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Abstract

This thesis "On the Tautological Ring of Moduli Spaces of Riemann
Surfaces." gives an overview of known results about the relations on
the tautological ring of Moduli spaces. First, we introduce the Moduli
Space of Stable Curves as an Orbifold of a etale groupoid, a generaliza-
tion of complex manifold and orbit space of a group. Then we define
the Tautological Ring on it as a subring of the Cohomology Ring. Fi-
nally, we present the work of Pandharipande, Pixton and Dvonkine in
[10], they discovered a set of relations on the Tautological Ring that
is, up to date, the largest known. This set is obtained by Cohomo-
logical Field Theories, a tool to compute and glue cohomology classes
in a Tautological way, and a group action on CohFTs. Using Tele-
man’s characterization of Cohomological Field Theories in a specific
case, they manage to deduce an explicit formula for a suitable modifi-
cation of Witten’s 3-spin CohFT. This turns out to vanish non trivially,
providing a set of relations.

Davide Accadia

ii



To my Father,

May the earth rest lightly on you.





‘Ultimately, man should not ask what the meaning of his life is, but rather
must recognize that it is he who is asked. In a word, each man is

questioned by life; and he can only answer to life by answering for his own
life; to life he can only respond by being responsible.’

(Viktor E. Frankl, Man’s Search for Meaning)
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Introduction

The objective of this thesis is to present some modern advancements in the
study of Moduli Spaces of curves. The main focus is on the Tautological
Ring of Moduli spaces, a subring of the Cohomology ring that seems to be
more intuitively understandable, than the whole cohomology ring.

The őrst chapter is dedicated to the construction of the Deligne-Mumford
compactiőcation and its natural orbifold structure. This chapter follows the
construction by Robbin and Solomon, we will limit ourselves to the deőnition,
and overall structure of the object. Concluding with the presentation of the
concept of DM convergence that helps us grasp the topology on this space.

In the second chapter the Tautological Ring is introduced, and by giving
some examples of tautological and non-tautological classes, and presenting a
plethora of other results and conjectures we aim to achieve a basic perception
of the direction and of the extent of what is known and what questions arise
during the study of these natural objects.

In the last chapter we review the advancements by Pandharipande, Pixton
and Dvonkine in a paper from 2015. In this paper they mainly use and
manipulate Cohomological Field Theories. By deőnition a CohFT is a family
of cohomology classes that is closed by the pushforward of glueing maps.
With some insight in the physical motivations behind the Moduli Spaces and
Witten’s class, they were able to őnd the largest set of Tautological relations
known until now. Two group actions are introduced: the T action and the
R action, deőning CohFTs as a summation over a set of graphs of some
modiőcation of the original CohFT. These two actions can be then combined
to form an action with stronger properties, the unit preserving R action or R.
action, that allows us to use Givental-Teleman’s classiőcation of semisimple
CohFTs. Witten’s shifted class, is a class deőned starting from Witten’s class,
and it is very similar to the result of T applied on Witten’s class. Givental-
Teleman theorem provides us with a formula for Witten’s shifted class as
the image of a speciőc R. action on a very simple CohFT. The formulas we
get are non trivial even for degrees of Witten’s shifted class that should be
vanishing, these formulas constitute the set of relations discovered in this
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paper. These relations generalise the previously set of known relations, the
Faber-Zagier relations. It is proven that the approach of this paper cannot
yield a greater set of relations.
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Chapter 1

The moduli space of curves

The scope of this chapter is to deőne the Deligne-Mumford Moduli Space.

Definition 1.1. (Riemann Surface with n marked points.)
A marked Riemann Surface is a triple (Σ, s∗, j) where s∗ is a sequence of n
distinct points on Σ so:

s∗ ∈ Σn \∆.

Where ∆ is the set of n-uples, with at least one repetition, also called the
"Fat diagonal".

Remark. Since all Riemann Surface of genus g are diffeomorphic, we can
deőne the moduli space of curves of genus g as

Mg = J (Σ)/Diff(Σ)

This is independent on the substrate Σ as any diffeomorphism induce a bi-
jection on the complex structures and a group isomorphism on Diff.

Now we wish to deőne the moduli space of stable curves, we will start by
giving an overview of orbifold structures.

Definition 1.2. (Groupoid)
A Groupoid is a category in which every morphism is an isomorphism.

Remark. (Notation)
Let B be the set of objects of a groupoid and let Γ be the set of morphisms,

then we will denote the set of morphisms from a and b in B by Γa,b and by
Γa := Γa,a the automorphism group of a ∈ B. Deőne the source and target
maps s, t : Γ → B associating to a morphism a → b: a and b respectively.
The inversion map i : Γ → Γ that sends a morphism in its inverse. The
identity section e : B → Γ associating to each object its identity morphism.
Lastly, the multiplication map m : Γ ×s,t Γ → Γ from the set of pairs of
composable morphisms, associating the composition to each couple.
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Definition 1.3. (Lie Groupoid)
A Lie Groupoid (B,Γ) is a groupoid in which both B and Γ are smooth man-
ifolds, the structure maps are smooth and the source map is a submersion.

Remark. Since the inversion map is a diffeomorphism and t = s◦ i it follows
that t is a submersion too, and that Γ×s,t Γ is a submanifold of Γ× Γ, so it
makes sense to say that m is smooth.

Definition 1.4. (Homomorphism of Lie Groupoids)
Let (B,Γ), (B′,Γ′) be two Lie Groupoids (B,Γ), a morphism from the őrst
to the second is a functor consisting of two smooth maps: one on objects
ι : B → B′ and one on morphisms ι : Γ → Γ′ satisfying

s′◦ι = ι◦s, t′◦ι = ι◦t, e′◦ι = ι◦e, i′◦ι = ι◦i and m′(ι×ι) = ι◦m.

Definition 1.5. (Lie Groupoid)
A Lie Groupoid (B,Γ) is said to be proper if:

s× t : Γ → B × B

is proper. I.e. the preimage of a compact set through that map is a compact
set.

Definition 1.6. (Etale groupoid)
An Etale groupoid is a Lie Groupoid for which the maps s and t are local
diffeomorphisms.

Remark. Proper Etale Groupoids are stable, the fact that s is a local dif-
feomorphism tells us that Γa,a is sparse. And the fact that s × t is proper
tells us that Γa,a is compact, so it is őnite.

Definition 1.7. An homomorphism of etale groupoids is called a reőnement
if it satisőes the following:

• The map induced on the orbit spaces is a bijection ι∗ : B/Γ → B′/Γ′

• For any a, b ∈ B, ι restricts to a bijection Γa,b → Γ′
ι(a),ι(b)

• The map on object is a local diffeomorphism. Since s and s′ are local
diffeomorphisms the map on morphisms is one too.

Two proper etale groupoids are called equivalent if they have a common
proper reőnement.
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Definition 1.8. (Orbifold Structure)
Let (B,G) be a groupoid, and (B,Γ) be a proper etale groupoid, an orbifold
structure on (B,G) us a functor σ : (B,Γ) → (B,G) such that:

• The map induced on the orbit spaces is a bijection σ∗ : B/Γ → B/G,

• For any a, b ∈ B, σ restricts to a bijection Γa,b → Gι(a),ι(b).

Definition 1.9. (Reőnement of Orbifold structures.)
A reőnement of orbifold structures is just a reőnement of the proper etale
groupoids, such that the diagram commutes.

(B,Γ) (B,G)

(B′,Γ′)

σ

ι σ′

Two orbifolds are said to be equivalent if they have a common reőnement.

Definition 1.10. An orbifold is a groupoid equipped with an orbifold struc-
ture.

Remark. (Investigating the etale property)
Let B,Γ be a stable etale groupoid. Let f : a→ b be a morphism, then there
exist a neighborhood U of a, a neighborhood V of b, and a neighborhood N
of f , such that, U and N are diffeomorphic through the source map s while
V and N are diffeomorphic through the target map t. This just follows from
the groupoid being etale. The diffeomorphism ϕ : t ◦ s−1 : U → V extends f
in the sense that ϕ(a) = b

In the case a = b we may also that pick a smaller neighborhood for a so
to choose it independently of f and Nf , we may restrict it further to have
Nf be pairwise disjoint.

A non trivial result is that this deőnes an homomorphism Γa → Diff(U)
Proof. So we want to prove

ϕh = ϕg ◦ ϕf .

The setting is that these three morphism have been deőned on the same
small neighborhood of a, U . Let x ∈ U , then deőne f ′ = s−1(ϕg(x)) ∈ Pf
and g′ = s−1(x) Now f ′ and g′ are composable morphisms, by continuity
on m we may pick smaller neighborhood so that h′ = m(f ′, g′) is in the
neighborhood of h. But h′ : x → ϕf ◦ ϕg(x) so ϕh(x) = t(h′). The easiest
way to walk through this proof is to keep in mind the neighborhoods and
just use that s and t are diffeomorphisms.
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Proposition 1.11. (Equivalent condition for Proper Etale Groupoid)
Let (B,Γ) be a stable etale groupoid and a, b ∈ B, U , V and Nf neigh-
bourhoods of a, b and f ∈ Γa,b pairwise disjoint, with the diffeomorphism
property as descrived above. Then the gropoid is proper if and only if the
neighborhoods can be choosen so that:

(s× t)−1(U × V ) =
⋃

f∈Γa,b

Nf

This condition is informally stated as, morphisms close to morphisms
from a → b there are exactly all morphisms with base point close to a and
target point close to b.

Definition 1.12. (Quotient Topology of the orbit space)
We endow the orbit space of an etale groupoid (B,Γ) with the quotient
topology. The quotient map is an homeomorphism by deőnition. Since the
reőnement of etale groupoids comes with an homeomophism ι∗ of the orbit
spaces, this topology is independent of the representative of the class of
equivalent etale groupoids. This allows us to deőne the Orbifold topology on
any orbifold’s orbit space, (B/G).

Proposition 1.13. If (B,Γ) is a proper etale groupoid, the quotient topol-
ogy on B/Γ is Hausdorff.
Proof. We want to show that any two points have disjoint neighborhoods,
distinct points in B/Γ have to be images of two points in B with no mor-
phisms between them. And a neighborhood in B/Γ are two sets u+ Γ with
u close to a. So having two disjoint neighborhood is the same as having two
neighborhoods of a and b in B so that there are no morphisms between any
element of the őrst and the second. Stated as this, the hausdoff property for
this space is a special case of the equivalent property to being proper for an
etale groupoid.

Example 1.14. (Manifolds are Orbifolds)
Any manifold can be endowed in a rather natural way with an orbifold struc-
ture.

The base groupoid (B,G), where B =M and morphisms are just the iden-
tity morphisms of each object. The Etale groupoid is given by any countable
cover of M , in particular B =

⊔

α Uα, and Γ =
⊔

α,β Uα∩Uβ, in the sense that
two copies of the same point provide a morphism sending one into the other.
The orbit space is interpretable as making the cover charts come together,
effectively giving a copy of M . In fact, the morphism sending an element of
Uα to itself on the manifold induces a bijection of the orbit spaces, and of
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course restricts to a bijection on morphisms, as each intersection in general
gives only one morphism for each overlapping. A reőnement of covers gives
a reőnement of the two etale groupoids in the obvious way, so every such
orbifold structure is equivalent.

Definition 1.15. (Riemann Surface)
A Riemann surface is an oriented smooth manifold of real dimension two,
closed, i.e. compact and without boundary. with a smooth complex structure

j : TΣ → TΣ.

We may identify the surface with the complex structure.

Definition 1.16. (Nodal and marked Surface)
A nodal structure on Σ is a set of couples

ν =
{

{y1, y2}, . . . , {y2k−1, y2k}
}

,

this set can be seen as an equivalence relation with which we will quotient
the surface. A point marking on Σ is a sequence r∗ = (r1, . . . , rn), this points
will just be marked, so that morphisms of marked Riemann Surfaces will
have to respect this structure.

Definition 1.17. (Signature or dual graph)
To each marked nodal surface we may associate a graph, to each connected
component of Σ \ ν is associated a vertex labeled with the genus of the
closure of the component, each node corresponds to an edge between the two
components, and őnally we may label each vertex with the set of indices of
marked points. In the later chapters we will deőne this object more precisely,
as it will prove useful to study Cohomological Field Theories.

Definition 1.18. (Betti Numbers and graph genus)
Deőning the homology of a graph Γ as a K cell complexes, we can deőne the
Betti Numbers as

hi = rkH i(K).

In the deőnition, K is obtained glueing substituting one dimensional cells
to edges and zero dimensional cells at vertices. The Betti number h0 is
the number of connected components of the graph and h1 is the number of
independent cycles. These are useful to deőne the arithmetic genus of a nodal
riemann surface, g = h1 +

∑

v gv.

Remark. (Automorphisms of Marked Nodal Surfaces)
We say that a surface is stable if its automorphism group is őnite. Two
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surfaces can be diffeomorphic if and only if they have the same signature.
Of course for automophisms we require that they are biholomophic, so to
respect the complex structure too.

• For genus zero, morphisms are mobius transformations, so őxing three
points gives a unique morphism.

• We can see a genus one surface with one marked point as a quotient
between the complex plane (line) and a lattice. Since lattices have
at most six automorphisms, any torii with one marked point has őnite
automorphism group. Of course with no marked point there are inőnite
rotations.

• For genus greater than one Hurwitz theorem states that the number of
automorphisms is at most 84(g-1)

Definition 1.19. (Node)
Let π : P → A be an holomorphic map, with dimC(P ) = dimC(A) + 1, then
for each regular point, the holomorphic implicit function theorem gives us
charts so that π writes as:

(z, t1, . . . , tn) → (t1, . . . , tn),

equivalently, the germ of the π at the point is isomorphic to the germ at zero
of that same map

Cn+1 → Cn.

We call a critical point Nodal if the germ of the family π is isomorphic to

(x, y, t2, . . . , tn+1) → (xy, t2, . . . , tn).

Definition 1.20. (Nodal Families)
LetA and P be connected complex manifolds such that dimC(P ) = dimC(A)+
1, we call a nodal family an holomorphic map π : P → A such that:

• π is proper

• Every critical point of π is nodal, and the intersection of each őber with
the set of critical points Cπ is őnite.

• Every regular őber is a compact Riemann Surface

Definition 1.21. (Desingularization)
Our intention is to interpret the critical őbers of our family as nodal Riemann
surfaces, to do so we may deőne the desingularisation of a őber. The desin-
gularization of a őber Pa is a map u : Σ → P where Σ is a (non necessarily
connected) compact Riemann Surface such that:
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• u−1(Cπ) is őnite

• u restricted to Σ \ u−1(Cπ) is a bijection.

The restriction of u is holomorphic in each point, it is proper and invertible,
so it is a local diffeomorphism in each compact neighborhood, and being
globally bijective it is actually a diffeomorphism. This is why we asked for
the function to be proper.

Proposition 1.22. (Canonical Desingularization)

• Every őber of a critical point admits a desingulatization.

• Let u1 and u2 be two desingularizations of the same őber, then

u−1
2 ◦ u1 : Σ1 \ u

−1
1 (Cπ) → Σ2 \ u

−1
2 (Cπ)

extends to an isomorphism Σ1 → Σ2

• Desingularizations of őbers of critical values are immersions and the
preimage of a critical point is composed of two distinct elements.

• It is possible to deőne a canonical desingularization

Proof. Let us őx a critical value a ∈ A and Pa its őber, deőne the surface

Σ

as the disjoint union of Pa \ Cπ with two copies of Pa ∩ Cπ, basically taking
the nodal surface and breaking it up. By the deőnition of nodes we know
that the neighborhood of each nodal point in Pa intersects Pa in two disks
intersecting at the point. We deőne u : Σ → P as the identity on non nodal
points, and so that sends the two copies of the node to the node This map is
holomorphic, at every smooth point as it is the identity, while around nodal
points we can use the two disks as coordinates, to see the map as sending two
lines identiőed at a point, to two lines intersecting at a point. This is then
a desingularization The second point follows from the removable singularity
theorem. The third point follows from the fact that the map of point one is
an immersion as the maps x → (x, 0) and y → (0, y) are immersions, and
thanks to the second point, if one desingularization is an immersion, all of
them are.

Definition 1.23. Let πA : P → A and πB : Q→ B be two nodal families.
Then a őber morphism is a bijective map f : Pa → Qb such that for

one desingularization of Pa u : Σ → P , f · u : Σ → Q is a desingulariza-
tion of Qb. From the previous proposition, this would be the case for any
desingularization of Pa.
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Definition 1.24. (Morphism of Nodal Families)
Let πA : P → A and πB : Q → B two nodal families, then we deőne any
commutative diagram

P Q

A B

Φ

πA

φ

πB

Proposition 1.25. The arithmetic genus of a őber is locally constant.
Proof. There is a continuous deformation between any two close enough
őbers, being the family an holomorphic map.

Definition 1.26. (Marked nodal family)
A marked nodal family is a couple (π,R∗) where π is a nodal family and
R∗ = (R1, . . . , Rn) is a sequence of complex submanifolds of P pairwise dis-
joint and such that the restriction of π to Ri maps diffeomorphically onto A,
so deőnition a section of the őbration π, each surface marks exactly one point
per őber, we are requiring it to be a diffeomorphism so that the surfaces don’t
contain any critical point. So the marking of the family induces a unambigu-
ous marking of the őbers, hence, of the desingularizations. For marked nodal
families, all instances of morphisms are required to be preserving the marking
structure.

Definition 1.27. We may deőne the type of a őber as the type (g, n) of any
of its desingularizations, and so we say a family has type (g, n) if each őber
has type (g, n). We may deőne the stability of a family similarly, if each őber
is stable then the family is called stable.

Remark. Stability is a local condition but it is not extendable to closure.
As it depends only on genus and number of marked points.

Definition 1.28. A nodal unfolding is a triple (π, S∗, b), where (π, S∗) is a
marked nodal family, and b ∈ B is called the base point, Qb is called the
central őber. We will also say that πB is an unfolding of the marked nodal
surface induced by any desingularization of Qb.

Definition 1.29. An nodal unfolding π is said to be universal if for any nodal
unfolding (πA, R∗, a) any őber isomorphism of the central őbers Pa → Qb is
extendable uniquely to the germ of a morphism (Φ, ϕ) : πA → πb such that
Φ(Ri) ⊂ Si.
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Definition 1.30. An unfolding (π : Q→ B, S∗, b) is said to be inőnitesimally
universal if the linearized cauchy operator Du,b : Xu,b → Yu is bijective.

Xu,b =
{

(û, b̂) ∈ Ω0(Σ, u∗TQ× TbB such that

dπ(u)û = b̂, û(si) ∈ Tu(si)Si, and if u(z1) = u(z2) then û(z1) = û(z2)
}

Yu =
{

η ∈ Ω0,1(Σ, u∗TQ)|dπ(u)η = 0
}

We may now state the main results, bringing us to the deőnition of the
orbifold structure of the Moduli Space.

Proposition 1.31. An unfolding (π, S∗, b) is universal if and only if it is
inőnitesimally universal.

Proposition 1.32. If (πB, S∗, b) is inőnitesimally universal unfolding, then
every pseudomorphism to πb is a morphism.

Proposition 1.33. A marked nodal Riemann Surface admits an inőnitesi-
mally universal unfolding if and only if it is stable.

Definition 1.34. (Deligne Mumford Moduli space)
Let Bg,n be the groupoid of whose objects are marked nodal Riemann surfaces
of type (g, n) and whose morphisms are the isomorphisms of marked nodal
Riemann surfaces. The Deligne- Mumford moduli space is the orbit space of
this groupoid.

Definition 1.35. (Universal marked nodal family)
A marked nodal family satisfying:

• (πB, S∗, b) is a universal unfolding ∀b.

• Every stable marked nodal Riemann Surface of type (g, n) is the domain
of a desingularization of at least one őber of πB.

• The topology of B admits a countable basis.

Proposition 1.36. For any (g, n) in the stable range, there is a universal
marked nodal family.
Proof. This is a corollary to the previous results, the only thing to notice is
that it is possible to cover the Moduli space by a countable number of sets.
First notice that each stratum is separable, in the groupoid topology, and
there are a őnite number or strata.
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Definition 1.37. (Orbifold structure on the DM Moduli Space)
Let πB : Q → B, S∗) be a universal marked nodal family. Deőne the associ-
ated groupoid,

(B,Γ, s, t, e, i,m),

where:

• Γ is the set of triples (a, f, b) with a, b ∈ B and f őber isomorphism
between Qa and Qb.

• The structure maps are deőned in the obvious way

There is a natural functor B → Bg,n sending b to a desingularization of its
őber, if we then quotient, we get the desired functor.

Proposition 1.38. (Unique complex manifold structure)
There is a unique complex manifold structure on Γ, such that (B,Γ is a
complex etale Lie groupois with maps s, t, e, i,m.
Proof. Existence: Since the unfolding is universal each morphism f : a → b
extends uniquely to the germ of a morphism of unfoldings.

Q|π−1(U) Q|π−1(U)

U V

Φ

π

φ

π

This deőnes a őber isomorphism for each a ∈ U as:

Qa Qφ(a)

a ∈ U ϕ(a) ∈ V

Φa

π

φ

π

Effectively deőning charts

ιΦ : U → Γ, a→ (a,Φa, ϕa).

since the germ is unique, change of charts are identity maps. The structure
maps are holomorphic:

• s ◦ ιΦ = id
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• t ◦ ιΦ = ϕ

• e(a) = (a, id, a) = ιid(a) ∀a ∈ B

• ι−1
Φ−1 ◦ i ◦ ιΦ(a) = ι−1

Φ−1 ◦ i(a, f, ϕ(a)) = ι−1
Φ−1(ϕ(a), f

−1, a) = ϕ(a)

• m(ιΨ ◦ ϕ,Φ) = ιΨ◦Φ

Now to prove uniqueness, let Γ′ and Γ′′ be two copies of Γ with two
complex manifold structures satisfying the hypothesis. Then since by the
etale property s is a local diffeomorphism, for each point in Γ there are
neighborhoods U ⊂ Γ′ and U ⊂ Γ′′ diffeomorphic to a neighborhood in B,
so the structures are the same.

Proposition 1.39. The Etale Groupoid (B,Γ) is proper.

Proposition 1.40. (Uniqueness of orbifold structure on DM moduli space.)
The orbifold structure on Mg,n is independent of the universal marked nodal
family used to deőne it.
Proof. A morphism between universal families induces a reőnement of the
associated etale groupoid

(a0, f0, b0) → (ϕ(a0),Φb0 ◦ f0 ◦ Φ
−1
a0
, ϕ(b0)).

Let π0 : Q0 → B0 and π1 : Q1 → P1 be universal families then there is a
universal family π and morphisms π → π0 and π → π1. To deőne π consider
a family of neighborhoods Ub b ∈ B, we can deőne germs of morphisms

Φb : Q0|Ub
→ Q1

by property of being universal of π1. Then, deőne π : ⊔Q0|Ub
→ ⊔Ub, then

there is the inclusion morphism from π → π0 and the morphism ⊔bΦb : π →
π1.

The next deőnitions and results, show us a way to interpret the topology
of the moduli spaces of curves.

Definition 1.41. (Deformations)
Let (Σ, ν) be a compact Nodal Riemann Surface, γ ⊂ Σ be a disjoint set of
embedded circlesź call Σγ the surface with boundary obtained by cutting Σ
along γ.The condition of being embedded tells us that γ does not intersect
the set of nodal points. We can hence deőne the suture map σ : Σγ → Σ,
which maps the interior of Σγ bijectively onto Σ \ γ and sends the boundary
of Σγ, onto γ in the obvious way, constituting a two to one correspondence.

Now, let (Σ, ν) and (Σ′, ν ′) be two nodal Riemann Surfaces, then a (ν ′ −
ν)−deformation is a map ϕ : Σ′ \ γ′ → Σ such that :
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• γ′ ⊂ Σ′ \ ν ′

• ϕ∗ν
′ ⊂ ν

• ϕ : σ′ \ γ′ → Σ \ γ is a diffeomorphism. Here γ is the set of nodes on
Σ that are not image of nodes in Σ′ through ϕ.

• ϕ ◦ σ|int(Σ′

γ′
) extends to a continuous surjective map Σ′

γ → Σ

• The preimage of ν through the ϕ◦σ map is a component of the boundary
of Σ′

γ′ and actually the preimage of two points that glue to a node are
two components of the boundary relative to the same circle in γ′.

We can interpret this as a way of smoothing a nodal surface at nodes, cutting
a neighhood around a node and glueing the two ends together, actually it is
more correct to think about it as just untying the knot around the node.

Definition 1.42. (Monotypical convergence)
A sequence of (νk−ν) deformations ϕ : k(Σk \γk, νk) → (Σ.ν) is called mono-
typical if ϕk)∗(νk) does not depend on k, i.e we are untying the same knots.
While we say that the sequence of Riemann Surfaces converge monotypically
if there is a monotypical sequence of νk − ν) deformations such that:

• The sequences of images of marked points converge to the marked
points on Σ.

• The pushforward of the complex structure, converges to j|Σγ in the C∞

topology.

Definition 1.43. (DM convergence)
A sequece of marked nodal Riemann Surfaces of type (g, n) is said to DM-
converge to (Σ, j, s, ν) is after discarding őnitely many terms, the sequence
is the dijoint union of őnitely many sequences converging monotypically to
(Σ, s, ν, j).

Proposition 1.44. (The topology makes this orbifold compact)
What is proven is that every sequence of stable marked nodal Riemann Sur-
faces admits a DM-convergent subsequence.
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Chapter 2

Tautological Ring

The scope of this second chapter is to give an overview of the current results
for tautological rings of Moduli spaces.

On orbifolds we may deőne Homology and Cohomology groups of the
underlying topological space.

2.1 Tautological ring and classes

Definition 2.1. The moduli space of rational tail surfaces Mrt
g,n, is the mod-

uli space of surfaces that have a component of genus g. The moduli space of
compact type surfaces Mct

g,n, is the moduli space of surfaces whose structure
graph is a tree, so the arithmetic genus and the total genus are the same.
We may see the moduli space of smooth stable curves Mg,n as the space of
stable curves with signature graph a single vertex.

Proposition 2.2. (Poincaré duality) [15]
Poincaré duality holds on for Homology and cohomology groups of smooth
compact complex orbifolds.

Definition 2.3. (Glueing and forgetting)
Some maps are intuitively simple to deőne, the forgetting map p associates
to a surface of type (g, n+1) the surface of type (g, n) obtained by forgetting
the n+ 1th marking, and collapsing any unstable component to a point.

p : Mg,n+1 → Mg,n

While the glueing maps are:

r : Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2 ,

and
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q : Mg−1,n+2 → Mg,n.

The őrst sends respectively, a couple of surfaces to the surface obtained by
glueing the last marked point of each surface together. The second sends
a surface to the surface obtained by glueing the last two marked points to-
gether, increasing the arithmetic genus by one.

Definition 2.4. (Universal Curve)
The universal family over is the groupoid domain of the universal marked
nodal family used in chapter one basically it consists of the union of all the
curves, this space is endowed with the compatible orbifold structure as the
moduli space.

Proposition 2.5. The forgetting map and the universal family are isomor-
phic.
Proof. We wish to prove that there is a morphism

Mg,n+1 → Cg,n,

simply send the curve with n + 1 marked point to its position on the curve
after forgetting that point, on the position on which it was.

Remark. (Vector bundle over an orbifold)
The hands on way to treat orbifolds, it to consider them as manifolds with
a group action deőned on them. As we have seen the charts aren’t so easily
deőned as their deőnition is not as simple as for manifolds. Nevertheless we
may deőne vector bundles on the chart together with a linear lifting of the
group action on it, to deőne vector bundles on orbifolds.

Definition 2.6. (Tautological Ring)
The tautological ring R∗ is the minimal subring of the cohomology ring

H∗(Mg,n,Q),

containing the identity and closed under pushforward by forgetting and glue-
ing maps.

Remark. The tautological ring may be deőned as a subgroup of the Chow
ring or the Cohomology ring, since most results carry over between the two,
they are thought as equivalent, even if there is no strong evidence for the
fact.

16



Definition 2.7. (Cotangent line bundle and extension on nodal points)
On the universal curve we can deőne the cotangent line bundle to each surface
at each smooth point. On nodes, consider the chart that uses the two disks
on the Riemann Surface as coordinate lines. Then the bundle is generated
by the sections

dx

x
,
dy

y
,

since
d(xy)

xy
=
dx

dy
+
dy

y
= 0,

on each surface, the line bundle can be extended to every point of the plane.

Definition 2.8. (Chern Classes)
Let L an holomorphic line bundle over a complex manifold, pick a non zero
section of the line bundle and let Z be the set of zeroes, and P the set of
poles, then the őrst Chern class Z − P is a well deőned divisor. There are
higher chern classes associated to complex bundles, but they are harder to
deőne.

Remark. The Chern class operator sends the tensor product of line bundles
to the sum of the divisors.

Definition 2.9. (Cotangent line class)
We can push forward the cotangent line bundle through any section, deőning
a line bundle on the moduli space. We deőne the ψi class as the őrst Chern
classes of the pullback of the cotangent line bundle by the ith marked point
section.

Definition 2.10. The κ classes in the tautological ring of Mg,n are deőned
by:

κi = p∗(ψ
i+1
n )

where p is the map forgetting the last point.

Proposition 2.11. (Hodge Bundle)
By the Riemann-Roch theorem, each Riemann surface of genus g admits a
g vector space of abelian differentials, this deőnes a bundle over the moduli
space, we call it the hodge bundle. This is the bundle of the holomphic
sections of the relative cotangent line bundle.

Proposition 2.12. Let L be a complex line bundle the bundle L
⊗

L∗ is
trivial and so is its Chern class.
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Proposition 2.13. We have the relation:

ψi = −p∗D
2
i

Proof. Squaring a divisor is the same as taking the normal line bundle relative
to the divisor at the marked points, this amounts to taking the tangent bundle
to the curve at the marked point. Since the forgetful map and the universal
curve are isomorphic this amounts to taking the pushforward by the ith
section of that bundle, this is the deőnition of ψi. The sign minus is amounts
for the difference of taking the tangent instead of the cotangent.

Definition 2.14. in M0,n we denote by δi|jk the divisor of curves for which
there is a node between the component containing the marked point i and
the component containing the marked points j, k., and by

[δi|jk] ∈ M0,n,

its Poincaré dual class.

Proposition 2.15. (The ψ classes are tautological)
On M0,n, we have:

ψi = [δi|jk] ∀k, j.

Proof. Let us take one meromorphic section of the cotangent bundle then we
will pushforward by the section πi, of the ith marked point. For each stable
surface, we will deőne the meromorphic form then the global one is the union
of all of them. The graph relative to a genus zero stable surface is a tree,
and the genus of each vertex is zero. So, there is a unique path between the
component containing j and the one containing k. There is a unique section
of the cotangent line bundle with poles at j and k of residues −1 and 1 and
with poles on each node between j and k. This section vanishes on any other
component, so it will give us a non zero section of the bundle relative to ψi
if and only if the point marked i is not separated from j and k by one node.
One can prove the zero on the divisor is simple, giving us the equality.

Proposition 2.16. [11] [14]
The tautological ring of Mg is generated by κ1, . . . κ⌊ g

3⌋

Theorem 2.17. (Graber-Panharipande)
R∗(Mg,n) is additively generated by classes of the form iΓ∗( monomials of classes ψ and κ)

Corollary 2.18. R∗(Mg,n) is closed under pull-backs by glueing and forget-
ful maps.
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Proposition 2.19. [12]
There are some non tautological classes, an example is provided in this paper
for the őrst time, before only existence arguments were made.

Definition 2.20. (Stable range)
If n referring to the number of marked points, we say that (g,n) is in stable
range if 2g−2+n > 0 this condition is equivalent to the curves being stable.
While, if n is referring to a cohomology degree, we say that k is in the stable
range if g − 1 − 2k > 0, this is due to the őrst developments of the next
stability condition, there are then results improving the stable range for k,
improving the next results.

Proposition 2.21. (Stability for high genus)
For g − 1− 2k > 0 there are isomorphisms,

Hk(Mg,Q) → Hk(Mg+1,Q) → Hk(Mg+2,Q) → . . .

Proposition 2.22. (Mumford’s conjecture)
For k in the stable range, the homomorphism sending xi to κi deőned be-
tween:

Q[x1, x2, . . . ] → H∗(Mg,Q)

is an isomorphism up to degree 2k.

Proposition 2.23. For k in the stable range, the homomorphism sending yi
to ψi deőned between:

H∗(Mg,Q)[y1, . . . , yn] → H∗(Mg,n,Q)

is an isomorphism up to degree 2k.

Definition 2.24. λi is the i-th chern class of the hodge bundle.

Proposition 2.25. (Kontsevich Theorem)
Deőne Fg as the series

∑

n≥0

1

n!

∑

k1,...,kn

(

∫

Mg,n

ψk11 . . . ψknn )tk1 . . . tkn .

Then the function

F =
∞
∑

g=0

Fgλ
2g−2,

satisőes:

(2n+1)
( ∂3

∂tn∂t20
F
)

=
( ∂2

∂tn−1∂t0
F
)( ∂3

∂t30
F
)

+2
( ∂3

∂tn−1∂t20
F
)( ∂2

∂t20
F
)

+
1

4

∂5

∂tn−1∂t40
F.
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Together with the string and dilaton equation and base cases conditions, the
series is completely determined, effectively reducing all intersection numbers
between ψ classes recursively.

Definition 2.26. (Perfect pairing)
A perfect pairing of Q vector spaces is a bilinear map

(., .) : V ×W → Q

such that v → (v, .) is an isomorphism V → W ∗ similarly w → (., w) is an
isomorphism.

Remark. (Faber’s conjectures)
The following three statements are referred to as Faber’s conjectures:

• Rd(Mg) = 0 ∀d > g − 2

• Rg−2(Mg) ≃ Q

• Rd(Mg)×Rg−2−d(Mg) → Rg−2(Mg) is a perfect pairing.

This has been proven for g<24.

Remark. (Gorestein Conjectures)
The őrst point of Faber Zagier is similar to Gorenstein Conjectures

• R∗(M rt
g,n) is Gorenstein with socle in degree g − 2 + n− δg,0

• R∗(M ct
g,n) is Gorenstein with socle in degree 2g − 3 + n

• R∗(Mg,n) is Gorenstein with socle in degree 3g − 3 + n

Also we know that

• R∗(M rt
g,n) is one dimensional in degree g− 2+ n− δg,0 and vanishes for

higher degrees

• R∗(M ct
g,n) is one dimensional in degree 2g−3+n and vanishes for higher

degrees

• R∗(Mg,n) is one dimensional in degree 3g−3+n and vanishes for higher
degrees

Theorem 2.27. (Petersen-Tommasi) [13]
The rings R∗(M2,20) and R∗(Mct

2,n) are not Gorenstein.
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Definition 2.28. A local Gorenstein ring is a commutative Noetherian local
ring R with őnite injective dimension as an R-module A Gorenstein ring is
a commutative Noetherian ring such that each localization at a prime ideal
is a local Gorenstein ring.

Definition 2.29. (Stable Graphs)
A Stable graph is a sixtuple

Γ = (V,H, L, g : V → Z≥0, v : H → V, ι : H → H),

where V is the set of vertices, g is the genus function associating to each
vertex a non-negative integer, H is the half-edge set, v is the map attaching
each half-edge to a vertex, ι is an involution i.e ι2 = id associating each
half-edge with it’s complementary, forming an edge, or itself, representing a
leg. We may call L the set of legs, and E the set of 2-cycles of ι i.e. edges.
Since we want to consider connected surfaces, we impose that (V,E) form a
connected graph, and to keep the represented curve stable we must ask

2g(v)− 2 + n(v)

where n(v) is the number of half-edges attached to v.
The genus of the graph is deőned as the sum of the genera on each vertex,

plus the number of independent cycles of the graph (V,E).

Remark. We can easily visualise how these pieces come together to form a
graph. Each vertex v represents a smooth curve of genus g(v), each edge a
node between the two curves, and each leg a marking on the surface.

Remark. The boundary of Mg,n is the image of attaching maps of any kind,
there is a natural stratiőcation of this space by stable graphs, as to each curve
a stable graph can be assigned, and the curve can be seen as the attachment
of stable curves, by some composition of attaching maps.

A boundary stratum of Mg,n determines a stable graph of genus g and
with n legs. There is a canonical morphism

ξΓ : MΓ → Mg,n

where
MΓ =

∏

v

Mg(v),n(v)

and the family of stable curves over MΓ is constructed by glueing the families
of Mg(v),n(v) along the corresponding half-edges.
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Remark. Every tori is isomorphic to the quotient of the complex plane by
a lattice, notice that automorphisms of the complex plane that preserve the
origin and the lattice are homotheties. Then another genus one stable curve
is obtained by taking the sphere with three marked points and glueing two
together.

Proposition 2.30. There is a correspondence between modular forms of
weight k and holomorphic sections of the line bundle L

⊗
k on M1,1.

Proposition 2.31. On M1,1 we have

ch1(L) =
1

24
.

Proof. Pick the modular form of order 6, E6. It has a zero at i, the stabilizer
of that point in the modular fundamental domain is 4. So the őrst chern
class of L

⊗
6 is 1

4
, hence the őrst chern class of L is 1

24
.

2.2 Strata Algebra

Definition 2.32. (Basic class)
A basic class is a product of monomials in κ classes at each vertex and powers
of ψ classes at each half edge,

γ =
∏

v∈V

∏

i>0

κi[v]
xi[v] ·

∏

h∈H

ψ
y[h]
h ∈ H∗(MΓ,Q)

where κi[v] = π∗(ψ
i+1
n+1) ∈ H2i(Mg(v),n(v),Q) is the ith kappa class on the

moduli space relative to the vertex. If we group the terms by edges we get a
class of degree

∑

i

xi[v] +
∑

h∈H[v]

y[h]

which trivially vanishes if the expression amounts to 3g(v)−3+n(v) or more.

Definition 2.33. (Strata Algebra)
Consider the Q−vector space with basis given by pairs (Γ, γ) where Γ a stable
graph of type {g, n} and γ is a basic class on MΓ. Up to isomorphism there
are only a őnite amount of such pairs. Let us call this space Sg,n

On it a product is deőned by intersection theory, the details can be found
in reference [12]

[Γ1, γ1] · [Γ2, γ2] =
∑

Γ

[Γ, γ1γ2ϵΓ],
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where Γ is a graph contractible to Γ1 and to Γ2 and

ϵΓ =
∏

e∈E1∩E2

−(ψ′
e + ψ′′

e )

is the Fulton Excess class, ψ are as usual the cotangent line classes corre-
sponding to the two half edges of the edge e.

Remark. The important case where Γ2 has only one edge will be useful in
the computations of general pullbacks by attaching maps. In this case we
have Γ is either Γ1 and in this case we have an excess class to account for,
and in the other case E1 and E2 are disjoint.

Remark. [8]
These strata algebras should be viewed as generalisations to Mg,n of the
formal polynomial algebra Q[κ1, κ2, . . . ] that surjects onto the tautological
ring of Mg,n by tautological relation we mean an element of the kernel of the
natural surjection q : Sg,n → R∗(Mg,n,Q).

Remark. As we have said, Faber-Zagier family is a set of tautological rela-
tions on the moduli spaces of non marked curves conjectured to hold by Faber
and Zagier around 2000, and proven to hold in [7]. The set presented at the
end of this chapter extends the Faber-Zagier relations, to marked surfaces.

2.3 B0 and B1 Series

The B series appear in the study of the Faber-Zagier relations as solutions
of a differential equation, while in the study of the P relations, they will be
the solution of the recursive equation for the R matrix. We will need the
following results to verify that the R matrix we őnd satisőes the symplectic
condition to deőne the action.

Remark.

B0 =
∑

m

(6m)!

(2m)!(3m)!
(−T )m B1 =

∑

m

1 + 6k

1− 6k

(6m)!

(2m)!(3m)!
(−T )m

We want to prove

B0(T )B1(−T ) + B0(−T )B1(T ) = 2

It is easy to see that this is equivalent to

Beven

0 (T )Beven

1 (T ) + Bodd

0 (T )Bodd

1 (T ) = 1,
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We may expand the left hand side as follows:

n
∑

k,k+j=n

(1 + 6k

1− 6k

6k!

2k!3k!

6j!

2j!3j!
(−1)k +

1 + 6k

1− 6k

6k!

2k!3k!

6j!

2j!3j!
(−1)j

)

T n

if n is odd the terms simplify, if n is even, there is a correspondence and we
deduce:

Beven

0 (T )Beven

1 (T ) + Bodd

0 (T )Bodd

1 (T ) = 1

It is evident for T = 0 and so it suffices to prove that the derivative of the
left hand side is zero.

We will use the property of a series of being a generalised hyper-geometric,
so we can expect it to solve a differential equation, that is basically giving
recursive relation between the coefficients. Let

A(z) = B0(z/288) B(z) = B1(z/288)

Proposition 2.34.

A(z) solves 3z2
d2A

dz2
+ (6z − 2)

dA

dz
+

5

12
A = 0

Proof.

A =
∑

m≥0

am(
z

288
)m

dA

dz
=

∑

m≥0

m+ 1

288
am+1(

z

288
)m

d2A

dz2
=

∑

m≥0

(m+ 1)(m+ 2)

2882
am+2(

z

288
)m

3z2
d2A

dz2
=

∑

m≥2

3m(m− 1)am(
z

288
)m

6z
dA

dz
=

∑

m≥1

6mam(
z

288
)m

Plugging the values in the differential equation:

(3m(m− 1) + 6m+
5

12
)am =

2(m+ 1)

288
am+1

am+1

am
= 12

(6m+ 1)(6m+ 5)

m+ 1
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Substituting am and am+1:

(6m+ 6)(6m+ 5)(6m+ 4)(6m+ 3)(6m+ 2)(6m+ 1))am
(3m+ 3)(3m+ 2)(3m+ 1)(2m+ 2)(2m+ 1)am

= 12
(6m+ 1)(6m+ 5)

m+ 1
.

Proposition 2.35.

B(z) = 3z2
dA

dz
+ (

z

2
− 1)A

Proof.

3z2
dA

dz
=

∑

m≥2

3 · 288 · (m− 1)am−1(
z

288
)m

z

2
A =

∑

m≥1

288

2
am−1(

z

288
)m

bm = (3 · 288 · (m− 1) +
288

2
)am−1 − am

Now substituting:

am−1 = am
(3m+ 3)(3m+ 2)(3m+ 1)(2m+ 2)(2m+ 1)

(6m+ 6)(6m+ 5)(6m+ 4)(6m+ 3)(6m+ 2)(6m+ 1)
,

we obtain precisely

bm =
6m+ 1

6m− 1
am

Proposition 2.36.

d

dz
(Beven

0 (T )Beven

1 (T ) + Bodd

0 (T )Bodd

1 (z)) = 0

Proof. Separating the terms relative to odd and even powers is easy to see
that the őrst result is equivalent to

{

3z2 d
2Aeven

dz2
+ 6z dA

even

dz
− 2dA

odd

dz
+ 5

12
Aeven = 0

3z2 d
2Aodd

dz2
+ 6z dA

odd

dz
− 2dA

even

dz
+ 5

12
Aodd = 0

And the second result is equivalent to
{

Beven = 3z2 dA
odd

dz
+ z

2
Aodd − Aeven

Bodd = 3z2 dA
even

dz
+ z

2
Aeven − Aodd

We can directly differentiate

Aeven(T )Beven(T )− Aodd(T )Bodd

25



We get

d

dz

(

Aeven(T )(3z2
dAodd

dz
+
z

2
Aodd−Aeven)−Aodd(3z2

dAeven

dz
+
z

2
Aeven−Aodd)

)

=

= 3z2(Aeven
d2Aodd

dz2
− Aodd

d2Aeven

dz2
)

+6z(Aeven
dAodd

dz
− Aodd

dAeven

dz
)

−2(Aeven
dAeven

dz
− Aodd

dAodd

dz
) =

=
5

12
(AevenAodd − AoddAeven) = 0

2.4 R relations

Definition 2.37. Let’s deőne a set of strata classes,

Rd
g,A ∈ Sdg,n,

with A ∈ 0, 1n, (g, n) in the stable range, and d a positive integer greater
than Witten’s 3-spin class degree.

Deőne

κ(f) =
∑

m≥0

1

m!
pm∗

(

f(ψn+1 . . . f(ψn+m

)

∈ H∗(Mg,n)

• At each vertex place κv = κ(T − TB0(ζvT ))

• At each leg place Bl = ζalv Bal(ζvψl)

• And at each edge place

∆e =
ζ ′ + ζ ′′ − B0(ζ

′ψ′)ζ ′′B1(ζ
′′ψ′′)B1(ζ

′ψ′)ζ ′B0(ζ
′′ψ′′)

ψ′ + ψ′′
,

As we will see later, this expression makes sense as a power series and it is
equivalent to an R-matrix action, because the series B0 and B1 form a 2x2
matrix satisfying the symplectic condition.

Rd
g,A =

∑

Γ∈Gg,n

1

|Aut(Γ)|

1

2h1(Γ)

(

Γ,
(

∏

κv
∏

Bl

∏

∆e

)

∏
v ζ

g(v)−1
v

)

where the subscript signals that we are considering the coefficient of the
monomial relative to the subscript term only.
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The procedure to deőne these relations is very similar to the deőnition
of R matrix action. In fact we will obtain these quantities as the result of
applying R to a speciőc starting Cohomological Field Theory.
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Chapter 3

Describing relations in the

tautological ring.

In this chapter we will present a technique developed in [10] to determine a
family of tautological relations in cohomology. To do so, some methods of
handling cohomology classes in a tautological way have to be introduced.

3.1 Cohomological Field Theories

Let V be a Q -vector space, equipped with a non-degenerate symmetric two
form η and let 1 ∈ V be a distinguished element, the unit vector.

Definition 3.1. (CohFTs and CohFTs with unit)
A Cohomological Field Theory with unit is a family (Ωg,n)g,n for any g and
n in the stable range, with

Ωg,n ∈ H∗(Mg,n,Q)⊗ (V ∗)⊗n,

respecting the following three axioms:

• Each Ωg,n is Sn invariant.

• The pull-back q∗(Ωg,n) is equal to the contraction of Ωg−1,n+2 , and the
pull-back r∗(Ωg,n) is equal to the contraction of Ωg1,n1+1⊗Ωg2,n2+1, both
by the bivector

∑

ηjkej ⊗ ek.

• For any vectors v1, . . . , vn we have:

Ωg,n+1(v1⊗· · ·⊗vn⊗1) = p∗(Ωg,n(v1⊗· · ·⊗vn)) and Ω0,3(v1⊗v2⊗1) = η(v1, v2).
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The group Sn acts on H∗(Mg,n) by permuting the marked points, and on
(V ∗)⊗n by permuting the n covectors. We will say that a family (Ωg,n)g,n is
a CohFT if it satisőes the őrst two axioms, the unit vector is irrelevant in
this context.

We will now introduce two group actions, transforming CohFTs. These
actions will work together to deőne an action on CohFTs with unit.

Definition 3.2. (Translation action)
Let Ω be a CohFT on the vector space V and let T ∈ z2V [[z]] then the
translation of Ω by T , TΩ is deőned by:

(TΩ)g,n(v1⊗· · ·⊗vn) =
∑

m≥0

1

m!
pm∗Ωg,n+m(v1⊗· · ·⊗vn⊗T (ψn+1)⊗· · ·⊗T (ψn+m))

Where pm is the map forgetting the last m points. By the vanishing of T0 and
T1, the degree of contributions increases until the class vanishes. Therefore,
the sum is őnite.

Remark. There are two points to be made, regarding this deőnition. The
őrst is that we evaluate the CohFT on a series of classes, and we mean it as
follows:

Ωg,n(. . . , T (ψi), . . . ) =
∑

k≥2

ψki Ωg,n(. . . , Tk, . . . ).

The second is that, we can interpret these terms as classes on a family of
stable graphs, and then we sum these contributions. Each term is the class
given by a stable graphs with one vertex and n +m legs. Where the őrst n
legs carry vectors and the last m legs carry ψ classes, that pushed back give
rise to κ classes. The őrst legs are referred to as main legs as they are not
forgotten in the pushforward, while the other m legs are referred to as κ legs.

Proposition 3.3. Let Ω be a CohFT, then the translation TΩ as deőned
above is a CohFT.
Proof. We have to verify two properties: the őrst, about Sn invariance, is
trivial as Sn acts on vectors on both sides and Ω is a CohFT.

About the second. We are pullbacking through r each class in the sum.
In graph terms, this is the same as considering any one edge graph, with the
m κ legs placed on each vertex. Since we will be forgetting the κ legs, the
order doesn’t matter, so each distribution of m1 legs to the őrst vertex and
m2 to the second is counted

(

m

m1,m2

)

times.

(TΩ)g1,n1(v1⊗· · ·⊗vn1) =
∑

m1≥0

1

m!
p∗Ωg,n1+m1

(

v1⊗· · ·⊗vn1⊗T (ψn1+1)⊗· · ·⊗T (ψn1+m1)
)
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Simplifying and splitting the binomial, we get precisely:

1

m1!
p∗Ωg,n+m1(v1 ⊗ · · · ⊗ vn ⊗ T (ψn+1)⊗ · · · ⊗ T (ψn+m1))η

1

m2!
p∗Ωg,n+m2(v1 ⊗ · · · ⊗ vn ⊗ T (ψn+1)⊗ · · · ⊗ T (ψn+m2)).

Proposition 3.4. The T action above deőned is an abelian group action.
Proof.

(Ta+Tb)Ωg,n =
∑

m≥1

1

m!
p∗Ωg,n+m(v1⊗· · ·⊗vn⊗(Ta+Tb)(ψn+1)⊗· · ·⊗(Ta+Tb)(ψn+m))

Reordering the terms, to keep Ta contributions őrst, we get:

∑

m≥1

1

m!
p∗

m!

m1!m2!
Ωg,n+m

(

v1 ⊗ · · · ⊗ vn ⊗ (Ta)(ψn+1)⊗ . . .

· · · ⊗ (Ta)(ψn+m1)⊗ (Tb)(ψm1+1)⊗ · · · ⊗ (Tb)(ψn+m)
)

Precisely the action of the two series, subsequently.

Definition 3.5. Given an element R ∈ End(V )[[z]] we say it is satisfying
the symplectic condition if

R(z) ·R∗(−z) = 1,

where R∗ it’s the adjoint with respect to η. Expressing R in its matrix form
R(tjej) = Rk

j t
jek we can write the symplectic condition in coordinates,

∑

l,s,k

Rj
l (z)η

lsRk
s(−z)ηku = δju,

equivalently
∑

l,s

Rj
l (z)η

lsRk
s(−z) = ηjk

we can conclude:
η−1 −R−1(z)η−1R−1(w)t

z + w
is a well deőned power series.

Of course the inverse of R satisőes the symplectic condition too. So, to
get a left-group action, it is preferable to deőne the R action using the inverse
instead.

∑

j,k

ηjk −
∑

l,s(R
−1)jl (z)η

ls(R−1)ks(w)
t

z + w
ej ⊗ ek ∈ V ⊗2[[z, w]].
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Definition 3.6. (R action)
Given an element of End(V )[[z]] satisfying the symplectic condition and a
CohFT Ω we may deőne the CohFT RΩ.

We will sum over the set of stable graph of genus g with n legs contribu-
tions ContΓ ∈ Ωg,n ∈ H∗(Mg,n,Q)⊗ (V ∗)⊗n.

ContΓ is deőned as follows:

• To each vertex we will assign the CohFT element relative to that genus
and marked points number,

• To each edge are assigned two cohomology classes attached to a bivector

Ωg,n ∈ H∗(Mg′,n′ ,Q)⊗H∗(Mg′′,n′′ ,Q)⊗ (V 2)⊗n.

Namely:
η−1 −R−1(ψ′

e)η
−1R−1(ψ′′

e )
t

ψ′
e + ψ′′

e

.

• To each leg we assign an element of H∗(Mg,n,Q) ⊗ End(V ), namely:
R−1(ψl).

Proposition 3.7. RΩ is indeed a CohFT.
Proof. The symmetry under the action of Sn is obvious.

The pullback by r is essentially the pullback of

ξΦ : MΦ → Mg,n

As we have seen the strata product of,

[Γ1, γ1] · [Γ2, γ2]

is the sum over all Γ, graphs that are contractible to Γ1 and Γ2. In this case
Γ1 is the graph relative to the R-contribution, and γ2 is one edge. There are
only two cases for Γ, either the single edge is in the őrst graph and we have
to account for an excess class, or it isn’t.
In the őrst case γ2 is given by the the R-action edge contribution, and we
get an excess class term resulting in a contribution

R−1(ψ′
e)η

−1R−1(ψ′′
e )
t − η−1

placed in the middle.
In the second case, the edge has no class attached to it, the CohFTs rule tells
us that to consider the whole graph class is to multiply the two classes with
η in the middle. The resulting contribution is given by placing

R−1(ψ′
e)η

−1R−1(ψ′′
e )
t
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at the special edge of Γ that is exactly what is required in the CohFT pullback
property. The R−1 term is the leg term before glueing the two graphs, η is
the way of glueing for CohFTs.

Proposition 3.8. The above deőned R-action is indeed an left-group action.
Proof. Let Ra and Rb be two matrices satisfying the symplectic condition, to
express RaRbΩ as a sum of graph contributions we can reason as this. The
action of Ra will give a sum over stable graphs, with the usual contributions
at legs and edges but where at each vertex RbΩgv ,nv

is placed. By linearity
we can place then at each vertex a graph of type gv, nv, having a leg for each
half edge of the original vertex, some of this legs are glued to for edges in
the bigger graph, and on them the R−1

b (ψl) is of course placed. We ended
up with a sum over "big" graphs of a sum over "small graphs", we can just
sum over all graphs of type g, n with two kinds of edges, "big" and "small".
To each leg, contributions from both actions will be attached, resulting in
R−1
a (ψl)R

−1
b (ψl). The contribution for an edge depends on whether it is an

edge of the "big" or "small" graph. On "small" edges we have

η−1 −R−1
b (ψ′

e)η
−1R−1

b (ψ′′
e )
t

ψ′
e + ψ′′

e

,

while on "big" edges are actually glued from two legs, so while

η−1 −R−1
a (ψ′

e)η
−1R−1

a (ψ′′
e )
t

ψ′
e + ψ′′

e

is placed in the center of the edge, R−1
b (ψ′) and R−1

b (ψ′′) are placed on the
extremities, resulting in

R−1
b (ψ′)η−1R−1

b (ψ′′)−R−1
b (ψ′)R−1

a (ψ′
e)η

−1R−1
a (ψ′′

e )
tR−1

b (ψ′′)t

ψ′
e + ψ′′

e

,

since each edge in each graph will present itself in both forms, the resulting
contribution for the sum ignoring this distinction will be:

η−1 −R−1
b (ψ′)R−1

a (ψ′
e)η

−1R−1
a (ψ′′

e )
tR−1

b (ψ′′)t

ψ′
e + ψ′′

e

.

So the resulting class is exactly the same as for the action of RaRb.

Proposition 3.9. Let R(z) ∈ zEnd(V )[[z]] satisfying the symplectic condi-
tion. Let Ta, Tb ∈ z2V [[z]] satisfying Ta(z) = R(z)Tb(z), then:

TaRΩ = RTbΩ
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for any CohFT Ω.
Proof. Consider őrst TaRΩ so we get terms of the kind

RΩg,n+m(v1 ⊗ · · · ⊗ vn ⊗ T (ψn+1)⊗ · · · ⊗ T (ψn+m)).

The graph analogue of this is a sum over stable graphs with n main legs
and m κ-legs, the result is a sum over all such stable graphs with usual R
contributions except for the κ-legs, those have

R−1Ta(ψ) = Tb(ψ)

attached to it.
In the second case RTb is then very similiar, thinking in graph terms, this is
the sum over all stable graphs with n legs, to which we then attach m other
legs, so the sum is over all graphs that remain stable when we remove the
last m legs. We can ignore this issue, by noticing that if the graph is of that
kind the contribution is vanishing by degree reasons. In particular if a vertex
is of genus zero, and has attached to it less than 3 main legs and h κ-legs
the moduli space relative to the vertex is of dimension less than m while the
degree of the class is at least 2m.

Proposition 3.10. (Commutativity of multiple forgettings.)
Consider the next commutative diagram

Mg,n+k+m Mg,n+m

Mg,n+k Mg,n

Pk

Pm

pk

pm

Then (pk)
∗(pm)∗ = (Pm)∗(Pk)

∗

Proof. This is a well known result. To provide a complete proof of the
statement, in the case of orbifolds, could be much harder than using birational
equivalence ad in [10].

Proposition 3.11. Let p be the map forgetting the last point, then the
equation below holds in H∗(Mg,n+1,Q)

p∗(ψdh) = ψdh −∆h,n+1p
∗(ψd−1

h )

Where p is the map forgetting a point.
Proof. We will prove it by induction on d, so consider őrst the base case
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d = 1. p∗(ψh) = ψh − ∆h,n+1. Where ∆h,n+1 is the divisor on the moduli
space of surfaces that become unstable when removing the n + 1th point,
i.e. the surfaces with the marked points h and n+ 1 on the same genus zero
component. We expect two components, the line bundle and one that lives
in ∆h,n+1. Since the other terms are of codimension one we know p∗(ψh) =
ψh+α ·∆h,n+1. We can see ∆h,n+1 as the divisor of nodes of these collapsing
maps in the universal curve Cg,n. Consider the map

r : Mg,n ×M0,3 → Mg,n+1,

this map is a section of the universal curve. When we pullback our expressions
through this map we get

ψh = p∗αD
2
i .

Where, Di is the divisor of ith marked points on Mg,n. Clearly, r∗p∗ = id
and so, also r∗ψi = 0 because ψ has never vanishing sections on ∆i, while
r∗∆i is basically p∗D

2
i as when we pull back we have to intersect with the

image of r that is exactly ∆i, then using the isomorphism of families, it is
the same as p∗D

2
i From which we deduce α = −1.

The inductive step is easy,

p∗(ψdh) = (ψh −∆h,n+1)
d = ψdh −∆h,n+1(ψh −∆h,n+1)

d−1

as ψh times ∆i is trivial.

Remark. From this result we learn that, when pulling back ψ classes though
p we get two components. One is the class itself and behaves well when
pushing forward, the other shows an unstable behaviour and lives on the
divisor that collapses when forgetting, in this cases we also lose a power of
ψ. This distinct behaviour will make itself very evident in the next theorem.

Definition 3.12. (Unit preserving R-matrix action)
Let (Ω)g,n be a CohFT with unit 1 ∈ V , and let R(z) be an R-matrix
satisfying the symplectic condition, őnally let

Ta(z) = z · [R(1)− 1](z), Tb(z) = z · [1−R−1(1)](z) ∈ z2V [[z]].

We will denote by:

R.Ω := RTbΩ,

the unit preserving R-matrix action on Ω.

Remark. Since Ta = RTb, RTbΩ and TaRΩ deőne the same CohFT.
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Proposition 3.13. (Preserves unit)
Let (Ω)g,n be a CohFT with unit 1 ∈ V , and R(z) be an R-matrix satisfying
the symplectic condition, then R.Ω is a CohFT with unit.
Proof. We have to verify the pullback properties

R.Ωg,n+1(v1 ⊗ · · · ⊗ vn ⊗ 1) = p∗(R.Ωg,n(v1 ⊗ · · · ⊗ vn))

and
Ω0,3(v1 ⊗ v2 ⊗ 1) = η(v1, v2),

as before we will study the graph pullbacks of the graph contributions.
As we have seen, the pullback of ψ classes gives two contributions, one

arises from curves with tame behaviour and the other from curves that col-
lapses when forgetting a point.

So őx a stable graph Γ, there are four ways of attaching a leg to Γ

• Just attaching an extra leg to a vertex.

• Picking a main leg, and extending the graph with a genus zero vertex
with the n+ 1 marked leg, with attached the (1) vector.

• The same as the previous but on a κ leg.

• Placing a genus zero vertex between the two half-egdes of an edge.

Each of these give a contribution that we can deduce from the rules of
pullbacks we have seen. The ψ class pullback presents itself in two terms,
one is the one we obtain in the őrst case, i.e. the stable after forgetting stable
graphs. The second term is the one present on the other three cases. In this
cases, we will account for the loss of a psi factor. The őrst case is trivial, we
simply have the starting class multiplied by ψn+1 with attached the vector
1. Second case: This is the őrst case in which we will have to rearrange the
cohomology classes on the graph to make it assume the form we wish.

1 • vi

•

ψn+1 ψi

R−1(ψi)

ψ′′

Since on Mg,n every cohomology class is the trivial, we can substitute
ψn+1 = R−1(ψn+1) and ψi = R−1(ψi), on the vertex we should place η(vi, v

′′
i ) =

Ω0,3(vi ⊗ v′′i ⊗ 1) we will account for it in the computation of the term α.
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1 • vi

•

R−1
1(ψn+1) R−1(vi)(ψi)

α

ψ′′

Ω0,3

We originally just had the term R−1(ψi),then pushing it forwards, taking into
account only the terms dependent on ψi and dropping a power of p∗(ψi) as
required by the previous proposition, we get:

[vi −R−1(vi)](p
∗(ψi)

p∗(ψi)
.

Consider that ψ′′ = 0 and we are short of a η−1 term from the previous
manipulation we can write

α =
η−1 −R−1(p∗(ψi))η

−1R−1(ψ′′)t

p∗(ψi) + ψ′′
.

What we get is exactly the graph contribution relative to the unit preserving
R-action.

The third case is similiar to the second, attach a vertex to the κ leg, and
pushforward by , but we will use the commutativity of the pushforwards by
forgetting maps. Before the pullback on the κ leg, we have Tb(ψi). pulling
back we lose a power of ψi getting:

−
Tb(ψi)

ψi
= [R(1)− 1](ψi).

Now forgetting the ith leg, by the fact that forgetting of a point is isomorphic
to the universal curve morphism, the class becomes R(1)−1](ψn+1), and the
graph is the same as in the őrst case, which contributed ψn+1. Summing up
the two contributions we get R−1(1(ψn+1, exactly the R. contribution for a
leg.

The fourth case: more precisely, we will place the vertex at the end of one
half-edge and then glue the other, so for each edge we get two contributions
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relative to two pullbacks, we will consider the two together as they simplify.

1

• • •
ψ′ ψ′′′ ψ′′′′ ψ′′

ψn+1

So, before the pullback we have the standard edge insertion,

η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
.

Pulling back we get rid of the ψ′ free terms and divide by ψ′:

−
1

ψ′

[η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
−
η−1 − η−1R−1(ψ′′)t

ψ′′

]

.

The two contributions add up to

η−1 − η−1R−1(ψ′′)t −R−1(ψ′)η−1 +R−1(ψ′)η−1R−1(ψ′′)t

ψ′ψ′′
,

that is equal to

η−1 −R−1(ψ′)η−1

ψ′
η
η−1 − η−1R−1(ψ′′)t

ψ′′
.

Precisely the product of the two new edges contribution and of the new vertex
contribution.

This concludes the proof.

Proposition 3.14. The unit preserving R-action is a left group action.
Proof. We wish to apply Proposition 3.9, to manipulate the formulaRa.Rb.(Ω) =
Ra(z(1− R−1

a ))Rb(z(1− R−1
b )) in fact notice we know that TaRb = RbT

′
a in

terms of action, if
T ′
a = z(1−R−1

a )R−1
B ,

as a series.
Therefore,

Ra(z(1−R−1
a ))Rb(z(1−R−1

b )) = RaRb(R
−1
b (z(1−R−1

a )))(z(1−R−1
b )).

Here we can just compose the two T actions, getting the action of the sum
of the series:

RaRb(z(R
−1
b (1)−R−1

b R−1
a (1)+ (1−R−1

b (1)) = (RaRb)(z(1− (RaRb)
−1(1))).
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3.2 Witten’s class

Definition 3.15. (Frobenius Manifold)
A Frobenius Manifold is a smooth manifold equipped with:

• A Flat pseudo-Riemannian metric.

• A function F whose third covariant derivatives Fabc are structure con-
stants (a • b, c) of a Frobenius Algebra structure.

• The vector őeld of unities 1 of the • product is covariantly constant
and preserve multiplication and the metric.

Definition 3.16. (Euler Field)
On a Frobenius Manifold an Euler Field is a vector őeld such that, the •
product, the unity vector őeld 1 and the norm η are eigenvectors of the Lie
Derivative LE, of eigenvalues 0, -1 and 2− δ respectively. Where δ is called
conformal dimension. A Frobenius structure with an Euler Field is called
conformal, and allows us to introduce some notion of homogeneity.

Remark. From now on we will assume the vector space V relative to CohFTs
is a Frobenius Manifold, deőned though the CohFT’s genus zero sector.

Definition 3.17. (Action of an Euler Field on a CohFT)
Let Ω be a CohFT, and let E be the Euler Field on the Frobenius Manifold
V

E =
∑

i

(αit
i + βi)

∂

∂ti
,

then we deőne the action

(E.Ω)g,n(∂i1 ⊗ · · · ⊗ ∂in) =

=
(

deg +
n

∑

i=1

αi
)

Ωg,n(∂i1 ⊗ · · · ⊗ ∂in) + p∗Ωg,n+1(∂i1 ⊗ · · · ⊗ ∂in ⊗
∑

i

βi∂i),

where p is the map forgetting the last marked point, and

deg : H2k(Mg,n,Q) → H2k(Mg,n,Q),

is the function multiplying the class by k.

Definition 3.18. We say a CohFT is homogeneous if E.Ω = [(g−1)δ+n]Ω.
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Definition 3.19. (Semisimple Frobenius Manifolds)
A Frobenius manifold is said to be semisimple if the algebras (TtH, •) are
semisimple. Since these algebras are őnitely dimensional this means that the
algebras are cartesian product of two simple subalgebras.

Remark. We can now introduce the main Frobenius Manifold we will study.
Let Vr be an r − 1 dimensional vector space over Q, e0, . . . , er−2 a basis of
Vr. We can deőne on Vr a non-degenerate bilinear form by

ηa,b = η(ea, eb) = δa+b,r−2,

with 1 = e0 the unit vector. On this space, we will deőne a Frobenius
Manifold structure using Witten’s r-spin theory.

Remark. Witten’s r-spin theory provides us with cohomology classes pa-
rameterized by indices a1, . . . , an ∈ {0, . . . , r − 2} as Wg,n(a1, . . . , an) ∈
H∗(Mg,n,Q) and we can then deőne a CohFTs by

Wg,n(ea1 ⊗ · · · ⊗ ean) = Wg,n(a1, . . . , an).

The complex degree of the class is given by

Dg,n(a1, . . . , an) =
(r − 2)(g − 1) +

∑n

i=1 ai
r

,

in the case that D is not an integer, the class is vanishing.
The class satisőes

W0,3(a1, a2, a3) =

{

1 a1 + a2 + a3 = r − 2

0 otherwise

W0,4(1, 1, r − 2, r − 2) =
1

r
[point] ∈ H2(M0,4,Q).

The primary genus zero Gromov-Witten Potential of Witten’s r-spin class
is:

F (t0, . . . , tr−2) =
∑

n≥3

∑

a1,...,an

∫

Mg,n

W0,n(a1, . . . , an)
ta1 , . . . , tan

n!

In the case r = 3, it becomes

F =
1

2
xy2 +

1

72
y4.

Deőning the quantum product on the tangent space:

∂i • ∂j =
∑

k,l

∂3F

∂ti∂tj∂tk
ηkl∂l.
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In the case r = 3 Algebra deőned by this product is semisimple only outside
of {y = 0}, this is why we will deőne the translated Witten’s class.

The Euler Field we will use is

E =
r−2
∑

i=0

(1−
i

r
)ti

∂

∂ti
, δ =

r − 2

r
,

resulting in conformal dimension δ.

E = x
∂

∂x
+

2

3
y
∂

∂y

LE(∂x) = −∂x LE(∂y) = −
2

3
∂y.

Definition 3.20. The shifted Witten’s class is:

W τ
g,n(v1 ⊗ · · · ⊗ vn) =

∑

m≥0

1

m!
(pm)∗W

τ
g,n(v1 ⊗ · · · ⊗ vn ⊗ τ ⊗ · · · ⊗ τ),

where τ appears m times.

Proposition 3.21. The shifted Witten’s class is a CohFT with unit.
Proof Witten’s class is a Cohft with unit. To study the pullback of W τ we
will inspect the pullback of each term

1

m!
pm∗(Rg,n(v1 ⊗ · · · ⊗ vn ⊗ τ ⊗ · · · ⊗ τ)),

though the natural morphism of strata from a single edge with legs to a single
vertex with legs. Since we will be forgetting the κ legs, we can group all the
contributions in the pull back by the number of κ legs for each vertex, so
there are

(

m

m1m2

)

copies of the class.

r∗
1

m!
pm∗(Wg,n(v1⊗· · ·⊗v⊗τ⊗· · ·⊗τ)) =

(

m

m1m2

)

1

m!
pm1∗(Wg1,n1+m1)ηpm2∗(Wg2,n2+m2).

While the unit property just derives from the commutativity of forgetful
maps, and the fact that Witten’s class itself is a CohFT with unity.

Remark. An important remark is that, in the above summation, for m = 0
we get Witten’s class, and for m > 0 the terms added have degree at most

Dg,n −
2m

r
.

This means that we’re only lower degree terms, so the classes of degree greater
than Dg,n will be relations.
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The primary genus zero potential for Witten’s shifted class is

F τ (t̂) = F (τ + t̂)− (terms of degree < 3)

Definition 3.22. The shifted grading operator is deőned as

µ(v) = [E, v] + (1−
δ

2
)v, µ(∂x) = −

1

6
∂x, µ(∂y) =

1

6
∂y,

to compute the commutator, we extend the vector to a ŕat vector őeld.

Remark. Introducing a new frame to simplify the computations,

ϕ =
y

4
, ∂x = ∂0ϕ

1
4 , ∂y = ϕ− 1

4∂y.

Using the formula

η(v1 • v2, v3) = W0,3(v1 ⊗ v2 ⊗ v3),

we can write

W0,3(0, 1, y) =

{

1 y = 0

0 y = 1
W0,3(1, 1, y) =

{

0 y = 0

1 y = 1

Deducing

e0 • e0 = e0 e0 • e1 = e1 e1 • e1 = e0.

In the alternative frame:

∂̂0 • ∂̂0 = ϕ
1
4 ∂̂0, ∂̂0 • ∂̂1 = ϕ

1
4 ∂̂1, ∂̂1 • ∂̂1 = ϕ

1
4 ∂̂0.

Remark. The shift degree operator requires us extend a certain vector to a
ŕat vector őeld, for ∂̂x we can just extend the vector to the ŕat vector őeld
c · ∂x, where x depends on the value of ϕ at the base point of the vector.

Proposition 3.23. Witten’s class is homogeneous with respect to the Euler
Field we őxed.
Proof Since βi = 0, we just have to check the coefficient deg +

∑

αi,

(r − 2)(g − 1) +
∑

ai
r

+
∑

i

(1−
ai
r
) = (g − 1)δ + n.
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Proposition 3.24. The shifted Witten’s class W τ is homogeneous, with
Euler Field:

E =
∑

a

((1−
a

r
)t̂a + (1−

aτa
r

)
∂

∂t̂a
.

Proof Let’s see the case τ = u∂k, for a őxed k, őrst. Denote

Wg,n+m(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂b ⊗ · · · ⊗ ∂b)

by just Wg,n+m. The degree of pm∗Wg,n+m is Dg,n+m − m, as forgetting a
point decreases the dimension of the space by one.

(E.W τ )g,n(∂a1 ⊗ · · · ⊗ ∂an) =

um

m!

(

∑

m≥0

(r − 2)(g − 1) +
∑

ai +mb

r
−m+

∑

(1−
ai
r

)

pm∗Wg,n+m

+
∑

m≥0

um

m!
u(1−

b

r
)pm+1∗Wg,n+m+1

The coefficient of the second term, in the right hand side, is simply βi.
Rearranging the terms,

((g − 1)δ + n)
∑

m≥0

um

m!
(pm∗)Wg,n+m

−
∑

m≥1

um

(m− 1)!
(1−

b

r
)(pm∗)Wg,n+m

+
∑

m≥0

um+1

m!
(1−

b

r
)(pm+1∗)Wg,n+m+1

The last two terms cancel out.
Now to prove the general case we will do the same steps. The key to

make the terms cancel out is that βi = αi · τ
i.

Let
τ =

∑

i

τi∂i

(E.W τ )g,n(∂a1 ⊗ · · · ⊗ ∂an) =

∑

m≥0

∑

b

1

m!

((r − 2)(g − 1) +
∑

ai +
∑

bi
r

− n+
∑

i

(1−
ai
r
) +

)

pm∗W
b
g,n+m

+pm+1∗W
b
g,n+m+1
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Where

W b
g,n+m = Wg,n+m(∂a1 ⊗ · · · ⊗ ∂an ⊗ τb1∂b1 ⊗ · · · ⊗ τbn∂bm)

W b
g,n+m+1 = Wg,n+m+1(∂a1 ⊗ · · · ⊗ ∂an ⊗ τb1∂b1 ⊗ · · · ⊗ τbn∂bm ⊗

∑

j

βj∂j)

Simplifying:

= ((g − 1)δ + n)
∑

m≥0

∑

b

1

m!
(pm∗)W

b
g,n+m

−
∑

m≥1

∑

b

∑

j

1

m!
(1−

bj
r
)(pm∗)W

b
g,n+m

+
∑

m≥0

∑

b

1

m!
(pm+1∗)W

b
g,n+m+1.

The last two series cancel each other out, simply the terms relative to b of
lenght m+1 in the second term, simplify with the terms relative to b of lenght
m in the third term. The third term series, once broken into n components
by linearity of the n+m+1 entry, presents every possible combination of ∂bi
with a βbm+1 term instead of a τbm+1 coefficient. The second series presents
every combination with a βbi and τ every where else. So now by the őrst
property of CohFTs we can move these bi terms in last position, gaining a
factor m, that balances the m! becoming m+ 1 of the shift.

Proposition 3.25. Topological sector of Witten’s 3-spin.

ωg,n(∂
⊗n0
0 ⊗ ∂⊗n1

1 ) = 2gψ
2g−2+n

4 δoddg+n1
,

where ω is the Topological Field Theory of Witten’s 3-spin theory.
Proof Since we’re working with degree zero classes, via the pullback property
of CohFTs, we can pullback our class to a Moduli space of the kind

∏

M0,3,

i.e. the surfaces are represented by rational curves glued together at nodes,
forming a stable curve of the same genus and number of legs. In terms of
stable graphs this means that our class is product of W0,3 terms with η in
the middle.
The vectors in the argument are distributed on special points, and at nodes,
we must have a 0 term and a 1 term to have η be non vanishing.
Let us start by noticing that W0,3(i, j, k) is different than zero if and only
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if the number of 1s in the argument is odd, and in that case it equals ψ
1
4 .

Such placement of vectors is possible if and only if n1+g is odd, this is easily
proven by starting out from a genus zero surface with three marked points,
and noticing that any glueing we can do to it maintaining the non-vanishing
of the class preserves this property. In this case, we would have a graph of
genus g, this means it has g independent cycles, this cycles can be "inverted"
independently, hence provide us with the 2g term. By inverting a cycle we
mean to take each node and swap the 0 and 1 term. The last thing missing
is to realise that there are 2g − 2 + n components, this is done by breaking
the g cycles, getting 2g + n marked points, again by recursion we can see
that this is 2 more than the number of components.

Proposition 3.26. (Givental-Teleman Theorem)
Let Ω0,n be a genus 0 homogeneous, semisimple CohFT with unit. Then the
following hold:

• There exists a unique homogeneous CohFT with unit Ωg,n extending
Ω0,n to higher genus.

• The extended CohFT Ωg,n is obtained by an R-Matrix action on the
topological sector of Ω0,n determined by Ω0,3

• The R-matrix is uniquely speciőed by the Ω0,n determined by Ω0,3.

Remark. In the following computations we will need to have the quantum
product by E operator in matrix representation. In the hat frame it assumes
the form:

ξ =

[

x 2ϕ
3
2

2ϕ
3
2 x.

]

Proposition 3.27. (Teleman’s recursive formula for R-matrix)
At a semisimple point of a conformal Frobenius manifold, starting with R0 =
1

[Rm+1, ξ] = (m+ µ)Rm

Proof. Substituting our expressions for ξ and µ in the formula, we get:

[

[

am+1 bm+1

cm+1 dm+1

]

,

[

x 2ϕ
3
2

2ϕ
3
2 x

]

]

=
1

6

[

6m− 1 0
0 6m− 1

] [

am bm
cm dm

]

The only solutions are
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Proposition 3.28. The R-matrix is

R(z) =

[

Beven

1

(

z

1728φ
3
2

)

−Bodd

1

(

z

1728φ
3
2

)

−Bodd

0

(

z

1728φ 3
2

)

Beven

0

(

z

1728φ
3
2

)

]

By using the relation between B0 and B1 discussed in the previous chapter
we get:

R−1(z) =

[

Beven

0

(

z

1728φ
3
2

)

Bodd

1

(

z

1728φ
3
2

)

Bodd

0

(

z

1728φ 3
2

)

Beven

1

(

z

1728φ
3
2

)

]

This also shows, that the matrix respects the symplectic condition.

Proposition 3.29. Witten’s class explicit formula.

W τ
g,n(∂a1 ⊗ · · · ⊗ ∂an) = 2g

∑

d

ϕ
3
2
(D−d)

1728d
q(Rd

b,(a1,...,an)
)

Proof. Teleman’s theorem tells us that W τ = R.ω, as we have seen in the
second chapter, the R relations have a very similar structure, we have to
verify that coefficients are exactly the same. Let us verify it for each tensor
product of ∂x and ∂y, R.ω(∂

⊗n0
0 ⊗ ∂⊗n1

1 ), now we will match graph by graph
each contribution. The contributions of the R-matrix action are

• To each leg R−1(ψl)

• To each vertex W τ
g(v),n(v)

• To each edge
η−1 −R−1(ψ′

e)η
−1R−1(ψ′′

e )
t

ψ′
e + ψ′′

e

• Then considering all possible ways of adding κ legs with

The terms in the R contribution are:

• At each vertex place κv = κ(T − TB0(ζvT ))

• At each leg place Bl = ζalv Bal(ζvψl)

• And at each edge place

∆e =
ζ ′ + ζ ′′ − B0(ζ

′ψ′)ζ ′′B1(ζ
′′ψ′′)B1(ζ

′ψ′)ζ ′B0(ζ
′′ψ′′)

ψ′ + ψ′′
,
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The vertex term of the R is exactly the sum of the κ leg contributions of
the T action of R.

The auxiliary variables ζv serve to check the parity condition for ∂y at
each vertex. The form of the T series is

T (z) = z · [∂x −R−1(∂x)](z),

as 1 = ∂x.

• Powers of ϕ

• Powers of 1728

• Powers of 2

• ζv

Consider powers of ϕ őrst, since we used the frame (∂̂x, ∂̂y) to write the R
matrix in the argument of R when we take it out we get:

ϕ
n1−n0

4 .

Then the R matrix coefficients contain ϕ terms, these show in R−1
m that gives

a ψ− 3m
2 factor, and similarly for T (z). So, the coefficients of R contribute a

power −3d/2, where d is the degree of the monomial as a cohomology class.
Then at each vertex ω contributes a power (gv − 2 + nv)/4 as we have seen,
these sum to (2g− 2+n)/4, as, the term h1(Γ) we are missing in the sum of
genera, we recover it in the sum of valencies. Finally, for each κ leg we get a
ϕ− 1

4 from the change of variables, but also a ϕ
1
4 term in the ω contribution,

by increasing the valency of the vertex by one. The resulting power is

n1 − n0

4
−

3d

2
+

2g − 2 + n

n
=

3

2
(D − d)

As for the ψ terms in the Rm coefficients, we obtain a factor 1728−d.
At each vertex, ω contributes a power gv, while in the deőnition of R

relations we account for a power −h1(γ). In the end the difference is precisely
2g, as required in the statement.

Now we wish to check that the parity condition for the non-vanishing of
ω.

gv + n1is odd at each vertex.

is equivalent to the condition

gv − 1 +mis even at each vertex.

where m is the power of ζv in the R relation expression. A ζv factor comes
out from:

47



• The terms Bodd

0 and Bodd

1 , while, since ζ2v = 1 the even components,
don’t contribute. So, every edge insertion, whereas the ∂ side is towards
the vertex, accounts for a power one.

• Every leg marked by ∂y

The last thing one should notice is that the edge contribution for R
relations, is the sum of the two contributions of the R action, when the
bivector is oriented in a way or the other, and marking it with ζv if ∂y is
pointing at v.
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