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Abstract

In this thesis we explore numerical simulations, including Tensor Networks (TNs) methods,
to study Hamiltonian Lattice Gauge Theories (LGTs), a numerical framework for inves-
tigating non-perturbative properties of Quantum Field Theories. We develop a model-
independent approach for constructing Matrix Product Operators (MPOs) representations
of one-dimensional quasiparticles with definite momenta, and apply it to Hamiltonian
Lattice Quantum Electrodynamics (QED) on a ladder geometry. By means of exact diag-
onalization at intermediate system sizes, we obtain the first excitation band states (the
Bloch functions) representing the single-(quasi)particle states (the photons) expressed as
entangled states of local lattice gauge fields. We then construct the corresponding maxi-
mally-localized Wannier functions through minimization of a spread functional. Once we
identify, via a linear algebra problem, the operation that constructs the localized Wannier
excitation from the ground state (dressed vacuum), we can express the creation operator,
for any wave-packet of such quasiparticles, as a Matrix Product Operator. The aforemen-
tioned steps constitute a constructive strategy to prepare an arbitrary input state for a
quasiparticle scattering simulation in real time, and the scattering process itself can be
carried out with any standard algorithm for time-evolution with Matrix Product States.
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Introduction

In the past century, the framework of Quantum Field Theories (QFTs) allowed physicists
to model and analyze the quantum nature of fields and particles [1]. Gauge theories are
a specific class of QFTs that play a fundamental role in modern theoretical physics. At
its core, a gauge theory describes the dynamics of fields that possess a certain continuous
local symmetry, described by a so-called gauge group G [2]. Gauge field theories provide a
unified framework for matter, radiation, and their mutual interaction.

The most important application of gauge theories is the Standard Model (SM) of par-
ticle physics, which describes the fundamental fermionic particles (the matter) and their
interactions through the exchange of force-carrying particles, the gauge bosons [2]. The
SM, with a unifying insight, explains the electromagnetic, weak and strong interactions,
reproducing a plethora of observed phenomena with outstanding precision.

Since the first formulations of QFTs, scattering processes in particle physics have been
the standard experiments to discover new physics and validate the correctness of the
theoretical particle models. By examining the interactions between particles during scat-
tering processes, physicists can compare theoretical predictions with experimental data
at increasing energy scales, providing critical insights into the underlying accuracy of the
model.

In the early development stage of QFTs, physicists primarily relied on perturbative
methods to theoretically compute observables from scattering processes (e.g. Feynman
diagrams). For instance, in Quantum Electrodynamics (QED), which describes the elec-
tromagnetic interactions between charged particles (electrons and positrons) and photons,
perturbation theory has been remarkably successful in predicting cross-sections and ampli-
tudes, to an extremely high degree of accuracy.

However, the perturbative approaches encountered limitations when dealing with cer-
tain QFTs, most notably Quantum Chromodynamics (QCD) [2], the theory describing
the strong force, which governs interactions between gluons and quarks, binding the latter
into hadrons (protons, neutrons, etc.). Thanks to the asymptotic freedom, perturbative
QCD can be used efficiently at high energies, but at low energies and large distances,
non-perturbative phenomena starts to arise [3]. In particular, the study of QCD out-of-
equilibrium real-time evolution of mesons and heavy-ions collision processes require more
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modern and advanced non-perturbative methods.

Lattice Gauge Theories To overcome non-perturbative challenges in quantum field
theories, two approaches are employed. The first is exact analytical methods, which offer
rigorous solutions but are limited in their applicability to a restricted class of systems (e.g.
integrable systems [4]). The second approach involves numerical methods.

In the latter context, Lattice Gauge Theories (LGTs) [5, 6] were introduced by K. G.
Wilson [7], approximating spacetime by a discrete lattice, which transforms continuous field
variables into lattice operators. While this approach enables numerical simulations and
circumvents some perturbative issues, it introduces significant computational challenges:
as the lattice size increases, the computational resources required for simulations grow
exponentially, as a quantum many-body system. This makes almost impossible to tackle
the thermodynamic limit: a large system would require more than the world’s technological
capacity to compute information [8].

At the early stages of LGTs, Monte Carlo methods became the main tool to address
these numerical challenges [9]. By employing stochastic sampling of field configurations
on the lattice, Monte Carlo simulations offer a numerical approach to study gauge theo-
ries beyond perturbation theory. This approach has proven essential for understanding
confinement and computing the masses of hadrons [10] in the context of low-energy non-
perturbative QCD.

However, the main problem of Monte Carlo simulations in fermionic lattice gauge
theories is the sign problem [11]: the contribution of fermionic degrees of freedom makes
the path integral oscillatory, and the cancellation of positive and negative contributions
hinders the convergence of the simulations [12]. Furthermore, Monte Carlo methods cannot
simulate efficiently out-of-equilibrium processes, such as the scattering processes. There-
fore, since the early days of LGTs, researchers have been actively exploring also alternative
approaches to address these limitations.

The arise of quantum technologies In the meantime, the field of Quantum information
theory [13] has seen a rapid development, leading to various technologies with applications
in computation, simulation [14], communication [15], and sensing [16]. Quantum tech-
nologies have promising applications in scientific fields such as high-energy physics, nuclear
physics, condensed matter physics, and quantum chemistry. In this context, quantum
technologies has found applications in Lattice Gauge Theory [17] through two different
approaches: quantum simulators [18] and Tensor Networks (TNs) [19] (Fig. 1).
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Atom Laser
Interactions contractiontensor

Atomic quantum simulator Tensor Network

Figure 1. On the left, a graphical representation of a 2D Atomic Quantum Simulator in an optical
lattice, where finely tuned atomic systems allows emulating quantum phenomena. On the right, a
depiction of a 2D Tree Tensor Network, a linear algebra framework useful to efficiently represent
quantum states.

One of the first insights into overcome quantum simulation problems exploiting quantum
systems is attributed to R. P. Feynman in his seminal paper [20]. By analog or dig-
ital quantum simulation [21] we mean simulating a quantum system using quantum devices,
such as trapped ions [22], superconducting circuits [23, 24], and neutral ultracold atoms
systems [18, 25], which can be engineered and finely tuned to mimic the behavior of
quantum system such as LGT models. These quantum platforms allow researchers to
directly study the real-time dynamics of gauge fields and fermionic matter fields [26].

In this context, quantum simulation has recently revitalized interest in the Hamilto-
nian formulation of LGTs, introduced by S. Kogut and L. Susskind in the seventies [27,
28], which was overlooked since Monte Carlo methods favored the Lagrangian formalism
of LGTs. The Hamiltonian formulation is well-suited for quantum information devices
because it naturally describes the real-time dynamics of quantum systems.

Consequently, several other formulations of LGTs as the Quantum Link Model (QLM)
[29] were developed as a way to bridge LGTs with spin systems. The QLM formulation pro-
vides a mapping from lattice operators to spin operators, making it amenable for efficient
representation and simulation of abelian and non-abelian gauge theories using quantum
information tools. The discrete configuration space of QLMs offers potential advantages
in numerical and quantum simulations compared to ordinary LGTs with continuous con-
figuration spaces [29].

Since quantum computers and quantum simulators are still at the early stages [30],
alternative tools of numerical quantum information theory were developed, such as the
Tensor Network (TN) framework [31], which will be the numerical method used in this
thesis work. TNs have been proven to efficiently represent the quantum states of strongly
correlated many-body quantum systems, compressing information using different struc-
tures of tensor contractions.

Tensor Networks, leveraging the area law of entanglement [32], can efficiently repre-
sent quantum states with enough low entanglement with computational cost that scales
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with the system size, making them a powerful tools for simulating large-scale quantum
systems, easily approaching the thermodynamic limit. In particular, quantum states of 1-
dimensional systems are efficiently and naturally represented by Matrix Product States
[33] (MPS) structures.

TN methods applied to LGTs offer several advantages over Monte Carlo methods: first,
TNs are sign-problem free [34], enabling exploration of high-baryon density phases of QCD
(e.g. quark-gluon plasma [35] and color superconductor phase [36]) which are instead very
challenging for Monte Carlo simulations; secondly, TNs can perform real-time simulations
[37], allowing investigations into out-of equilibrium dynamical phenomena such as non-
perturbative scattering processes [38].

Although one of the primary goals of TN methods remains to simulate the realistic
(3 + 1)-D QCD, this non-abelian theory possess a too large number of local degrees of
freedom in order to be simulated using current TN techniques. As a result, initially the
researchers focused on lower-dimensional abelian LGTs, which are more manageable and
served as a “stepping stone” to develop the necessary techniques to tackle more realistic
models.

In the past decade, TN methods have been extensively applied to the well-known
1D LGTs such as the lattice Schwinger model [39] , benchmarking the results with the
theoretical predictions. While MPS is particularly well-suited TN structure for (1 + 1)-
D systems [33], also (2+1)-D and (3+ 1)-D abelian theories [40] have been studied using
different higher-dimensional TN structures (PEPS, TTN and MERA). Furthermore, the
ground-state properties and the phase diagram of (1 + 1)-D non-abelian [41], and more
recently, (2+1)-D non-abelian LGTs were studied with TNs [42].

Content of the thesis

Although equilibrium properties of LGTs were studied, real-time scattering processes
were not widely considered, mainly because of the lack of a model-independent approach
to prepare initial single 1-dimensional (quasi)-particle wave-packet states with definite size
and momenta using TNs. Recently, this problem was addressed for generic 1D quantum
spin chains [43], constructing MPS of 1D quasiparticles wave-packets, while a particular
approach have been studied for (1+1)-D Hamiltonian QED (the lattice Schwinger model)
[44].

In this work, we present a model-independent method to construct generic 1-dimensional
single-particle wave-packet MPS state. This method employs an initial exact diagonal-
ization step, followed by the localization of Wannier functions [45, 46]. To show the validity
of the model, we apply it to a toy model, specifically the QLM formulation of the Hamil-
tonian LGT of the pure1QED in a quasi-1-dimensional lattice geometry: the two-leg ladder ,
which is becoming popular in recent years [47, 48]. In particular, we construct single-

1. Without fermion field, i.e. without electrons and positrons, so without matter. Actually, this condition can
be in principle obtained from lattice QED with matter, setting the bare mass of the electron to infinity.
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Energy density (Gaussian wave-packet)
Single photon

Figure 2. Energy density profile of an initial scattering state in the Hamiltonian QED on a ladder
geometry. The plot depicts two Gaussian wave-packets with opposite momenta, representing pre-
pared states ready for the scattering simulation.

particle photonic gaussian wave-packets of this theory, and we simulate different processes
such as a single-photon propagation and photon-photon scattering (Fig. 2).

In the context of the true (3 + 1)-dimensional QED (with matter-light interaction)
it is known that the photons can effectively weakly self-interact because of the 1-loop
contributions:

γ

γ γ

γ

. (1)

However, the photon-photon scattering is a marginal process because the S-matrix element
given by the contribution of the amplitude (1) is small if compared to other scattering
processes. Moreover, the theory we are considering is the pure QED, so the diagram (1)
cannot contribute.

However, we can still carry out the analysis of this process for the following reasons:

• at least in principle we could still see effects of photon self-interaction caused by
lattice artifacts or from the low space dimensionality of the system;

• even if the photons are non-interacting, this analysis could be a training exercise
for more complex scattering processes.

The content of the chapters is the following:

• in chapter 1, we provide comprehensive overview of Lattice Gauge Theories, intro-
ducing also the concept of Quantum Link Model formulation;

• in chapter 2, we focus on the specific two-leg ladder system within the context of
Hamiltonian Lattice Quantum Electrodynamics and discuss its key properties that
make it suitable for studying single-particle wave-packet states;

• in chapter 3, we give details about the algorithm to construct generic one-dimen-
sional single-particle wave-packet states; in particular, we explore the use of exact
diagonalization and localization of Wannier functions, among other techniques, to
create these states;
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• in chapter 4, we delve into the fundamentals of Tensor Network (TN) methods,
explaining their mathematical and computational aspects and how they are utilized
in simulating quantum many-body systems;

• in chapter 5, we present the method to traduce the wave-packet states of chapter
3 into an MPS structure, and we perform simulations using the proposed algorithm
to create initial states and TN methods for time evolution, discussing the results
and the insights gained;

• in the final chapter, we present the conclusions drawn from our study and we
discuss potential future directions, applications and generalization of the proposed
method, addressing novel TN techniques and exploring scattering processes of more
complex LGTs.
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Chapter 1
Theoretical Background

In this chapter a brief derivation of the Kogut-Susskind [27, 28] Lattice QED Hamiltonian
without fermions in a (2+1)-dimensional spacetime is provided. Far from giving a detailed
formal framework of Lattice Gauge Theory [5], which is not the aim of this thesis, the
goal of this section is to give an heuristic but self-consistent description of the theoretical
background needed to treat the model of the following chapters.

We first set some definitions and notations about classical (pure) electrodynamics and
its counterpart in 2 + 1 spacetime dimensions. We define the concept of Wilson loop [7]
and we derive the discretized Hamiltonian directly from the continuous one, discussing the
canonically quantized counterpart of the lattice theory. Finally, we present the Quantum
Link Model formulation [29] of the system, which will be applied to the ladder geometry
of the next chapter.

1.1 Classical and quantum electrodynamics in vacuum

In the following sections, we will use the notation and conventions of [2], using the Heav-
iside–Lorentz c.g.s. natural units system, setting c= !=1.

1.1.1 Electrodynamics in (3+1) dimensions

We consider a (3+1)-dimensional space-time with metric tensor signature such that ηµν=
ηµν=diag(1,−1,−1,−1).

The Lagrangian density of the electrodynamics in (3+1) dimensions in vacuum (without
matter) reads

L(x)=−1
4
FµνF µν= 1

2
E2− 1

2
B2, (1.1)

where F µν is the electromagnetic field strength tensor, defined in terms of the electromag-
netic gauge field Aµ as

F µν= ∂µAν− ∂νAµ=

 

       

0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 

       . (1.2)
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The equations of motion derived from the Lagrangian (1.1) are the covariant Maxwell
equations in vacuum

$µνρσ ∂νF ρσ=0, ∂µF µν=0. (1.3)

which can be written explicitly with respect the electric and magnetic field as
 
       

       

∇ ·E=0 Gauss’ Law (for E);
∇ ·B=0 Gauss’ Law (for B);
∇×E=−Ḃ Faraday’s Law;
∇×B= Ė Ampère’s Law.

(1.4)

The Maxwell’s equations (1.3) are invariant under local gauge transformations

Aµ
! =Aµ+ ∂µχ. (1.5)

where χ(x) is an arbitrary smooth function of the spacetime.
The conjugate momenta of the gauge fields are

Π0=
δL

δ(∂0A0)
= 0, Πi=

δL
δ(∂0Ai)

=−Ei . (1.6)

Since, in the next section, we will break Lorentz invariance symmetry in the lattice, we
can use a non-Lorentz invariant gauge such as the temporal gauge

φ=A0=0. (1.7)

In this gauge, from the definition of vector potential, we simply have

Ei=−∂0Ai, (1.8)

so as dynamical degrees of freedom of our system we can just consider the spatial compo-
nents of the fields Ai and E i, because the temporal ones are vanishing. The Hamiltonian
density can be obtained via Legendre transformation. In particular, using the temporal
gauge:

H=Π0 ∂0A0+Πi ∂0Ai−L=
1
2
E2+ 1

2
B2 . (1.9)

Integrating (1.9) with respect the space (with time fixed) we obtain the energy, i.e. the
Hamiltonian of the system at time t:

H =
-
d3xH= 1

2

-
d3x (E2+B2)=HE+HB, (1.10)

where we defined the electric and magnetic terms of the Hamiltonian as as

HE≡
1
2

-
d3xE2(x), HB≡

1
2

-
d3xB2(x). (1.11)

1.1.2 Electrodynamics in (2+1) dimensions

The electrodynamics in (2+1) dimensions is a simplified version of the electromagnetic
theory in which spacetime is assumed to have two spatial dimensions and one temporal
dimension.
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Overall, (2+1)-dimensional electrodynamics provides a fascinating arena to explore the
behavior of electromagnetic fields and their interactions in a reduced dimensional space,
leading to unique physical properties and theoretical insights [49, 50]. In particular, this
simplification allows also for computationally tractable results. In this thesis, this reduction
is useful to derive in a simple way the discretized version of the Hamiltonian (1.10), done
in section 1.2.2.

In (2+ 1) dimensions, the gauge field Aµ is a three-component vector field, where the
index µ=0,1,2 represents the temporal and spatial components, as the three-dimensional
case. The field strength tensor Fµν, analogous to the familiar electric and magnetic fields in
(3+1) dimensions, is defined as usual as the antisymmetric derivative of Aµ with respect
to spacetime coordinates:

Fµν= ∂µAν− ∂νAν=

 

   
0 −Ex −Ey
Ex 0 −B
Ey B 0

 

   , B≡Bz . (1.12)

This is one of the possible dimensional reductions [51] of the electrodynamics: the only non-
vanishing components of the fields are the longitudinal directions of E and the transversal
one of B:

Ez=Bx=By=0, Bz=B, ∂z=0. (1.13)

Defining the perpendicular gradients

∇=
.
∂1
∂2

/
, ∇⊥=

.
−∂2
∂1

/
, (1.14)

where the operator “∇⊥ · ” is the analogue of the curl “∇× ” in (2 + 1)-dimensions, it is
straightforward to show that the Maxwell equations in (2+1) dimensions reduce to

 
   

   

∇ ·E=0 Gauss’ Law
∇⊥ ·E=−Ḃ Faraday’s Law
∇⊥ ·B=−Ė Ampére’s Law

. (1.15)

Notice that the Gauss’ Law for the magnetic field is identically satisfied in 2+1 dimensions.
Since the definition of the Lagrangian and conjugate momenta are the same of the

(3+1)-dimensional case, in the temporal gauge (1.7) the Hamiltonian of the system takes
the same form, with an integral in a plane instead of an integral in the three-dimensional
space:

H =HE+HB=
-
d2xH= 1

2

-
d2x (E2+B2). (1.16)

1.1.3 Canonical quantization of the gauge fields
The canonical quantization of the gauge fields in quantum electrodynamics (QED) is a
fundamental approach used to describe the quantum behavior of the quantum counterpart
of the electromagnetic field and interactions [2]. This formalism provides a framework for
calculating scattering amplitudes and understanding the underlying quantum nature of
electromagnetism in QED.
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The canonical quantization procedure treats the electromagnetic field as an (infinite)
collection of harmonic oscillators. By imposing canonical commutation relations, the field is
promoted to a quantum operator, allowing for the quantization of the electromagnetic field:

Ai→ Âi, Πi→ Π̂i=−Êi, (1.17)

The set of equal-time canonical commutation relations between the gauge field and its
conjugated momenta reads (in two spatial dimensions)

[Âi(t,x), Π̂j(t, y)] = iδ(2)(x− y) δij , (1.18)

and since we identified Πi as the opposite of the electric field in (1.6) we obtain

[Âi(t,x), Êj(t, y)]=−i δ(2)(x− y) δij . (1.19)

In the context of this theory, the quantization of the degrees of freedom of the field Aµ

leads to the existence of quanta of particles associated with the electromagnetic field, called
photons [2].

1.2 The (2+1)-dimensional Lattice QED

The regularization on a lattice is a technique used in Lattice Gauge Theory to overcome
the difficulties associated with the non-perturbative nature of Quantum Field Theories. It
involves discretizing spacetime into a lattice of finite spacing a. The continuum field theory
is then approximated by a lattice field theory with a finite number of lattice sites. This
discretization provides a well-defined framework for performing calculations and allows
for numerical simulations on a computer. By introducing a lattice spacing, the ultraviolet
divergences, which arise from infinitely short-distance fluctuations, are naturally regu-
lated. The lattice spacing acts as an ultraviolet cutoff, limiting the momenta that can be
exchanged between particles.

The regularization on a lattice preserves some important symmetries of the continuum
theory and allows for the study of non-perturbative phenomena such as confinement and
chiral symmetry breaking in gauge theories. However, in Lattice Gauge Theory, Lorentz
symmetry is typically broken at the microscopic level due to the introduction of a finite
lattice spacing. This breaking manifests as lattice artifacts, which are deviations from exact
Lorentz invariant theory, which should become insignificant in the continuum limit , as the
lattice spacing approaches to zero.

In the section 1.1 it was shown that the Hamiltonian of the Electrodynamics in the
continuum space can be written as a sum of the electric and magnetic terms

HE=
1
2

-
d2xE2(x), HB=

1
2

-
d2xB2(x). (1.20)
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Figure 1.1. (a) A square lattice of lattice spacing a. (b) In the context of pure lattice QED,
the components Ex,Ey of the electric field are living in the links of the lattice. The magnetic field
B=Bz is instead perpendicular to the plane, and it is associated to the plaquettes.

In this section, a discretization of the two-dimensional space is performed, using a square
lattice of spacing a (Fig. 1.1a).

In order to determine the Hamiltonian after the discretization, we want to identify the
new field variables associated to this model. We perform the discretization of the fields
identifying the electric field components Ex, Ey on the links, and the transversal magnetic
field component Bz=B on the plaquettes (fig. 1.1b).

1.2.1 Wilson loops

A Wilson loop [7] is a mathematical object used to study the behavior of gauge fields.
Mathematically, it is the integral of a gauge field along a closed loop in spacetime [2]. It
characterizes how a quantum field interacts with the gauge field as it propagates along the
loop. The loop can be any closed curve γ: the Wilson loop computes the phase acquired
by the quantum field as it travels along γ.

Wilson loops are crucial in lattice gauge theories because they serve as order parameters
for the confinement-deconfinement phase transition, providing insights into the behavior
of quarks and gluons at different energy scales.

In the context of quantum electrodynamics in (2+ 1)-dimension, given a path γ from
x to y in spacetime, we define the Wilson line, also known as comparator [2], the quantity

Uγ (x, y)≡ exp
.
ie

-

x

y

dxµAµ(x)
/
, (1.21)

where e is the fundamental charge. The quantity (1.21) becomes independent from A0 in
the temporal gauge A0=0:

Uγ (x, y)= exp
.
−ie
-

x

y

dxiAi(x)
/
, (1.22)

where the minus sign comes from the contraction with the metric.
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Figure 1.2. (a) A plaquette of side a counterclockwise oriented. (b) Notation used for the
direction and labelling of the gauge field Ai on the sides of the plaquette.

The comparator is also known as the parallel transporter , and its role becomes clearer
in the context of Lattice QED where gauge fields are coupled with matter. Indeed, the
comparator is the quantity needed to compensate for the phase difference between the two
points in the definition of the covariant derivative. However, the treatment of the geometry
of the gauge fields is not the aim of this thesis, and the definition (1.21) is enough to
accomplish all the following derivations.

If the path γ is closed, the parallel transporter is called theWilson loop around the path

Uγ= exp
.
−ie
0

γ
dxiAi(x)

/
. (1.23)

which is a gauge-invariant quantity. If the path is a straight infinitesimal line γ from x to
x+", where " is a vector with infinitesimal norm (&"&'1), we can expand the comparator
as

U!( e−ie!·A . (1.24)

Let’s now consider an infinitesimal square plaquette ! with infinitesimal side length a,
and we set γ as the counter-clockwise path along the border of the plaquette (fig. 1.2a)
The Wilson loop, in this case known as plaquette term, can be decomposed into four
infinitesimal Wilson lines of the form (1.24):

U!≡ e−ieaAB e−ieaAR e+ieaAT e+ieaAL=UBURUT
† UL

†, (1.25)

where the signs of the exponents are consistent with the orientation of the loops with
respect the positive direction of the axes (fig. 1.2b).

Regarding computing the value of (1.25) around a closed square plaquette, we can
evaluate the following closed integral using the Stoke’s theorem:

0

∂!
dxiAi=

-

!
dx1dx2 (∂1A2− ∂2A1)=

-

!
dx1dx2B(x). (1.26)
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Now, let be xc≡ (xc1, xc2) the center of the plaquette !. We can expand B(x1, x2) in
Taylor series around the plaquette center as

B(x)=B0+
1

i=1

2
∂B(xc)
∂xi

xi+
1

i,j=1

2
∂B(xc)
∂xi∂xj

xixj+O(x3) . (1.27)

where we defined B0≡B(xc) =B(xc1, xc2) the field in the center of the plaquette. Now,
inserting (1.27) inside (1.26) the first-order terms of the expansion cancels after integration,
and we obtain 0

∂!
dxiAi= a2B0+O(a4) . (1.28)

Hence, the phase accumulated around the plaquette is proportional to the flux of the
magnetic field over that plaquette. In particular, we showed that we can express the Wilson
loop (1.24) as a function of B up to corrections of fourth order in a.

Furthermore, we also notice that we can expand the real quantity

U!+U!
†= e−ie

!
∂!dxiAi+ e+ie

!
∂!dxiAi=2 cos

.
e

0

∂!
dxiAi

/
(1.29)

up to sixth order in the lattice spacing a, using (1.28) and (1.29):

U!+U!
†=2 cos(e(a2B0+O(a4)))

=2− 2 · 1
2!
e(a2B0+O(a4))2+O(a8),

from which we obtain

U!+U!
†=2− e2 a4B02+O(a6) . (1.30)

1.2.2 The Kogut-Susskind Hamiltonian

In this section, we derive the lattice version of the pure (2+ 1)-dimensional QED Hamil-
tonian.

First, from equations (1.21), (1.19) andB=∇×A it respectively follow the dimensions
of the fields:

[Ai] = 1
[e][a]

, [Ei] = [e]
[a]
, [Bi] = 1

[e][a]2
. (1.31)

We will use a square lattice in a plane, in absence of matter, mapping the continuum fields
to the dimensionless discretized fields as follows

Ai→ 1
ea

Al, Ei→ e
a
El, B→ 1

ea2
B!,

-
d2x...→

1
a2... (1.32)

where l represents a link and ! a plaquette. Hence, the electric and magnetic Hamiltonians
in the lattice can be written from (1.16) as

HE=
e2

2
1

l

El
2, HB=

1
2 e2 a2

1

!
B!2 . (1.33)
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However, we want to express the magnetic term as a function of the link variables. Using the
dimensionless fields (1.32), the equation (1.30) becomes, omitting the order expansion in a:

B!2 =2− (U!+U!
†) . (1.34)

In this way, we can express the magnetic field as a function of the plaquette operators.
Now we can express the magnetic Hamiltonian term in function of U ,U †, inserting (1.34)
inside (1.33):

HB=
1

2 e2 a2
1

!
B!2 =

N!
e2 a2

− 1
2 e2 a2

1

!
(U!+U!

†), (1.35)

where N! is the number of plaquettes of the system, which is divergent in the thermody-
namic limit . For a system with finite size, i.e. finite number of plaquettes, the first term in
the last member of (1.35) is a constant shift of the Hamiltonian, so it does not affect the
dynamics and it can be neglected. Thus, the magnetic term of the discretized Hamiltonian
reads

HB=−
1

2e2 a2
1

!
(U!+H.c.). (1.36)

We know that the plaquette operator is a Wilson loop which can be expressed as the
product of Wilson lines around the plaquette:

U!=UBULUT
†UR

†= eiAB eiAL e−iAT e−iAR, (1.37)

Thus, HB has been written as a function of the gauge field, which lives in the links of the
lattice.

Finally, defining the relative electric field strength coupling as

g2= e2 a, (1.38)

we obtain the discrete form of the lattice QED Kogut-Susskind Hamiltonian without
fermions

H =HE+HB=
g2

2 a
1

l

El
2− 1

2 ag2
1

!
(U!+H.c.). (1.39)

Notice that the ratio between the electric field strength and the magnetic field strength is

gE
gB

=
g2

2 a
1

2 ag2

= g4 . (1.40)

Hence, g4 is actually the natural perturbation parameter of this system.

1.2.3 Quantization of the lattice link variables

In order to quantize the system in the lattice, we have to consider the counterpart of the
canonical commutation relation (1.19) of the dimensionless field operators

Al→ Âl, El→ Êl . (1.41)
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From the following dimensionless substitution of the δ function:

δ(2)(x− y) δij→
1
a2
δll!, (1.42)

the commutation relations (1.19) becomes in the lattice

[Âl, Êl!] =−iδll !, (1.43)

where Êl, Âl are the electric field and the vector potential operators defined for the lattice
link l. In this context, the parallel transporter operator can be defined in an infinitesimal
path i.e. a link l of the lattice, as

Ûl≡ e−iÂl . (1.44)

Applying the Baker-Campbell-Hausdorff formula we obtain:

Û † Ê Û=eiÂ Ê e−iÂ

=Ê+ i [Â, Ê] + i2

2!
[Â, [Â, Ê]] + i3

3!
[Â, [Â, [Â, Ê]]] + . . .

=Ê+ i [Â, Ê] + 0+0+ . . .

=Ê − i2 I
=Ê+ I,

From which we immediately obtain the following commutation algebra

[Ê , Û ] = Û , [Ê , Û †] =−Û †, [Û , Û †] = 0. (1.45)

The relations (1.45) encodes a ladder operator algebra. Indeed, if |E" is an eigenstate of
the electric field operator with eigenvalue E

Ê |E"=E |E" , (1.46)

then the action of Û and Û † is that of increasing and decreasing the value of the electric
field of a link:

Û |E "= |E+1", Û †|E "= |E − 1". (1.47)

1.2.4 Gauge invariance: the Gauss’ Law

We want to impose that physical states |Φ" are invariant under gauge transformations. In
general a gauge transformation operator has the form

Ŷ = exp
.
−i
-
d3xα(x)Ĝ(x)

/
, (1.48)

where α(x) is a continuous function representing the gauge freedom, and G(x) is the
local generator of the gauge transformation. If a physical state is invariant under gauge
transformation then it is invariant under the action of a gauge operator:

Ŷ |Φ"= |Φ" . (1.49)
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Ês−µ̂y

Ês− µ̂x Ês+µ̂xµx

µy

Figure 1.3. Notation for the Gauss’ Law in the lattice: a site s has four neighboring sites s± µ̂i,
and the associated links with electric field operators Ês±µ̂i.

A sufficient condition to satisfy (1.49) is

Ĝ(x)|Φ"=0 ∀x. (1.50)

It can be proved that the generator of the gauge transformation is

Ĝ(x)=∇ · Ê , (1.51)

so that the gauge invariant states |Φ" are encoded in the following condition, which is the
quantum implementation of the Gauss’ Law:

∇ · Ê |Φ"=0. (1.52)

In the lattice, it is simple to write the discretized version of the gauge generator Ĝl in a
lattice site, in the basis which diagonalize the electric field operators. Indeed, if

Ĝ(x)= ∂x Êx(x)+ ∂y Êy(x) , (1.53)

in a lattice site s, the discretized version of (1.53) is

Ĝs=(Ês+µ̂x− Ês−µ̂x)+ (Ês+ µ̂y− Ês+µ̂y) , (1.54)

where we denote with µ̂x,y the lattice versors, so that s± µ̂i are the neighboring sites of s
(Fig. 1.3).

The Gauss’ Law has a simple interpretation on the lattice: in the electric field basis,
for each lattice site, the sum of all the ingoing electric field from the links must be equal
to the sum of all the outgoing electric field from the site.

One can show that, for every site s, the Hamiltonian of the lattice commutes with the
generator of the gauge transformations:

[Ĝs, Ĥ ] = 0, ∀s. (1.55)

Hence, if a state |Φ" obeys the Gauss’ Law, i.e. if the state belongs to the gauge invariant
subspace of physical states

HPhys≡ {|Φ" | Ĝs|Φ"=0 ∀s}, (1.56)

at t=0, then the evolved state |Φ(t)"= e−iĤt|Φ" remains inside that physical subspace for
all t > 0 (Fig. 1.4).
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|Φ(0)"

|Φ(t)"

Hphys

Figure 1.4. An initial state |F(0)! belonging to the physical gauge-invariant subspace Hphys

remains inside it under time evolution.

1.3 The Quantum Link Model

The spectrum of the electromagnetic operator Êl is, at least in principle, unbounded. This
means that the value of the electromagnetic field for each link can be arbitrarily high, and
the local Hilbert space of a link of the lattice is infinite dimensional. This is a problem if
the aim of the Lattice formulation is that of numerically simulating the system: indeed,
an infinite number of basis elements is numerically intractable. Thus, we need a cutoff
procedure which allows to bound the value of the electric field, preserving the algebra (1.45)
but considering a finite number of electric field configurations. One possible solution is the
Quantum Link Model (QLM) formulation [29] of Lattice Gauge Theory.

1.3.1 Mapping link operators to spin operators

The intuition behind the QLM is the observation that the algebra (1.45) is similar to the
SU(2) spin operator algebra

[Ŝz, Ŝ+] = Ŝ+, [Ŝz, Ŝ−] =−Ŝ−, [Ŝ+, Ŝ−] = 2 Ŝz, (1.57)

where Ŝ± are the spin ladder operators defined as

Ŝ+= Ŝx+ iŜy, Ŝ−= Ŝx− iŜy . (1.58)

This brings to the following identification between link variables of the lattice and spin
variables:

Ê→ Ŝz, Û→ Ŝ+, Û †→ Ŝ− . (1.59)

The main problem of the QLM formulation is that the operators Ŝ± are no more unitary,
namely the algebra is not preserved for the last equality of (1.45) and (1.57):

[Û , Û †] = 0, [Ŝ+, Ŝ−] =/ 0. (1.60)

A possible solution to the problem of unitarity is to identify the plaquette operators as

Û→ Ŝ+

s
, Û †→ Ŝ−

s
, (1.61)
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Figure 1.5. Notation for the z-projection of the spin operators in the lattice links of the Quantum
Link Model.

where s∈N/2 is the spin representation, whose s=1/2 is the lowest one. Also with this
identification, the first two equalities of (1.45) are preserved, while for the third one, at
least in the limit of large spin representation s→∞, which is the limit we want to reach
to obtain the real QED, we recover unitarity of the operators:

[Û , Û †]→ 1
s2
[Ŝ+, Ŝ−] = 2Ŝz

s2
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →s→∞

0. (1.62)

The recovery of the unitarity of Ŝ± in the large s limit can be seen more explicitly applying
the operator Û †Û to a generic eigenstate |s, sz" of Ŝz. In particular, the operator Û †Û
becomes the identity for s→∞:

lim
s→∞

Û †Û |s, sz" = lim
s→∞

1
s2
Ŝ−Ŝ+|s, sz"

= lim
s→∞

s(s+1)− (sz+1)sz
2

s

s(s+1)− sz(sz+1)
2

s
|s, sz"

= 1 · 1 · |s, sz"
= I |s, sz",

(1.63)

and the same holds for Û Û †, hence for s→∞ the unitarity is recovered.
In the QLM formulation, the Kogut-Susskind Hamiltonian takes the form

ĤQLM=
g2

2 a
1

l

(Ŝl
z)2− 1

2 ag2
1

!
(ŜB

+ ŜL
+ ŜT

− ŜR
−+H.c.), (1.64)

where ŜB
+ ŜL

+ ŜT
− ŜR

− is the plaquette operator written in terms of spin variables.

1.3.2 QLM spin notation and the Gauss’ Law

In the Quantum Link Model, the electric field operators of the links are identified with
the Ŝz spin operators. This means that the basis that diagonalizes the electric field is
represented by the spin basis of the z-projection of the spin. We know that chosen a spin
representation s ∈N/2 the spectrum of Ŝz ranges between the 2s+ 1 integer (or semi-
integer) values

sz ∈ {−s,−s+1, . . . , s− 1, s}. (1.65)

To represent the lattice spin configurations of the links we can use the following notation
for the z-projection of the spin (Fig. 1.5).
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Figure 1.6. Using the spin representation s=1/2, for a lattice site with four neighboring links,
there are 16 total configurations. Only 6 (highlighted in this figure) are compatible with the Gauss’
Law.

Thus, we can implement the Gauss’ Law for each site and the neighboring links of the
lattice, selecting all the allowed local configurations. For instance, for the specific case of
s=1/2, figure 1.6 shows the 6 gauge invariant local configurations out of the 16 possible
local configurations of the electric field in a single site.
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Chapter 2

Pure Lattice QED on ladder geometries

2.1 The ladder geometry

The Kogut-Susskind formulation allows, at least in principle, to perform a numerical sim-
ulation of any gauge theory in arbitrary spacetime dimension D [27]. However, we have to
balance between these two disadvantages:

• the more the space dimensionality D increases, the more computational cost is
needed to handle the increasingly large Hilbert space of the theory;

• conversely, the more the space dimensionality D decreases, the more the theory
becomes trivial and distant from reality.

For the QED case, the (1+1)-D theory is trivial, widely studied and exactly solvable even
in the continuum spacetime [52] (also known as the Schwinger Model). Furthermore, in
the (1+1)-dimensional QED photons cannot propagate due to the absence of a transverse
polarization component of the electric field, and the absence of the magnetic field. This
fact makes impossible many phenomenological aspects of QED such as the scattering where
photons are involved.

Concerning (2 + 1)-D and (3 + 1)-D QED, these theories become computationally
intractable very quickly as the plaquette number increases.

A nice compromise as a lattice theory is to consider a “1+ $” dimensional system, which
has a two-leg ladder geometry in the lattice:

We construct a “chain” of plaquettes, so that the system remains quasi-1-dimensional,
but it acquires a width extension so that the magnetic field plaquette term allows photon
propagation. The continuum counterpart of the ladder model could represent a matter of
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Figure 2.1. Enumeration convention of the plaquettes in the one-leg ladder system. We denote
with j=1, . . . , L the plaquette number, and with B,R,T,L (which stems for Bottom, Right, Top
and Left), the link associated to the plaquette.

Open boundaryPeriodic boundary

Figure 2.2. The two boundary conditions applied to the two-leg ladder system.

study in the context of dimensional reduction of QED [51].

Spacetime dimension (1+1)-D (“1+$”+1)-D (1+2)-D

Continuous models

QED2 (?) QED3

(Schwinger model)

Lattice models

Lattice QED2 “Ladder QED” Lattice QED3

Table 2.1. Classification of QED theories up to two spatial dimensions, using a naïve spatial
representation.

Hence, the lattice geometry we are going to consider and study is the so-called two-leg
ladder composed of L plaquettes. There are two topologies associated to the ladder, which
sets the boundaries as open or periodic (Fig. 2.2). The latter closes the final plaquette j=L
with the starting plaquette j=1. From now on in this chapter, unless specified otherwise,
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periodic boundary conditions are used by default.

2.2 The Quantum Link Model on the Ladder

The number of links Nl of the lattice can be simply counted in open boundary and periodic
boundary conditions as follows:

Nl
open=3L+1 , Nl

periodic=3L. (2.1)

We choose a spin representation s∈N/2, so that for each link l we can represent the electric
field operator Ê as the spin operator Ŝz. Thus, the local Hilbert space Hl

(s) for each single
link has dimension 2s+1,

Hl
(s)=C2s+1 , dimHl

(s)=2s+1, (2.2)

and the global Hilbert space of the whole quantum system can be obtained as a tensor
product of all the local Hilbert spaces (2.2) of all the links:

Htot
(s)=

3

l=1

Nl

Hl
(s), dimHtot

(s)=(2s+1)Nl . (2.3)

In order to construct a computational basis {|Ψ"} of Htot
(s) we have to find the basis {|φ"l}

of the local Hilbert space Hl
(s). We can use the local spin-z basis {|s, sz"} whose elements

are defined as

|φ"l≡ |s, sz"≡ (0, 0, . . . , 0, 1, 0, . . . , 0, 0)&444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 456777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
2s+1entries

, (1 at position sz+ s+1) . (2.4)

In this way, the basis {|Φ"i} of Htot
(s) total Hilbert space is obtained as the tensor product

of all the possible combinations of local basis (2.4):

|Φ"=
3

l=1

Nl

|φ"l . (2.5)

Thus, a generic quantum state of the ladder can be represented choosing a set {αi∈C} of
complex numbers such that

|Ψ"=
1

i=1

dimHtot
(s)

αi|Φ"i , ,Ψ|Ψ"=1 . (2.6)

However, the Hilbert space (2.3) is not the space of physical states. A physical state, as
discussed in the section (1.2.4) is a gauge invariant state, i.e. a state which is invariant
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under gauge transformations. We showed that the condition for a state |ΨG" to be gauge
invariant is

Ĝj |ΨG"=0 ∀j, (2.7)

where Ĝj is the generator of the local gauge transformation on the site j. Therefore, we
can define the physical Hilbert space HG as the set of all the gauge invariant states, i.e.
all the states which satisfy (2.7):

HG≡ {|Ψ" ∈Htot | Ĝj |Ψ"=0 ∀j}. (2.8)

An efficient way to construct HG is to consider only the elements |ΦG" of the basis of Htot

which are gauge invariant

{|ΦG"}≡ {|Ψ" | Ĝj |Ψ"=0}, (2.9)

so that the physical Hilbert space is the vector space which is spanned by that basis:

HG= Span{|ΦG"}. (2.10)

Which is the number of element of that basis, i.e. the dimension of the physical gauge
invariant subspace HG of Htot? This is, in general, a non-trivial question. For the ladder
system, in section 2.3 we present an algorithm to systematically compute dimHG as a
function of the number L of plaquettes of the ladder.

2.2.1 Gauss’ Law and the problem of the spin representation

In the last section we noticed that in order to construct the gauge invariant subspace of
the total Hilbert space Htot we need to search for all the gauge invariant elements of the
basis of Htot. In the basis of Ŝz, we can simply directly implementing the Gauss’ Law for
each lattice site of the ladder.

However, here arise a problem for the spin representations with half-integer spins.
Indeed, the theory we are dealing with is the pure QED (without matter), so no fermionic
excitation are allowed. Taking for instance the lowest spin representation s= 1

2
we notice

that, in the ladder geometry, this representation does not allow for gauge invariant con-
figurations. In other words, there is no way to satisfy the Gauss’ Law in a site with three
links with s= 1

2
(Fig. 2.3).

In general, we notice that this problem is extended to all the semi-integer spin repre-
sentations s= 1

2
,
3

2
,
5

2
, . . .

Using semi-integer spins would allow us to reduce the dimensionality of the Hilbert
space, in particular with the lowest spin representation s= 1

2
, and this is crucial in terms

of computational cost. Therefore, we ask for a solution that allows us to use semi-integer
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Figure 2.3. Using the spin representation (sx, sy) =
! 1
2
, 1
2

"
, for the ladder, there are 8 total

configurations. However, this representation is not compatible with the Gauss’ Law: there are no
allowed configurations.

Figure 2.4. Using the spin representation (sx, sy) =
! 1
2
, 1

"
, for the ladder, there are 12 total

configurations. This representation is compatible with the Gauss’ Law, because 4 configurations
(highlighted in this figure) are allowed.

spins. One possibility is using different representations for different links. We notice that
we want to impose the following constraints for the ladder system:

• if we want to impose translational invariance with respect the x-axis, all the L
horizontal spin representations must be the same, and the same holds for all the 2L
vertical spin representations;

• if we want to impose invariance under reflection with respect the x-axis, then for
each plaquette the top and bottom horizontal spin representation must be the same;

However, we can still use different spin representations for horizontal and vertical links.
Letting sx and sy the spin representation of the horizontal and vertical links respectively,
we denote with

(sx, sy) (2.11)

a generic spin representation of the ladder. The lowest spin representation that allows for

gauge invariant configuration is the representation
!
1

2
,1
"
. Indeed, for each site, we notice

that using this representation there are 4 gauge invariant configurations out of 12 total
configuration of the lattice site with three neighboring links (Fig. 2.4).

Not all the representations (sx, sy) are sensical. In particular, we notice that

• the vertical spin representation sy must be a positive integer because, due to the
Gauss’ Law, the z-component of the spin syz is a sum or difference of two sxz for each
site;
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sx=
1

2
sx=1 sx=

3

2
sx=2 sx=

5

2
. . .

sy=
1

2

!
1

2
,
1

2

" !
1, 1

2

" !
3

2
,
1

2

" !
2, 1

2

" !
5

2
,
1

2

"

sy=1
!
1

2
, 1
"

(1, 1)
!
3

2
, 1
"

(2, 1)
!
5

2
, 1
"

. . .

sy=
3

2

!
1

2
,
3

2

" !
1, 3

2

" !
3

2
,
3

2

" !
2, 3

2

" !
5

2
,
3

2

"

sy=2
!
1

2
, 2
"

(1, 2)
!
3

2
, 2
"

(2, 2)
!
5

2
, 2
"

. . .

sy=
5

2

!
1

2
,
5

2

" !
1, 5

2

" !
3

2
,
5

2

" !
2, 5

2

" !
5

2
,
5

2

"

sy=3
!
1

2
, 3
"

(1, 3)
!
3

2
, 3
"

(2, 3)
!
5

2
, 3
"

. . .

sy=
7

2

!
1

2
,
7

2

" !
1, 7

2

" !
3

2
,
7

2

" !
2, 7

2

" !
5

2
,
7

2

"

sy=4
!
1

2
, 4
"

(1, 4)
!
3

2
, 4
"

(2, 4)
!
5

2
, 4
"

. . .

sy=
9

2

!
1

2
,
9

2

" !
1, 9

2

" !
3

2
,
9

2

" !
2, 9

2

" !
5

2
,
9

2

"

sy=5
!
1

2
, 5
"

(1, 5)
!
3

2
, 5
"

(2, 5)
!
5

2
, 5
"

. . .

. . . . . .

Table 2.2. The first spin representations of the ladder are listed. Only the highlighted ones are
consistent representations (sy is a positive integer and sy! 2sx). We will mainly concentrate in
the lowest spin representation

! 1
2
, 1

"
in the following sections.

• the maximum value of syz is obtained when two maximum values of the horizontal
sx
z converges in a site, which is sx+ sx= 2sx. Hence, we consider representations
such that sy! 2sx.

Therefore, we can consider all the possible spin representations, whose first ones are listed
in Tab 2.2.

2.2.2 The local plaquette basis

In order to construct all the gauge invariant electric field configurations of the ladder in
a given spin representation, we can think the ladder as a sequence of plaquettes. Hence,
having a finite set of plaquette configurations, we can construct the ladder as an ordered
sequence of these plaquettes. Given a representation (sx, sy), we first need to determine
all the plaquette configurations.

There are many ways to define a plaquette configuration. For instance, we can list all
the gauge invariant configurations of a super-plaquette, which is composed by a plaquette
with its neighboring links:

34 Pure Lattice QED on ladder geometries



⇓ (Ĝj |Ψ"=0 ∀j)

Figure 2.5. The z-projection values of the horizontal link spins are sufficient to univocally deter-
mine the z-projection values of the vertical ones, in any spin representation (sx, sy). This allows
to use the semi-plaquette basis as a local basis of configurations.

However, we adopt a method that allows us to reduce the number of local configura-
tions. We consider instead a so-called semi-plaquette, which is composed only of the top
and bottom horizontal links:

sT
z

sB
z

Considering this type of local basis, we notice that, imposing the Gauss’ Law for each
site, at least with periodic boundary conditions, all the spins of the vertical links are
automatically determined (Fig. 2.5). Hence, it is sufficient to give an ordered sequence of
L semi-plaquettes to determine univocally a configuration of the chain. Thus, the total
number of semi-plaquettes to consider is (2sx+1)2, and the set of all semi plaquettes for
the first values of sx are listed in Tab. 2.3.

sx

1

2

1

3

2

. . .

Table 2.3. The semi-plaquettes basis for the first three sx spin representations.

2.2.3 The rules for neighboring plaquettes

Clearly, the sy representation sets rules about which plaquettes can follow another one.
Hence, we want to find the necessary and sufficient condition for which a semi-plaquette
Pj can follow another Pj+1, being consistent with the Gauss’ Law and with the limiting sy
representation. The two plaquettes can be represented as follows:
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sT,j
z sT,j+1

z

sB,j
z sB,j+1

z

sR,j
z

Pj+1Pj

The first condition is set by the spin representation of the vertical link:

|sR,jz |! sy . (2.12)

Then, applying the Gauss’ Law for the top and bottom sites we obtain:

Gauss’ Law on top site: sT,j
z + sR,j

z − sT,j+1z =0;
Gauss’ Law on bottom site: sB,j

z − sR,jz − sB,j+1z =0,

and isolating sR,jz from both equations we obtain the condition

sT,j+1
z − sT,jz = sR,j

z = sB,j
z − sB,j+1z , (2.13)

which is equivalent to the condition

sT,j
z + sB,j

z = sT,j+1
z + sB,j+1

z . (2.14)

Now, defining the sum of the top and bottom electric field as the local longitudinal polar-
ization:

s',j
z ≡ sT,jz + sB,j

z , (2.15)

we can write the condition (2.14) as

s',j+1
z = s',j

z . (2.16)

We finally obtain the rule, i.e. a necessary and sufficient condition to determine if Pj+1
can follow Pj:

Pj+1 can followPj ⇐⇒
8
s',j+1
z = s',j

z

|sR,jz |! sy
. (2.17)

2.2.4 The longitudinal polarization sectors

It’s interesting to notice that, since two neighboring plaquettes must have the same lon-
gitudinal polarization s'

z, then in a gauge invariant ladder configuration all the plaquettes
must also have the same s'

z. Hence, the longitudinal polarization is a global property of
the system, and the set of all gauge invariant configurations of the ladder splits into sets
which are labelled by s'

z (Fig. 2.4).
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sx=1/2 sx=1 sx=3/2

s'
z=3

s'
z=2

s'
z=1

s'
z=0

s'
z=−1

s'
z=−2

s'
z=−3

Table 2.4. Each local semi-plaquette basis of Tab. 2.3 is splitted into 4sx+ 1 groups of semi-
plaquettes, each one labeled by the (local) longitudinal polarization s"

z, i.e. the sum between the
z-projection spin of the top and bottom horizontal links.

It is simple to show that with an horizontal representation sx, there are 4sx+1 possible
values of the local longitudinal polarization, which are the following

−2sx,−2sx+1,−2sx+2, . . . , 2sx− 2, 2sx− 1, 2sx . (2.18)

In particular, from this follows that the Hilbert space H of the physical states splits into
a direct sum of subspaces H(s'z), each one labelled by the local longitudinal polarization

H=
9

s"
z=−2sx

2sx

H(s'z) . (2.19)

In the following sections, we will refer to these subspaces as longitudinal polarization super-
selection sectors because actually the longitudinal polarization operator is a dynamical
symmetry invariant, i.e. it commutes with the system’s Hamiltonian.

2.3 Counting the gauge invariant configurations

In the previous sections we described the local basis of semi-plaquettes, which simplifies
the structure of the physical Hilbert space. However, it is still not known the dimension
of the gauge invariant Hilbert subspace of the system, once fixed the spin representation
of the ladder.
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The problem we want to solve is the following: suppose to have a local basis {P1,P2,...,
Pd} of d plaquette configurations2.1. Can we find the number N(L) of configurations of
length L of the form

Pi1Pi2 . . . PiL with ik=1, . . . , d, k=1, . . . , L (2.20)

that are allowed, i.e. gauge invariant? In the following, we find a systematic way to find a
closed form for N(L) as a function of L.

Let’s define the adjacency matrix M as follows

Mij≡
8
1 if Pj can follow Pi
0 otherwise

. (2.21)

Now, let be ni(k) the number of possible configurations of the chain with length k that
finishes with the plaquette Pi. The number ni(k+ 1) of possible configuration of chains
with k+1 plaquettes that finishes with the plaquette Pi will be

ni(k+1)=
1

j=1

d
8
nj(k) if Pj can followPi
0 otherwise

=
1

j=1

d

Mijnj(k) . (2.22)

This is a matrix multiplication: in matrix notation, using i=1, . . . , d as vector index, we
can write (2.22) as

n(k+1)=Mn(k), (2.23)

and thus we find recursively

n(L)=ML−1n(1). (2.24)

The number of configurations of a chain with a single plaquette that finishes with a pla-
quette Pi is 1, so we have ni(1)= 1 and n(1) is the vector e with all unit entries:

n(1)=e≡ (1, 1, . . . , 1)
44444444444444444444444444444444444444444444444444444444444444444444 45677777777777777777777777777777777777777777777777777777777777777777777 7

d times

. (2.25)

So finally the number of possible configurations NL
open with open boundaries of L plaque-

ttes is obtained summing over all the possible configurations ni(L):

NL
open=

1

i=1

d

ni(L)=e&n(L)= e&ML−1 e. (2.26)

To find the configurations with periodic boundary conditions it is quite simple to show that

NL
periodic= e& (M ◦ML−1) e, (2.27)

where ◦ is the Hadamard product between matrices defined as

(A ◦B)ij≡ (A)ij(B)ij . (2.28)

2.1. In this case, the plaquettes configuration are semi-plaquettes. However, the steps of this sections are valid
for any 1-dimensional chain of objects for which we can identify a local set of elements and an adjacency matrix
(2.21), i.e. a set of rules which determines what configuration can follow another.
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Summing up, we can group the previous results as

NL= e&C ◦ML−1 e Cij≡
:
1 open boundaries
Mij periodic boundaries . (2.29)

Diagonalizing M , it is always possible to find a closed form of the power matrix ML−1,
and so a closed form of NL from (2.29). Thus, we have reduced a combinatorial problem
to a diagonalization problem.

We finally notice that the largest eigenvalue λmax of M is the exponential basis at which
the number of configurations increases for very large values of L:

N(L)=O(λmax
N ) . (2.30)

2.3.1 Example with
! 1
2
, 1

"

In case of the lowest spin representation
!
1

2
, 1
"
, we have the following basis of semi-

plaquettes

P1= , P2= , P3= , P4= . (2.31)

and so, applying the rule (2.17), the adjacency matrix M reads

M =

 

       

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 

       . (2.32)

In this specific case the number of configurations are the same in open and periodic
boundary configurations:

NL= e& (C ◦ML−1) e=( 1 1 1 1 )

 

       

1 0 0 0
0 2L−2 2L−2 0
0 2L−2 2L−2 0
0 0 0 1

 

       

 

       

1
1
1
1

 

       =2L+2. (2.33)

We notice that this result has a simple interpretation: the 2 states which adds to the 2L

term are due to P1 and P4 of (2.31), and they span two 1-dimensional sectors in the Hilbert
space. The remaining sector is the one of the chain composed by the two semi-plaquettes
P2 and P3. In this case P2 can follow P3 and vice versa, so there are 2L configurations in a
chain of L plaquettes. Notice that these configurations are the same of L qubits or s= 1

2

spins. This is not a random fact: in section 2.6 we will show that this ladder system in
representation

!
1

2
, 1
"
is mappable to the spin-1

2
quantum Ising transverse field model.
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(sx, sy) N(L), open boundary!
1

2
, 1
"

2L+2

(1, 1) 1+ 2
√

2
(1+ 2

√
)L+

1− 2
√

2
(1− 2

√
)L+2 (2L+1)

(1, 2) 3L+2 (2L+1)!
3

2
, 1
"

2 (2L+1)+ (1+ 2
√

) (1+ 2
√

)L− ( 2
√
− 1) (1− 2

√
)L+ 5+ 5

√

5

#
3+ 5

√

2

$
L
− 5
√
− 5
5

#
3− 5

√

2

$
L

!
3

2
, 2
"

2 (3L+2L+1)+
17− 5 17

√

34

#
3− 17

√

2

$
L
+

17+5 17
√

34

#
3+ 17

√

2

$
L

!
3

2
, 3
"

4L+2 (3L+2L+1)

(2, 3) 7+3 7
√

14 (2+ 7
√

)L+
7− 3 7

√

14 (2− 7
√

)L+2 (2L+3L+4L+1)

(2, 4) 5L+2 (4L+3L+2L+1)!
5

2
, 4
" #

41+7 41
√

82

$#
5+ 41

√

2

$
L
+
#

41− 7 41
√

82

$#
5− 41

√

2

$
L
+2 (5L+4L+3L+2L+1)

!
5

2
, 5
"

6L+2 (5L+4L+3L+2L+1)

Table 2.5. Number of the gauge-invariant configurations of an open boundary ladder with L

plaquettes for some of the first lowest spin representations.

(sx, sy) N(L), periodic boundary!
1

2
, 1
"

2+2L

(1, 1) (1− 2
√

)L+(1+ 2
√

)L+2 · 2L+3

(1, 2) 3L+2 (2L+1)!
3

2
, 1
" #

3+ 5
√

2

$
L
+
#
3− 5

√

2

$
L
+
#
1+ 5

√

2

$
L
+
#
1− 5

√

2

$
L
+2 (1+ 2

√
)L+2 (1− 2

√
)L+2 · 2L+4

!
3

2
, 2
" #

3+ 17
√

2

$
L
+
#
3− 17

√

2

$
L
+2 (3L+2L)+ 3

!
3

2
, 3
"

4L+2 (3L+2L+1)

(2, 3) (2− 7
√

)L+(2+ 7
√

)L+2 (4L+3L+2L)+ 3

(2, 4) 5L+2 (4L+3L+2L+1)!
5

2
, 4
" #

5+ 41
√

2

$
L
+
#
5− 41

√

2

$
L
+2 (5L+4L+3L+2L)+ 3

!
5

2
, 5
"

6L+2 (5L+4L+3L+2L+1)

Table 2.6. Number of the gauge-invariant configurations of a periodic boundary ladder with L

plaquettes for some of the first lowest spin representations.

2.3.2 Higher spin representations
The method previously presented can be applied to higher spin representations (sx, sy) of
the ladder. Tables 2.5 and 2.6 show the number N(L) of gauge invariant configurations of
a ladder of L plaquettes. N(L) is the dimension of the gauge invariant physical subspace,
as a function of the length L of the ladder. In particular, Tab. 2.5 shows it in the open
boundary case while Tab. 2.6 in periodic boundary.

As we expected, N(L) is a sum of exponentials with different basis. The largest basis,
which is the highest eigenvalue of the adjacency matrix, is the leading term in the thermo-
dynamic limit L→∞, and it sets the asymptotic behavior of the dimension of the physical
Hilbert space in the large L limit. Those asymptotic behavior as a function of sx and sy

of the spin representation (sx, sy) are listed in Tab. 2.7.

40 Pure Lattice QED on ladder geometries



(sx, sy) sx=
1

2
sx=1 sx=

3

2
sx=2 sx=

5

2

sy=1 O(2L) O((1+ 2
√

)L) O
!!

3+ 5
√

2

"
L
"
O((1+ 3

√
)L) O(2.802L)

sy=2 - O(3L) O
!!

3+ 17
√

2

"L"
O(3.935L) O(4.182L)

sy=3 - - O(4L) O((2+ 7
√

)L) O(5.119L)
sy=4 - - - O(5L) O

!!
5+ 41

√

2

"
L
"

sy=5 - - - - O(6L)

Table 2.7. The asymptotic estimation for L→∞ of the number of gauge-invariant configurations
of the ladder for the first lowest spin representations. The diagonal of this table is the represen-
tation (n/2, n) described in section 2.3.3.

L=3 L=5 L=7 L=9 L= 11 L= 13!
1

2
, 1
"

10 34 130 514 2’050 8’194

(1, 1) 33 149 737 3’813 20’337 111’029
(1, 2) 45 309 2’445 20’709 181’245 1’610’709!
3

2
, 1
"

70 366 2’088 12’454 76’378 477’636
!
3

2
, 2
"

118 1’126 11’902 132’598 1’527’982 18’040’870
!
3

2
, 3
"

136 1’576 21’016 302’536 4’552’696 70’313’896

(2, 1) 121 685 4’225 27’301 181’525 1’230’241
(2, 2) 229 2’655 33’821 451’309 6’204’619 87’189’985
(2, 3) 301 4’765 84’109 1’572’781 30’504’829 607’022’077
(2, 4) 325 5’725 115’525 2’517’805 57’575’125 1’358’125’885

Table 2.8. Explicit number of gauge invariant configurations of the ladder in periodic boundary
conditions, computed from expressions of Tab. 2.6 in function of L and for the lowest spin repre-
sentations. The underlined values represents the limit of L above which the matrix diagonalization
of the Hamiltonian of the system becomes computationally intractable in an acceptable time using
a laptop (N(L)" 20000).

The highest eigenvalue of the adjacency matrix (2.21) is a root of a characteristic
polynomial. Hence, in Tab. 2.7 the basis of some exponential asymptotic behavior is only
approximated because it is not possible to find a closed form in terms of square roots.

Finally, Tab. 2.8 shows the number N(L) for the lowest odd L (from 3 to 13) and for
the lowest spin representations.

2.3.3 The case (n/2, n)
Fixing the horizontal spin representation sx, the expression for N(L) simplifies as the
vertical representation sy increases. In particular, the expression for N(L) in the spin
representation (n/2, n) is the simplest one:

N(n/2,n)(L)= (n+1)L+2 (1+2L+3L+ · · ·+nL), n∈N. (2.34)

This particular form is due to the longitudinal polarization sectors described in section
2.2.4. Indeed, for (n/2, n) or other representations with higher sy the second constraint of
(2.17) is always satisfied if two plaquettes have the same longitudinal polarizations. Hence,
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for a longitudinal polarization sector with a basis of p plaquettes, there are pL ways to
choose them in a sequence of L plaquettes. Since we discussed the result (2.19) in section
2.2.4 regarding the longitudinal polarization sectors, the number of configurations in case
of (n/2, n) can be deduced as

N(n/2,n)(L)=1L+2L+3L+ . . .+nL+(n− 1)L+nL+ . . .+3L+2L+1L, (2.35)

which is exactly the same result of (2.34).

For spin representations other than (n/2, n), the pattern is no more as simple and
the other longitudinal polarizations sectors are “broken”, i.e. they do not follow a simple
exponential rule as (2.34). This is the reason why N(L) does not have a very simple closed
form.

2.4 Construction of the operators

To construct matrix operators which act on the physical Hilbert space of the ladder system
we can directly test the action of the operator over the computational gauge invariant basis
we constructed.

To understand the process, let’s consider the simplest non-trivial case, which is L=2 in
representation

!
1

2
,1
"
. As we showed in section 2.3.1 there is a basis of N(L=2)=22+2=6

basis configurations |1",..., |6", which can be represented as follows (using periodic boundary
conditions):

|1"= , |2"= , |3"= ,

|4"= , |5"= , |6"= .

(2.36)

In general, an operator acting on a Hilbert space H of dimension dimH can be represented
as a dimH×dimH matrix using a certain basis choice. An operator Â of the ladder with
L=2 in representation

!
1

2
, 1
"
can be represented in the computational basis (2.36) as

Â=

|1" |2" |3" |4" |5" |6"

|1"
|2"
|3"
|4"
|5"
|6"

 

               

A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
A51 A52 A53 A54 A55 A56
A61 A62 A63 A64 A65 A66

 

               

(2.37)

The meaning of the matrix elements in this representation are the pre-factors of the action
of the operator Â on the elements of the basis. For instance, if Â acts on C5 as

|5"= →→→→→→→→→→→→Â Â|5"=3 · +7 · =3|2"+7|4" (2.38)

42 Pure Lattice QED on ladder geometries



→
T̂

→
R̂j

j

→
F̂

Figure 2.6. An example of the explicit action of the symmetry operators T̂ ,R̂j and F̂ on a
particular ladder gauge invariant configuration.

then we have to set A52=3 and A54=7 an all the others A5i=0. If the action of Â over
a configuration is not a gauge invariant configuration (i.e. which breaks the Gauss’ Law)
or not admitted to the spin representation, the associated matrix element will be vanishing.

This method to construct operators in the computational basis can be extended to any
basis in any spin representation, for any operator Â for which the action on every element
of the computational basis is known.

2.4.1 The translation operator T̂

The translation operator is well defined only in periodic boundary conditions. Given a
sequence of plaquettes, i.e. an element of the gauge invariant computational basis, the
translation operator T̂ translates cyclically by right all the plaquettes by one unit (Fig. 2.6).

For instance, for five plaquettes P1, . . . , P5 the action of T̂ is the following:

T̂ |P1P2P3P4P5"= |P5P1P2P3P4" . (2.39)

Since the translation operator is a symmetry operator, it preserves the scalar products and
norm of the states, hence it is a unitary operator:

T̂ T̂ †= T̂ † T̂ = I, T̂ †= T̂−1, [T̂ , T̂ †] = 0. (2.40)

From the operator T̂ we can simply find the translation operator of n units as

T̂(n)≡ T̂ T̂ . . . T̂44444444444444444444444444444444444444444 45677777777777777777777777777777777777777777 7
n

= T̂ n . (2.41)

For a system of length L with periodic boundary conditions applying L times is equivalent
to the identity:

T̂L= I. (2.42)

The eigenvectors of the translation operators are denoted as |k", and the corresponding
eigenvalues are well known complex phases:

T̂ |k,α"= eik|k,α", (2.43)
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where α is a degeneration removing index (depending on the particular system) and k are
the 1-dimensional (Bloch) quasi-momenta

k= 2π
L
k̃, k̃=

 
 

 
−L− 1

2
, . . . ,

L− 1
2

if n odd

−L

2
+1, . . . , L

2
if n even

. (2.44)

The variable k̃ ∈Z is just a rescaling of k and it is an integer value sometimes referred as
(crystal) momentum index . Thus, we can use k or k̃ to label the eigenvalues of T̂ . In the
next chapters, we may omit the tilde k̃ in some cases, referring to the momentum index to
label the quasi-momenta2.2.

2.4.2 Reflection operators R̂ and F̂

A generic reflection operator R̂ can be defined with respect a given axis. It must satisfy
the following properties:

a) it is a unitary operator: R̂†R̂= R̂R̂†= I, because it is a symmetry operator;

b) it is an involutory operator: R̂2= I, because a reflection applied twice must be the
identity;

c) from properties (a) and (b) immediately follows that it must be also Hermitian i.e.
R̂†= R̂.

From the previous properties, R̂ is an observable, and a generic eigenvalue of R̂ can be
r=±1, which is called the parity under a given reflection.

For the ladder system, we denote as R̂j as the reflection operator with respect an axis
which is parallel to the y-axis and centered on the j-th plaquette (Fig. 2.6).

Hence, as previously said, the properties of R̂j are

R̂j
†R̂j= R̂jR̂j

†= I, R̂j
2= I, R̂j

†= R̂j . (2.45)

It is simple to show the following property, which relates the reflection operator and the
translation operator:

R̂j R̂l= T̂ 2j−2l . (2.46)

The property R̂j
2= I is a special case of (2.46), obtained setting j= l.

The action of T̂ and R̂ are not independent, and this brings to a nontrivial commutation
relation:

[T̂ , R̂j] =/ 0 . (2.47)

In general, for any 1-dimensional system, one can show in a simple way the following
property:

R̂j T̂ R̂j
†= T̂ † . (2.48)

2.2. The issue if k or k̃ is used can be resolved depending on the context, and it will be specified if needed.
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This has an intuitive explanation: applying the action of a reflection to a translation means
inverting the direction of the translation, i.e. considering the inverse T̂ † of the translation T̂ .
Hence, we obtain the following nontrivial commutation rule between these two operators:

T̂ R̂j− R̂j T̂ †=0 . (2.49)

The reflection operator with respect the x-axis will be denoted as F̂ , and it will be referred
as the flip operator of the ladder (Fig. 2.6). Being a reflection operator, it satisfies the
previously listed properties:

F̂ †F̂ = F̂ F̂ †= I, F̂ 2= I, F̂ †= F̂ . (2.50)

Furthermore, the x-axis reflection F̂ is independent with respect the y-axis reflection R̂

and with respect the translation T̂ , so F̂ must commute with both the operators:

[R̂j , F̂ ] = 0, [T̂ , F̂ ] = 0 . (2.51)

2.4.3 The Hamiltonian operator Ĥ

From section 1.3.1 we can write the Hamiltonian of the ladder system as

Ĥ = ĤE+ ĤB= g2

2a
1

l=1

Nl

(Ŝl
z)2+ 1

2ag2
1

j=1

L

(Ŝj ,B
+ Ŝj ,R

+ Ŝj,T
− Ŝj,L

− +H.c.) , (2.52)

where l=1, . . . , 3L runs over all the links and j=1, . . . , L runs over all the plaquettes.

To construct the Hamiltonian operator, we have to consider the action of the spin
operators on the spin basis |s, sz":

Ŝz |s, sz"= sz Ŝz, (2.53)

Ŝ±|s, sz"= s(s+1)− sz(sz± 1)
2

|s, sz± 1" . (2.54)

The operators Ŝl
z are Hermitian, while the term +H.c. in (2.52) ensures that Ĥ †= Ĥ.

Hence, the matrix constructed as described previously must be an Hermitian matrix.

The term ĤB is referred also as an hopping term, due to the particular “hopping” action
of its 4-spin plaquette operator:

Ŝj,B
+ Ŝj,R

+ Ŝj ,T
− Ŝj ,L

−

jj − 1

=

j j+1

(2.55)

Translation and reflection are symmetries of the Hamiltonian, i.e. the Hamiltonian is
invariant under the action of translation and reflections operators:

T̂ Ĥ T̂ †= Ĥ , T̂ R̂j T̂ †= Ĥ , T̂ F̂ T̂ †= Ĥ . (2.56)
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This means that all the symmetry operator defined above commutes with the Hamiltonian:

[Ĥ , T̂ ] = 0 , [Ĥ , R̂j] = 0 , [Ĥ , F̂ ] = 0. (2.57)

2.4.4 The local Hamiltonian operators Ĥj

The Hamiltonian operator can be naturally written as a sum of “local” Hamiltonians Ĥj.
The term “local” in this context means that each operator Ĥj acts on the single j-th
plaquette. In particular we have

Ĥ =
1

j=1

L

Ĥj , Ĥj= Ĥj
E+ Ĥj

B . (2.58)

where Ĥj
E and Ĥj

B are defined2.3 as:

Ĥj
E≡ g2

2a

;
1
2
(Ŝj,Lz )2+(Ŝj,Tz )2+(Ŝj,Bz )2+ 1

2
(Ŝj,Rz )2

<
, (2.59)

Ĥj
B≡ 1

2ag2
(Ŝj ,B

+ Ŝj ,R
+ Ŝj ,T

− Ŝj,L
− +H.c.) . (2.60)

Clearly, the action of the symmetry operators over the local Hamiltonians are straightfor-
ward to derive. Indeed, the translation operator applied to the local Hamiltonian Ĥj must
return the local Hamiltonian of the next plaquette:

T̂ Ĥj T̂ †= Ĥj+1 . (2.61)

The reflection operator R̂j inverts the position of the local Hamiltonian with respect the
j-th plaquette

R̂jĤj ! R̂j
†= Ĥ2j−j !, (2.62)

while each local Hamiltonian remains invariant under the action of the flip operator:

F̂ Ĥj F̂ †= Ĥj . (2.63)

2.5 The energy-momentum dispersion relation

The dispersion relation, also known as the energy-momentum relation, is a fundamental
concept in many-body physics. It describes the relationship between the energy (or fre-
quency) and momentum of particles within a system. By plotting the dispersion relation
on a graph, with energy on the vertical axis and momentum on the horizontal axis we

2.3. For each plaquette, the vertical links are common rungs between the neighboring plaquettes. Hence, to
compute the electric energy per plaquette, we multiply by a factor 1/2 the vertical contribution of the electric field
energy in the definition of ĤjE.
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Figure 2.7. Eigenvalues of the 4-momentum operator P µ=(H,P ) for a relativistic quantum field
theory in the case of massive particles m> 0 and massless particles m=0.

obtain information about the behavior of the quasi-particles involved. It is crucial in
understanding phenomena such as wave propagation, particle interactions, and collective
excitations in condensed matter physics, quantum field theory, and other branches of
physics, enabling the study and prediction of the system’s dynamic properties.

The dispersion relation is obtained via simultaneous diagonalization of the Hamiltonian
Ĥ and the momentum P̂ operator. However, since the momentum operator P̂ is difficult
to construct2.4, we diagonalize the unitary translation operator T̂ to get the eigenvalues of
P̂ , being the momentum operator the generator of the translations.

2.5.1 Dispersion relation in a continuous quantum field theory

In a typical relativistic Quantum Field Theory, the eigenvalues of the 4-momentum oper-
ator P̂ µ=(Ĥ , P̂ ) for a free particle organize themselves into hyperboloids in the plane |p|,
E . For a massive particle of mass m, the single-particle states with momentum p follow
the dispersion relation2.5

E =ω= |p|2+m2
=

. (2.64)

which is an hyperboloid passing through the 4-momentum point (m, 0). We stress that,
since we must impose the positivity of the energy E , the hyperboloids are composed of
a single sheet in the upper plane with E > 0. A continuum region above the hyperboloid
passing through 4-momentum point (2m, 0) represents the multi-particle states, while
between the single and multi-particle band states there may also be one or more hyper-
boloids which represents one or more bound states of the theory (Fig. 2.7).

If the particle is massless, so m=0, the single particle hyperboloid coincides with the
upper light-cone, and the same light-cone is the lower threshold of the continuum multi-
particle state region.

2.4. To compute P̂ we should take the matrix logarithm of T̂ , which is computationally a complex operation
for large matrices.

2.5. We recall that we are using the units convention c=1, !=1.
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The velocity β of the particle with momentum k0 is defined as the group velocity, which
is the derivative of the frequency ω with respect the momentum k, computable from the
dispersion relation:

β(k0)≡
dω(k)
dk

>>>>>>>>
k=k0

= dE(p)
dp

>>>>>>>>
p=k0

. (2.65)

The second derivative of the frequency with respect the momentum of a particle with
momentum k0 instead represents the dispersion of a wave-packet formed by the states k0,
and it is commonly referred as dispersion slope

β !(k0)≡
d2ω(k)
d2k

>>>>>>>>
k=k0

= d2E(p)
d2p

>>>>>>>>
p=k0

. (2.66)

For a relativistic dispersion relation (2.64) for very large momenta we have β !→0. For the
massless particle case, such as the photon, β !=0 holds for all momenta2.6. Hence, wave-
packets corresponding to massless particles are non-dispersive, i.e. they propagate without
changing shape. In order to construct a wave-packet which is less dispersive as possible,
we need to localize the momentum k0 in a region of the dispersion relation where β ! is
minimum.

In case of an interacting particle, the nature of the interaction can change its disper-
sion relation. However, all the considerations about the group velocity and the dispersion
slope are the same: solving the interacting problem (i.e. computing the eigenvalues of the
interacting energy-momentum operator), allows for the identification of wave-packets of
single-particle states which propagates almost dispersionlessly, even if the particle is self-
interacting. This is actually the power of the algorithm of wave-packet creation that we
will present in the next chapter.

2.5.2 Dispersion relation in a lattice theory

Let’s consider the case of a (1+ 1)-dimensional spacetime. In the framework of Hamilto-
nian lattice gauge theory, we need to discretize only the space, while the time t remains
continuous. Let’s consider a discretization of the 1-dimensional space with lattice spacing a.
The resulting modification of the reciprocal space of momenta k is that the space becomes
periodic with period 2π/a. The region [−π/a, π/a] is the so-called first Brillouin Zone
(BZ). Indeed, for a→ 0 (the continuum limit) the Brillouin Zone is the whole R line.

When the space is discretized, the structure of the energy bands in the dispersion
relation diagram becomes periodic in the reciprocal space and other many-body bands
becomes to appear (Fig. 2.8). The exact structure of these dispersion relation diagrams is
highly non-trivial and it depends on many factors such as the interactions of the theory and
the way the theory has been discretized on the lattice (e.g. the truncation of the spectrum
of the operators).

2.6. Except for k=0, however there is no reference frame in which a massless particle has vanishing momentum.
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Figure 2.8. Typical dispersion relations of a 1-dimensional lattice theory with lattice discretiza-
tion a, for m> 0 and m=0. This kind of graphs can be obtained considering dispersion relation
of a finite lattice with L sites and performing the thermodynamic limit (L→∞). The dispersion
relation of Fig. 2.7 can be instead obtained considering low momenta (k∼ 0) in the continuum
limit (a→ 0).

To compute these diagrams, one must necessarily consider a finite2.7 lattice with L sites
in periodic boundary conditions2.8. This allows to represent a state of the system in a finite
Hilbert space. In this case also the number of eigenvalues of the energy-momentum operator
becomes finite, and the reciprocal space becomes discrete. Hence, the continuous bands of
Fig. 2.8 becomes a discretized set of points (see for instance the diagrams of section 2.5.4).
Each point of the reciprocal space is labelled with the momentum eigenvalue, which are
the exponents of the eigenvalues of the translation operator T̂ .

In this context, the single particle band represents the so called quasi-particle states,
because particles in this systems are emergent phenomena to be intended as collective
excitations of the many-body components rather than real actual particles.

2.5.3 The tight binding condition
The tight binding is a simplified model used in condensed matter physics to describe the
electronic structure of a solid material. It is particularly useful for studying the behavior of
electrons in a crystalline lattice. The model assumes that the electrons in the solid occupy
atomic orbitals and interact primarily with their neighboring atoms.

When applied to a 1-dimensional lattice, i.e. a linear chain of sites, the tight binding
model considers the nearest-neighbor interactions only. The Hamiltonian is constructed
by taking into account the on-site energy of each atom and the hopping term between
neighboring atoms. The nearest neighboring tight binding Hamiltonian for a 1-dimensional
lattice can be written as

Ĥ =
1

j

εjĉj
†ĉj+

1

j

tj ,j+1ĉj
†ĉj+1 , (2.67)

2.7. An infinite lattice is clearly computationally intractable.
2.8. In order to define a translation operator T̂ , one has to impose periodic boundary conditions.
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where j spans over all the sites of the chain, ĉj
† and ĉj are the creation and annihilation

operator for a (quasi)particle, εj is the on-site energy and ti,j is the hopping integral
between sites i and j.

For a simple tight binding model in a periodic lattice with spacing a, the first band
dispersion relation can be described by the cosine function:

E(k)=E0− 2t cos(ak) . (2.68)

This means that, every time we find a single-band isolated dispersion relation which the
form is approximated by (2.67), the dynamics of the system is approximately described by
the tight-binding Hamiltonian (2.67). In particular, for the tight binding is required that
the ratio between the bandwidth ∆E and the gap ∆0 is small (∆E /∆0'1) i.e. the energy
band is distant from the others.

The tight binding model can be useful for protecting a single quasi-particle wave-packet
from dispersion due to its localized nature. This is because the hopping between sites is
typically stronger for nearest neighbors, and the tight binding model assumes negligible
hopping beyond that. This localization can be advantageous for preserving the coherence
and integrity of the wave-packet over time, allowing it to propagate through the lattice
with minimal distortion or loss of information.

However, we stress that the tight binding alone is not a necessary but only a sufficient
condition to create wave packets protected from dispersion. Additional factors, such as
conserved quantities, can indeed play a role in preserving the non-dispersive structure of
wave packets.

2.5.4 Dispersion relations of the ladder system

We suppose2.9 that for our 1-dimensional (discretized, finite) ladder system, the couple of
operators {Ĥ , T̂ } form a complete set of compatible observables. In other words, we assume
that it exists a complete basis {|E , k"} of the Hilbert space, whose vectors are also common
eigenstates Ĥ and T̂ , namely

Ĥ |E , k"= E |E , k" , T̂ |E , k"= eik|E , k" . (2.69)

The fact that the operators Ĥ and T̂ are simultaneously diagonalizable is guaranteed by
the commutation relation [Ĥ , T̂ ] = 0. The assumption of completeness of {|E , k"} instead
ensures that each eigenvector and eigenvalue is non-degenerate.

In this section we show and comment the dispersion relation diagrams in the plane (k,E)
for the ladder system introduced at the beginning of this chapter. We consider a ladder of L
plaquettes and lattice spacing a=1, varying the electric field relative interaction strength g.

To obtain the dispersion relation diagrams, we numerically simultaneously diagonalize
both the operators Ĥ (with eigenvalues E) and T̂ (with eigenvalues eik) for different values
of g. From the eigenvectors eik of the translation operator T̂ we compute the momentum k.
Thus, we select all the couples (k,E) and we represent them in a plane. The most efficient

2.9. This supposition is confirmed later by direct numerical computations of the eigenvalues of Ĥ and T̂ .
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Figure 2.9. Energy-momentum dispersion relation diagrams for a ladder system with spin repre-
sentation

! 1
2
, 1

"
and L= 13.

way to simultaneously diagonalize these operators will be discussed in the next chapter,
where more technical details about numerical computations are reported.

Lowest spin representation
#
1

2
, 1

$
Fig. 2.9 shows the dispersion relation graphs of a

L= 13 ladder system for different electric field strength (from g4= 0.01 to g4= 100) in the
spin representation

!
1

2
, 1
"
.

First, we notice that the ground state |Ω" is non-degenerate for g→ 0, and degenerate
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(with degeneration 2) for g→∞. The energies E assumes also negative values, but this is
not an issue because we always consider differences E − EΩ=∆E " 0 between the energy
E of a state and the ground state energy EΩ, which are always non-negative. For g4< 4
we also notice a non-degenerate state with maximum energy Emax. This has a symmetric
structure with respect the ground state, and the band below this maximum-energy state
represents the dispersion relation of a hole created from the eigenstate of energy Emax.
Anyway, we are always interested to the first lower energy band which should represent
the single-photon states created from the vacuum.

We comment all the different regimes varying the coupling g:

• g→0. For very low values of the coupling all the energy bands are flat. This means
that the quasi-particle representing photons does not propagate for g→ 0, because
the group velocity of these particles in this regime is β=0. The same holds for all
the above many-particle bands.

• g#1.0. As g increases, the bandwidth ∆E1 of the single-particle dispersion relation
grows and the ratio ∆0/∆E1 reduces, where ∆0 is the energy gap2.10 of the system.
Since ∆0>0, in this regime we are describing a (slow) propagating massive photon.
Furthermore, in this regime the first energy band is isolated and with a cosine-shape
(2.68), thus the tight binding condition is satisfied. Hence, with these conditions
the photonic wave-packets are protected by the tight-binding, but photons are still
slow because they are massive.

• g4 $ 2.0 all the many-body energy bands mix together and they are no more
distinct. The first quasi-particle energy band remains visible but not isolated, and
the tight binding condition no more holds. The photon mass decreases.

• g4= 4.0, the gap ∆0 vanishes. This is the critical point in which a quantum phase
transition occurs, from the deconfined to a confined phase. The photon becomes
massless and it propagates at the speed of light for enough small values of momenta.
This is the regime in which the quasi-particle more resembles real photons. This is
the most distant regime from the tight binding condition, so the particle dynamics
is in general non-local and dispersive. However, as we will see in section 2.6, the
system is equivalent to the Ising model, which has many conserved quantities which
protect the wave-packets from dispersion.

• g4> 4.0. In this regime, the photon returns to be massive, but the first single-
particle energy band is no more isolated as in the deconfined phase case. Two

2.10. The gap ∆0≡ E1− EΩ is defined as the energy difference between the ground-state and the first excited
state.
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Figure 2.10. Energy-momentum dispersion relation diagrams for a ladder system with spin repre-
sentation (1, 1) and L= 11.

interesting distinct symmetric over-imposed energy bands appear in the hole region.

• g→∞. All the energy bands returns to be flat, no photon propagation is allowed.
This fact is actually valid for all the spin representations and it is coherent with the
Hamiltonian structure: without the magnetic (hopping) term in the Hamiltonian,
no propagation of quasi-particles is allowed.

The analysis in the lowest spin representation has been done in detail because it will be
the representation chosen for the numerical simulations of the next chapters.

The spin representations (1, 1), (1, 2) Even if we will not use them for real-time
numerical simulation, we now analyze the dispersion relations in the case of higher spin
representations.

We first set sx= 1. As described in section 2.2.1, in this case we have just two non-
trivial cases for sy, which are sy=1 and sy=2:

• Case (1,1). If we set (sx, sy)=(1,1) and L=11 the dispersion relation for different

values of g is that of Fig. 2.10. Differently from the
!
1

2
, 1
"
case, there are no flat

energy-bands for g→0. Even for very small couplings, the first single-particle band
is not isolated (for sy < 2sx the longitudinal polarization sectors are “broken” as
discussed in section 2.3.3). For g4(2.0, a single-particle band appears, but another
(flat, non propagating) band with the same energy is over-imposed to it. This

2.5 The energy-momentum dispersion relation 53



E

Figure 2.11. Energy-momentum dispersion relation diagrams for a ladder system with spin repre-
sentation (1, 2) and L=9.

is probably a longitudinal polarization mode, allowed by the Lorentz symmetry
braking of the lattice. For g→ 0, the energy bands become flat, as expected.

• Case (1,2). If we set (sx, sy)=(1,1) and L=9 the dispersion relation for different
values of g is that of Fig. 2.11. Also in this case, there are no flat energy-bands
for g→ 0. However, for g→ 0 a single definite energy band is recovered in this spin
representation (all the longitudinal polarization sectors are un-broken). However,
we notice that for any value of the coupling g the system has a non-vanishing gap
∆0> 0. This means that the photon remains massive for any value of the coupling
in this spin representation.

The case sx=3/2 and higher spin representations For spin representations equal or
higher than sx=3/2 the computational cost for diagonalization becomes large. Hence, only
systems with L! 7 can be simulated. The fact that the single-band structure is recovered
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Figure 2.12. Energy-momentum dispersion relation diagrams for a ladder system with g4 =

0.01 and L= 7 and different higher spin representations. In particular, here we consider spin
representations with sx=3/2, and different sy. Notice that, as sx gets closer to sy=2sx, the single-
particle band becomes distinct.

when sy(2sx seems to be valid also for higher spin representations. Figure 2.12 shows the
cases for g4= 0.1 and sy=1, 2, 3. For sy= 1, there is no single-particle energy band and
(the polarization sectors structure of the Hilbert space is completely broken). For sy=2 a
single-particle band is more visible and for sy=3 is completely recovered. We conjecture
that this kind of behavior is valid also for higher spin representation.

Another comment is about the gap ∆0 of the system. For higher spin representations,
it seems that there are no more gapless phases as in the

!
1

2
, 1
"
case. This constitutes an

indication that the propagating photon is probably a massive particle in the continuous
counterpart of the model (the QED2 with infinitesimal width).

It is interesting to notice that, at least in terms of dispersion relation, the quasi-particles
of the most simplified model with

!
1

2
,1
"
spin representation at the critical point (g= 2

√
)

are actually more similar to the real (3+1)-QED photons with respect the quasi-particles
of the ladder system with higher spin representations.

2.6 Mapping
! 1
2 ,1

"
ladder to 1D Ising transverse field

A mapping between two quantum systems is an exact one-by-one correspondence between
the Hilbert spaces and Hamiltonians of two different quantum systems. A mapping is
typically employed when trying to analyze or understand one quantum system in terms of
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Figure 2.13. We establish a 1-by-1 correspondence between the all states of the QED in the
ladder system we presented in this chapter and the 1-dimensional Ising model with a transverse
field. The correspondence is showed also for the Hamiltonian of the system, which guarantees that
also the dynamics is exactly the same.

another system that is already well-studied or better understood. Sometimes a mapping
is referred as a duality between two quantum systems.

One common scenario where quantum state mapping is employed is indeed in quantum
simulations. By mapping a quantum system of interest to a simpler or more controllable
system, one can gain insights into the behavior and properties of the original system (e.g.
phase transitions, non-perturbative processes, and so on).

In this section, we want to show an exact mapping between the zero polarization
sector of the (1 + $) + 1 ladder QED with no fermions in the QLM formulation with

spin representation
!
1

2
, 1
"
and the 1-dimensional anti-ferromagnetic Ising model with a

transverse field (Fig. 2.13). We will use periodic boundary conditions for convenience, but
we could use also open boundary conditions if needed.

2.6.1 The Ising Model with a transverse field

The 1-dimensional (quantum) Ising Model with a transverse field is a simplified quantum
mechanical model used to describe the behavior of a system composed of interacting spins.
Spins can represent the orientation of magnetic moments in a physical material or abstract
quantities in other systems. The Hamiltonian of the system is the following:

Ĥ =−J
1

j

σ̂j
z σ̂j+1

z − µ
1

j

σ̂j
x , (2.70)

where J is the interaction strength between the spins, µ is the strength of the magnetic
field (along the x-axis) and σ̂iα is the Pauli spin operator (the Pauli 2× 2 matrices) for the
site j of the Ising chain along the direction α=x, y, z. The first term of the Hamiltonian
(2.70) represents the interaction energy between neighboring spins, while the second term
corresponds to a transverse magnetic field acting on each spin: the interplay between these
terms leads to non-trivial quantum effects.
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Defining the relative magnetic field strength

λ≡ µ
J

(2.71)

in the Ising model, there are two phases: a ferromagnetic degenerate “ordered” phase (µ<1)
with z-aligned spins, and a non-degenerate paramagnetic “disordered” phase (µ> 1) with
x-aligned spins (in the direction of the field, but classically the spin are disordered). The
quantum phase transition occurs at the critical point µ=1 and it is characterized by abrupt
changes in properties like magnetization and correlation length.

2.6.2 Mapping between Hilbert spaces

In section 2.3.1, we actually already implicitly performed mapping between the two Hilbert
spaces. Anyway, we do it again specifically for this system in a more intuitive way.

In the assumption of the Gauss’ Law, we saw that we can characterize every spin
configuration only considering the top (T) and bottom (B) spins (the semi-plaquette con-
figurations). In particular, there are 4 semi-plaquettes in the sx=1/2 representation:

P1= , P2= , P3= , P4= . (2.72)

Given a sequence of these semi-plaquettes, a unique configuration of plaquettes is deter-
mined. But now we notice that, given this representation and the Gauss’ Law, we have
the following rules, which are a particular case of the general rule (2.17):

• P1 can only follow P1, while P4 can only follow P4;

• P2 and P3 can only follow P2 or P3.

Hence, there are in total 2L+2 combinations, as we already knew from previous sections:

. . . P3P2P3P3P2 . . .444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 456777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
2n configurations

, . . . P1P1P1P1 . . .44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 45677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
1 configuration

, . . . P4P4P4P4 . . .44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 45677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
1 configuration

(2.73)

However, the configurations ... P1P1P1P1... and ... P4P4P4P4 ... are trivial, because they
span a 1-dimensional invariant subspace under the action of Ĥ and T̂ , so it can be con-
sidered as a separate (polarization) sector of the Hilbert space.

If we consider only all the other elements of the basis, we have exactly 2L configurations,
which is the dimension of the Hilbert space of the Ising model. The mapping is between
local state of each site: to map the two Hilbert spaces, we (conventionally) identify the
local states of the ladder P2, P3 with the eigenstates of σ̂z Ising model |↑" and |↓", which
are the local states of the Ising system:

P2= ↔ |↑" , P2= ↔ |↓" . (2.74)
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In other words, we identify the top spin ŜT,j
z of the plaquette with the σ̂jz spin of the

correspondent Ising chain site, formally:

ŜT,j
z ↔ σ̂j

z

2
= 1
2

.
1 0
0 −1

/
. (2.75)

Doing this, we have found an isomorphism (a one-by-one correspondence) between the
zero polarization sector of the Hilbert space of the ladder with L plaquettes and the total
Hilbert space of the Ising model with L spin-1

2
sites:

HLadder
s"=0 (L) ( HIsing(L) . (2.76)

As stated before, the mapping between Hilbert spaces is not enough: we need also a prove
that this mapping preserves the Hamiltonian (i.e. each couple of corresponding eigenstates
of the Hamiltonian have the same energy value).

2.6.3 Electric term ĤE mapped to the Ising interaction term

In this section we prove that the electric term of the Hamiltonian of the ladder system is
mapped in the interaction term of the Ising model. We recall that the electric Hamiltonian
term reads (using periodic boundary conditions):

ĤE= g2

2a
1

l=1

3L

(Ŝl
z)2, (2.77)

where l runs over all the links of the lattice and N =3L is the total number of links.
We first decompose the sum of the Ŝl

z squared into summations for top, vertical and
bottom links:

1

l=1

3L

=
1

top l=1

L

+
1

vertical l=1

L

+
1

bottom l=1

L

. (2.78)

Using the Gauss’ Law, we can write the vertical links as a function of the top horizontal
ones:

ŜT,j+1
zŜT,j

z

ŜR,j
z =⇒ ŜT,j

z + ŜR,j
z = ŜT,j+1

z . (2.79)

Hence, we can express the summation over the vertical links as

1

vertical l=1

L

(Ŝl
z)2=

1

j=1

L

(ŜT,j+1z − ŜT,jz )2=
1

j=1

L

(ŜT,j+1z )2+(ŜT,jz )2− 2ŜT,j+1z ŜT,j
z . (2.80)

where j is now a plaquette index. Now, since we choose the
!
1

2
,1
"
representation, we have

(ŜT,jz )2=1/4, and using the identification (2.75) we obtain

1

vertical l=1

L

(Ŝlz)2 ↔
1

j

1
4
+ 1
4
− 2 σ̂j+1

z

2
σ̂j
z

2
= L
2
− 1
2
1

j

σ̂j
zσ̂j+1

z . (2.81)
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Since we are selecting the zero longitudinal polarization states, from (2.74) it follows that
for every plaquette the top and bottom spins are opposite: ŜB

z =−ŜTz . Hence, we can write

1

top l=1

L

(Ŝl
z)2+

1

bottom l=1

L

(Ŝl
z)2 = 2

1

top l=1

L

(Ŝl
z)2=2

1

j=1

L
1
4
= L
2
. (2.82)

Putting all the previous results together, we obtain the following mapping for the electric
field term:

ĤE=
g2

2a
1

l

(Ŝl
z)2 ↔ g2L

2a
− g2

4a
1

j

σ̂j
zσ̂j+1

z . (2.83)

Aside from a constant term (we keep L, a and g fixed during the system evolution), we see
that the electric term is perfectly mapped on the antiferromagnetic2.11 Ising interaction
term with the following identification between constants:

J ↔ g2

4a
. (2.84)

2.6.4 Magnetic term ĤB mapped to the transverse field term

Now we show an analogous mapping for the magnetic term, which reads

ĤB= 1
2ag2

1

j=1

L

Ûj+H.c. , with Ûj≡ Ŝj ,B+ Ŝj,R
+ Ŝj,T

− Ŝj ,L
− . (2.85)

To show that the two Hamiltonians are equivalent with respect the previous mapping, it
is sufficient to show that the action of each local operator on the local states is the same
for the two systems (up to overall constants which can be reabsorbed in the pre-factors).
In particular, we will show that the operators Û and Û † acts as the operators σ̂+, σ̂− of
the Ising model. More precisely the following mapping holds:

Ûj ↔ 2σ̂j
−=2

.
0 0
1 0

/
, Ûj

† ↔ 2σ̂j
+=2

.
0 1
0 0

/
. (2.86)

With this identification, the term inside the summation of (2.85) can be mapped as

Ûj+ Ûj
† ↔ 2σ̂jx=2

.
0 1
1 0

/
, (2.87)

and this brings to the mapping of the magnetic term to the transverse field term of the
Ising model:

ĤB=−
1

2ag2
1

j

Ûj+ Ûj
† ↔ − 1

ag2
1

j

σ̂j
x, (2.88)

with the following identification of the magnetic field strength constant with respect the
lattice constants:

µ ↔ 1
ag2

. (2.89)

2.11. It is anti-ferromagnetic because g2/4a is a positive quantity, as J in the anti-ferromagnetic case.
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To prove (2.86), it is sufficient to show the identification between Û and σ̂− (the other is
between the adjoint operators Û † and σ̂+). Analyzing the action that the operator Ûj has
over the plaquette basis at position j we have:

Û sR
z

sB
z

sT
z

sL
z =

 
                 

                 

Π×

sB
z +1

sT
z − 1

sR
z +1sL

z − 1 if Ŝ±do not annihilate
any spin state

0 otherwise

(2.90)

where Π is the product of the four spin ladder operator pre-factors obtained from the action
of Ŝ± over the four links:

Π= sx(sx+1)− sBz (sBz +1)
2

sy(sy+1)− sRz (sRz +1)
2

× sx(sx+1)− sBz (sBz − 1)
2

sy(sy+1)− sRz (sRz − 1)
2

.
(2.91)

However, for the particular case of the spin representation (sx, sy) =
!
1

2
, 1
"
it is straight-

forward to see that if one computes explicitly (2.91) for any of the possible sz values, then
the value of Π can be only either 0 or 2:

Π∈ {0, 2} . (2.92)

But if Π=0 this means that Ŝ± is annihilating the state, so Π=2. Thus, we can resume
the action of the operator Û over the semi-plaquette basis as

Û =2× , Û =0 (2.93)

which is exactly the same action of the operator σ̂− over the local basis of the Ising model:

σ̂−|↑"= |↓", σ̂−|↓"= |0" . (2.94)

2.6.5 Phases and critical point

A summary of the mapping between Hamiltonians shown in the previous sections is the
following:

Ĥladder = g2

2a
1

l

(Ŝl
z)2

444444444444444444444444444444444444444444444444444444444444444444444444444444444 456777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
electric term

− 1
2ag2

1

!
(ŜB

+ ŜR
+ ŜT

− ŜL
−+H.c.)


magnetic term

4 4 4

ĤIsing = − J
1

i

σ̂i
z σ̂i+1

z

444444444444444444444444444444444444444444444444444444444444444444444444444444444 456777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
spin interaction

− µ
1

i

σ̂i
x

44444444444444444444444444444444444444444 45677777777777777777777777777777777777777777 7
transverse field

(2.95)
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The phases of the Ising model are well known, and so are the phases of the ladder lattice
system in the spin representation

!
1

2
,1
"
. In particular, it is known that the phase transition

of the Ising model occurs at

λ≡ µ
J
=1 ↔ g4=4 . (2.96)

Hence, knowing the properties of the Ising model, we obtain the following phase diagram
of the ladder system:

• For g< 2
√

the system is in the disordered phase, the ground-state is non-degenerate,
the theory is non-confining, and the (massive) quasiparticles are free to move in the
lattice;

• For g > 2
√

the system is in the ordered phase, the ground-state has a double
degeneration, the theory is confining and the quasiparticle cannot propagate freely;

• At g= 2
√

, the system undergoes a quantum phase transition: the system is at the
critical point , i.e. in the gapless phase with massless quasiparticles.

The phases above are coherent with what observed computing numerically the dispersion
relation of the system (Fig. 2.9 in section 2.5.4). This identification of the phases of the
ladder system with the language of Ising model can be very useful, and it will simplify the
treatment of this lattice model in the following chapters.

2.6.6 Hints about mapping for higher spin representations

It is worth asking if there exists a natural generalization of this mapping for higher spin
representations. The answer is yes, but with some limitations.

First, for higher spin representations there are, in general, more than one nontrivial
polarization sectors of the Hilbert space. We saw in section 2.3.3 that using (n, 2n) rep-
resentation with n ∈N there are 4n+ 1 polarization sectors, where two of them are 1-
dimensional trivial sectors. In this particular representation, for any of these polarization
sectors, one can find an Hilbert space mapping analogous to (2.74), where in this case the
local dimension can be more than 2 (e.g. Ising model with generic spin-s qudits).

However, the problems arise in the Hamiltonian mapping:

• in the electric field term, we cannot set (ŜT,jz )2=1/4, and this brings to non-trivial
terms as global summations of spin operators, that cannot be mapped to an Ising
model;

• in the magnetic field term, the interaction between the plaquettes in this case are
non-local (not 1-plaquette operator); in other words, the condition (2.92) is not
satisfied for higher spin representations. This brings to 3-plaquette operators which
cannot be mapped in the transverse field term of the Ising model.

For these reasons, each polarization sector has an independent non-trivial phase diagram,
and its behavior varying g needs numerical approaches to be understood completely.
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It has been shown recently [48], that other models of the pure QED on ladder geometries
such the Zn lattice gauge theories, are exactly mappable to the so-called quantum clock
model , which is a generalization of the quantum Ising model.
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Chapter 3

Creation of the photonic wave-packets

In chapter 2 we determined many properties of the QLM formulation of the lattice QED
on ladder geometries.

In this chapter we provide a model-independent algorithm to create 1-dimensional
wave-packets of single quasiparticle states. In particular, to give a concrete numerical

example, we will apply this algorithm to the ladder system using the
!
1

2
,1
"
spin represen-

tation, which will be our reference toy model from now on.

This approach is classified as model-independent because it can, at least in principle,
be applied to any 1-dimensional system for which few weak assumptions holds. Indeed, we
do not require strong assumptions aside to know the matrix form of the Hamiltonian Ĥ,
which must be invariant under the action of the translation operator T̂ .

In particular, the steps of the algorithm are the following:

1. simultaneously diagonalize Ĥ and T̂ , selecting the first Bloch states of the first
energy band |k";

2. construct a maximally localized state |Wj" around a plaquette site j, from linear
combinations of the |k" multiplied by phases eiθk. This step is analogous to the
problem of localization of the Wannier orbital functions of crystal systems;

3. construct an excitation operator Ŵj such that Ŵj |Ω"= |Wj", i.e. it creates the max-
imally localized state |Wj" from the vacuum |Ω". In particular, we want Ŵj to be in
a very peculiar form: it must be a linear combinations of compositions of the gauge
invariant plaquette operators Ûj , Ûj

†;

4. considering linear combinations of Ŵj to construct a generic wave-packet operator
Ψ̂ such that Ψ̂|Ω" = |Ψ", where |Ψ" is the single-particle wave-packet state. In
particular, since the Ŵj are written in terms of Ûj, Ûj

†, also Ψ̂ is: this fact is crucial
to represent Ψ̂ as a Matrix Product Operator (MPO), exploiting the Tensor Network
formalism (see chapter 4).
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Using the Ŵj, one can create a single-particle wave-packet state of any energy density
profile. For instance, one can create a Gaussian wave-packet with a definite momenta k.
Furthermore, the fact of having a wave-packet operator Ψ̂ instead of a wave-packet state
|Ψ" allows to create multi-particle states of spatially separated wave-packets from the
vacuum: indeed, if the support of the wave-packet is small enough, it is possible to apply
different Ψ̂ to the vacuum |Ω" at different positions to create interesting initial states like
a scattering state.

3.1 The first energy band states

In this section we analyze the first energy band of the ladder system and we give some
properties of these Bloch states. In particular, we concentrate on the

!
1

2
,1
"
spin represen-

tation for different values of the relative electric field strength coupling g.

3.1.1 First energy band estimation for
! 1
2
, 1

"
with g→ 0

In the limit g→ 0, we can compute analytically the eigenenergies and the eigenstates of
the system in the lowest spin representation. We notice that for very low values of the
coupling, only the magnetic term ĤB survives in the Hamiltonian (2.52):

lim
g→0

Ĥ = ĤB=
1

j

Ĥj
B=− 1

2ag2
1

j

(Ûj+ Ûj
†) . (3.1)

Exploiting the mapping with the Ising model described in section 2.6, from the ladder-
Ising mapping of states

>>>> ?
↔ |↑" ,

>>>> ?
↔ |↓" , (3.2)

we had the following mapping between operators

Ûj+ Ûj
† ↔ 2σ̂jx . (3.3)

Hence, the operators Ûj+ Ûj
† are local , i.e. they acts on a single plaquette (operators of

neighboring plaquettes are independent in this particular spin representation). Using a
common notation with Ising we define the states

|+"≡
>>>> ?

+
>>>> ?

2
√ , |−"≡

>>>> ?
−
>>>> ?

2
√ . (3.4)

From the Ising model in the regime with infinite transverse field (the disordered phase, all
the spins aligned to the magnetic field), we get that the ground-state of the system is a
separable state which can be written as

|Ω"= |+"⊗ |+"⊗ . . .⊗ |+" . (3.5)
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Thus, the energy of the ground-state is

E0(g→ 0)≡,Ω|Ĥ |Ω"=− 1
2ag2

1

j=1

L

,+|2σ̂jx|+"=−
L
ag2

. (3.6)

which is a coherent result with the first dispersion relation graph of Fig. 2.9.
Now, we define the localized state in a plaquette of site j as

|j "≡ |+"⊗ . . .|+"⊗ |−"
445677
jth site

⊗ |+". . .⊗ |+" . (3.7)

The states |j" are indeed eigenstates of the Hamiltonian with energy:

E1(g→ 0)≡,j |Ĥ |j "=− 1
2ag2

 

 ,−|2σ̂jx|−"+
1

j=1

L−1
,+|2σ̂jx|+"

 

 =−L− 2
ag2

. (3.8)

However, |j " are not eigenstates of the translation operator T̂ because obviously

T̂ |j "= |j+1" . (3.9)

We notice that instead the states defined as

|k"≡
1

j

eikj |j " (3.10)

are both eigenstates of Ĥ and T̂ . Hence, the states (3.10) are exactly the Bloch states of
the first energy band, i.e. the single quasiparticle states, in the limit g→ 0.

The energy difference between the first band and the ground-state in this limit is

E1(g→ 0)− E0(g→ 0)=−L− 2
ag2

+ L
ag2

= 2
ag2

. (3.11)

Since the first energy band is flat (no propagation of quasiparticles), the quantity (3.11)
corresponds also to the energy gap ∆0 of the system. We notice that for g→ 0 this gap is
also the energy separation between two any adjacent many-body energy bands, namely

∆0= En− En−1 . (3.12)

3.1.2 Perturbative correction of the first energy band

The unperturbed (g→ 0) and the perturbation Hamiltonian are:

Ĥ0=−
1

2ag2
1

j

Ûj+ Ûj
†, V̂ = g2

2a
1

j

Êj . (3.13)

The local plaquette states which are diagonal in the electric field, while the states |±" are
diagonal in the magnetic basis, because of the Ising mapping:

(Û + Û †)|+"= |+" , (Û + Û †)|−"=−|−" . (3.14)

This means that the unperturbed ground-state is (using the notation of perturbation
theory)

>>>>E0
(0)"= |+"⊗ |+"⊗ . . .⊗ |+" . (3.15)
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Since V̂ is mapped to the hopping of σ̂jzσ̂j+1z in Ising, we notice that the perturbative
correction of the ground-state is at second order because it is vanishing at first order:

,E0
(0)|V̂ |E0

(0)"=0 . (3.16)

Using perturbation theory, we want to show that the perturbative correction of the dis-
persion relation for the first band is the tight binding cosine.

We want to compute the energy correction of the first excitation band, whose pertur-
bation correction is at first order. Let’s consider the following (degenerate, real space)
unperturbed first-excited states (actually they constitutes the flat band of the localized
Wannier functions for g→ 0):

|j"= |+"⊗ . . .⊗ |+"⊗ |−"
445677
j-th

⊗ |+". . .⊗ |+" . (3.17)

The effective Hamiltonian at first order for the states |j " is

Ĥ(1)= P̂ V̂ P̂ . (3.18)

Restricting to the L-dimensional subspace of the states |j " (so that the operators now are
L×L matrices) and considering the Ising mapping we have:

P̂ij= δij , V̂ij=−
g2

4a
1

l

,i|σ̂lzσ̂l+1z |j"=− g
2

4a
(δi,j−1+ δi,j+1) (3.19)

Here, we notice that δi,j−1 and δi,j+1 are the lower and upper diagonal matrix filled with
1, so they are the translation operator restricted to the subspace of |j". Hence, we can
write V̂ in this subspace as

V̂ =− g
2

4a
(T̂ †+ T̂ ) . (3.20)

Since |k" are eigenstates of T̂ with eigenvalues eiak, we can compute the first order correc-
tion as a function of the momentum as

E1
(1)= ,k |Ĥ(1)|k"=− g

2

4a
,k |(T̂ †+ T̂ )|k"=− g

2

2a
eiak+ e−iak

2
=− g

2

2a
cos(ka) . (3.21)

3.1.3 Simultaneous diagonalization of Ĥ and T̂

If g=/ 0, then the simultaneous diagonalization of Ĥ and T̂ is non-trivial, and numerical
methods are needed to find the Bloch states.

From the spectral theorem, diagonalizing Ĥ and T̂ simultaneously can be achieved
only if the two operators commute. Indeed we need to require that [Ĥ , T̂ ] = 0, which is
equivalent to the condition of translational invariance of the Hamiltonian (which is true
for our theory).

There are many different methods that can be employed to simultaneously diagonalize
two commuting operators. A standard method provides a block-diagonal structure for both
Ĥ and T̂ , where each block corresponds to a set of degenerate eigenvectors.
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Figure 3.1. For an even number of plaquettes (left) there is an ambiguity of the energy E (the
real factor) and momentum k (the complex phase) if a point on the complex plane is given. This
does not happen for an odd number of plaquettes (right).

However, the method used here to diagonalize the operators with a common basis is
very general and it is one of the simplest to traduce into code. It consists in diagonalizing
the matrix product ĤT̂ . This method works for the following statement:

8
Ĥ |E , k"= E |E , k"
T̂ |E , k"= eik |E , k"

⇐⇒ ĤT̂ |E , k"= Eeik |E , k" . (3.22)

If |E , k" is an eigenvector of both Ĥ and T̂ , with eigenvalues E and eik respectively, then it
is also an eigenvector if ĤT̂ with eigenvalue Eeik. Hence, all the common eigenvectors are
also eigenvectors of the matrix product. But since (Ĥ , T̂ ) is a complete set of commuting
observables, then the number of common non-degenerate eigenvectors |E , k" must be the
dimension of Ĥ (and T̂ ). Since the maximum number of non-degenerate eigenvectors of
ĤT̂ is the dimension of ĤT̂ , which is the dimension of Ĥ, it follows immediately that all
and only the eigenvalues of ĤT̂ are the common eigenvectors of the two matrices separately.

As a result, if |z" and z are the eigenstates and eigenvalues of ĤT̂ respectively, we can
find the energy and the momentum of the eigenstates simply taking the modulus and the
argument of z:

ĤT̂ |z"= z |z", E = |z |, k= arg z . (3.23)

Here there is just a problem when L is even: indeed, in this case there is an ambiguity to
E and k due to the fact that the points Eeik and −Eei(k+π) are identified as the same in
the complex plane; this means that the couple of eigenvalues (E , k), is not distinguishable
from the couple (−E , k+ π) using the method of the matrix product.

However, due to the range of the possible values the Bloch wave-vector k can assume,
this is not an issue if the number L of sites of the system is odd (see Fig. 3.1). This is the
main reason why we will mostly consider the cases of L odd .
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···

∆E1

E0

E1

E2

E3
g E1− E0 ∆E1

∆E1
E1− E0

0.0125 12800 0.00015625 ∼1.2 · 10−8
0.025 3200 0.000625 ∼2 · 10−7
0.05 800 0.0025 3.125 · 10−6
0.1 200 0.01 5 · 10−5
0.2 50 0.04 8 · 10−4
0.4 (12 (0.16 (0.0128

Table 3.1. Numerical estimation of the first energy band separation E1−E0 and of the first energy
bandwidth ∆E1. We can clearly see that (3.26) is the first order expansion of this dependence.

3.1.4 Energy estimations of the first band for low g

Exploiting the exact diagonalization technique described in section 3.1.3, we can compute
exactly all the eigenenergies of the system for g=/ 0. However, we are particularly interested
in the thermodynamic and continuum limit of the theory (L→∞, a→ 0).

For lower spacetime dimensions than 3+ 1, a dimensional analysis suggest that g→ 0
for a→ 0, without considering quantum corrections3.1. Hence, the case of low coupling
g∼ 0 is the nearest to the continuum for this quasi 1-dimensional ladder system.

Since the perturbative expansion parameter is g4, as discussed at the end of section
1.2.2, from perturbation theory we expect small multiplicative corrections of the form
(1+O(g4)) to the energy estimations (3.6) and (3.11) of the case g→ 0:

E0=−
L
ag2

· (1+O(g4)), En− En+1=
2
ag2

· (1+O(g4)) . (3.24)

Table 3.1 shows some numerical estimations of E1−E0 for finite but low couplings (g=/ 0).

Furthermore, in this regime, another important fact happens: the first band is no more
flat, and it acquires the typical cosine shape of the nearest neighbor tight binding dispersion
relation (see section 2.5.3):

E(k)= E1−
∆E1
2

cos(ak) . (3.25)

In particular, numerically one can check (see Tab. 3.1) that the bandwidth ∆E1 of this
cosine has the following asymptotic behavior for small values of g:

∆E1=
g2

a
· (1+O(g4)) , (3.26)

which is consistent with the fact that ∆E1→ 0 (flat band) for g→ 0.

3.1. In general, due to the running of the coupling, the dependence of g with respect a can be modified.
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Using these estimations, we can also determine which are the values of g for which the
tight binding condition holds:

∆En
En− En+1

# 1
2

→ g# 1. (3.27)

For higher values of g, the first band is no more isolated. An interesting regime is the critical
point at g = 2

√
, where the quasiparticles representing 1-dimensional photons become

massless.

3.1.5 Symmetry properties of the Bloch vectors

The study of the symmetry properties of the Bloch vectors can be useful to reduce the
computational complexity of some operations.

For a symmetry operator which commutes with both Ĥ and T̂ (e.g. the flip operator
F̂ ), the Bloch vectors |E , k" are also eigenstates of that symmetry operator.

The y-axis reflection operator R̂j with respect a site j requires its own discussion, since
its commutation relation (2.49) with T̂ is non-trivial (see section 2.4.2). Since the reflection
operator R̂j commutes with Ĥ we have that3.2 R̂|E , k" is an eigenstate of Ĥ with eigenvalue
E :

ĤR̂|E , k"= R̂Ĥ |E , k"= ER̂|E , k" . (3.28)

From the commutation relation (2.49) it follows instead that R̂|E , k" is an eigenstate of T̂
with wave-vector −k:

T̂ R̂|E , k"= R̂ T̂ †|E , k"= e−ikR̂|E , k" . (3.29)

Hence, applying the reflection operator R̂ to an eigenstate |E , k" we obtain the associated
eigenstate with same energy and opposite momentum:

R̂|E , k"= rE ,k|E ,−k" , rE ,k∈C, (3.30)

where rE ,k is a generic complex coefficient whose properties are determined in the following.
The value of the rk coefficients are simply computable as3.3

,−k |R̂|k"= ,−k |rk|−k"= rk . (3.31)

To determine some properties of the rk coefficients, we first notice from the normalization
of the eigenstates that rk has modulus one:

|rk|2= |rk |2 ,−k |−k"= ,k |R̂†R̂|k"= ,k |I|k"=1, (3.32)

3.2. From now on we will omit the j index, considering a fixed site j.

3.3. For the next steps, we will omit the E index because it is not relevant for computations.
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and so rk can be written as a complex phase:

rk= eiϕk, ϕk∈R. (3.33)

Hence, rewriting (3.30) using (3.33) we obtain

R̂|k"= eiϕk|−k" . (3.34)

Now, applying R̂ to both sides of the previous equation and using the property R̂2= I we
obtain

|k"= eiϕk eiϕ−k|k" (3.35)

from which we have that eiϕk eiϕ−k=1, which brings to the condition on the phases

ϕ−k=−ϕk+2nπ , n∈N, (3.36)

For the particular case k=0 it holds ϕ0=nπ with n∈N, and this means that for the states
of vanishing momenta we obtain

r0= eiϕ0= eiπn=±1. (3.37)

Thus, these states are also eigenstates of the reflection operator, and its eigenvalue r0=±1
is defined as the parity of the k=0 Bloch functions:

R̂|k=0"= r0|k=0", r0=±1 . (3.38)

3.2 Maximally localized Wannier States

The Bloch functions are not localized in real space, and their extended structure can make
them useless in some situations.

The Wannier functions [53] are a set of wave-functions usually employed in solid-state
physics to describe the electronic states of a crystal. They are named after the physicist
Gregory Wannier, who introduced them in 1937. These functions offer an alternative repre-
sentation of the electronic band structure, but they can be used in principle in the context
of any many-body system.

The Wannier functions are constructed to be maximally localized in real space [45,
46]. This means that they have a spatial extent limited to a few sites of the lattice and
are well-localized around a specific site. Being linear combinations of Bloch functions, the
Wannier functions represents a basis of the same Hilbert space spanned by the original
Bloch functions.

These kind of functions are needed in our context as building blocks to construct the
single particle wave-packet: in analogy with the Dirac delta function, with linear combina-
tions of enough localized states we can construct any single-particle state.
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3.2.1 Symmetrization of the Bloch states

A fundamental step for the localization of the Wannier functions is the so called sym-
metrization of the Bloch states. This allows to simplify the minimization process, writing
a simpler spread functional (see section 3.2.3). In particular, we want to redefine the Bloch
states with a different global phase:

|k"s=αk|k", |αk|2=1 , (3.39)

in such a way that all the |k"s for k=/ 0 are symmetric/antisymmetric under the action of
the reflection operator:

R̂|k"s= r0|−k"s . (3.40)

Using the definition (3.39) of |k"s, the condition (3.40) becomes

R̂αk |k"= r0α−k |−k", (3.41)

and applying R̂ to the state |k" in the left-hand side of (3.41) we obtain

αk rk|−k"= r0α−k|−k" . (3.42)

Hence, we obtain the following condition

αk=
r0
rk
α−k, (3.43)

The condition (3.43) indeed a sufficient for (3.40) because imposing it indeed we have

R̂|k"s=αk R̂|k"=αk rk|−k"=
r0
rk
α−k rk |−k"= r0α−k|−k"= r0|−k"s .

For instance, to satisfy (3.43) we can set

αk=
:
1 k! 0
r0/rk k > 0 ,

and so we define the (anti)symmetrized Bloch states

|k"s=
8
|k" k! 0
r0
rk
|k" k > 0 .

3.2.2 Wannier Functions: definition and properties

Let {θk} be L real phases, which we will denote as a vector with real entries θ ∈RL. We
know that a generic one-particle state can be taken as a linear combination of the Bloch
states |k" of the first excitation band. Imposing the coefficients to be phases eiθk, we call
such a linear combination a Wannier function or Wannier state

|Wθ"=
1
L

√
1

k

eiθk|k" . (3.44)

It is simple to show that the sets of states

|Wθ", T̂ |Wθ", T̂ 2|Wθ", . . . , T̂L−1|Wθ" (3.45)
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forms an alternative orthonormal basis with respect that of the Bloch states. Indeed, the
set of Wannier states T̂ j |Wθ" are orthonormal :

,Wθ|T̂−jT̂ j !|Wθ"=
1
L

√
1

k

e−iθk,k |e−ikj 1
L

√
1

k !

eiθk !eik
! j !|k !"

= 1
L

1

k,k !

e−iθk eiθk!e−ikjeik
! j !,k |k !"

= 1
L

1

k,k !

e−i(θk !−θk) e−ikjeik
! j !δk,k !

= 1
L

1

k

e−i(θk−θk)eik(j
!−j)

= 1
L

1

k

eik(j
!−j)

=δjj ! .

In particular, one can vary the values of the phases until |Wθ" has some interesting prop-
erties, as the maximal localization around a site [45, 46].

Notice that, as we did in the previous section, we changed the phase of |k" such that

R̂|k"= r0|−k", r0=±1. (3.46)

Now, if we impose the Wannier function to be (anti)symmetric

R̂|Wθ"= r0|Wθ", (3.47)

expanding the Wannier function with (3.44) and make R̂ acting to the Bloch vectors the
previous equation becomes

r0
L

√
1

k

eiθ−k|k"= r0
L

√
1

k

eiθk|k", (3.48)

where in the first summation we have changed the index as k→−k. Hence, we obtain that
a sufficient condition for (3.47) is

θk= θ−k . (3.49)

So we can halve (apart from k = 0) the number of degrees of freedom if we consider
(anti)symmetrized Wannier functions.

3.2.3 The energy spread functional

In the previous chapter, we denoted with Ĥj the local Hamiltonian associated to the j-th
plaquette. Given a generic state |φ", we define the local energy functional as the expectation
value of the local Hamiltonian computed in the state |φ", subtracting that of the ground-
state:

Ej[φ]≡,φ|Ĥj |φ"− ,Ω|Ĥj |Ω". (3.50)

Since the ground-state is a k=0 state, it is translationally invariant, or T̂ |Ω"= |Ω", from
which it immediately follows that

,Ω|Ĥj |Ω"= ,Ω|Ĥj !|Ω" ∀j !, (3.51)
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and so the energy per plaquette of the ground state is equally distributed:

,Ω|Ĥj |Ω"=
,Ω|Ĥ |Ω"

L
= E0
L
. (3.52)

We now define the spread energy functional of a state |φ" as

σ2[φ]≡
@

jχj
2 Ej[φ]@

j Ej[φ]
−
A@

jχjEj[φ]@
j Ej[φ]

B
2

, (3.53)

where the index j refers to the position with respect the central plaquette, and χj is a kernel
function which represents the distance from the position jc, e.g. the central plaquette. The
function χj must satisfy the following properties:

• it must be monotonic in j;

• it must be odd with respect the inversion of the central plaquette position:

χjc−j=−χj . (3.54)

For instance, as a choice for the function χ we can take

χj= j − jc or χj= sin
! π
L
(j − jc)

"
, (3.55)

where in this case the plaquette index ranges as j=0, . . . , L, and we defined the central
plaquette position as

jc≡
L+1
2

. (3.56)

The reflection operator with respect the central plaquette jc acts on the local Hamiltonian,
by definition, as

R̂jc Ĥj R̂jc= Ĥjc−j (R̂= R̂†) . (3.57)

If the Wannier function is symmetrized as (3.47) then we have

,Wθ|Ĥjc−j |Wθ"= ,Wθ|R̂jc Ĥj R̂jc|Wθ"= r0
2

445677
=1

,Wθ|Ĥj |Wθ", (3.58)

and from this follows that the second term of the right-hand side of (3.53) is always
identically vanishing:

1

j=1

L

χj Ej[Wθ] =
1

j=1

L

χj

C
,Wθ|Ĥj |Wθ"− ,Ω|Ĥj |Ω"44444444444444444444444444444444444444444444444444 45677777777777777777777777777777777777777777777777777 7

E0/L

D

=
1

j=1

L

χj,Wθ|Ĥj |Wθ"−
E0
L

1

j=1

L

χj

444444444444444444445677777777777777777777
=0

=
1

j>jc

χj,Wθ|Ĥj |Wθ"+
1

j<jc

χj,Wθ|Ĥj |Wθ"

= 0.
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The denominator of the first term of (3.53) is instead a constant term:

1

j=1

L

Ej[W (θ)] =
1

j=1

L ;
,Wθ|Ĥj |Wθ"−

EΩ
L

<

=−EΩ+
1

j=1

L

,Wθ|Ĥj |Wθ"

=−EΩ+
1

j=1

L
1
L

√
1

k

e−iθk,k |Ĥj
1
L

√
1

k !

eiθk !|k !"

=−EΩ+
1
L

1

k,k !

e−iθk eiθk!,k |
1

j=1

L

Ĥj |k !"

=−EΩ+
1
L

1

k,k !

ei(θk!−θk)Ek δkk !

=−EΩ+
1
L

1

k

Ek

= E∆ ,

where we defined E∆ as the difference between the average of the energies of the first band
and the ground-state energy:

E∆≡
A
1
L

1

k

Ek

B
− EΩ . (3.59)

Hence, we can write the functional (3.53) in the simpler form

σ2[φ]≡ 1
E∆

1

j=1

L

χj
2 Ej[φ] . (3.60)

Applying the functional (3.60) to the Wannier state (3.44) we obtain

σ2[Wθ] =
1
E∆
1

j=1

L

χj
2,Wθ|Ĥj |Wθ"−

1
E∆
1

j=1

L

χj
2,Ω|Ĥj |Ω" , (3.61)

where the second term of the right-hand side of the previous equation, due to (3.52), is a
constant shift of the functional:

1
E∆
1

j=1

L

χj
2,Ω|Ĥj |Ω"=

EΩ
L E∆

1

j=1

L

χj
2 . (3.62)

Hence, to find the minimum of (3.61) we can just minimize the following functional

f(θ)=
1

j=1

L

χj
2,Wθ|Ĥj |Wθ". (3.63)
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3.2.4 Minimizing the functional f(θ)

We can expand (3.63) using the definition (3.44) of the Wannier states:

f(θ)≡
1

j=1

L

χj
2,Wθ|Ĥj |Wθ"

=
1

j=1

L

χj
2 1

L
√

1

k

e−iθk,k |
A
1
L

1

j

j2 Ĥj

B
1
L

√
1

k !

eiθk !|k !"

=
1

k,k !

e−iθk eiθk!
1
L

1

j=1

L

χj
2,k |Ĥj |k !".

Now, defining the following matrix elements

Λkk !≡
1
L

1

j=1

L

χj
2,k |Ĥj |k !" , (3.64)

which are fixed3.4 complex parameters, we can write the functional f in a simpler way:

f(θ)=
1

k,k !

Λkk ! ei(θk!−θk) . (3.65)

This functional is defined over the space of the real phases parameters θk, so it is defined
on an L-dimensional flat torus TL. We notice that f is an eigenfunction of the Laplace
operator ∇2 defined in the domain TL, with eigenvalue λ=2:

∇2f=−
1

h

∂h∂h f(θ)

=−
1

h,k,k !

Λkk ! ∂h∂h(e−iθk eiθk !)

=
1

h,k,k !

Λkk ! (δhk δhk− δhk δhk !− δhk ! δhk+ δhk ! δhk !) e−iθk eiθk !

=
1

k,k !

Λkk ! (2+ δkk !− δk !k) e−iθk eiθk !

=2
1

k,k !

Λkk ! e−iθk eiθk !

=2f

This means that the function f has a simple structure: in a flat space (like in the L-torus),
the eigenfunctions of the Laplacian can be written as products of sinusoidal functions using
separation of variables. Numerically, we notice that every minimizing algorithm for f (e.g.
steepest descent, Nelder-Mead and so on) never fails for this function in this space (for any
value of the initial θ). This is an indication that the structure of f probably consists in
just two nodal sets and just one value of the local minima (the Wannier in a site j) and
one value of the local maxima (the Wannier in the opposite site of the system, which is
the most distant from j with periodic boundary conditions).

3.4. In the context of this minimization problem, we always fix L, a and g.
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3.2.5 Optimize the computation of Λkk !

Calculating numerically the coefficients (3.64) can be computationally challenging if done
in that form. In this section we see a way to optimize the computation of these coefficients.

Since T̂ n|k"= eikn|k", we can exploit the translational symmetry of the local Hamilto-
nians:

Ĥj= T̂ jĤ0 T̂ j†

where Ĥ0 is the local Hamiltonian of the first plaquette. Hence, we can recast the Λ matrix
as

Λkk !=
1
L

1

j=1

L

χj
2,k |Ĥj |k !"

=1
L

1

j=1

L

χj
2,k |T̂ jĤ0 T̂ j†|k !"

=,k |Ĥ0 |k !"
1
L

1

j=1

L

χj
2 eikje−ik

!j

=,k |Ĥ0|k !"χ̃k−k !2 .

Thus, we can compute the matrix elements of just one plaquette Hamiltonian Ĥ0 (which
is way simpler than for the whole Ĥ), and χ̃2 is the inverse discrete Fourier transform of
the square distance function χ2:

χ̃k
2≡ 1

L

1

j=1

L

eikjχj
2 .

3.2.6 Maximally localized Wannier states for
! 1
2
, 1

"
with g→ 0

As usual, we start from
!
1

2
, 1
"
spin representation in the limit case g→ 0, which is the

unique system for which the maximally localized states can be obtained analytically. Indeed
in this case we do not even need to minimize the spread functional of section 3.2.3.

In section 3.1.1 we already found the ground-state in this particular regime, using a
reference to the Ising mapping of section 2.6:

|Ω"= |+"⊗ |+"⊗ . . .⊗ |+" . (3.66)

Actually, we already found the maximally localized state on a generic site j, which is
obtained flipping the x-spin at site j with respect the vacuum.

|j "= |+"⊗ . . .⊗ |+"⊗ |−"
445677
jth site

⊗ |+"⊗ . . .⊗ |+". (3.67)
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Normalized energy density (minus vacuum) of |W7" with L= 13, a=1

Ẽj[W ]

Plaquette site j

Figure 3.2. Normalized local energy density of the maximally localized Wannier states as a
function of the plaquette site j.

These states are maximally localized by definition (they are different with respect the
vacuum just from a single site j), but as we showed in section 3.1.1 they are also single-
particle states (they belongs to the first energy band). Thus, they are exactly the maximally
localized Wannier states we are looking for:

|Wj"= |j ". (3.68)

3.2.7 Numerical results for
! 1
2
, 1

"
with finite g

For g=/ 0 we need to minimize the spread functional (3.53) defined in section 3.2.3 to find
the maximally localized states.

We consider the case of
!
1

2
, 1
"
spin representation, and we minimize the spread func-

tional σ2[Wθ] for different values of g inside the range [0, 1]. After the minimization of
σ2, we can represent the maximally localized Wannier state |W " plotting the normalized
energy density after having subtracted the vacuum energy density:

Ẽj[φ]≡
,W |Ĥj |W "− ,Ω|Ĥj |Ω"
,W |Ĥ |W "− ,Ω|Ĥ |Ω"

. (3.69)

Fig. 3.2 shows the energy density distribution of |W " after the spread functional mini-
mization for different values of the coupling g. We can clearly see that the spread of |W "
increases with g. This fact is confirmed by the plot of Fig. 3.3, where the minimum spread
functional3.5 σ in function of the coupling g is displayed, for different values of the system

3.5. Be careful that in this case σ is represented, not σ2.
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Spread σ of |W " as a function of the coupling g with a=1

σ[W ]

Relative electric field strength g4

Figure 3.3. The energy spread σ[W ] of the maximally localized Wannier function after minimiza-
tion as a function of g for different values of the system size L.

size L. In particular, numerically we find that the asymptotic behavior of σ is linear for
small g:

σ[W ] = (0.0883. . .) · g4+O(g8) . (3.70)

The coefficient before the g4 term in (3.70) can be probably obtained with a highly non-
trivial calculation in perturbation theory. The formula (3.70) is consistent with the fact
that σ→ 0 for g→ 0, i.e. the Wannier state is localized in a single plaquette for g→ 0, as
we found in section 3.2.6.

3.3 Constructing the excitation operator Ŵ

The goal of this section is to describe a way to construct an operator that we will call a
localized excitation operator Ŵj of a plaquette site j of the lattice.

The reasons why we need a localized operator and not a localized state, is the fact that
with an operator one can also create multi-particle states applying it multiple time to the
vacuum state. Of course this cannot be achieved using only the Wannier states |Wj", from
which one can only create only single-particle states.

The crucial aspect that we want to show in this section is that the behavior of this
operator Ŵ converge quite quickly as the system size L increases, and thus already at
intermediate system sizes (like L= 13) these operators can be applied to a vacuum of a
system with very large L (as we will do with Tensor Networks in section 4).
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Due to the translational properties of the vacuum |Ω" and of the Wannier states |Wj",
one can find just a localized excitation operator for a specific plaquette (like the central
one), and then find all the others just applying the translation operator T̂ .

3.3.1 Presentation of the problem

Let |Wj" be a maximally localized Wannier state. Let Ûj the gauge-invariant single-pla-
quette operator of the j-th plaquette of the ladder, so from now on we will use the following
notation:

Ûj≡ Û!,j= ŜB,j
+ ŜR,j

+ ŜT,j
− ŜL,j

− . (3.71)

We now want to find an operator Ŵj, with the following properties:

1. Ŵj produces theWannier function |Wj", maximally localized around the site j, when
applied to the vacuum:

Ŵj |Ω"= |Wj"; (3.72)

2. Ŵj can be written as a linear combination of compositions of gauge-invariant single
plaquette operators Ûj and Ûj

† of the ladder for different plaquette sites. For instance

Ŵj= c1Û1+ c2Û1
†+ c3Û1Û2

†+ c4Û2Û1
†Û5+ c5Û6

†Û2
†Û4+ · · · (3.73)

where ck∈C are complex coefficients to determine analytically or numerically.

If we require only the condition (1.), the problem would be trivial because for instance
the operator |W ",Ω| already satisfies that condition. Instead, finding Ŵ with both the
conditions is non-trivial in general.

We will give some arguments in favor of the existence of Ŵj in the following sections.
About uniqueness, since in a generic system the space of operators is larger than the space
of states, in general the number of all the possible (independent) compositions of plaquette
operators Û , Û † are way higher than the dimension of the system, and the problem is under-
constrained. In other words, the operator which satisfies (1.) and (2.) is not unique without
other constraints. To solve this problem one should always choose the simplest solution,
i.e. the one which contains less information. One possible way is to exploit symmetries
when possible.

3.3.2 The operator in the case
! 1
2
, 1

"
and g→ 0

As usual, we first find the operator Ŵj in the
!
1

2
, 1
"
spin representation in the limit case

g→ 0. From the previous sections we already know the exact form of the vacuum (3.5)
and of the maximally localized Wannier state (3.67) in this case.
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Support of w plaquettes

Total system with L plaquettes

,W |Ĥj |W "

Figure 3.4. We suppose that the energy density of the Wannier state |W ! is localized on a support
of w plaquettes. Outside of this region, the state is approximately the vacuum |Ω!.

Using the Ising model mapping in this regime, we know that an operator that applied
to the Ising vacuum |0" (with λ→∞) returns the maximally localized state |j " is the Pauli
matrix σ̂jz (which flips the spin along the x-axis):

σ̂j
z (|+"⊗ . . .⊗ |+"j⊗ . . .⊗ |+")= |+"⊗ . . .⊗ |−"j ⊗ . . .⊗ |+" . (3.74)

Hence we can write:

|j "= σ̂jz |0" . (3.75)

So σ̂jz is an example of excitation operator we are looking for exploiting the Ising formalism.

The next step is to write this operator as a linear combination of compositions of
plaquette operators Ûj,Ûj

†. But from the Ising mapping we know that

Û ↔ 2σ̂−, Û †↔ 2σ̂+, (3.76)

and since we know that the following identity between Pauli matrices holds

σ̂j
z=−I+2σ̂j

+σ̂j
−, (3.77)

we have found the excitation operator in terms of plaquette operators as:

Ŵj=−I+
1
2
Ûj
†Ûj . (3.78)

Indeed, both I and Ûj
†Ûj are valid compositions of Ûj and Ûj

†.

3.3.3 A general numerical method

We now present a general method to find Ŵ , actually valid, at least in principle, for any
lattice gauge theory with a ladder geometry. We first suppose to know exactly |W " (any
localized Wannier state) and that its support extends to a certain number of plaquettes.
The support of the Wannier state can be defined as the region of the system for which the
energy density is different from that of the vacuum (Fig. 3.4).
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We first reformulate the problem in a more rigorous way. Let {Âα} be a set of gauge-
invariant operators obtained from compositions of the operators Ûj and Ûj

† in the support
of the Wannier state. For instance, if the Wannier state has support only in the three sites
j=2, 3, 4 around jc=3, an example of possible choice of {Âα} can be the following:

Â1= I, Â2= Û3, Â3= Û3
†, Â4= Û2Û4

†, Â5= Û2
†Û4 . (3.79)

We ask which is the best choice of {Âα} and of the complex coefficients cα∈C such that

Ŵ =
1

α

cαÂα . Ŵ |Ω"= |W " . (3.80)

Now, let {|Aα"} be the set of states created from the vacuum by the operators Âα:

|Aα"≡ Âα|Ω" .

The best choice of {Âα} is the one such that {|Aα"} spans a subspace of the Hilbert space of
the theory where the state |W " is contained. Indeed, if this happens, we are sure that there
exists cα such that (3.80) holds, and so we are sure about the existence of the operator Ŵ
which satisfies the conditions (1.) and (2.) listed at the beginning of the section. Actually,
the choice of {Âα} is not trivial and it depends on the specific lattice theory. If the Wannier
has a certain support in the 1-dimensional lattice, then {Âα} should be operators which
acts only in that support.

The best choice of the coefficients cα, that we will denote with a vector of complex
entries c= (c1, c2, c3, . . . ) is the one that minimizes the (squared) norm of the difference
between the operator applied to the vacuum and the Wannier state. In other words, we
have to solve the minimization problem for the functional:

f(c)≡&Ŵ |Ω"− |W "&2 .

We first rewrite this functional using (3.80):

f(c)=
EEEEEEEE
1

α

cαÂα|Ω"− |W "
EEEEEEEE
2

=
EEEEEEEE
1

α

cα|Aα"− |W "
EEEEEEEE
2

=
.1

α

,Aα|cα∗ −,φ|
/A1

β

cβ |Aβ"− |W "
B

=
1

α,β

cα
∗cβ,Aα|Aβ"−

1

α

cα,W |Aα"−
1

α

cα
∗ ,Aα|W "+ ,W |W " .

The gradient of the functional f with respect the complex parameters cα can be computed
with respect cα or cα∗ as to independent components (one will be the adjoint problem of
the other). Let’s take the derivative of f with respect cα∗ :

∂
∂ cα
∗ f(c)=

1

β

cβ,Aα|Aβ"− ,Aα|W "=0. (3.81)
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Defining

Aαβ≡,Aα|Aβ", bα≡,Aα|W ", (3.82)

where Aαβ is the Hessian matrix of f and bα is the vector of known terms: the problem
is then reduced to a linear system

1

α

Aαβcβ= bα . (3.83)

Hence, in order to find the coefficients cα we need to find the inverse matrix A−1.
After the minimization, one can use the functional (3.53) as an estimation of the

interpolation error: the more the norm of the difference is low, the more the two states are
near and Ŵ |Ω" approximates the Wannier correctly.

Alternatively, defining the fidelity (for normalized states) between two states |φ1",|φ2"
as

F (|φ1", |φ2")≡ |,φ1|φ2"|2 , (3.84)

one can use the so-called infidelity 1−F (|W ", Ŵ |Ω") as an alternative metric to measure
the interpolation error after the minimization.

3.3.4 Application to
! 1
2
, 1

"
with g→ 0

In the spin representation
!
1

2
, 1
"
with g=0, the Wannier function has a single plaquette

as support. Here we confirm this fact applying the method of the previous section giving
also an example.

Suppose now we want to find the excitation operator using the two local operators

Â1= I, Â2= Ûj
†Ûj ↔ 4σ̂j

+σ̂j
− . (3.85)

Using the formalism of the previous paragraph we obtain

|A1"= I|Ω"= |Ω" ↔ |0" , |A2"= Ûj
†Ûj |Ω" ↔ 4σ̂j

+σ̂j
−|0" . (3.86)

The vectors |A1" and |A2" are linearly independent and they span the whole two-dimen-
sional Hilbert space, so the set {Â1, Â2} is a good choice to solve the problem. From (3.82)
we can compute the Hessian matrix A and the known terms vector b which read

A=
.
1 2
2 8

/
, b=

.
0
2

/
. (3.87)

Thus, we compute the coefficients vector c=A−1 b, from which we obtain

c1=−1, c2=
1
2
. (3.88)

This finally gives the excitation operator

Ŵj=−I+
1
2
ÛjÛj

† ↔ − I+2σ̂j
+σ̂j

−= σ̂jz, (3.89)

which is exactly the same result we found intuitively in section 3.3.2.
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3.3.5 Numerical results for
! 1
2
, 1

"
, small g and L=3

Since the perturbation parameter of the Hamiltonian is g4, if the coupling g is non-van-
ishing but small enough (for instance g= 0.1) we expect that to the excitation operator
(3.89) it would add a perturbation terms proportional to powers of g4:

Ŵj(g∼ 0)=−I+
1
2
ÛjÛj

†+O(g4) . (3.90)

In this section we try to find explicitly the first terms of this perturbative expansion for
a lattice of three plaquettes (L=3) and for a Wannier state |W2" localized in the central
plaquette j=2, using the method of section 3.3.3.

Let’s consider the case L= 3 in representation
!
1

2
, 1
"
. We first we want to choose a

minimal set of 3-plaquette operators Âα which applied to the vacuum span a subspace
where the Wannier is contained.

We notice that many compositions of Û , Û † are not independent from each other. To
understand this dependence, we have to consider the commutation rules between these
operators. From the mapping (3.76) the the following commutation relations holds:

{Ûj , Ûj
†}=4I , [Ûi, Ûj] = [Ûi

†, Ûj
†] = [Ûi, Ûj

†] = 0 ∀ i=/ j . (3.91)

From these commutation relations it follows that four independent plaquette operators are
the following (which we represent with a visual notation):

I = Û = Û † = Û †Û = . (3.92)

Now, since the Wannier state |W2" is symmetric with respect the central plaquette j=2,
the operator Ŵ2 must be symmetric as well. This helps us to make a choice for the minimal
set {Âα}. Up to commutation relations (3.91) all the possible symmetric compositions for
three plaquette sites j=1, 2, 3 are:

Â1= I = Â5= Û2
†Û2 =

Â2= Û1
†Û3 = Â6= Û1

†Û2
†Û2Û3 =

Â3= Û1Û3
† = Â7= Û1Û2

†Û2Û3
† =

Â4= Û1
†Û1Û3

†Û3 = Â8= Û1
†Û1Û2

†Û2Û3
†Û3 =

(3.93)

These are 8 independent operators which once applied to the vacuum spans all the non-
trivial polarization sector, which has dimension 2L=23=8. One can numerically solve the
linear system (3.83), and finding an inverse matrix A−1 obtaining the coefficients for the
operators (3.93), which gives the following pattern (checked numerically setting g= 0.1):

Ŵ2 =−I+
1
2
Û2
†Û2 (single-plaquette terms)

+
.
2
25

I− 1
32
Û1
†Û3−

1
32
Û1Û3

†− 1
64
Û1
†Û1Û3

†Û3

/
· g4 (1st order 3-plaquette terms)

+
.

1
512

Û1
†Û2
†Û2Û3+

1
512

Û1Û2
†Û2Û3

†
/
· g8 (2nd order 3-plaquette terms)
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+O(g12) .

For g= 0.1, after minimization of the functional, the norm of the difference between the
two states and the infidelity are of the order

&Ŵ2|Ω"− |W2"& ∼ 10−6 , 1−F (Ŵ2|Ω", |W2") ∼ 10−12 .

3.3.6 Increasing the Wannier support up to L= 13

The operations of the previous paragraph can be generalized for L>3, constructing all the
independent symmetric gauge invariant operators Â from Û , Û †. However, since listing all
the symmetric configuration becomes difficult for higher values of L, we show here that a
“brute force” computation approach also works. Indeed, the symmetries we exploited in the
previous section cannot be anymore available for higher spin representations or for other
models. Conversely, for any model, we can always consider a large number of Âα operators
independently of the symmetries, and choosing a set of linear independent states |Aα" in
such a way that the linear algebra problem to find Ŵ is at least always solvable.

As an example, we remain in the
!
1

2
, 1
"
representation case and find a proper set of

the operators K̂α for a generic system size L. Let’s suppose that we want to approximate
the Wannier state with a subsystem of w plaquettes (Fig. 3.4). In this particular spin
representation, the dimension of the Hilbert space of this subsystem where the Wannier
is contained is 2w (aside from the two trivial sectors). It is possible to show numerically
that a set {Âα} of exactly 2w operators which applied to the vacuum |Ω" span all the 2w-
dimensional Hilbert space is the following:

Â1 = I = . . .

Â2 = Û1 = . . .

Â3 = Û2 = . . .

Â4 = Û1Û2 = . . .

Â5 = Û3 = . . .

Â6 = Û1Û3 = . . .

Â7 = Û2Û3 = . . .

Â8 = Û1Û2Û3 = . . .

··· ··· ···

Â2w = Û1. . .Û2w = . . .

(3.94)

which is very simple to compute numerically and does not require any particular symmetry
argument. In particular, if w=L, we can interpolate any state of the Hilbert space of the
system using the algorithm showed in section 3.3.3.
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Infidelity of the interpolation of the Wannier state |W7", L= 13

1−F

Interpolating extension w

Figure 3.5. Infidelity between the interpolating state Ŵ |Ω! and the Wannier state |W ! using a
w-plaquette support centered in a system with L= 13 plaquettes in the lowest spin representation
! 1
2
, 1

"
. Here the infidelity assumes the meaning of interpolation error of the algorithm.

Figure 3.5 shows the interpolation error (infidelity 1− F ) of the maximally localized
Wannier states in the central plaquette for a system with L= 13 size using this approach.
As operator basis {Âα}, the set (3.94) has been chosen. In this plot, the infidelity is
computed for different values of the coupling, changing the number w of plaquette size of
the interpolating subsystem.

We notice a crucial fact: after a certain value of w, that we will denote with w+, the
infidelity is minimal and it remains constant for higher values of w (there is a sort of
plateau). This means that using the numerical precision at disposal, w+ is the smallest
number of plaquettes for which the Wannier state is maximally interpolated by the set of
operators {Âα}. Thus, w+ defines exactly the support of the Wannier state |W ". Regions
outside that support are approximately equal to the ground state.

Another crucial fact observed is that all the coefficients cα associated to the operators
(3.94) converges quickly to a finite value when L increases and it stabilizes at w >w+.
This is what have been observed numerically in this spin representation, but since the
generalization of this approach is straightforward to other models, this result represents
a strong indication that systems with intermediate sizes are enough to produce localized
states which will work also if applied to the vacuum in the thermodynamic limit L→∞
(see chapter 4 about DMRG with tensor networks).

3.3.7 Higher spin representations and other lattice models
This method, at least in principle, can be applied to any lattice system, because it only
uses the plaquette gauge invariant operators Ûj , Ûj

†, which are always defined for any lattice
gauge theory.
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However, the existence and uniqueness of this way to write the operator Ŵ , which
depends on the choice of the operator basis {Âα}, are not trivial aspects for a generic
theory. The main problem for higher spin representations, for which we will not do concrete
numerical examples in this thesis, is that the commutation relation (3.91) do not hold
anymore, and so listing all the possible Âα becomes difficult. However, since the space of
gauge invariant operators has a dimension which is way higher than the space of gauge
invariant states, we conjecture, without giving a proof, that it is always possible to choose
a set {Âα} such that the set of states {|Aα"} span the whole Hilbert space of the system.

We lastly claim that the procedure described in section 3.3.3 could fit also to lattice
systems with higher space dimensionality, supposing having yet at disposal a state |W "
that we want to interpolate, which is enough localized inside a finite support.

3.4 The wave-packet creation operator Ψ̂

In this section we discuss how to create a single-particle wave-packet state |Ψ" and a single-
particle wave-packet creation operator Ψ̂ respectively from the Wannier states |W " and
the Wannier local excitation operator Ŵ . In particular, we require Ψ̂ to have the property
of creating |Ψ" from the ground state:

Ψ̂|Ω"= |Ψ" . (3.95)

3.4.1 Wave-packet state |Ψ' from the Wannier states |Wj'
Since the set of Wannier states {|Wj"} constitutes a basis of the subspace of single-particle
states, we can construct any single particle state |Ψ" from a linear combination of |Wj".
But if we consider the maximally localized |Wj", we have the ability to choose any spatial
distribution of energy density of a state, i.e. to construct a single-particle state with any
localized shape.

More precisely, let’s consider the state

|Ψ"=
1

j

Ψj |Wj" . (3.96)

where Ψj ∈C are complex coefficients assigned to the sites of the lattice. From the nor-
malization condition of the state, we have to require that

1

j

|Ψj |2= ,Ψ|Ψ"=1. (3.97)

To understand the meaning of the coefficients Ψj, let’s assume that |Wj" is well space-
localized, namely that the energy density is localized only on the site j, and for all the
other sites the system is very similar to the vacuum. Assuming this condition it is possible
to show that the normalized energy density (3.69) is obtained as the modulus square of
the coefficients Ψj:

Ẽj[Ψ] = |Ψj |2 . (3.98)
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This means that, for enough spatial localized Wannier states, the function Ψj is the lattice
wave-function of a single-particle state.

If we want to control the momentum localization we can define the wave-function in the
reciprocal (momentum) space, and then define the coefficients Ψj as a Fourier transform
Ψk. The domain of Ψk is the so-called first Brillouin zone. If the lattice is finite (L<∞)
the Brillouin zone will be discrete, and this discretization becomes finer and finer as L
increase. For L→∞ the Brillouin zone is the continuous interval [−π/a,π/a]. Thus, we
define the wave-function in the real space as

Ψj=
1
N
1

k

Ψk eikj for a finite lattice with L sites;

Ψj=
1
N

-
dkΨ(k) eikj for a lattice with L→∞ sites,

(3.99)

where N is a proper normalization factor defined in such a way that (3.97) holds, while k
ranges over the first Brillouin zone.

3.4.2 The Gaussian wave-packet

As an example, let’s consider a very large lattice with L→∞ (using numerical tools like the
Tensor Network framework, described in chapter 4) and a wave-function which is Gaussian
in the reciprocal space:

Ψ(k)∼ e−(k−k0)2/2σ̃2, (3.100)

where k0 and σ̃ are respectively the average and the dispersion of the momentum distrib-
ution. If σ̃ is small enough with respect the Brillouin zone length, namely

σ̃' 1
a
, (3.101)

then Ψ(k) is very peaked and the wave-function has a definite momentum k0. In this case,
Ψ(k)≈ 0 for values of k distant from k0, and we can approximate the integral in (3.99)
with an integral over R:

Ψj=
-

−k/a

k/a

dkΨ(k) ≈
-

−∞

+∞
dkΨ(k) . (3.102)

Using this approximation, the Fourier transform of (3.100) is a “rotating” (with a frequency
k0) Gaussian wave-packet

Ψj∼ e−(j−j0)
2/2σ eijk0 with σ= 1

σ̃
. (3.103)

Thus, we can define the gaussian wave-packet centered in j with spatial dispersion σ and
momentum k using Wannier functions as

|Ψ(j ,σ , k)" ≡ 1
N
1

j !

e−(j
!−j)2/2σ eij

!k |Wj !" . (3.104)
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From (3.103) we notice, as expected from the indetermination principle, that the momentum
localization σ̃ and the spatial localization σ are inversely proportional. In particular, the
condition (3.101) becomes the fact that the Gaussian width in the real space must be
way larger than the lattice spacing

σ9 a. (3.105)

If this condition cannot be satisfied (e.g. the lattice is not large enough), then the approxima-
tion (3.102) does not hold anymore and the coefficients Ψj should be computed numerically
in the finite Brillouin zone.

3.4.3 Wave-packet operator Ψ̂ from the excitation operators Ŵj

Once defined a single particle wave-packet state, we want to compute a wave-packet oper-
ator Ψ̂ which can be used to construct wave-packets from the vacuum state. Requiring
(3.95) we can write

Ψ̂|Ω"= |Ψ"=
1

j

Ψj |Wj"=
1

j

ΨjŴj |Ω" . (3.106)

Thus, from this condition we require the operator Ψ̂ to have the following form:

Ψ̂≡
1

j

ΨjŴj , with Ŵj=
1

α

cαÂα . (3.107)

Since Âα is written as a linear combination of compositions of Û and Û † operators, indeed
also the wave-packet operator Ψ̂ will have this property. This is a crucial remark because
it allows Ψ̂ to be written as a Matrix Product Operator (see chapter 4).

Thus, from the analysis of the previous section, we can for instance define a Gaussian
wave-packet operator

Ψ̂(j ,σ , k) ≡ 1
N
1

j !

e−(j
!−j)2/2σ eijk Ŵj . (3.108)

Actually, numerically we don’t need to explicitly compute the normalization factor N ,
because we can properly normalize states after the application of an operator.

The operator Ψ̂(j,σ , k) produces a single-particle state if applied once to the vacuum
|Ω". However, we can apply it on different regions of the lattice, producing multi-particle
states. For instance, if we want to prepare a typical initial scattering state of two Gaussian
wave-packets localized in two distant initial positions j1 and j2, with spatial localization
σ' |j1− j2| for both and with same but opposite momentum k, we can construct the state
as

|initial scattering state"= Ψ̂(j1,σ , k)Ψ̂(j2,σ ,−k)|Ω" . (3.109)

Of course, a multi-particle state as (3.109) must be properly normalized after the applica-
tion of the two wave-packet operators.
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Chapter 4

Tensor Network Methods

Tensor Networks (TNs) [31] represent a versatile and powerful framework within the field
of quantum physics and machine learning that has received large attention in recent years,
particularly in the field of simulation techniques for many-body quantum lattice systems
[54]. At their core, TNs are a mathematical representation of high-dimensional tensors that
enable an efficient manipulation and analysis of complex data structures. TNs have been
extensively applied in various quantum many-body systems, mainly in condensed matter
physics, but also in quantum chemistry [55], offering efficient descriptions of ground states
and excited states of quantum systems. The utilities of TNs goes beyond quantum physics,
with remarkable applications in machine learning tasks like tensor-based deep learning
architectures [56].

TNs offer several advantages over Monte Carlo methods in tackling the numerical
sign problem [11]. TNs naturally handle one-dimensional systems, but offer also scalable
algorithms for higher-dimensional systems, making them versatile and applicable to a wide
range of physical systems. In particular, TN methods have proven to be a valuable and
promising approach for tackling the complex and computationally demanding problems
arising in Lattice Gauge Theories.

In this section, after an introduction to the Tensor Network notation, we list the most
important tools which are used in this fields, such as the Matrix Product States (MPS)
and Operators (MPO), and the related algorithms.

4.1 The Tensor Network notation

The Tensor Network notation is a compact and graphical representation used to depict
the structure of TNs. It simplifies the visualization and understanding of complex TN
diagrams. The TN notation represents a tensor structure as a graph, typically follows the
following rules:

1. nodes: each node in the diagram represents a tensor . The shape of the node some-
times indicates the dimensionality of the corresponding tensor: a circle for a single-
index tensor (a vector) and a square for a multi-indices tensor (a matrix or a tensor);
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2. lines and indices: the lines connecting the nodes represent the indices of the
tensors; these lines are also called legs or bonds; each line corresponds to a specific
index of the tensor, and the number of lines connected to a node corresponds to the
rank of the tensor; each index has a dimension d (e.g. the side length of a matrix);
the names of the indices are denoted by labels on the lines, usually lowercase letters
like i,j,k, etc. In this way we can represent vectors, matrices and tensors in the
following visual notation:

vi=

i

v , Mij=

j

i

M , Tijk =

j

i

Tk , Aijkl =

j

i

Ak l (4.1)

3. contractions: two indices that are connected by a line are contracted , meaning
that they are summed over . The contracted indices are muted indices and they do
not need to be labeled in the TN notation. With this convention, all the common
operations as the matrix-vector product, matrix-matrix product, scalar product and
vector product can be represented as follows (using Einstein convention):

Mijvj=

i

M

v

, AijBjk=

i

M

v

, aibi=
a

b

, $ijkaibj= $a

k

b ;

(4.2)

4. External indices: Indices that are not connected to any other tensor are named
indices and they are external indices. They represent the input or output of a TN.

By the use of this notation, every complex contraction with multiple index tensors, for
which the whole structure would be difficult to understand, as well as other tensor opera-
tions, e.g. the matrix trace, can be represented, for instance:

AiklmBjmnCnprukvlwpqr= u

v w

i j q

BA C , Tr(ABCD)=
A B

CD

. (4.3)

It is always possible to compute the contraction between two indices, obtaining a new tensor
or a scalar quantity:

Mijvj= M

v

i

= A

i

=Ai, aibi=
a

b

= c∈R. (4.4)
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4.1.1 Notation for quantum systems
With this notation, we can represent a generic many-body wave-function of a quantum
system.

Consider a quantum local system with a d-dimensional Hilbert space H (e.g. a d-level
system), and local computational basis {|α"}. We can consider a many-body system com-
posed of L subsystems, with a dL-dimensional Hilbert space HL=H⊗L and computational
basis {|α1. . .αL"}. Indeed a generic many-body vector state |Ψ" of H can be written as

|Ψ"=
1

α1. . .αL

Ψα1. . .αL|α1. . .αL" , (4.5)

where Ψα1. . .αL is the many-body wave-function which is a matrix with dL complex entries,
which can be represented using tensor network notation as

Ψα1α2. . .αL=

α1 α2 αLα3 . . .

Ψ
. . .

. (4.6)

For a quantum many-body operator Â acting on the many-body Hilbert space H, the
notation is analogous. Indeed a generic many body in the computational basis reads

Â=
1

α1. . .αL

Aα1. . .αL
β1. . .βL |α1. . .αL",β1. . .βL|, (4.7)

from which we can represent a many-body operator in a tensor network notation as:

Aα1α2. . .αL
β1β2. . .βL =

α1 α2 αLα3 . . .

A

β1 β2 β3 βL. . .

. . .

. . .

. (4.8)

4.2 Matrix Product States and Operators

4.2.1 Matrix Product States
The Matrix Product States (MPS) Ansatz is a specific TN architecture used to represent
in a very efficient way particular quantum states in one-dimensional quantum many-body
systems.

In an MPS, a quantum state4.1 (4.6) is represented as a TN consisting of a chain
of tensors, where each tensor4.2 describes the local properties of an individual quantum
system:

ψj ,αj
σσ ! =

αj

σ σ !ψj , (4.9)

4.1. We will often apply this abuse of notation, interchanging wave-functions with quantum states.
4.2. Notice that in this context, the local tensors (4.9) of an MPS are usually denoted with a circle like vectors.

This because the physical index α is just one (like a vector), even if the actual tensor has three indices.
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where α is a physical many body index of the local quantum state of (4.6), while σ
and σ ! are (non physical) virtual or bond indices. The key idea behind MPS is that
the entanglement structure of many-body quantum states can be efficiently captured by
connecting these tensors through their virtual indices. Thus the many-body wave-function
(4.6) internal information can be encoded and compressed as follows:

Ψα1α2. . .αL →→→→→→→→→→→→
,

Ψα1α2. . .αL
MPS = ψ1 ψ2 ψ3 ψL

α1 α2 α3 αL

. . .

. . .

. (4.10)

The dimension of the virtual indices is called the bond dimension χ, and it is a controllable
computational parameter. The larger χ is, the larger is the entanglement the tensor net-
work can encode, but of course the larger also the computational complexity of the matrix
operations involved.

Thus, one can represent a generic quantum many-body state (4.8) as follows

|ΨMPS"=
1

α1. . .αL

Ψα1α2. . .αL
MPS |α1. . .αL". (4.11)

Obtaining an MPS (4.10) from a many-body wave-function (4.8) is possible using Sin-
gular Value Decomposition (SVD), a fundamental matrix factorization technique in linear
algebra. Given a n×m matrix M , the SVD factorizes it into three separate matrices:

M ji =Mij=UikΣklVlj= U Vi jΣ , (4.12)

where U and V are n × k and k ×m unitary matrices respectively, and S is a k × k

diagonal matrix containing the so-called singular values (generalized eigenvalues) of M in
descending order. Smaller singular values can be neglected (set to zero), reducing the bond
dimension of the matrices (of the internal indices).

Thus, the dimension of Ψα1α2. . .αL
MPS can be reduced from O(dL) to O(Lχ2d) with SVD,

i.e. the amount of information to store scales linearly with the system size using an MPS,
which allows for an exponential compression information storage. The latter fact is true
only if the bond dimension χ is fixed. The fact that (4.10) can faithfully represent (4.6)
with χ fixed large enough is guaranteed by the Area Law for the entanglement entropy for
1-dimensional systems [32].

4.2.2 Matrix Product Operators

A Matrix Product Operator (MPO) is the analogous TN structure to represent 1-dimen-
sional quantum many-body operators, as MPS represents 1-dimensional quantum many-
body states. An MPO is constructed similarly to an MPS, where each site in the chain
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Separable (“Mean Field”) states |ψ1"⊗ . . .⊗ |ψL" =

Scalar products between states ,Ψ|Φ" =

Operators acting on states Â|Φ" =

Operator products ÂB̂ =

Expectation values ,Ψ|Â|Ψ" =

Correlators of local operators σ̂j ,Ψ|σ̂iσ̂j |Ψ" =

Density matrices of pure states |Ψ",Ψ| =

Table 4.1. A comprehensive overview of the most relevant operations involving MPS and MPOs,
which allows the manipulation of quantum many-body systems.

corresponds to a tensor. In particular, each tensor describes a local operator acting on each
site:

Aj ,αjβj
σσ ! =

αj

σ σ !Aj

βj

, (4.13)

Using SVD from a generic many-body operator one can obtain the following MPO tensor
network structure

Aα1. . .αL
β1. . .βL →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →SVD

(AMPO)α1α2. . .αL
β1. . .βL = A1 A2 A3 AL

α1 α2 α3 αL

. . .

. . .

β1 β2 β3 βL. . .

. (4.14)

in such a way one can represent many-body state compressing information from O(d2L)
to O(Lχ2d2), representing many-body operators with the so-called MPO Ansatz:

ÂMPO =
1

α1. . .αL

Aα1. . .αL
β1. . .βL |α1. . .αL",β1. . .βL| . (4.15)

Using MPS and MPO one can perform most of the crucial operations to analyze quantum
systems, such as scalar products between MPS states and computing expectation values
of MPO operators (Tab. 4.1).
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···

O(χ2d)

O(χ3d)

O(χ3d)

O(χ3d)

O(χd),Ψ|Φ"

O(dL) O(Lχ3d)

. . .

. . .

. . .

. . .

. . .

Figure 4.1. Here the significant advantage of computing scalar products between MPS (right)
compared to the scalar product between non-decomposed quantum states (left) is shown. The
scalar product calculations for complete quantum states scales as O(dL), and becomes computa-
tionally impractical for large quantum systems.

It is possible to show [57] that there is a way to contract these TN structures in such
a way to obtain an exponential advantage to compute quantities such as scalar products
and expectation values (Fig 4.1). More precisely, the contractions of these TN structures
scales linearly with the system size L, while the same contractions of the whole many-body
matrices scales exponentially with L. This fact represents the main advantage of TNs and
the power of MPS and MPO structures.

4.2.3 The Matrix picture

In order to write explicitly the entries of the local tensors of an MPS and MPO, we can
use the so-called matrix picture for local tensors.

In particular, for an MPS with bond dimension χ, we write a local tensor ψασσ
!
as a

χ× χ matrix, with σ ,σ ! as the indices of this matrix, and α as the index of the vectors,
which are the entries of this matrix. The final result is a matrix of vectors:

ψα
σσ !=

α

σ σ !ψ =

 

     
ψα
11 · · · ψα

1χ

··· ·· · ···
ψα
χ1 · · · ψα

χχ

 

     . (4.16)

For a translationally invariant state, (e.g. the ground-state of the 1-dimensional Lattice
QED on a ladder) apart from the initial and final tensors of the chain ψi and ψf, all the
bulk tensors ψb are the same, so that an MPS reads

ΨMPS= = ψiψbψb . . .ψbψb444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 456777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
L−2

ψf . (4.17)

where all these tensors are contracted with a matrix product , where the product between
entries is the tensor product ⊗. To clarify the previous notation, we give some examples.

Let’s suppose that we want to represent the following many–body state
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|Ψ"= |00. . .0"+ |11. . .1" (4.18)

as an MPS, where the computational local basis is {|0", |1"}. Following the previous con-
ventions, if we define

ψi= =( |0" |1" ) , ψb= =
.
|0" 0
0 |1"

/
ψf= =

.
|0"
|1"

/
(4.19)

we notice that, for instance, contracting three tensors as previously described, we obtain
an MPS of three sites, and if we contract these three tensors we obtain exactly the many-
body state we want to represent:

ψiψbψbψbψf= |000"+ |111". (4.20)

It is simple to show that same holds for n sites, reconstructing the state (4.18). In this
case, the tensor ψb is a 2× 2 matrix in the virtual index, so we need a bond dimension
χ=2 to represent the state (4.18).

A more complex example is the following:

|Ψ"= |000000. . ."+ |101010. . ." (4.21)

One can check that this state can be represented as an MPS using the following local
tensors:

ψb= =

 

   
|0" 0 0
0 0 |0"
0 |1" 0

 

   , (4.22)

ψi= =( |0" |1" 0 ) , ψf= =

 

   
|0"
|0"
|1"

 

   . (4.23)

The same notation can be used for MPOs. Indeed each local tensor can be represented as
a matrix of operators (a matrix of matrices):

Aαβ
σσ !=

α

σ σ !A

βj

=

 

     

Aαβ
11 · · · Aαβ

1χ

··· ·· · ···
Aαβ
χ1 · · · Aαβ

χχ

 

     . (4.24)

Hence, we can represent an MPO analogously to

AMPO= =AiAbAb . . .AbAb4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 4567777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7
L−2

Af (4.25)

where the matrix product implements ⊗ as product between entries.

For instance, if we have the following operator

Â= σ̂x⊗ . . .⊗ σ̂x+ σ̂y⊗ . . .⊗ σ̂y+ σ̂z⊗ . . .⊗ σ̂z (4.26)
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we can use as local tensors the following Ansatz:

Ab= =

 

 
σ̂x 0 0
0 σ̂y 0
0 0 σ̂z

 

 , (4.27)

Ai= =( σ̂x σ̂y σ̂z ) , Af= =

 

 
σ̂x

σ̂y

σ̂z

 

 . (4.28)

However, how can we, in general, guess an MPO Ansatz of the form (4.27) from a given
definition of the operator Â? If the definition of Â is sum of compositions of local operators,
an efficient method is the Automata picture.

4.2.4 The Automata picture
An automaton (plural: automata) refers to a mathematical model of computation that
operates on an input according to a predefined set of rules. Automata can be represented
as abstract machines or graphs, where each state represents a configuration, and transitions
between states correspond to the application of rules.

In the context of TNs, automata can be used to efficiently represent and manipulate
MPS and MPOs formed by sum of compositions of local operators [58]. Indeed, con-
structing MPS and MPO from the automata picture is more intuitive rather than from the
matrix picture.

We can set the following graphical rule to construct an automaton which represents an
MPS:

• automata states: each node of the automaton graph is a state; the total number
of states in an automaton corresponds to the bond dimension of the local operators
of an MPS; each state is labelled with an integer number 1,2,3. . ., which represents
a value of the virtual indices σ ,σ ! of the MPS;

• input transitions: each node can have an input transition, which is represented as
an arrow from nothing to a node; to this kind of arrow is associated an initial local
state, which an entry of the matrix ψi of (4.17);

• output transitions: each node can have an output transition, which is represented
as an arrow from a node to nothing; to this kind of arrow is associated a final local
state, which an entry of the matrix ψf of (4.17);

• transitions between two states: a transition between two states is represented
with an arrow from a state σ to another state σ !; a transition increases the position
of the chain of states, and to each transition is associated a local state, which is
the entry ψασσ

!
of the local tensor in an MPS; a transition can also be from a state

to itself.

The same rules are valid with MPOs, using operators instead of states for each transition.
To clarify these rules, we analyze some examples.

Suppose to have three local states |1", |2", |3", and suppose we want to represent the
sum of the three states |. . .111. . .", |. . .222. . .", |. . .333. . ." of an (infinite) chain as an MPS.
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Indeed in this case, we need three states 1, 2, 3 and each of them are linked to itself with
a transition as follows:

|. . .111. . ."+ |. . .222. . ."+ |. . .333. . ." → 3
|1! |3!

2
|2!

1 →

 

   
|1" 0 0
0 |2" 0
0 0 |3"

 

   . (4.29)

This for an infinite chain. If we want to stop the chain we need to insert input and output
transitions:

|11. . .1"+ |22. . .2"+ |33. . .3" → 3|3!1 2 |3!|1! |1!

|3!|1!

|2! |2!

|2!

→ ( |1" |2" |3" )

 

   
|1" 0 0
0 |2" 0
0 0 |3"

 

   

L−2 

   
|1"
|2"
|3"

 

   .

(4.30)

The two cases (4.29) and (4.30) would have probably been constructed using only the
matrix picture discussed in the previous section, so in the following we discuss more
involving examples.

As said, the automata procedure is very efficient for Hamiltonians defined in terms of
local operators. The automaton of the Ising model with transverse field Hamiltonian can
be represented using an automaton of only three states, hence, with an MPS with bond
dimension χ=3:

Ĥ =
1

j

σ̂j
zσ̂j+1

z +λσ̂jx →
σ̂z σ̂z

λσ̂x

I I

1 2 3 →

 

 
I σ̂z λσ̂x

0 0 σ̂z

0 0 I

 

 . (4.31)

Another interesting example of complex Hamiltonian which can represented with a
bond dimension χ=3 MPO is the two-body Hamiltonian with an exponentially decreasing
interaction strength as a function of the distance:

Ĥ =
1

r

1

j

λ−rX̂jX̂j+r →

I I

1 2 3X̂ X̂

I/λ

→

 

   
I X̂ 0
0 I/λ X̂
0 0 I

 

   . (4.32)

The last example we give is the Hamiltonian of the Heisenberg Model . For this system, an
automata of 5 states, i.e. a MPS with bond dimension χ=5 local tensors is needed:

Ĥ =
1

j

Jxσ̂j
xσ̂j+1

x +Jyσ̂j
yσ̂j+1

y + Jzσ̂j
zσ̂j+1

z

→
σ̂z

1

2

3

4

5

σ̂x

σ̂z

I I

Jzσ̂
z

Jxσ̂
x

Jzσ̂
z

→

 

           

I σ̂x σ̂y σ̂z 0
0 0 0 0 σ̂x

0 0 0 0 σ̂y

0 0 0 0 σ̂z

0 0 0 0 I

 

           
.

(4.33)
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The previous examples involve only Hamiltonian, however every many-body operator defined
in terms of sum of compositions of local states can be represented as an MPO using
this procedure. Of course, the bond dimension can increase according to the complexity
of the pattern of local operators in the definition of the many-body operator.

4.3 Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) [59] is a powerful numerical tech-
nique used to study the ground-state properties of strongly correlated quantummany-body
systems, and particularly suitable for one-dimensional chains or lattices. Inspired by the
Real Space Renormalization Group ideas of Kadanoff [60] and Wilson [61], it was originally
developed by Steven R. White [59] and later improved and adapted to TNs structures [62,
63]. The original implementation of DMRG uses density matrices to identify and isolate
the most relevant quantum configurations with minimum energy.

Given a quantum Hamiltonian Ĥ of a 1-dimensional state, the problem consists in
finding the ground-state MPS with the Hamiltonian written in an MPO form, which is the
following eigenvalue problem with TNs:

= E . (4.34)

The core idea behind DMRG is to optimize the representation of the quantum state
iteratively, with a renormalizing coarse-graining procedure: initially, a small system is
constructed, and then the method systematically adds sites to the chain, optimizing the
state at each step using numerical techniques such as matrix diagonalization or variational
methods. By iteratively increasing the system size DMRG gradually includes longer-range
correlations and improves the approximation of the true quantum interacting ground-state.

However, the MPS adaptation of DMRG algorithm (MPS-DMRG) is more technical.
The Hamiltonian Ĥ must have certain simplifying properties, such as being in MPO form.
In the following, we just give a brief summary of the main steps (Fig. 4.2):

a) setup: the initial (random) MPS is transformed into an orthogonal form with a
gauging4.3 procedure; the MPO form of Ĥ is then projected into a new basis; a first
pair of MPS tensors are contracted to a two-index bond tensor over their shared
bond index;

b) optimization of first bond: the first bond tensor is optimized using iterative
algorithms such as Davidson or Lanczos [64]: the multiplication of the Hamiltonian
H with the bond tensor is computed using the projected form of Ĥ ;

4.3. In anMPS representation, the gauge freedom arises from the freedom to apply local unitary transformations
to the virtual indices connecting neighboring tensors. These transformations do not change the physical state
represented by the MPS. Gauging is the process of choosing a specific gauge condition to fix the gauge freedom in
an MPS representation.
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SVD

optimize
b)c)

a)

Figure 4.2. The MPS-DMRG algorithm cycle. The DMRG employs a series of iterative steps to
systematically optimize and approximate the MPS representation, efficiently capturing the low-
energy sectors of the quantum system Hilbert space.

c) adaptive restoration of MPS form: the MPS form of the candidate eigenvector
is restored using SVD of the bond tensor; the resulting MPS tensor is truncated to
a desired bond dimension;

d) remaining steps and sweeping: the steps a), b), c) are carried out for the MPS
tensors sharing the next bond index pair, merging and improving them, and then
restoring the MPS form; the optimization and adaptation steps are repeated for all
the bond indices two at a time, performing a full sweep. The algorithm continues
sweeping back and forth, optimizing the MPS tensors and adapting the bond dimen-
sions until convergence is achieved.

DMRG is a sophisticated numerical algorithm, and manually implementing it from scratch
can be quite involving. However, there are existing libraries and tools4.4 that provide
DMRG functionality, allowing to use it as a pre-built function or module.

4.4 Time evolution of MPS
For closed quantum systems, the time evolution can be described by the Schrödinger equa-
tion. In the context of MPS, the time evolution of the state can be efficiently implemented
using several algorithms which have been developed in recent years [65], some of which are:

• t-DMRG (Time-Evolving Density Matrix Renormalization Group) [66]: an exten-
sion of the DMRG algorithm for time evolution;

• TEBD (Time-Evolving Block Decimation) [67]: it approximates the time evolution
operator using a sequence of local two-site unitary gates, which act on neighboring
sites of the MPS tensor network;

• TDVP (Time-Dependent Variational Principle) [68]: it formulates the time evolu-
tion problem as a variational optimization problem; it updates the MPS tensors in
a way that minimizes the distance between the time-evolved state and the original
state under the time-dependent Hamiltonian.

4.4. For instance, the Julia package ITensor, or the Python library TenPy.
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For the simulations of this thesis, we choose TEBD as a time evolution algorithm since it
is enough efficient despite its simplicity of implementation. The central idea of TEBD is
to approximate the time evolution operator using a Trotter-Suzuki decomposition [69] or
some other suitable approximation. The time evolution is carried out in small time steps,
and at each time step, local two-site unitary gates are applied to the MPS tensor network.
The steps of the TEBD algorithm are the following:

• preparation of the initial MPS state: the TEBD algorithm starts with an initial
MPS representation of the quantum state at time t=0

|Ψ0"= ; (4.35)

• Hamiltonian decomposition into gates: the TEBD requires that the time-
dependent Hamiltonian of the system can be decomposed into a sum of nearest-
neighboring interaction terms, called two-site gates, each acting on neighboring sites
of the MPS:

Ĥ =
1

j

Ĥj ,j+1=
1

j
Ĥj ,j+1

; (4.36)

• exponentiation of the two-site gate: exponentiate each of these two-site opera-
tors using a small time step τ , which gives us a two-site unitary time-evolution gate
for each pair of neighboring sites:

exp
.
− i
2
τ Ĥj,j+1

/
= exp

.
− i
2
τ

/
≡ ; (4.37)

• decomposition of the time evolution operator: the time evolution operator,
which describes the system’s evolution over a small time step τ , is obtained by
applying the exponentiated two-site evolution gates (4.37) in a specific order; typ-
ically, a Trotter-Suzuki decomposition is used to approximate the time evolution
operator as a product of these exponentiated gates:

Û(τ ) ( e
− i

2
Ĥ1,2τe

− i

2
Ĥ2,3τ . . .e

− i

2
Ĥj,j+1τ . . .e

− i

2
ĤL−1,Lτ +O(τ3); (4.38)

hence, in TN notation, the time evolution operator is the application of all the two-
site gates (4.37) in the order of (4.38):

Û(τ) ( ; (4.39)
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L

L0

Figure 4.3. A quasi 1-dimensional lattice. The main size of the system is L, which is much larger
than the width L0'L.

(a) (b)

Figure 4.4. The two approaches to adapt an MPS to a quasi 1-dimensional system: a) Contraction
of the smaller dimension: each column is a subsystem is mapped to a single tensor of the MPS. b)
Rectification with a filling curve: in case of a strip or a tube, a “sawtooth” path can be chosen.

• updating the state: to evolve the MPS in time, apply the time-evolution operator
to the MPS representation of the quantum state:

|Ψ(t+ τ )"= Û(τ)|Ψ(t)"; (4.40)

each iteration advances the quantum state in time by τ , and by repeating the steps
starting from |Ψ0", the time-evolved state |Ψ(t)" is obtained.

4.5 TNs for higher-dimensional systems

4.5.1 MPS for quasi one-dimensional systems
Quasi-one-dimensional systems refers to physical systems that possess the main degree of
freedom in one-dimension, even though they may extend a bit into two or three dimensions.
These systems (e.g. nanotubes, molecular chains, and so on) are of particular interest in
condensed matter physics and materials science. Of course, our interest on these systems
arise from the fact that the lattice system analyzed in this thesis is quasi-1-dimensional.

However, quasi-1-dimensional systems do not fit to the MPS Ansatz we already described,
which allows to manipulate efficiently quantum many-body states naturally for 1-dimen-
sional systems. Hence we need new approaches to adapt the MPS structure to a quasi-
dimensional system.

We take as toy model a 2D lattice with L plaquettes along the x-axis (the main direc-
tion), and L0'L plaquettes along the y axis (Fig. 4.3).

The two main approaches of adapting an MPS to this lattice are the following (Fig 4.4):

• contraction of the smaller dimension (Fig 4.4a): the first approach involves con-
sidering the L×L0 two-dimensional lattice as an L 1-dimensional system, grouping
together all the L0 sites of each column into a single numerical site; by doing
this, the problem is transformed into a one-dimensional chain, allowing the appli-
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a) MPS b) PEPS

c) TTN d) MERA

Figure 4.5. Comparison of four Tensor Network structures for quantum states representation: a)
Matrix Product State b) Projected Entangled Pair State c) Tree Tensor Network and d) Multi-
scale Entanglement Renormalization Ansatz. Each method offers unique ways to efficiently repre-
sent quantum states, addressing various dimensionalities and entanglement structures in quantum
systems.

cation of one-dimensional algorithms; however, a limitation of this method is the
exponential growth with L0 of the local basis dimension, which restricts its appli-
cation to quasi-two-dimensional systems, where L0 becomes large;

• rectification with a filling curve (Fig 4.4b): the second strategy [70], involves cov-
ering the two-dimensional lattice with a one-dimensional curve (a chosen path) and
applying one-dimensional algorithms to the resulting effective chain; this method
induces a specific one-dimensional site-ordering in the 2D lattice, creating a map-
ping between the physical 2D system and the 1D chain; this mapping enables the
translation of a two-dimensional model into a one-dimensional one; however, it
should be noted that the original model’s nearest-neighbor interactions may lead
to long-range interactions, which can impact the numerical efficiency.

4.5.2 Other TN structures for higher-dimensional systems
While MPS have proven successful in capturing the entanglement structure of one-dimen-
sional systems, higher-dimensional systems often require more sophisticated TN methods.
This has led to the development of several novel TN structures also for two or higher
dimensions (Fig. 4.5), some of which are listed in the following [33]:

1. PEPS (Projected Entangled Pair States) it is based on the idea of assigning a tensor
to each lattice site, where the tensors encode the local correlations and entanglement
with neighboring sites; however, due to loops, the contraction to compute scalar
quantities remains computationally challenging;

2. TTN (Tree Tensor Networks): the tensors are organized in a hierarchical tree struc-
ture, capturing correlations and entanglement between distant lattice sites; this
hierarchical organization provides an efficient description of ground states in sys-
tems with long-range interactions; the TTN structure is also employed for 1D system
with periodic boundary conditions;
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3. MERA (Multiscale Entanglement Renormalization Ansatz): proposed in [71],
MERA is based on the idea of renormalization and coarse-graining, offering a
powerful representation of quantum states by encoding short- and long-range cor-
relations efficiently.

4.5 TNs for higher-dimensional systems 103





Chapter 5

Numerical Simulations

In this chapter, we apply the Tensor Network (TN) methods described in chapter 4 to
analyze and study the Hamiltonian Lattice QED on ladder geometries described in chapter
2. In particular, we fist apply MPS-DMRG to this system, which allows for the creation
of the ground-state MPS of large system sizes (L∼ 102), approaching the thermodynamic
limit L→∞. Secondly, we prepare initial photonic wave-packet MPS states using the MPO
operator, simulating out-of-equilibrium processes like the photonic wave-packet propaga-
tion and the photon-photon scattering using time-evolution algorithms for MPS.

5.1 TN representations and ground-state search

5.1.1 Represent the system as an MPS: the local basis choice

Since the ladder is a quasi-one-dimensional geometry, in order to represent a quantum
state of the ladder system as an MPS state, we need to use one of the methods described
in section 4.5.1.
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Local
basis Rung Super-plaquette Semi-plaquette

(any represent.)

Semi-plaquette

case
!
1

2
, 1
"

Local
object

Local
dimension O(mx

2my) O(mx
2my

2) mx
2 mx

2=4

Ĥj
E

Ĥj
B

H=Hphys No No For a specific For a specific
longit. polariz. longit. polariz.

sector sector

Table 5.1. We list three possible choices of local bases to contract the smaller dimension of the
ladder, representing the quasi-1D system as a 1D system. For each basis, the relative properties
are listed, such as the local dimension and the form of the local Hamiltonian operators. With
m=2s+1 we denote the spin multiplicity for a spin representation s. The condition H=Hphys

ensures that every possible configuration composed with that local basis is gauge invariant (i.e.
allowed by Gauss’ Law).

Contraction of the smaller ladder dimension. If we want to contract the smaller
dimension, we need to choose a local basis. We list three of these bases for the ladder QED
without matter (Tab. 5.1):

• the rung basis: in this basis the electric local operators are diagonal local opera-
tors; a single plaquette operator acts on two rungs, hence Û , Û † are 2-site operators;

• the super-plaquette basis: the electric local operators are still diagonal and local;
a single plaquette operator acts also on the nearest neighboring plaquettes, hence
Û , Û † are a 3-site operators;

• the semi-plaquette basis: this is the local basis we chose in section 2.2.2 to
represent the system; in this basis Û , Û † are a 3-site operators but also Êj2 is non-
local since to know a rung’s electric field we need to know first the values of the
horizontal electric fields of two neighboring plaquettes, thus:

ÊL= , ÊT= , ÊB= , ÊR= ; (5.1)
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however, the local operators in this basis becomes simpler in the
!
1

2
, 1
"
spin repre-

sentation; moreover, in the lowest spin representation all the configuration spanned
by the local basis are gauge invariant configurations, so the total Hilbert space H
is the physical Hilbert space Hphys.

Rectification with a sawtooth curve. Another approach is the rectification of the
system using a filling sawtooth curve (Fig. 5.1). This method results efficient for higher
spin representation because the plaquette operator can be always expressed as a tensor
product of local operators:

Û = . (5.2)

However, for the particular
!
1

2
,1
"
spin representation case, the semi-plaquette basis is still

a more advantageous choice since:

• the local dimension of the filling curve (d" 2) is the same or even higher than the
one of s'

z=0 polarization sector in the semi-plaquette basis (d=2);

• for the filling curve it holds Hphys⊂H, while for the MPS in the semi-plaquette
basis Hphys=H;

• the number of sites of the filling curve is 3L+1, which is triple with respect the one
of the system in the plaquette basis, which is L.

Hence, from now on we will analyze the simplest case: we will consider the MPS represen-

tation of the system in the semi-plaquette basis, for the lowest spin representation
!
1

2
,1
"
.

5.1.2 The total and local Hamiltonian MPOs for
! 1
2
, 1

"

In order to represent the QLM Hamiltonian of the QED on ladder geometry

Ĥ = g2

2a
1

j

(Ŝjz)2+
1

2ag2
1

j

(Ûj+ Ûj
†) with Û ≡ ŜB+ŜR+ŜT−ŜL− , (5.3)

in the lowest spin representation as an MPO we choose the semi-plaquette basis (Tab. 5.1).
As we saw in section 2.6, this system is mappable into the Ising model transverse field, for
which we already found an MPO representation (4.31) in section 4.2.4:

Ĥ = . . .


L ∼ 102 sites

. (5.4)
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Figure 5.1. In order to adapt the ladder geometry to a linear MPS geometry, a possible approach
is using a filling sawtooth curve represented here.

We notice that even in the lowest
!
1

2
, 1
"
spin representation, the local Hamiltonian

(defined as (2.58)) representation as an MPO is a 3-sites operator:

Ĥj = g2

2a

.
1
2
ÊL,j
2 + ÊT,j

2 + ÊB,j
2 + 1

2
ÊR,j
2

/
+ 1
2ag2

(Ûj+ Ûj
†)

=
.
1
2

+ + + 1
2

/
+

= →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →SVD
.

(5.5)

Thus, given a generic MPS state

|Ψ"= , (5.6)

we can efficiently compute the local energy density of an MPS |Ψ" as the following con-
traction:

Ej[Ψ] = ,Ψ|Ĥj |Ψ"=

j

. (5.7)

5.1.3 Ground-state search with MPS-DMRG

In order to find the ground-state of the system, we can use built-in subroutines from the
Tensor Network libraries of ITensor or TenPy which supports the MPS-DMRG described
in section 5.1.3. The input of these functions are the following:

• an initial MPS, that we can choose with random entries:

|Random MPS"= . . .


L∼ 102 sites

; (5.8)

• the MPO form (5.4) of the Hamiltonian of the system, which we already discussed
in the previous section;
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• a total number of DMRG sweeps ns that the algorithm will perform; alternatively,
we can also choose a modality for which the algorithm continues sweeping until
a certain threshold of convergence, i.e. the relative difference of the ground state
energy after a sweep and the previous |En− En−1|/En is below a certain threshold
η∼ 10−10;

• the SVD cutoff $∼ 10−10 under which the singular values are neglected and set to
zero, reducing the bond dimension.

The output algorithm is the MPS representation of the ground-state (the dressed vacuum)
of the system

|Ω"= . . . . (5.9)

As a check of DMRG, one can verify that for low values of the coupling g, the expectation
value of the energy of the ground-state is near to the known theoretical value:

,Ω|Ĥ |Ω"=
. . .
. . .
. . .

=− L
ag2

· (1+O(g4)) . (5.10)

5.2 MPO wave-packet operator construction for
! 1
2 ,1

"

In this section, we exploit the TN methods of section 4.2 to construct the MPO represen-
tation of the Wannier excitation operator (3.72) and of a generic wave-packet operator
(3.106). This step is crucial because it allows us to prepare initial single-particle photonic
wave-packet states, which are the initial condition of the processes that we will simulate
in section 5.3.

In particular, we want to represent as an MPO the wave-packet creation operator

Ψ̂≡
1

j

ΨjŴj=
1

j

1

α

cαΨjÂα,j . (5.11)

whereΨj is the wave-packet wave-function profile (i.e. Gaussian function of j and momenta
with rotating phase eikj), Ŵj is the Wannier excitation operators of the site j, and cα are
the coefficients defined in (3.80). The operators Âα,j are the operators which creates the
Wannier Ŵj, which are compositions of plaquette operators Ûj , Ûj

†. As described in section
3.3.6, for the lowest spin representation, once chosen the number w of plaquettes of the
Wannier support, the set of Âα is the w=2L operators.

5.2.1 Example of automata picture for Ψ̂ with w=3

Since the Âα are compositions of k-local operators, we can exploit the automata picture
described in section 4.2.4.

5.2 MPO wave-packet operator construction for
! 1
2
, 1

"
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With a support of w= 3 plaquettes there are 23=8 operators Â, hence the Wannier
operator can be written as the follows:

Ŵj
w=3= c1 I+ c2 Ûj+1+ c3 Ûj+ c4 Ûj Ûj+1

+ c5 Ûj−1+ c6 Ûj−1 Ûj+1+ c7 Ûj−1 Ûj+ c8 Ûj−1 Ûj Ûj+1 .
(5.12)

Hence, the most general MPO wave-packet operator obtainable from (5.12) is:

Ψ̂MPO
w=3 =

1

j

βj
(1)Ij+

1

j

βj
(2) Ûj+

1

j

βj
(3) Ûj Ûj+1

+
1

j

βj
(4) Ûj Ûj+2+

1

j

βj
(5) Ûj Ûj+1 Ûj+2 .

. (5.13)

The goal now is to find the coefficients βj which represents a wave-packet Ψ̂ (j̄ , p̄, σ)
centered in j̄ , with average momentum k and spatial dispersion σ:

Ψ̂(j̄ , k,σ)=
1

j

Ψj Ŵj
w=3, Ψj≡ eikj e

−(j− j̄)2

2σ2 . (5.14)

Keeping Ψj as generic coefficients, we substitute (5.12) inside (5.11) obtaining

Ψ̂w=3 (j̄ , k,σ)=
1

j

Ψj c1+
1

j

Ψj c5 Ûj−1+
1

j

Ψj c2 Ûj+1+
1

j

Ψj c3 ĉj

+
1

j

Ψjβ4 Ûj Ûj+1+
1

j

Ψj c6 Ûj−1 Ûj+1

+
1

j

Ψj c7 Ûj−1 Ûj+
1

j

Ψj c8 Ûj−1 Ûj Ûj+1 .

. (5.15)

Now, shifting the indices and grouping all the common terms we obtain

Ψ̂w=3 (j̄ , k,σ)=
1

j

Ψj c1+
1

j

(Ψj−1 c2+Ψj c3+Ψj+1 c5) Ûj

+
1

j

(Ψj c4+Ψj+1 c7) Ûj Ûj+1+
1

j

Ψj+1 c6 Ûj Ûj+2

+
1

j

Ψj+1 c8 Ûj Ûj+1 Ûj+2

, (5.16)

from which we identify the coefficients βj as

βj
(1)=Ψj c1;

βj
(2)=Ψj−1 c2+Ψj c3+Ψj+1 c5;

βj
(3)=Ψj c4+Ψj+1 c7;

βj
(4)=Ψj+1 c6;

βj
(5)=Ψj+1 c8.
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Hence, we know all the βj coefficients as a function of the sites of the MPO. Using an
automata picture, it is straightforward to derive from (5.13) the j-th site tensor of the
MPO as:

Ψ̂jMPO= 1
βj
(3)Û Û

2

34 5

6

I Û

Iβj
(2)Û

βj
(1)Û

I

βj
(4)Û

I

βj
(5)Û

=

 

                   

I βj
(2)Û βj

(3)Û βj
(4)Û βj

(5)Û βj
(1)I

0 I
0 Û
I 0
Û 0

0

 

                   

. (5.17)

Thus, the bond dimension to represent a wave-packet operator with Wannier support of
w=3 is χ=6 in the lowest spin representation.

5.2.2 Generalization to higher w and built-in functions methods

We can generalize the above procedure to higher values of the Wannier support w. Using
the automata picture, one can show that the generalization of (5.17) for w> 3 is a dihco-
tomic tree:

Ψw=3= , Ψw=4= , Ψw=5= , . . . (5.18)

Here we have included also w even, but notice that only a w odd is used for a support
with a centered Wannier state. Indeed, in this way the bond dimension of the MPO grows
exponentially with the number of plaquettes in the support of the Wannier. More precisely:

χ=2w−1+2. (5.19)

Since the automata description becomes difficult to implement by hand for high values of
w, we also notice that some numerical frameworks like the ITensor library offer methods
to generate automatically MPOs from sum of compositions of local operators. Often these
methods also provide an automatic standard final compression routine of the tensors after
the generation of the MPO. The compression reduces the bond dimension, which is always
lower than (5.19). This results also in a variable bond dimension along the chain, depending
on the local amount of entanglement stored by the operator.

5.3 Real-time simulations of the
! 1
2 , 1

"
ladder

In this section we present the methods and results of the wave-packet states preparation
and the time evolution of 1-dimensional Lattice QED photon propagation and scattering
processes. In particular, we apply the methods and results of the chapters 3 and 4 to

5.3 Real-time simulations of the
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Ŵ

|W "|Ω"

E [W ]

E [Ω]

Figure 5.2. In order to prepare initial states, we apply an MPO to the vacuum obtained with
DMRG. In this figure, we show schematically how a Wannier excitation operator in an MPO form
is applied to the vacuum, obtaining a maximally localized state.

Energy density of the MPS Wannier state |W25", L= 50

Ẽj[W ]

MPS (plaquette) site j

Figure 5.3. Energy density computed as (5.7) of the final MPS state obtained applying different
Wannier MPO excitation operators for different g (from g4= 0.0001 to g4= 0.5) and different
supports w on a 50-site ground-state MPS obtained with DMRG. The result is a Wannier MPS
state |W25! centered in 25-th site with different energy spread depending on the coupling g.

perform numerical simulations of out-of-equilibrium processes of the system described in
chapter 2.

5.3.1 Preparation of the initial states

The first test is applying the Wannier excitation operator Ŵj in an MPO form to the
dressed vacuum obtained from DMRG (Fig. 5.2).

In order to visualize the energy distribution of the states, we compute the local energy
density using the tensor contraction (5.7) for every MPS site j=1, . . . L.

Figure 5.3 shows the application of the Wannier excitation MPO for different values of
the coupling and for different Wannier supports. The Wannier MPO is applied to a L= 50
ground-state MPS obtained with DMRG.
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The energy density profiles are coherent with the results of section 3.2.7: as the coupling
g increases, the energy spread of the Wannier increases accordingly to Fig. 3.3.

Another important remark is about the sizes of the system: indeed, the Wannier exci-
tation operator was localized in an intermediate system size, up to L= 13, with periodic
boundary conditions. Instead, the ground-state computed with DMRG represents a vacuum
with open boundary conditions, approaching the thermodynamic limit. This means that
finite system size effects at the boundaries can emerge when the MPO is inserted. This
is what happens in Fig. 5.3, where for g4= 0.5 we clearly see a finite difference between
the ground-state energy and the region outside the Wannier but inside the MPO sup-
port (the “Wannier vacuum”).

However, these effects can be neglected for mainly two reasons:

• the graph of Fig. 5.3 has energy values represented in log-scale, hence the order of
magnitude of the difference between the vacuum of DMRG and the vacuum of the
Wannier remain very small (∼10−7);

• the differences of the previous point can be neglected because after time evolution
with TEBD, the error produced by the finite time-steps τ are of the same order
of these border effects (about 10−7), hence these very small effects are completely
canceled by the real-time simulation.

5.3.2 Performing time evolution with TEBD

In order to perform time-evolution of the MPS, we apply the TEBD algorithm (see section
4.4). One could assert that, since (5.5) holds, the local Hamiltonian is not a 2-site operator,
but a 3-site operator, so TEBD cannot be applied as described described in section 4.4.

However, we notice that due to the structure of the electric field operators (5.1), for
the spin representation

!
1

2
,1
"
this is not a problem because we can recast Hamiltonian as

a sum of local 2-sites operator:

Ĥ =
1

Ĥj

=
1

Ĥj
E+ Ĥj

B

=
1.

1
2

+ + + 1
2

/
+

=
1.

1
2

+ +
/
+
.
1
2

+
/

=
1

+

=
1

(5.20)
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However, we notice that there are generalizations of TEBD which allows for time evolu-
tion of Hamiltonians with local 3-site non-commuting terms [72]. Hence, even for higher
spin representation, where the local Hamiltonian is a 3-site operator due to the 3-site Û
operator, TEBD can in principle always be applied with a generalization of the evolution
operator (4.39).

The parameters of the TEBD algorithm are the following:

• the time step separation τ : at each iteration step, the state |Ψ(t)" is updated to
the state |Ψ(t+ τ)";

• the SVD cutoff $, to perform the application of the gates: at each iteration, SVD
is applied to each gate to re-obtain the MPS structure, and each singular value <$
is neglected, reducing the bond dimension;

• maximum bond dimension χmax: since at each iteration the bond dimension can
increase, an upper limit of χ is set, avoiding the algorithm to be exceedingly slow;

• total time steps N ; after N iterations, the algorithm stops; alternatively, one can
give as input the total simulation time T =N · τ .

Since the MPS Ansatz can adapt to systems only with open boundary conditions (OBC),
here are some common types of boundary conditions:

1. Dirichlet OBC: the values of the function are explicitly specified and fixed during
time-evolution at the boundaries;

2. Neumann OBC: specify the derivative of the function at the boundary; for
instance, one can specify a gradient at the boundary or a derivative for a 1-dimen-
sional system;

3. Robin or mixed OBC: these conditions involve a combination of Dirichlet and
Neumann conditions; they typically involve a linear combination of the function
value and its derivative at the boundary.

In the ladder case, we will use Dirichlet OBC. In particular, for the zero polarization sector
of representation

!
1

2
, 1
"
, which is that of our interest for the simulations, we can specify

parallel

. . .

or antiparallel Dirichlet OBC:

. . .
.
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Time evolution of the Wannier localized state with g= 0.5

E [W (t=0)] E [W (t=0)] in log-scale

Ej Ej

t t

E [W (t)] E [W (t)] in log-scale

j j

t t

Figure 5.4. Simulation of the dispersion of a maximally localized Wannier state with TNs: an initial
maximally localized state is prepared as described in section 5.3.1. The energy density (relative,
with respect the ground-state, and normalized) as a function of spacetime plotted. The coupling
is set at g= 0.5, while the parameters of the simulation are the time step τ = 0.05, the SVD cutoff
#= 10−10 and the maximum bond dimension χmax= 30.

Unless explicitly stated otherwise, from now on, we will use the parallel Dirichlet boundary
conditions in all simulations of the following sections.

5.3.3 Dispersion of the localized Wannier state

To the initial Wannier state prepared as described in section 5.3.1 can be applied the time
evolution with TEBD. Due to the uncertainty principle, the maximally localized state
in the real space is the minimum localized state in the reciprocal space. Thus, we should
observe a sudden dispersion whose boundary propagates at the maximum speed obtainable
from the dispersion relation of the particle.

Fig. 5.4 shows the time evolution of in a system with L= 150, g = 0.5, where the
localized state is prepared in the site j= 75.
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. . .. . .

k

TEBD

Ψ̂(j ,σ , k)

j

σ σ

Figure 5.5. Schematic representation of a single-particle photon wave-packet state, generated
from an MPO creation operator applied to the vacuum obtained with DMRG. After the state
preparation, a time evolution algorithm such as TEBD is applied to simulate the propagation of
the photon.

In the log-scale energy time evolution graph of Fig. 5.4, we can clearly see the causal
cone whose vertex is at the spacetime (j, t)= (75, 0).

5.3.4 Propagation of a single particle wave-packet

At this stage, we are ready to prepare a single-particle state using the wave-packet MPO
creation operator described in section 5.2 to the ground-state, performing time evolution
and testing the propagation of a one-dimensional photon. In particular, we prepare initial
states corresponding to single-particle photonic Gaussian wave-packets, applying time evo-
lution to study the properties of these wave-packets, such as the velocity and dispersion
(Fig. 5.5).

Given a ground-state MPS with L=100 sites, we prepare a Gaussian wave-packet with
initial dispersion σ and momentum k, centered in a site j̄ of the one-dimensional chain
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σ=3a, k= π

2a
photonic Gaussian wave-packet propagation with g= 0.1

Ẽ [Ψ(t=0)] Ẽ [Ψ(t=0)] in log-scale

Ẽj Ẽj

j j

Ẽ [Ψ(t)] Ẽ [Ψ(t)] in log-scale

j j

t t

Figure 5.6. TN simulation of a single-particle photonic wave-packet propagation. The energy
density (relative, with respect the ground-state, and normalized) as a function of spacetime plotted.
The wave-packet state is prepared with j̄ = 30, σ=3a and k=π/2a (a=1). The coupling is set at
g= 0.1, while the parameters of the simulation are the time step τ = 0.05, the SVD cutoff #= 10−10

and the maximum bond dimension χmax= 30.

(Fig. 5.6). In order to study the time evolution as the parameters change, we can vary one
of the three parameters σ , k, g while keeping the other two fixed.

Varying the coupling g. First, we analyze the velocity of the photon as a function
of small values of the coupling g. In section 3.1.2 we found from perturbation theory the
dispersion relation of the first energy band:

E1(k)= const. − g2

2a
cos(ka)+O(g6) . (5.21)

Thus, as said in section 2.5.1, we can compute the group velocity of the particle as the first
derivative of the energy with respect the momentum:

β(k)= d
dk
E1(k)=

g2

2
sin(ka)+O(g6) , (5.22)

5.3 Real-time simulations of the
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Local energy density E [Ψ(t)] with σ=2a, k= π

2
varying the coupling g

g4= 0.001, β( 0.016 g4= 0.01, β( 0.05

j j

t t

g4= 0.1, β( 0.16 g4= 0.5, β( 0.35

j j

t t

Figure 5.7. TN simulation of a single-particle photonic wave-packet propagation. The energy
density (relative, with respect the ground-state, and normalized) as a function of spacetime plotted.
The wave-packet state is prepared with j̄ =20, σ=2a and k=π/2a (a=1). The coupling is varied
from g= 0.01 to g = 0.5, while the parameters of the simulation are the time step τ = 0.05, the
SVD cutoff #= 10−10 and the maximum bond dimension χmax= 30.

while the dispersion coefficient is proportional to the second derivative

β !(k)= d2

dk2
E1
(1)(k)= ag2

2
cos(ka)+O(g6) . (5.23)

The minimum dispersion is at β !(k)=0, so at k=±π/2a. This point of the Brillouin zone
is also the point of maximum speed:

β
!
k= π

2a

"
= g2

2
+O(g6) . (5.24)

We can test these relations preparing a wave-packet with momentum k= π/2a, keeping
constant all the parameters and varying only the coupling g (Fig. 5.7). We notice that the
speed of the particle increases proportionally to g2, accordingly to the relation (5.24).

Varying the initial energy spread σ. Secondly, we study the dispersion of the
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Local energy density E [Ψ(t)] with g4= 0.1, k= π

2
varying σ

σ= a σ=2a

j j

t t

σ=3a σ=4a

j j

t t

Figure 5.8. TN simulation of a single-particle photonic wave-packet propagation. The energy
density (relative, with respect the ground-state, and normalized) as a function of spacetime plotted.
The wave-packet state is prepared with j̄ = 30, k=π/2 (with a=1) and varying σ=a, 2a, 3a, 4a.
The coupling is fixed to g= 0.1 while the parameters of the simulation are the time step τ = 0.05,
the SVD cutoff #= 10−10 and the maximum bond dimension χmax= 30.

wave-packets varying the initial energy spread σ, keeping fixed the momentum k and the
coupling g (Fig. 5.8). Clearly the velocity of the wave-packet does not depend on σ. Instead,
for small spreads (σ∼ a) we notice a dispersion effects mainly due to lattice artifacts: we
notice that behind the wave packet, additional “tails” are added as the packet propagates.
These tails becomes smaller and smaller as the initial size of the wave-packet increases, and
totally disappear for large values of the spread (σ$4). This is coherent with the uncertainty
principle: the more σ is large, the more localized the wave-packet is in the reciprocal space,
and the less the wave-packet is dispersive.

Varying the momentum k. The last parameter to test is the wave-packet momentum
k. Fig. 5.9 shows a wave-packet with initial spread σ=3a, with different values of k, evolved

5.3 Real-time simulations of the
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Local energy density E [Ψ(t)] with g4= 0.1, σ=3a varying the momentum k

k=−1

4

π

a
k=0

j j

t t

k= 1

4

π

a
k= 1

2

π

a

j j

t t

k= 3

4

π

a
k= π

a

j j

t t

Figure 5.9. TN simulation of a single-particle photonic wave-packet propagation. The energy
density (relative, with respect the ground-state, and normalized) as a function of spacetime plotted.
The wave-packet state is prepared with j̄ = 50, σ=3a and varying k (we set a=1). The coupling
is fixed to g=0.1 while the parameters of the simulation are the time step τ =0.05, the SVD cutoff
#= 10−10 and the maximum bond dimension χmax= 30.

with a coupling g= 0.1. The behavior of the wave-packet is coherent with the dispersion
relation (5.21): the points with maximum dispersion are k = 0 and k = π/a, which are
opposite points in the Brillouin zone. The momenta for which there is minimal dispersion
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k

Ψ̂(j1,σ , k)

−k

j1 j2

Ψ̂(j2,σ ,−k)

Figure 5.10. Schematic representation of a two-photon initial scattering state, generated from two
MPO creation operators applied to the vacuum obtained with DMRG. After the state preparation,
a time evolution algorithm such as TEBD is applied to simulate the scattering of the photons.

are instead k=±π/2a, for which the photon has also maximum velocity.

5.3.5 Photon-photon scattering

As previously anticipated, we now simulate a scattering process between two photons with
opposite momenta: applying two wave-packet MPO creation operators in two different
positions of the ground-state MPS, we can create an initial condition for a photon-photon
scattering (Fig. 5.10).

5.3 Real-time simulations of the
! 1
2
, 1

"
ladder 121



Two σ=5a, |k |= π

2
photonic Gaussian wave-packet scattering with g= 0.5
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Figure 5.11. TN simulation of a two photonic wave-packet scattering. The energy density (relative,
with respect the ground-state, and normalized) as a function of spacetime plotted. A system of
L= 300 sites is used. The wave-packet states are prepared with j̄1= 30 and j̄2= 300− 30= 270,
σ=5a and opposite momenta k=±π/2a (we set a=1). The coupling is set at g= 0.1, while the
parameters of the simulation are the time step τ =0.05, the SVD cutoff #=10−10 and the maximum
bond dimension χmax= 30.

In order to have a large resolution of the scattering process, we construct a L= 300
sites ground-state MPS with DMRG, preparing two wave-packets with a large spread
(σ = 5a), so that the wave-packets are enough localized in momentum space, and they
are not subjected to dispersion and lattice artifacts during propagation. We prepare two
wave-packets in a symmetric position with respect the center, but with opposite momenta
k=+π/2a and k=−π/2a. In this way, the scattering occur exactly at the center of the
chain and the momentum is the one for which the dispersion (5.23) is the lowest.

We consider the highest value of the coupling g we are able to simulate: indeed, in
section 3.3.6 we saw that using exact diagonalization with L=13 we cannot exactly recreate
a Wannier excitation operator with g > 0.5. Hence, g = 0.5 is the highest value of the
coupling we can consider. In particular, this is the most interacting case we can simulate:
if the photons in this regime are almost non-interacting, we can conclude that the photons
of this theory are almost non-interacting also for values of g < 0.5.
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Fig. 5.11 shows the results of the numerical simulation of a two-photon scattering.
In the linear scale, we can see that the photon propagation is not perturbed after the
scattering. From the energy plot in the log-scale, we can see weak effects: the propagation
is perturbed also before the scattering, due to effects of photon self-interaction and lattice
artifacts. After the scattering, we can see a weak increase of this phenomena, but further
investigation such as computing the entanglement entropy would be needed to ensure that
the two photons really weakly interacted.

Overall, this is a good result, because this is an evidence that these simulations are
faithful with the absence of interaction: as said in the introductory chapter, the fact that the
gauge fields do not interact in this theory is a straightforward consequence of the absence
of matter in pure QED. In this context, as said in the previous sections, there are three
phenomena that could make the interaction survive also without matter:

• a finite lattice spacing a: as stated in section 1.2.1 the lattice approximation brings
extra terms proportional to corrections of powers of a in the Hamiltonian; these
terms can bring to new higher order interaction terms of the gauge fields, even in
absence of matter;

• a low dimensionality of the system: we know that the (3 + 1)-dimensional QED
is free under the condition of absence of matter; however, at least in principle, a
different space dimensionality can consistently change the nature of the interaction,
adding phenomena such as self-interaction of the gauge fields;

• the finite system size during exact diagonalization: in order to construct the max-
imally localized Wannier state, we had to apply exact diagonalization to a finite
lattice system (L! 13); instead, the MPS dressed vacuum found with DMRG has
been found using a large system size (L9 13); hence, the wave-packet MPO con-
structed inserted in this vacuum may be affected by these finite lattice size effects.

5.3 Real-time simulations of the
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Chapter 6
Conclusion and Outlook

In this thesis, we described an algorithmic procedure to create one-dimensional single-
particle wave-packets with definite momenta and size, and we applied it to a specific
toy model relevant for High Energy Physics: the Quantum Link Model formulation of
the Hamiltonian Lattice QED on ladder geometries in absence of fermionic degrees of
freedom (pure QED). We have designed the procedure to be as possible model-independent,
allowing for its implementation across different one-dimensional and quasi-one-dimensional
Lattice Gauge Theories. In particular, the inputs of this algorithm are basically two: the
translation operator T̂ of the one-dimensional lattice system, and the Hamiltonian Ĥ of
the theory, which we require to commute with T̂ , i.e. to be translationally invariant.

This algorithm exploits the tools of quantum technologies, in particular the framework
of Tensor Network methods, presented in chapter 4. More precisely, the output of the wave-
packet creation algorithm is a wave-packet in a Matrix Product Operator Ansatz form: it is
applied to a large system size (L∼102) vacuum in a Matrix Product State form, found with
the Density Matrix Renormalization Group algorithm. These MPS states are used as initial
scattering states, ready to be time-evolved via standard TN techniques (TEBD or TDVP).

At the beginning of this work, we presented the (2+1)-dimensional Lattice QED and
its Quantum Link Model formulation. Hence, we studied the particular case of the ladder
lattice geometry, computing all the gauge invariant configurations and defining all the
relevant quantum operators of the system and the procedures to computationally construct
them. Subsequently, we presented all the details of the construction procedure of the wave-
packet creation operator, whose main points can be summed up as follows:

1. simultaneously diagonalizing the Hamiltonian Ĥ and the translation operator T̂
with an intermediate system size (L= 13), finding the Bloch states |k" and the
dispersion relation of the system;

2. selecting the single-particle states and computing the maximally localized state
using a Wannier orbital function method; in this procedure, which is an optimiza-
tion problem, we also showed that one can halve the parameters to optimize using
symmetries of the reflection operator;

3. constructing a creation operator which generates the Wannier localized state when
applied to the ground-state of the system (the dressed vacuum) from a sum of
composition of localized gauge-invariant plaquette operators;
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4. from a linear combination of the Wannier creation operators, constructing a local-
ized wave-packets creation operator with definite average momenta k and average
dispersion σ;

5. converting the wave-packet creation operator of the previous step to an MPO, using
well know techniques from Tensor Network methods.

In the final chapter, we performed real-time simulations of out-of-equilibrium processes of
the lowest spin representation system, whose initial condition can be constructed creating
photons from the vacuum using the wave-packet creation MPO. The real-time simulations
of the propagation of single-photons successfully reproduce wave-packets which propagates
almost dispersionlessly through the lattice. Some weak self-interaction effects of the pho-
tons are probably caused by lattice artifacts or by the low dimensionality of the system.
For enough low coupling values, which are coherent with the one-dimensional Lattice QED,
the photon-photon scattering simulations reproduce almost non-interacting photons, in
accordance with the absence of interaction, which is a direct consequence of the absence of
matter in QED. This observation actually warrants repeating our simulation experiment
adding also dynamical matter.

Some interesting directions originating from this work include short and long-term
projects. Some of the short-term goals, linked to the specific toy model of this work, are:

• implementing the algorithm for higher spin representations, simulating QED
processes increasing the degrees of freedom of the gauge fields;

• adding matter (the fermionic degrees of freedom) to the ladder system, allowing
the creation of QED charged particles (electrons and positrons); preparing electron-
photon initial scattering states, simulating Compton-like processes.

Some of the more long-term goals are instead:

• implementing the algorithm for the one-dimensional QCD, creating single-particle
wave-packets of QCD bound states, simulating meson-meson scattering;

• exploring different quasi one-dimensional geometries such as strips and tubular
geometries, allowing for electron and photon wave-packet states with a definite
chirality;

• understand the extent of applicability of our model-independent method, in pursuit
of more complex gauge or non-gauge lattice models; for instance, we could substitute
the exact diagonalization part, which is the most computationally involving, with
something more flexible, such as Lanczos methods;

• generalizing the wave-packet creation to higher dimensional lattices, towards con-
structing initial states for two-dimensional scattering processes.
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