.

Figure 4.3.8: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 4 | Multivariate analysis.
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4.3.3 Multivariate Analysis, FCSP

Considering the same subject as before as an example; The following representation is

very similar to the previous one with the difference that only the most discriminative

features for one class and for the other have been considered. Moreover, over the

topographical representation, the reconstruction of the activation patterns has been

reached projecting the absolute difference between the first and the last column of the

Common Spatial Patterns V −1.

During the colour session (Figure 4.3.9), the above-chance classification has been

reached during the short and long delay by the central region. Whilst, during the shape

session (Figure 4.3.10), the Frontal region has been considered significant during

the stimulus presentation and the Central during the short delay. While, during the

direction session (Figure 4.3.11), no statistically significant test accuracies have been

reached. Finally, during the symbol session (Figure 4.3.12), the Temporal region

allowed the above-chance decoding of the short delay.

Figure 4.3.9: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 1 | Multivariate analysis | FCSP.
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Figure 4.3.10: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 2 | Multivariate analysis | FCSP.

Figure 4.3.11: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 3 | Multivariate analysis | FCSP.
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Figure 4.3.12: Test Accuracy and Meaningful channel representation | Subject 26 |
Session 4 | Multivariate analysis | FCSP.

4.3.4 Univariate Analysis, General View

The results of the univariate analysis can be summarised in the following figures. All

the selected features in at least one of the 3 comparisons (1vs2, 2vs3, and 1vs3) have

been reported with a representation of their test accuracy p-value. If the same channel

and band have been selected in more than one comparison, the lowest p-value has

been taken as the final p-value. The reported value is complementary to the p-value

(1-p).

For each time interval, some clusters of significant brain areas across subjects can

be identified (blue rectangles in the following images). These clusters have been

defined if the test accuracies have been found significant for at least 3 subjects within

the same brain region. Therefore, during the stimulus presentation (Figure 4.3.13),

two clusters of Occipital activity (especially in theta and beta) can be recognised

for the symbol session; while the Frontal regions have been the main drivers for

almost all sessions (mainly in alpha for the colour, whilst in theta for the direction

and the symbol sessions) during the short delay (Figure 4.3.14); finally, only two

clusters of theta Fronto-Central activity can be highlighted during the sessions of
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colour and symbol during the long delay (Figure 4.3.15). In this final case, these

results should be cautiously interpreted due to the more limited number of samples

per comparison.

Figure 4.3.13: (1-p) of the selected channels from the univariate analysis for each
subject and all together | Stimulus Presentation.
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Figure 4.3.14: (1-p) of the selected channels from the univariate analysis for each
subject and all together | Short Delay.

Figure 4.3.15: (1-p) of the selected channels from the univariate analysis for each
subject and all together | Long Delay.
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Thedescription of the significant areas andbands for each participant and time interval

have been reported in Table 4.3.1.

Table 4.3.1: Discriminative areas for each participant and time interval. (ST=Stimulus
Presentation, SD=Short Delay, LD=Long Delay).

Subject

ID

Time

Interval
Session Band Brain Region

SP Direction Alpha Centro-Parietal

21 SD
Shapes

Direction

Theta

Theta

Parieto-Occipital

Frontal

LD Symbols Beta Centro-Parietal

SP Symbols Theta Parieto-Occipital

22 SD
Direction

Symbols

Theta

Theta

Frontal

Frontal

LD Symbols Beta Centro-Parietal

SP Symbols Theta Parieto-Occipital

23 SD Colour Alpha Temporo-Parietal

LD Symbols Alpha Frontal

SP - - -

24 SD Shapes Theta Frontal

LD
Colour

Shapes

Theta

Theta

Frontal

Frontal

SP - - -

25 SD Colour Alpha Frontal

LD
Colour

Direction

Theta

Alpha

Frontal

Parieto-Occipital

SP Symbols Beta Frontal

26 SD
Colour

Symbols

Theta

Beta

Frontal

Parieto-Occipital

LD
Colour

Symbols

Theta

Theta

Parieto-Occipital

Parieto-Occipital
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Discussion

5.1 Behavioural Performances

From a behavioural perspective, some individual differences have been highlighted

across participants considering the accuracies, the number of non-responses, and the

response time. On the other hand, these parameters can be considered enough stable

across sessions, a symbol that can be interpreted as the similar perceived working

memory load across the tasks. Moreover, no particular trends can be highlighted over

time (such as a decrease in accuracies or an increase in response times). This absence

can be considered proof that the total experimental time is not too long to wear out

participants. Moreover, 5 of the 6 participants have declared to be favourable to repeat

the experiment in the future. Therefore, considering all these factors, the experimental

setup seems to be suitable enough to be used in real applications.

5.2 Cross Subjects Generalisation

5.2 Across and Within subjects decodifiability As expected, considering the high

subject-to-subject variability, the averaged powers in the selected 8 brain regions

were not able to generalise across subjects in none of the four sessions. On the

other hand, individual activities managed to achieve above-chance performances

during the stimulus maintenance in some participants, especially during the direction

session, coherently with the results of Bocincova A. and Johnson J. (2019) [53]

who found above-chance classification during the maintenance of direction stimuli
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for task-relevant features through a time-frequency analysis. This comparison

between individual and cross-individual performances highlights the importance of

personalised approaches for each subject, even if the limited number of samples for

this first analysis (at most 30 for each time interval) must be pointed out. Considering

the classifier performances between the first and second stimulus presentation and the

first and second short delay periods, no statistically significantmedian differences have

been found, supporting the merging of similar datasets for the subsequent analysis.

Moreover, also somedifferences in the results between the short and long delay periods

can be highlighted, those differences were more expected considering the different

duration, the cue-related effects, and possible anticipatory potentials.

5.3 Subject Specific Feature Selection

5.3 Identification of significant areas Considering the discriminative areas reported

from the univariate and the multivariate (with filtering and wrapping) analyses, most

of the wrapped features have been resulted in a subset of the ones chosen by the

univariate reduction. The main difference between the two approaches is the drop

in the test accuracies for the second one, probably linked to the overfitting of the

models (also considering the limited number of samples for each class). On the other

hand, the highlighted areas from the Frequency Spatial Common Pattern filters have

been resulted to be enough different from the other approaches. Moreover, also

in this case, the drop in the generalisability can be attributed to overfitting in the

training set. Considering all these findings, the univariate analysis seems the best

candidate to identify possible brain areas as targets for neurofeedback, considering

its generalisability and its ease of interpretation.

The univariate analysis has permitted the identification, for each participant, of the

best type of stimulus and brain area during the delayed periods (See “A.2 Identification

of significant areas” - “A. Appendix | Real experiment). Moreover, some clusters of

common discriminative areas have been highlighted across participants, especially

the Parieto-Occipital region during the stimulus presentation for the symbol, and

the Frontal regions during the delayed periods. The greater significance of symbol

stimulus encoding may be explained due to its lack of a direct verbal label. Differently

from the obtained results, somepreviouswork [42, 46, 51, 52] has shown the possibility

of decoding specific colour content during stimulus encoding, especially from the
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parieto-occipital regions. However, all these results have been achieved by averaging

trials (due to the phased-locked nature of stimulus encoding). Therefore, Teichmann

et al. (2019) [42] and Sutterer et al. (2021) [46] based their analysis on the Event-

Related Potentials (in the time domain), while Hajonides J. et al. (2021) [51] and

Ratcliffe O. et al. (2022) [52] relied on the Evoked EEG power. For what concerns the

induced activity of WM maintenance instead, the obtained results are more coherent

with previous findings. In fact, the role of frontal areas has been highlighted in an

fMRI review by Lee S. et al. (2016) [49] for different visual stimuli (especially for the

directions) and in an EEG study by Ratcliffe O. et al (2022) [52]; while the general

role of Parieto-Occipital discriminant activities (as identified in the fMRI study of

Christophel T. et al. (2018) [50] has been found only in some individuals.

5.4 Impact on Neurofeedback

Neurofeedback is a technique with a strong potential impact on some patients’ lives. In

fact, it has been applied for the therapeutical treatment of several psychiatric disorders

(such as depression, schizophrenia, and anxiety) and as a rehabilitation tool to train or

restore specific cognitive deficits (such as enhancing Attention Deficit in Hyperactivity

Disorders (ADHD) [10]. To obtain these results, neurofeedback relies on humans’

learning abilities and on brain plasticity by activating reinforcement learning networks

[25], following the modulation of participants’ brain activity in response to some

informative feedback. Therefore, patients’ cortical processes information is extracted

through EEG acquisitions and refined throughmachine learning techniques to decode

the information of a presented/maintained stimulus. Nevertheless, the high inter-

subject variability of brain representations has led to at least 30% of participants to

be not able to self-regulate their brain activities in response to a standardised protocol,

even after several sessions [10].

In order to build individual-specific reliable classifiers for reducing this number of non-

responder patients, the presented work has shown that a personalised treatment is

more suited than a standardised one to highlight some EEG-related differences across

subjects, during the working memory maintenance of an item. Especially, none of

the tested visual stimuli has reached statistically significant generalisability through

classifiers trained on across subjects EEG powers, showing that cerebral activity relies

on different representations across subjects. On the other hand, the EEG powers
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have resulted in some statistically significant generalisability within the same subject,

depending on the visual stimulus. Therefore, indicating that specific stimuli are more

decodable for each participant, an essential characteristic to build reliable classifiers.

Moreover, through the statistical significance of the classifiers’ test accuracies from the

univariate analysis, some brain regions have been identified, for each participant, as

the most discriminative areas for the specific stimulus. Consequently, the feedback

representation during a clinical session could be constrained to that area, to shift its

cerebral activity to amore physiological range. Finally, another possible implication of

these findings could be a reduction in the number of neurofeedback sessions necessary

to enhance theworkingmemory capacity due to the a priori identification of individual-

specific preferential stimuli and brain regions. This result could be very impactful

for patients’ rehabilitation journey, considering that neurofeedback treatment forWM

enhancement can last months [75].
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Future Work

Some limitations of the current study are intrinsically linked to the experimental

design. Firstly, the use of ICA decomposition to remove eye-related artefacts. This

methodology cannot be used in real-time acquisitions, but it has been necessary due

to the high number of participant blinks during the acquisition. This issue had been

already considered during the experimental planning. In fact, during the pilot studies,

a pre-trained participant had been able to not bink for all the sessions also with a

longer trial (see ““B.3 Eye-Artefact and ICA Component Removal” - “B. Appendix |

Pilots) and another one had reported that the blinking at the correct time becoming

more automatic during sessions (in fact, it had corresponded in a decrease of the

number of blinks per session). Therefore, this issue can be simply solved through

repetitions.

Another important limitation is related to the number of trials per comparison. In

fact, the low generalisability of the multivariate analyses is likely linked to the small

number of samples. Moreover, for the stimulus presentation and the short delay, the

data from different portions of trials have been pooled under the same comparison.

For example, in the comparison of “red” vs “blue” during the stimulus presentation,

all the data related to the “red” stimulus presentation have been pooled independently

on if it was the first or the second stimulus and if the other stimulus, present during

the trial, was “green” or “blue”. To mitigate this increase in heterogeneity, the

data have been split into a stratified way during the train-test division (and possible

cross-validation), so that they were equally represented during feature selection and

generalisability assessment. A final important limitation of this study is the lack of day-
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by-day acquisitions to monitor the intra-day stability of the discriminative features. In

fact, even if some areas are expected to be the most discriminative, for example, the

Frontal and Occipital during the delays, a quantification of the stability of these areas

is necessary to apply this methodology in real scenarios.

Future studies should investigate the generalisability in larger cohorts of participants

and, more importantly, in the target groups (elderly, patients affected by strokes

or brain injuries), considering that the examined group was composed of male,

young participants. Moreover, future studies can investigate the changes in the

discriminability of brain areas across stimuli during a neurofeedback experiment,

investigating the time-frequency classification performances.
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Conclusions

The performed analysis has shown that it is possible to classify the specific object

during the working memory maintenance at a single trial level (without averaging)

within the same individual. Indeed, the generalisation across subjects has not achieved

above-chance classifications, whilst it has been possible after considering each subject

independently, and not as a part of a population. Therefore, the personalised

approach has allowed defining for each participant the most discriminative stimulus

and a target area. In fact, even if the Frontal and Occipital areas are the most

highlighted by literature during the stimulusmaintenance, individual target areas have

sometimes moved away from this generalisation, depending on the optimal stimulus.

Among the three tested classification methodologies to investigate the discriminative

brain regions, the univariate analysis has been shown to be the most generalisable

and easy to interpret. Another important result of this analysis is that the tested

experimental setup resulted in no negative impact on the behavioural performances

of the participants, and most of them reported to be favourable to repeating it in

the future. Considering all these factors, the present study can be considered as

an important step to achieving personalised neurofeedback. Future research should

assess the impact of a such personalised approach, compared to a standardised one,

on the decline of working memory in the elderly, stroke survivors, and other fragile

groups.
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Appendix A

Appendix | Real experiment

This supplementary section has been used to describe the reported mental strategies

used by the participants during the real experiment in ”A.1 Mental Strategies” and a

detailed analysis of the discriminative areas for eachparticipant in ”A.2 Subject Specific

Feature Selection.

A.1 Mental Strategies

Participants of the real experiment were asked to report their mental strategies used

during the different sessions (Table A.1.1).
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Table A.1.1: Mental strategies of participants | Real experiment.

Subject

ID
Mental Strategies

21

For all the sessions, the participant imagined the first

stimulus on the left of an imaginary panel, while the second

on the right.

22

For all the sessions, the participant tried to memorise the

object of the first stimulus and then both after the

presentation of the second one. After the cue, only the cued

item was kept in memory.

23

For the first session, the participant associated the colour

with a continent (Green=Europe, Red=America,

Blue=Asia); for the second one, he thought of the initial

letter of the geometrical shape; for the third one he tried to

memorise the shape; while for the final one he associated

the symbol to some Greek letters.

24

For all the first three sessions, the participant associated

the stimuli with their verbal labels. Only during the final

one, he tried to memorise the shapes. He also reported that

(sometimes during the second session, and frequently

during the third one) he remembered only one stimulus

after the cue, and he answered by exclusion.

25

For all the sessions, the participant tried to memorise the

object, he reported only some fatigue to do it in the first one

(colour).

26

For all the sessions, the participant tried to memorise the

object, he reported only some fatigue to do it in the first and

the second ones (colour and shapes).

A.2 Subject Specific Feature Selection

The following section reports only the results from the univariate analysis.
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A.2.1 Subject 21

Figure A.2.1: Test Accuracy and Meaningful channel representation | Subject 21 |
Session 1 | Univariate analysis.

Figure A.2.2: Test Accuracy and Meaningful channel representation | Subject 21 |
Session 2 | Univariate analysis.

66



APPENDIX A. APPENDIX | REAL EXPERIMENT

Figure A.2.3: Test Accuracy and Meaningful channel representation | Subject 21 |
Session 3 | Univariate analysis.

Figure A.2.4: Test Accuracy and Meaningful channel representation | Subject 21 |
Session 4 | Univariate analysis.
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A.2.2 Subject 22

Figure A.2.5: Test Accuracy and Meaningful channel representation | Subject 22 |
Session 1 | Univariate analysis.

Figure A.2.6: Test Accuracy and Meaningful channel representation | Subject 22 |
Session 2 | Univariate analysis.
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Figure A.2.7: Test Accuracy and Meaningful channel representation | Subject 22 |
Session 3 | Univariate analysis.

Figure A.2.8: Test Accuracy and Meaningful channel representation | Subject 22 |
Session 4 | Univariate analysis.
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A.2.3 Subject 23

Figure A.2.9: Test Accuracy and Meaningful channel representation | Subject 23 |
Session 1 | Univariate analysis.

Figure A.2.10: Test Accuracy and Meaningful channel representation | Subject 23 |
Session 2 | Univariate analysis.
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Figure A.2.11: Test Accuracy and Meaningful channel representation | Subject 23 |
Session 3 | Univariate analysis.

Figure A.2.12: Test Accuracy and Meaningful channel representation | Subject 23 |
Session 4 | Univariate analysis.
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A.2.4 Subject 24

Figure A.2.13: Test Accuracy and Meaningful channel representation | Subject 24 |
Session 1 | Univariate analysis.

Figure A.2.14: Test Accuracy and Meaningful channel representation | Subject 24 |
Session 2 | Univariate analysis.
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Figure A.2.15: Test Accuracy and Meaningful channel representation | Subject 24 |
Session 3 | Univariate analysis.

Figure A.2.16: Test Accuracy and Meaningful channel representation | Subject 24 |
Session 4 | Univariate analysis.
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A.2.5 Subject 25

Figure A.2.17: Test Accuracy and Meaningful channel representation | Subject 25 |
Session 1 | Univariate analysis.

Figure A.2.18: Test Accuracy and Meaningful channel representation | Subject 25 |
Session 2 | Univariate analysis.

74



APPENDIX A. APPENDIX | REAL EXPERIMENT

Figure A.2.19: Test Accuracy and Meaningful channel representation | Subject 25 |
Session 3 | Univariate analysis.

Figure A.2.20: Test Accuracy and Meaningful channel representation | Subject 25 |
Session 4 | Univariate analysis.
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Appendix | Pilots

This supplementary section has been used to precisely describe the pilot studies which

have led to the final decisions for the experimental design. Firstly, in ”B.1 Interview

on the Feasibility of the Experimental Design” the interview with participant feedback

about the feasibility of the protocol, especially in terms of fatigue and the protocol

adjustments has been reported. Secondly, the behavioural performances of the three

subjects have been described in ”B.2 Behavioural Performances” highlighting the

behavioural accuracies and the different response times over sessions. Moreover,

the number of eye-related artefacts and the necessity of ICA-decomposition has been

discussed in ”B.3 Eye-Artefact and ICA Components Removal”, while the decision of

trial rejection has been explained in ”B.4 Trial Rejection”. Finally, the subjects-specific

neurophysiological performances of subject 14 have been expressed in detail in “B.5

Subject 14 – Effects of Different Mental Modalities - Univariate Analysis to highlight

the effect of different montal modalities on the performances.

B.1 Interview on the Feasibility of the Experimental

Design

Considering the participants’ feedback in (Table B.1.1), the adjustments seem a good

trade-off between their well-being and the quality and quantity of the data.
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Table B.1.1: Pilot Participant Interview..

Subject ID 13 14 15

Number of

Sessions
2 3 4

Number of

Trials per

Session

90 90 90

Duration of a

Trial
10 sec 10 sec 8 sec

Global

Duration
< 45min < 1 h ∼ 1 h

Presented

Stimuli

Colour: RGB

[255,0,0],

[0,255,0],

[0,0,255] on a

black background

[0,0,0].

Colour: RGB

[255,0,0],

[0,255,0],

[0,0,255] on a

black background

[0,0,0]

Colour: RGB

[230,80,80],

[80,230,80],

[80,80,230] on a

grey background

[0,0,0]

Orientation:

[60°, 180°, 300°]

Mental

Memorisation

Strategy

Session 1:

Mainly Object.

Session 2:

Object and Verbal

Label (repeated

only once).

Session 1:

Mainly Object.

Session 2:

Verbal Label

(continuously

repeated).

Session 3:

Object and Verbal

Label

(continuously

repeated).

All Sessions:

Mainly Object.

Level of Visual

Fatigue
Before:4; After:5 Before:5; After:9.5 Before:4; After:6.5
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Considerations

Blinking only at the

response time is

not hard with some

home training.

The experiment

should be shrunk.

(Not so easy to

blink only at the

response time).

The contrast of the

colour over the

background is too

high. This

condition has led to

an increase in

blinks during the

trials. Thinking

about a specific

characteristic

(object, label, or

both) is not too

hard, but with

some training is

better.

Over trials the

blink at the right

time is more

mechanical. This

shortened trial is

not trivial, this led

to: Confusion

about objects of

previous trials;

Less capability to

focus on the object

(more use of verbal

labels);

Reconstruction of

the first or second

object by exclusion.

Adjustments

5 trials of

preparation for

each different

stimulus (20

trials).

Reduction of the

contrast between

colour and

background.

Reduction of the

trial duration from

10 sec to 8 sec.

Increase rest time

for a total duration

of the trial of 8.5

sec, to reduce the

serial-dependence

effect [76]

B.2 Behavioural Performances

The response accuracies (Figure B.2.1, Left) and response times (Figure B.2.1, right)

are enough stable among sessions, this could be considered proof of the not excessive

tiredness of the participants. Subject 13 had an improvement in time responses

(especially a decrease in the standard deviation) and a little decrement in accuracy;
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Subject 14 had a constant reduction of time responses and enhancement of accuracy

(probably linked to task learning [56]); Subject 15 had a higher response time and a

lot of non-answers compared to the previous participants. This could be linked to an

excessive shrinkage of the trial duration.

Figure B.2.1: Behavioural Accuracy and Number of Non-Responses (Left) and
Response Time (Right) among subjects and sessions.

B.3 Eye-Artefact and ICA Components Removal

The number of trials affected by eye-related artefacts is very different across subjects

and sessions (Table B.3.1). Subject 13 had a very limited number of eye-related

artefacts because he was trained before the experiment to blink only at the correct

timing. This result is very important because demonstrates that with some practice the

ICA decomposition is not necessary. Therefore, the entire algorithm can be applied

in real applications. On the other hand, the number of trials affected by eye-related

artefacts is very high for subjects 14 and 15, who were not trained before. Considering

the trends, it is possible to note the effects of fatigue for subject 14 (with a constant

slight increase over sessions), and the opposite effects of learning and fatigue for

subject 15, in which a strong initial decrease from session 1 to 2 is followed by a slow

increase until the final one. It is important to note that Participant 15 reported that the

blinks becomemore automatic over sessions, another promising symbol that eye-blink

artefacts can be naturally mitigated with some practice.
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Table B.3.1: Trials with Ocular Artefacts.

Subject

ID
Session

Number of

Correct

Trials

Number of

Trials with

Ocular

Artefacts

Percentage

of Trials

with

Ocular

Artefacts

13 1 90 1 1.1

2 89 2 2.3

1 86 47 54.7

14 2 88 55 62.5

3 89 60 67.4

1 82 62 75.6

15 2 87 33 37.9

3 83 36 43.4

4 80 45 56.3

The ICA components of the first session of subject 13 (Figure B.3.1) and the second

session of subject 14 (Figure B.3.2) have been reported sorted by the variance of the

components and classified by the EEGLAB toolbox ICA Labels. In the first case, eye-

related components (4, 18, and 49) explained only 7.8% of the variance; while in the

second one, components 1, 9, and 42 explained 70% of the variance. In the end, from

the first dataset, components 4 18 25 32 38 44 45 47 49 52 54 55 56 58 59 63 have been

discarded, while components 1 9 15 23 24 36 38 40 42 44 48 54 57 59 62 63 have been

excluded from the second one. It is important to note, that all the rejected non-eye-

related components have been mainly caused by muscular activity or small deviations

in the channel signals. These components are temporally very localised, and a simple

trial removal could have removed them, but it has been decided to remove them with

ICA in order to maximise the number of residual trials.
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Figure B.3.1: ICA components | Subject 13 | Session 1.

Figure B.3.2: ICA components | Subject 14 | Session 2.

B.4 Trial Rejection

Despite the use of ICA decomposition, some trials have persistent high-frequency

artefacts (probably linked to muscle contraction) even after ICA reconstruction. To

examine these undesired components all the trials have been visually inspected before

and after ICA reconstruction. Figure B.4.1 shows an example of persistent high-

frequency artefact in trial 36 (enumerated as 136) that was present in all the interest

subparts (2,3,4,5,7), compared to trial 37 (enumerated as 137) of the second session of
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subject 14. Therefore, the whole trial 36 has been discarded before ICA decomposition

(in the figure it is shown before ICA decomposition).

Figure B.4.1: Example of artefact resistant to ICA decomposition | Trial 36 compared
to Trial 37 | Subject 14 | Session 2.

B.5 Subject 14 – Effects of Different Mental Modalities

- Univariate Analysis

The results of the univariate analysis for subject 14, session 1, session 2, and

session 3 have been reported in Figure B.5.1, Figure B.5.2, Figure B.5.3 respectively.

Stimulus presentation discriminability is similar enough among different mental

representations, driven by Posterior-Occipital alpha activities. The short delay is very

discriminant in sessions 1 and 3 by Fronto-Central and Parieto-Occipital theta and

alpha bands, while only a spurious Central beta channel is significant in the second

session. Finally, the long delay is enough different across modalities, Centro-Parietal

in beta and theta for sessions 1 and2, while Frontal theta andbeta andParieto-Occipital

theta for session 3.
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Figure B.5.1: Test Accuracy and Meaningful channel representation | Subject 14 |
Session 1 | Univariate analysis.

Figure B.5.2: Test Accuracy and Meaningful channel representation | Subject 14 |
Session 2 | Univariate analysis.
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Figure B.5.3: Test Accuracy and Meaningful channel representation | Subject 14 |
Session 3 | Univariate analysis.

From this analysis of subject 14 seems that the different modalities of thinking about

the object are very influential on the performances and on the discriminable areas.

It seems that stimulus presentation and the short delay are more identifiable when

the subject tries to remember the object or the object and its verbal label; while

the long delay is more identifiable when there is not only the object memorisation.

Therefore, during the real experiment, all the subjects were asked to memorise mainly

the object.
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