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Abstract

This thesis analyzes the effect of the presence of a second harmonic resonance in the differential

LC oscillator, starting form the first intuitive idea that leads to the usage of it and going inside the

different effects that it causes on waveform’s shapes and phase noise improvement, considering

different mechanisms. The analysis is carried out starting from the easiest topology of harmonic

oscillator, giving general condition under which this technique has a practical advantage or not,

even in other oscillator topologies. The thesis is closed with a practical example where all

previously illustrated concepts are used.



Contents

1 Preliminaries on Digital Communication Systems 4

1.1 Digital modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Digital Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 The minimum distance receiver . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Effects of phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Integrated LC Harmonic Oscillators 10

2.1 General structure of harmonic oscillators . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Cross-Coupled Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The Class-B oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Oscillator’s Steady State . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Current and voltage efficiency . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Current and Voltage Limited Regime . . . . . . . . . . . . . . . . . . 17

2.3.4 Real behaviour of Steady State drain current . . . . . . . . . . . . . . 18

2.4 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Effect of other noise sources . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Flicker Noise and effect of the common mode resonance . . . . . . . . 31

2.4.3 The figure of Merit (FoM) . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Different oscillator topologies . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 The class F2 oscillator 34

3.1 The idea of introducing the second harmonic resonance . . . . . . . . . . . . . 34

3.1.1 Class J waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Common mode resonance . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Class F2 Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Effect on drain current . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Tail generator’s noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Class-B - Noise from bias current’s generator . . . . . . . . . . . . . . 42

3.3.2 Tail’s noise reduction with common mode resonance . . . . . . . . . . 44

3.4 Effect of second harmonic on noise tank . . . . . . . . . . . . . . . . . . . . . 45

3.5 Phase noise advantages of class-F2 . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Reduction of the noise from tail generator . . . . . . . . . . . . . . . . 48

3.5.2 Reduction of the overall noise coming from the tank . . . . . . . . . . 49

1



3.5.3 Increasing in the current efficiency . . . . . . . . . . . . . . . . . . . . 52

3.6 Chip area saving of class-F2 oscillator . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Application of the second harmonic resonance to other oscillator’s topologies . 54

4 Design Issues and an Example 56

4.1 The problem of tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Discrete tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Fine tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Simulation of the noise factor 1

2



Introduction

Nowadays, most of communications systems are carried out using wireless technologies, which

enable to exchange informations without complex infrastructures. However, wireless systems

require a proper design of all the circuit that are part of the transmitter and receiver, taking into

account all practical problems that are present. Most used radio communications technologies

are nowadays digital, since this way to transmit information enables to reach higher speeds, and,

since most of transmissions happen between digital systems (like computers), it’s naturally to

use such systems. Digital communication structures always require specific circuits, as briefly

explained in the next chapter. One of the most critical component of every digital communica-

tion system is the oscillator, the circuit that provides to the other components a proper signal that

is necessary for the functionality of the transmitter or the receiver. One of the most problems

in designing wireless technologies is how to manage the presence of noise, which affects the

signals present in the system, leading, in some cases, to limitation in the bitrate of the system

or in the requirement, for it, to consume more energy. Noise sources are several: from electro-

magnetic interferences given by other analogous systems places in the neighborhood, to natural

field always present, conditions of the medium (such as weather, ...) but also from the electronic

noise sources present in all the circuits that are part of the transmitter and the receiver. Among

all different types of noise sources in the system, this thesis will deeply study the effect that the

noise has on the functionality of the oscillator, which is, as explained before, one of the most

important block of all digital communication systems, concentrating on a way that can be used

to reduce it and focusing on integrated solutions which are, nowadays, practically the only way

used to realize wireless systems. The thesis is organized as follows: the first chapter shows, in

general, how a digital communication system is realized, with a general review of most used

digital protocols, focusing then on phase noise requirements of the local oscillator that must be

satisfied for the proper working of the system. The second chapter introduces the well-known

topology of the integrated class-B oscillator, including a brief review of other existing topolo-

gies developed to reach higher performances, with the full explanation of the most used theory

on phase noise. In the third chapter the main idea of the thesis is presented, explaining how it’s

possible to use it an what are the advantages that it offers in term of phase noise, deriving all

the conditions under which the ideas explained before are worth for a improvement of perfor-

mances. Finally, the last chapter explains some practical problems and a complete example is

shown.
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Chapter 1

Preliminaries on Digital Communication

Systems

In this section an introduction on digital communication systems is given. The following sec-

tions are not intended to be an exhaustive explanations of all details of digital communications,

remanding to specialized books for further informations, but rather to be a small introduction to

the Phase Noise problem that will be extensively discussed in the following chapters.

1.1 Digital modulation

A digital modulation is a way to transmit information in a different way with respect to analogue

transmissions. When a digital modulation is used (in general not only in wireless systems), all

informations are sent from the transmitter to the receiver in the form of a sequence of bit (called

bitstream), that can, obviously, assume only two binary values (0/1). The principle of a digital

modulation is to divide the input bitstream into groups of one ore more bit, choosing consecutive

bits in the overall bitstream. For every of the different possible input sequence (called symbol)

a different signal is associated via a biunivocal assignement, like the Example 1.1.1 clarifies.

Example 1.1.1 (4 symbols digital modulation)

Considering to take consecutive pairs of two bits in the input bitstream, the association between

the four possible combinations and its corresponding signals could be, for istance, the one

shown in Table 1.1, where ω = 2π
T

, with T is a given symbol period

Input binary sequence Associated signal

00 s1 = 2cos(ωt)

01 s2 = 3cos(ωt)

10 s3 =−2cos(ωt)

11 s4 =−3cos(ωt)

Table 1.1: Example of digital modulation using 4 symbols

In this example, all four signals are multiple of a reference signal, in this case sre f =
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cos(ωt). It’s important to notice that the reference signal is not necessary part of the modu-

lation’s set of signals, but it might be. This is a general property of the modulation’s set of

signals. As in the case of the Example 1.1.1, in a digital modulation, all chosen signals must be

obtained via a linear combination of one or more reference signals, which constitutes the basis

of the modulation. In the Example 1.1.1, the basis consists of an unique signal, but usually

the basis can have dimension greater than one (a typical case is two). When more than one

reference signal is chosen, they all must be linearly independent, meaning that the only linear

combination that gives the zero signal is the one with all coefficients equal to zero. In this way

every signal of the modulation can be expressed as a vector whose components are the coef-

ficients of the linear combination of the signal of the basis that gives rise to a certain signal.

Still considering the Example 1.1.1, the signal associated to the sequence "00", can be simply

expressed via the number 2, with respect to sre f . The working principle of a digital communi-

cation system is to transmit, either wireless or via a cable the different signals representing all

the bits that must be sent to the receiver. Than, the receiver must use an appropriate circuit to

understand which was the original signal to have been sent, reconstructing, symbol by symbol,

the original bitstream. In the receiver, the presence of noise (from different sources) must be

taken into account. The presence of the noise is what actually causes the fact that, sometimes,

the receiver miss a correct reception of the right symbol.

1.1.1 Digital Demodulator

To understand the working principle of the receiver it’s necessary to represent the different

possible receivable signals in a graphical representation, where every signal is represented with

its vector components with respect to the different elements of the basis. Example 1.1.2 shows

the graphical representation of the signals of Example 1.1.1. This type of representation is

usually known as constellation of the digital modulation. Example 1.1.3, instead, shows another

example of modulation’s constellation, where, in this case, the basis has dimension two.

Example 1.1.2

Considering the example 1.1.1, the constellation is shown in Figure 1.1

−3 −2 0 2 3

sre f

Figure 1.1: Constellation of Example 1.1.1

Example 1.1.3 (4-QAM)

Considering now a different modulation, constituted by the four signals of Table 1.2, which

shows also the vector representation with respect to the basis (1.1), where, again, ω = 2π
T

, with

T being a given symbol period. This type of modulation is known as quadrature amplitude
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modulation (QAM), and, since 4 symbols are used, it’s frequently called 4-QAM

sre f 1 = cos(ωt);sre f 2 = sin(ωt) (1.1)

Input binary sequence Associated signal Vectorial representation w.r.t (s1,s2)

00 s1 = cos(ωt)+ sin(ωt) (1,1)

01 s2 = cos(ωt)− sin(ωt) (1,−1)

10 s3 =−cos(ωt)+ sin(ωt) (−1,1)

11 s4 =−cos(ωt)− sin(ωt) (−1,−1)

Table 1.2: Example of digital modulation using 4 symbols and two reference signals

−1 1

−1

1
s1

s2

s3

s4

sre f 1

sre f 2

Figure 1.2: Constellation of Example 1.1.3, axis divide the plane into 4 decision regions

The goal of the demodulator is to understand, every symbol period, which was the original

transmitted signal, given that the received signal is surely affected by noise, which is added

to the received signal. The working principle of a digital demodulator is to divide the plane

of the constellation in some regions, called decision regions. For istance, in the Figure 1.2,

the axis divide the plane into 4 different decision regions (corresponding, in this case, to the

four quadrants), each including one of the symbols. When a signal, which includes noise, is

received, the components along the elements of the basis are calculated. Then, based on the

position of the found point in the constellation, the demodulator understands what was the

signal probably sent. The effect of noise (of any type) is to move the signal’s point in the

constellation from the original position to another one. If the other position is still contained

in the decision region belonging to the transmitted symbol, the symbol is received correctly. In

other cases, the receiver makes an error.
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1.1.2 The minimum distance receiver

The way to associate the received signal to one of the symbols of the constellation are many,

one of these is the minimum distance receiver. The way it works is dividing the constellation

into decision regions in such a way that the symbol associated to a received signal (that includes

noise) is the one which has the minimum distance (in sense of euclidean distance) in the con-

stellation, like the Figure 1.2 already shows. To perform this analysis the receiver must, as first

step, find the component of the received signal Sr along all the reference signals of the basis.

The generic i-th component of the signal Sr along the reference signal si is:

Si =
1

Esi

∫ t=T

0
Sr(t)si(t)dt = (1.2)

where Esi
is the energy of the reference signal Sre f , namely the integral over a period of its

square. So the receiver must include, for every element of the basis, at first a component, called

mixer, that does the multiplication inside the integral in (1.2), then an integrator that integrates

the result, followed by a sampler that samples the output of all integrators to find the values of

the component at time t = T . A proper circuit calculates the distance of the signal from every

symbol of the constellation outputting the right value that follows the minimum distance rule.

1.1.3 Effects of phase noise

As seen before, the presence of noise can move the point on the constellation and cause an

error. Noise can come from different noise sources, but this thesis will concentrate only on

phase noise, explaining, in an intuitive way, why its value is important in digital communication

systems. Considering again the Example 1.1.3, the receiver must multiply the received signal

by a cosine and a sine, in order to reconstruct the two components of the transmitted signal. To

generate that reference signal, a local oscillator is used, which generates the reference signal

sre f 1.

sre f 1 = cos(ω0t) (1.3)

The signal sre f 2 is always obtained by simply phase shifting sre f 1 by 90◦ using an appropriate

circuit. However, the oscillator, as all other electronic circuits, has some noise. For this reason,

the signal generated by it is actually:

s∗re f 1 = cos(ω0t +φ(t)) (1.4)

where φ(t) is a random signal due to the presence of the noise. The reason why noise affects

only the phase of (1.4) will be clear in the next Chapter. To understand what happens when s∗re f 1

is used in place of sre f 1, the situation when there are no other noise sources is considered. The

effect of the presence of a random phase disturbance is a movement of the point inside the

constellation into a location different from the place where the received signal should be, along

a circle centered in the origin and passing through the point itself, as Figure 1.3 clarifies. If,

then, other noise sources are present, the effects sum up in the vector sense.
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−1 1

−1

1

φ(t)

s1

s2

s3

s4

sre f 1

sre f 2

Figure 1.3: Effect of phase noise in the case of a 4-QAM digital modulation, in this case the

reception of s4 is taken as example, while φ(t) is the effect of phase noise

The amount of difference in point’s position on the constellation depends on the statistical

properties of φ(t), in particular its variance. If the variance is high, the point moves along the

circle more, eventually causing a receiving error to happen more frequently.

When the requirements on bitrate become higher, usually more symbols are added to the con-

stellation, to increase the number of bits sent for every period. For example, Figure 1.4 shows

the constellation of a 16-QAM modulation. It’s clear that, in this case, requirements on noise

are more strict than 4-QAM. A 64-QAM will then require further strict specifications, and so

on. Table 1.3 summarizes the phase noise requirements for some standardized wireless commu-

nication systems. It’s evident the fact that, over the years, specifications are becoming more and

more strict, requiring a research activity to develop oscillators capable to reach such values1.

1Since, as extensively discussed in Chapter 2, the effect of the disturbance is to create nonzero frequency

components at frequencies different from ω0, phase noise is practically always expressed as the ratio between the

power of the noise component at a given offset frequency from ω0 and the power of the sinusoidal carrier. In this

way specifications in Table 1.3 are given, too.
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Figure 1.4: Constellation of a 16-QAM, where dashed line separate the decision regions. It’s

clear that the system is more sensitive to phase noise, that must be lower

Standard Year Oscillator’s

frequency

Phase Noise re-

quirement

Corresponding

offset frequency

Bluetooth 1.0 [1] 1999 2.4GHz −111dBc/Hz 3MHz

E - GSM [2] 1999 900MHz −141dBc/Hz 3MHz

RFID [3] 2007 900MHz −109dBc/Hz 80kHz

5G [4] 2017 20GHz −117dBc/Hz 1MHz

Table 1.3: Phase Noise requirements for some wireless communication standards
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Chapter 2

Integrated LC Harmonic Oscillators

2.1 General structure of harmonic oscillators

An harmonic oscillator is a circuit capable to continuously provide a sinusoidal (from which

"harmonic") waveform without any external input. The general structure of an oscillator is

the one reported in Figure 2.1 [5]. It’s important to notice that model explained in Figure 2.1

refers to the so called negative resistance structure. Harmonic oscillators can be also viewed as

particular feedback circuits, however, for oscillators that will be discussed now on, the negative

resistance approach is highly recommended and gives simpler analysis.

LT CT RT −R

+

−

vLO

Figure 2.1: General structure of harmonic oscillators

The general working principle of an oscillator is the presence of a LC tank, which has some

losses elements, represented, in Figure 2.1, by the equivalent parallel resistance RT . A negative

resistance, realized with active components, compensates the positive resistance of the tank in

such a way to make the overall system unstable, letting an oscillation to start. Considering the

circuit above, the impedance of the overall circuit is given by:

Z =

(

1

sLT
+ sCT +

1

RT
− 1

R

)−1

=
sLT RT R

RT R+ s2LTCT RT R+ sLT (R−RT )
(2.1)

As clear form (2.1), the system, if R > RT , is unstable, since the poles have positive real

part, and an oscillation at frequency ω0 =
1√

LTCT
starts, as shown in Figure 2.2. From a linear

point of view, oscillation should grow in amplitude indefinitely. Actually, in a real circuit,

nonlinearities become more effective as the amplitude of the oscillation increases, limiting it to

a certain value at the point where the oscillator reaches the so-called Steady State. However, to
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properly understand the behaviour of the oscillator in steady state, the practical implementation

of the principle schematic of Figure 2.1 must be analyzed, since different topologies lead to

different steady state conditions.

10 20 30 40 50

−4

−2

2

4

t

vLO (V )

Figure 2.2: Behaviour of vLO when the system is unstable. Oscillations start with ω0 ≃
3.14rad/s (in this example). Notice that, theoretically, there’s no limit in the amplitude of

the oscillation.

2.2 The Cross-Coupled Pair

The ways to implement the negative resistance are many different. However, in integrated har-

monic oscillators most of the time it’s implemented via two transistors (either MOS or bipolar),

connected as shown in Figure 2.3, realizing the so-called cross-coupled pair. This type of cir-

cuit, where, of course, the bias current generator is realized with a proper current mirror, can

easily implement a differential negative resistance, namely that the differential voltage vd is

proportional to the current id via a negative constant (at small signals). Since the bias current

generator is an open circuit at small signals, the currents flowing into the drain of two devices

are the same but with opposite direction.
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M1 M2

id id

+ −vd

Ibias

Figure 2.3: General structure of the cross-coupled pair

To analyze the cross-coupled pair and calculate the value of its negative resistance, it’s nec-

essary to move to its equivalent small signal circuit of Figure 2.4, where parasitic capacitances

are not shown since they can be embedded in the tank capacitance CT .

ro1

vgs2

gm1vgs2 ro2

vgs1

gm2vgs1

id id

+ −vd

Figure 2.4: Equivalent small signal circuit of the cross-coupled pair

For the symmetry of the circuit and the voltages, the common source is an ac ground, for

differential signals only. The gate to source voltages are:

vgs2 =−vgs1 =
vd

2
(2.2)

From which, considering, for istance, the left branch of Figure 2.4 :

id =−
(

vd

2ro1
−gm1

vd

2

)

=
vd

2

(

1

ro1
−gm1

)

(2.3)

The differential resistance seen at the port is then:

Rd =
vd

id
≃− 1

gm
(2.4)

Since, in (2.3), ro1 >> 1/gm1, and the two devices are supposed to have the same small

signal transconductance gm = gm1 = gm2
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2.3 The Class-B oscillator

Hence, it has been shown that the cross-coupled pair can provide a negative resistance, whose

value depends on the transconductance of the device used to create it. With this structure, one

can finally arrive to the general structure of the first oscillator topology, largely used especially

in integrated oscillators, which is composed by a tank whose differential behaviour is equal to

the one of Figure 2.1, and a cross-coupled pair used to realize the appropriate negative resis-

tance. The so obtained oscillator is also known as Class B oscillator, and it’s shown in Figure

2.5, where the current source has been replaced with a current mirror, the resistance RT is actu-

ally created by the equivalent parallel of the inductance’s series resistance, given by (2.5), and

the inductor has been split into two halves, to let the bias current properly flow from the supply

to the cross-coupled pair’s devices.

RT ≃ Q2
L ∗RsL ≃ QLω0LT (2.5)

M1 M2

id id

CT

+ −
vLO

M3

LT/2LT/2

VDD

vd1 vd2

Figure 2.5: Complete circuit of the class-B oscillator. The reference branch of the current mirror

is not shown

As explained before, there’s no explicit resistor in the tank, but the resistive component

shown in Figure 2.1 is created using the losses of the inductors. In fact, the more the inductor

is ideal, the higher is the equivalent parallel resistance (since Q in (2.5) increases), leading to

higher oscillation amplitudes, as explained in the next subsection.
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2.3.1 Oscillator’s Steady State

If the condition for the instability of the system whose general transfer function is the one

in (2.1) is met, the oscillation starts, theoretically diverging to infinite amplitudes. In reality,

nonlinearities of the devices limit the amplitude of the oscillation in such a way that, after a

given amount of time, the oscillator reaches a Steady State condition, where the oscillation’s

amplitude is stable. This is mainly due to the behaviour of the devices forming the cross-

coupled pair. When the amplitude of the gate to source voltages increases, that devices start

to operate in the triode region, so decreasing the value of gm, leading to a stable oscillation

amplitude1.

When the steady state condition is reached, both drain nodes oscillate with a given amplitude

equal to VLO/2 with respect to ground. VLO/2 =Vo is known as single ended amplitude, while

vLO is the differential voltage, oscillating with an amplitude equal to double the single ended

one. Since the gate of a device is connected to the drain of the other one, waveforms at the

drain and gate terminals of a device are reported in Figure 2.6. As clearly visible, when the

oscillation’s amplitude reaches steady state, the devices forming the cross-coupled pair operates

with gate and drain voltages given by (2.6) and (2.7), where the mean value of the drains’

voltages is VDD and the single ended oscillation’s amplitude is VLO/2

vg =VDD − VLO

2
sin(ω0t) (2.6)

vd =VDD +
VLO

2
sin(ω0t) (2.7)

In the steady state condition, the two transistors of the cross-coupled pair operate alterna-

tively in triode region or in the OFF region. This behaviour is known as Hard Switching and the

oscillator in steady state is properly modelled as shown in Figure 2.7, where switches and their

parasitic resistance equivalently model the transistor in triode region. Moreover, if the capacitor

is considered to be split in a series of two equal capacitors with double value, the point between

them is a differential ac ground.

1In some topologies, different from the class-B, oscillation’s amplitude might be, under some conditions, un-

stable
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VDD

t

vd1 vg1

Figure 2.6: Class-B Steady State waveform, with VDD = 1V

rM1triode







ON i f 0 < ω0t < π

OFF i f π < ω0t < 2π

2CT 2CT

LT/2LT/2

vd1 vd2

rM2triode







ON i f π < ω0t < 2π

OFF i f 0 < ω0t < π

Ibias

Figure 2.7: Equivalent Steady State model of the class-B oscillator, where both the supply and

the midpoint of the two capacitors representing CT are AC grounds. Every half a period, one of

the two switches (transistors) is ON while the other is OFF, and viceversa

From Figure 2.7, it’s clear that the current flowing into the two terminals of the tank is

ideally (as clear later) a squarewave ranging from 0 to Ibias, with a period equal to the period

of the oscillation. At ω0, both the halves of the tank, redrawn as in Figure 2.7, operate in

resonance, so they display an impedance equal to RT/2, where RT is the equivalent parallel

resistance of (2.5), at the frequency ω = ω0, and a low impedance for all other frequencies

multiples of ω0 (the out-of-resonance impedance is actually capacitive for ω > ω0, but in this

approximate analysis it’s considered to be zero). Since the current is a periodic signal, it can

be decomposed into its harmonic components. In particular, the amplitude of the first current
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harmonic is:

I1 =
2

π
Ibias (2.8)

while further harmonics are irrelevant since they are multiplied by the impedance of the tank

out of resonance, which results in a very low (ideally zero) voltage at the two drains. It’s now

easy to find the expression of vd1 =−vd2:

vd1 =
RT

2
I1sin(ω0t) =

2

π
Ibias

RT

2
sin(ω0t) (2.9)

where the fact that only half of the inductor is present at any of the two halves of the circuit

has been used. From (2.9) the amplitude of the differential oscillation is:

VLO =Vd1 −Vd2 =
2

π
RT Ibias (2.10)

2.3.2 Current and voltage efficiency

Analyzing the equation (2.10), it’s possible to define some parameters used to characterize

different oscillator topologies that are nowadays available, different from the traditional class-

B. In any oscillator which contains a bias generator at the common source of the cross-coupled

pair, the final oscillation’s amplitude is always function of the first harmonic current’s value I1.

The difference among various oscillator topologies is in the shape of the drain current of the

devices at steady state, which can be different from the square wave of Class-B oscillator. For

this reason, the current efficiency is defined by (2.11), quantifying how much the bias current is

converted into first harmonic current (the only one that is further converted into a voltage).

ηI :=
I1

Ibias

(2.11)

For the class-B, ηI =
2
π ≃ 0.64, at least theoretically. For a real circuit, actually ηI ∼ 0.55.

Another situation that limits the amplitude of the oscillation is the fact that the lower limit of

vd1 and vd2 cannot be the ground voltage. In fact, as clear from Figure 2.6 there must be enough

"space" between the minimum value of vd1 or vd2 to guarantee the operation in saturation of

the current mirror and the presence of a voltage across the devices operating in triode. For this

reason, the maximum single ended swing is lower than VDD. Letting Vomax
be the maximum

single ended oscillation’s swing, (2.12) defines the voltage efficiency.

ηV :=
Vdmax

VDD
(2.12)

For the class-B, ηV = (VDD − ronIbias −V ∗
mirror)/VDD, V ∗

mirror being the minimum voltage

required by the mirror to keep itself in saturation.

With the above definitions VLO can be expressed as:

VLO = ηIRT Ibias = 2ηVVdd (2.13)

It’s important to notice that (2.13) is valid for any oscillator topology, given that ηI and ηV
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have been properly defined. Table 2.3.2 shows the typical value of the above defined parameters

for some typical oscillator topologies. The class-F2 oscillator is the one which constitutes the

main part of the following chapters.

Oscillator Topology ηI ηV

Class B ∼ 0.55 ∼ 0.6÷0.8

Class-C ∼ 1 ∼ 0.9

Class-D ∼ 1.5 ∼ 1.5

Class-F2 ∼ 0.6 ∼ 0.75÷0.8

Table 2.1: Typical values of voltage and current efficiency for different oscillator topologies.

Values of voltage efficiency assume VDD to be in the range 0.8÷1.2V

2.3.3 Current and Voltage Limited Regime

The behaviour of the oscillator modelled as in Figure 2.7 is valid if the tail’s transistor operates

in saturation for the entire period. This operation region is called current limited regime. If

Ibias is increased, the amplitude of the oscillation is increased up to a point where the tail device

enters the triode region for part of the cycle. If the current is further increased, that device is

always in the triode region and the bias current cannot increase anymore, reaching the maxi-

mum possible value of it. This operating condition is called voltage limited regime and the tail

generator could be also removed, leading to the class-D topology, where the value of the bias

current cannot be controlled. Between these two regions, there exist a transition region where

the tail’s device enters triode only for part of the cycle. The dependence of the output amplitude

on the average value of the tail’s device current is shown in Figure 2.8, where the slope of the

linear part of the graph should be in theory (2/π)RT .

VLOmax

Ibias

VLO

Figure 2.8: Differential amplitude with respect to the bias current
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2.3.4 Real behaviour of Steady State drain current

In a real circuit, the waveform of the drain current of the cross-coupled pair’s devices2 is not a

square wave anymore. In fact, the transition of that devices between the active and the triode

region, together with the parasitic capacitance of the current mirror, shapes the drain current in

a way that is different from a squarewave. Example 2.3.1 show a simulation of a real circuit

where this fact is shown.

Example 2.3.1 (Class-B Drain Current)

Just as an example, a real circuit employing the 22-nm GlobalFoundries technology is simu-

lated, using ideal components for the tank, with LT = 400pH, CT = 2.53pF (this values gives

ω0 ≃ 5GHz), RT = 1kΩ and real transistors for the cross-coupled pair and the bias current gener-

ator. The bias current is fixed to Ibias = 1.2mA, resulting in a theoretical oscillation amplitude of

VLO = 750mV . The dimensions of the cross-coupled pair’s devices are (W = 8µm, L = 18nm),

allowing a ON voltage of ≃ 50mV , while the tail generator has (W = 8µm, L = 300nm) as

dimensions, allowing it to always work in saturation. Figure 2.9 shows the simulated current

which is not a squarewave at all. Moreover, the simulated oscillation amplitude is 711mV ,

which gives ηI = 0.59, lower than the theoretical one.

Figure 2.9: Simulated current waveform of the oscillator of Example 2.3.1

A detailed theoretical analysis of the waveform of Example 2.3.1 can be made only in an

approximate way, which makes use of the long channel model for the transistor of the cross-

coupled pair [6]. For more accurate models one should use the proper short channel model

(especially if deep-scaled technologies are used). However, still with the long channel model

calculations are quite complex and, at the end, it’s still necessary to use numerical simulations

to solve the final equation since, as it will be clear, it has not a closed form solution.

To analyze theoretically the current’s waveform, at least in an approximate way, some hy-

pothesis (not always perfectly true) are made:

• cross-coupled pair’s transistors follow the long channel model;

2In many works, devices creating the cross-coupled pair are called gm-devices
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• The parasitic drain-to-bulk capacitance of the tail generator is large enough to be assumed

as a short circuit at ω0.

The second point allows to consider the voltage of the common source VS to be constant, in

general different from the bias point’s value. To study the circuit, it’s convenient to move the

reference point of voltages to the common source, studying the circuit of Figure 2.10, where,

since the interest is on the drain current, the tank has been substituted with a sinusoidal volt-

age source with the right amplitude. Moreover, moving the reference to the common source

will change VDD to VDD −VS. Obviously, changing the reference doesn’t change the values of

currents.

M1 M2

Id

−
+Vocos(ω0t)−+ Vocos(ω0t)

VB

+

−
Vd +

−
Vg

Figure 2.10: Circuit used to calculate the drain current, with the reference on the common

source

With respect to Figure 2.10, and focusing only on one device (for istance M1), drain and

gate voltages are, respectively:

Vd =Vds =VB −Vocos(ω0t) (2.14)

Vg =Vgs =VB +Vocos(ω0t) (2.15)

defining VB :=VDD −VS.

The current waveform can be decomposed into some regions, as explained in Figure 2.11.

In Figure 2.11, the three operating regions of the transistor are highlighted. Referring only

to positive values of ω0t, for angles between 0 and Ψ the transistor operates in triode region,

between Ψ and φ it operates in saturation, for the remaining part of the period it’s off. For the

other transistor of the cross-coupled pair the situation is the same, with a π angle shift only in

the angles axis. For this reason, considerations below always refers to one transistor. Using
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long channel model, and defining β = µCoxW/L, the steady state current of the transistor can

be expressed as function of drain and gate voltages as:



















Id = β (Vgs −VT )
2 Saturation region

Id = β ((Vgs −VT )Vds −V 2
ds/2) Triode region

Id = 0 Off region

(2.16)

Figure 2.11: Behaviour of the drain current according to the approximate model of [6]

In any case, the average drain current ID of the transistor is imposed by the tail generator to

be Ibias/2.

ID = Ibias/2 = β (VGS −VT )
2 (2.17)

where VT is the threshold voltage. From (2.17), the bias point gate-to-source voltage VGS is:

VGS =
√

ID/β +VT (2.18)

Taking the ratio between the equation (2.16), in saturation region, and (2.17), and using the

expression of Vgs given by (2.15), one gets:

Id

ID
=

(

VB

VGS −VT
+

Vo

VGS −VT
cos(ω0t)− VT

VGS −VT

)2

(2.19)

which is valid in saturation region. In triode region, with a similar reasoning, equation

(2.19) becomes:

Id

ID
=

VB +Vocos(ω0t)−VT

VB −VT

VB −Vocos(ω0t)

VGS −VT
− 1

2

(

VB −Vocos(ω0t)

VGS −VT

)2

(2.20)

To find the limit angle between triode and saturation regions, it’s necessary to consider that

the device enters saturation from triode when Vd = Vg −VT , which implies, using (2.14) and

(2.15):
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ψ = cos−1

(

VT

2Vo

)

(2.21)

While imposing the drain current in saturation given by (2.19) to be zero, one gets:

VB =VT −Vocos(φ) (2.22)

However, since VB is not known, it’s necessary to find a different way for the calculation of

φ . In particular, the average drain current is found by piecewise integrating (2.16) and equating

it with the average current value given by (2.17).

Ibias/2 =
∫ ψ

0
Idtriode

+
∫ φ

ψ
Idsat

(2.23)

After some steps [6], an expression containing only φ as unknown is obtained:

π =
V 2

o

(VGS −VT )2

[

φ

2
−2ψ − 3

2
sin(φ)cos(φ)+φcos2(φ)−2cos(ψ)sin(ψ)

]

+4
VoVT

(VGS −VT )2
sin(ψ)+

− V 2
T

(VGS −VT )2
ψ

(2.24)

which can be solved numerically to find the value of φ .

Once ψ and φ has been obtained, VB can be simply found using (2.22).

At this point, having all expressions of Vd , Vg and VB, it’s possible to explicit find the drain

current in all three operating regions, by simply multiplying (2.19) and (2.20) by the average

drain current ID. Figure 2.12 shows the result of the calculation for Example 2.3.1, it’s possible

to notice the differences between simulation and theory.
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Figure 2.12: Comparison of drain current’s approximate analysis with the values of Example

2.3.1, compared with the result of the simulation

It’s clear that the theory is quite complex and it doesn’t still provide enough accurate results.

For this reason, in all practical design problems it’s never used and simply some margin on ηI

is considered, given that it’s lower than 2/π . However it can be useful to understand how

the current’s shape and spectrum depend on the shape of Vd and Vg. For istance, Figure 2.13

provides the current waveform for different values of Vo, while in Table 2.2 the corresponding

Fourier coefficients are reported. It’s noticeable that, the more the transistor enters the triode

region, the higher is the value of the second harmonic, while the first slightly gets lower, since

the waveform differs from the ideal squarewave more.
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Figure 2.13: Effect of the value of Vo on the shape of the drain current, whith Ibias = 1.2mA

Amplitude Vo First harmonic |I1| Second harmonic |I2|
360mV 729 µA 28 µA

400mV 702 µA 99 µA

440mV 669 µA 184 µA

Table 2.2: Effect on the first and the second harmonic of the drain’s current, considering Ibias =

1.2mA, according to the approximate theory

2.4 Phase Noise

In this section the effects on the oscillator of the noise generated by various noise sources

present in the circuit is analyzed. Since, as it will be clear, the effect of the noise can be viewed

as a perturbation in the phase of the oscillation, while it does not affect its amplitude, noise in

electronic oscillators is referred as Phase Noise3. Main noise sources in an oscillator are:

• Lossy components of the tank (RT );

• Noise generated by cross-coupled pair’s devices;

• Noise generated by the bias circuit;

Different theories allowing the study of the phase noise have been developed since 90s,

going from intuitive approaches to extremely rigorous approaches making use of the theory of

Linear-Time-Variant systems. The theory it’s going to be presented is the one by Hajmiri and

Lee [7],[8], widely used to analyze oscillators in a decently rigorous way. Next, a more general

theory, that considers also the harmonics of the output voltage different from the first, will be

briefly presented, too.

3"PN" in the following
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Considering a generic oscillator, it’s easy to understand that noise may, in principle, change

both the amplitude and the phase of the output sinewave. However, amplitude’s variation are

compensated by nonlinearities of the circuit, reaching a condition in which oscillation’s ampli-

tude is stable4, so the relevant perturbation due to noise is the one on the phase. For this reason,

the output voltage can be expressed as:

vLO =VLOcos(ω0t +φ(t)) (2.25)

where φ(t) is a random phase perturbation caused by noise. Since φ is a random signal, the

spectrum of vLO is not a single line at ω0 but it displays some nonzero components also at values

close to ω0 but different from it by an offset frequency ∆ω , operating as a phase modulation. For

any offset frequency ∆ω , it’s possible to find a value for the power spectral density of the output

signal vLO, SvLO
(ω0+∆ω). This is a value expressed in [V 2/Hz], but it’s usually expressed with

respect to the power of the carrier defined as:

Pcarrier =
V 2

LO

2
[V 2] (2.26)

Furthermore, the ratio of the PSD of the noise with respect to the carrier’s power is normally

represented in a logarithmic scale, defining the noise, at ∆ω from the carrier, as:

L(∆ω) = 10 log10

(

SvLO
(ω0 +∆ω)

Pcarrier

)

[dBc/Hz] (2.27)

Using dBc as unit of measurement, with the meaning of dB with respect to the power of the

carrier (per unit frequency).

Any sinusoidal oscillator, regarding noise, can be represented with the block diagram shown

in Figure 2.14, where it’s possible to identify two main blocks:

• The first block converts the disturbance signal, represented with a noise current in, into

the proper phase error.

• The second block converts the phase error into the output voltage, by simply calculating

the value of the cosine function at the istantaneous phase properly accounting the phase

error φ(t)

in (t)
hφ (τ)

φ (t)
cos(ω0t +φ(t))

vLO (t)

Figure 2.14: Block diagram of a generic harmonic oscillator used to study the effect of the noise

Focusing on the first block, the way the phase error is calculated is based on the so-called

ISF approach, which is the main point of the Hajmiri and Lee theory [7]. The analysis of the

4In some cases, oscillation amplitude may be unstable [9], however, this phenomenon happens when large tail

capacitors are used, which is not the case of circuits presented in this thesis
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phase noise is first carried out considering the noise coming from the tank only. The effect of

noise coming from other sources is discussed later. Noise coming from the tank is only due

to the equivalent parallel resistance RT . Referring to the circuit of Figure 2.7, tank’s noise is

generated from the equivalent resistance of LT/2 inductor, namely RT/2 = Q2RsL
/2. Noise

from a resistor can be modelled as a parallel current source injecting a noise current in with

PSD:

Sin =
4kT

RT/2
(2.28)

where k is the Boltzmann constant and T is the absolute temperature. It’s important to notice

that the analysis is considering only the thermal noise. Furthermore, also flicker noise generated

by active devices will be considered.

When a noise current is injected into a node of the circuit, the oscillation waveform is

perturbed. First of all, an impulsive current’s disturbance, injecting a charge q into a given

node of the circuit is considered. The effect of perturbation depends on when the disturbance is

injected with respect to the entire period of the oscillation. In fact, if an impulsive disturbance

happens at the peak of the oscillation, it causes only an error in the amplitude of the waveform,

not affecting the phase of it. On the contrary, a disturbance arriving when the oscillation crosses

the mean value will cause the maximum possible phase error. Figure 2.15 clarifies this concept.

For intermediate points the phase error caused by an impulse depends on when the impulse

arrives. The function giving the phase error as a function of the time τ when the impulse

current arrives is called Impulse Sensitivity Function (ISF). It’s a dimensionless function, with

2π as period, giving the phase error with respect to the moment the impulse happens. The ISF’

maximum value is equal to 1, namely that it’s normalized to the maximum possible phase shift,

no matter what it is. For a traditional class-B oscillator with cosinusoidal output waveform, the

ISF of drain nodes is:

Γ(τ) = sin(ω0τ) (2.29)

As clear from (2.29), an impulse of charge q has no effect on phase if it’s injected at ω0τ =

0,π (peak of oscillation), while the effect is maximum for ω0τ = π/2,3π/2. In general, the

calculation of the ISF is not simple, the rigorous derivation of (2.29) can be find in [7].
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Figure 2.15: Effect of the same impulsive current at different moments inside the period of the

oscillation. In case (a) there’s no phase error, while in case (b) there’s a phase error lasting

indefinitevely

Referring to the block diagram of Figure 2.14, it’s clear that the phase error φ(t) is given

by the response of the first block to a generic input current in, and it can be obtained via the

convolution with the impulse response of the block hφ (t,τ). The impulse response of the block

is the response of it when an unitary impulsive current injecting a total charge q = 1C5 is given

as input. Since q is injected in a infinitesimal amount of time, it causes a voltage variation on the

tank’s capacitor only, equal to ∆Vmax = q/2CT . Then, since the ISF is normalized to the maxi-

mum possible phase shift if a charge q is injected, it’s necessary to compute the maximum phase

shift ∆φmax. Looking at the ISF, the maximum phase error occurs when the sinewave crosses

the zero level. In that condition, if an instantaneous voltage change, equal to ∆V happens, the

oscillation continues (with the phase error), reaching again the zero value after an amount of

time which corresponds to the maximum phase error ∆φmax, as clear from Figure 2.16. The

phase error is:

∆Vmax =−VLO

2
sin(∆φmax)≃

VLO∆φmax

2
(2.30)

5The impulse response is defined as the response to a unitary impulse, namely a current in(t) = (1A)δ (t),
whose area, representing the total injected charge, is 1C
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ωt = π

−Vo

∆Vmax

Vo

∆φmax

ωt

Figure 2.16: Calculation of the maximum phase error

where the last step uses a first order approximation of the sine function. This is called

the linearity approximation, which is practically always true, as widely demonstrated in the

literature [7].

From (2.30), by solving for ∆φmax and considering that ∆φ = ∆φmaxΓ(τ), the impulse re-

sponse of the block converting the noise current into the phase error is:

hφ (t,τ) =
Γ(τ)

CTVLO

δ−1(t − τ) (2.31)

where δ−1 is the step function. The meaning of (2.31) is that, before the moment of in-

jection, there’s no phase error. After the q impulse arrives, the phase error suddenly steps to

the value given by the ISF, considering the maximum possible phase error. Once the impulse

response in known, the output phase error is given by the usual convolution (2.32). Notice that

that’s valid only in linearity condition, even if the system is not time-invariant.

φ(t) =
∫ ∞

−∞
hφ (t,τ) i(τ)dτ =

1

CTVLO

∫ t

−∞
Γ(τ)i(τ)dτ (2.32)

To easily calculated the integral in (2.32), it’s necessary to express the ISF with its Fourier

series, since it’s a periodic signal:

Γ(τ) =
c0

2
+

+∞

∑
n=1

cncos(ω0t +θn) (2.33)

By inserting (2.33) into (2.32):

φ(t) =
1

CTVLO

[

c0

2

∫ t

−∞
i(τ)+

+∞

∑
n=1

cn

∫ t

∞
i(τ)cos(nω0τ)dτ

]

(2.34)

Beside the computation of (2.34), it’s important to analyze it to understand what’s its prac-

tical meaning. To do this, the effect of a cosinusoidal disturbance i(τ) = Ikcos((kω0 +∆ω)τ),

of amplitude Ik and frequency ∆ω + kω0 ,k = 1,2, . . . , namely a frequency close to the (fixed)

k-th multiple of ω0, is analyzed. By inserting the expression of the current in (2.34):
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φ(t) =
1

CTVLO

[

c0

2

∫ t

−∞
Ikcos((kω0 +∆ω)τ)+

+∞

∑
n=1

cn

∫ t

∞
Ikcos((kω0 +∆ω)τ)cos(nω0τ)dτ

]

(2.35)

φ(t) =

(

1

CTVLO

)

c0

2

∫ t

−∞
Ikcos(k(ω0 +∆ω)τ)+

+∞

∑
n=1

cn

2

∫ t

∞
Ikcos((n− k)ω0t +∆ω)τ)dτ+

+
+∞

∑
n=1

cn

2

∫ t

∞
Ikcos((n+ k)ω0t +∆ω)τ)dτ

(2.36)

Moving to the frequency domain, the integral has a filtering effect. Since ∆ω is much lower

than ω0 (and therefore all its positive or negative multiples), the only relevant term in (2.36) is

the one coming from the second integral, when n = k. All other terms give rise to harmonic

components that are strongly attenuated in frequency by integration. Hence, the phase error

associated to the injection of a sinusoidal disturbance at frequency close to the k-th multiple of

the oscillation frequency ω0 can be well approximated by:

φ(t)≃ Ikcksin(∆ωt)

2CTVLO∆ω
(2.37)

Since the noise is not constituted by a single spectral line but rather it looks like a continuous

spectrum ranging the whole band of frequencies, the PSD of the noise error at frequency ∆ω is

given by the downconversion of all components located at a distance ∆ω from any multiple of

the oscillation frequency, as clarified from Figure 2.17

Moreover, if the PSD of the noise current is flat, the PSD of the phase error is proportional

to 1
f 2 (considering the the PSD is somehow the square of the Fourier transform and the integral

is equivalent to a division by jω), while if the PSD of the noise is proportional to 1
f

(flicker

noise), the PSD of the phase error directly depends on 1
f 3 .
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Figure 2.17: Mechanism of conversion between the PSD of the noise into the PSD of the phase

error (first two plots), the third plot represents the conversion of phase error into the output

voltage, which will be explained later

To calculate the total noise PSD at a given offset frequency, it’s necessary to find the total

noise power. Considering that (2.37) gives the phase error for a given k, it’s necesssary to sum

the power of (2.37), for all possible value of k. The power of a single value of k is given by

(2.38), since the power of a sinewave is half the square of the amplitude.

|Φ(∆ω)|2 = 1

8(CTVLO)2(∆ω)2
c2

k(I
2
k ) (2.38)

Summing the power of all sinewaves obtained for different value of k and dividing by a

small frequency range ∆ f , to get the PSD of the phase error Sφ (∆ω), one gets:

Sφ (∆ω) =
1

8(CTVLO)2(∆ω)2

4kT

RT/2

+∞

∑
k=0

c2
k =

kT/RT

(CTV 2
LO)

2Γ2
rms (2.39)

where the fact that I2
k /∆ f = 4kT

RT /2
, for every k has been exploited in (2.39), together with the

Parseval’s theorem, to substitute the sum of all ck with 2Γ2
rms.

Finally, to understand the effect of the noise on the output voltage rather than the phase

error, it’s necessary to consider the effect of the second block of Figure (2.14). In the frequency

domain, the multiplication by a cosine function simply upshifts the spectrum of the phase error

centering it near ω0. For this reason, (2.39) is the same when the PSD of the output voltage is

considered instead of the one of the phase error, by simply remembering that, while ∆ω used

to represent the frequency offset with respect to the zero frequency, it represents now the offset

with respect to the carrier frequency, as Figure 2.17 explains. By substituting Γ2
rms with the right

value, in this case 1/2, the final phase noise equation, in logarithmic scale, known as Leeson
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Equation is:

Sv(∆ω) = 10log10

(

kT/RT

(CTVLO)2(∆ω)2

)

(2.40)

2.4.1 Effect of other noise sources

The above analysis considers only the effect of the noise generated by the tank. To consider

also the effect of other noise sources, like the transistors of the cross-coupled pair or the bias

generator, it’s necessary to consider that the PSD of the noise current generated by the transitors

vary along the period and it’s not constant anymore. For istance, the PSD of the noise current

generated by a transistor in the saturation region is:

Sin = 4kT gmγ (2.41)

where γ is a technological parameter which tends to be equal to 2/3 in case of long channel

MOS and it’s higher for short channel devices (it can reach values up to 2). To manage with this

noise sources (called cyclostationary noise sources) a generalization of the ISF is introduced.

For each of these noise sources, the effective ISF is defined as:

Γe f f (τ) = Γ(τ)∗α(τ) (2.42)

where Γ(τ) is the usual ISF of the tank, while α(τ) is a function that takes into account the

fact that the noise current PSD is not constant entire the whole cycle and/or it has not the same

maximum value of the tank’s one. In case of the cross-coupled pair, α(τ) = gm(τ)γ/RT

With this remark, the analysis carried on previously is exactly the same, where Γe f f must

be used in place of Γ. For this reason, the final result differs from the one in (2.40) only by a

proportionality constant, since Γ2
e f frms

can be different from Γ2
rms. This reasoning is valid for all

noise sources, so the total noise PSD differs from the one of the tank only by a proportionality

constant, the noise factor F . With this consideration, the Leeson equation becomes:

Sv(∆ω) = 10log10

(

(kT/RT )F

(CTVLO)2(∆ω)2

)

(2.43)

The exact calculation of the noise factor can be find in literature, it involves the calculation

(if possible) of the rms value of Γe f f , comparing it with the rms value of Γ, for every noise

source. A typical value for a class-B oscillator is around 5. The exact calculation of the noise

factor for the tail generator is somehow shown in the next chapter. Instead, for the noise gener-

ated by the cross-coupled pair, it’s possible to show that it’s proportional to the one generated

by the tank via γ , with no dependence on all other parameters of the circuit. The proof of this re-

quires long calculations that are extensively presented in [10]. For this reason, the noise factor’s

increment due to the cross-coupled pair is simply Fcc = γ .
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2.4.2 Flicker Noise and effect of the common mode resonance

Up to now, only white noise sources have been considered. However, devices different from the

tank also display flicker noise, whose PSD can be modelled altogether with:

Si f lick
=

A

∆ω
(2.44)

where A is a constant that takes into account all the parameters determining the flicker noise

that are not frequency dependent. With the same approach used before, flicker noise causes PN

in the same way explained in Figure 2.17. However, in this case the PSD is not constant. Using

(2.44) instead of (2.41), it’s possible to neglect all terms different from c0 in (2.39), obtaining,

doing the next steps in the same way as before, the Leeson equation valid in presence of flicker

noise only:

Sv f lick
(∆ω) = 10log10

(

Ac2
0

8(CTVLO)2(∆ω)3

)

(2.45)

where the dependence on 1/ f 3 is clear. For this reason Phase Noise’s plot contains a −30dB/dec

slope for low frequencies and the usual −20dB/dec slope for higher frequencies. Of course, the

transition between the two parts is not abrupt an there exist a region where both noise contribu-

tions are relevant, as Figure 2.18 clarifes. For low frequencies only the flicker noise is relevant.

For high frequencies only the thermal noise is significant. Taking the tangent of the plot repre-

senting the phase noise for a relatively low value of offset frequency and a relatively high value,

the crossing point is somehow an indication on the transition between the two regions. This

frequency is called 1/ f 3 corner frequency and it can be find by equating (2.45) with (2.40),

obtaining:

ω1/ f 3 =
Ac2

0

4kT
RT (2.46)

The effect of the second harmonic resonance on flicker noise is outside the purpose of this

thesis that mainly focuses on the thermal region. However, the improving effect of the common

mode resonance on flicker noise is an extensively treated topic in literature [9].
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Figure 2.18: Plot of the phase noise considering also flicker noise

2.4.3 The figure of Merit (FoM)

Leeson’s equation shown in (2.40) can be expressed in several different ways. One of this

involves the replacement of the value of the capacitor CT with Q
ω0RT

, where Q is the quality

factor of the tank, which is usually dominated by the one of the inductor QL.

Sv(∆ω) = 10log10

(

kT

V 2
LO

RT

Q2

( ω0

∆ω

)2
)

(2.47)

Looking at (2.47), it’s clear that there’s a square dependence of phase noise with respect to

the ratio ω0/∆ω . Moreover, the fact that the phase noise is inversely proportional to the square

of the oscillation’s amplitude means that it’s also inversely proportional to the square of the bias

current, namely that it’s inversely proportional to the power consumption. For this reason, to

compare different topologies of oscillator, working at possibly different frequencies, the Figure

of Merit (FoM) is defined, normalizing the phase noise with respect to this two quantities [11].

FoM = Sv(∆ω)−20log10

( ω0

∆ω

)

+10log10

(

Pdc

1mW

)

[dbC/Hz] (2.48)

where Pdc is the DC power consumption of the oscillator.

2.5 Different oscillator topologies

To improve phase noise performances, a lot of different circuit topologies have been developed

since 90s, trying to improve the phase noise with the same power consumption of the oscillator

or the same chip area occupation. The main strategy used to achieve this goal is to increase the

current and the voltage efficiency, to reach higher oscillation amplitudes which leads to better

phase noise performances. In Class-C oscillators, cross-coupled pair devices are designed to

operate always in saturation (using a proper bias circuit), and a big capacitor is added in parallel

to the tail generator. In this way, the shape of the current is no longer the one reported in Figure

2.9, but it’s composed by short pulses, with the current efficiency that is almost equal to 1,
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giving an advantage in terms of phase noise. Another solution is the so-called class-D, where

the tail generator is removed to let the oscillator work in the voltage limited regime. In this way,

it’s possible to reach higher amplitudes and there’s no longer the noise contribution of the bias

circuit (which, in a traditional class-B oscillator, can reach the 50 % of the total noise). A lot of

other different topologies have been developed,the next chapter focuses on one possible solution

to improve phase noise, which is the addition of the second harmonic resonance in the tank. As

it’ll be clear, there’re some advantages that will be extensively discussed. The oscillator making

use of the second harmonic resonance is called, in the literature, class-F2 oscillator [12].
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Chapter 3

The class F2 oscillator

3.1 The idea of introducing the second harmonic resonance

As seen in the previous chapter, the current’s waveform differs from the theoretical square

wave, displaying also even harmonics. Most of the time, the tank has a low impedance for

all frequencies different form the resonance’s one, giving rise to a sinusoidal oscillation at

the drains. In reality, since the impedance of the tank is not zero for frequencies multiples

of the oscillation’s one, there are some higher order harmonics in the drain waveform, but

they’re usually negligible and the output waveform can be considered sinusoidal for all practical

purposes. However, the presence of a non-zero second harmonic current must be useful to

improve the performances of the oscillator, in a way that next subsections explains detailedly.

3.1.1 Class J waveform

This concept is outside the environment of oscillators, but it’s the starting point of the entire idea

of the thesis. In literature, there exist a type of power amplifier, called Class-J, which makes use

of a particular voltage waveform at the load, which is shown in Figure 3.1. In power amplifiers,

the purpose of the "clipping" in the low side of the sinewave is to prevent the transistor entering

the triode region. Similarly, one can think that having that waveform at the drain of the transistor

of a traditional class-B oscillator could increase the maximum possible voltage amplitude since

the tail generator enters triode region for higher voltages.

To proper understand this concept it’s necessary to know the expression of the waveform of

Figure 3.1, which is:

v = Acos(ω0t)+
A

2
√

2
cos(2ω0t) (3.1)

where A is a generic value of the amplitude.
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Figure 3.1: Class-J waveforms, black and red ones have the first harmonic phase shifted by π

As clear from (3.1), the waveform of Figure 3.1 is composed by two in phase sinewaves,

with proper amplitude. It’s important to notice that, if a time shift by t0 is applied, waveform’s

expression becomes:

v = Acos(ω0(t−t0))+
A√
2

cos(2ω0(t−t0)) = Acos(ω0t−ω0t0)+
A√
2

cos(2ω0t−2ω0t0) (3.2)

Hence, in general, the waveform in Figure 3.1 is represented by a sum of two sinewaves

which must have zero phase shift or, if the first has a phase shift θ , the second must have a

phase shift equal to 2θ , to have the same waveform, only shifted in time. A particular case is

when θ = π , in this case the expression becomes (3.3), and it’s represented in red colour in

Figure 3.1.

v = Acos(ω0t +π)+
A√
2

cos(2ω0t +2π) =−Acos(ω0t)+
A√
2

cos(2ω0t) (3.3)

so if the first harmonic is inverted in sign, to keep the same waveform the second one must

not be inverted in sign. This concept will be crucial in next explanations. Another important

thing to notice is that the minimum value of the waveform in (3.2) is actually higher than the

minimum value of a sinewave with amplitude A.

3.1.2 Common mode resonance

A way to exploit the fact previously shown is to introduce in the tank the common mode reso-

nance. In fact, since the waveforms at the two drains are opposite in sign, they actually have the

even harmonics in phase each other, while odd harmonics are in opposition of phase between the

two drains. For this reason, the tank may have also a common mode resonance, which can have

a frequency different from the differential mode one. The usual differential mode impedance

is defined as the impedance seen connecting a test generator like the Figure 3.2(a), while the

common mode impedance is defined as the one seen with the configuration of Figure 3.2(b).

Since the second harmonic is a common mode signal, the voltage at the drain of a device is.
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vd =−RT I1cos(ω0t)−RT 2I2cos(2ω0t) (3.4)

where RT is the usual tank’s resistance as defined up to now (differential mode), while RT 2

is the resistance of the tank at common mode at 2ω0, supposing to have a resonance at twice

the oscillation frequency for common mode signals. It’s important to notice that, in general, I1

and I2 can have a non-zero phase. By next expressing them as magnitude and phase, the voltage

waveform at one of the drains becomes:

vd =−RT |I1|cos(ω0t +φ1)−RT 2|I2|cos(2ω0t +φ2) (3.5)

where φ1 and φ2 are the phase of I1 and I2, respectively.

id id

−+

vd

TANK (a) TANK (b)

icm icm

−+ vcm

Zd =
vd

id

Zcm= vcm

icm

Figure 3.2: Definition of differential (a) and common mode (b) impedances

If φ2 = 2φ1 + 180◦ the drains’ waveform will be equal to the one of Figure 3.1. This is

an advantage since the minimum value of the drain voltage is higher than a traditional class-

B oscillator and, considering that the voltage drop across cross-coupled pair’s devices is the

same, it means that the tail generator works with an higher Vds, delivering more current or,

countersome, it’s possible to have a tail generator with reduced area with the same current

delivered by it1. However, to have the correct waveform at drains, it’s necessary that φ2 =

2φ1 +180◦. If, arbitrarily, φ1 = 0, to have (3.5) equal to (3.3), it’s necessary to have φ2 = 180◦,

which means that the second harmonic of the current must be in opposition of phase with the

first. If the two are in phase, this technique is not applicable anymore.

To understand why, instead, this tecnicque can be used in traditional class-B oscillators,

it’s necessary to analyze the drain current’s spectrum, in particular the phase of the second

harmonic with respect to the first. Considering the example of the previous chapter, it’s possible

1Drain-to-source saturation voltage is proportional to the square root of the form factor W/L of the transistor,

according to short channel model [13]
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to (numerically) calculate the first two Fourier coefficient I1 and I2 of the waveform of Figure

2.9, obtaining:







I1 = 0◦

I2 = 180◦
(3.6)

The first remarkable point is that the theoretical analysis behind the calculation of (3.6)

assumes the capacitance connected to the common source to be a short circuit at ω0. If it’s

not true, the phase of the second harmonic with respect to the first changes. To retrieve a

situation with the right phase shift between I1 and I2, adding an extra capacitance, in the order

of f F at the source may be necessary. Figure 3.3 show the phase shift between I1 and I2 in

Example 2.3.1, with respect to the value of an external tail capacitance. It’s clear that, after a

certain value, what is theoretically claimed by (3.6) is practically true, noticing that "class-J"

waveforms are obviously achieved (with some minor differences) even if the phase shift is not

exactly 180◦, but still a value closer to it. However, in this particular Example, bias current is

set to 1.2mA, since the tank’s resistance is fixed to 1kΩ. In practical oscillators, the equivalent

parallel resistance of the tank is few hundreds of Ω, giving the need of higher bias current. This

implies that the transistor creating the current source must be bigger and therefore its parasitic

capacitance is already enough to guarantee (3.6) with no external capacitance. This is the reason

why, in practical applications shown in the next chapter or in literature [12], this aspect is never

considered.

Figure 3.3: Relative phase between I1 and I2 with respect to the external capacitance. After

Ctail = 22 f F, equation (3.6) is practically true

Once the condition in (3.6) is verified, it’s possible to exploit the presence of the second

harmonic by modifying the tank adding the second harmonic resonance, as Figure 3.4 shows.
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Figure 3.4: Tank used to exploit the second harmonic resonance

With a reasoning similar to the one shown before, the resonance frequency for differential

signals is:

ωdm =
1

√

L(C1 +C2/2)
(3.7)

At ω0, the impedance of the tank is R1//(2R2).

From the common mode, instead, it’s like C1 and R1 were not present. Hence, the circuit is

composed by two identical halves that display a resonance at

ωcm =
1

√

C2L
2

(3.8)

at which the impedance of every half is R2, that, multiplied by I2, gives the second harmonic

voltage. A class-B oscillator modified using this tank, or an equivalent one, is named in the

literature class-F2. It gives several advantages in term of phase noise that will be discussed

in next sections. It’s important to notice that whatever follows is already present in literature

but there’s no "summary" work that show if, or if not, is possible to sum up all this advantages

together.

3.2 Class F2 Waveform

In a class-F2 oscillator, waveform at the drain is no longer sinusoidal. In fact, the presence

of the second harmonic resonance gives rise to a voltage at twice the oscillation frequency,

which sums with the usual sinusoidal oscillation. For this reason, the drain voltage waveform

looks like Figure 3.1. Of course, it depends on the relative amplitude between the first and

the second harmonics. Figure 3.5 shows 3 examples of waveform where the amplitude of the

second harmonic is changed among different values, keeping the phase shift at the right value,

as explained before. Figure 3.6, instead, shows what happens when the phase of the second
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harmonic has not the right value. As it’s clear, there’s no advantage in this case. Moreover,

Figure 3.5 shows that the minimum value of the drain voltage is higher than the case of the

simple class-B. This implies that, with the same first harmonic amplitude, namely the same

differential output voltage, the drain voltage reaches an higher value. This further implies that

the minimum voltage at the common source is higher than the class-B oscillator, with the same

output amplitude, namely with the same phase noise. Hence, it’s possible to increase the bias

current entering the voltage limited regime for higher currents, meaning that it’s possible to

decrease the phase noise by increasing the oscillation amplitude without changing the size of

the tail’s transistor. On the contrary, it’s possible to keep the bias current at the same value, in

this case the form factor of the tail’s device can be smaller. This further enables to have a less

noisy bias’ transistor, or simply a smaller one if the chip area is particularly relevant. Depending

on the design’s constraints, designers can choose between different views of the same concept.

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 3.5: Difference in the waveform changing the ratio between the first and the second

harmonic. In this case VDD = 0.8V and V1 = 600mV
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Figure 3.6: Effects of a phase shift between the harmonics different from 180◦. Dahsed line,

instead, represent the effect of a small error in the phase shift, which causes no significant

difference from the ideal case

3.2.1 Effect on drain current

When the second harmonic resonance is applied, the voltage waveform at drains change. In

particular, the minimum value of the drain voltage is higher and this makes the transistor to

less enters triode, causing therefore the drain current to move to a more ideal squarewave. This

therefore implies that the second harmonic current is lower as the second harmonic voltage

is higher, giving rise to a sort of negative feedback effect. For this reason, if R2, for istance,

doubles, the second harmonic voltage increases but less than twice, and so on. Figure 3.7 shows

what happens applying the tank of Figure 3.4 to the same oscillator of Example 2.3.1, and

changing R2 from 7kΩ to 11.5kΩ. As it’s clear, the increment in the voltage’s value of the

second harmonic with respect to the first is not proportional. Moreover, since the square wave

is moved toward the ideal one, the ratio between the first harmonic of the current and its average

value, namely the current efficiency ηI , increases, approaching the ideal value of 2/π .
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Figure 3.7: Ratio between the second and the first harmonic of the drain voltage with respect to

the value of R2, keeping R1 = 1kΩ

What explained previously suggests that the value of the second harmonic resistance R2

is not critical, either because of what shown in Figure 3.7, or because the benefit of an higher

value if the minimum drain current is obtained for a large range of the second harmonic voltage.

Therefore, to get the advantage just shown in a practical design, the presence of the second

harmonic resonance is required, not caring too much on the value of it, provided that the second

harmonic voltage is at last 15-20 % of the fundamental. This is also what makes this technique

to actually be feasible. In fact, in practise, the equivalent parallel resistance at the fundamental

R1, or at the second harmonic R2, depend on the quality factor of the inductor at ω0 and 2ω0,

respectively, and it’s not fully controllable. Figure 3.8 shows a summary of this first advantage,

considering again Example 2.3.1 with the modified tank. As it’s clear, for the same value of

bias current, it’s possible to reach higher differential oscillation amplitudes (which implies an

improvement in phase noise’s performances) or, counterwise, an higher value of the minimum

voltage of the common source for the same differential amplitude, which enables to use smaller

tail transistor or, in any case, a lower gm/Id device (which reduces the noise from the tail

generator).
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Figure 3.8: Sweep of the bias current in the two cases. From 1.2mA, current efficiency of class-

F2 oscillator is higher than the standard class-B. Also, for the same bias current, the minimum

voltage at the common source is higher in the case of the class-F2 oscillator

However, the presence of the second harmonic has other two beneficial effects on phase

noise, that will be explained in the next sections. An important remark is that the main effect

of the common mode resonance, as widely discussed in literature [9], is to highly reduce the

flicker noise upconversion, as also visible in the example of the last chapter. However, this

thesis focuses on the effect of the second harmonic resonance on the thermal noise only, which

is a topic not perfectly clarified by works dealing with the class-F2 oscillator, despite some

numerical simulations without any rigorous proof [14].

3.3 Tail generator’s noise reduction

3.3.1 Class-B - Noise from bias current’s generator

As explained in the previous chapter, the value of the noise factor in a real oscillator is larger

than one. Beyond the tank and the cross-coupled pair, a relevant noise contribution comes from

the transitor that generates the bias current. The reason why it’s usually relevant, up to the 50%

of the total noise, is that normally the tail’s transistor is the largest one in the circuit, given that

it carries the whole bias current and that it’s sometimes necessary to avoid it entering the triode

region (which is not necessary at all for the crossed couple). In a traditional class-B oscillator,

for an estimation of the effect of the tail generator with respect to the noise from the tank, noise
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current from the biasing transistor is modelled as usual, with a parallel current source with

power spectral density:

Sin = 4kT γgm (3.9)

For the calculation of the contribution of the noise given by the current source, the simplest

model of the oscillator of Figure 2.7 is used. With this model, the noise current coming from the

tail generator enters, alternatively, one of the two devices creating the cross-coupled pair. By

again reasoning on Figure 2.7, the effect of that noise current is totally equivalent to the current

noise of the tank, except for the fact that it occours only for half the period. For this reason, the

ISF of the tail generator is:







sin(ω0τ) if 0 < ω0τ < π

0 if π < ω0τ < 2π
(3.10)

From which the RMS value of that ISF is:

Γ2
tailrms

=
1

4
Γ2

tank (3.11)

From now, calculations are the same performed for the tank, with (3.9) as power spectral

density and (3.10) as ISF. By a simple comparison, the noise factor associated to the tail gener-

ator is [15]:

Ftail =
gmγRT

4
(3.12)

In reality, devices creating the crossed couple do not operate as ideal switches but rather they

have a nonzero series resistance when they are in triode and, moreover, they work in saturation

for part of the cycle. For this reason, the ISF in (3.10) becomes much more complicated [10]:

Γ2
tailrms

=
1

8
η(Φ) (3.13)

where η(Φ) is a function of half the commutation angle Φ, namely the angle during which

both transistor are in saturation region since the commutation is happening2. The function η(Φ)

is plotted in Figure 3.9.

Hence, the noise factor differs from the one in (3.12) and it’s equal to:

Ftail = η(Φ)
gmγRT

4
(3.14)

For istance, when the conduction’s angle approximates 0, (3.12) is retrieved.

2Ideally, the commutation is instantaneous and Φ = 0 with the simplified model of Figure 2.7
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Figure 3.9: Plot of the function η(Φ) [10]. When Φ approaches 0, the ideal formula is found

again

3.3.2 Tail’s noise reduction with common mode resonance

Another phenomenon widely discussed in literature, still related to the presence of the common

mode resonance, is the effect that it has on the reduction of the noise coming from the tail

generator. To understand the working principle, it’s necessary to consider that the current noise

generated by the transistor is a common mode signal, since it’s applied to the common source

of the two transistors. Moreover, the path toward the tank is not the only one possible for the

noise current, since the parasitic capacitance connected to the source node is present, too. For

this reason, noise current divides into two parts. One flows into the parasitic capacitance and the

other flows through the cross-coupled pair to the tank, generating phase noise. If the impedance

of the tank at common mode is relevant, as in the case of an explicit second harmonic resonance

(as shown before, R2 ≃ 10kΩ), most of the noise current flows into the parasitic capacitance and

the phase noise generated by the tail’s device becomes much lower than the case of a traditional

class-B, where the relatively low common mode impedance (essentially given by the impedance

of the inductor at 2ω0) let all noise current to convert into phase noise. Example 3.3.1 shows

the ISF of the tail current generator for a given oscillator with the common mode resonance. In

this case, taken form [12], the tank is much more complex, but it can still be modelled as Figure

3.4. Obviously, the amount of noise that is converted into phase noise depends on the value of

the second harmonic resistance of the tank R2 and the impedance of the parasitic capacitance at

the source at 2ω0.
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Example 3.3.1 (class F2 tail generator noise)

Considering the circuit of the Figure below, with the indicated sizes of devices, the simulated

ISF is shown in Figure 3.10. It’s clear that noise from current source is practically totally

suppressed, with a RMS value of the ISF being equal to 0.04 [12] (while it’s equal to ≃ 1/8 in

the class-B (3.10))

Γtailrms ≃ 0.04

Figure 3.10: Circuit of [12] (left) and the ISF of the tail generator (right, yellow curve)

3.4 Effect of second harmonic on noise tank

The last effect of the introduction of the second harmonic is the reduction of the noise generated

from the tank. Up to now, the result of the introduction of the second harmonic is to strongly

reduce the effect of the tail generator, plus the possibility to increase the oscillation amplitude

with the same size of transistors. The last effect that it has is a reduction of the noise from

the tank itself. To analyze this counterintuitive effect it’s necessary to rely on the complex

and general analysis presented in [16], which is valid for any oscillator following the principle

schematic of Figure 3.11.

Figure 3.11: General schematic of an oscillator according to [16]

The class F2 oscillator actually meets this general structure, since Gm indicated in the Figure

can vary freely and it can be either not constant over the period or even frequency-dependent.
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The result of the analysis, which requires long and complex calculations that can be find in [16],

aims that, in case of a tank with first harmonic resonance with resistance R1, second harmonic

resonance with resistance R2
3 and the value of the impedance at all other harmonics to be zero,

Phase Noise at an offset of ∆ω from the carrier, normalized with respect to the differential

oscillation amplitude and considering the effect of the tank only, is:

L(∆ω) = 10log10

(

kT

∆ω2

A2
1/R1 +4A2

2/R2

(A2
1C1 +4A2

2C2)2

)

(3.15)

where A1 is the first harmonic differential voltage amplitude, A2 is the common mode second

harmonic voltage amplitude, C1 is the differential equivalent capacitor while C2 is the common

mode capacitance4. It’s trivial to notice that, when A2 = 0, (3.15) moves back to the usual Lee-

son equation (with the contribution of the tank only). Also in this case, if the contribution of the

cross-coupled pair is considered, [16] proves that, again, the equation is equal to (3.15) simply

multiplied by (1+ γ) (like in the usual class-B oscillator, as stated in the previous chapter). To

show this agreement, the result of (3.15) is applied to the circuit of Example 2.3.1, with the

modified tank of Figure 3.4, taking the value of the amplitude from the simulation results. Fig-

ure 3.12 shows an excellent agreement between theory and simulation, remembering that the

contribution from the tail generator is highly reduced by the presence of the second harmonic

resonance. Moreover, for the calculation of the phase noise, the value of γ must be known. To

obtain this, a simulation testbench, contained in the Appendix, has been developed. One gets:

γ ≃ 1.45

3In this subsection only, R2 is supposed to be the common mode resistance as seen at the input port of the tank

applying a test generator between ground and the two terminals of the input port shorted together, to be consistent

with [16]. Hence, the value is half the one intended up to now
4Again, with the same convention used for R2
5The value is strongly higher than the ideal 2/3. a further proof of the poor validity of the short channel model

with deep-scaled technologies, like the 22 nm used for the examples of this thesis
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Figure 3.12: Comparison between simulation and the value calculated using (3.15). The agree-

ment is excellent (in the thermal region).

To understand when the usage of the second harmonic is relevant or not from a phase noise

improvement perspective, it’s necessary to manipulate (3.15) to gain some design insight. To do

this, let I1 and I2 being the first and second harmonic current, respectively, and let k be its ratio

I2/I1. Let also r being the ratio R2/R1 and let q be the ratio between the quality factor of the

tank at the second harmonic Q2 and the same value at the first harmonic Q1, namely q = Q2/Q1.

With this assumptions, the ratio between capacitances turns out to be:

C2

C1
=

q

2r
(3.16)

By developing (3.15) rewriting the phase noise in terms of I1, k, r, q and R1, making use of

(3.16), one gets:

L(∆ω) = 10log10

(

kT

∆ω2

A2
1/R1

(A2
1C1)2

1+16rk2

(1+8rk2q)2

)

(3.17)

Next, it’s necessary to consider that r, which is the ratio of the resistances, is not independent

on q, since, in the case of the considered class-F2 oscillator, R1 and R2 represent the equivalent

differential and common mode resistances of the tank at ω0 and 2ω0, respectively. For this

reason:

r =
R2

R1
=

2ω0LQ2

2

1

Q1ω02L
=

q

2
(3.18)

47



where (2.5) has been used. By substituting (3.18) into (3.17), (3.19) is finally obtained,

where the phase noise is expressed as a function of I1, R1, k and r, beyond the usual parameters

contained into the standard Leeson equation.

L(∆ω) = 10log10

(

kT

∆ω2

A2
1/R1

(A2
1C1)2

1+8qk2

(1+4k2q2)
2

)

(3.19)

3.5 Phase noise advantages of class-F2

After the detailed analysis of the main different noise sources of the class-F2 oscillator, an over-

all summary is presented. Since the effect of the common mode resonance in the flicker noise

upconversion is already known and outside the purpose of this thesis, the following analysis fo-

cuses only on the thermal region, summarizing what are the advantages in term of phase noise

if a second harmonic resonance is used instead of a traditional class-B topology. The concept

will be practically shown also in the design example of the next Chapter. As discussed in pre-

vious sections, a class F2 oscillator gives advantage in term of phase noise via three different

mechanisms that happen when a second harmonic resonance is introduced in the tank:

1. Reduction of the noise coming from the tail device;

2. Reduction of the overall noise coming from the tank;

3. Higher minimum drain voltage that allows higher current efficiency;

3.5.1 Reduction of the noise from tail generator

The first effect of the presence of a common mode resonance is the reduction of the noise

coming from the tail generator, as already explained previously. To quantify the improving in

terms of PN, the total noise factor of a class-B oscillator must be considered:

F = 1+ γ +
gmγRT

4
(3.20)

When the common mode resonance is applied, noise factor moves approximately to 1+ γ .

For this reason, there exist a strong improvement in phase noise’s performances of the oscillator,

that depends on the parameters of the tail device. Example 3.5.1 shows a quantitative analysis

of the improvement given by the second harmonic resonance, considering some typical range

for the parameters in (3.20)

Example 3.5.1 (Effect of the tail generator)

For a typical submicron technology, the value of γ is in the order of 1.5. Since R1 is determined

by the quality factor of the inductor, it usually reaches value up to 300Ω. Values of gm, instead,

are determined by the "equivalent" overdrive voltage V ∗ and the bias current ID:

gm =
2

V ∗ ID (3.21)
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giving values in the order of 10− 20mS. With this values, the last term in (3.20) is in the

order of 2. In general, the contribution of the tail generator can reach up to the 60% of the

total. Removing this contribution is worth a phase noise’s improvement of about 3dB. The tail

generator can be designed judiciously, avoiding unnecessary high values of gm/ID, namely high

value of W/L, but its contribution is anyway at least 20% of the total, giving still around 1dB

penalty in PN.

3.5.2 Reduction of the overall noise coming from the tank

Another effect, which cannot be explained in an intuitive way, despite from some numerical

simulations, is the reduction of the noise coming from the tank when the second harmonic

resonance is present. To explain this, (3.17) is used, comparing it with itself but in case of

A2 = 0, given by (3.22).

L(∆ω) = 10log10

(

kT

∆ω2

A2
1/R1

(A2
1C1)2

)

(3.22)

The amount of phase noise’s improvement is obtained dividing the full expression in (3.17)

by (3.22), eventually expressing the result directly in dB;

PNimprovdB
= 10log10

1+16rk2

(1+8rk2q)2
(3.23)

To better visualize (3.23) there are two possible representations. One makes use of the

contour plot of (3.23), in which the phase noise’s improvement (or eventually the phase noise’s

penalty) are plotted with respect to the value of r and q, for a given k. Figure 3.13 shows the

result for k = 0.2, while Example 3.5.2 makes use of this result applying it to the Example 2.3.1.
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Figure 3.13: Contour plot of (3.23), negative values accounts for Phase Noise’s penalty. All

values are expressed in dB and are referred to the case of k = 0.2.

Example 3.5.2

Considering again Example 2.3.1, with the usual modified tank, from the simulation one gets

k = 0.025. In this case, q and r are equal to:







r = R2
R1

= 5

q = Q2
Q1

= 2ω0R2C2

ω0R1C1
= 2rC2

C1
≃ 4.98

(3.24)

(3.23) gives ≃ 0.8dB as result, which corresponds, in linear scale, to ≃ 0.83. Actually, Figure

3.14, showing the noise summary, confirms it.
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Figure 3.14: Noise Summary of Example 3.5.2 (upper part), compared with a class-B oscillator

with the same parameters (lower part). It’s possible to notice the improvement in the phase

noise from the tank (R0), of about 0.82, in linear scale.

However, as stated before, the value of r is dependent on the value of q in a tank realized

with real components. For this reason, the phase noise’s improvement can easily be understood

by using (3.19), comparing again with the case in which A2 = 0. After that, Phase Noise

improvement can be plotted with respect to the single variable q, for different value of k, taken

as parameter. The result is shown in Figure 3.15, where values of q spans from 1 to 1.5. This

choice is not random: in an ideal inductor, the quality factor is proportional to the frequency, so

the theoretical value of q should be equal to 2. However, nonidealities such as skin effect make

Q to be sublinearly dependent on ω0, giving rise to values of q less than 26. Figure 3.15 shows

that there always exist an improvement, especially when q is greater than around 1.3. This tells

that the approach is worth of a relevant improving in PN only in the case that the inductor used

in the design have the quality factor at 2ω0 higher than the same value at ω0. For this reason

an analysis of the technology must be done before the design to understand if this method can

be useful or not. In the last chapter, where a design example is given, the inductor used in the

circuit effectively has this property.

6In practise, it’s difficult to reach values larger than ≃ 1.5
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Figure 3.15: Phase Noise improvement with respect to the quality factor ratio.

3.5.3 Increasing in the current efficiency

The last advantage in terms of phase noise of the class-F2 oscillator is the increasing of the

current efficiency due to the increasing of the minimum drain voltage with respect to a normal

class-B oscillator. Figure 3.8 shows how the differential oscillation’s amplitude varies with

respect to the bias current, in the circuit of Example 3.5.2. It’s possible to see that for low

currents the two oscillators behave equally, but increasing the bias current the class-B oscillator

starts entering the voltage limited regime before the class-F2, since the minimum drain voltage

of the latter is higher (for the same current’s value). Therefore, if the oscillator is used in that

region, the oscillation’s amplitude is higher, for the same value of the bias current, namely, for

the same power consumption. This leads to a phase noise’s improvement simply due to the

increasing in the oscillation’s amplitude7, that can be visualized, still in case of Example 3.5.2,

by plotting the phase noise with respect to the bias current, at an offset frequency of ∆ω =

10MHz8. The result is shown in Figure 3.16, where it’s possible to see that, for lower value of

Ibias the difference between the two oscillator is around 2dB (due to the other two mechanisms

previously explained), while it enlarges for higher values of the bias current, exploiting this last

mechanism.

By summarizing all this aspects, it’s possible to aim, for a class-F2 oscillator, a phase noise

improvement, with respect to the traditional class-B oscillator, from 2dB (if the noise from the

7Phase noise is proportional to the square of the oscillation amplitude
8This relatively high value of offset frequency guarantees that the flicker noise is highly negligible
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Figure 3.16: Comparison of Phase Noise between class B and class F2 oscillators, both con-

sidering Example 2.3.1, with different tanks.

tail generator is low) up to 5−6dB, if the noise from the tail’s device is relevant. Another point

to be noticed is that all the concepts previously shown have already been studied in literature,

but they’ve never been analyzed together or specifically for the class-F2 oscillator. In particular,

the analysis about the quality factor ratio is nowhere present in literature.

3.6 Chip area saving of class-F2 oscillator

Another aspect not clearly discussed in literature is a quantification of the area saving from

the usage of the second harmonic resonance. To exploit this fact, the quantification of the

increment in the minimum value of the voltage waveform must be done priorly. Table 3.1

shows the minimum value of the voltage waveform, for different values of the second harmonic,

expressed with respect to the first, for a fixed first harmonic amplitude of 600mV 9, measuring

the minimum value from the average value of a pure sinewave with the same amplitude. As

it’s clear from the Table, there’s always (even for small amplitudes of the second harmonic), an

advantage in term of the minimum voltage, gaining extra "voltage headroom" for the cross-

coupled pair’s voltage (remembering that the minimum drain voltage is achieved when the

corresponding transistor operates in triode), or the possibility to have an higher VDsat
for the tail

generator. If the choice is to use this "free voltage headroom" to lower the W of the transistors

forming the cross-coupled pair, the voltage across them in triode is inversely proportional to

their W . For this reason, if there’s the possibility to increase the voltage across the cross-

coupled pair’s transistors by a given amount, its dimension can also be reduced by the same

amount. Table 3.1 shows, in the third column, the amount of W that can be reduced, making the

hypothesis to start from a situation when the ON voltage is 100mV (when V2 = 0). Fixing the

gate length, that numbers directly corresponds to the area saving for the cross-coupled pair.

9This values corresponds to a differential amplitude of 1.2V , which is a typical value for a technology with

VDD = 0.8V
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V2/V1 Gaining Vmin at drains Relative Wcc saving

(each device)

Relative Wtail saving

0.1 60mV 1.6 1.5

0.15 90mV 1.9 1.8

0.2 120mV 2.2 2.2

0.25 150mV 2.5 2.6

0.30 170mV 2.7 2.8

0.35 176mV 2.8 2.9

Table 3.1: Area saving with respect to the amount of second harmonic voltage, for V1 = 600mV

(single-ended)

Another possibility is to keep the crossed couple fixed and reduce the size of the tail gen-

erator. Since the minimum voltage required by the transistor to operates in saturation VDsat
is,

according to the short channel model [13], inversely proportional to
√

W , with a similar rea-

soning it’s to possible to derive the last column of Table 1.2. However, in this case, a typical

value for Vdsat is about 250mV , so the area saving is different with respect to the previous case.

Of course, the designer could also use a combination of this two techniques as his choice, to

minimize the overall chip area of the particular design.

3.7 Application of the second harmonic resonance to other

oscillator’s topologies

As briefly seen at the beginning of this chapter, to get the correct waveform at drains the manda-

tory condition is that the phase shift between the first and the second harmonic of the drain cur-

rent must be 180◦. If this is not the case, the technique is no more advantageous. To detailedly

explain this fact a different oscillator topology, in this case the class-C, is considered. In the

class C topology, a big capacitance is added to the common source and a different bias voltage

is applied to the gate of the devices (in a traditional class-B oscillator, the bias voltage of the

gate is VDD, like the one at drains). This two differences enable the cross-coupled pair to work

always between saturation and OFF condition, without entering triode. The shape of the current

of a class-C oscillator is no longer a squarewave, but it’s composed of short and tall current

pulses, as Figure 3.17 explains. However, if the phase of the second harmonic is calculated on

the waveform of Figure 3.17, the result is that first and second harmonic are in phase. If, again,

the tank displays a common mode second harmonic resonance, the drain voltage’s expression

will be equal to the one in (3.5), but, in this case, φ1 = φ2 = 0◦, so the drain voltage is:

vd =−RT |I1|cos(ω0t)−RT 2|I2|cos(2ω0t) (3.25)
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Figure 3.17: Current shape in a class-C oscillator

whose plot is represented in Figure 3.18. It’s evident that, in this case, there’s no advantage

at all, but rather the minimum drain voltage is lower and this further makes the current efficiency

to get worse and require bigger devices, a situation totally opposite to what happens in the class-

F2.

−A

A

t

v

Figure 3.18: Drain voltage of a class-C oscillator with second harmonic resonance, with A as

amplitude of the first harmonic
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Chapter 4

Design Issues and an Example

Despite of the characteristic that the inductor must have in order to fully exploit the advantages

shown in the previous chapter, there’s one other main issue that must be taken into account in

a design of a real class-F2 oscillator, which is related to the way that can be used to implement

a tuning. In fact, in this case tuning is much more complicated than an oscillator without the

second harmonic resonance, as discussed later. After the discussion on the problem of the

tuning, a real example is provided, that reaches the state-of-the-art specifications. Since the

purpose is to show a circuit with all real components, contrary on what have been shown up

to now, and the purpose of the thesis is not to reach given specifications, the design procedure

is slightly different from a typical design flow. In fact, the starting point will be the Example

proposed up to now, where the sizing of the transistor have already been explained, scaling it

according to an higher value of the bias current, considering that the inductor has not a value of

Q such high as the case with ideal components, where the quality factor can be chosen freely.

4.1 The problem of tuning

If a class-F2 Voltage Controlled Oscillator must be designed, the usual tuning technique can

be applied. However, the fact that there’s a second harmonic resonance must be taken into ac-

count, considering that if the resonance at first harmonic is increased to modify the oscillation’s

frequency, the second harmonic resonance must be varied appropriately. In literature various

types of tank are proposed such that they provide the second harmonic resonance. However, in

the following a simple tank looking like the one shown before is used (Figure 3.4). Of course,

resistances are removed and the resistive part is created by the equivalent parallel resistance of

the inductor given by (2.5), obtaining the tank of Figure 4.1, where also parasitic capacitances,

either differential or single-ended, are represented. By calculating the differential and common

mode resonance frequency one gets:

ωdm =
1

√

L(C1 +Cpd +C2/2+Cpcm/2)
(4.1)
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ωcm =
1

√

(L/2)(C2 +Cpcm/2)
(4.2)

from which the value of C1 and C2 giving the correct operation of the tank are:

C2 =
2

L

1

ω2
cm

−Cpcm/2 (4.3)

C1 =
1

L

1

ω2
cm

−Cpcm/2−C2/2−Cpd (4.4)

C1

L/2L/2Cpcm Cpcm

Cpd

C2 C2

Figure 4.1: Tank used in the design example, where also parasitics are represented in light

colour

Despite of the presence of the parasitics, values of C1 and C2 can be varied appropriately to

reach the exact oscillation frequency at ω0 and the common mode resonance at 2ω0. When this

situation is achieved, the oscillator is perfectly tuned. If now the frequency needs to be varied,

C1 and C2 must be moved to C′
1 and C′

2, in such a way that, if ω ′
0 is the new oscillation frequency,

the common mode must resonate at 2ω ′
0. With the new values, (4.4) and (4.3) becomes:

C′
1 =

1

L

1

ω ′2
dm

−Cpcm/2−C′
2/2−Cpd (4.5)

C′
2 =

2

L

1

ω ′2
cm

−Cpcm/2 (4.6)

Calculating the difference ∆C2 =C′
2 −C2 one gets:

∆C2 =
2

L

(

1

ω ′2
cm

− 1

ω2
cm

)

(4.7)

With the same procedure for ∆C1, (4.8) is obtained:

∆C1 =
1

L

(

1

ω ′2
dm

− 1

ω2
dm

)

− ∆C2

2
=

3

2
∆C2 (4.8)

57



Observing the equation, it’s clear that the frequency variation is not dependent on parasitics,

provided that they remain the same. Moreover, whatever are ∆C1 and ∆C2, the former must be

3/2 the latter. Hence, to design a tuning circuit that sweeps the frequency from fmin to fmax, the

following procedure must be used:

1. Starting from a circuit tuned at fmax, the amount of the maximum "extra" C1 needed is

calculated using (4.7).

2. The value of C2 must be properly increased with the correct proportionality to keep the

common mode resonance at the correct value.

4.1.1 Discrete tuning

Typically, in all oscillators the tuning is performed adding capacitors to the tank, to lower the

oscillation frequency. This is done dividing the total capacitance that must be added to move

from fmax to fmin in a binary way, with a given number of bits N, that provide a minimum

addable capacitance of Cmin = ∆C/2N . The circuit typically used is shown in Figure 4.2, where

capacitors are scaled in a binary way (Cmin,2Cmin,4Cmin,...). In this way, sweeping the binary

number from 0 to 2N −1, the full range is covered, with a minimum step given by Cmin.

Circuit in Figure 4.2 is a single ended version. However, tuning capacitors can also be added in

a differential way, by using the circuit of Figure 4.3.

Cmin bit 0 VDD

2Cmin bit 1 VDD

4Cmin bit 2 VDD

8Cmin bit 3 VDDvd1/vd2

Figure 4.2: Circuit for single-ended discrete tuning, with, just as an example, N = 4
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2Cmin bit 0
2Cmin

4Cmin bit 1
4Cmin

8Cmin bit 2
8Cmin

16Cmin bit 3
16Cmin

vd2vd2

Figure 4.3: Circuit for differential discrete tuning, with, just as an example, N = 4

In both cases, switches are implemented using transistors working in triode. The size of the

transistors must be chosen such that they’re not too small to introduce too high series resistance,

that lowers the quality factor of the tank, but not too big such that the parasitic capacitance

introduced by them when they’re off is relevant. Normally, if the tuning capacitors are scaled

in a binary way, also transistors are, since lower capacitance value involves less current in a

proportional way. In a class-F2, both differential and tuning capacitor are used, with a fixed

ratio of 3/2. Obviously, both differential and common mode tuning banks must be use the same

number of bits.

4.1.2 Fine tuning

On the top of the discrete (or Coarse) tuning, a fine tuning is applied to modify the frequency

for values lower than the one covered by a bit. For this purpose, typically a varactor is used, in a

circuit like the one in Figure 4.4. The size of varactors is such that, changing the control voltage

Vtune from 0 to VDD, the capacitance changes more than Cmin, so covering all the frequencies

continuously. However, Figure 4.4 shows immediately that the structure is intrinsically single

ended, since the tuning voltage is an ac ground at the oscillation frequency, and it’s not possible

to add differential tuning varactors. In a typical harmonic oscillator this is not a problem, but in

a class-F2 it can be, since the rule derived before is violated, adding a single ended capacitance

with no corresponding differential one. For this reason, the number of bits N, in a class-F2

structure must be at least 4 or 5, such that the range covered by the varactor is so small that

this detuning is negligible. To better quantify the minimum number of bits, the bandwidth of

the tank at the second harmonic must be considered. Since the bandwidth over the which the

impedance can be considered equal to R2 is 2ω0

Q2
, the range covered by varactors must be well

below that number. In the following design example the explicit calculation is included, too.
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vd1 vd2

Vtune

Figure 4.4: Circuit for fine tuning

4.2 Design Example

4.2.1 Design procedure

To design the oscillator, the starting point is the choice of the inductor. The technology used is

a 22-nm FDSOI technology, manufactured by GlobalFoundries, which includes some passive

elements together with the cadence model. The operating frequency is chosen to be 5GHz, in

such a way that parasitic components are not extremely relevant. At this frequency, a 800pH

inductor exhibits a quality factor of Q1 = 15, while, at 10GHz, it is Q2 ≃ 17. According to the

discussion of the previous chapter, this gives a tank’s Phase Noise improvement, which depends

on k. Since, in the Example 2.3.1, cross-coupled pair is already composed of real devices, as

well as the tail generator, values indicated there are considered as a starting point. However, in

the aformentioned example the resistance of the tank at the oscillation frequency is 1kΩ, while

in the real case is about 370Ω1. For this reason, the bias current is increased to 6mA, reaching a

value actually more inline with a typical real oscillator. Of course, the output voltage amplitude

will be larger than the previous case. The increasing of the current must be followed by an

appropriate scaling in the size of transistors. Therefore, the width of the cross-coupled pair is

set to Wcc = 40µm as well as the tail generator, Wtail = 40µm. Lengths are kept at the same

value2. For capacitors, models of real MOM capacitors are used, in place of ideal ones. Since

class-F2 operation highly reduce not only the noise coming from tail’s device, but also the one

generated by the reference branch of the current mirror, there’s no need to add a proper bias’

filter, as it’s usually done in other oscillator topologies [9]. The width of the reference transistor

is chosen to be equal to Wre f = 8µm, with a mirror ratio of 5. The tuning range, defined as:

T R =
fmax − fmin

f0
(4.9)

is chosen, taking some margin, to be 20%. For this reason, fmax = 5.5GHz, fmin = 4.5GHz.

Hence, value of fixed capacitors should be calculated using (4.4) and (4.3), tuning the oscillator

at fmax. Since parasitics are not known exactly, it’s easier to use that values as a starting point

and fine tune the oscillator relying on simulations, obtaining:

C1 = 347.9 f F (4.10)

1Value calculated using (2.5)
2Lcc = 18nm, Ltail = 50nm
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C2 = 111.9 f F (4.11)

After that, ∆C1 and ∆C2 are calculated, obtaining:

∆C1 = 182.25 f F (4.12)

∆C2 = 121.5 f F (4.13)

The number of bits for the coarse tuning is N = 4 and so the minimum values of tuning

capacitors are:

C1min
=

∆C1

2N −1
= 12.3 f F (4.14)

C2min =
∆C2

2N −1
= 8.1 f F (4.15)

The width of the transistors realizing the switches must be chosen to prevent Q’s degradation

and, at the same time, to avoid introducing extra parasitics that reduces the tuning range. With a

value of Wsingle−ended = 300nm and Wdi f f = 1.2µm (for the smallest transistors of tuning banks),

scaled then as previously explained, the final oscillator achieves a tuning range of 16%, which

typical is a good value for a wide range of applications. Since a tuning range must be centered

around the nominal frequency, the last design step is to move again the maximum frequency to

fmax ≃ f0 +
T R f0

2
= 5.4GHz (4.16)

In this way:

fmin ≃ 4.6GHz (4.17)

Finally, the fine tuning must cover the range of the least significant bit. Two varactors, with

L= 600nm and W = 3µm, configured as Figure 4.4, covers the range with a safety overlap when

Vtune is swept from 0 to VDD. The final schematic is reported in Figure 4.5, with a magnification

of tuning elements in Figure 4.6. Finally, the frequency range swept by the varactor only is

equal to 61MHz, well inside the −3dB bandwidth of the tank at 2ω0 which is approximately

2ω0/Q2 ≃ 500MHz. For this reason, even if varactors don’t follow the right proportionality

between the added single ended and differential capacitances, the second harmonic resonance

is, practically, still present.
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Figure 4.5: Final schematic of the designed oscillator

Figure 4.6: Final schematic of the designed oscillator - Magnification of 1 bit of the single

ended tuning bank
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4.2.2 Simulation Results

The first simulation performed is the sweep of the whole tuning range to see if all frequencies

are covered and to calculate the actual tuning range. Oscillator sweeps from fmax ≃ 4.6GHz to

fmax ≃ 5.4GHz, with a tuning range of 16%, as already said before. Figure 4.7 shows the whole

sweep of it.

Figure 4.7: Sweep of the frequency range. Each line is obtained with a different digital combi-

nation, while the sweep of Vtune exploits the fine tuning.

At the operating frequency, waveforms are the one reported in Figure 4.8, where the effect of

the second harmonic is clearly visible. Analyzing the spectrum of that voltage, the ratio between

the first and the second harmonic turns out to be 0.25. Finally, phase noise is plotted in Figure

4.9, and the oscillator achieves −122.3dBc/Hz at an offset of ∆ω = 1MHz, and −142.9dBc/Hz

at ∆ω = 10MHz frequency offset, as Figure 4.9 shows. For a good comparison, Leeson equation

in (2.40) for the same circuit’s parameters, at ∆ω = 10MHz gives −147dBc/Hz, if only the

tank is considered. Therefore, the noise factor is F ≃ 2.6, about half of a typical noise factor

of a class B oscillator. The power consumption of the oscillator is P ≃ 5mW 3, achieving a FoM

of −190dBc/Hz4. Table 4.1 compares the specifications with some other recent works, noticing

that in this thesis only simulations are provided and usually a real chip is manufactured.

3This value is higher than Ibias ∗VDD, since the reference branch is considered, too
4Value calculated at ∆ω = 10MHz, well inside the thermal region
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Figure 4.8: Drain voltage waveform of the designed oscillator

Figure 4.9: Simulated Phase Noise of the designed oscillator
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This Thesis [14] [17] [18] [19] [15]

Technology 22nm 28nm 40nm 28nm 28 nm 28nm

Frequency [GHz] 5 27.3 57.8 19.5 25.2 3.3

Tuning Range 16% 14% 25% 12% 22% 27%

Power [mW ] 5 12 24 20.7 14.4 6.8

PN norm. w.r.t ω0 =

5GHz @ 1MHz offset

[dBc/Hz]

−121.5 −120.7 −121.2 −123.8 −125.6 −124.7

FoM [dBc/Hz] −190 −184 −181 −185 −184 −192

Core Area [mm2] 0.04 0.15 0.13 0.07 0.02 0.19

Table 4.1: Comparison between other recent works and this thesis

For a final comparison, common mode capacitors are connected in a diffferential way, creat-

ing a standard class-B oscillator, and new phase noise is compared. Tuning again the oscillator

to operate at 5GHz, the phase noise is reported in Figure 4.10, where a difference of around

4dB in the thermal region is shown. To deeply analyze the effect of the common mode reso-

nance, noise summaries at an offset of ∆ω = 10MHz are compared in Figure 4.11, where the

noise of the tail generator is highly reduced, and reduction of the noise coming from the tank

by 0.83 is present, consistent with 3.195. This two aspects account for a 2.7dB improvement

of the phase noise, while other 1.3dB difference is explained by the difference in the current

efficiency and, as a consequence, in the voltage amplitude. Cadence’s noise summary shows

the values of noise without normalizing it with respect to the carrier (in Figure 3.14, values are

in V 2), so this aspect is not visible there.

Figure 4.10: Simulated Phase Noise of the designed oscillator, removing the second harmonic

resonance, compared with the previous case

5In this case, k = 0.3
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Figure 4.11: Comparison of noise summaries of the two aformentioned oscillators, where upper

part describes the class-F2 oscillator while the lower one refers to the class-B. Reduction of

both tank (L0,L1) an tail generator (N1) noise contribution are visible
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Conclusions

The thesis has deeply analyzed all the effects of the presence of the second harmonic in the usual

cross-coupled pair oscillator, which is the a common topology used in integrated solution, even

if nowadays a lot of variants have been developed. The effect of that resonance is to improve the

phase noise of the oscillator not only in the flicker noise region, as extensively know in literature,

but also in the thermal region. This concept is present in literature only partially, and there’s

no work where all the effects discussed in this thesis are treated properly, especially about the

conditions under which the presence of the second harmonic is effectively useful for a phase

noise improvement. In fact, all the mechanisms previously illustrated give advantages only

under certain conditions, that the designer must verify before counting on the benefit of class-

F2 topology, which are not always present. The thesis also shows what is the general condition

that a known oscillator topology must have in order to let the usage of the second harmonic

resonance to be possible and, unfortunately, some topologies which have noise performances

better than the traditional class-B oscillator (such as the class-C) cannot be improved more by

using the methods explained in the thesis. Finally, the Example proves that all the mentioned

facts are applicable in practise.
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Appendix A

Simulation of the noise factor

To find the noise factor of the transistor whose phase noise is simulated in Figure 3.12, the

test circuit of Figure A.1 is used, where the size of the transistor is set to be the same of the

circuit used to simulate phase noise in Figure 3.12. The current generator provides the same

bias current of 1.2mA used in the simulated oscillator.

Ibias
−
+VDD

1F

4kT γgm

Figure A.1: Circuit used for the simulation of the noise factor γ , with the equivalent parallel

noise current source

From the noise point of view, the current noise, modelled with a parallel current generator

between drain and source, flows into the supply voltage only, since it’s an ac ground from a

small signal point of view. To create a path for the noise current to/from ground, a really big

capacitor, that can be assumed as a short circuit for all nonzero frequencies, is added in parallel

to the ideal current source that is an open circuit for the noise. Simulating the value of the noise

current’s PSD flowing into the supply generator, the noise factor γ is simply found by using:

γ =
Sin

4kT gm
(A.1)

where the value of gm is taken from the simulation, looking at DC parameters. The simu-

lation must be performed at frequencies above 100GHz where the effect of the flicker noise is

1



negligible1. In the particular case of this thesis, (A.1) gives γ ≃ 1.4.

1To check if the flicker noise is negligible, it’s possible to print the noise summary
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