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Abstract

Autonomous Driving is one of the most fascinating and stimulating field in
modern engineering. While some partial autonomous cars already exist in
the industrial market, they are far from being completely independent in any
situation. One of the things that these vehicles lack the most is the ability of
handling traffic scenarios and situations in which interaction with other road
users is required.

The purpose of this work is that of investigating learning techniques that
could be exploited in order to face the challenge described above. The focus will
be put on the Multi-Agent Reinforcement Learning (MARL) paradigm, which
seems particularly appropriate to address this kind of problem, given its ability
to learn and solve complex tasks without any prior knowledge requirement.

The MARL paradigm has its roots both in the classical single agent Reinforce-
ment Learning setup, but also in the Game Theory field. For this reason, after
an introduction to the problem and some literature review of related works, the
project will begin with an introduction to those two topics. After that the MARL
paradigm will be analyzed, focusing both on the theoretical aspects and on the
algorithmic point of view.

The thesis will then proceed with an experimental section, where some
of the state-of-the-art MARL algorithms will be adapted to the Autonomous
Driving setup and tested, making use of a simulator, called SMARTS, specifically
developed for this purpose.

To conclude this work the results obtained in simulation will be analyzed
and discussed, and also some ideas for future development will be presented.





Sommario

Lo sviluppo di auto a guida autonoma è uno dei settori più affascinanti e sti-
molanti dell’ingegneria moderna. Anche se alcune auto parzialmente autonome
sono già sul mercato, sono ancora distanti dall’essere completamente indipen-
denti in ogni contesto. Una delle cose che manca di più a questi veicoli è la
capacità di gestire scenari di traffico e situazioni dove sono richieste interazioni
con altri utenti della strada.

L’obiettivo di questo studio è quello di investigare tecniche di apprendimento
automatico che potrebbero essere sfruttate per affrontare la sfida descritta so-
pra. Il focus verrà messo sul paradigma Multi-Agent Reinforcement Learning
(MARL), che sembra particolarmente appropriato per affrontare questo tipo di
problema, data la sua capacità di imparare a risolvere problemi complessi senza
aver bisogno di alcuna conoscenza preliminare.

Il paradigma MARL ha le sue radici sia nel classico Reinforcement Learning
singolo agente, ma anche nel campo della Teoria dei Giochi. Per questo motivo,
dopo un’introduzione al problema e l’analisi della letteratura sui lavori correlati,
il progetto inizierà con un’introduzione a questi due argomenti. In seguito verrà
analizzato il paradigma MARL, focalizzandosi sia sugli aspetti teorici che su
quelli implementativi.

La tesi procederà quindi con una sezione sperimentale, dove alcuni sofisticati
algoritmi MARL verranno adattati al contesto della guida autonoma e testati,
utilizzando un simulatore, chiamato SMARTS, sviluppato specificatamente per
questo tipo di situazioni.

Per concludere questo lavoro verranno analizzati e discussi i risultati ottenuti
in simulazione, e verrano anche presentate alcune idee per futuri sviluppi.
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1
Introduction

The rapidly growing interest and research in the Autonomous Driving field
raises the fundamental problem of the cohabitation between Autonomous Ve-
hicles (AVs) and human drivers. The challenges that need to be addressed are
multiple, but for sure the most crucial aspect regards the safety of the road users.

With effective algorithms that prevent fatal accidents we must say that the
best way to ensure safety would probably be that of banning the human drivers
from the road and keep just AVs. Indeed, according to the World Health Or-
ganization (WHO), road accidents kill 1.3 million people and injure 50 million
people each year [6]. However this scenario is still far away in the future, and
before reaching that we need to design robust strategies for mixed traffic, where
Autonomous Vehicles interact with human drivers. This task is particularly
complex, because while the behaviour of AVs is homogeneous and predictable,
that of human drivers is extremely heterogeneous, unpredictable and many
times also irrational. This, added to the fact that the possible driving scenarios
that an AV could encounter are nearly endless, makes the design of rule-based
models almost certain to fail.

Machine Learning approaches instead give the opportunity to generalize
driving scenarios and learn to adapt the AV behaviour in different situations. The
(Multi-Agent) Reinforcement Learning (MARL) paradigm in particular seems
particularly suited to face these kind of problems, given its ability to learn
and solve complex sequential decision problems without any prior knowledge
requirement.

1



1.1. RELATED WORK

1.1 Related Work

Throughout the MARL for Autonomous Vehicles literature there are four
different research paradigms at the moment [6], and in the following subsections
we will briefly analyze them.

We also note that at this time the majority of the works considers small sce-
narios, which can be divided into three categories, with increasing complexity:

1. Highway driving

2. Merging and exiting

3. Intersections and roundabouts

Given the complexity of the last category of scenarios, most research concen-
trate on the first two levels.

Moreover according to [6], the large majority of the works implements in-
dependent learning techniques and considers a small number of agents in the
simulation (≤ 5). This choice is due to the MARL challenges, which will be
analyzed in depth in Section 4.1.

1.1.1 Mixed traffic

In this scenario we consider Autonomous Vehicles cohabiting with human
drivers in mixed traffic. Each AV will have its personal goal to achieve, and it
will need to learn how to interact with the other road users in order to do that.

The most studied environments in this setup are the highway and the exiting
[7], [10]. A downside of these works is that the Autonomous Vehicle learning
process is significantly affected by the absence of other AVs in its proximity, since
communication between agents is a key aspect of these strategies.

1.1.2 Socially desirable AVs

The researchers working on this paradigm tried to incorporate the AVs with
social abilities. Socially desirable AVs will likely include the concept of altruism
[6]. In three consecutive papers, Toghi et al. [28], [27], [26] tackled the merging
and exiting scenarios with socially desirable AVs.

The results of these works established that socially desirable AVs can improve
the success rate of merging and exiting maneuvers [6]. However we must note

2



CHAPTER 1. INTRODUCTION

that all the human drivers present in the simulation were controlled by the same
model, and thus their behaviour was easily predictable.

1.1.3 Heterogeneous Human Driven Vehicles (HDVs)

Some works have focused on designing sophisticated HDV models, because
having heterogeneous HDVs would be of great benefit for the learning process
of Autonomous Vehicles. However this is still an open challenge, since exist-
ing HDV models are unrealistic because they lack some fundamental human
peculiarities, such as psychological and biological traits. Indeed introducing
AVs trained with these HDV models into real-world traffic would likely result
in accidents. [6]

1.1.4 Fully-Autonomous Fleet

This last paradigm considers the situation in which there are no human
drivers on the road, but just Autonomous Vehicles, simulating what could be a
possible scenario in the future, as already discussed at the beginning. Clearly
coordinating a fully-autonomous fleet is more tractable than driving in mixed
traffic, given the predictable nature of homogeneous agents. [6]

Also in this case the majority of the works focuses on highway driving and
merging environments. Differently from before, in this case the control of all
the agents can be cast as a fully cooperative problem.

1.2 Our Approach

In this work we will focus on the mixed traffic paradigm, because we believe
that in the next future it will be crucial to have safe and robust cohabitation
between Autonomous Vehicles and human drivers.

Differently from the majority of the works present in literature, we will
simulate an intersection environment, designing different scenarios of increasing
complexity, to analyze the differences in the learning process depending on the
number of agents present in the simulation.

We will implement and test four1 different state-of-the-art MARL algorithms,

1One of them will be in turn tested in four different variants.

3



1.2. OUR APPROACH

adapting them to our specific situation. These algorithms have been chosen
because they represent the three most important categories of MARL algorithms,
and for this reason the comparison between them will be an important aspect of
the experimental results analysis.

We will also design realistic observation spaces for each agent, trying to con-
sider just information that in the real-world could be obtained through sensors.
Finally, to try and overcome the issue of Section 1.1.1, we will not allow direct
communication between the AVs.

To conclude this introduction, we give a brief outline of this project. We
will start by introducing the single agent Reinforcement Learning paradigm
in Chapter 2, while in Chapter 3 we will discuss some concepts taken from
Game Theory, which are useful to describe Multi-Agent interactions. After that,
in Chapter 4 we will deeply analyze the Multi-Agent Reinforcement Learning
field, along with the four state-of-the-art algorithms mentioned above.

Finally, in Chapters 5 and 6 we will describe our experimental setup and
analyze the results. To conclude the thesis, in Chapter 7 we will summarize the
work done and present some possible directions for future studies.

4



2
Single Agent Reinforcement Learning

What is Reinforcement Learning? It essentially is an approach for mimicking
the way in which humans, and more in general animals, learn to solve a problem
by trial and error. More formally:

Reinforcement Learning (RL) algorithms learn solutions for sequential de-
cision processes via repeated interaction with an environment. [1]

There are lots of complex and interesting problems that can be formalized in a
RL setup:

• Autonomous agents (self driving cars1, robots, ...)

• Games
• HVAC (Heating, Ventilating, Air Conditioning) energy optimization

• Trading and Portfolio management

• Online advertising and Recommendation systems
• ...

In this chapter we will give a brief introduction to the single agent Reinforce-
ment Learning paradigm, in order to introduce and explain concepts that will
be useful when switching to the Multi-Agent setup.

1The focus of this thesis.

5



2.1. KEY ELEMENTS OF RL

2.1 Key elements of RL

To understand better the definition of Reinforcement Learning let us first
introduce the core elements of a RL problem:

• Agent: the entity aiming at solving a task

• Environment: the world in which the agent lives

• Task: the objective of the agent

To learn how to solve the task the agent repeatedly interacts with the envi-
ronment, playing many "episodes". Each episode is composed of a sequence of
time steps, and each time step consists of the following (see Figure 2.1):

1. The agent is in a state 𝑠 (a certain configuration of the environment)

2. It performs an action 𝑎, chosen from a set of available actions for the agent,
called action space

3. Given the current state and action, the environment provides a reward 𝑟
to the agent and moves it to a new state 𝑠′, according to a state probability
distribution 𝑃(𝑠′|𝑠, 𝑎)

Figure 2.1: Basic Reinforcement Learning loop [1]

The formalization of this setup is given by the concept of Markov Decision
Process (MDP):

A Markov Decision Process is a tuple < 𝒮 ,𝒜 ,𝒫 ,ℛ ,𝛾 > such that:

• 𝒮 is a finite set of states
• 𝒜 is a finite set of actions
• 𝒫 is a state transition probability matrix with entries:

𝒫𝑎
𝑠𝑠′ = P[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• ℛ is a reward function, ℛ𝑎
𝑠 = E[𝑅𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• 𝛾 is a discount factor, 𝛾 ∈ [0, 1]

6



CHAPTER 2. SINGLE AGENT REINFORCEMENT LEARNING

The rewards are what make the agent learn, because a "good" action corresponds
to a high reward, while a "bad" action corresponds to a low one. Since in RL
we are not interested in maximising the value of a single step, but we want to
maximise the sum of cumulative rewards, we introduce the following quantity:

The return 𝐺𝑡 is the total discounted reward from time step t

𝐺𝑡 � 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ... =
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (2.1)

the more 𝛾 is close to 0 the more we care only about present rewards. The
more 𝛾 is close to 1 the more we care about all rewards, even those far away
in the future.

Up to now we have not said anything about the way in which the agent decides
which action to perform at each time step. To do that we have to introduce the
concept of policy:

A policy 𝜋 is a distribution over actions given that we are in a state:

𝜋(𝑎 |𝑠) = P[𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠] (2.2)

The agent follows a policy during each episode, and that completely defines its
behaviour.

Note that an MDP policy is stationary (it does not depend on 𝑡), but it can be
changed in future episodes. We also consider stochastic policies.

The last elements that we introduce in this section are the state value function
𝑉(𝑠), and the action value function 𝑄(𝑠, 𝑎), defined in this way:

The state value function of a Markov Decision Process is the expected return
from state 𝑠 if we follow policy 𝜋:

𝑉𝜋(𝑠) = E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠] (2.3)

The action value function of a Markov Decision Process is the expected
return from state 𝑠 if we take action 𝑎 and then follow policy 𝜋:

𝑄𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.4)

7



2.2. AN INTRODUCTORY EXAMPLE

2.2 An introductory example

Figure 2.2: Example of small grid-world scenario [16]

Consider the simple example in Figure 2.2. Even if this is a simple scenario,
it will be useful to introduce and better understand all the elements introduced
in the previous section.

Here the agent is the little person living in that 6 x 9 grid-world environment,
and its task consists in reaching the star in the least possible number of steps.
The state of the agent is the tuple containing its actual coordinates ((3,1) in
the starting position shown in the figure), and at each time step it can move by
performing an action sampled from the action space𝒜 = {up, down, left, right}.
The gray squares correspond to positions where the agent cannot go, and for
simplicity we assume that if an action would move the agent outside of the grid,
it just keeps it where it is. Of course the state space 𝒮 consists of all the possible
positions in which the agent can be.

The agent receives a reward of -1 for each time step, and a reward of 0 for
reaching the star. In this way it has to maximise its expected return to reach the
star in the least possible number of steps.

Each episode begins in the configuration shown in the figure an terminates
when the agent reaches the star.

As said in the previous section, the agent decides which action to take at
each time step by following a policy. The simplest possible policy is the random
one, where each action has equal probability of being taken at each time step.
In this case:

𝜋(𝑎 |𝑠) = 0.25 ∀𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 (2.5)
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Clearly this is not a smart policy and it will not maximise the agent’s expected
return. The next step will be to understand how to modify the policy in order to
achieve the agent’s goal, and we will discuss that starting from the next section.

2.3 Bellman Equations

Up to now we have just introduced the setup of standard Reinforcement
Learning and its key concepts, but we are still missing the fundamental aspect
of the problem: How can the agent learn?

To answer this question we first need to introduce a set of recursive equa-
tions, called Bellman Equations. We start by considering again the expression
of the value function:

𝑉𝜋(𝑠) = E𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠]

... = E𝜋[𝑅𝑡 + 𝛾𝐺𝑡+1 |𝑆𝑡 = 𝑠]

... =
∑

𝑎∈𝒜 𝜋(𝑎 |𝑠)∑𝑠′∈𝒮 𝑃(𝑠′|𝑠, 𝑎)[𝑅𝑎
𝑠 + 𝛾E𝜋[𝐺𝑡+1 |𝑆𝑡+1 = 𝑠′]]

... =
∑

𝑎∈𝒜 𝜋(𝑎 |𝑠)∑𝑠′∈𝒮 𝑃(𝑠′|𝑠, 𝑎)[𝑅𝑎
𝑠 + 𝛾𝑉𝜋(𝑠′)]

Following the same procedure we can find a similar relation for the action
value function:

𝑄𝜋(𝑠, 𝑎) = 𝑅𝑎
𝑠 + 𝛾

∑
𝑠′∈𝒮

𝑃𝑎
𝑠𝑠′

∑
𝑎′∈𝒜

𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′) (2.6)

The Bellman Equations just found are crucial for the RL setup because they
allow us to put the value of a state (or state-action couple) in relation with the
next one. We will see that this concept will be used in every Reinforcement
Learning algorithm. Our final objective is to find a policy 𝜋∗ such that the state
value function and the action value function are maximised. To do that we need
to find:

𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠) (2.7)

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎)

9
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An MDP can be considered solved on a RL perspective when the optimal action
value function is known: we always know the optimal action to take from a
certain state.
Indeed if we know 𝑄∗(𝑠, 𝑎)we can easily recover the optimal policy:

𝜋∗(𝑎 |𝑠) =


1 if 𝑎 = argmax𝑎∈𝒜𝑄∗(𝑠, 𝑎)
0 otherwise

(2.8)

At this point the last thing we need is a way to calculate the optimal state value
function and action value function. Following a reasoning similar to before we
can find the so-called Bellman Optimality Equations:

𝑉∗(𝑠) = max
𝑎
[𝑅𝑎

𝑠 + 𝛾
∑
𝑠′∈𝒮

𝑃𝑎
𝑠𝑠′𝑉∗(𝑠′)] (2.9)

𝑄∗(𝑠, 𝑎) = 𝑅𝑎
𝑠 + 𝛾

∑
𝑠′∈𝒮

𝑃𝑎
𝑠𝑠′ max

𝑎′
𝑄∗(𝑠′, 𝑎′) (2.10)

Since there is a non-linear operator in the expression we cannot find a closed
form solution, but we will resort to iterative methods instead. The first and
most simple one is Dynamic Programming, which will be discussed in the next
paragraph.

2.4 Dynamic Programming

In this section we will introduce the first collection of algorithms that can be
used to compute optimal policies, given a perfect model of the environment as
a Markov Decision Process. [24]

Indeed in this section we will make three strong assumptions, that later on
will be relaxed in order to be able to face real and complex problems:

• The state and action spaces are discrete and finite

• The state space is sufficiently small

• Both the state transition probability and the reward function are known
Dynamic Programming (DP) algorithms use the Bellman equations as oper-

ators to iteratively estimate the value function and optimal policy. [1].
The basic DP approach is called Policy Iteration, which alternates between

two tasks: [1]

10
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• Policy evaluation: compute value function 𝑉𝜋 for current policy 𝜋

• Policy improvement: improve current policy 𝜋 with respect to 𝑉𝜋

We could prove that under the three assumptions described above, if we
iteratively repeat this two steps, then 𝜋 and 𝑉𝜋 will converge to the optimal
policy 𝜋∗ and the optimal value function 𝑉∗𝜋.

Algorithm 1 Policy Iteration
Initialize: 𝑉(𝑠) ∈ R and 𝜋(𝑠) ∈ 𝒜(𝑠) for all 𝑠 ∈ 𝒮; 𝑉(terminal) � 0

1. Policy Evaluation
Δ← 0
while Δ < 𝜃 (small positive number) do

for all 𝑠 ∈ 𝒮 do
𝑣 ← 𝑉(𝑠)
𝑉(𝑠) ← ∑

𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠,𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]
Δ←max(Δ, |𝑣 −𝑉(𝑠)|)

end for
end while

2. Policy Improvement
𝑝𝑜𝑙𝑖𝑐𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑡𝑟𝑢𝑒
for all 𝑠 ∈ 𝒮 do

𝑜𝑙𝑑_𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝜋(𝑠)
𝜋(𝑠) ← argmax𝑎

∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠′)]

if 𝑜𝑙𝑑_𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 𝜋(𝑠) then
𝑝𝑜𝑙𝑖𝑐𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑓 𝑎𝑙𝑠𝑒

end if
end for
if 𝑝𝑜𝑙𝑖𝑐𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 then

return 𝑉 = 𝑉∗ and 𝜋 = 𝜋∗
else

go to 1.
end if

Since the policy evaluation step can be very expensive in terms of com-
putational cost, we would like a way to truncate this step without losing the
convergence guarantees. There are many ways to do that, but the simplest ap-
proach is the Value Iteration algorithm, where we use the Bellman Optimality
Equation to combine policy evaluation and update in a single step.

11
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Algorithm 2 Value Iteration
Initialize: 𝑉(𝑠) ∈ R for all 𝑠 ∈ 𝒮; 𝑉(terminal) � 0

Δ← 0
while Δ < 𝜃 (small positive number) do

for all 𝑠 ∈ 𝒮 do
𝑣 ← 𝑉(𝑠)
𝑉(𝑠) ← max𝑎

∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠′)]

Δ←max(Δ, |𝑣 −𝑉(𝑠)|)
end for

end while

Output a deterministic policy 𝜋 ≈ 𝜋∗ such that
𝜋(𝑠) = argmax𝑎

∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠′)]

2.5 Temporal Difference Learning

Up to now we have considered the simplest case of RL problem, because
we had the very strong assumption that both the state transition probability
and the reward function were known. Starting from that we used the Dynamic
Programming paradigm to iteratively compute and update 𝑉(𝑠) and 𝜋(𝑠). Note
that we did not need to interact with the environment because we had perfect
knowledge of it.

Removing that assumption, we need to interact and gather experience from
the environment in order to learn the state transition probability and the reward
function. That is exactly what the Temporal Difference Learning paradigm does:
it uses data collected from the environment and bootstrapping to learn action
value functions. The general update rule is the following: [1]

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝒳 −𝑄(𝑠𝑡 , 𝑎𝑡)] (2.11)

where 𝒳 is the update target, and 𝛼 ∈ (0, 1] is the learning rate (or step size).
Many different quantities can be used as target, in this section we present two
basic variants that are widely used and interesting to introduce a couple of
crucial concepts in Reinforcement Learning.

12
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2.5.1 SARSA

For this algorithm we use as update target𝒳 the quantity 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1).
This expression is an approximation of the Bellman Equation 2.6, but since we
do not have complete knowledge of the environment, we use the quintuple of
elements (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1), that make up a transition from one state-action
pair to the next [24]. Note that this quintuple is what gives the name SARSA to
the algorithm.

Let us first introduce the algorithm, and then make all the necessary com-
ments about its structure and concepts.

Algorithm 3 SARSA
Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0
Initialize: 𝑄(𝑠, 𝑎) ∈ R for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜(𝑠); 𝑄(terminal, ·) � 0

for all episodes do
Initialize 𝑠
Choose 𝑎 from 𝑠 using policy derived from 𝑄 (e.g. 𝜖-greedy)
for all steps of the episode do

Take action 𝑎, observe 𝑟, 𝑠′
Choose 𝑎′ from 𝑠′ using policy derived from 𝑄 (e.g. 𝜖-greedy)
𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)]
𝑠 ← 𝑠′; 𝑎 ← 𝑎′

end for(when 𝑠 is terminal)
end for

Here we can see for the first time the standard structure of a RL algorithm:
two nested loops, the first one sweeping through all the episodes we want to
play, and the second one iterating over each time step of every episode.

Another crucial aspect that we can see here is the type of policy that we
choose for the agent. The 𝜖-greedy policy is probably the most used one in
Reinforcement Learning, and it is defined like this:

𝜋(𝑠) =


argmax𝑎𝑄(𝑠, 𝑎) with probability 1 − 𝜖

random action 𝑎 with probability 𝜖
(2.12)

This policy is widely used because it can balance well Exploration and Ex-
ploitation during the algorithm. The Exploration-Exploitation dilemma is a
fundamental concept of RL, and it will be presented in the next paragraph.
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2.5.2 Exploration-Exploitation dilemma

When running a RL algorithm we need to explore the environment in order to
find the best possible solution to the problem and to better approximate the state
transition probability and reward function. However, we also want to achieve
good results throughout the learning process, exploiting the current knowledge
of the environment. This duality gives rise to the Exploration-Exploitation
dilemma:

• Exploration allows us to improve knowledge for long-term benefit

• Exploitation uses current knowledge for short-term benefit
Clearly we cannot do both at the same time: implementing trade-offs is

necessary.
There are many different techniques to implement a good trade-off, and the

𝜖-greedy policy is one of the most used and effective. The one presented in the
SARSA algorithm is the basic version, but more complicated approaches could
also be used. For example 𝜖 could be variable, higher at the beginning of the
algorithm, and slowly decreasing while the episodes proceed. This is intuitive
because at the beginning we know nothing about the environment and we need
to explore more. On the contrary when we have gathered a good knowledge
about it we can exploit this knowledge to achieve better results.

2.5.3 Q-Learning

This algorithm is very similar to SARSA, but it uses a different update target,
𝒳 = 𝑟𝑡 + 𝛾 max𝑎′∈𝒜 𝑄(𝑠, 𝑎′). Note that now we are approximating the Bellman
Optimality Equation 2.10. This difference makes the Q-Learning algorithm
faster than SARSA, because it does not iterate between policy evaluation and
improvement, but it learns the optimal values directly.

Comparing SARSA and Q-Learning we can introduce an important cate-
gorization for Reinforcement Learning algorithms, between on-policy and off-
policy techniques.

On-policy algorithms learn about policy 𝜋 from experience sampled from
policy 𝜋 itself. Off-policy algorithms on the contrary learn about policy 𝜋 from
experience sampled from another policy 𝑏 (behaviour policy).

This is exactly the case of SARSA and Q-Learning: in the update target of
SARSA, the following action is sampled from the current policy (𝑎𝑡+1 ∼ 𝜋(𝑠)),
while in Q-Learning it is sampled from a different policy (𝑎𝑡+1 = argmax𝑎′𝑞(𝑠′, 𝑎′)).
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Algorithm 4 Q-Learning
Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0
Initialize: 𝑄(𝑠, 𝑎) ∈ R for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜(𝑠); 𝑄(terminal, ·) � 0

for all episodes do
Initialize 𝑠
for all steps of the episode do

Choose 𝑎 from 𝑠 using policy derived from 𝑄 (e.g. 𝜖-greedy)
Take action 𝑎, observe 𝑟, 𝑠′
𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max𝑎′ 𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)]
𝑠 ← 𝑠′

end for(when 𝑠 is terminal)
end for

2.6 Limits of tabular RL and extensions

Recall the three simplifying assumptions made at the beginning of Section
2.4:

• The state and action spaces are discrete and finite

• The state space is sufficiently small

• Both the state transition probability and the reward function are known

The third one has already been removed when we moved from Dynamic
Programming to Temporal Difference Learning. In order to face large and
complex problems we need to remove also the other two.

Up to now we have considered "tabular methods", in the sense that state
value functions (or action value functions) could have been represented with
large tables, where each entry corresponded to the value of a particular state (or
state-action couple).2

We immediately see that if we remove the first and second assumptions this
approach is no longer feasible, both because there could be an infinite possible
number of state-action pairs (if the joint space is infinite or continuous), and
because even if it is still discrete and finite, it could give rise to an extremely big
table, that cannot fit into the memory of a computer. As a simple example, the
small grid-world scenario presented in Section 2.2 has a joint state-action space

2From now on we will only refer to the action value function, but the same reasoning applies
also for the state value function.
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of dimension 185, which is small and tractable, but if, for example, we would
like to have an agent which learns how to play chess, we would have a state
space of dimension ≈ 1050, which is enormous even for a computer.

For this reason we need to find a way to approximate the action value func-
tion. Among the many different possible ways to do it, the simplest one is the
linear function:

𝑄(𝑠, 𝑎) ≈ �̂�(𝑠, 𝑎;𝜃) = 𝑥(𝑠, 𝑎)𝑇𝜃 (2.13)

where 𝑥(𝑠, 𝑎) is a feature vector and 𝜃 is the vector of parameters to be optimized.
Clearly this approximation is quite rough and it does not work well for complex
problems.

To address this issue the best function approximators are Neural Networks,
that exploit their property of being universal function approximators in order
to produce good estimates of the action value function.

To learn the approximated Q-function a gradient based optimization is per-
formed, trying to move the parameter vector 𝜃 in the direction that minimises
an objective function 𝐽(𝜃). Many different choices for 𝐽(𝜃) can be made, but the
simplest and most used one is the Mean Squared Error (MSE) loss:

𝐽(𝜃) = E𝜋[(𝑄(𝑠, 𝑎) − �̂�(𝑠, 𝑎, 𝜃))2] (2.14)

As already said 𝜃 is modified at each time step in order to find a minimum of
the objective function:

𝜃𝑡+1 = 𝜃𝑡 + Δ𝜃, Δ𝜃 = −1
2𝛼∇𝜃𝐽(𝜃) (2.15)

where 𝛼 is the step size.

The biggest issue at this point is that we do not know the true 𝑄(𝑠, 𝑎) and we
need to find a suitable approximation for it.

One of the first but yet most effective approaches consists in using as approx-
imation for 𝑄(𝑠, 𝑎) the update target of the Q-Learning algorithm:
𝑟𝑡+𝛾 max𝑎′ �̂�(𝑠𝑡+1, 𝑎′, 𝜃). The algorithm exploiting this technique is called DQN
(Deep Q-Network) [17], and it probably is the most famous Deep Reinforcement
Learning algorithm. Its concepts are not so different to the ones presented here,
but it includes a couple of smart ideas that are crucial to solve two problems
introduced by the approximation of the action value function with a
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Neural Network: [1]

• Moving target problem: The target estimates are computed with boot-
strapped value estimates of the next state which change as the value func-
tion is trained. This challenge, already present in tabular RL, is further
exacerbated in Deep-RL, because updating a particular state 𝑠 generalizes
so that the estimated values of many other states are changed as well.

• Breaking correlations: In many paradigms of machine learning, it is gen-
erally assumed that the data used to train the function approximation
are i.i.d. (independent from each other and identically distributed). This
assumption is typically violated in Reinforcement Learning, due to the
formalism of an environment as an MDP.

The details of how this problems are solved and the pseudocode are left
to Section 4.3, where also the Multi-Agent extension of this algorithm will be
presented.

2.7 Policy Gradient Methods

So far all the treated methods have been based on action value functions;
they learned the values of actions and then selected them based on those esti-
mates action values. In this section instead we consider methods that learn a
parameterized policy that can select actions without consulting a value function.
[24]

We write 𝜋(𝑎 |𝑠; 𝜙) = 𝑃{𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠; 𝜙} to indicate the probability of taking
action 𝑎 at time 𝑡 given that we are in state 𝑠 with policy parameters 𝜙. Clearly
the possible approximations for the policy are the same that we used before for
the action value function. Also in this case Neural Networks are the most used
functions.

Pros and Cons of Policy-Based RL:

• Pros:

1. Better convergence properties
2. Effective in high-dimensional or continuous action spaces
3. Can learn stochastic policies

• Cons:

1. Typically converge to a local rather than global optimum
2. Evaluating a policy is typically inefficient and high variance

17



2.7. POLICY GRADIENT METHODS

We want to learn the policy parameters based on the gradient of some scalar
performance measure 𝐽(𝜙) with respect to the policy. These methods seek to
maximise performance, so their updates approximate gradient ascent in 𝐽(𝜙):
[24]

𝜙𝑡+1 = 𝜙𝑡 + 𝛼∇�𝐽(𝜙𝑡) (2.16)

If we use as performance measure the true value function for 𝜋𝜙 starting from
the initial state of each episode 𝑠0 (i.e. 𝐽(𝜙𝑡) � 𝑣𝜋𝜙(𝑠0)), we have a fundamental
theoretical result, called Policy Gradient Theorem, which gives an operational
expression for ∇�𝐽(𝜙𝑡):

∇𝐽(𝜙) ∝ E𝜋[𝑄𝜋(𝑆𝑡 , 𝐴𝑡) ∇ log (𝜋(𝐴𝑡 |𝑆𝑡 ; 𝜙))] (2.17)

Clearly the proportionality constant is not a problem because it can be incorpo-
rated in the step-size 𝛼 of Equation 2.16.

Many different algorithms can be designed exploiting this setup, depending
on the choice that we make for approximating the true action value function
𝑄𝜋(𝑠, 𝑎). A widely adopted strategy is the so-called Actor Critic method, in
which we parameterize the action value function, 𝑄(𝑠, 𝑎) ≈ �̂�(𝑠, 𝑎, 𝜃). Note that
Actor Critic algorithms maintain two sets of parameters:

• Actor: Updates policy parameters 𝜙, in direction suggested by the critic

• Critic: Updates action value function parameters 𝜃

Algorithm 5 Q-Actor-Critic
Algorithm parameters: step sizes 𝛼, 𝛽 ∈ (0, 1]

for all episodes do
Initialize 𝑠
Sample 𝑎 ∼ 𝜋(𝑎 |𝑠; 𝜙)
for all steps of the episode do

Take action 𝑎, observe 𝑟, 𝑠′
Sample 𝑎′ ∼ 𝜋(𝑎′|𝑠′; 𝜙)
𝛿 = 𝑟 + 𝛾�̂�𝜋(𝑠′, 𝑎′;𝜃) − �̂�𝜋(𝑠, 𝑎;𝜃)
𝜙 = 𝜙 + 𝛼 ∇ log (𝜋(𝑎 |𝑠; 𝜙))�̂�𝜋(𝑠, 𝑎;𝜃)
𝜃 = 𝜃 − 𝛽𝛿 ∇ �̂�𝜋(𝑠, 𝑎;𝜃)
𝑠 ← 𝑠′; 𝑎 ← 𝑎′

end for(when 𝑠 is terminal)
end for
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A great number of different Actor Critic algorithms exist in literature, and
here we have presented the pseudocode of a simple example, just to give a
general idea of how this technique works. More complicated strategy will be
analyzed in Chapter 4, when we will switch to the Multi-Agent setup.
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3
Multi-Agent Reinforcement Learning

in Games

In this second chapter we will introduce the Game Theory concepts that
are fundamental for the Multi-Agent Reinforcement Learning paradigm. We
will begin by defining the different classes of game models, which allow us to
describe the setup for a MARL problem. Then we will introduce the solution
concepts that can be chosen in order to evaluate a game and decide when it can
be considered solved.

Finally we will merge the first two topics in order to define a Multi-Agent
Reinforcement Learning problem. Some tabular MARL algorithms will also be
presented, to prepare the ground for the Deep-MARL framework that we will
introduce in the next chapter, but also to show that, like in single agent RL,
tabular strategies are unfeasible to solve complex problems, and resorting to
Deep Learning techniques is the natural choice to face this kind of situations.

3.1 Hierarchy of Game Models

The Markov Decision Process (MDP) setup introduced in the previous chap-
ter is a particular case of model of multi-agent interaction. Since these models
are rooted in Game Theory, they are called games. In Figure 3.1 we show a
hierarchy of increasingly complex game models.
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Figure 3.1: Hierarchy of game models [1]

3.1.1 Matrix Games

They represent a single interaction between two or more agents.

• Finite set of agents ℐ = {1, ..., 𝑛}
• For each agent 𝑖 ∈ ℐ:

– Finite set of actions𝒜𝑖

– Reward function 𝑅𝑖 : 𝒜 → R, where𝒜 =
∏𝑛

𝑖=1𝒜𝑖

Structure of the game:

• Each agent 𝑖 selects a policy 𝜋𝑖 : 𝒜𝑖 → [0, 1]
• Each agent samples an action 𝑎𝑖 ∈ 𝒜𝑖 with probability 𝜋(𝑎𝑖). =⇒ joint

action 𝑎 = (𝑎1, ..., 𝑎𝑛)
• Each agent receives a reward 𝑟𝑖 = 𝑅𝑖(𝑎)
Matrix games are classified based on the relationship between the reward

functions of the agents. This classification is very important and it will be
mentioned many times throughout this project:

• Zero-sum game (competitive):
∑

𝑖∈ℐ 𝑅𝑖(𝑎) = 0 ∀𝑎 ∈ 𝒜
• Common reward game (cooperative): 𝑅𝑖 = 𝑅 𝑗 ∀𝑖 , 𝑗
• General-sum game: There are no restrictions
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Figure 3.2: Examples of matrix games:
(a) is a zero-sum game, (b) a common reward game and (c) a general sum game
[1]

3.1.2 Repeated Matrix Games

Repeated matrix games are the most basic way of sequential multi-agent
interaction: they repeat the same matrix game for a finite or infinite number
of steps. At each time step 𝑡 each agent samples an action 𝑎𝑡𝑖 with probability
𝜋𝑖(𝑎𝑡𝑖 |ℎ𝑡), where ℎ𝑡 = (𝑎0, ..., 𝑎𝑡−1) is the joint action history. Given 𝑎𝑡 , each agent
receives a reward 𝑟𝑡𝑖 = 𝑅𝑖(𝑎𝑡).

Besides the time index 𝑡, the important addition in repeated matrix games
is that policies can now make decisions based on the entire history of past joint
actions. [1]

3.1.3 Stochastic Games

Stochastic games define a state-based environment in which the evolution of
states and the agents’ rewards depend on the actions of all agents. [22]

The components of a stochastic game are:

• Finite set of agents ℐ = {1, ..., 𝑛}
• Finite set of states 𝒮
• For each agent 𝑖 ∈ ℐ:

– Finite set of actions𝒜𝑖 (𝒜 =
∏𝑛

𝑖=1𝒜𝑖)
– Reward function 𝑅𝑖 : 𝒮 ×𝒜 × 𝒮 → R

• State transition probability function 𝒯 : 𝒮 ×𝒜 × 𝒮 → [0, 1]
• Initial state distribution 𝑃0 : 𝒮 → [0, 1]
A stochastic game proceeds as follows:

1. Start at 𝑠0 ∈ 𝒮 sampled from 𝑃0
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2. At each time step 𝑡, each agent 𝑖 observes 𝑠𝑡 and chooses action 𝑎𝑡𝑖 with
probability given by𝜋𝑖(𝑎𝑡𝑖 |ℎ𝑡). =⇒ 𝑎𝑡 = (𝑎𝑡1, ..., 𝑎𝑡𝑛). Here ℎ𝑡 = (𝑠0, 𝑎0, ..., 𝑠𝑡)
is observed from all the agents

3. The game transitions to 𝑠𝑡+1 with probability𝒯 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), and each agent
𝑖 receives reward 𝑟𝑡𝑖 = 𝑅𝑖(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

Figure 3.3: Example of Game Models [1]

3.1.4 Partially Observable Stochastic Games (POSG)

They are the most general class of game models. As we will see, almost every
MARL problem can be defined as a POSG.

The agents receive observations which carry some incomplete information
about the environment’s state and agents’ actions.
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A POSG is defined by the same elements of a stochastic game, and addition-
ally defines for each agent 𝑖 ∈ ℐ:

• Finite set of observations 𝑂𝑖

• Observation function 𝒪𝑖 : 𝒜 ×𝒮 × 𝑂𝑖 → [0, 1]
The game proceeds as follows:

• Start at 𝑠0 ∈ 𝒮 sampled from 𝑃0

• At each time step 𝑡, each agent 𝑖 receives 𝑜𝑡𝑖 ∈ 𝑂𝑖 with probability𝒪𝑖(𝑎𝑡−1, 𝑠𝑡 , 𝑜𝑡𝑖 )
and chooses action 𝑎𝑡𝑖 with probability given by 𝜋𝑖(𝑎𝑡𝑖 |ℎ𝑡𝑖 ).
=⇒ 𝑎𝑡 = (𝑎𝑡1, ..., 𝑎𝑡𝑛). Here ℎ𝑡𝑖 = (𝑜0

𝑖 , ..., 𝑜
𝑡
𝑖 ) is specific for each agent

• The game transitions to 𝑠𝑡+1 with probability𝒯 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), and each agent
𝑖 receives reward 𝑟𝑡𝑖 = 𝑅𝑖(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

Some practical examples of game models can be seen in Figure 3.3.

3.2 Solution Concepts for Games

What is a solution to a game? This is a central question of Game Theory, and
many different solution concepts have been proposed which specify when a
collection of agent policies constitute a stable or desirable outcome. [1]

Figure 3.4: MARL problem definition [1]

3.2.1 Joint Policy and Expected Return

A game can be considered solved when we find a joint policy 𝜋 = (𝜋1, ...,𝜋𝑛)
which satisfies certain requirements defined by the solution concept in terms of
expected return, 𝐺𝑖(𝜋), yielded at each agent 𝑖 under the joint policy. [1]

Before defining the expected return in the context of the POSG model we
give some additional notation:

• ℎ̂
𝑡
= {(𝑠𝜏 , 𝑜𝜏 , 𝑎𝜏)𝑡−1

𝜏=0, 𝑠
𝑡 , 𝑜𝑡}: full history up to time 𝑡
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• 𝜎(ℎ̂𝑡) = (𝑜0, ..., 𝑜𝑡) returns the history of joint observations

•
∏

𝑖 𝒪𝑖(𝑜𝑡 |𝑎𝑡−1, 𝑠𝑡): probability of a joint observation 𝑜𝑡

At this point we can give two equivalent definitions of expected returns:

• History-based expected return: define the set �̂� to contain all full histories
ℎ̂
𝑡

for 𝑡 →∞. Then,

𝐺𝑖(𝜋) = Eℎ̂𝑡∈�̂�,ℎ̂
𝑡∼(𝑃0 ,𝒯 ,𝒪 ,𝜋)[𝑔𝑖(ℎ̂

𝑡)] =
∑
ℎ̂
𝑡∈�̂�

𝑃(ℎ̂𝑡 |𝜋)𝑔𝑖(ℎ̂𝑡) (3.1)

where,

𝑃(ℎ̂𝑡 |𝜋) = 𝑃0(𝑠0)𝒪(𝑜0 |∅, 𝑠0)
𝑡−1∏
𝜏=0

𝜋(𝑎𝜏 |ℎ𝜏)𝒯 (𝑠𝜏+1 |𝑠𝜏 , 𝑎𝜏)𝒪(𝑜𝜏+1 |𝑎𝜏 , 𝑠𝜏+1)
(3.2)

and

𝑔𝑖(ℎ̂𝑡) =
𝑡−1∑
𝜏=0

𝛾𝜏𝑅𝑖(𝑠𝜏 , 𝑎𝜏 , 𝑠𝜏+1), 𝛾 ∈ [0, 1] (3.3)

• Recursive expected return:1

𝑉𝜋
𝑖 (ℎ̂) =

∑
𝑎∈𝒜

𝜋(𝑎 |𝜎(ℎ̂))𝑄𝜋
𝑖 (ℎ̂ , 𝑎) (3.4)

𝑄𝜋
𝑖 (ℎ̂ , 𝑎) =

∑
𝑠′∈𝒮
𝒯 (𝑠′|𝑠(ℎ̂), 𝑎)[𝑅𝑖(𝑠(ℎ̂), 𝑎, 𝑠′)+𝛾

∑
𝑜′∈𝒪
𝒪(𝑜′|𝑎, 𝑠′)𝑉𝜋

𝑖 (< ℎ̂ , 𝑎, 𝑠′, 𝑜′ >)]
(3.5)

given those expressions we can define the expected return as

𝐺𝑖(𝜋) = E𝑠0∼𝑃0 ,𝑜0∼𝒪(·|∅,𝑠0)[𝑉𝜋
𝑖 (< 𝑠0, 𝑜0 >)] (3.6)

3.2.2 Best Response

Given a set of policies for all agents except agent 𝑖, denoted by 𝜋−𝑖 =

(𝜋1, ...,𝜋𝑖−1,𝜋𝑖+1, ...,𝜋𝑛), a best response for agent 𝑖 to 𝜋−𝑖 is a policy 𝜋𝑖 which
maximizes the expected return for 𝑖 when played against 𝜋−𝑖 :

BR𝑖(𝜋−𝑖) = argmax𝜋𝑖
𝐺𝑖(< 𝜋𝑖 ,𝜋−𝑖 >) (3.7)

Note that the best response is not always unique.

1Analogous to the Bellman equations used for MDP theory.
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3.2.3 Nash Equilibrium

In a general-sum game with n agent, a joint policy 𝜋 = (𝜋1, ...,𝜋𝑛) is a
Nash equilibrium (NE) if

∀𝑖 ,𝜋′𝑖 : 𝐺𝑖(𝜋′𝑖 ,𝜋−𝑖) ≤ 𝐺𝑖(𝜋) (3.8)

In a NE no agent 𝑖 can improve its expected return by changing its policy 𝜋𝑖

specified in the equilibrium joint policy 𝜋, assuming the policies of the other
agents stay fixed. [1]

=⇒ 𝜋𝑖 ∈ BR𝑖(𝜋−𝑖) ∀𝑖
Two important aspects of NE as a solution concept:
1. A NE is said to be deterministic if every policy 𝜋𝑖 in the equilibrium 𝜋 is

deterministic. However it may also be probabilistic (if at least one policy
𝜋𝑖 is probabilistic).

2. A game may have multiple Nash equilibria, and each equilibrium may
give different expected returns to the agents. This leads to the so-called
equilibrium selection problem.

Given a joint policy 𝜋, how to check if it is a NE?
For each agent 𝑖, we can keep the other policies 𝜋−𝑖 fixed and compute an

optimal best-response policy 𝜋′𝑖 for 𝑖. If 𝐺𝑖(𝜋′𝑖 ,𝜋−𝑖) > 𝐺𝑖(𝜋𝑖 ,𝜋−𝑖), then we know
that 𝜋 is not a NE. [1]

3.2.4 Correlated Equilibrium

A restriction in Nash equilibria is that the policies must be probabilistically
independent. The correlated equilibrium generalizes the NE by allowing for
correlation between policies.

In a general-sum game with n agents, let 𝜋𝑐(𝑎 |ℎ) be a joint policy which
assigns conditional probabilities to joint actions 𝑎 ∈ 𝒜 given joint obser-
vation history ℎ.

Let 𝜙𝑖 : 𝒜𝑖 →𝒜𝑖 be an action modifier for agent 𝑖. Then, 𝜋𝑐 is a correlated
equilibrium if for all full histories ℎ̂ , 𝑖 and 𝜙𝑖 :∑

𝑎∈𝒜
𝜋𝑐(𝑎 |𝜎(ℎ̂))(𝑄𝜋𝑐

𝑖 (ℎ̂ , < 𝜙𝑖(𝑎𝑖), 𝑎−𝑖 >) −𝑄𝜋𝑐
𝑖 (ℎ̂ , 𝑎)) ≤ 0 (3.9)

where 𝜎(𝑡) = (𝑜0, ..., 𝑜𝑡).
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Clearly the set of CE contains the set of NE.
To better understand the concept of Correlated equilibrium we may consider

each action recommendation 𝑎𝑖 given by 𝜋𝑐 to be a best response to the actions
𝑎−𝑖 recommended to the other agents.

3.2.5 Conceptual Limitations of Equilibrium Solutions
• Sub-Optimality: In general, finding equilibrium solutions is not synony-

mous with maximising expected returns.

• Non-Uniqueness: Which of the different equilibria should the agents
adopt, and how can they agree on a specific equilibrium? One approach
to tackle equilibrium selection is to use additional criteria such as Pareto
optimality and social welfare and fairness (see Sections 3.2.6 and 3.2.7).

• Incompleteness: An equilibrium solution𝜋 is incomplete in the sense that
it does not specify equilibrium behaviours for off-equilibrium paths. An
off-equilibrium path is any full history ℎ̂ which has probability 𝑃(ℎ̂ ,𝜋) = 0
under the equilibrium 𝜋.

3.2.6 Pareto Optimality

We want to narrow down the space of equilibrium solutions by requiring
additional criteria that a solution must achieve. One such criterion is Pareto
optimality:

A joint policy 𝜋 is Pareto-dominated by another joint policy 𝜋′ if:

∀𝑖 : 𝐺𝑖(𝜋′) ≥ 𝐺𝑖(𝜋) and ∃𝑖 : 𝐺𝑖(𝜋′) > 𝐺𝑖(𝜋)

A joint policy 𝜋 is Pareto-optimal if it is not Pareto-dominated by any other
joint policy. We then also refer to the expected returns entailed by 𝜋 as
Pareto-optimal.

3.2.7 Social Welfare and Fairness

Pareto optimality does not make any statements about the total amount
of rewards and their distribution among the agents. Thus, we may consider
concepts of social welfare and fairness to further constrain the space of desirable
solutions:
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The social welfare of a joint policy 𝜋 is defined as 𝑊(𝜋) = ∑
𝑖∈ℐ 𝐺𝑖(𝜋)

A joint policy 𝜋 is welfare-optimal if 𝜋 ∈ argmax𝜋′𝑊(𝜋′)

The social fairness of a joint policy 𝜋 is defined as 𝐹(𝜋) = ∏
𝑖∈ℐ 𝐺𝑖(𝜋)

A joint policy is fairness-optimal if 𝜋 ∈ argmax𝜋′𝐹(𝜋′)

It is easy to prove that welfare optimality implies Pareto optimality.

3.2.8 No Regret

The regret measures the difference between the rewards an agent received
and the rewards it could have received if it had chosen a different action in the
past against the observed actions of the other agents. Given a full history ℎ̂

𝑡
, the

regret of agent 𝑖 for not having chosen action 𝑎𝑖 is defined as:

𝑅𝑒𝑔𝑟𝑒𝑡𝑖(𝑎𝑖 | ℎ̂𝑡) =
𝑡−1∑
𝜏=0

𝑅𝑖(𝑠𝜏 , < 𝑎𝑖 , 𝑎𝜏−𝑖 >, 𝑠
𝜏+1) − 𝑅𝑖(𝑠𝜏 , 𝑎𝜏 , 𝑠𝜏+1) (3.10)

=⇒ The regret is a function of the history, and it is independent of the joint
policy that generated that history.

A joint policy 𝜋 exhibits no regret if

∀𝑖 , 𝑎𝑖 : lim
𝑡→∞

1
𝑡
𝑅𝑒𝑔𝑟𝑒𝑡𝑖(𝑎𝑖 | ℎ̂𝑡) ≤ 0 (3.11)

for all full histories ℎ̂
𝑡

with 𝑃(ℎ̂𝑡 |𝜋) > 0

Despite its possible interesting applications, the regret has a conceptual limita-
tion: indeed it assumes that the action of other agents −𝑖 remain fixed in the
history. This assumption is violated if the other agents condition their action
choices on the past actions of agent 𝑖.

From this it also follows that minimising regret is not necessarily equivalent
to maximising returns.
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3.3 Tabular Multi-Agent Reinforcement Learning

3.3.1 General Learning Process

In classical Machine Learning, we call learning the process which optimises
a model or function based on data. In our setting, the model is a joint policy
consisting in policies for each agent, and the data consists in one or more histories
in the game. The core elements of a learning process are:

• Game model: see Section 3.1
• Data: set of z histories 𝐷𝑧 = {ℎ𝑡 ,𝑒 |1 ≤ 𝑒 ≤ 𝑧}, 𝑧 ≥ 0. Each history ℎ𝑡 ,𝑒 was

produced by a joint policy 𝜋𝑒 , used during episode 𝑒. 𝑡 is the length of the
episode, which can be variable.

• Learning algorithm L: 𝜋𝑧+1 = L(𝐷𝑧 ,𝜋𝑧)
• Learning goal: policy𝜋∗which satisfies the properties of a chosen solution

concept (introduced in the previous section).

3.3.2 Convergence Types

The main theoretical evaluation criterion is:

lim
𝑧→∞𝜋𝑧 = 𝜋∗ (3.12)

Sometimes we can also use weaker types of convergence:
• Convergence of expected return: lim𝑧→∞ 𝐺𝑖(𝜋𝑧) = 𝐺𝑖(𝜋∗) ∀𝑖 ∈ ℐ
• Convergence of empirical action distribution: lim𝑧→∞ �̄�𝑧 = 𝜋∗

where �̄�𝑧(𝑎 |ℎ) = 1
𝑧
∑𝑧

𝑥=1 𝜋
𝑥(𝑎 |ℎ)

• Convergence of average return: lim𝑧→∞ 𝐺𝑖(𝜋𝑧¯ ) = 𝐺𝑖(𝜋∗) ∀𝑖 ∈ ℐ
In large and complex games, it is almost always computationally intractable

to check for these convergence properties. Instead, a common approach is to
monitor the expected returns 𝐺𝑖(𝜋𝑧) achieved by the joint policy as 𝑧 increases,
usually by visualising learning curves that show the progress of expected returns
during learning. That is also what we will do when we will evaluate our
experimental results in Chapter 6.

At this point we are ready to introduce some different strategies for designing
tabular MARL algorithms.
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3.3.3 Central Learning

In this approach we train a single central policy 𝜋𝑐 , which receives the local
observations from all the agents and selects an action for each one of them, by
selecting joint actions from 𝒜 = 𝒜1 × ... × 𝒜𝑛 . It essentially is a way to reduce
the problem to a single agent RL setup.

Algorithm 6 Central Q-Learning
Algorithm parameters: small 𝜖 > 0, step size 𝛼 ∈ (0, 1]
Initialize: 𝑄(𝑠, 𝑎) = 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜

for all episodes do
for all steps 𝑡 of the episode do

Observe current state 𝑠𝑡

Choose 𝑎𝑡 from 𝑠𝑡 using policy derived from Q (e.g. 𝜖-greedy)
Take action 𝑎𝑡 , observe rewards 𝑟𝑡1, ..., 𝑟

𝑡
𝑛 and next state 𝑠𝑡+1

Transform 𝑟𝑡1, ..., 𝑟
𝑡
𝑛 into scalar reward 𝑟𝑡

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max𝑎′ 𝑄(𝑠𝑡+1, 𝑎′) −𝑄(𝑠𝑡 , 𝑎𝑡)]
end for

end for

Despite the advantages that this approach could give in circumventing the
multi-agent aspects of the non-stationarity and credit assignment problems, in
practice it has a number of limitations:

1. How to transform the joint reward (𝑟1, ..., 𝑟𝑛) into a single scalar reward
𝑟? It is easy for common-reward games, where 𝑟𝑖 = 𝑟 ∀𝑖 ∈ [1, 𝑛], but very
complicated for zero-sum and general-sum games.

2. The action space grows exponentially in the number of agents.

3. Agents are often localised entities which are physically or virtually dis-
tributed =⇒ they need a local policy 𝜋𝑖 , based just on local observations.2

3.3.4 Independent Learning

This approach is conceptually the opposite of the previous one. Here each
agent learns its own policy𝜋𝑖 using only the local history of its own observations,

2This is the main reason for which we will not use Central Learning for Autonomous Driving.
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actions and rewards, while ignoring the existence of other agents (which are
considered as part of the environment).

Note that this again a way to go back to a single agent RL problem, this time
seen from the perspective of each agent.

Algorithm 7 Independent Q-Learning
The algorithm must be run in parallel for each agent 𝑖
Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0
Initialize: 𝑄𝑖(𝑠, 𝑎𝑖) = 0 for all 𝑠 ∈ 𝒮 , 𝑎𝑖 ∈ 𝒜𝑖

for all episodes do
for all steps 𝑡 of the episode do

Observe current state 𝑠𝑡

Choose 𝑎𝑡𝑖 from 𝑠𝑡 using policy derived from 𝑄𝑖 (e.g. 𝜖-greedy),
meanwhile other agents 𝑗 ≠ 𝑖 choose their actions 𝑎𝑡𝑗
Observe action 𝑎𝑡 , own reward 𝑟𝑡𝑖 and next state 𝑠𝑡+1

𝑄𝑖(𝑠𝑡 , 𝑎𝑡𝑖 ) ← 𝑄(𝑠𝑡 , 𝑎𝑡𝑖 ) + 𝛼[𝑟𝑡𝑖 + 𝛾 max𝑎′𝑖 𝑄(𝑠𝑡+1, 𝑎′𝑖) −𝑄(𝑠𝑡 , 𝑎𝑡𝑖 )]
end for

end for

From the perspective of each agent 𝑖 the policies 𝜋 𝑗 of other agents 𝑗 ≠ 𝑖

become part of the environment’s state transition function:

𝒯𝑖(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡𝑖 ) = 𝜂
∑

𝑎−𝑖∈𝒜−𝑖
𝒯 (𝑠𝑡+1 |𝑠𝑡 , < 𝑎𝑡𝑖 , 𝑎−𝑖 >)

∏
𝑗≠𝑖

𝜋 𝑗(𝑎 𝑗 |𝑠𝑡) (3.13)

This fact gives rise to a non-stationarity problem caused by the concurrent
learning of all agents, and in some cases it may produce unstable learning and
it may not converge to any solution of the game.

Despite this downside, independent learning algorithms are still competitive
with state-of-the-art MARL algorithms, as we will see in the following chapters.

3.3.5 TD Learning for Games: Joint Action Learning

Joint Action Learning (JAL) refers to a family of MARL algorithms based on
Temporal Difference Learning which seek to address the issues present both in
Central and Independent Learning.
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Given the action value function for each agent 𝑖 under joint policy 𝜋:

𝑄𝜋
𝑖 (𝑠, 𝑎) =

∑
𝑠′∈𝒮
𝒯 (𝑠′|𝑠, 𝑎)[𝑅𝑖(𝑠, 𝑎, 𝑠′) + 𝛾

∑
𝑎′∈𝒜

𝜋(𝑎′|𝑠′)𝑄𝜋
𝑖 (𝑠′, 𝑎′)] (3.14)

the aim is to learn equilibrium values for the Q-function 𝑄𝜋∗
𝑖 , where 𝜋∗ is an

equilibrium joint policy for the stochastic game.

To learn equilibrium values we can use the solution concepts from Game
Theory introduced in the previous sections. The idea is to view the set of joint
action values 𝑄1(𝑠, ·), ..., 𝑄𝑛(𝑠, ·) as a matrix game Γ𝑠 for state 𝑠, in which the
reward function for agent 𝑖 is given by:

𝑅𝑖(𝑎1, ..., 𝑎𝑛) = 𝑄𝑖(𝑠, 𝑎1, ..., 𝑎𝑛) (3.15)

Just to give a visual example, consider a stochastic game with two agents 𝑖 and
𝑗, and three possible actions for each agent. The matrix game Γ𝑠 = {Γ𝑠,𝑖 , Γ𝑠, 𝑗} in
each state 𝑠 can be written as:

Γ𝑠,𝑖 =


𝑄𝑖(𝑠, 𝑎𝑖,1, 𝑎 𝑗,1) 𝑄𝑖(𝑠, 𝑎𝑖 ,1, 𝑎 𝑗,2) 𝑄𝑖(𝑠, 𝑎𝑖 ,1, 𝑎 𝑗 ,3)
𝑄𝑖(𝑠, 𝑎𝑖,2, 𝑎 𝑗,1) 𝑄𝑖(𝑠, 𝑎𝑖 ,2, 𝑎 𝑗,2) 𝑄𝑖(𝑠, 𝑎𝑖 ,2, 𝑎 𝑗 ,3)
𝑄𝑖(𝑠, 𝑎𝑖,3, 𝑎 𝑗,1) 𝑄𝑖(𝑠, 𝑎𝑖 ,3, 𝑎 𝑗,2) 𝑄𝑖(𝑠, 𝑎𝑖 ,3, 𝑎 𝑗 ,3)


with an analogous matrix Γ𝑠, 𝑗 for agent 𝑗 using 𝑄 𝑗 .

After having solved Γ𝑠 at each time step to get the joint policy 𝜋, we perform
action selection following an 𝜖-greedy approach. Finally each action value
function 𝑄𝑖 is updated following a rule very similar to the one in the 𝑄-Learning
algorithm.

Starting from the pseudocode written in the next page we can build many
different algorithms, by choosing which solution concept to adopt for solving
the matrix game at each time step to get the policies (𝜋1, ...,𝜋𝑛).

An example could be that of using Nash Equilibrium as solution concept,
but we must notice that highly restrictive assumptions are needed to solve the
problem.

Another choice could be that of computing Correlated Equilibria. This has
the benefit of being easier to compute, but since the space of correlated equilibria
is in general larger than the space of Nash equilibria, the equilibrium selection
problem would become even more pronounced.
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Algorithm 8 Joint Action Learning with Game Theory
The algorithm must be run in parallel for each agent 𝑖
Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0
Initialize: 𝑄𝑖(𝑠, 𝑎) = 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜, 𝑖 ∈ ℐ

for all episodes do
for all steps 𝑡 of the episode do

Observe current state 𝑠𝑡

With probability 𝜖 choose random action 𝑎𝑡𝑖
Else: solve Γ𝑠𝑡 to get policies (𝜋1, ...,𝜋𝑛), then sample action 𝑎𝑡𝑖 ∼ 𝜋𝑖

Observe joint action 𝑎𝑡 , rewards 𝑟𝑡1, ..., 𝑟
𝑡
𝑛 and next state 𝑠𝑡+1

for all 𝑖 ∈ ℐ do
𝑄𝑖(𝑠𝑡 , 𝑎𝑡) ← 𝑄𝑖(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡𝑖 + 𝛾𝑉𝑎𝑙𝑢𝑒𝑖(Γ𝑠𝑡+1) −𝑄𝑖(𝑠𝑡 , 𝑎𝑡)]
# where 𝑉𝑎𝑙𝑢𝑒𝑖(Γ𝑠𝑡+1) =

∑
𝑎∈𝒜 Γ𝑠𝑡+1 ,𝑖(𝑎)𝜋𝑠+1(𝑎)

end for
end for

end for

3.3.6 The complexity of computing equilibria

Up to these days no efficient MARL algorithm has been developed to compute
Nash equilibria in polynomial time, and it has also been shown [2] that it is likely
that such algorithm does not even exist. Indeed it is probable that any MARL
algorithm will require exponential time in the worst case.

For this reason when we will switch to the Deep-MARL framework in the
next chapter we will not look for theoretical proofs of convergence to some kind
of equilibria, but we will instead focus on the empirical results that an algorithm
is able to achieve when trying to solve a particular problem.
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4
Deep-MARL Framework and

Algorithms

As we saw in the previous chapters, Multi-Agent Reinforcement Learning
is a research area in the middle between Machine Learning and Game Theory.
The latter gives us the theoretical foundations and solution concepts, while the
former is the crucial tool that can help us to exploit data in order to solve real
problems. Indeed we saw at the end of last chapter that when facing a complex
task, it is usually impossible to find closed form solutions or convergence proofs,
but we have to resort to learning methods in order to solve the problem.

Starting from this chapter we enter in the core part of the thesis. We will begin
by analyzing the crucial challenges of a Multi-Agent Reinforcement Learning
problem, that must be kept in mind every time we want to design a MARL
algorithm. Later we will give a brief overview and classification of Deep-MARL
algorithms, to introduce the different paradigms and strategies that currently
exist to face a Multi-Agent Reinforcement Learning problem.

Finally we will describe in depth the four algorithms that we will use in the
experimental part of the thesis, to face Multi-Agent Autonomous Driving sce-
narios. These algorithms have been chosen both because they are representative
of the three important categories of MARL algorithms, and also because they
are among the most used algorithms in literature.
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4.1 Challenges of Multi-Agent RL

Due to its huge complexity, there exist a number of challenges that make the
search for a solution in a MARL problem really difficult. Moreover this issues
are summed to the ones already present in the single agent Deep-RL scenario.
For these reasons a universal strategy to solve MARL problems does not exist.
This is for some reasons a flaw, but it is also what makes this research area very
interesting and potentially extremely powerful.

In this section we will talk about the three main challenges of a Multi-Agent
Reinforcement Learning problem.

4.1.1 Non-stationarity caused by learning agents

Before talking of the non-stationarity problem caused by the presence of
multiple agents, we must note that non-stationarity already existed in the single
agent RL setup. This is because in an MDP the stochastic process 𝒳𝑡 , which
samples the state 𝑠𝑡 at each time step 𝑡 is non-stationary. Indeed it is com-
pletely defined by the state transition probability function 𝒯 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1) and
the agent’s policy 𝜋, which selects actions 𝑎𝑡 ∼ 𝜋(·|𝑠𝑡). The fact that the latter
changes over time makes the process 𝒳𝑡 non-stationary.

This problem becomes much bigger in the multi-agent setup, because all the
agents change their policy over time, and for this reason the entire environment
appears to be non-stationary from the point of view of each agent. This is one
of the main reasons for which designing MARL algorithms that have useful
learning guarantees is very difficult and subject of ongoing research. [1]

4.1.2 Multi-Agent Credit Assignment

Similarly to the non-stationarity problem, also the credit assignment is a
challenge already present in single agent RL. In that case we talk about temporal
credit assignment. It essentially is the problem of determining, during the
learning process, which specific actions have been crucial to achieve the objective
of the task.

This is extremely difficult, because many times the positive reward is given
just at the end of the episode, and understanding which actions, maybe far away
in the past, have been crucial to achieving a particular result is very complex.
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In the multi-agent setting this problems is much bigger, because on top of the
temporal credit assignment problem we also have to understand which agents
performed crucial actions for reaching a certain result. To summarize:

Credit assignment in RL is the problem of determining which past actions
have contributed to received rewards. In Multi-Agent RL, there is the
additional question of whose actions among multiple agents contributed to
the rewards. [1]

An interesting way to face multi-agent credit assignment consists in attributing
values to joint actions. This can be easily seen in a simple example of the famous
Rock-Paper-Scissors game. Consider the two agents select actions (𝑎1, 𝑎2) =
(Rock,Scissors) and agent 1 receives a reward of +1. Then they choose actions
(𝑎1, 𝑎2) = (Rock,Paper) and agent 1 receives a reward of -1.

If agent 1 uses an action value function 𝑄(𝑠, 𝑎1) which depends just on 𝑎1,
the average value of taking action 𝑅 would be 0, and this does not represent
well the impact of agent 2’s action. On the contrary, a joint action value function
𝑄(𝑠, 𝑎1, 𝑎2) can correctly represent the impact of agent 2’s action when agent 1
plays Rock.

4.1.3 Scaling to many Agents

An important goal of MARL is that of scaling efficiently to many agents.
Indeed up to these days state-of-the-art MARL algorithms can efficiently manage
a small number of agents in complex problems (usually not more than 5/6, but
in many problems we are limited to just 2/3 agents). This goal is complicated
mainly by the fact that the joint action space can grow exponentially with the
number of agents.

Clearly the use of Deep Learning approaches in Multi-Agent Reinforcement
Learning algorithms is driven also by the purpose of improving scalability.

4.2 Classification of MARL algorithms

Multi-Agent Reinforcement Learning algorithms1 can be divided into three
big categories, depending on the type of information available to the agents

1Since from now on we will only talk about Deep-MARL algorithms, we will drop the prefix
"Deep" for ease of notation.
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during training and execution:

• Centralized Training and Execution (CTCE)

• Decentralized Training and Execution (DTDE)

• Centralized Training and Decentralized Execution (CTDE)

4.2.1 Centralized Training and Execution

This paradigm will be analyzed very shortly, since it is not suitable to address
the Autonomous Driving challenge. Similarly to Section 3.3.3, we consider all
the 𝑛 agents as a single entity, which observes the global state 𝑠 at each time
step and takes a joint action 𝑎 = (𝑎1, ..., 𝑎𝑛). This setup remains the same both at
training and test time.

This is a simple approach and it is able to address some of the MARL chal-
lenges, but just because we are reducing the problem to the single agent setup.
The reasons for which this approach is almost never used in practice are evident,
and they are the same explained in Section 3.3.3. For Autonomous Driving in
particular, we cannot realistically expect to transmit and receive sensor infor-
mation among the different vehicles in real time, and even if it was possible,
learning a centralized policy to control all vehicles would be very difficult due
to the complexity of the problem.

4.2.2 Decentralised Training and Execution

This approach is on the opposite extreme with respect to the CTCE paradigm.
In this setup we treat each agent in a completely independent way, both at
training and test time. As we already saw in Section 3.3.4, this is again a way
to go back to the single agent case, but this time from the perspective of each
agent.

This paradigm is interesting because it can improve scalability, since it avoids
the exponential growth in the action space. However training can be highly
affected by non-stationarity, because from the point of view of each agent the
environment dynamics is continuously changing due to the varying policies of
the other agents.
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Despite of this downside, DTDE algorithms are still widely used in Multi-
Agent Reinforcement Learning problems because they have shown good empir-
ical results in an important variety of situations.

In our case of study, Autonomous Driving in traffic scenarios, we will test the
most famous DTDE algorithm, called Independent Deep Q-Networks, which,
as we will see, is able to achieve surprisingly good results in all the developed
scenarios.

For a detailed explanation and pseudocode of this algorithm we refer to
Section 4.3.

4.2.3 Centralized Training and Decentralized Execution

This third paradigm tries to combine the benefits of the previous two, by
allowing the agents to access global information during training, while relying
just on their local observations at test time.

This can be useful to reduce the non-stationarity problem of the DTDE
paradigm, while keeping the possibility of having physically or virtually dis-
tributed agents, which is a crucial aspect in a major number of applications.

In literature there exist both policy-based and value-based CTDE algorithms.
The former is a category mainly composed by (Multi-Agent) Actor-Critic algo-
rithms, where the critic is learnt using global information. The policy of each
agent is instead trained exploiting this global critic, but at test time it is only
dependent on the local observations of the corresponding agent.

These algorithms are interesting because they can be applied both in common-
reward and general-sum games, but they have the downside of being high vari-
ance, like the policy-based algorithms in single agent RL.

In the experimental part of the thesis we will test one of the first but yet most
used policy-based CTDE algorithms, called Multi-Agent Deep Deterministic
Policy Gradient (MADDPG). Its detailed analysis is postponed to Section 4.4.

Finally the second category of CTDE algorithms consists of value-based
strategies that exploit a technique called value decomposition. The starting
point for this strategy is a centralized action value function that is conditioned
on the observations and actions of all the agents. To allow for local execution
this function is then decomposed into different utility functions, one for each
agent.

For simplicity we can think of the utility function of each agent as if it was
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its local action value function. Also here training is centralized, while the action
selection step of each agent just relies on its local observations, exploiting the
utility function and following some exploration-based policy, like the already
mentioned 𝜖-greedy strategy.

Different value based CTDE algorithms exist, depending on the strategy that
we use to decompose the centralized action value function. For our Autonomous
Driving challenge we will test both the VDN and the QMIX algorithms (for their
thorough description see Section 4.5).

4.3 Independent Deep Q-Networks

Independent Deep Q-Networks (IDQN) is a DTDE strategy that exploits the
famous DQN algorithm [17] in the Multi-Agent setup, by simply running it in
parallel for each agent.

As already discussed in Section 2.6, DQN is the Deep Learning extension
of the Q-Learning algorithm, where the action value function is approximated
using a Neural Network. In particular we use an architecture called Convolu-
tional Network (CNN) [14], which has been specifically developed to work with
images. For this reason when using this algorithm the observation of each agent
has to be an image.

Figure 4.1: Example of CNN to approximate the action value function [17]
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Usually the network takes as input the observation of the agent and outputs
the corresponding Q-value function for each possible action.

As we already said in Chapter 2, simply substituting the tabular Q-function
with a CNN is not sufficient, because we have to deal with a couple of problems
introduced by the fact that we are approximating the action value function with
a Neural Network (recall Section 2.6):

• Moving target problem:

we use an iterative update that adjusts the action values toward target
values that are only periodically updated, thereby reducing correlations
with the target. [17]

In other words, we keep a copy of the Q-Network and we use it when
computing the targets values for the Q-Learning update, but we modify
its parameters only periodically, in order to reduce correlations between
the current Q-function and the target.

• Breaking correlations:

we use a biologically inspired mechanism termed experience replay that
randomizes over the data, thereby removing correlations in the obser-
vation sequence and smoothing over changes in the data distribution.
[17]

To do that we initialize a replay buffer for each agent, and at each time step
we store the agent’s experience (𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑜𝑡+1). Then, during learning we
draw uniformly at random minibatches of experience ℬ, and we perform
a learning step using these data. In this way we remove the correlation
between consecutive samples.

Finally we recall that in the learning phase we update the parameters of the
network of each agent by minimising the following loss function:

ℒ(𝜃𝑖) =
1
𝐵

∑
(ℎ𝑡𝑖 ,𝑎𝑡𝑖 ,𝑟𝑡𝑖 ,ℎ𝑡+1

𝑖 )∈ℬ
(𝑟𝑡𝑖 + 𝛾 max

𝑎𝑖
𝑄𝑖(ℎ𝑡+1

𝑖 , 𝑎𝑖 ; �̄�𝑖) −𝑄𝑖(ℎ𝑡𝑖 , 𝑎𝑡𝑖 ;𝜃𝑖))2 (4.1)

As we can see from the pseudocode in the following page, the structure
of the algorithm is very similar to Q-Learning, except for the peculiarities just
discussed and fact that we must run it in parallel for all the agents.

The DTDE paradigm in this algorithm is quite clear, indeed each agent is
completely independent with respect to the others, both at training and test
time.
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Algorithm 9 Independent Deep Q-Networks
Initialize 𝑛 action value networks 𝑄𝑖 with random parameters 𝜃1, ..., 𝜃𝑛
Initialize 𝑛 target action value networks �̄� 𝑖 with parameters
�̄�1 = 𝜃1, ..., �̄�𝑛 = 𝜃𝑛
Initialize a replay buffer for each agent𝒟1, ...,𝒟𝑛

for all episodes do
Collect environment observations 𝑜0

1 , ..., 𝑜
0
𝑛

for all time steps 𝑡 of the episode do
for agent 𝑖 = 1, ..., 𝑛 do

With probability 𝜖 select a random action 𝑎𝑡𝑖
otherwise select 𝑎𝑡𝑖 = argmax𝑎𝑄𝑖(ℎ𝑡𝑖 , 𝑎;𝜃𝑖), where ℎ𝑡𝑖 = (𝑜0

𝑖 , ..., 𝑜
𝑡
𝑖 )

end for
Apply actions and collect observations 𝑜𝑡+1

𝑖 and rewards 𝑟𝑡𝑖 for all the
agents
Store transitions in the replay buffers𝒟1, ...,𝒟𝑛
for agent 𝑖 = 1, ..., 𝑛 do

Sample random mini-batch of transitions from replay buffer𝒟𝑖
Update parameters 𝜃𝑖 by minimising the loss function
from Equation 4.1

end for
Every 𝑘 steps, update target network parameters �̄�𝑖 for each agent 𝑖

end for
end for

Before moving to the next algorithm, we will briefly introduce two possible
variations to the IDQN algorithm, that can improve its performances. Since these
two strategies are not mutually exclusive, we will have four possible versions
of the IDQN algorithm, and in the experimental section of this work we will
analyze them all, highlighting the different results among them.

4.3.1 Independent Double-DQN (IDDQN)

A problem of Q-Learning, and consequently also of DQN, is that sometimes
it overestimates action values. In some conditions this is not necessarily a
problem, but if overestimations are not uniform, then they might negatively
affect the quality of the resulting policy.

To address this issue, a slight modification to the standard DQN algorithm
has been proposed some years ago [29]. Consider the standard update target
𝑟+𝛾 max𝑎′ 𝑄(𝑠, 𝑎′; �̄�). It has been shown that what leads to overoptimistic value
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estimates is the fact that in the max operator we are using the same values
both to select and to evaluate an action. To solve this problem the key idea
is to decouple the action selection and evaluation step, by using two different
networks (recall that now we are just using the target network). For this reason
we exploit the online network in the action selection step, while we keep using
the target network for evaluation. Finally the new update target becomes:

𝑟 + 𝛾𝑄(𝑠, argmax𝑎′𝑄(𝑠, 𝑎′;𝜃); �̄�) (4.2)

Note that the pseudocode for the IDDQN algorithm is exactly the same of IDQN,
apart from the slight modification of the update target in the loss function
equation (4.1).

4.3.2 Independent Dueling-DQN

This second modification comes from the fact that in many RL and also MARL
problems there are some states where actions do not affect the environment in
any relevant way. In order to learn which states are (or not) valuable, the dueling
architecture has been developed. [31]

As the name suggests, the modification brought by this approach is on the
architecture of the Neural Network, not on the structure of the algorithm.

Figure 4.2: Comparison between the classical structure of a Deep Q-Network
(top) and the Dueling architecture (bottom) [31]
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Looking at Figure 4.2 we can see that the dueling architecture consists of two
streams that are combined through an aggregating layer to produce an estimate
of the action value function.

The first stream approximates the state value function, giving the information
of how good it is to be in a particular state. The second stream instead estimates
the advantage function 𝐴, defined in this way:

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠) (4.3)

This function gives a relative measure of the importance of each action in a
particular state.

When designing the network architecture, a naïve approach could be that of
building the aggregated model like this: 𝑄(𝑠, 𝑎;𝜃, 𝛼, 𝛽) = 𝑉(𝑠;𝜃, 𝛽)+𝐴(𝑠, 𝑎;𝜃, 𝛼)2.
This equation however is unidentifiable, in the sense that given 𝑄 we cannot
recover 𝑉 and 𝐴 uniquely.

To address this issue we can implement different strategies, and for our
Autonomous Driving application we decided to choose the following because it
increased the stability of the optimization:

𝑄(𝑠, 𝑎;𝜃, 𝛼, 𝛽) = 𝑉(𝑠;𝜃, 𝛽) + (𝐴(𝑠, 𝑎;𝜃, 𝛼) − 1
|𝒜|

∑
𝑎′

𝐴(𝑠, 𝑎′;𝜃, 𝛼)) (4.4)

As we will see, this network architecture is particularly suited for the Multi-
Agent Autonomous Driving problem, because the value stream can learn to pay
attention to the road, while the advantage stream learns to pay attention when
there are cars in front, in order to avoid collisions.

4.4 Multi-Agent Deep Deterministic Policy Gradient

The second algorithm that we will consider is Multi-Agent Deep Determin-
istic Policy Gradient (MADDPG) [15]. It is one of the first Multi-Agent policy
gradient algorithms following the CTDE paradigm.

Its core idea consists in extending the single agent Actor Critic policy gradient

2Here, 𝜃 denotes the parameters of the convolutional layers, while 𝛼 and 𝛽 are the parameters
of the two streams of fully connected layers.
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method to the Multi-Agent setup. To do that we augment the critic of each agent
with extra information about the policy of other agents, while each policy relies
just on the local observations of the corresponding agent.

Figure 4.3: Structure of Multi-Agent centralized critic, decentralized actor [15]

Similarly to Section 2.7, when we introduced the policy gradient theorem,
we can write the gradient of the expected return for agent 𝑖, 𝐽(𝜃𝑖) = E𝜋[𝑟𝑖] as:

∇𝜃𝑖 𝐽(𝜃𝑖) = E𝑥,𝑎𝑖∼𝜋𝑖 [∇𝜃𝑖 log 𝜋𝑖(𝑎𝑖 |𝑜𝑖)𝑄𝜋
𝑖 (𝑥, 𝑎1, ..., 𝑎𝑛)] (4.5)

where 𝑄𝜋
𝑖 (𝑥, 𝑎1, ..., 𝑎𝑛) is the centralized action value function that takes as

input the actions of all the 𝑛 agents, and some state information 𝑥, which is the
concatenation of all the agents’ observations.

This idea can be extended to handle deterministic policies, with a slight
modification of the gradient’s expression:

∇𝜃𝑖 𝐽(𝜇𝑖) = E𝑥,𝑎∼𝒟[∇𝜃𝑖𝜇𝑖(𝑎𝑖 |𝑜𝑖)∇𝑎𝑖𝑄𝜇
𝑖 (𝑥, 𝑎1, ..., 𝑎𝑛)|𝑎𝑖=𝜇𝑖(𝑜𝑖)] (4.6)

Note that also in this case we are using a replay buffer𝒟, containing the tuples
(𝑥, 𝑥′, 𝑎1, ..., 𝑎𝑛 , 𝑟1, ..., 𝑟𝑛).

Finally, the centralized action value function of each agent 𝑄𝜇
𝑖 is updated in

this way:

ℒ(𝜃𝑖) = E𝑥,𝑎,𝑟,𝑥′[(𝑄𝜇
𝑖 (𝑥, 𝑎1, ..., 𝑎𝑛) − 𝑦)2], 𝑦 = 𝑟𝑖 + 𝛾𝑄𝜇′

𝑖 (𝑥′, 𝑎′1, ..., 𝑎′𝑛)|𝑎′𝑗=𝜇′𝑗(𝑜 𝑗)
(4.7)
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The general structure of the algorithm is very similar to the single agent
Actor Critic algorithm presented in Section 2.7, except for the normal extensions
necessary to handle the Multi-Agent setup, as visible from Algorithm 10.

Algorithm 10 Multi-Agent Deep Deterministic Policy Gradient
for all episodes do

Initialize a random process𝒩 for action exploration
Receive initial state 𝑥0 = (𝑜0

1 , ..., 𝑜
0
𝑛)

for all time steps 𝑡 of the episode do
for agent 𝑖 = 1, ..., 𝑛 do

Select action 𝑎𝑡𝑖 = 𝜇𝑖(𝑜𝑡𝑖 )
end for
Execute actions 𝑎 = (𝑎1, ..., 𝑎𝑛) and observe rewards 𝑟𝑡𝑖 , ..., 𝑟

𝑡
𝑛 and new

state 𝑥𝑡+1 = (𝑜𝑡+1
1 , ..., 𝑜𝑡+1

𝑛 )
Store (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑥𝑡+1) in a replay buffer𝒟
for agent 𝑖 = 1, ..., 𝑛 do

Sample random mini-batch of 𝐵 transitions (𝑥, 𝑎, 𝑟, 𝑥′) from replay
buffer𝒟
Update the critic by minimising the loss from Equation 4.7
Update the actor using the sampled policy gradient recovered from
Equation 4.6

end for
Every 𝑘 steps, update target network parameters for each agent 𝑖:

�̄�𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)�̄�𝑖 (4.8)

end for
end for

In this algorithm we can see the typical approach for exploring the environ-
ment when using policy-based methods, that is to perturb the action given by
the policy using some kind of noise (usually white Gaussian noise). Clearly
this step is performed only during training, while at test time we remove the
perturbation to maximise the performances.

Like in IDQN, also in this algorithm we use target networks to reduce the
moving target problem when optimizing both the actor and the critic. However,
differently from before, we perform a soft update for the parameters of the target
networks every 𝑘 time steps (see Equation 4.8).

46



CHAPTER 4. DEEP-MARL FRAMEWORK AND ALGORITHMS

4.5 Value Decomposition Networks & QMIX

The last two algorithms that we will analyze and later on test in the experi-
mental part of the thesis are Value Decomposition Networks (VDN) and QMIX.
They both are value-based algorithms following the Centralized Training and
Decentralized Execution paradigm.

The starting point for both the algorithms is a centralized action value func-
tion 𝑄(𝑠, 𝑎;𝜃) = E[∑∞𝑡=0 𝛾

𝑡𝑟𝑡 |𝑠, 𝑎]. Since it is difficult to directly learn this func-
tion, the idea is to decompose it into simpler quantities, called utility functions
(one for each agent), which can be learned more efficiently. Moreover this is
crucial to apply the CTDE paradigm, because at the test time each agent will just
rely on the information given by its own utility function.

Such decomposition is most commonly used in common reward games, in
which all agents have the same reward function. For this reason when we will
test these algorithms in our setup we will need to modify the definition of the
problem, to make it cooperative.

We note that whatever decomposition we choose for𝑄(𝑠, 𝑎;𝜃), it must satisfy
the individual-global-max (IGM) property:

arg max
𝑎=(𝑎1 ,...,𝑎𝑛)

𝑄(𝑠, 𝑎;𝜃) =
©«

arg max𝑎1 𝑄1(ℎ1, 𝑎1;𝜃1)
...

arg max𝑎𝑛 𝑄𝑛(ℎ𝑛 , 𝑎𝑛 ;𝜃𝑛)

ª®®®¬ (4.9)

where ℎ𝑖 is the observation history of agent 𝑖.

The VDN algorithm exploits a linear decomposition of the centralized action
value function:

𝑄(𝑠, 𝑎;𝜃) =
∑
𝑖∈ℐ

𝑄𝑖(ℎ𝑖 , 𝑎𝑖 ;𝜃𝑖) (4.10)

Despite its simplicity, this approach has been proven effective in a number of
applications [23]. Also in our Multi-Agent Autonomous Driving setting we will
see the effectiveness of this kind of decomposition.

As usual in Deep-MARL algorithms, also in this case we keep a replay buffer
𝒟, where we store the experience of all the agents. The structure of the algorithm

47



4.5. VALUE DECOMPOSITION NETWORKS & QMIX

is very similar to IDQN, but we just optimise the following loss:

ℒ(𝜃) = 1
𝐵

∑
(ℎ𝑡 ,𝑎𝑡 ,𝑟𝑡 ,ℎ𝑡+1)∈ℬ

(𝑟𝑡 + 𝛾 max
𝑎

𝑄(ℎ𝑡+1, 𝑎; �̄�) −𝑄(ℎ𝑡 , 𝑎𝑡 ;𝜃))2 (4.11)

where ℬ is a batch of transitions and the optimisation objective is propagated
through the individual utilities of all the agents.

The only difference between VDN and QMIX is the type of decomposition
that we apply to the centralized Q-function. While the decomposition of VDN
is linear and simple, it may not always be realistic. The key observation to
introduce QMIX is that to satisfy the IGM property we just have to satisfy the
following relation between 𝑄(𝑠, 𝑎, 𝜃) and the utility functions of all the agents:
[20]

𝜕𝑄

𝜕𝑄𝑖
≥ 0, ∀𝑖 ∈ ℐ (4.12)

To enforce this relation, QMIX represents 𝑄 using an architecture consisting of
a mixing network and a set of hypernetworks [9]. The mixing network takes as
input all the utility functions of the agents, and mixes them monotonically to
produce the values of 𝑄. To enforce the monotonicity constraint of Equation
4.12, all the weights of the mixing network are restricted to be non-negative.

These weights are produced by hypernetworks, which take as input the
global state 𝑠 and generate the weights of all the layers in the mixing network.
In this way we are also able to condition the centralized action value function
on global state information.

Finally, to ensure that the weights of the mixing network are non-negative,
we use the absolute function as non-linear activation for all the hypernetworks.

Figure 4.4: Network architecture of VDN and QMIX [1]
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As we will see in Chapter 6, the higher complexity of QMIX with respect to
VDN is not always synonym of better performances, due to the huge number of
parameters to optimise and hyperparameters to tune.

Algorithm 11 VDN and QMIX
Initialize 𝑛 utility networks 𝑄𝑖 with random parameters 𝜃1, ..., 𝜃𝑛
Initialize 𝑛 target utility networks �̄� 𝑖 with parameters
�̄�1 = 𝜃1, ..., �̄�𝑛 = 𝜃𝑛
Initialize a replay buffer𝒟
if QMIX then

Initialize the mixing network and all the hypernetworks
end if

for all episodes do
Collect environment observations 𝑜0

1 , ..., 𝑜
0
𝑛

for all time steps 𝑡 of the episode do
for agent 𝑖 = 1, ..., 𝑛 do

With probability 𝜖 select a random action 𝑎𝑡𝑖
otherwise select 𝑎𝑡𝑖 = argmax𝑎𝑄𝑖(ℎ𝑡𝑖 , 𝑎;𝜃𝑖), where ℎ𝑡𝑖 = (𝑜0

𝑖 , ..., 𝑜
𝑡
𝑖 )

end for
Apply actions and collect observations 𝑜𝑡+1

𝑖 and reward 𝑟𝑡 for all the
agents
Store transition in the replay buffer𝒟
Sample a random mini-batch of transitions from the replay buffer𝒟
Update the parameters 𝜃 of all the networks by minimising the loss
function from Equation 4.11
Every 𝑘 steps, update the parameters of all the target networks �̄�

end for
end for

A final note about these two algorithms regards the network architecture
used to approximate the utility functions of the agents. Differently from the
previous approaches, in this case we implement Recurrent Neural Networks,
exploiting the GRU architecture [3], to facilitate learning over longer timescales.
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5
Experimental Setup

With this chapter we enter in the experimental section of the thesis. As
already mentioned, Multi-Agent Autonomous Driving is an extremely interest-
ing and studied research area in these years. Despite of that, the problem of
how competently interact with diverse road users in diverse scenarios remains
largely unsolved. Indeed the Autonomous Vehicles available nowadays in the
industrial market are capable of driving in situations where few social interac-
tions are required, but when encountering complexly interactive scenarios, they
tend to slow down and wait rather than acting proactively to find a solution.
[32]

Learning methods, and in particular the Multi-Agent Reinforcement Learn-
ing paradigm, seem particularly promising to address this kind of problem, but
to be investigated they need a realistic simulator to interact with. For this reason
a few years ago a simulation platform called SMARTS (Scalable Multi-Agent RL
Training School) has been designed. [32]

The first section of this chapter will be devoted to the description and analysis
of the SMARTS simulator. Then we will precisely define which scenarios we will
try to solve, specifying all the important elements of the problem. Finally we
will discuss the implementation details of all the algorithms, in order to adapt
them to a Multi-Agent Autonomous Driving environment. We will leave the
experimental results and the comments about them for Chapter 6.
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5.1. SMARTS SIMULATOR

5.1 SMARTS simulator

SMARTS is a platform that allow us to develop scenarios for Multi-Agent
Autonomous Driving problems. One of its biggest strengths is the possibility
of designing a great number of different road scenarios. Moreover it also offers
the chance of combining many of them, in order to increase the dimension of
the environment. Indeed potentially we could even design city scaled maps.

An overview of the different scenarios available in SMARTS is provided in
Figure 5.1.

Figure 5.1: Driving interaction scenarios available in SMARTS [32]

SMARTS relies on a number of external providers in order to make the
simulation as realistic as possible. The background traffic provider is SUMO [13],
while physics is supported through the vehicle provider, which simulates the
specified physical vehicle model and exposes a control interface at different levels
of abstraction [32]. The current implementation uses the Bullet physics engine [4].
Finally, there is a motion plan provider which can be used to implement social
agents dedicated to highly specific maneuvers, such as cut-in or U-turn.
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A strong point of SMARTS is the possibility of combining "Social" vehicles1
with Human Driven (HD) vehicles. Indeed a key aspect in the Multi-Agent
Autonomous Driving research is the interaction between these two different
categories of road users.

For this reason in our experiments we tested both situations in which there
were just Autonomous Vehicles (AVs), and situations in which there were also
HD vehicles. As we will see in Chapter 6, it makes a big difference if the HD
vehicles are present or not.

5.2 Problem Definition

5.2.1 Environment

To test all the algorithms we designed a scenario consisting of a three-way
junction, and we implemented four different combinations of vehicles, with
increasing complexity:

• 2 Autonomous Vehicles
• 2 Autonomous Vehicles and 1 Human Driven vehicle
• 3 Autonomous Vehicles
• 3 Autonomous Vehicles and 1 Human Driven vehicle

The initial configuration of the vehicles in each of the four scenarios is re-
ported in Figure 5.22.

It is important to remark that, like in the majority of the Reinforcement
Learning problems, each vehicle has its own goal position. However, at the
beginning of the training phase the agents do not know their objectives. The
purpose of the experiment is indeed to make the agents learn which are their
goals and, most importantly, how to achieve them.

As we can see from Figure 5.2, in each of the four scenarios there is at least
one agent that has to perform an unprotected left turn. This is because it has
been seen ([8], [32]) that this is one of the most complicated maneuvers to learn
for an Autonomous Vehicle, and we wanted to investigated it in our experiments.

1The vehicles controlled by the MARL algorithm we are testing.
2The red vehicles are the AVs, while the white ones are the HD vehicles.
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(a) 2 AVs (b) 2 AVs and 1 HD vehicle

(c) 3 AVs (d) 3 AVs and 1 HD vehicle

Figure 5.2: Different combinations of the three-way junction scenario

Finally, the HD vehicles have been designed to behave in an aggressive way,
meaning that they do not care about the presence of other vehicles, but they
drive as if they were alone on the road. This approach further complicates the
learning for the AVs, because they are forced to adapt to that in order to avoid
collisions.

5.2.2 Observation Space

Our problem can be modelled as a Partially Observable Stochastic Game
(recall Section 3.1.4), because each agent receives as observation just a subset
of the current state at each time step. This is done to simulate the partial
information that an Autonomous Vehicle can recover from its sensors.

With this idea in mind we tried to keep the observation space as small as
possible, in contrast to previous approaches ([21], [32]), which considered a
much bigger observation space for each agent.

We designed two different types of observation spaces, depending on the
algorithm that we want to use. Indeed we recall that Independent Deep Q-
Networks and its variants need to work with images, while the other algorithms
require a flat vector of features:
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• IDQN and variants: At each time step the observation of every agent is
an image containing a stack of three consecutive frames, where each frame
consists in a birds-eye view gray-scale image with the agent at the center.
The idea of stacking consecutive frames, taken from [17], is crucial be-
cause it gives a sense of movement to the image, and that really helps
understanding in which situation the agent is.

Figure 5.3: Example of one of the frames composing the observation of an agent

• MADDPG, VDN and QMIX: At each time step the observation of every
agent is a vector containing the following information about the environ-
ment:

1. Relative position with respect to the goal (𝑥 and 𝑦 coordinates)
2. Euclidean distance to the goal
3. Relative position with respect to the other vehicles (𝑥 and 𝑦 coordi-

nates)
4. Euclidean distance from the other agents
5. Linear velocity
6. Steering angle
7. Heading error with respect to the optimal unknown path (the dashed

lines in Figure 5.2)
8. Distance travelled from the beginning of the episode

We note that the dimension of the observation space varies with the number
of vehicles present in the simulation (11 when there are just two agents, 14 when
there are three agents and 17 when there are four agents).
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5.2.3 Action Space

SMARTS makes available many different possibilities to define the action
space of each agent. We decided to use a discrete space, both because it has been
proved itself valid in other works ([21], [32]), and because we think that a high
level approach is beneficial for this kind of problem. Indeed we do not need the
AVs to learn the basics of how to drive, but just how to act in conditions of traffic
and where interaction with other vehicles is needed.

This is justified by the fact that there already exist successful strategies which
allow AVs to have the basic driving skills, like braking, steering, and keeping
the lane.

In our experiments the action space of all the agents is 4-dimensional, and at
each time step they have to choose between one of the following actions:

1. keep lane

2. slow down

3. turn left

4. turn right

5.2.4 Rewards Structure

To conclude this section we analyze the rewards structure of our problem.
We will have two slightly different structures, depending on the algorithm that
we are using. This is needed because VDN and QMIX can be applied just to
cooperative games, while in our standard definition of the problem we consider
the game to be general-sum.

Starting from the latter case, at each time step every agent 𝑖 receives a reward
signal composed in this way:

1. A default reward given by the SMARTS environment, which is a function
of the distance travelled:

𝑟𝑖(𝑥) =
{
𝑥, if | |𝑥 | | > 0.5
0, otherwise

(5.1)

Where 𝑥 is the distance travelled in meters from the last time step where a
non-zero reward was given.
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2. The reward obtained at the previous point is then modified if some events
have happened during the current time step. If the agent has driven off
road, on road shoulder, on wrong way, off route or if it has collided, then
the reward is reduced by 10. Otherwise if the agent has reached its goal
the reward is increased by 10.

If we are testing the VDN or QMIX algorithms, instead of having a different
reward for each agent, we need a global reward common to all the agents.

To do that the most intuitive and straightforward way is to sum together the
rewards of all the agents, and consider the result as the global reward of the
environment. This will be our strategy when testing those two algorithms.

5.3 Implementation Details of the Algorithms

In this section we provide a detailed description of how we implemented the
different algorithms and the choices that we made for their hyperparameters.

5.3.1 IDQN and Variants
• Replay buffer: we keep a different replay buffer for every agent 𝑖, and at

each time step we store the transition data (𝑜𝑡𝑖 , 𝑎𝑡𝑖 , 𝑟𝑡𝑖 , 𝑜𝑡+1
𝑖 ). The size of each

buffer is of 20000 elements.
• Networks architecture: we have two slightly different network structures,

depending on the choice that we make between standard DQN and Duel-
ing DQN:

1. Standard DQN: the first hidden layer convolves 32 filters of dimension
8 × 8 with stride 4, the second one convolves 64 filters of dimension
4 × 4 with stride 2 and the last convolutional layer uses 64 filters
of dimension 3 × 3 with stride 1. Then we have a fully connected
hidden layer, consisting of 512 units. Finally the output layer is fully
connected, with a single output for each action. All the layers use the
ReLU activation function.

2. Dueling DQN: the structure of the network is exactly like before,
except for the output layer, which is now split in two different layers,
one with just one output to approximate the state value function,
and the other one with an output for each action, to approximate the
advantage function.

• Learning phase: we perform learning after each time step, and we try to
optimise the Mean Squared Error loss using the RMSprop optimizer [25],
with a learning rate equal to 10−4. To compute the loss we sample batches
of 32 elements and we use a discount factor 𝛾 equal to 0.99. Finally we use
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an 𝜖-greedy strategy for action selection, with 𝜖 linearly decreasing from 1
to 0.01 through 200000 time steps. The target networks are updated after
every 1000 time steps.

5.3.2 MADDPG
• Replay buffer: for this algorithm we have both a global critic buffer and

an actor buffer for each agent. The critic buffer stores at each time step the
tuple (𝑠𝑡 , 𝑟𝑡 , 𝑠𝑡+1), where 𝑠 is the concatenation of the observations of all
the agents, and 𝑟 is the rewards list.
Each agent memory instead stores the transition (𝑜𝑡𝑖 , 𝑎𝑡𝑖 , 𝑜𝑡+1

𝑖 ) at each time
step. All the buffers have a size of 1000000 samples3.

• Networks architecture: both the critic and actor networks are built us-
ing two fully connected hidden layers, with 64 rectified linear units for
each layer. The difference between the two is in the output layer: the
latter uses a fully connected layer with tanh activation function and one
output corresponding to the chosen action. The former instead exploits a
fully connected layer with one output corresponding to the action value
function, but this time there is no activation function.

• Learning phase: we update the networks parameters after every 100 time
steps. We use the Mean Squared Error loss for the critic, computed by
sampling batches of 1024 transitions, with discount factor 𝛾 = 0.95. All
the networks are updated using the Adam optimizer [12], but we use two
different learning rates for the actor and critic networks: 𝛼 = 10−4 for the
former and 𝛽 = 10−3 for the latter.
To explore the environment we modify each action selected by the agent
by adding white Gaussian noise. Finally the parameters of the target
networks are softly updated every 100 steps with 𝜏 = 0.01.

5.3.3 VDN and QMIX
• Replay buffer: for both the algorithms we keep a global replay buffer

which stores transition data ([𝑜𝑡1, ..., 𝑜𝑡𝑛], [𝑎𝑡1, ..., 𝑎𝑡𝑛], [𝑟𝑡1, ..., 𝑟𝑡𝑛], [𝑜𝑡+1
1 , ..., 𝑜𝑡+1

𝑛 ])
for all the 𝑛 agents. The capacity of the replay buffer is of 5000 samples.

• Networks structure: the networks of the utility functions are the same
both for VDN and QMIX. What changes is of course the centralized action
value function.

3Note that the buffers are much bigger with respect to IDQN because before we were working
with images, while now we are considering low dimensional vectors.
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As said in Section 4.5, we use Recurrent Neural Networks for the utility
functions: in particular each network is composed by three layers; the
first is a fully connected layer, composed by 64 rectified linear units, the
second one is a GRU cell again of dimension 64, and the output layer is
fully connected with no activation function and a different output for each
available action.
For what regards the centralized action value function with VDN we just
sum all the utility functions. For QMIX instead we use a mixing network
consisting of a single hidden layer of 32 units, with ELU activation func-
tion. The hypernetworks are then sized to produce weights of appropriate
size. The hypernetwork producing the final bias of the mixing network
consists of a single hidden layer of 32 units with ReLU activation function.

• Learning phase: we perform learning after each time step, and we try to
optimise the Mean Squared Error loss using the Adam optimizer, with a
learning rate equal to 5 · 10−4. To compute the loss we sample batches of
32 elements and we use a discount factor 𝛾 equal to 0.99. Finally we use
an 𝜖-greedy strategy for action selection, with 𝜖 linearly decreasing from
1 to 0.05 through 50000 time steps. The target networks are softly updated
after each time step, with 𝜏 = 0.005.
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6
Results and Comments

In this chapter we will show the experimental results obtained by testing all
the presented algorithms in the Multi-Agent Autonomous Driving environment
described in Chapter 5.

Before doing that we describe the training and evaluation procedures, and
the metrics we used to evaluate the performances.

First of all we remark that any scenario is considered solved if all the agents
correctly pass through the junction and at least one of them reaches its goal
position. This is because the SMARTS simulator ends the episode as soon as
one agent reaches its goal. This is not a problem for us because if that happens,
it means that all the agents have successfully gone through the junction, and
they are very close to their goal position. In terms of rewards,the environments
with 2 Autonomous Vehicles are considered solved when we achieve a score of
100 or higher, while in the environments with 3 AVs we have to achieve a score
of at least 120 in order to solve them.

The other events that could terminate an episode are the collision of two or
more agents and the achievement of the maximum number of available time
steps in an episode1. Clearly in both this situations the environment cannot be
considered solved.

To analyze the results we will consider the two main metrics used in literature
to evaluate MARL algorithms, as detailed in [1]. The first metric is the learning

1This number varies between 50 and 75, depending on the specific scenario we are consid-
ering.
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curve, a two dimensional plot where the x-axis represents the training steps, and
the y-axis shows an estimation of the agents’ episodic returns. To collect this
data for each algorithm we adopt the following procedure:

• Train the algorithm for 500-thousand time steps2

• Pause training after every 5000 time steps to evaluate3 the algorithm

• Store the mean of the episodic returns obtained during evaluation

• Resume training

The second metric we consider is the maximum value of the learning curve.
This is clearly a condensed and less informative metric with respect to before,
but it can still be useful to understand if at some point the algorithm solved the
environment.

Finally, to help us compare all the algorithms in the different scenarios, we
will answer the following three questions:

1. Did the algorithm solve the environment at any point?

2. Did the learning curve asymptotically converge to a result which solved
the environment?

3. If the algorithm converged, how fast was it? (i.e. how many steps did it
need to reach the steady state?)

2Except for IDQN and its variants, which were trained for 300-thousand time steps, due to
the huge number of computations and time required to handle images.

3When we evaluate an algorithm we do not perform learning.

62



CHAPTER 6. RESULTS AND COMMENTS

6.1 Results IDQN and Variants

6.1.1 Independent Deep Q-Networks

Figure 6.1: IDQN 2 AVs scenario

Figure 6.2: IDQN 2 AVs and 1 HD vehicle scenario
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Figure 6.3: IDQN 3 AVs scenario

Figure 6.4: IDQN 3 AVs and 1 HD vehicle scenario
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6.1.2 Independent Double Deep Q-Networks

Figure 6.5: IDDQN 2 AVs scenario

Figure 6.6: IDDQN 2 AVs and 1 HD vehicle scenario
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Figure 6.7: IDDQN 3 AVs scenario

Figure 6.8: IDDQN 3 AVs and 1 HD vehicle scenario

66



CHAPTER 6. RESULTS AND COMMENTS

6.1.3 Independent Dueling Deep Q-Networks

Figure 6.9: Independent Dueling DQN 2 AVs scenario

Figure 6.10: Independent Dueling DQN 2 AVs and 1 HD vehicle scenario
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Figure 6.11: Independent Dueling DQN 3 AVs scenario

Figure 6.12: Independent Dueling DQN 3 AVs and 1 HD vehicle scenario
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6.1.4 Independent Dueling Double Deep Q-Networks

Figure 6.13: Independent Dueling DDQN 2 AVs scenario

Figure 6.14: Independent Dueling DDQN 2 AVs and 1 HD vehicle scenario
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Figure 6.15: Independent Dueling DDQN 3 AVs scenario

Figure 6.16: Independent Dueling DDQN 3 AVs and 1 HD vehicle scenario
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6.2 Comments IDQN and Variants

Looking at the plots the first thing to note is that the performances of IDQN
and its variants are very good in all the four scenarios. Indeed each environment
is asymptotically solved with all the algorithms, with some differences that we
will now discuss.

As expected the Double network strategy and the Dueling architecture gen-
erally improve the performances. The Double network is useful to improve
stability during learning, while the Dueling architecture can make the learning
process faster, reducing the time needed to reach convergence. These things are
visible for example in the 2 Autonomous Vehicles scenario (Figures 6.1, 6.5, 6.9
and 6.13).

Another interesting observation is that in scenarios with human driven ve-
hicles, the Dueling architecture sometimes achieves a lower steady state score
with respect to the standard DQN network, despite its higher speed in reaching
convergence. This is clearly visible in the 2 AVs plus HD vehicle environment
(Figures 6.6 and 6.14). The reasons for that could be multiple, but the main
issue is that the presence of HD vehicles exacerbates the non-stationarity of the
environment, thus complicating a lot the job of the advantage function present
in the Dueling architecture. Indeed now the advantage of taking a particular
action in a certain state for an agent can drastically change in different episodes,
depending not only on the other Autonomous Vehicles, but also on the human
driven one.

Finally, we must observe that the presence of HD vehicles makes the learning
process much harder for all the algorithms. Clearly this behaviour was expected,
however it is very interesting, even if not surprising, that a Decentralized Train-
ing and Execution algorithm like IDQN is capable of handling so well these kind
of environments, without considering any type of communication between the
agents.
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6.3 Results MADDPG

Figure 6.17: MADDPG 2 AVs scenario

Figure 6.18: MADDPG 2 AVs and 1 HD vehicle scenario
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6.4 Comments MADDPG

As clearly visible from Figures 6.17 and 6.18, MADDPG performances are a
lot worse than those of IDQN. Indeed now we are not even close to asymptotic
convergence, even if in both the graphs we can see that, at a very early stage
of the learning process, the algorithm was capable of finding a set of networks
parameters which solved the environments.

Regarding the 3 AVs and the 3 AVs plus HD vehicle scenarios, we do not
show the learning curves because during all the training procedure there is no
sign of learning; the environments are simply too complex to be solved with this
algorithm.

The reasons behind these bad performances are multiple. First of all we
must note that MADDPG is one of the first policy-based MARL algorithms, and
it suffers from all the downsides of policy-based techniques, like high variance
when evaluating a policy and especially attitude to converge to local rather than
global optimum.

Moreover this algorithm was originally developed for environments with
continuous action spaces [18], while we recall that in our particular problem the
action space is discrete. Despite the modifications that we made to the algorithm
in order to adapt it to the SMARTS environment, we believe that this is also one
of the reasons for such bad performances.
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6.5 Results VDN and QMIX

6.5.1 VDN

Figure 6.19: VDN 2 AVs scenario

Figure 6.20: VDN 2 AVs and 1 HD vehicle scenario

74



CHAPTER 6. RESULTS AND COMMENTS

6.5.2 QMIX

Figure 6.21: QMIX 2 AVs scenario

Figure 6.22: QMIX 2 AVs and 1 HD vehicle scenario
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6.6 Comments VDN and QMIX

The first thing that we remark is that, like in the case of MADDPG, the plots
with the results of the scenarios with 3 Autonomous Vehicles are not reported,
because there were no sign of learning throughout the whole training processes.

This is mainly due to the nature of value decomposition algorithms like
VDN and QMIX. As already said, these algorithms are most suited for fully
cooperative problems, while our testing scenario is originally general-sum, even
if we modified its reward structure to consider a global reward, as explained in
Section 5.2.4.

Moving to the scenarios with 2 AVs, we immediately notice the big difference
between VDN and QMIX. Indeed the former has extremely good performances
with just 2 autonomous agents, while the latter performs quite poorly even
in this simplest scenario. This behaviour is interesting, because QMIX is a
sort of upgrade of VDN, and theoretically it should perform better. This does
not happen in our problem because the higher complexity of QMIX makes
the hyperparameters tuning process much harder, and it also gives rise to a
very big number of parameters to optimize. VDN instead, despite its simpler
mixing strategy, is able to solve the environment and also achieve asymptotic
convergence.

Finally, in the 2 AVs plus HD vehicle scenario VDN does not achieve asymp-
totic convergence, even if it shows interesting results, obtaining very high scores
many times throughout the training process.
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6.7 Overall Comparison

Environment solved Asymptotic convergence Speed of convergence
IDQN ✓ ✓ 100k
IDDQN ✓ ✓ 110k
IDuelDQN ✓ ✓ 100k
IDuelDDQN ✓ ✓ 90k
MADDPG ✓ × /
VDN ✓ ✓ 180k
QMIX ✓ × /

Table 6.1: 2 AVs scenario

Environment solved Asymptotic convergence Speed of convergence
IDQN ✓ ✓ 160k
IDDQN ✓ ✓ 170k
IDuelDQN ✓ ✓ 140k
IDuelDDQN ✓ ✓ 140k
MADDPG ✓ × /
VDN ✓ × /
QMIX ✓ × /

Table 6.2: 2 AVs and 1 HD vehicle scenario

Environment solved Asymptotic convergence Speed of convergence
IDQN ✓ ✓ 100k
IDDQN ✓ ✓ 100k
IDuelDQN ✓ ✓ 80k
IDuelDDQN ✓ ✓ 90k
MADDPG × × /
VDN × × /
QMIX × × /

Table 6.3: 3 AVs scenario
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Environment solved Asymptotic convergence Speed of convergence
IDQN ✓ ✓ 210k
IDDQN ✓ ✓ 200k
IDuelDQN ✓ ✓ 200k
IDuelDDQN ✓ ✓ 150k
MADDPG × × /
VDN × × /
QMIX × × /

Table 6.4: 3 AVs and 1 HD vehicle scenario

In all scenarios, IDQN and its variants outperform the other algorithms.
This is clearly visible in the tables above, where all the results of the different
algorithms in the 4 scenarios have been compared, making use of the evaluation
metrics introduced at the beginning of Chapter 6. We can see that, except for
IDQN, only VDN is capable of reaching asymptotic convergence, but just in the
2 AVs environment. MADDPG and QMIX are instead able, at a certain point
during training, to find a set of network parameters which solve the 2 AVs and
2 AVs plus HD vehicle scenarios, but they both are far from convergence and
quite unstable. Finally, the environments with 3 AVs are asymptotically solved
by the IDQN family of algorithms, while the other strategies completely fail.

We believe that the reasons for this huge performance gap are mainly two:
the first aspect concerns the conditioning of the policies on the history of ob-
servations. Indeed there are three different options to do that [1], and the
algorithms that we tested represented all these categories:

• IDQN and its variants stacked three consecutive frames in each observa-
tion.

• VDN and QMIX used a recurrent neural network structure.

• MADDPG assumed that the current observation carried all necessary in-
formation for deciding an action.

After seeing the results we can affirm that in a problem like ours it is crucial
to consider the history of observations at each time step.

The second reason that explains these results regards the structure of our
problem. As already said, we considered a general-sum game, where the agents
did not compete nor explicitly cooperate between them. These kind of prob-
lems are extremely difficult to handle for a MARL algorithm, and many times
resorting to an independent learning strategy can be the best choice. The sit-
uation would change if we consider a cooperative problem; in that case CTDE

78



CHAPTER 6. RESULTS AND COMMENTS

algorithms would become of great help. A possible application of that will be
briefly discussed in Section 7.1.

In conclusion, we remark that the obtained results are consistent with what
we saw in Section 1.1: at the moment for Autonomous Driving applications in
mixed traffic independent learning methods are often the best solution.
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7
Conclusions and Future Works

In this work we encountered and discussed an important number of different
topics. Indeed the complexity of the Multi-Agent Reinforcement Learning field
required a deep analysis of its foundations and core concepts, before diving into
the specific Autonomous Driving application objective of this thesis.

We began by introducing the problem and analyzing some related works,
to see the different areas of research and the current limitations of this field.
Then we introduced the single agent Reinforcement Learning paradigm, first
from the theoretical point of view, and then from the practical implementation
perspective. Already in this case we saw the necessity, and at the same time
the complexity of introducing non-linear approximations, through Neural Net-
works, in high-dimensional sequential decision processes. We also described
the two macro-categories of RL algorithms: values-based and policy based
strategies.

After that we gave a very brief overview of Game Theory, which gave us
the theoretical foundations and definitions of a Multi-Agent problem. We first
introduced the different types of game models, and then we defined the dif-
ferent solution concepts that we can exploit in order to solve them. Finally, we
talked about tabular Multi-Agent Reinforcement Learning, and we saw its huge
limitations when facing complex problems.

In Chapter 4 we entered the core part of the thesis, where we analyzed the
challenges of Deep-MARL and also the three different paradigms under which
the algorithms are classified: Centralized Training and Execution (CTCE), De-
centralized Training and Execution (DTDE), Centralized Training and Decen-
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tralized Execution (CTDE). Then we deeply analyzed the four algorithms that
we decided to use for our experiments: IDQN and its variants, MADDPG, VDN
and QMIX.

Finally, Chapters 5 and 6 were devoted to the experimental part of the thesis.
At first we introduced the simulator that we decided to use for our experiments.
After that we described the environments that we specifically designed for this
project, along with the observation and action spaces of the agents, and their
reward structure. We also discussed about the practical implementations of the
algorithms, especially regarding the choice of the hyperparameters.

After that we were ready to finally show the experimental results of all
the four algorithms. We began by analyzing them separately, and later on we
compared them all together. We clearly saw that IDQN outperformed the other
algorithms in all the scenarios, confirming the competitiveness of independent
learning methods, especially in general-sum problems like this one.

7.1 Possible future directions

The major challenges of Multi-Agent Reinforcement Learning, and in partic-
ular the non-stationarity of the environment and the dimensions of the state and
action spaces, are the reasons for which MARL algorithms require a tremendous
number of samples for effective training [30].

A promising approach to address this issue consists in developing model-
based strategies for MARL problems. This idea arises from the fact that model-
based methods in single agent RL have shown their advantages in sample effi-
ciency both practically and theoretically [30]. However, simply applying single
agent model-based algorithms to the MARL setting would not work, due to the
challenges mentioned above and discussed in Section 4.1.

This reason, along with the fact that the studies about model-based MARL
strategies have just started very recently, makes this field of research extremely
interesting and promising. Moreover it has also been shown that learning and
then exploiting a model could be also useful to explore the environment, and
thus improve the performances [5], [21].

Finally, model-based strategies could be a crucial tool to help predicting the
behavior of human drivers.

Another interesting theme regarding smart mobility and traffic scenarios con-
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cerns the deployment of a fleet of Autonomous Vehicles in a specific stretch of
road, with the purpose of improving the traffic flow. This is particularly useful in
highways, where it has been shown [11] that these vehicles could help the other
road users to respect the security distances, thus avoiding traffic congestion and
also many incidents. This problem would be cast as a completely cooperative
task, and for this reason many of the techniques explored in this thesis could
become useful, along with communication techniques between agents and again
model-based approaches.

Finally it would be interesting to transpose these experiments in the physical
world, to see the effectiveness of all this techniques outside of simulation, and
also to handle the natural differences between virtual and real scenarios. Cur-
rently there exists a platform, called Duckietown [19], which seems particularly
suitable to test all the proposed strategies in a scaled real world environment.
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