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Abstract

Context: Detecting Earth-like planets presents a formidable challenge, primarily due to
the influence of stellar activity, granulation and systematic errors on transit signals observed
through photometric techniques. Stellar phenomena, including flares, spots, and convection,
as well as the instrumental errors introduce complexities that obscure the identification of
genuine planetary transits.

Goal: This thesis aims to assess and compare the effectiveness of various filtering algo-
rithms, with a specific focus on detecting Earth-like planets within the Habitable Zone, with
orbital periods extending up to 2 years. The studied algorithms include the one developed by
the research groups specifically to detrend the light curves from the stellar activity: Young
Stars Detrending (YSD), as well as the all-purpose algorithms: biweight and Huber spline
methods employed with 3 different window lengths (0.7, 1.4 and 2.0 days). The results hold
particular relevance for the upcoming PLATO mission, as synthetic light curves were gener-
ated using the PLATO Solar-like Light-curve Simulator (PSLS). A series of injection-retrieval
tests were conducted on these synthetic light curves to evaluate the performance of the selected
filtering algorithms.

Results: The biweight method and YSD Lowess regression emerge as the most effective
algorithms for conducting a blind search for Earth-analogous planets. However, the precise
retrieval of planetary parameters from the recovered transit signals remains challenging, as
filtering algorithms distort the original signal. For the P1 sample representing the target stars
during the initial two years of the mission, these algorithms fail to recover the planetary signal
when applied to F5 spectral type stars. This is primarily due to the larger radii of such stars,
which complicates detection by extending the period duration and reducing the planet-to-star
radius ratio.
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1 Introduction
1.1 Exoplanet study

The exoplanetary science is a relatively young astrophysical field with the first discovery of a
planet beyond our solar system being done by Wolszczan (1992), where the author provided the
evidence for the companion presence by timing the arrival of radio signals from the millisecond
pulsar PSR1257+12. This technique of the exoplanet detection is only possible around radio
pulsars which by their violent nature can constitute a planetary systems which are unlikely to
have a Habitable Zone (HZ) making the life formation (or its existence) around them impossible.
The Nobel prize "for the first discovery of a planet orbiting a solar-type star outside our solar
system” was awarded to Michael Mayor and Didier Queloz who in their work (Mayor and Queloz,
1995) inferred the presence of a Jupiter-mass companion orbiting around the 51 Pegasi star by
measuring the periodic variations in the star’s radial velocity (RV). This method along with the
transit method (Charbonneau et al., 2000), which uses the variations of the flux coming from the
star in the light curve (LC), are by far the largest contributors to the exoplanet detections. Other
methods that are presently used include (but are not limited to): direct imaging (Marois et al.,
2008), astrometry (Benedict et al., 1999) and microlensing (Gould and Loeb, 1992).

Since the first discovery using the transit method more than 5000 exoplanets have been con-
firmed up to the present day'. The exoplanet surveys were conducted using both ground-based
searches, including: HATNet (Bakos et al., 2004), KELT (Pepper et al., 2007) and CHESPA
(Zhang et al., 2019), as well as the space campaigns: Kepler (Borucki et al., 2010), K2 (Howell
et al., 2014) and TESS (Ricker et al., 2014). Emphasising the importance of the Kepler mission,
it discovered thousands of exoplanet candidates and led to the confirmation of the existence of
over 2,600 exoplanets including numerous exoplanets located within the HZ, where the liquid wa-
ter could potentially exist, increasing the possibility of finding habitable environments outside the
Solar System. None of these planets are located in the HZ of Solar-type stars, however, could
be definitively confirmed to be rocky through mass measurements, as the faintness of the host
stars made the spectroscopic follow-up unfeasible. The mission, although extended beyond its
primary scope, ended in 2018 due to the lack of fuel to power up its instruments. The majority
of the exoplanets that it discovered are categorized as super-Earths and mini- or sub-Neptunes,
which means that they possess radii and/or masses that fall between those of Earth and Neptune.
Interestingly, no such equivalents for these types of planets exist in our Solar System. In terms
of host stars, almost all known exoplanets orbit main-sequence stars that fall under the spectral
categories of F, G, K, or M. The current detection techniques pose inherent biases that limit the
types of exoplanets that we can study. The masses of detected objects must be quite high because
they exert larger effect on the RVs or LC variations making the detection possible, based on the
current precision of the instruments. Radial velocity method favours the massive planets, while the
detection of the transiting planet is easier for ones that are orbiting closer to the host star, as the
transits will happen more frequently. Most notably, Earth-sized planets are difficult to detect due
to their small radius in comparison to their host stars resulting in relatively small dimming of the
flux coming from the star. Earth-like planets are especially challenging to identify, as they require
extended periods of telescope pointing and extremely high-precision measurements Petigura et al.
(2013).

1.2 The PLATO mission

The search for Earth-analogues, planets that share similar characteristics with our own planet,
has captivated the scientific community and the public alike. The discovery of exoplanets has
opened up new avenues for understanding the potential prevalence of habitable environments and
life beyond Earth. Among the missions dedicated to this pursuit, the PLATO (Planetary Transits
and Oscillations of Stars) mission stands at the forefront as the natural successor to the Kepler
mission, promising to revolutionize our understanding of exoplanetary systems (Rauer et al., 2014).

The PLATO mission, which is led by the European Space Agency (ESA) is scheduled for launch
in 2026, aims to detect and then characterize exoplanets by observing the transit of a planet in
front of the host star. By studying these transit signals, important planetary properties such
as size, orbital period can be inferred. Differently form Kepler, PLATO will target bright stars
amenable for the spectroscopic follow-up from the ground that measure the RV variations providing

Thttp://www.exoplanet.eu/



the mass estimates of the observed planets and their inclination angle such as ESPRESSO (Yant
et al., 2018) or ANDESQE-ELT (Marconi et al., 2021) that can be later used to derive the bulk
densities. Asteroseismic analyses of the photometric LCs can be also used to establish the age of
the planetary system providing more information towards our understanding of how such systems
are formed.

The instruments on board will include 24 ”standard” cameras (N-CAM) grouped into four sets
of 6, each with a 25-second readout cadence and 21-second integration time. Additionally, there
will be 2 ”fast” cameras (F-CAM) with a 2.5-second readout cadence. This multi-telescope mission
will cover a total field of view (FoV) of about 2132 deg? (Nascimbeni et al., 2022). Each camera is
a refracting telescope with an aperture diameter of around 120 mm. The total setup comprises of
104 CCDs with a pixel size of 18 m. Long pointings made with N-CAMs will search for Earth-like
planets in the HZ of solar-like stars and will last about 2 yrs divided into quarters (every 3 months
the line of sight pointing will rotate by 90°to adapt to the changing Earth position with respect to
the Sun — the resulting pixel position of observed object might be different in subsequent quarters).
Long pointings will be complemented by the short ones (made with F-CAMs) that are devoted
to the search for planets around very bright stars, resulting in coverage of up to 40% of the sky.
Such a large coverage will allow to observe over 1 mln stars in the missions planet searching range
of 4 < m, < 11. Within this magnitude scope, asteroseismology becomes feasible, enabling the
precise determination of planetary parameters. This includes obtaining accurate planet masses
through follow-up spectroscopy using RV measurements as mentioned before.

1.3 Filtering algorithms

The detection and characterization of Earth-like planets in the HZ of a Solar-type star, or simply
Earth-analogues, present unique challenges due to their small size and the presence of intrinsic
noise in the data. Stellar noise is unique to each star and exhibits different features across a
variety of timescales. The process of identifying potential transiting exoplanet candidates from
photometric time series typically involves a two-step approach. Initially, long-term flux variations
originating from either the star or the instrument are removed (also called the detrending of the
LC). Following this, periodic transit-like signals are identified by folding the LC at various orbital
periods, transit times, and duration. These signals are referred to as Threshold Crossing Events
(TCEs), which can potentially be exoplanet candidates, but they can also include false positives.
It is important to consider that several phenomena can mimic a transit signal, including eclipsing
binaries, instrumental artifacts, noise, and stellar variability. The stellar activity cycles for example,
like the 11 yrs one present in our Sun (Schwabe, 1844), are present in other stars and happen on
different timescales (Rempel, 2008). The stellar spots and granulation also constitute an important
factor that needs to be detrended from the original LC and its timescale depends on many factors
like stellar activity, evolutionary stage and rotation period of the star. The significance of short-
term variability has driven the adoption of a wide array of detrending methods.

Filtering algorithms employ a variety of techniques, such as signal processing and statistical
analysis, to enhance the sensitivity and accuracy of planet detection. The performance of these
filtering algorithms is paramount to the success of the PLATO mission and the advancement
of our understanding of Earth-like planets. Therefore, the focus of this master’s degree is to
assess and evaluate the performance of these algorithms specifically designed for Earth-analogues
observed with PLATO with duration period greater than 40 days up to 2 years. The upper value
is the observational limit, and comes from the planned observation length. As this thesis is the
continuation of the study carried out by Canocchi et al. (2023) in which the orbital period up to
40 days was studied, I will investigate the period range which was beyond the scope of that work.

There are many different filtering techniques which are summed up in Hippke et al. (2019) each
having different advantages and throwbacks. These methods include sliding medians, sliding means,
splines, polynomial filters, LOWESS regressions, Cosine Filtering with Autocorrelation Minimiza-
tion (exo-moon optimized detrending method), Gaussian processes (that require the knowledge of
the planetary period and rotational period of the star, and thus are not the best choice for the blind
search), the Savitzky and Golay (1964a) filter, frequency filtering through Fourier decomposition
and wavelets. Even neural networks (Morvan et al., 2020) or machine learning techniques (Kim
et al., 2009; Kim, 2016) are being used but were not considered in this work because of their poor
performance based on the recovery rate.

This research will involve a combination of theoretical analysis, computer simulations, and



statistical modeling. The evaluation metrics will be based on sensitivity, specificity, and reliability
of the filtering algorithms, considering factors such as false positive and false negative rates and
detection thresholds. The ultimate goal is to develop optimized strategy for the upcoming PLATO
mission that can serve to identify and characterize Earth-analogues, enabling us to gain deeper
insights into the prevalence and properties of habitable planets in our galaxy. The anaysis and
results presented in this thesis will be implemented in the Exoplanetary Analysis System for the
detection and characterization of planets in PLATO data through the connection with the PLATO
Working Package (WP) 111 000 ” Coordination of Tools for Lightcurve Filtering”.



2 Simulations

In this section the process of generating the LCs that are subsequently the subject of analysis is
presented. Because of the fact that the simulations were carried out using different codes, the
in-depth explanation of how the light curves are obtained is needed. The section describes all the
physical contributors to the LC variations and steps that needed to be taken while building the
custom pipeline to handle the data generation.

2.1 Simulating the light curves

Simulations of the light curves were done using custom pipeline that used two codes: PSLS 2 (the
PLATO Solar-like Light-curve Simulator Samadi et al., 2019) and the extracted python pipeline
used to simulate the stellar activity that was provided to me by Suzanne Aigrain and is implemented
in PlatoSim’s 3 software toolkit called PLATOnium (Jannsen et al., submitted). The decision to run
the simulations using PSLS and then inject the stellar activity was due to the heavy computational
load of the PlatoSim, which would be an overkill for the purpose of this study. The raw light
curves were the output of running both codes, which were then used to inject the planetary signals
using the BATMAN # package (Kreidberg, 2015b). It is beneficial to keep the raw light curves and
the planetary signal variations separate so that different planets could be injected into single light
curve later on without the need to re-run the whole simulation again.
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Figure 1: A stellar effective temperature vs. stellar radius plot for the P1 sample. It consists of the
main sequence dwarf stars, the different color marks represent K5 (light blue), G5 (orange), and
F5 (blue/light green) spectral type stars with spectral type boundaries from Pecaut and Mamajek
(2013).

The sample contains 1000 stars which are the representants of the P1 sample (Montalto et al.,
2021) from the Plato Input Catalogue (PIC). The P1 sample aims to include a minimum of 15,000
dwarf and subgiant stars ranging from spectral types F5 to K7, encompassing all sky fields. The
stellar sample’s dynamic range should have a V magnitude of no more than 11 with the emphasis
within the sample to maximize the presence of brighter targets (V' < 10.5). Additionally, the
random noise within this sample must remain under 50 ppm in 1 hour. Observations of stellar
sample 1 are scheduled to take place during a LOP (Long Observation Period). The target stars
used in this work are taken from the PLATO Consortium technical note PLATO-PL-KUL-PL-TN-
0020..1.2 named Multi-camera and multi-quarter simulations I: Input for light curve stitching-
and detrending. In Figure 1 their stellar parameters (radius vs stellar effective temperature ) with

?https://sites.lesia.obspm.fr/psls/
Shttps://ivs-kuleuven.github.io/PlatoSim3/
4https://lkreidberg.github.io/batman/docs/html/index.html



the distinction based on the spectral type are presented. The PIC catalogue contains de-reddened
V' magnitude in the Johnson-Cousins passband, that was transformed from Gaia DR2 photometry.
The reliance on color for flux estimations at the detector level was eliminated by converting the
measurements to the synthetic photometric PLATO passband, denoted as P. The transformation
between the two is done with the help of the formula established by Marchiori et al. (2019):

V—P=—1.184 x 1072 T3 + 4.526 x 1078 T4 — 5.805 x 10™* Tpg + 2.449

where T is the stellar effective temperature.

2.1.1 Stellar oscillations and granulation

Stellar oscillations manifest as rhythmic variations in a star’s brightness due to internal pressure
waves propagating through its interior. Similarly, granulation, driven by convective currents near a
star’s surface, creates small-scale brightness fluctuations that reflect the convective cells’ dynamic
nature. They both contribute to the total flux variations, and they were addressed with the usage
of the PSLS code.

PSLS models stellar oscillations starting from the oscillation spectrum, that is derived from the
relevant oscillation profiles and must be supplemented with the mode frequencies, heights, and
line-widths. Two separate cases are considered because for the sub-giant and main sequence stars,
the simplified approach to treat the modes frequencies may be adopted, which requires less accurate
models and thus improving the computation time. Theoretical mode frequencies are computed with
the help of the ADIPLS adiabatic pulsation code developed by Christensen-Dalsgaard (2008). All
sample stars used in this study are assumed to be the main sequence stars, so that the near surface
effects may be ignored, as they will not influence the light curves in a substantial way. Stellar
granulation is a stochastic process, that can be modelled in the Fourier space and then transferred
back to the time domain (which essentially is a light-curve variation) through the inverse Fourier
transform. For the detailed description of the treatment for both processes, one can refer to the
Samadi et al. (2019).

2.1.2 Instrumental errors

The PSLS code has the utility to incorporate the simulated effects of instrumental errors. These er-
rors come from a multitude of sources and can be divided into systematic errors of the instrument
and the random noise. In order to simulate the effect of the instrumental errors the imagettes
representing the PLATO CCDs are being generated using the pis (Plato Image Simulator). Re-
alistic simulations extending periods of 3 months, and targeting different magnitude stars were
carried out by the authors of the simulator, in order to quantify the effect of the instrumental
errors accounting for different observation conditions: the beginning of life (BOL) and the end of
life (EOL). The difference between the two is that for the EOL, the charge transfer inefficiency
(CTT) is being accounted for at the level expected 6 years after the telescope launch, whereas the
EOL does not include it in the systematics at all. As this works main focus is the P1 sample and
the observation period extending the first two years of the mission, the BOL conditions are set.
For stars in the P5 sample, which LC is measured on board through aperture photometry, mask
updates within a quarter may be needed to mitigate the effect of the long-term drift of the star,
which causes the noise-to-signal ratio (NSR) to increase during the observation sequence, and they
represent an additional source of systematics noise.

2.1.3 Stellar activity

To simulate the effect of the spots and plages on the photometric data the custom python code
called PySpot, provided by Suzanne Aigrain and mostly based on the work by Meunier et al.
(2019). As an input it takes the effective temperature of the star and its inclination angle. It then
calculates the rotation period based on the B —V value, that is a linear interpolation of the values
contained in the previously mentioned paper, and depends on the effective temperature of the star.
The spots and plages are first randomly generated, and then they are evolved with the period of
the cycle based on the earlier estimated rotation period. The example of the flux variations of the
star solely due to the stellar activity is presented in the Figure 2.
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Figure 2: The example output of the PySpot code with the plots that represent: the change of
spots latitude with time (spots are drawn to represent the real sizes), the spot coverage as the
ratio between the area covered by the spots and the surface of the star, finally the relative flux
variations due to the stellar activity.

2.1.4 Running the simulations

Due to the isolating of stellar activity from the rest of the flux variation contributors, as well as the
incorporation of gaps between each quarter, a custom pipeline was build to run the simulations.
This section provides the necessary steps that needed to be taken in order to produce full LCs
for the P1 sample, also providing some of the assumed values for the configuration files. After
obtaining the data of target stars of the P1 sample they were joined into a single table and the
missing data was supplemented. Not all of the target stars contained the values of the rotation
period or inclination angle, because not all of them were subject to the prior studies on their
activity. These are steps that were taken to produce the light-curves:

1. Running PySpot: The input values for this pipeline were the star’s effective temperature
and its inclination angle. Before running the code, the missing inclination angle values were
supplemented with the values drawn at random from the uniform distribution between 85
and 90°, as specified in the previously mentioned PLATO Technical Note. The simulation
overall duration was set to 730 days and the cadence was 27 x 25 s. The choice of the cadence
duration (time step of the simulation) was picked keeping a balance between the precision
of the simulation and its computational cost. Having it represent the integer multiple of
the time step in the PSLS simulator, aligned with PLATQO’s 25-second readout cadence, was
equally advantageous.

2. Interpolation of PySpot data: The misalignment in the cadences required the stellar activity
output data to be interpolated. The data points were linearly interpolated to produce a 25
s cadence set.

3. Running the psLs: To mock the observations of the PLATO telescope, there is a need to
introduce the quarters and gaps that are essential to redirect the telescope due to the orbital
motion of the Earth around the Sun. The full observation period covers 2 years divided into
8 quarters each lasting 88.33 days, with the gaps in-between lasting for 2.9825 days. Four of
the quarters were simulated separately using different random number seed because of the



fact that after the full year, the telescope will go back to its original position and the quarter
cycle will repeat. Most of the PSLS configuration remained the same for all the input stars,
differing only the part regarding the stellar parameters. The example configuration file is
presented in Table 1.

4. Joining the simulations: The next step is to join the outputs of the two codes. The time step
was already prepared to be the same for both simulations, the only thing that is needed to
be done is to add the flux variations for each time stamp. The results of both simulations
and the joined output were plotted for the example stars and presented in Figures 4, 5 and
6.

5. Re-doing the simulations for some LCs: As it is clearly seen on the example plot in Figure 6,
the systematic errors for some quarters can become really high compared to the others. The
root of the problem lays in the manner in which the quarters were simulated — the random
number seed had to be changed to generate each quarter. This imposes that for each of
the first 4 quarters (the following 4 are obtained by repeating them), the systematic errors
can take independent values. In Figure 3 the systematic errors are presented, which were
generated for 24 individual LCs by the authors of the PSLs (Samadi et al., 2019, Figure 9).
In case of simulations that were carried out for the purpose of this thesis, the systematic
errors in some cases exceeded 6%. This sudden jump in the flux variation would later lead
to the misbehaviour of the transit search algorithms which detects it as strong signal. The
replacement of such LCs was needed, which led to the decision of building a custom pipeline
which would compensate for high systematic errors, by removing the quarters, for which the
standard deviation was greater than 0.5% and running the PSLS for them again. Points 1-5
would be then repeated until we get all 1000 LCs with standard deviation for each quarter
below this arbitrary threshold. It is safe to assume, that although the systematic errors
cannot be known until the mission is launched, the data reducing pipelines will be correcting
for these and other kind of errors, as in the case of missions like Kepler (Stumpe et al., 2012)
or CHEOPS (Silva et al., 2020).

Relative flux variation [%]

0 20 40 60 80
Time [days]

Figure 3: Plot taken from Figure 9 of the work by Samadi et al. (2019). It presents the systematic
errors for 24 individual simulations that were carried out for a star of magnitude V' = 11 and
taking the EOL conditions. The dashed lines represent the LC of each simulation while the thick
line is the averaged LC.



Table 1: Example configuration file of the PLATO Solar-like Light-curve Simulator (PSLs). Cate-
gories like activity or transit were not included in the table as they were disabled for all simulations.
Parameters that were not used by the code because of the fixed model type (grid) are also removed.
Values that were altered between simulations are marked with *. Each of the three levels ("low’,
'medium’, and ’high’) of the drift level was assigned to one-third of the simulations, ensuring an
equitable distribution of conditions across the study.

Observation conditions
Duration [days] 88.33 Observation duration
Master seed 1704040900* Master seed of PRNG
Instrument parameters
Sampling [s] 25.0 Sampling cadence
Integration time [s] 21.0
Number of camera groups 4
Number of cameras per group 6
Time shift [s] 6.25 Time shift between camera groups
Random noise
Enable 1 Random noise enabled
Type PLATO_SIMU NSR taken from realistic simulated LCs
NSR [ppm in one hour] 73.0 Noise to Signal Ratio
Systematics
Enable 1 Systematics enabled
Table BOL_P1_V2.npy BOL for the P1 sample
Version 2
Drift level medium* low, medium or high
Stellar parameters
Magnitude (P passband) 10.0*
D 12069449*
Model directory psls/models/m+0y271
Model type grid
Model name 0012069449*
Evolutionary status ms main-sequence, red-giant or sub-giant
Effective temperature [K] 5750.0*
log g 4.353* logarithm of gravity at the surface
Surface rotational period [days] | 0.0*
Inclination [deg.] 0.0*
Oscillations parameters
Enable 1 Oscillations enabled
Surface effects 0 Surface effects disabled
Granulation
Enable 1 Granulation enabled
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Figure 4: Produced LCs of the codes for stellar activity (PySpot) and of the PSLs simulator
supplemented with the joined output for example star with ID: 10037521. On the y-axis is the
normalized flux (1.0 value represents no change in the flux). The gaps between each quarter are
also visible.
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Figure 5: Produced LCs of the codes for stellar activity (PySpot) and of the PSLs simulator
supplemented with the joined output for example star with ID: 10223302. On the y-axis is the
normalized flux (1.0 value represents no change in the flux). The gaps between each quarter are
also visible.
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Figure 6: Produced LCs of the codes for stellar activity (PySpot) and of the PSLs simulator
supplemented with the joined output for example star with ID: 10279275. On the y-axis is the
normalized flux (1.0 value represents no change in the flux). The gaps between each quarter are
also visible. It is clear that the systematic errors for the second and sixth quarter are much larger
than for others.
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3 Filtering algortihms

In order to discover and characterize exoplanets, we must first search through vast data sets,
which contain the noisy measurements of stars. These will include the errors that contaminate
the LCs, and were explained in detail in the previous section. For the purpose of separating the
planetary signal of a transiting planet from the noise, we must first detrend the light curve, and
this is where the filtering algorithms come into play. These algorithms are essential tools, as they
enable the removal of instrumental artifacts, systematic errors, and outliers from the observed
data, allowing the further exoplanetary signals detections that would otherwise be obscured by the
complexities of real-world observations. By mathematically modeling and reducing these sources
of noise, filtering algorithms pave the way for more accurate and reliable exoplanet detection and
characterization. As mentioned earlier this work is a continuation of Canocchi et al. (2023) paper
which already assessed the performance of many algorithms. This is why the main focus are the
filtering algorithms that had the best recovery rate in the injection-retrival tests: biweight method,
Huber spline and Lowess-YSD regression.

In Figure 7 the comparison of different algorithms is presented with the filter model (red line)
in the left panel and the filtered data on the right. Filtered data is a raw flux divided by the filter
model which will be later used as an input for the transit search algorithms. The input data does
not contain the planetary signal and there is no significant difference between filtering algorithms
in this specific example.

3.1 Biweight method

Tukey’s biweight, also known as bisquare, is a well-established robust location estimator used in
the context of detrending light curves (Mosteller and Tukey, 1977). Unlike ordinary least-squares,
which assigns constant weights, the biweight assigns weights based on the distance from the central
location. The weight function for the biweight is defined as:

0 otherwise

{(—(a/c)2)2 if a/c| < 1 Q)

where:

— a represents the residuals, which are the differences between the observed data and the central
location.

— ¢ is a tuning parameter, set to a value of approximately 5 in default settings (as in Wotan).

The choice of ¢ affects both the efficiency and robustness of the estimate. For instance, setting
¢ = 4.685 results in an estimate with 95% efficiency compared to the least-squares method for
normally distributed data. In general, higher values of ¢ result in a less robust estimate, but
enhance its efficiency. For more details on the ¢ tuning parameter values refer to the Wotan paper
Hippke et al. (2019).

Tukey’s biweight method can be employed as a one-step estimate, where the initial guess for
the central location is the median. As an alternative, one could approximate it using iterative
algorithms like the Newton-Raphson method. In practical terms, the disparity between the single-
step estimation and a fully converged solution is generally modest but not insignificant, typically
falling within the range of a few to a few tens of parts per million (ppm). This supplementary
detrending noise can be mitigated by employing a few iterations of the Newton-Raphson method,
achieving convergence to levels lower than 1076 or less than 1 ppm. Tools such as Waotan provide
the flexibility to customize the convergence threshold according to specific requirements.

Summing up, Tukey’s biweight method is used with a specific value of ¢ for robust location
estimation in the presence of noise and outliers. The weights assigned to data points depend on
their distance from the midpoint, allowing for effective noise reduction in the LC data.

This work uses the Wotan implementation of the Tukey’s biweight method, that in general have
the one main parameter which value needs to be considered before using — the window length. In
their paper, authors suggest the use of a window size 2.5 times the transit duration. The latter for
a central transit of the planet on a circular orbit is:
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2(Rs + Rp) _ 2(Rs + Ry)

T max — = 2
14,ma Up 2mwa/P 2)
which due to the Kepler’s third law (assuming that the star is much more massive than the planet)
becomes:
Ap /3
Tiamax = (Rs + R — 3
e = (1) () ®

where physical quantities denoted with ’p’ refer to the planet and the ones denoted with 's’ — to

the star. Note that for the transits that are not central, the transit times will be smaller, which
means that, calculated in this way, 714 max Will, in fact, be the maximum duration time of the
planetary transit. If we substitute Ry = Ry and R, = Rg, as well as My = Mg and P =1 yr. We
then get the maximum transit time for the Earth which is approximately 13 hours.

The Wotan recommendation is to use the window length (which is the length of the filter
window) 2.5 times larger than the transit duration. For the Earth-analogues this will be around
w = 1.35 days, consequently the three window sizes around this value will be tested in order to
better understand their effect on the detection efficiency of Earth-analogues. The selected windows
size are: 0.7 days, 1.4 days, and 2.0 days.

3.2 Huber spline

In statistics and estimation techniques, it is beneficial to search for robust estimators that are less
sensitive to the outliers. While conventional methods like ordinary least-squares and maximum
likelihood estimation are widely used, more robust alternatives have been proposed, with one of
them being the concept of M-estimators, which was initially introduced by Huber (1964).

M-estimators are providing generalization of maximum likelihood estimation and include var-
ious methods for estimating parameters. The common methods like nonlinear least-squares and
maximum likelihood estimation are considered to be a special cases of M-estimators. The main
idea behind it is to adjust the estimator’s properties to the specific biasvariance trade off that is
desired, assuming an underlying distribution that characterizes the data. These estimators are
considered optimal when the observed data closely follow the assumed distribution.

What distinguishes the estimators between one another are their loss functions. The least-
squares method employs the loss function in form: L(a) = a?, with a representing the differences
between observed values and the midpoint (so called residuals). The alternative developed by
Huber (1964) that was furtherly developed by Huber (2011), incorporates the Huber loss function,
which behaves quadratically for small residual values and linearly for larger ones. The transition
between the two different behaviors is controlled by a tuning parameter ¢. When it approaches
infinity, the Huber loss function converges to the typical least-squares estimator.

Mathematically, the Huber loss function can be written as:

L(a) = 1a? for |a| < ¢ ()
c(la| = §) for|a] >c

In this context, c¢ refers to the tuning parameter that modifies the sharpness of the transition
from quadratic to linear loss, while a represents the residuals.

The Huber spline is just an application of this Huber loss function with a specific parameter
c. For example the Huber spline with window length of w = 0.3 days can be described using the
following loss function:

L(a):c2< 1+ (Z)Q—1> (5)

The Huber spline is a versatile tool for robust estimation in various statistical applications,
providing a balance between quadratic and linear loss functions to accommodate different data
characteristics and requirements. This is why it can be commonly used given the aim of detrening
the LCs.

13



In this study the tuning parameter c is set at 1.5, which serves as the default value in Wotan
implementation. For the same reasons as explained in the section devoted to the biweight function
method, the window lengths that are being tested are as well: 0.7, 1.4 and 2.0 days.

3.3 YSD Lowess Regression

The YSD Lowess regression method, was developed by Battley et al. (2020), being a Python
pipeline employed to model stellar variability using the Lowess smoothing regression. The conven-
tional Lowess regression method applies a low-order polynomial to data segments determined by
a designated window size at every position on the x-axis. The window can take the form of any
function along the x-axis (such as a boxcar or a Gaussian). Regression on the y-axis, on the other
hand, can be carried out using the common least-squares methods or other robust estimators, such
as the biweight.

The weighting function which is used in YSD Lowess smoothing is the standard tricube function:

3\ 3

) (6)

In this context, the weight w assigned to each data point x is determined by its distance d from
the point on the fitted curve, normalized to fall between [0, 1].

The detrending pipeline consists of the following steps:

1. Identifying and eliminating outliers, specifically peaks and troughs, is carried out with a
prominence threshold of 0.001 and a span of 20 data points. This task is accomplished using
the find_peaks function from the scipy.signal package

2. The estimation of variability trends is achieved using the Lowess function from the statsmodels
module, with the frac parameter representing the scaled weight. For the purpose of filtering
the LCs in this work, frac is set to 0.02.

The choice of parameters, such as the frac parameter, may depend on the specific data set and is
crucial for achieving optimal performance. Different values of frac parameters were tested on the
sample of 10 arbitrarily chosen LCs. The best recovery rate outcome proved to be when setting
the parameter value to 0.02.

The YSD Lowess regression method is versatile approach while modeling the stellar variability.
It combines the strengths of Lowess smoothing, which is based on locally weighted polynomial
regression, with the ability to handle swift evolution in young star light-curves. This weighting of
data points based on their proximity to the point being estimated sets it apart from more common
methods like the Savitzky and Golay (1964b) filter.
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Figure 7: The comparison of filtering algorithms output for the sample star with id 10037521.
Each row corresponds to different filtering algorithm. On the top there is the Huber spline method
with window length of 1.4 days. Middle one shows the Biweight method with the same window
length of 1.4 days. Finally, the bottom one is done by YSD-Lowess algorithm. In the left panel,
the raw flux is marked with black dots, while the filter model is drawn with red line. The right
panel presents the detrended flux which is the outcome of dividing the flux by the filter model.
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The filtering was done on empty LC without any planetary signal.
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4 Planet injection and retrieval

The primary objective of this study is to compare the effectiveness and performance of various
filtering techniques in identifying Earth-analogue planets during the initial two-year mission phase
of PLATO. To accomplish this, the simulated light curves, discussed in Section 2, must be populated
with the planetary data for analysis.

4.1 Planetary parameters selection

The selection of planetary parameters should be randomized, while also ensuring that the planet
remains within the HZ. Understanding the boundaries of the HZ, specifically the Inner Edge (IHZ)
and Outer Edge (OHZ), is crucial and is largely influenced by the star’s effective temperature. The
assumptions regarding the dependence of IHZ and OHZ on stellar parameters are grounded in the
work by Kopparapu et al. (2013). The planet’s parameter selection begins with the orbital period
choice that is picked at random from the truncated normal centered on the Earth-like HZ. The
standard deviation will be equal to the difference between the Earth HZ and the IHZ. To ensure
that the periods are not too large, the upper limit must be restricted to the full cycle of the LC,
which is in this case ~ 727 days (full cycle is 730.5 days but the last 3 days do not contain any
data due to the observational gap). This choice is justified by the objective to test the efficiency
of the filtering algorithms, rather than replicating a realistic distribution of planets, as seen in the
computation of the mission’s planetary yield. The dependence of the HZ period range and the
temperature resulting from previously mentioned paper is presented in Figure 8.
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Figure 8: Plot presenting the selected orbital periods (in days) and the host star’s effective tem-
perature (in Kelvins). The recent Venus, moist greenhouse, maximum greenhouse and early Mars
edges are also present in the plot and are referred from the paper by Kopparapu et al. (2013).
Some of the planets orbital periods are below the rather optimistic inner edge of the HZ restricted
by the recent Venus because of the fact that the upper limit had to be moved by ~ 3 days to avoid
falling into the observational gap. This will have no significant meaning in the assessment of the
filtering algorithms.
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The Recent Venus term is based on the empirical studies Solomon and Head (1991), and fully
relies on the fact that Venus does not have liquid water on its surface since 1 Gyrs. It constitutes
rather optimistic limit on the IHZ, but can be used when considering the space missions that
search for exoplanets, not to miss any of the potential candidates for the planet within HZ. On
the opposite edge there is an Early Mars outer limit that is based on the similar considerations
regarding Mars not having the liquid water since 3.8 Gyrs.

The moist green house effect is a phenomenon that occurs when the stratosphere becomes
saturated with water, resulting in accelerated hydrogen escape into space. The latter happens
because the water vapor molecules in the upper part of the atmosphere can be broken down by
ultraviolet (UV) radiation, which will result in the significant water loss, potentially desiccating
the planet. On the contrary there is a maximum greenhouse limit that refers to the point at which
having more COy (or another greenhouse gas) in the planet’s atmosphere would not cause any
additional warming due to the fact that it is already saturated with the gas, and effectively is
trapping as much heat as it possibly can.

All the planets are assumed to have their eccentricities fixed at e = 0, which means that they are
on circular orbits. Having the planets orbit the host star on eccentric orbits would not change much
in the assessment of the filtering algorithms which is the main goal of this thesis. It only simplifies
the problem, and this way the the argument of pericenter is undefined, as in a circular orbit all the
points are equidistant to the center of mass. Out of the convenience, to avoid any computational
problems, the argument of the pericenter for all planets is fixed at o = 90°. The planet’s radii
(relative to the host stars radii) were drew at random from the uniform distribution between 0.01
and 0.03. The Ty of the transit (the time of the first transit counted from the beginning of the
observations) were picked from the uniform distribution between 0 and the orbital period. For a
reliable detection of the planetary signal to be possible and to establish the orbital period, at least
2 transit are needed to be present in the LC. Because the data is limited to the first 2 years of
observations, and in most cases only 2 transit would be observable due to the long orbital periods
of the planets, the condition on the TO0 value of not falling into one of the eight gaps was imposed.

The two last parameters that are required later to inject the planet onto the LC are: semi-major
axis and the inclination angle. The semi-major axis can be inferred from the stellar density using
the Kepler’s Thrid Law:

472 3 3T 3

2 _ _
P 7GMsa 7Gpnga (7)

where the term M;/a® have been substituted with 4mps/3. Solving the equation for a (scaled to
stellar radius) one gets:

o/ Ry — (GPQ’)S)”S ®)

Having calculated the semi-major axis, which in this case is just a circular’s orbit radius, one
can move on to the final parameter — the inclination angle. The inclination angle must be such to
allow for the planetary transit observations. The impact parameter b, that can range between 0
(central transit — planets movement from the observers point of view happens grazing the centre of
the star) and 1 (the planet grazes through the edge of the star), is directly related to the inclination
angle. For an eccentric orbit this relation is:

acosi V1 —e?

b= .
Ry 1+esino

9)

so in general, the inclination angle will depend on b — the impact parameter, a/Rs — the semi-major
scaled to the stellar radii, e — the eccentricity of the orbit and o — the argument of the pericenter.
For circular orbits it can be simplified to:

acost

b
= = S _— 1
b R — 4= arccos (a/RS> (10)
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The inclination angle is thus calculated by first drawing the impact parameter from the uniform
distribution between 0 and 1.

4.2 Limb darkening coefficients

Finally, to inject the planetary signal into the LC, one needs to know the limb darkening coefficients
of the star, which basically reflect the shape of the transit. The phenomenon has its origin in
observation that the center of the star appears brighter than its edge (limb). The underlying
reason for this behaviour is the nature of the stellar atmosphere’s opacity. The light that is
emitted from deeper, hotter layers of a star is more intense than that from the cooler, outer layers.
When we observe a star directly head-on, we are seeing the light coming from these deeper layers.
As the observer’s line of sight moves towards the limb or edge of the star, they are looking through
an increasingly thicker part of the star’s cooler, outer atmosphere. This causes the observed light
to be dimmer, hence the star appears to be darker at the edges.

These coefficients are used to quantitatively describe this effect in models, when analyzing LCs
from the transiting exoplanets. They are employed directly in the limb darkening laws, which
serve to model the intensity variation across the stellar disk. In this work, the quadratic model is
used (Kopal, 1950), which means that the two parameters are required to describe the previously
mentioned effect on the intensity. The equation to describe the quadratic law is:

I(cos @)

Ty~ Ll - eost) —up(l - cos)’ (11)

where I(1) — is the radiation intensity measured at the center of the star, cos @ — is the cosine
value of the angle formed between the line of sight and the outgoing intensity, ui, us — are the
limb darkening coeflicients that need to be established.

In order to calculate the values of the limb darkening coefficients a prior knowledge of the
effective temperature of the star (o), the logarithm of gravitational acceleration at the surface
(log g), and the metallicity of the star (Z) is required. The evaluation was carried out using the
PyLDTK (Python Limb Darkening ToolKit) that have been developed by Parviainen and Aigrain
(2015) and is based on the PHEONIX library (Husser et al., 2013). The crucial element of running
the code is defining the filter that will be used to observe the star. The PLATO filter profile is
not yet publicly available but the shape is clearly seen in Figure 9, which resembles the one of the
CHEOPS mission (Benz et al., 2021) but with a steeper separation at lower wavelengths (strong
cut-off around 500 nm).

To imitate the real profile, the Boxcar filter was used with the transmission level at 1.0 between
500 and 1000 nm. The CHEOPS and Boxcar limb darkening oefficients were compared with the
values reported in the PLATO-PL-KULPL-TN-0020 i.1.2 (already mentioned PLATO Consortium
Technical Note), which provided the limb darkening coefficients for around 1/3 of the input stars.
The Boxcar proved to be a better representation of the PLATO passband rather than the CHEOPS
filter, at least in the computation of the quadratic limb darkening coefficients. This is reasonable, if
we think to the higher impact of limb darkening in transit observations at shorter wavelength (e.g.,
Knutson et al., 2007). The discrepancy between the empirically obtained values of the coefficients
and the ones obtained using PHOENIX models can be up to 0.2 (Patel and Espinoza, 2022). It is
imperative that the difference in coefficient values remains within this range to ensure the reliability
of the derived stellar parameters. Secondly, the same limb darkening coeflicients that are used to
model the transit signal will be later used to retrieve the planet from the LC, so theoretically the
recovery rate should not be influenced by the accuracy of the estimated coefficients.

4.3 Planetary signal injection

The capability to inject synthetic planetary transits into stellar LCs provides invaluable insights
into the robustness of detection algorithms and the assessment of potential systematic errors. Those
are the main reasons for which the precise modelling of planetary signal becomes valuable. With
the help of the batman (BAsic Transit Model cAlculatioN) python package (Kreidberg, 2015a), this
process becomes streamlined, at the same time offering a high degree of customization to simulate
different transit scenarios.

To initiate the process, one must first define a set of transit parameters:
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Figure 9: (a) A comparison of the preliminary spectral response of PLATO N-CAM at BOL
conditions with other known bands, filters and spectra. GAIA G refers to the Gaia mission G
band, Johnson’s V is the Johnson’s V filter. Labels starting with the name of the star are pointing
to the normalized spectra of the given stars. The figure is taken from the work by Marchiori
et al. (2019) (b) Filter profiles plot for the CHEOPS mission taken from the SVO Profile Service
(Rodrigo and Solano, 2020) and the one which will be used in this work (Boxcar filter) to imitate
the PLATO passband filter.
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To: time of inferior conjunction in days

- P: orbital period in days

- Ry: planet radius in the units of stellar radii
- a: semi-major axis in the units of stellar radii
- ¢: orbital inclination angle in degrees

- e: eccentricity of the orbit

o: argument (longitude) of periastron in degrees
- limb_dark: limb darkening model
- u: limb darkening coefficients

for which the selection process has been already described in subsections 4.1 and 4.2.

The output of the code is a transit model which can be later injected into the LC. The model
is normalized, meaning that the out-of-transit flux is simply 1.0. The examples of the resulting
planetary signals produced by the batman package are presented in Figures 10 and 11.
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Figure 10: The modelled planetary transit for the target star with id 17451622. The transit
parameters are: Ty = 57.28 days, P = 565.94 days, R, = 0.0176, a = 210.40, i = 89.98°, e = 0,
0=90° u; = 0.458, us = 0.135.

Injection of the signal is rather straightforward and does not require in-depth explanation.
Using the batman package, the model for a given time series, planetary and stellar parameters
can be created. It is then incorporated into the previously produced LC (for details see section
2). Figures 12 and 13 present the generated LCs for the same example stars. In these stacked
plots, the top LC is missing any planetary signal, the middle one shows the curve with a planetary
signal, while the bottom one is the binned LC with the injected planet.

Binning is a method in data processing used to mitigate the impacts of minor observational
discrepancies. Original data values that are falling within a specific small range, also known as
a bin, are substituted by a value that characterizes given interval, typically the central value.
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Figure 11: The modelled planetary transit for the target star with id 15958871. The transit
parameters are: Ty = 102.41 days, P = 312.52 days, R, = 0.0117, a = 186.35, ¢ = 89.89°, ¢ = 0,
0 =90°, u; = 0.442, uy = 0.155.

Among the binning methods the most popular ones include smoothing with mean or median value.
In this work, binning is done with the help of the scipy.stats package and in particular the
binned statistics function, which apart from the statistics method choice also allows the easy
implementation of the minimum number of counts per bin. The bin size was chosen to be 10 min,
which is a balanced compromise between the further computational load of executing the transit
search method, at the same time not altering the transit signal in substantial way. There must be
at least 5 data points inside a bin and the chosen statistics is the mean value.

From Figures 12 and 13 one can clearly see that for some LCs the planetary transit can be
detected "by eye’ (Figure 12) while for others it might not be an easy task (Figure 13). There are
many factors , which contribute to that but the main one is the position on the LC of the transit
occurrence. The amplitude and the width of the signal itself are also crucial but in our case similar
planets (Earth-analogues) are considered and the planetary parameters do not differ substantially.
The binned LCs containing the injected planetary signal are then subject (input) to the filtering
algorithms which should help in the transit recovery.

4.4 Planetary signal retrieval

The identification of exoplanets using the transit method is based on the detection of periodic
reductions in the brightness of a star, that indicates an orbiting planet occulting a portion of the
starlight. In order to enhance the accuracy of this process, specialized algorithms are employed.
Amongst them, the Box-fitting Least Squares (BLS, Kovdcs et al., 2002) and Transit Least Squares
(TLS, Hippke and Heller, 2019) algorithms stand out due to their widespread use and efficiency.

The BLS method seeks to identify potential transits by fitting a box-shaped function to the
observed LCs. Essentially, it scans the data for consistent, periodic reductions in brightness that
align with the profile of a box. While BLS is effective in scenarios where the approximate depth
and duration of the transit are anticipated, its restrictive shape can sometimes result in overlooked
transits, especially if they are of shorter duration or deviate from the anticipated box-like profile.

The actual profile of a transit diverges from the box shaped one making the use of accurate
shape fitting method more beneficial. This is where more refined alternative, the TLS is useful.
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Figure 12: The stacked plot of the flux without planetary signal (top), flux with planetary signal
(middle) and the binned flux with planetary signal (bottom) for the target star with id 17451622.
The transit happens with Ty = 57.28 days and P = 565.94 days. The bin width is 10 min and the
chosen statistics is the mean value.
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Figure 13: The stacked plot of the flux without planetary signal (top), flux with planetary signal
(middle) and the binned flux with planetary signal (bottom) for the target star with id 15958871.
The transit happens with Ty = 102.41 days and P = 312.52 days. The bin width is 10 min and
the chosen statistics is the mean value.
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It is tailored to identify transits by modeling the light curve with shapes that more accurately
reflect the profile of real planetary signals. Instead of a simplistic box, TLS employs a composite
of potential transit shapes, enhancing its sensitivity. This makes it a great choice for detecting
smaller planets or transits that might not perfectly conform to the box shape assumed by BLS.
In fact, the TLS uses the previously described package batman that allows for the customization
of limb darkening profile. In the realm of exoplanet detection, determining the authenticity of
a signal is crucial and this is why the Signal Detection Efficiency (SDE) definition needs to be
introduced.

Recovery Criterion: Signal Detection Efficiency (SDE)

The Signal Detection Efficiency (SDE) serves as a yardstick to quantify the significance of a
detected signal. It computes the contrast between the strength of a potential transit signal and
the prevailing background noise:

SDE — Transit Signal Strength

(12)

Mean of Background Noise

The TLS calculates the SDE as a metric to pinpoint the most noticeable signal in the peri-
odogram (period decomposition) that aligns with a potential exoplanetary transit. The procedure
for determining the SDE distribution with respect to the orbital period is adapted from the method-
ology by Kovécs et al. (2002):

SDB(Pa) = 2z~ BRI ) (13)

In this relation:

e SR(P,) signifies the signal residual, which is the disparity between the theoretical model
and the actual observational data. This is inferred from the distribution of the minimum x?2.

e (SR(P,)) represents the arithmetic mean of the signal residual.
o 0(SR(P,p)) denotes its standard deviation.

o SRpeak, the peak value

In TLS the SR is calculated from the distribution of the minimum x? as a function of P:

2
_ Xmin,glob

SRP) =2 (P)

(14)

This calculation inherently confines the SR(P) distribution to fall within the interval [0, 1]. The
x? statistic is assessed on the phase-folded LC, comparing the data points from the transit model
to the observed values. After examining the SDE distribution, the period with the highest SDE
value is identified as the orbital period for the detected transit.

In Figure 14 the discrepancy between the SDE values for TLS is presented and is taken directly
from the paper by Hippke and Heller (2019) (Figure 7). It can be clearly seen that the TLS
outperforms the BLS, even after the median-smoothing of the LC, before employing the BLS
method on it. The difference is in the SDE values is essential as for TLS, the signal with the
maximum SDE was found at 66.7 while for BLS it reached only 16.9 without processing the LC
and 24.5 after smoothing.

The planetary signal is considered to be recovered when it fulfills these two criteria:

1. The recovered period matches the injected one with the maximum discrepancy of 1%
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Figure 14: The plot taken directly from Figure 7 of Hippke and Heller (2019), which compares
the performance of TLS with respect to the BLS. The left plots are the phase folded LC with
the maximum SDE transit fit marked with red line. Plots on the right are the periodograms,
which decompose the SDE values for each period searched. The top figure are the results for TLS,
middle one is the BLS with no prior data processing and the bottom one is the BLS with median

smoothing.
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2. SDE value is above certain threshold value which is calibrated using the data containing
white noise only

Both conditions must be satisfied concurrently. If the identified signal aligns with the period of
the introduced planet yet the SDE falls beneath the established threshold, the signal is treated as
unretrieved.

4.5 Estimating the SDE threshold

In this work the same reasoning as in Hippke and Heller (2019) will be adapted to determine
the SDE threshold, above which we consider the detection of the planetary signal to be qualified
for the further period check. The approach for estimating this threshold involves executing the
TLS on data without any injected transit, aiming to compute the SDE values corresponding to
the white noise only. Consequently, we could set the false positive rates at 1%, implying that in
actual observations, only 10 out of 1000 empty light curves would be flagged as potential transit
candidates.

Previously, in their work Canocchi et al. (2023) assumed the SDE threshold value to be 7.0
and was directly taken from the Hippke and Heller (2019), who performed the calculations on 10
000 realizations of the synthetic LCs. The results of their study are presented in Figure 15 where
they compare it with BLS performance as well. For both TLS and BLS, the false positives rates
at the 1% level were obtained for 7.0 SDE threshold value, but the TLS outperformed in terms of
the planetary signal recovery efficiency.

In their research, various empirical thresholds for SDE were highlighted and compared. Specif-
ically, they list the following thresholds that have been proposed by different authors:

e SDE > 6.0 as suggested by Dressing and Charbonneau (2015).
e SDE > 6.5 according to Livingston et al. (2018).
e SDE > 7.0 as presented by Siverd et al. (2012).

SDE € [6, 8] (varying based on the orbital period) as discussed by Pope et al. (2016); Aigrain
et al. (2016).

e SDE > 9.0 adopted by Heller et al. (2022)
e An even higher threshold of SDE > 10 is proposed by Wells et al. (2018).

This assortment of thresholds offers a diverse perspective on potential SDE values for the transit
detection. It is, however, worth noting that higher SDE threshold values will result in reduced
recovery rates, while lower ones carry the risk of having a high number of false positives. For this
reason, the in-depth study of the SDE threshold within the particular data set is beneficial to
maintain the perfect balance between the detection efficiency and the false positive rate.

To provide the SDE threshold values for different levels of the false positives rates, the TLS
method was employed on the P1 sample LCs before the injection of the planetary signal. Most
of the parameters were chosen to be the default ones, but the period range have been restricted
for the lower limit. The injected planets will have orbital periods larger than 100 days, this is
why running TLS for low values would be only an unnecessary computational expense. The lower
limit of period range was set to 40 days and the minimal number of transits was set to 2. The
detrending was carried out before running TLS with arbitrarily chosen biweight method, for which
the window length was set to be 0.5 days.

The resulting SDE threshold value estimate should be 10.5 to be casting the 1% rate of false
positives. However, there are several factor that should be considered as well. First of all, the
sample was quite small compared to the one that Hippke and Heller (2019) have used to generate
their results. Secondly, the generated LCs representative of the P1 sample, are divided into the
quarters which differ between one another by the systematic errors relative amplitude. In general,
they will not have standard variation above 0.5% meaning that systematic errors variations cannot
exceed this value as well. Nevertheless, the highest SDE values on the white noise data are achieved
for the LCs that have the largest variations of the systematic between adjacent quarters, which is
clearly seen in Figure 16.
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Figure 15: The plot taken directly from Figure 6 of Hippke and Heller (2019), which compares the
performance of TLS with respect to the BLS in terms of the transit recovery (true positives). For
both methods the SDE threshold is at 7.0 and is set from the condition of 1% of false positives for
the white noise data. The data with signal has the mean SDE of 9.9 for TLS, which means better
performance of this method compared to the BLS, that has the mean value at 8.2.

False Positive Rate | SDE Threshold
1% 10.54
2% 9.93
3% 9.49
4% 9.01
5% 8.82

Table 2: The estimated SDE thresholds for different levels of false positive rates. The threshold is
provided for the rate of up to 5% and was calculated for the 1000 LC containing only white noise
data (no planetary signal). The curves were first detrended with the biweight method using the
window length of 0.5 days.

The 1% false positive rate is generally accepted within the astronomical community, primarily
because of the precious telescope time that is at stake. Allocating the telescope time for the
follow-up of objects based on a higher false positive rate may lead to a considerable amount of
wasted effort on celestial bodies that are irrelevant or non-beneficial to the core objectives of the
study. Such a misallocation also affects the rate at which significant discoveries are made, as the
observation time is finite and highly desired by many groups.

Hence, for a more comprehensive analysis in this study, we will be exploring three distinct
values for the SDE threshold. These are:

1. > 7.0, which aligns with the threshold set by Canocchi et al. (2023) in their work
2. > 9.0, following the value chosen by Heller et al. (2022) in their studies
3. > 10.5, which is the value deduced from current analysis

Examining these thresholds will allow to shed light on their respective influence on both the
recovery rate and false positive rates. This comprehensive approach will allow to make more
informed decisions on the threshold value, that keeps the right balance between discovery potential
and resource allocation.
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5 Results and discussion

The core objective of this master’s thesis revolved around the evaluation and efficiency comparison
of various filtering algorithms tailored for the detection of exoplanets, with a specific focus on the
Earth-analogues. The algorithms subjected to the testing were: the Huber spline method (with
window lengths of 0.7, 1.4, and 2.0), as well as the biweight method (employing identical window
lengths), and the YSD-Lowess technique. FEach of these algorithms was carefully examined to
uncover their unique traits and computational complexities, in the context of exoplanet detection.

In this section the culmination of this extensive analysis will be presented, providing a detailed
exposition of the outcomes, specifically the comparison of recovery rates of the injected planets
and its dependence on the planetary and stellar parameters.

5.1 Recovery rate

As already explained in subsection 4.4 there are 2 conditions that need to be fulfilled simultaneously
to consider a successful recovery of the planetary signal: the recovered period needs to be within 1%
agreement with the injected period, and the SDE value needs to be larger than the actual threshold
value. However, there are edge cases that go beyond these general criteria and incorporating them
to the total efficiency will provide more accurate outlook on the real recovery rates. All cases that
will be distinguished in this study include:

1. Detection: In this scenario, all transits are successfully recovered, and the planet is identified
with the correct period, demonstrating a high level of precision (AP < 1%).

2. Aliased Detection: This case occurs when most of the transits are recovered, but the
retrieved period is half of the injected period. It implies that some aliasing is present,
leading to a period misinterpretation. This occurs when an observational gap is present
midway between the two detected transits, causing the transit search algorithm to falsely
identify a transit period precisely half of the injected one.

3. Partial Detection: In contrast, the partial detection scenario arises when only one transit
is recovered, and the period estimate is ”wrong” due to the presence of noise that is mistaken
as another transit. When the first transit is not recovered correctly both T and P will have
wrong values. However, their combination matches the injected one with the 1% precision.
The second case happens, when the first transit is recovered correctly but the second one is
missed. Then the recovered value of Tj will match the injected one given the same precision.

4. Wrongly recovered: Case in which the SDE crossed the established threshold value, but
the recovered period does not overlap with the injected one, in any of the ways mentioned
above.

It is worth noting that, given the mission’s objectives, borderline cases '2” and '3’ hold particular
significance. Performing photometric and ground-based follow-up observations are likely to shed
light on these intriguing cases. Recovering the correct period of the planet might be a hard task
and goes far beyond the scope of this work. Numerous instances exist where planets have been
validated or confirmed despite the lack of knowledge regarding their orbital periods. Those include
(but are not limited to): TOI-2076 (Hedges et al., 2021), V1298 Tau (David et al., 2019) and
HIP41378 (Vanderburg et al., 2016). To provide the maximum efficiency of the tested filtering
algorithms the relevant sum of '1 + 2’ and ’1 4+ 2 + 3’ will be presented as well. Previous work
comparing the detection efficiency of filtering algorithms (Canocchi et al., 2023) did not need to
include these additional criteria as their injection tests always included at least three transits, thus
avoiding scenarios ’2’ and ’3’.

In Figures 17, 18 and 19 the recovery rates are presented for all the algorithms that were being
tested, with the distinction based on the data categorization, that was introduced earlier.

In Figure 20, the SDE value histograms for various methods are presented. Notably, the SDE
distributions for YSD-Lowess, biweight (1.4-day window length), and Huber spline (1.4-day win-
dow length) exhibit remarkable similarities. These distributions have a nearly bimodal pattern,
characterized by a prominent peak in the range of 25-30 SDE values, accompanied by a secondary,
albeit less significant peak, located between 5-10 SDE. Additionally, it is clearly seen why the
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Figure 17: Heatmap representation of the filtering techniques efficiency outcome for SDE threshold
10.5. The percentages are derived from a sample of 1000 LCs. Additionally, cumulative sums for
categories "14-2” and "1+42+3” are provided.
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Figure 19: Heatmap representation of the filtering techniques efficiency outcome for SDE threshold
7.0. The percentages are derived from a sample of 1000 LCs. Additionally, cumulative sums for
categories 142" and "1+42+3” are provided.

Huber spline method with a 2.0 window length yields the poorest performance. The lower SDE
value peak becomes more pronounced, resulting in an increase in the number of missed transits.
Given the SDE threshold of 10.5, anticipated to achieve a false positive rate of approximately
1%, the analysis shows that the biweight method with a window length of 1.4 days stands out
as the most efficient, delivering an efficacy of 83.4%. Concurrently, it manifests a mere 0.1%
rate of wrongly recovered transits. Closely following is the YSD-Lowess technique, exhibiting
an efficiency of 83.3% and a slightly elevated 0.3% rate of incorrect transit recovery. Another
noteworthy method is the Huber spline with a 1.4 days window, having an efficiency of 81.7% and
also low (0.2%) percentage of wrongly recovered cases. What can be seen is that the number of
partial detections is nearly the same for all these methods. Lowering the SDE threshold generally
enhances overall detection efficiency; however, this comes at the expense of an increased number
of incorrectly recovered cases. Intriguingly, at diminished SDE threshold values, the Huber spline
method with a 0.7 days window length emerges as a competitive technique. At SDE threshold value
of 7.0, it even surpasses the Huber spline with a 1.4-day window in terms of efficiency. The surge
can be primarily attributed to the escalated count of aliased detections, which reach a noteworthy
5.5%. This higher performance, nevertheless, is accompanied by an increase in the rate of false
recoveries.

Among the various methods evaluated, the biweight approach with a 1.4-day window length stands
out as the preeminent technique, showcasing overall the best efficiency as well as the lowest number
of incorrect recoveries. It is closely rivaled by YSD-Lowess, which also achieves commendable,
nearly indistinguishable from the biweight method results. Determining an optimal SDE threshold
proves to be challenging. While this study implies a specific limit, the data reduction pipelines
could potentially decrease the false positive rates derived from the white noise data. This might
cause the lower SDE values to be more appealing. In this study, however, transitioning from a
10.5 to a 7.0 SDE threshold boosted the efficiency of the biweight method with a 1.4 days window
length by 6.5%. Nevertheless, this improvement came at the expense of a rise in wrongly recovered
transits, which raised from 0.1% to 2.6%. Given that elevated false positive rates would necessitate
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Figure 20: Histogram representation of the SDE values distribution for all studied methods. The
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32



allocating more telescope time for the follow-up observations, it seems beneficial to lean towards
the higher SDE threshold value to limit the occurrence of such cases.

The PLATO pipeline foresees the use of more than one filtering algorithm. Thus, joining the
best performing methods: YSD-Lowess and Biweight with 1.4-day window length can provide
insights into the cumulative detection efficiency. A planet might be overlooked by one filter but
identified by another, and such instances would still be considered detections. Upon evaluating
the combined efficiency of these two proficient methods, it is clear that the difference compared
to using only one filter is not substantial. With an SDE threshold of 7.0, the combined efficiency
reaches 89.9% (same as in case of using only biweight method), whereas with an SDE threshold of
10.5, efficiency is at 84.3% level (0.9% higher when using only the biweight method).

5.2 Recovering the planetary parameters

The transit curve shape encodes a wealth of information about an exoplanet and its orbit. By
analyzing the features and characteristics of this curve, various planetary parameters can be ex-
tracted.

Planet-to-star radii ratio: The depth of the transit, representing the fraction by which the
star’s light dims during a planetary passage, is directly proportional to the square of the ratio of
the planet’s radius R, to the stellar radius Rs. A deeper transit implies a larger planet in relation
to its host star:

R, V5
e /s
Ry
where § is the transit depth. This relation is obtained by assuming the spherical shape of the

planet and star, as well as neglecting the effect of the limb darkening. In reality, the latter should
be included as it can cause quite large overshoot of the recovered planet-to-star radii ratio. The
discrepancy is approximately 15% for spectral type A, main sequence stars and can raise up to
20% for solar-like stars (Heller, 2019). The TLS package uses the analytical solution provided by
the Heller (2019) accounting for the limb darkening effect:

where (I) A is the average intensity across the entire stellar disk area and I, is the intensity covered

by the planet in the middle of the transit.

As observed by Canocchi et al. (2023) the recovered ratio is underestimated and is caused by
the deformation of the transit shape by the filtering algorithms. It can be clearly seen in Figure
21 where the injected and recovered transit shapes for one of the sample LC are drawn (with
id 17451622). The difference is substantial as in this case the recovered ratio R,/Rs = 0.0104,
while the injected one was Ry,/Rs = 0.0176. It also implies that all the other parameters that are
directly inferred from the planet-to-star ratio will be prone to the estimation errors. This is not
something we should be worried about, as the detected transits would go through a more refined
modelling, for example by employing Markov Chain Monte Carlo analysis, in order to retrieve
accurate planetary parameters.

Stellar density: Stellar density is a parameter that can be precisely extracted from the planetary
transit because it is estimated using the Kepler’s third law as shown in Equation 7. We can solve
the equation for ps and expressing it in units of solar density we get:

1
(P(days)/365.25)

Ps,0 =

The period P is known with at least 1% precision and the only assumption that was made in
this approximation was that planetary mass M, << M and it was neglected. For our example
star the recovered period was 565.95 days so ps,o = 0.42 which is really close to the real value of
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Figure 21: The comparison of the injected transit signal (blue color) and the recovered planetary
signal (orange color) for the star with id 17451622. The LC was first detrended with the biweight
method using the 1.4 window length. The deformation is affecting both the transit duration Tqyu,
and more significantly — the transit depth 4.

ps,0 = 0.39. Also in this case, a detailed analysis of the detected transits will improve the accuracy
of the stellar density, for a direct comparison with asteroseismic determinations.

Scaled semi-major axis: We can also determine the scaled semi-major axis in terms of stellar
radii with Equation 8. For the same light curve example, we obtain:

a GP2ps OPO e
— = (000 —910.23,
Ry ( 3m

while the actual injected value is 210.39. With the stellar mass obtained from spectroscopic
observations, the stellar radius could also be calculated, providing the information about the semi-
major axis value.

Impact parameter: The impact parameter is the projected sky distance between the center
of the stellar disc and the planetary disc’s center during conjunction. For a circular orbit, it is
described with Equation 10. The distance [ which the planet needs to traverse across the star’s
disk is directly related to the impact parameter and the transit duration. If the impact parameter
is 0 then this distance is the maximum possible and the transit duration is the longest as well.
Increasing it will result in the transit duration (and the distance — 1) gradual decrease. The distance
[ can be expressed as:

L= \/(Rs + Ry)? — (bR.)?

The distance [ is directly related to the transit duration, by the relation:

R. 1 R — (bR.)?
Tdur - Pg - E arCSin (l> = E arcsin <\/( + p) ( ) >
s a T

2 a
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Figure 22: Auxiliary plot depicting the geometry at the transit ingress (71). The yellow circle
represents the star, while the blue circle represents the planet. Throughout the transit, the planet
must traverse a distance equal to 2[. The path of the planet is drawn with the dashed line.

Where « is the angle between the ingress (77) and egress (Ty4) of the transit drawn from the
center of the star.
The relation can be transformed to express the impact parameter in terms of Tgy,:

b2 — (Rs + Rp)? — a? sin? (—ﬂ;;‘“r) (14 Ry 2 [a 251n2 7T qur
R? R R, P

Transit duration found by the TLS is in this case 0.82 days. The real value, for the injected planet
calculated from the expression above would be 0.87 days. Both discrepancies in the Ty, and
R, /Rs accumulate, making the accurate estimation of the impact parameter impossible. Again,
this issue will be dealt by a detailed analysis of the LC.

5.3 Planetary and stellar parameters

In this subsection, the aim is to examine the overlap between planets detected using various
algorithms. Specifically, we want to identify stellar and planetary parameters common to those
detected by a majority of the algorithms. It is expected that larger planets, which induce more
significant dips in the light curve, would be more easily detected. While shorter orbital periods
might typically be favored for detection due to more frequent transits within a given observation
time, this dependency may not be reflected in this analysis. Given the studied sample, most planets
will likely transit across the stellar disk no more than two times during the two-year observational
cadence. This is attributed to the fact that their orbital periods, in most cases, exceed 300 days.
In Figure 23, a scatter plot illustrating the relationship between the injected planets radius
(expressed in units of stellar radius) and orbital period is presented. As anticipated, a visible
correlation emerges between the number of algorithms detecting the signal and the planet radius
(relative to stellar radius). Specifically, a larger relative planet radius corresponds to a higher
detection rate, due to the greater impact of the planet on the LC. There is also a modest correlation
with orbital period; notably, for orbital periods up to ~ 300 days, even when the planet-to-star
radius ratio is small, most algorithms successfully recovered the signal. This is attributed to the
presence of more than two transits in the LC.
In Figure 24, a similar as before scatter plot is presented, this time focusing on stellar parameters:
effective temperature versus stellar radius. The data points are color-coded to represent the nor-
malized count of algorithms that detected the planetary signal. Notably, a noteworthy reduction
for the algorithms performance arises in the case of F5 spectral type stars. This difficulty is pri-
marily due to their larger stellar radii, resulting in a relatively smaller ratio of planetary to stellar
radius and longer transit durations. Both of these factors combine to make the detection of planets
around F5 stars more challenging.
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Figure 23: Plot attributing the number of recoveries by tested filtering algorithms (normalized to
the maximum number of occurrence count) to the planetary parameters: injected planets radius
in units of stellar radius and orbital period in days. The successful recovery is treated as the ’1°,
'2” or ’3’ from the previous subsection. The plot is made for SDE threshold value of 10.5.
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Figure 24: Plot attributing the number of recoveries by tested filtering algorithms (normalized
to the maximum number of occurrence count) to the stellar parameters: effective temperature in
Kelvins and stellar radius in Rg. The successful recovery is treated as the ’1’, ’2’ or '3’ as defined
in the previous subsection. The plot is made for SDE threshold value of 10.5.
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5.4 Conclusions

The evaluation of the selected filtering algorithms has revealed that the most effective choices are
the biweight method with a 1.4-day window length and YSD-Lowess, both achieving an overall
efficiency of 89.9% and 89.6%, respectively, given the SDE threshold of 7.0. Combining the two
methods together would not increase the overall efficiency, as all transits that are missed by the
biweight method are missed by the YSD-Lowess as well. It is worth noting that the Huber spline
method with a 0.7-day window length demonstrates comparable efficiency at the 7.0 SDE threshold
level. Nonetheless, its use comes with an elevated risk of incorrectly recovered transits and a
higher likelihood of false positives. This heightened risk is primarily due to the SDE distribution,
which peaks around 10 SDE for LCs with injected signals. The retrieved planetary parameters
should be interpreted with caution, as substantial discrepancies exist between the shape of injected
and recovered planetary signals. This divergence underscores the imprecise nature of planetary
parameter retrieval in this context as the usage of filtering algorithms alters the original signal.

It is worth acknowledging that not all algorithms from the Canocchi et al. (2023) paper were
considered in this work, and there may be additional algorithms worth exploring. The K25C
algorithm that bases on the Gaussian Process regression Aigrain et al. (2016) was excluded due
to its relatively poor performance resulting from the mentioned work. Conversely, the Notch and
LOCoR (N&L) algorithm Rizzuto et al. (2017) was not tested due to its high computational cost.
Indeed, this is the reason why at the moment there is no plan to include this algorithm in the
official Exoplanet Analysis System for the analysis of PLATO LCs. Nevertheless, it was found to
exhibit the highest performance for Earth-sized planets in both active and quiet samples in the
referenced paper and might be the algorithm worth testing in the future, if the algorithm can be
implemented in a computationally more efficient way, for example by employing Machine Learning
techniques.

In the search for Earth-analogues, it is crucial to conduct a thorough study when a signal is
detected. The limited number of transits during the 2-year observational period may lead to
partial detections (where one out of two transits is not correctly recovered) or aliased recoveries
(when an observational gap falls midway between two transits, resulting in a recovered period that
is half of the actual one). These scenarios highlight the importance of careful analysis and follow-up
observations to validate the potential planetary detections. Indeed, this works demonstrates that
with PLATO mission we will be able to detect Earth-analogues with very high efficiency (close to
90%), if at least two transits are observed.
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