
Master Thesis in Computer Engineering

Using transfer learning and loss function
adaptation for RNA secondary structure prediction

Master Candidate Supervisor

Giovanni Faldani Prof. Loris Nanni
Student ID 2054141 University of Padova

Academic Year
2023/2024

To my parents,
brothers,

niece,
and friends

Abstract

The problem of predicting RNA secondary structure is a challenging research
topic, which involves various fields of computer science. Accurate solutions to
this problem are helpful in the disciplines of medicine for vaccine development,
to design stable mRNA molecules, or biology for discerning between different
functions of various RNA molecules according to their shape.
The objective of this project is to study an emerging Machine Learning-based
approach to the problem of RNA secondary structure prediction via integration
of deep learning techniques like transfer learning and convolutional neural net-
works, aided by adaptations made for the specific problem at hand, like data
representation and loss function.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xix

List of Acronyms xix

1 Introduction & state of the art 1
1.1 Problem Description . 2
1.2 History and state of the art . 3

2 RNA tensor representation 5

3 Basics of Neural Networks 7

4 Convolutional Neural Networks 11
4.1 Transposed Convolution . 13

5 Transfer Learning 15

6 Loss function for symmetry 19

7 Architecture and pre-trained backbones 23
7.1 VGG16 . 25
7.2 GoogLeNet . 26
7.3 ResNet . 27
7.4 Xception . 30
7.5 MobileNet v2 . 32
7.6 EfficientNet . 34

vii

CONTENTS

8 Dataset & Methods Overview 37
8.1 Implementation details . 39

9 Results and Discussion 43
9.1 Ensemble tests . 45

10 Conclusions and Future Works 47

References 49

viii

List of Figures

1.1 Example of the expected inputs and outputs of the problem at
hand, from [1] . 2

1.2 Different types of possible pseudoknotted secondary structures
shown in [31] . 3

2.1 Example of the pipeline used for the application of CNNs for this
problem, sourced from [1] . 6

3.1 A Multilayer Perceptron schematic, the most basic neural network
that can satisfy the universal approximator condition by applying
a non-linear activation function 𝜎 after the input and hidden layer
[16]. 8

3.2 The ReLU function, effectively and identity that replaces all neg-
ative values with zero. 9

4.1 Visualization of the convolution operation, 𝑊𝑖𝑛 = 6, 𝑘 = 3, 𝑝 = 0,
𝑠 = 1, each weight in the kernel is shared with different positions
of the input image [10] . 12

4.2 Example of features observed in convolutional kernels used for
facial recognition [37] . 12

4.3 Visual example of a transposed convolution operation, 𝑊𝑖𝑛 = 2,
𝑘 = 2, 𝑝 = 0, 𝑠 = 1, sourced from [14] 13

5.1 Illustration of the methodology behind fine-tuning from [15] . . . 16
5.2 Example of deep features transfer learning taken from [39] 16

6.1 An illustration of gradient descent from [59], where the function
is lower the closer to the innermost circumscription. 19

7.1 General outline of the structure of the networks used. 24

xi

LIST OF FIGURES

7.2 Comparison of the two architectures, images taken from [4] . . . 25
7.3 GoogLeNet’s inception block visualized from [50] 26
7.4 A schematic of the residual block from [17] 28
7.5 Architecture of ResNet18, composed of 18 weighted layers as the

name suggests [29]. 29
7.6 A depthwise convolution operation [55] 30
7.7 A pointwise convolution operation with 256 kernels [55] 30
7.8 Steps that can be taken to transform an inception block into a

depthwise separable convolution [7] 31
7.9 Full architecture of the Xception network [7] 32
7.10 Showcase of the differences between residual blocks and linear

bottleneck blocks [46]. 33
7.11 The architecture of the MobileNet v2 network [56] 34
7.12 Different ways of scaling a CNN [53] 35
7.13 The architecture of EfficientNet-B0 [53] 36

8.1 Distinctive types of RNA structures present in bpRNA: (A): schematic
of all structure types, (B): hairpin structure, (C): internal loops, (D):
bulges, (E): multiloops [41]. 38

8.2 Analysis of the ResNet18 neural network within Matlab. 39

9.1 An example of a meta-ensemble (an ensemble of ensembles) using
the sum rule [38] . 45

xii

List of Tables

7.1 A table representing the breakdown of GoogLeNet’s layers from
[50] . 27

9.1 The results of the tests performed on the Blade cluster [13]. 43
9.2 The results of the ensemble tests performed on the Blade cluster

[13]. 46

xiii

List of Algorithms

1 Stochastic Gradient Descent . 20
2 ADAM . 21

xix

List of Acronyms

CNN Convolutional Neural Network

DL Deep Learning

DNA DeoxyriboNucleic Acid

FC Fully Connected

FLOPS Floating-point Operations Per Second

KPI Key Performance Indicator

LSTM Long Short-Term Memory

MFE Minimum Free Energy

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

NP Nondeterministic Polynomial

nt Nucleotide

ReLU Rectified Linear Unit

RGB Red, Green, Blue

RNA RiboNucleic Acid

SVM Support Vector Machine

xxi

1
Introduction & state of the art

The problem of RNA secondary structure prediction is challenging and com-
plex, involving various notions of computer science like dynamic programming,
minimization algorithms and machine learning. Accurate and reliable solutions
to this problem are helpful in the fields of medicine for vaccine development,
to find stable mRNA molecules to combat viruses [58], or biology for discern-
ing between catalytic, ligand binding and scaffolding functions of various RNA
molecules [18]. Currently a lot of research efforts date back to last decade [9]
[47], before the current Deep Learning (DL) revolution [48] started yielding very
precise models for a variety of specialized tasks, like face recognition [44].
RNA is a biomolecule composed of four basic building blocks called nucleotides
(nt/nts), represented by the letters A, C, G, U. This allows us to encode each
nucleotide with only 2 bits of information without wasting any space, a very
useful property in computing. RNA differs from DNA by being single-stranded,
meaning it can present a vast number of geometrical structures depending on
how the nucleotides in the sequence form bonds with other nucleotides farther
away in the same molecule. The secondary structure of the RNA molecule refers
to its 2-dimensional folding before accounting for the three-dimensional tertiary
structure. A base in an RNA sequence can be either paired or unpaired, and
there are 3 types of bond in total [1]:

• (A-U) or (U-A) bonds, between the Adenine and Uracile nucleotides.
• (C-G) or (G-C) bonds, between the Cytosine and Guanine nucleotides.

• (G-U) or (U-G) bonds, a special "wobble pair" which does not follow the
standard Watson-Crick base pair rules.

1

1.1. PROBLEM DESCRIPTION

1.1 Problem Description

The problem can be formally described as such:

Formal problem description
Input: The sequence of nts representing a valid RNA molecule.
Output: A data structure representing the 2-dimensional folding of the
molecule’s secondary structure by highlighting which nts in the sequence bond
together.

Typical representations of the output follow an array-like structure of the
same length as the input sequence, like the one showcased in Figure 1.1, where
the output array implicitly details how bases pair among each other. In this
representation, the implicit pairing is between the index and the element found
at that index (i.e., the base at index 3 pairs with the base at index 26, indexing
from 1). When the index and its element coincide, no pairing is indicated.
Another widespread representation is the dot-bracket representation, where an
open bracket represents a pairing with the respective closed bracket further in
the sequence, and a dot indicates no pairing.

Figure 1.1: Example of the expected inputs and outputs of the problem at hand,
from [1]

2

CHAPTER 1. INTRODUCTION & STATE OF THE ART

1.2 History and state of the art

RNA secondary structure prediction was first approached with exact mathe-
matical and algorithmic methods, the first of which, proposed by Nussinov [40],
uses a nearest neighbor thermodynamic model to predict the most likely struc-
ture following a dynamic programming algorithm that minimizes the amount
of free energy in the structure. This algorithm had a complexity of 𝑂(𝑁3) with
N being the length of the RNA sequence in nucleotides, with the caveat of not al-
lowing for prediction of pseudoknot structures. This algorithm has been known
as Minimum Free Energy (MFE).
Zuker & Stiegler [62], later followed with a similar approach that allowed for
prediction of suboptimal structures as well as optimal ones, however still with
the constraint of not allowing pseudoknots.

Figure 1.2: Different types of possible pseudoknotted secondary structures
shown in [31]

MFE was proven to be an NP-complete problem when pseudoknots are taken
into account [32], meaning that its complexity quickly becomes intractable with

3

1.2. HISTORY AND STATE OF THE ART

large input sizes. As such, heuristic methods were developed to address the
high computational cost of exact methods.

Some heuristics utilized comparison to known structures with alignment al-
gorithms [19], or statistical models with Boltzmann distribution [23], and small
improvements were made throughout the 2000s and 2010s, being able to formu-
late reasonably tractable algorithms for restricted pseudoknot prediction [51].
One of the first DL-based approaches, SPOT-RNA [2], used a small ensemble of
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks combined with the use of transfer learning, and was able to take into
account pseudoknotted structures, outclassing the precision of other algorith-
mic heuristic approaches.
Other contemporary DL-based approaches included considering thermody-
namic energy information like the MFE algorithm [33], or base-pair informa-
tion [5]. Thanks to Deep Learning, steady improvements have been made over
heuristic algorithmic methods in a very short time span. Current DL-based
approaches have improved upon these results even further using a new kind of
tensor representation for processing RNA base pair information with CNNs [1]
or using length-dependent information to aid the prediction [34]. Transformer
networks are a promising new architecture that also started being proposed for
the problem [52].

4

2
RNA tensor representation

The work presented in this thesis is based on "RNA secondary structure
prediction with convolutional neural networks" [1], the main idea that inspired
the approach used in this project is how RNA sequences have been represented
as 3-dimensional tensors of shape 𝐿×𝐿×8 boolean values, where 𝐿 is the length
of the RNA sequence in nts.
The way this representation is achieved is by arranging the RNA sequence on
an 𝐿𝑥𝐿matrix, where entry (𝑖, 𝑗) ∈ 𝐿× 𝐿 represents the matching possibilities of
bases at index 𝑖 and 𝑗 respectively. The matching possibilities are described by
an 8-dimensional boolean array computed as such:

• Bit 1: set to true or 1 when |𝑖 − 𝑗 | < 2, making the pairing infeasible,
due to the bases being too close (they must be at least 2 positions apart to
properly bond in the secondary structure), or simply not matching with
one of the three bond types described in Section 1, which also results in
an infeasible pairing.

• Bit 2: set to true or 1 when 𝑖 == 𝑗, since a base can’t be paired with itself.
This means this bit will only be true in the diagonal of the tensor.

• Bit 3: set to true or 1 when the nucleotide at position 𝑖 (row index) is A
and the nucleotide at position 𝑗 (column index) is U.

• Bit 4: set to true or 1 when the nucleotide at position 𝑖 (row index) is U
and the nucleotide at position 𝑗 (column index) is A.

• Bit 5: set to true or 1 when the nucleotide at position 𝑖 (row index) is U
and the nucleotide at position 𝑗 (column index) is G.

• Bit 6: set to true or 1 when the nucleotide at position 𝑖 (row index) is G
and the nucleotide at position 𝑗 (column index) is U.

5

• Bit 7: set to true or 1 when the nucleotide at position 𝑖 (row index) is G
and the nucleotide at position 𝑗 (column index) is C.

• Bit 8: set to true or 1 when the nucleotide at position 𝑖 (row index) is C
and the nucleotide at position 𝑗 (column index) is G.

This way, every entry in the matrix is an 8-bit binary sequence, which can
also be interpreted as a grayscale color value from 0 to 255. This makes this type
of input naturally fit for use with CNNs.

Similarly, the desired output is also pre-processed in a matrix shape to serve
as the target for training and computing Key Performance Indicators on.
The Target Matrix is simply obtained by marking each entry (𝑖 , 𝑗) with either 1
or 0 where bases are paired. If base 𝑖 is unpaired then entry (𝑖, 𝑖) is set to 1,
otherwise if base 𝑖 is paired with base 𝑗, both entries (𝑖, 𝑗) and (𝑗, 𝑖) are set to 1,
ensuring symmetry in the output.
This is an important constraint for the problem, as ensuring symmetry in the
output is a hard constraint on a valid solution.
A breakdown of the pipeline is found in Figure 2.1.

Figure 2.1: Example of the pipeline used for the application of CNNs for this
problem, sourced from [1]

6

3
Basics of Neural Networks

Neural Networks (NNs) were introduced as far back as 1943 by McCulloch
and Pitts [36], as an approximation of how the human brain processes stimuli.
The field however wasn’t very active until two major breakthroughs: the first
was in 1989, when Hornik Et al. [20] proved that NNs are universal approxima-
tors when coupled with non-linear activation functions in Theorem 1 [8], one
popular nonlinearity being the Rectified Linear Unit (ReLU, Figure 3.2);
the second breakthough arrived through the continuous improvement of com-
puting hardware and especially graphics card technology, which allowed the
training of large NNs to become feasible in the 2010s.
The basic structure of a NN is shown in Figure 3.1, composed of an input layer
or column of neurons, a hidden layer and then an output layer.
Each connection performs a linear transformation with weight 𝑤𝑖 𝑗 and bias 𝑏𝑖 𝑗
on input 𝑥 from neuron 𝑖 ∈ 𝑁 of a preceding layer to neuron 𝑗 ∈ 𝑀 of a succes-
sive layer, then applies a non-linear activation function 𝜎 and each connection
to destination neuron 𝑗 is summed as such:

𝛼 𝑗 =
|𝑁 |∑
𝑖=1

𝜎(𝑤𝑖 𝑗 · 𝑥𝑖 + 𝑏𝑖 𝑗)

When every neuron of a previous layer is connected to every neuron of the
current layer, it is called a fully connected (FC) layer. FC layers can easily
become very large in terms of weight parameters 𝑤𝑖 𝑗 , so a lot of strategies were
developed to mitigate this cost.

7

Figure 3.1: A Multilayer Perceptron schematic, the most basic neural network
that can satisfy the universal approximator condition by applying a non-linear
activation function 𝜎 after the input and hidden layer [16].

8

CHAPTER 3. BASICS OF NEURAL NETWORKS

Theorem 1 (Universal approximation theorem) Let 𝐶(𝑋,R𝑚) denote the set of
continuous functions from a subset 𝑋 of a Euclidean R𝑛 space to a Euclidean space
R𝑚 . Let 𝜎 ∈ 𝐶(R,R). Note that (𝜎 ◦ 𝑥)𝑖 = 𝜎(𝑥𝑖), so 𝜎 ◦ 𝑥 denotes 𝜎 applied to each
component of 𝑥.
Then 𝜎 is not polynomial if and only if for every 𝑛 ∈ N, 𝑚 ∈ N, compact 𝐾 ⊆ R𝑛 ,
𝑓 ∈ 𝐶(𝐾,R𝑚), 𝜀 > 0 there exist 𝑘 ∈ N, 𝐴 ∈ R𝑘×𝑛 , 𝑏 ∈ R𝑘 , 𝐶 ∈ R𝑚×𝑘 such that:

sup
𝑥∈𝐾
∥ 𝑓 (𝑥) − 𝑔(𝑥)∥ < 𝜀

where 𝑔(𝑥) = 𝐶 · (𝜎 ◦ (𝐴 · 𝑥 + 𝑏)).

−1 −0.5 0.5 1 1.5 2

−1

1

2

𝑥

𝑓 (𝑥)

Figure 3.2: The ReLU function, effectively and identity that replaces all negative
values with zero.

Deep Learning refers to the increasing trend of adding more and more hidden
layers to neural network to increase expressiveness and performance. It’s been
observed that NNs with more hidden layers can lead to composition of features
extracted at previous layers into more complex inferences. This is especially
useful for image processing [12].

9

4
Convolutional Neural Networks

Convolutional Neural Networks are a subclass of Neural Networks that was
first introduced by Yann LeCunn in 1989 [30], whose central idea is called weight
sharing.
The signature layers of a CNN employ a convolution operation that takes a
learnable kernel (a weight matrix, usually of shape 𝑘× 𝑘×𝐶), and slides it across
the input, usually an image of shape𝐻×𝑊×𝐶, with C being the channel dimen-
sion, or how much information is stored in each pixel. Convolution performs
the scalar product on every 𝑘 × 𝑘 subsection of the input, and saves the result in
one entry of the output. Multiple output channels can be obtained by utilizing
multiple kernels. This operation employs weight sharing for different zones of
the output, which massively reduces the number of trainable parameters, while
also reducing the variance of the operation’s outcome.
Zero-padding 𝑝 can be employed to prevent the size reduction of the output,
and a larger stride 𝑠 can be used to make the kernel "jump" farther at every step
while sliding over the image.
A visualization of the operation is shown in Figure 4.1. The convolution opera-
tion results in an output with lateral dimension determined by this formula:

𝑊𝑜𝑢𝑡 =

⌊
𝑊𝑖𝑛 − 𝑘 + 2 · 𝑝

𝑠
+ 1

⌋
Via their weight sharing, convolutional kernels have the ability to learn features
and patterns of the images they are processing, and compose them in more
complex combinations with deeper convolutional layers, as shown in Figure 4.2.

11

Figure 4.1: Visualization of the convolution operation, 𝑊𝑖𝑛 = 6, 𝑘 = 3, 𝑝 = 0,
𝑠 = 1, each weight in the kernel is shared with different positions of the input
image [10]

Combining the convolutional layers with more standard nonlinearities like leaky
ReLU forms very robust frameworks for image-related tasks.

Figure 4.2: Example of features observed in convolutional kernels used for facial
recognition [37]

CNNs have repeatedly proven successful in image processing tasks such as
classification, object detection and localization (ImageNet competition [11]), and
have continued to be refined over the past decade.
Because of this, using a convolutional approach for the RNA data representation
shown in Section 3 was shown capable of success in "RNA secondary structure
prediction with convolutional neural networks" [1], and the possible avenues for
further research on the subject are plentiful.

12

CHAPTER 4. CONVOLUTIONAL NEURAL NETWORKS

4.1 Transposed Convolution

While convolution is a useful operation for feature extraction, it results in the
reduction of the size of the input image, meaning that to obtain a result of the
same shape as the input, we need an operation to reverse this process.
The transposed convolution [24] works similarly in concept to a reverse con-
volution. It also employs a learnable kernel of shape 𝑘 × 𝑘 × 𝐶, but instead
multiplies it to each pixel of the input via a scalar product to obtain a larger
output, then composes these results with the given stride 𝑠, shown in Figure
4.3. As with convolution, a padding parameter 𝑝 and can be employed, which
inserts 𝑝 zeros around the image, and then eliminates 𝑝 contour lines from the
output afterwards.

Figure 4.3: Visual example of a transposed convolution operation, 𝑊𝑖𝑛 = 2,
𝑘 = 2, 𝑝 = 0, 𝑠 = 1, sourced from [14]

The output size follows the formula:

𝑊𝑜𝑢𝑡 = (𝑊𝑖𝑛 − 1) · 𝑠 − 2 · 𝑝 + 𝑘

These types of layers have been used in Generative Adversarial Networks
(GANs) to upsample low-dimensional feature vectors into images [24], achieving
impressive results and kickstarting generative AI.

13

5
Transfer Learning

Since CNNs for image processing are a rich and active research field with a
large number of architectures readily available on most modern frameworks, the
main idea behind this project was to see if any of the historical and current CNN
architectures that have been successful can be useful for the problem of RNA
secondary structure prediction when we take the RNA tensor representation as
the input.
The method through which these architectures will be tested is called trans-
fer learning, which consists in importing previously trained CNN models for a
specific problem, and using them with some small adaptations for a different
problem.

Transfer learning was first introduced in 1976 by Stevo Bozinovski and Ante
Fulgosi [43] for the field of machine learning and artificial intelligence, it’s a
technique which aims to transfer previous "knowledge" of a task to a new one,
and in the context of neural network architectures can broadly be divided in two
subcategories:

1. Fine-tuning: An existing and trained network is taken and the input or
output layers are modified if necessary, the resulting model is trained on
new data for a different task to adapt to it, shown in Figure 5.1. This
effectively serves to give the new architecture an advantage by starting at a
point where it achieved good knowledge of a certain problem, which may
help in solving the new problem at hand.

15

Figure 5.1: Illustration of the methodology behind fine-tuning from [15]

2. Deep Features: An existing and trained network is taken as is and used as
is, but cut off to generate deep feature vectors, which are then classified by
another ML algorithm like a Support Vector Machine, like in Figure 5.2.
The weights of the existing network are not updated during the training
process, just the post-processing scheme that uses its deep features as
inputs.

Figure 5.2: Example of deep features transfer learning taken from [39]

Transfer learning has been demonstrated to posses some significant benefits
[61], and has been shown to be able to achieve good results on this specific
problem [2].
In general the benefits can be summed up as such: better performance in rele-
vant KPIs for the problem, like 𝐹1 score, when the networks are trained for the
same amount of time, especially when the available training set is small and
might not be enough for a randomly initialized network to converge.
Convolutional Neural Networks trained on the ImageNet dataset have also

16

CHAPTER 5. TRANSFER LEARNING

demonstrated strong proficiency in transfer learning tasks [22], mostly due to
the massive size of the ImageNet dataset itself, which sports over 14 million
labeled images, making its knowledge very general.

In our case, the fine-tuning approach is taken, with the pre-trained architec-
tures taken as a starting point for further training on a labeled dataset of RNA
tensors and target matrices.
Fine-tuning has been shown to help when there isn’t enough data available for
a newly trained model to converge, which is very valuable here as there isn’t
a lot of labeled RNA secondary structure data, and the data can exhibit huge
variation in size, detailed in Section 8.

17

6
Loss function for symmetry

The choice of loss function is one of the most important parts of training
a neural network [57], since it dictates what the network is going to focus on
learning. The loss function needs to provide a good error model for the type
of output we desire, must be a differentiable function so that gradient descent
can be applied to the weights of the network during back-propagation, and the
network can learn to perform its task better. The idea is to move along the loss
function’s surface to try to find the lowest point, by following the direction of
the "slope" of the function, which is given by its gradient, illustrated in Figure
7.2.

Figure 6.1: An illustration of gradient descent from [59], where the function is
lower the closer to the innermost circumscription.

19

There are two main ways to implement gradient descent that were contem-
plated, which are:

1. Stochastic Gradient Descent (SGD): A stochastic approximation of the
standard Gradient Descent algorithm for optimization [45], tailored to run
faster by being computed on small pieces of the training set (called mini-
batches) in various iterations. Splitting up the computation in minibatches
greatly improves speed and probabilistically converges to the same value
that standard GD would, pseudocode for the algorithm is found in Algo-
rithm 1.

Algorithm 1 Stochastic Gradient Descent
Input: S: the training set, net: the neural network, NumEpoch: number
of training epochs, m: size of the minibatches, L: loss function 𝜂: learning
rate.

1: for 𝑖 ∈ 𝑁𝑢𝑚𝐸𝑝𝑜𝑐ℎ do
2: 𝑅← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠ℎ𝑢 𝑓 𝑓 𝑙𝑒(𝑆)
3: divide 𝑅 in |𝑅 |𝑚 minibatches
4: grad← 0
5: for each 𝐵 minibatch of 𝑆 do
6: for 𝑥 ∈ 𝐵 do
7: grad← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝐿, 𝑥, 𝑛𝑒𝑡.𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
8: 𝑛𝑒𝑡.𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑛𝑒𝑡.𝑤𝑒𝑖𝑔ℎ𝑡𝑠 − 𝜂· grad
9: end for

10: end for
11: end for

2. Adaptive Moment Estimation (ADAM): Introduced in 2014 [26], it is
similar in concept to Stochastic Gradient Descent, but utilizes two moment
terms to speed up and slow down the distance moved each iteration in
accordance to how steep the gradient is. Each learnable parameter has
its own moment terms, so each parameter gets updated differently. The
algorithm for ADAM is shown in Algorithm 2 [60].

Between the two, ADAM was chosen because of its ability to converge faster,
allowing us to adapt the pre-trained architectures to the new problem with fewer
iterations. Despite this, as will be detailed in Section 9, some architectures still
did not manage to converge within the given epochs.

The problem of RNA prediction applied to the tensor representation imposes
hard constraints on the output of the computation. Since the networks used for
the ImageNet competition are trained to process images of the same height and
width, specifically 224 × 224 pixels, the output will also be constrained to be

20

CHAPTER 6. LOSS FUNCTION FOR SYMMETRY

Algorithm 2 ADAM
Input: S: the training set, net: the neural network, NumEpoch: number of
training epochs, L: loss function 𝜂: learning rate, 𝜌1, 𝜌2: parameters, 𝜖: small
positive number to avoid division by 0.

1: 𝑚0← 0
2: 𝑢0← 0
3: 𝑖 ← 0
4: while 𝑖 < 𝑁𝑢𝑚𝐸𝑝𝑜𝑐ℎ do
5: 𝑖 ← 𝑖 + 1
6: 𝑔𝑟𝑎𝑑𝑖 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝐿, 𝑆, 𝑛𝑒𝑡.𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
7: 𝑚𝑖 ← 𝜌1𝑚𝑖−1+(1−𝜌1)𝑔𝑟𝑎𝑑𝑖

1−𝜌1

8: 𝑢𝑖 ← 𝜌2𝑢𝑖−1+(1−𝜌2)𝑔𝑟𝑎𝑑2
𝑖

1−𝜌2

9: 𝑛𝑒𝑡.𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑛𝑒𝑡.𝑤𝑒𝑖𝑔ℎ𝑡𝑠 − 𝜂 · 𝑚𝑖√
𝑢𝑖+𝜖

10: end while

some sort of 𝑁-dimensional tensor. Since the representation for the problem’s
solution is a symmetrical target matrix, and there is no layer in the architectures
used to ensure a symmetrical output with respect to its diagonal, the only way
to encourage the network to learn to enforce this constraint is to implement a
custom loss function to penalize asymmetrical output. As such, all the architec-
tures in this project were trained with a custom loss function composed of two
terms:

• Mean Squared Error (MSE) between the neural network’s output �̂� and
the target matrix 𝑇 for the folding with length 𝑛.

1
𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1
(�̂�[𝑖 , 𝑗] − 𝑇[𝑖 , 𝑗])2

• Symmetry Error computed on the output �̂�. Once again the mean square
error between each component �̂�[𝑖 , 𝑗] and �̂�[𝑗 , 𝑖]. In order to optimize
the computation, the rows to the right of the matrix diagonal of �̂� and
the columns below it are taken as arrays on which the MSE is computed,
rather than iterating on each entry.

𝑛−1∑
𝑖=1

MSE(𝑅𝑖𝑔ℎ𝑡𝑅𝑜𝑤(�̂�, 𝑖), 𝐿𝑜𝑤𝑒𝑟𝐶𝑜𝑙𝑢𝑚𝑛(�̂�, 𝑖))
The two terms are summed together to compute the final loss function, which

encourages symmetrical output alongside closeness to the target matrix 𝑇, so
that positive predictions will be close to a value of 1 and negative ones will be
close to 0 in the final score matrix output.

21

7
Architecture and pre-trained

backbones

In order to adapt previously trained CNNs for this problem, some degree
of modification is necessary to the original architectures. For this, the general
outline used for adapting pre-trained networks was to encode every RNA se-
quence in a 500 × 500, since the largest sequence in the dataset is 499 nts long.
All sequences are zero-padded into 500 × 500 tensors as described in Section
3. The first adapatation that needs to be made is downsampling these inputs
to coincide with the input size the original networks used. Since all of the pre-
trained architectures that were developed for the ImageNet [11] competition at
various points in time, they are all meant for processing of 224 × 224 size RGB
inputs. All of the architectures were also tailored to perform classification on
1000 different categories, so the output layers are also removed and cut off at
the point where the most deep features are preserved, usually of shape 7× 7×𝐶
where 𝐶 is variable depending on the architecture. A general outline of the
network is found in Figure 7.1, note that to help preserve as much information
as possible through the convolutions, the input is copied 3 times over the 3 RGB
channels.

The output layer rebuilds the target matrix with three progressive transposed
convolutional layers that gradually increase the size of the image and reduce the
number of channels, to balance the expansion of information. Each layer uses
a Leaky ReLU activation function since it has been shown to work better when
post-processing features when using transfer learning in [28].

23

Image Input: 500 × 500 × 3

Convolution 1: 𝑘 = 13, 𝐶 = 3, 𝑠 = 1, 𝑝 = 0

Max Pooling: 𝑘 = 2

Convolution 2: 𝑘 = 11, 𝐶 = 3, 𝑠 = 1, 𝑝 = 0

Convolution 3: 𝑘 = 11, 𝐶 = 3, 𝑠 = 1, 𝑝 = 0

Pre-trained backbone

Transposed Conv 1: 𝑘 = 11, 𝐶 = 256, 𝑠 = 5, 𝑝 = 0

Leaky ReLU layer

Transposed Conv 2: 𝑘 = 9, 𝐶 = 128, 𝑠 = 6, 𝑝 = 0

Leaky ReLU layer

Transposed Conv 3: 𝑘 = 4, 𝐶 = 1, 𝑠 = 2, 𝑝 = 0

Leaky ReLU layer

Output: 500 × 500 × 1

500 × 500 × 3

488 × 488 × 3

244 × 244 × 3

234 × 234 × 3

224 × 224 × 3

7 × 7 × 𝐶

41 × 41 × 256

41 × 41 × 256

249 × 249 × 128

249 × 249 × 128

500 × 500 × 1

500 × 500 × 1

Figure 7.1: General outline of the structure of the networks used.

24

CHAPTER 7. ARCHITECTURE AND PRE-TRAINED BACKBONES

7.1 VGG16

VGG16 is the simplest architecture used and functions as the baseline with
regard to how a CNN can be implemented. First proposed in 2014 [49], it is
a straight-forward succession of 16 learnable layers, with its main innovation
being the use of small 3 × 3 convolution kernels to reduce image dimensions
very little and achieve far larger depth than something like AlexNet [27], which
used larger kernels and as such could not be as deep.
This type of kernel is also the smallest possible that can maintain a notion of
spatial relativity like up, down, left or right.
Being a deeper neural network provides an advantage in how it allows for more
nonlinear activation functions and a more expressive network as a result [28].
Thanks to these intuitions, VGG16 was able to achieve more depth than its
competitors, at the cost of a notably higher number of learnable parameters and
as such long training and inference time.
A comparison between its architecture and that of AlexNet can be found in
Figure 7.2, where we can see the 16 learnable layers of VGG16 (13 convolutional
and 3 fully connected, the FC layers were removed from the backbone used in
this project to keep the hidden features two-dimensional) contrasted with the 7
learnable layers of AlexNet (5 convolutional and 2 fully connected).
We can see that for this network, the 𝐶 in output of the backbone is 512.

(a) VGG16 network architecture
(b) AlexNet network architecture

Figure 7.2: Comparison of the two architectures, images taken from [4]

25

7.2. GOOGLENET

7.2 GoogLeNet

GoogLeNet is a contemporary network to VGG16 [50], and its main idea
is that of the inception block, a different stratagem to increase the depth of a
convolutional network.
The inception block is composed of four parallel operations, which are:

1. a 1 × 1 convolution with ReLU activation.
2. a sequence of a 1 × 1 convolution with ReLU activation to reduce the

number of channels and a 3 × 3 convolution with ReLU activation, with
padding and stride that keep the same dimensions as the input.

3. a sequence of a 1 × 1 convolution with ReLU activation to reduce the
number of channels and a 5 × 5 convolution with ReLU activation, with
padding and stride that keep the same dimensions as the input.

4. a sequence of a 3 × 3 Max pooling layer and a 1 × 1 convolution layer with
ReLU activation, with padding and stride that keep the same dimensions
as the input.

The results of these four branches are the same size as the input matrix, and
are then concatenated depth-wise into a larger output, as in Figure 7.3. To avoid
the explosion of the hidden feature space, projections to reduce dimensionality
are used to keep the hidden feature matrix under a certain size.
The effect of these inception blocks, placed after a series of regular convolution

Figure 7.3: GoogLeNet’s inception block visualized from [50]

layers to reduce the size of the input, is that they analyze receptive fields of
different sizes in parallel, and as such have a more complete understanding of
the whole picture at different levels of locality.

26

CHAPTER 7. ARCHITECTURE AND PRE-TRAINED BACKBONES

type patch size/stride output size depth #1 × 1 #3 × 3 reduce #3 × 3 #5 × 5 reduce #5 × 5 pool proj params ops
convolution 7 × 7/2 112 × 112 × 64 1 2.7K 34M
max pool 3 × 3/2 56 × 56 × 64 0

convolution 3 × 3/1 56 × 56 × 192 2 64 192 112K 360M
max pool 3 × 3/2 28 × 28 × 192 0

inception (3a) 28 × 28 × 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 × 28 × 480 2 128 128 192 32 96 64 380K 304M

max pool 3 × 3/2 14 × 14 × 480 0
inception (4a) 14 × 14 × 512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14 × 14 × 512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14 × 14 × 512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14 × 14 × 528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14 × 14 × 832 2 256 160 320 32 128 128 840K 170M

max pool 3 × 3/2 7 × 7 × 832 0
inception (5a) 7 × 7 × 832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7 × 7 × 1024 2 384 192 384 48 128 128 1388K 71M

avg pool 7 × 7/1 1 × 1 × 1024 0
dropout (40%) 1 × 1 × 1024 0

linear 1 × 1 × 1000 1 1000K 1M
softmax 1 × 1 × 1000 0

Table 7.1: A table representing the breakdown of GoogLeNet’s layers from [50]

A full breakdown of GoogLeNet is found in Table 9.1.
For the project presented here, the network was cut off at the output of the final
inception block, preserving a deep feature matrix of shape 7 × 7 × 1024.

7.3 ResNet

ResNet architectures provided another big innovation on CNNs for Ima-
geNet challenge [17], proposing its main idea of a residual block (shown in
Figure 7.4), in which the input of a convolutional block is summed to its output
with a skip connection, resulting in a capacity of expressing a much larger func-
tion class than a regular CNN.
Since each residual block essentially computes ℱ (𝑥) + 𝑥, if the output of ℱ (𝑥) is
zero, the function still returns information, making it so that, in terms of func-
tion classes, ℱ𝑛𝑜𝑛−𝑟𝑒𝑠 ⊆ ℱ𝑟𝑒𝑠 .
If we see the whole output after the sum as 𝑓 (𝑥), then the residual block is
essentially computing 𝑓 (𝑥) − 𝑥, hence the name.

Residual blocks also allow the network to reach further depth, since it helps
address the performance degradation of optimizing more and more parameters,
and the vanishing gradient problem [3]. By connecting later layers to earlier
activations, the magnitude of this effect is reduced, since larger values from
previous layers are preserved.

27

7.3. RESNET

Figure 7.4: A schematic of the residual block from [17]

The second big innovation ResNets brought to the table is the use of Batch
Normalization [25] which, instead of applying normalization by computing the
whole training set 𝑆 mean value �̂� and variance �̂�2 and applying the transfor-
mation 𝑥−�̂�

�̂� for each 𝑥 ∈ 𝑆, takes a minibatch split of the dataset 𝐵 ⊂ 𝑆, and
computes the mean �̂�𝐵 and variance �̂�2

𝐵 on each 𝑥 in the batch as such:

• batch mean:
�̂�𝐵 =

1
|𝐵|

∑
𝑥∈𝐵

𝑥

• batch variance:
�̂�2
𝐵 =

1
|𝐵|

∑
𝑥∈𝐵
(𝑥 − �̂�𝐵)2 + 𝜖

where 𝜖 is a small positive number to avoid division by zero.

• batch normalization:

𝐵𝑁(𝑥) = 𝛾 ⊙ 𝑥 − �̂�𝐵
�̂�𝐵

+ 𝛽

where 𝛾 and 𝛽 are learnable parameters that get updated during backprop-
agation. In CNNs, each channel has its own 𝛾 and 𝛽 learnable parameters.

This operation serves to reduce the internal covariate shift of huge hidden
feature vectors, which helps keep the distribution of inputs more consistent at
deeper layers. It also allows for higher learning rates, and thus faster conver-
gence, and reduced overfitting, as well as providing a small contribution to
regularization.
For this project, the ResNet18 network is cut off just before the average pooling
layer, outputting features of shape 7 × 7 × 512.
Two more ResNets are used as well, with 50 and 101 weighted layers respectively,
implemented with the same criteria.

28

CHAPTER 7. ARCHITECTURE AND PRE-TRAINED BACKBONES

Figure 7.5: Architecture of ResNet18, composed of 18 weighted layers as the
name suggests [29].

29

7.4. XCEPTION

7.4 Xception

Xception is an iteration on the idea of the inception block started by GoogLeNet
[7], with its main idea being that of a block that forms a middle ground between
an inception block and a depth-wise separable convolution.
A depthwise separable convolution is a different implementation of the con-
volution operation described in Section 4, which splits the operation in two
parts:

• Depthwise convolution: during this step, 𝐶𝑖𝑛 kernels of shape 𝑘× 𝑘×1 are
used on each channel of the input image, and a convolution is performed
separately for each channel. The output has the same number of channels
as the input, illustrated in Figure 7.6.

Figure 7.6: A depthwise convolution operation [55]

• Pointwise convolution: after the depthwise convolution, 𝐶𝑜𝑢𝑡 kernels of
shape 1×1×𝐶𝑖𝑛 are applied to the intermediate result, and the final result
is computed as in Figure 7.7.

Figure 7.7: A pointwise convolution operation with 256 kernels [55]

30

CHAPTER 7. ARCHITECTURE AND PRE-TRAINED BACKBONES

(a) The regular inception block from [50].
(b) An inception block modified by remov-
ing pooling and homogenizing the other
branches.

(c) An equivalent formulation of (b) (d) An "extreme" version of (c), a very large
depthwise separable convolution.

Figure 7.8: Steps that can be taken to transform an inception block into a depth-
wise separable convolution [7]

These types of convolutions offer very similar performance and potential as
regular convolution, with a much lower computational cost, for example taking
an image of height, width and depth ℎ𝑖 , 𝑤𝑖 and 𝑑𝑖 respectively and convolving
it with 𝑑 𝑗 kernels of shape 𝑘 × 𝑘 × 𝑑𝑖 would see regular convolution achieve
a cost of ℎ𝑖 · 𝑤𝑖 · 𝑑𝑖 · 𝑑 𝑗 · 𝑘2, while a depthwise separable convolution would
only cost ℎ𝑖 · 𝑤𝑖 · 𝑑𝑖 · (𝑑 𝑗 + 𝑘2) [46]. The authors of [7] note that an inception
block from GoogLeNet with the pooling branch removed and every other branch
changed to the same kernel size is not far removed from the depthwise separable
convolution operation, shown in Figure 7.8.

Xception adds some key modifications to the depthwise separable convolu-
tion operation to find a middle ground behind these two different but similar
operations, which are:

1. The order of the depthwise and pointwise convolutions is swapped.

2. both the depthwise and pointwise convolution are followed by a ReLU
layer.

31

7.5. MOBILENET V2

Figure 7.9: Full architecture of the Xception network [7]

The authors argue that the first point is unimportant, but the second is of
relevance. The architecture of Xception is shown in Figure 7.9. Each depthwise
separable convolution is implemented with the aforementioned modifications.
In this project, the architecture is cut off before the fully connected layers, out-
putting 7 × 7 × 2048 deep features.

7.5 MobileNet v2

MobileNet v2 [46] is the second iteration on the idea of depthwise separable
convolutions, used by MobileNet v1, with the main intuition being the idea of
linear bottleneck layers. A linear bottleneck layer functions as an inverse of
a residual layer from ResNet [17], operating off the basic assumption that all
CNNs make that highly information dense inputs can be encoded into some
low-dimensional subspace. As seen in Figure 7.10, while a residual block’s in-
ner layers reduce the number of channels in the inner steps, linear bottlenecks
expand the channels and then contract them again at the output.

32

CHAPTER 7. ARCHITECTURE AND PRE-TRAINED BACKBONES

(a) The regular residual block. (b) The linear bottleneck layer.

Figure 7.10: Showcase of the differences between residual blocks and linear
bottleneck blocks [46].

The residual block compresses the input with a 1×1 convolution first that re-
duces the number of channels, which means reducing the number of parameters
the following 3× 3 kernel needs to learn, after which the channels are expanded
again with another 1 × 1 convolution.
Furthermore the authors argue that while ReLU allows for greater expression
thanks to its non-linear properties, it still results in an overall loss of information
from the previous layers.
Conversely, the linear bottleneck block multiplies the number of channels by
an expansion factor 𝑡, so the input is greatly expanded before the non-linearity
forces some information loss. After increasing the channels with a 1 × 1 convo-
lution, a 3×3 convolution is applied, and the output is then reduced to the same
number of channels as the input with another 1 × 1 convolution.
A residual connection is used to once again facilitate the backpropagation of the
gradient and ensure greater depth.
Another important thing to note is that after every convolution, batch normal-
ization is applied and the activation function used is ReLU6, a variant of ReLU
that only allows values in the [0, 6] interval to pass through, since it’s been ob-
served to be more robust in low-precision computation [21], which uses less bits
to encode weights to save on space.

33

7.6. EFFICIENTNET

Figure 7.11: The architecture of the MobileNet v2 network [56]

For the purposes of transfer learning, the architecture, shown in Figure
7.11, is cut off before the average pooling layer, resulting in features of shape
7 × 7 × 1280.

7.6 EfficientNet

The latest of the networks used, EfficientNet is a vast optimization of previ-
ous architectures [53], here used in its B0 architecture.
The key intuition behind EfficientNet is reducing the number of learnable pa-
rameters of CNNs in a way that still keeps most of the proficiency intact.
The focus of it is the idea of scaling a CNN optimally in order to find the best
balance between depth, width and resolution using a compound scaling method.

In general, different ways of scaling are illustrated in Figure 7.12, and can be
divided in three types:

• Depth scaling: increasing the number of layers in the network. Intuitively
this helps networks capture more complex features, but has the drawback
of increasing the risk of vanishing gradient [3] and reaches a point of
diminishing returns even when the problem is addressed.

• Width scaling: increasing the number of channels of the hidden convo-
lutional layers. It’s helpful for smaller sized models and can make them
easier to train, but it can make it difficult to capture higher level features
and saturate quickly in accuracy.

34

CHAPTER 7. ARCHITECTURE AND PRE-TRAINED BACKBONES

• Resolution scaling: increasing the size of the input images can offer an
advantage in recognizing features. This type of scaling is very expensive
and it also reaches a point of diminishing returns for very high resolutions.

Figure 7.12: Different ways of scaling a CNN [53]

The key intuition behind compound scaling is to use this policy to scale up
a smaller CNN:

• depth: 𝑑 = 𝛼𝜙

• width: 𝑤 = 𝛽𝜙

• resolution: 𝑟 = 𝛾𝜙

such that 𝛼 + 𝛽2 + 𝛾2 ≈ 2, with 𝛼 ≥ 1, 𝛽 ≥ 1 and 𝛾 ≥ 1.
𝜙 is a hyperparameter that controls how large the scaling will be and the re-
sources to be employed. This ensures that the Floating-point Operations Per
Second (FLOPS) will only increase by a factor of 2𝜙.

EfficientNet-B0 is a CNN architecture that has been optimally scaled up with
this rule in mind, with Mnas-Net as a baseline architecture [54], which is tar-
geted to run on mobile phone devices and as such very lightweight.
Its efficiency is several times that of a ResNet50 model, reducing the computa-
tional load in FLOPS by a factor of 16, while achieving better accuracy on the
ImageNet dataset [53].

35

7.6. EFFICIENTNET

Figure 7.13: The architecture of EfficientNet-B0 [53]

The architecture of EfficientNet-B0 can be seen in Figure 7.13, where the
MBConv layers are inverted bottlenecks like in the MobileNet v2 architecture
above. The features are extracted right before the final fully connected (FC)
layer, and have shape 7 × 7 × 1280.

36

8
Dataset & Methods Overview

The dataset used to benchmark the performance of this project is obtained
from the bpRNA [41], split into the TR0 and TS0 datasets for training and test-
ing respectively, composed of 12119 RNA sequences of length ranging from 22
to 499 nucleotides long. The dataset is split in approximately 90% (10814) se-
quences for training in TR0 and 10% (1305) sequences for testing in TS0, using
the same split as the reference papers [1] and [6] to ensure that the results are
comparable.
The dataset was obtained by combining over 100.000 known RNA structures
from various databases, using an automatic annotation algorithm, and reduc-
ing it to a subset of high quality non-redundant sequences, by cutting off the
sequences with over 80% sequence identity [2]. The result is a dataset of highly
differentiated RNA secondary structures like the ones illustrated in Figure 8.1.
On top of that, the dataset’s size is also reduced due to computational limitation,
retaining only sequences shorter than 500 nt.
The dataset contains all types of RNA secondary structures including pseudo-
knots, making it a particularly challenging benchmark.
The source files for this dataset were obtained from the github page of the "RNA
secondary structure prediction with convolutional neural networks" project [1]
at this link:
https://github.com/mehdi1902/RNA-secondary-structure-prediction-us

ing-CNN/tree/master/datasets.

37

https://github.com/mehdi1902/RNA-secondary-structure-prediction-using-CNN/tree/master/datasets
https://github.com/mehdi1902/RNA-secondary-structure-prediction-using-CNN/tree/master/datasets

Figure 8.1: Distinctive types of RNA structures present in bpRNA:
(A): schematic of all structure types, (B): hairpin structure, (C): internal loops, (D):
bulges, (E): multiloops [41].

38

CHAPTER 8. DATASET & METHODS OVERVIEW

Figure 8.2: Analysis of the ResNet18 neural network within Matlab.

The project was implemented in MathWorks’ Matlab environment [35], which
offers powerful tools for deep learning and transfer learning, and allows for
custom training loops and implementation of layers and loss functions from
scratch.
Matlab also offers intuitive tools to visualize neural network architecture like in
Figure 8.2, making editing and debugging more convenient.

8.1 Implementation details

In order to have a baseline for comparison, the smallest version of CNNFold
[1] was implemented in Matlab from scratch and trained on the TR0 training
set, while testing protocols used the TS0 test set to compute key performance
indicators such as precision, recall and 𝐹1 score.
The output of the neural network �̂� is still not guaranteed to be symmetrical or
boolean, so some amount of post-processing is still needed to ensure it can be
compared to the target matrix 𝑇.
To do so, the first step is to enforce binary output by applying this algorithm:

39

8.1. IMPLEMENTATION DETAILS

1 function out = Binarize(Y)

2 L = length(Y);

3 % Y is a dlarray, this line turns it back into an array

4 Y = extractdata(Y);

5 out = zeros(L,L,"logical");

6 [~,maxColIndex] = max(Y);

7 for i=1:length(maxColIndex)

8 out(maxColIndex(i),i)=1;

9 end

10 end

And so �̂�𝐵 is obtained by picking the highest score in each column of �̂�, setting
it to 1, and then setting the rest of the column to 0. This is called ArgMax post-
processing and it has been proven to perform fastest for this type of problem
without significant downsides [1].
Afterwards, the matrix �̂�𝐵 is made symmetrical using this formula:

�̂� =
⌈
0.5 · (�̂�𝐵 + �̂�𝑇𝐵)

⌉
The way these metrics are computed on the target matrix 𝑇 and the output
matrix �̂� is as such:

• True Positives (TP): count of the (𝑖 , 𝑗) positions where 𝑇 = 1 & �̂� = 1.

• False Positives (FP): count of the (𝑖 , 𝑗) positions where 𝑇 = 0 & �̂� = 1.

• False Negatives (FN): count of the (𝑖, 𝑗) positions where 𝑇 = 1 & �̂� = 0.

The test set TS0 is divided in 3 subdivisions according to sequence length,
where each subdivision is determined with a step given by the formula 𝑠 =

⌊ 499−22
3 ⌋, where 22 is the minimum sequence length, 499 the maximum sequence

length and 3 the number of subdivisions.
This way we can analyze the results for sequences shorter than 22 + 𝑠, 22 + 2𝑠
and the rest, plus the entire dataset to see the impact sequence length has on
performance.
The subdivisions were as such:

1. First subdivision: sequences shorter than 181 nt, 1060 in total, the large
majority of the test set.

2. Second subdivision: sequences between 182 and 340 nt long, 166 in total.

40

CHAPTER 8. DATASET & METHODS OVERVIEW

3. Third subdivision: sequences longer than 340 nt, 79 in total.

4. Fourth subdivision: the entire test set of 1305 sequences.

Then all the TP, FP and FN are separately summed for each corresponding
pair (𝑇, �̂�) ∈ (TS0 , Predictions(TS0)), and also for the three smaller subdivisions.
Once the total statistics of TP, FP and FN are computed, the precision, recall and
𝐹1 score metrics are computed with these formulas:

• Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , intuitively, the rate of correct positive predictions

among all positive predictions.

• Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , intuitively, the rate of correct positive predictions among

all true positives.

• F1 score = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , intuitively the harmonic mean of precision and
recall.

All the CNNs used for this project were trained with the same parameters,
which were:

• Epochs: 30 epochs of training on the training set TR0.

• Mini-batch size: each mini-batch contained 5 sequences from the training
set.

• Optimizer: ADAM optimizer for faster convergence on the comparatively
small RNA training set.

• Shuffle: The training set was randomly shuffled before processing.

• Learning rate: constant learning rate of value 0.001.

• Loss Function: MSE with symmetry penalty from Section 6.

The training was performed on the University of Padova’s Blade cluster
[13], utilizing an RTX3090 graphics card for the computation. The results are
compiled in Section 9.

41

9
Results and Discussion

All the different architectures were tested against the baseline of the smallest
CNNFold model [1] implemented in Matlab and trained with the same param-
eters as the ones detailed in Section 8, minus the custom loss function, which
was instead standard MSE.
The final results for all subdivisions and metrics can be seen in Table 9.1

Architecture L<=181 181<L<=340 L>340 whole test set
Precision Recall 𝐹1 score Precision Recall 𝐹1 score Precision Recall 𝐹1 score Precision Recall 𝐹1 score

Baseline (CNNFold) [1] 0.549 0.549 0.549 0.532 0.532 0.532 0.488 0.488 0.488 0.535 0.535 0.535
GoogLeNet backbone 0.529 0.541 0.535 0.236 0.332 0.276 0.113 0.186 0.140 0.356 0.433 0.390
ResNet18 backbone 0.553 0.553 0.553 0.540 0.541 0.540 0.491 0.494 0.492 0.539 0.540 0.539
ResNet50 backbone 0.553 0.553 0.553 0.542 0.542 0.542 0.495 0.496 0.495 0.540 0.540 0.540
ResNet101 backbone 0.552 0.552 0.552 0.542 0.542 0.542 0.485 0.490 0.487 0.538 0.539 0.538
Xception backbone 0.474 0.509 0.491 0.196 0.289 0.234 0.180 0.259 0.212 0.340 0.417 0.375

MobilenNet v2 backbone 0.553 0.553 0.553 0.418 0.473 0.444 0.321 0.391 0.353 0.475 0.507 0.490
EfficientNet-B0 backbone 0.553 0.553 0.553 0.542 0.542 0.542 0.496 0.497 0.497 0.540 0.540 0.540

Table 9.1: The results of the tests performed on the Blade cluster [13].

The first immediate observation is that "old school" CNNs struggle severely
with the problem: VGG16 does not converge to any meaningful degree and does
not surpass 10% 𝐹1 score in any category.
GoogLeNet shows vast improvements over VGG16 in terms of KPIs on sequences
of length less than 181 bp, but still quickly falls off on longer sequences. This
could be due to the proportional lack of longer sequences in the training set,
making this network unable to adapt to them.
The first real improvement comes from the ResNet18 architecture, managing to
outclass all the baseline metrics by a few points.

43

Interestingly, the ResNet50 architecture manages to perform slightly better, but
this advantage falls off when extended even further with ResNet101, which ends
up with worse performance than the ResNet18 model. Residual architectures
seem nonetheless to be best suited to this problem, seeing as how EfficientNet-B0
also obtains the best performance in every KPI, outclassing the baseline, even if
by a little amount, and could potentially perform even better when scaled up to
a larger architecture like B3 to B7.
Xception shows that inception architectures aren’t as well suited to the problem
either, performing even worse than GoogLeNet on all fronts, perhaps due to the
lack of data on larger sequences.
The impact of transfer learning in this instance seems to be minimal, although
the state of the art is still fairly inaccurate on this problem, with the best results
obtained being those shown by SPOT-RNA [2], achieving an 𝐹1 score of 0.597,
while the best version of CNNFold [1] managed an 𝐹1 score of 0.582.
SPOT-RNA uses a combination of transfer learning and ensemble learning using
ResNet models and also Long Short-Term Memory (LSTM) models to build a
more diverse pipeline, so the intuition was to try to do the same with the various
architectures presented here.

44

CHAPTER 9. RESULTS AND DISCUSSION

9.1 Ensemble tests

Ensemble learning refers to the idea of combining the predictions of different
machine learning models in order to obtain a more "democratic" prediction by
having different and diverse algorithms pool their results together to come to a
conclusion [42].
To combine the knowledge of multiple models, the way it was implemented in
this project, it was sufficient to obtain the final score output matrices �̂� from
each model and sum them together to generate an aggregate result, a process
which is called sum rule, illustrated in Figure 9.1.
Once all model results were aggregated, the standard post-processing pipeline
described in Section 8 was used.

Figure 9.1: An example of a meta-ensemble (an ensemble of ensembles) using
the sum rule [38]

45

9.1. ENSEMBLE TESTS

Architecture L<=181 181<L<=340 L>340 whole test set
Precision Recall 𝐹1 score Precision Recall 𝐹1 score Precision Recall 𝐹1 score Precision Recall 𝐹1 score

MobileNet v2+GoogLeNet 0.553 0.553 0.553 0.428 0.480 0.452 0.307 0.381 0.340 0.474 0.507 0.490
ResNet18+GoogLeNet 0.553 0.553 0.553 0.540 0.540 0.540 0.491 0.494 0.493 0.539 0.540 0.539

EfficientNet-B0+GoogLeNet 0.553 0.553 0.553 0.542 0.542 0.542 0.496 0.497 0.497 0.540 0.541 0.540
ResNet18+EfficientNet-B0 0.553 0.553 0.553 0.542 0.542 0.542 0.497 0.497 0.497 0.541 0.541 0.541
ResNet50+EfficientNet-B0 0.553 0.553 0.553 0.542 0.542 0.542 0.497 0.497 0.497 0.541 0.541 0.541

EfficientNet-B0+MobileNet v2 0.553 0.553 0.553 0.460 0.499 0.479 0.489 0.492 0.491 0.520 0.530 0.525
ResNet18+EfficientNet-B0+GoogLeNet 0.553 0.553 0.553 0.542 0.542 0.542 0.497 0.497 0.497 0.541 0.541 0.541

ResNet18+EfficientNet-B0+MobileNet v2 0.553 0.553 0.553 0.479 0.509 0.493 0.493 0.494 0.493 0.525 0.533 0.529
ResNet18+EfficientNet-B0+MobileNet v2+GoogLeNet 0.553 0.553 0.553 0.483 0.511 0.496 0.493 0.494 0.493 0.526 0.533 0.530

CNNFold+ResNet18 0.563 0.569 0.566 0.544 0.546 0.545 0.497 0.499 0.498 0.548 0.552 0.550
CNNFold+ResNet50 0.561 0.565 0.563 0.543 0.544 0.544 0.497 0.499 0.498 0.546 0.549 0.547
CNNFold+ResNet101 0.560 0.564 0.562 0.543 0.544 0.544 0.496 0.499 0.498 0.545 0.548 0.547

CNNFold+MobileNet v2 0.563 0.568 0.565 0.455 0.499 0.476 0.480 0.495 0.487 0.523 0.540 0.531
CNNFold+EfficientNet-B0 0.562 0.566 0.564 0.544 0.545 0.544 0.498 0.500 0.499 0.547 0.550 0.548

Table 9.2: The results of the ensemble tests performed on the Blade cluster [13].

From Table 9.2 we can see that ensembles of the architectures that use trans-
fer learning don’t improve performance in any significant way, oftentimes being
detrimental to the better performing individual element. From this we can
gather that these CNN models are not statistically diverse enough between each
other to provide useful contributions to the ensemble, and need to be integrated
with other network architectures.
Particularly, all metrics seem to plateau around those of the best performing
architecture, to the point that every ensemble of pretrained backbones achieves
identical performance on the first subdivision of sequences shorter than 181 nt,
always mirroring the results of the best individual part.
However, fusions with the CNNFold method trained from scratch without the
use of transfer learning perform a fair bit better, outclassing the results of the
individual parts and performing the best out everything presented, surpassing
the best single-architecture network by a full percentage with an 𝐹1 score of 55%
on the whole dataset.
This suggests that there is a difference between transfer learning and learning
from scratch that leads to the networks focusing on different aspects of the data
representation, which then serves to strengthen the overall fusion.

46

10
Conclusions and Future Works

This thesis examined the efficacy and potential of transfer learning applied
to various types of convolutional neural networks for the purposes of RNA sec-
ondary structure prediction. The results show some promise in the pursuit of
transfer learning with compact architectures like EfficientNet, and some further
research could be made studying an optimal way to scale the network for this
specific problem. Another improvement was obtained by combining networks
that make use of transfer learning with networks that were trained from scratch
for just this problem, which seems to lead to good results when fusing their
knowledge together through an ensemble.
Residual networks seem to be best suited to the task among CNNs, with the
other architectures falling behind by a wide margin, so another potential direc-
tion to take the research could be adding more diverse architectures, not just
convolutional, to assist in the building of an ensemble.
This could be achieved through different representations for the input data, dif-
ferent backbones for transfer learning or from-scratch training, or other adap-
tations like new loss functions to incentivize learning of the constraints on the
output.
As demonstrated by the state of the art’s performance still being unable to break
60% 𝐹1 score on the bpRNA benchmark [1], there is still much room for improve-
ment when it comes to fast, ML-based algorithms for RNA secondary structure
prediction comprehensive of pseudoknots, although the length of potential RNA
sequences can still be a large obstacle to overcome, seeing how this project only
focused on small molecules no longer than 500 nt.

47

References

[1] Saman Booy M. Ilin A. and Orponen P. “RNA secondary structure pre-
diction with convolutional neural networks”. In: BMC Bioinformatics 23
(2022), p. 58. doi: 10.1186/s12859-021-04540-7.

[2] Singh J. Hanson J. Paliwal K. et al. “RNA secondary structure prediction
using an ensemble of two-dimensional deep neural networks and transfer
learning”. In: Nature Communications 10 (2019), p. 5407. doi: 10.1038/
s41467-019-13395-9.

[3] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Networks
5.2 (1994), pp. 157–166. doi: 10.1109/72.279181.

[4] Baanin Dakula N. Bezdan T. “Convolutional Neural Network Layers and
Architectures”. In: Sinteza 2019 - International Scientific Conference on In-
formation Technology and Data Related Research. 2019, pp. 445–451. doi: 10.
15308/Sinteza-2019-445-451.

[5] Wang L. Liu Y. Zhong X. Liu H. Lu C. Li C. and Zhang H. “DMfold:
A Novel Method to Predict RNA Secondary Structure With Pseudoknots
Based on Deep Learning and Improved Base Pair Maximization Principle”.
In: Frontiers in genetics 10 (2019), p. 143. doi: 10.3389/fgene.2019.00143.

[6] Xinshi Chen et al. “RNA Secondary Structure Prediction By Learning
Unrolled Algorithms”. In: (2020). doi: 10.48550/arXiv.2002.05810.
arXiv: 2002.05810 [cs.LG].

[7] François Chollet. “Xception: Deep Learning with Depthwise Separable
Convolutions”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.195.

49

https://doi.org/10.1186/s12859-021-04540-7
https://doi.org/10.1038/s41467-019-13395-9
https://doi.org/10.1038/s41467-019-13395-9
https://doi.org/10.1109/72.279181
https://doi.org/10.15308/Sinteza-2019-445-451
https://doi.org/10.15308/Sinteza-2019-445-451
https://doi.org/10.3389/fgene.2019.00143
https://doi.org/10.48550/arXiv.2002.05810
https://arxiv.org/abs/2002.05810
https://doi.org/10.1109/CVPR.2017.195

REFERENCES

[8] G. Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Math. Control Signal Systems 2 (1989), pp. 303–314. doi: https://doi.
org/10.1007/BF02551274.

[9] Richard M. Watson David H. Mathews Douglas H. Turner. “RNA Sec-
ondary Structure Prediction”. In: Current protocols in nucleic acid chem-
istry 67 (2016), pp. 11.2.1–11.2.19. doi: 10.1002/cpnc.19. url: https:
//doi.org/10.1002/cpnc.19.

[10] Deep Learning Specialization course. https : / / www . deeplearning . ai /
program/deep-learning-specialization/. Accessed: July 2019.

[11] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[12] Li Deng and Dong Yu. “Deep Learning: Methods and Applications”. In:
Foundations and Trendső in Signal Processing 7.34 (2014), pp. 197–387. issn:
1932-8346. doi: 10.1561/2000000039. url: http://dx.doi.org/10.1561/
2000000039.

[13] Dipartimento di Ingegneria dell’Informazione. https://www.dei.unipd.it/
bladecluster. Accessed: September 2023.

[14] Dive Into Deep Learning. https://d2l.ai/chapter_computer-vision/
transposed-conv.html. Accessed: September 2023.

[15] Dive Into Deep Learning. https://d2l.ai/chapter_computer-vision/
fine-tuning.html. Accessed: September 2023.

[16] Hassan Hassan et al. “ASSESSMENT OF ARTIFICIAL NEURAL NET-
WORK FOR BATHYMETRY ESTIMATION USING HIGH RESOLUTION
SATELLITE IMAGERY IN SHALLOW LAKES: CASE STUDY EL BURUL-
LUS LAKE.” In: International Water Technology Journal 5 (Dec. 2015).

[17] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. doi:
10.48550/arXiv.1512.03385. arXiv: 1512.03385 [cs.CV].

[18] Tetsuro Hirose, Yuichiro Mishima, and Yukihide Tomari. “Elements and
machinery of non-coding RNAs: toward their taxonomy”. In: EMBO re-
ports 15.5 (2014), pp. 489–507. doi: https://doi.org/10.1002/embr.
201338390. eprint: https://www.embopress.org/doi/pdf/10.1002/
embr.201338390. url: https://www.embopress.org/doi/abs/10.1002/
embr.201338390.

50

https://doi.org/https://doi.org/10.1007/BF02551274
https://doi.org/https://doi.org/10.1007/BF02551274
https://doi.org/10.1002/cpnc.19
https://doi.org/10.1002/cpnc.19
https://doi.org/10.1002/cpnc.19
https://www.deeplearning.ai/program/deep-learning-specialization/
https://www.deeplearning.ai/program/deep-learning-specialization/
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1561/2000000039
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1561/2000000039
https://www.dei.unipd.it/bladecluster
https://www.dei.unipd.it/bladecluster
https://d2l.ai/chapter_computer-vision/transposed-conv.html
https://d2l.ai/chapter_computer-vision/transposed-conv.html
https://d2l.ai/chapter_computer-vision/fine-tuning.html
https://d2l.ai/chapter_computer-vision/fine-tuning.html
https://doi.org/10.48550/arXiv.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/https://doi.org/10.1002/embr.201338390
https://doi.org/https://doi.org/10.1002/embr.201338390
https://www.embopress.org/doi/pdf/10.1002/embr.201338390
https://www.embopress.org/doi/pdf/10.1002/embr.201338390
https://www.embopress.org/doi/abs/10.1002/embr.201338390
https://www.embopress.org/doi/abs/10.1002/embr.201338390

REFERENCES

[19] Ivo L. Hofacker, Martin Fekete, and Peter F. Stadler. “Secondary Structure
Prediction for Aligned RNA Sequences”. In: Journal of Molecular Biology
319.5 (2002), pp. 1059–1066. issn: 0022-2836. doi: https://doi.org/10.
1016/S0022-2836(02)00308-X. url: https://www.sciencedirect.com/
science/article/pii/S002228360200308X.

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-
forward networks are universal approximators”. In: Neural Networks 2.5
(1989), pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.1016/
0893 - 6080(89) 90020 - 8. url: https : / / www . sciencedirect . com /
science/article/pii/0893608089900208.

[21] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications”. In: CoRR abs/1704.04861
(2017). arXiv: 1704.04861. url: http://arxiv.org/abs/1704.04861.

[22] Minyoung Huh, Pulkit Agrawal, and Alexei A. Efros. What makes ImageNet
good for transfer learning? 2016. doi: 10.48550/arXiv.1608.08614. arXiv:
1608.08614 [cs.CV].

[23] Miklós I. Meyer I.M. and Nagy B. “Moments of the Boltzmann distribu-
tion for RNA secondary structures”. In: Bulletin of Mathematical Biology 67
(2005), pp. 1031–1047. doi: 10.1016/j.bulm.2004.12.003.

[24] Daniel Jiwoong Im et al. Generating images with recurrent adversarial net-
works. 2016. doi: 10 . 48550 / arXiv . 1602 . 05110. arXiv: 1602 . 05110
[cs.LG].

[25] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. doi: 10.48550/
arXiv.1502.03167. arXiv: 1502.03167 [cs.LG].

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980 [cs.LG].

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Cur-
ran Associates, Inc., 2012. url: https : / / proceedings . neurips . cc /
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

51

https://doi.org/https://doi.org/10.1016/S0022-2836(02)00308-X
https://doi.org/https://doi.org/10.1016/S0022-2836(02)00308-X
https://www.sciencedirect.com/science/article/pii/S002228360200308X
https://www.sciencedirect.com/science/article/pii/S002228360200308X
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.48550/arXiv.1608.08614
https://arxiv.org/abs/1608.08614
https://doi.org/10.1016/j.bulm.2004.12.003
https://doi.org/10.48550/arXiv.1602.05110
https://arxiv.org/abs/1602.05110
https://arxiv.org/abs/1602.05110
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

REFERENCES

[28] Nalinda Kulathunga et al. “Effects of Nonlinearity and Network Archi-
tecture on the Performance of Supervised Neural Networks”. In: Algo-
rithms 14.2 (2021). issn: 1999-4893. doi: 10.3390/a14020051. url: https:
//www.mdpi.com/1999-4893/14/2/51.

[29] Rohit Kundu et al. “Pneumonia detection in chest X-ray images using
an ensemble of deep learning models”. In: PLOS ONE 16 (Sept. 2021),
e0256630. doi: 10.1371/journal.pone.0256630.

[30] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code
Recognition”. In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/
neco.1989.1.4.541.

[31] Angel E. Tahi F. Legendre A. “Bi-objective integer programming for RNA
secondary structure prediction with pseudoknots”. In: BMC Bioinformatics
19 (2018), p. 13. doi: 10.1186/s12859-018-2007-7.

[32] Rune B. Lyngsø and Christian N. S. Pedersen. “Pseudoknots in RNA Sec-
ondary Structures”. In: RECOMB ’00. Tokyo, Japan: Association for Com-
puting Machinery, 2000, pp. 201–209. isbn: 1581131860. doi: 10.1145/
332306.332551. url: https://doi.org/10.1145/332306.332551.

[33] Sato K. Akiyama M. and Sakakibara Y. “RNA secondary structure pre-
diction using deep learning with thermodynamic integration”. In: Nature
Communications 12 (2021), p. 941. doi: 10.1038/s41467-021-21194-4.

[34] Kangkun Mao, Jun Wang, and Yi Xiao. “Length-Dependent Deep Learning
Model for RNA Secondary Structure Prediction”. In: Molecules 27.3 (2022).
issn: 1420-3049. doi: 10.3390/molecules27031030. url: https://www.
mdpi.com/1420-3049/27/3/1030.

[35] MathWorks. https://it.mathworks.com/products/matlab.html. Ac-
cessed: September 2023.

[36] Pitts W. McCulloch W.S. “A logical calculus of the ideas immanent in
nervous activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 115–
133. doi: 10.1007/BF02478259.

[37] Agnieszka Mikoajczyk and Micha Grochowski. “Data augmentation for
improving deep learning in image classification problem”. In: 2018 Inter-
national Interdisciplinary PhD Workshop (IIPhDW). 2018, pp. 117–122. doi:
10.1109/IIPHDW.2018.8388338.

52

https://doi.org/10.3390/a14020051
https://www.mdpi.com/1999-4893/14/2/51
https://www.mdpi.com/1999-4893/14/2/51
https://doi.org/10.1371/journal.pone.0256630
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1186/s12859-018-2007-7
https://doi.org/10.1145/332306.332551
https://doi.org/10.1145/332306.332551
https://doi.org/10.1145/332306.332551
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.3390/molecules27031030
https://www.mdpi.com/1420-3049/27/3/1030
https://www.mdpi.com/1420-3049/27/3/1030
https://it.mathworks.com/products/matlab.html
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/IIPHDW.2018.8388338

REFERENCES

[38] Loris Nanni, Daniela Cuza, and Sheryl Brahnam. “Building Ensemble of
Resnet for Dolphin Whistle Detection”. In: Applied Sciences 13 (July 2023),
p. 8029. doi: 10.3390/app13148029.

[39] Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. “Deep Features for
Training Support Vector Machines”. In: Journal of Imaging 7.9 (2021). issn:
2313-433X. doi: 10.3390/jimaging7090177. url: https://www.mdpi.
com/2313-433X/7/9/177.

[40] Jacobson AB Nussinov R. “Fast algorithm for predicting the secondary
structure of single-stranded RNA”. In: Proceedings of the National Academy
of Sciences of the United States of America 77.11 (1980), pp. 6309–6313. doi:
10.1073/pnas.77.11.6309.

[41] Danaee P et al. “bpRNA: large-scale automated annotation and analysis of
RNA secondary structure.” In: Nucleic acids research 46.11 (2018), pp. 5381–
5394. doi: 10.1093/nar/gky285.

[42] R. Polikar. “Ensemble based systems in decision making”. In: IEEE Circuits
and Systems Magazine 6.3 (2006), pp. 21–45. doi: 10.1109/MCAS.2006.
1688199.

[43] Riyad Bin Rafiq and Mark V. Albert. “Transfer Learning: Leveraging
Trained Models on Novel Tasks”. In: Bridging Human Intelligence and Arti-
ficial Intelligence. Ed. by Mark V. Albert et al. Cham: Springer International
Publishing, 2022, pp. 65–74. isbn: 978-3-030-84729-6. doi: 10.1007/978-
3-030-84729-6_4. url: https://doi.org/10.1007/978-3-030-84729-
6_4.

[44] Rajeev Ranjan et al. “Deep Learning for Understanding Faces: Machines
May Be Just as Good, or Better, than Humans”. In: IEEE Signal Processing
Magazine 35.1 (2018), pp. 66–83. doi: 10.1109/MSP.2017.2764116.

[45] Sebastian Ruder. An overview of gradient descent optimization algorithms.
2017. doi: 10.48550/arXiv.1609.04747. arXiv: 1609.04747 [cs.LG].

[46] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.

53

https://doi.org/10.3390/app13148029
https://doi.org/10.3390/jimaging7090177
https://www.mdpi.com/2313-433X/7/9/177
https://www.mdpi.com/2313-433X/7/9/177
https://doi.org/10.1073/pnas.77.11.6309
https://doi.org/10.1093/nar/gky285
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/10.1007/978-3-030-84729-6_4
https://doi.org/10.1007/978-3-030-84729-6_4
https://doi.org/10.1007/978-3-030-84729-6_4
https://doi.org/10.1007/978-3-030-84729-6_4
https://doi.org/10.1109/MSP.2017.2764116
https://doi.org/10.48550/arXiv.1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1109/CVPR.2018.00474

REFERENCES

[47] Matthew G. Seetin and David H. Mathews. “RNA Structure Prediction: An
Overview of Methods”. In: Bacterial Regulatory RNA: Methods and Protocols.
Ed. by Kenneth C. Keiler. Totowa, NJ: Humana Press, 2012, pp. 99–122.
isbn: 978-1-61779-949-5. doi: 10 . 1007 / 978 - 1 - 61779 - 949 - 5 _ 8. url:
https://doi.org/10.1007/978-1-61779-949-5_8.

[48] Terrence J. Sejnowski. “The Deep Learning Revolution”. In: The Deep Learn-
ing Revolution. 2018, pp. 1–10.

[49] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. doi: 10.48550/arXiv.1409.1556.
arXiv: 1409.1556 [cs.CV].

[50] Christian Szegedy et al. Going Deeper with Convolutions. 2014. doi: 10.
48550/arXiv.1409.4842. arXiv: 1409.4842 [cs.CV].

[51] Sato K. Kato Y. Hamada M. Akutsu T. and Asai K. “IPknot: fast and
accurate prediction of RNA secondary structures with pseudoknots using
integer programming”. In: Bioinformatics (Oxford, England) 27.13 (2011),
pp. i85–i93. doi: 10.1093/bioinformatics/btr215.

[52] Cheng Tan, Zhangyang Gao, and Stan Z. Li. RFold: RNA Secondary Structure
Prediction with Decoupled Optimization. 2023. doi: 10.48550/arXiv.2212.
14041. arXiv: 2212.14041 [q-bio.BM].

[53] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. 2020. doi: 10.48550/arXiv.1905.11946.
arXiv: 1905.11946 [cs.LG].

[54] Mingxing Tan et al. MnasNet: Platform-Aware Neural Architecture Search
for Mobile. 2019. doi: 10.48550/arXiv.1807.11626. arXiv: 1807.11626
[cs.CV].

[55] Towards Data Science. https : / / towardsdatascience . com / a - basic -
introduction-to-separable-convolutions-b99ec3102728. Accessed:
September 2023.

[56] Towards Data Science. https://towardsdatascience.com/mobilenetv2-
inverted- residuals- and- linear- bottlenecks- 8a4362f4ffd5. Ac-
cessed: September 2023.

[57] Zhao K. et al. Wang Q. Ma Y. “A Comprehensive Survey of Loss Functions
in Machine Learning”. In: Ann. Data. Sci. 9 (2022), pp. 187–212. doi: 10.
1007/s40745-020-00253-5.

54

https://doi.org/10.1007/978-1-61779-949-5_8
https://doi.org/10.1007/978-1-61779-949-5_8
https://doi.org/10.48550/arXiv.1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.48550/arXiv.1409.4842
https://arxiv.org/abs/1409.4842
https://doi.org/10.1093/bioinformatics/btr215
https://doi.org/10.48550/arXiv.2212.14041
https://doi.org/10.48550/arXiv.2212.14041
https://arxiv.org/abs/2212.14041
https://doi.org/10.48550/arXiv.1905.11946
https://arxiv.org/abs/1905.11946
https://doi.org/10.48550/arXiv.1807.11626
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1807.11626
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5
https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s40745-020-00253-5

REFERENCES

[58] Hannah K Wayment-Steele et al. “Theoretical basis for stabilizing mes-
senger RNA through secondary structure design”. In: Nucleic Acids Re-
search 49.18 (Sept. 2021), pp. 10604–10617. doi: 10.1093/nar/gkab764.
eprint: https://academic.oup.com/nar/article-pdf/49/18/10604/
40537863/gkab764.pdf. url: https://doi.org/10.1093/nar/gkab764.

[59] Wikipedia, the free encyclopedia. https : / / en . wikipedia . org / wiki /
Gradient_descent. Accessed: September 2023.

[60] Jing Yuan and Ying Tian. “An Intelligent Fault Diagnosis Method Using
GRU Neural Network towards Sequential Data in Dynamic Processes”. In:
Processes 7 (Mar. 2019), p. 152. doi: 10.3390/pr7030152.

[61] Fuzhen Zhuang et al. “A Comprehensive Survey on Transfer Learning”.
In: Proceedings of the IEEE 109.1 (2021), pp. 43–76. doi: 10.1109/JPROC.
2020.3004555.

[62] Michael Zuker and Patrick Stiegler. “Optimal computer folding of large
RNA sequences using thermodynamics and auxiliary information”. In:
Nucleic Acids Research 9.1 (Jan. 1981), pp. 133–148. issn: 0305-1048. doi:
10.1093/nar/9.1.133. eprint: https://academic.oup.com/nar/
article-pdf/9/1/133/6201945/9-1-133.pdf. url: https://doi.org/
10.1093/nar/9.1.133.

55

https://doi.org/10.1093/nar/gkab764
https://academic.oup.com/nar/article-pdf/49/18/10604/40537863/gkab764.pdf
https://academic.oup.com/nar/article-pdf/49/18/10604/40537863/gkab764.pdf
https://doi.org/10.1093/nar/gkab764
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
https://doi.org/10.3390/pr7030152
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1093/nar/9.1.133
https://academic.oup.com/nar/article-pdf/9/1/133/6201945/9-1-133.pdf
https://academic.oup.com/nar/article-pdf/9/1/133/6201945/9-1-133.pdf
https://doi.org/10.1093/nar/9.1.133
https://doi.org/10.1093/nar/9.1.133

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction & state of the art
	Problem Description
	History and state of the art

	RNA tensor representation
	Basics of Neural Networks
	Convolutional Neural Networks
	Transposed Convolution

	Transfer Learning
	Loss function for symmetry
	Architecture and pre-trained backbones
	VGG16
	GoogLeNet
	ResNet
	Xception
	MobileNet v2
	EfficientNet

	Dataset & Methods Overview
	Implementation details

	Results and Discussion
	Ensemble tests

	Conclusions and Future Works
	References

