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Abstract

Risk measurement, an interdisciplinary field that incorporates probabilistic modeling, data
analysis, algorithmic efficiency, and financial markets, is a critical aspect of modern risk man-
agement. Traditional risk measures such as Value at Risk and Expected Shortfall offer a single
deterministic value representing the potential losses in a given distribution. However, these
one-dimensional risk measures may not adequately capture the complexity of real-world risks.

This research investigates the integration ofmagnitude and propensity in risk analysis to im-
prove risk assessment and decision-making processes. The objective is to develop a comprehen-
sive framework that combines these two key dimensions to provide amore detailed perspective
on riskmanagement, i.e., transforming the continues risk distribution to a three point distribu-
tion. Real-world data and experiments are analyzed to contribute to the advancement of risk
measurement and evaluation practices. By offering amore detailed and robust characterization
of risk, the proposed three-dimensional magnitude-propensity approach has the potential to
improve risk management practices across various domains.
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1
Introduction

1.1 Background and motivation

Traditionally risk has been defined as the uncertainty concerning occurrence of a loss, see [33].
However there is no single definition of it and different fields can have their own concept of
risk. At this point risk management is needed to deal with these uncertainties. Risk manage-
ment represents a strategic and systematic approach to identify, assess, and respond to potential
risks (see [8]). In the field of risk management, a comprehensive and effective process includes
several crucial steps that collectively ensure the resilience and stability of an organization, see e.g.
[33]. While some steps, including risk identification andmanagement, rely on domain-specific
knowledge and organizational expertise, the risk measurement is a highly technical task. The
creation of probabilistic models for the unexpected events, the statistical calibration of model
parameters, the selection of relevant risk measures, the configuration of their parameters, and
the estimation of risk measures based on the data are all part of this task.

In this context, risk measures are essential for quantifying and understanding the level of
potential risk exposure. Finding representations that effectively capture the randomness of
business variables makes the choice of risk measurements an interesting conceptual problem.
For these measurements to provide useful insights into the risks involved, theymust meet both
quantitative and qualitative criteria (see e.g. [25]). Given the important role of risk measures,
significant research efforts have been made in this area, motivated by both academic research
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and real-world applications of finance, see e.g. [6]. The financial sector, characterized by strict
regulations, has been particularly careful in establishing appropriate risk measures. Govern-
ments, central banks and banking regulators have consistently worked to develop reliable risk
indicators that reveal banks’ risk exposures to market participants and stakeholders.

Figure 1.1: Simplified Risk Management Strategy

Coherent risk measures has become a key factor in the attempt to improve risk assessment.
They fulfill a set of characteristics to ensure their reliability and relevance in quantifying risk,
see [13]. The criteria for defining the ideal risk measure are shaped by this concept, leading to
a richer conceptual understanding of risk assessment.

While traditional risk measurement techniques, such as Value-at-Risk and Expected Short-
fall, have provided useful information for risk assessment, finding a more comprehensive and
multidimensional risk representation has led to the development of innovative methods (see
[27]). One notable development is the quantization approachwhich requires the estimation of
a continuous random variable by a discrete equivalent. Faugeras and Pagès’s specifically work
on the magnitude-propensity approach which emphasizes the magnitude and probability of
losses, see [15]. They introduce Two Point Distribution that represents the continuous risk
distribution inwhichonepoint represents no losswith theprobability1−p and theother point
represents the riskm with the probability p. This research aims to implement the introduced
method and extending it by implementing constraints. Then to create more comprehensive
risk measure which captures more details from the risk distribution, we will introduce Three
Point Distribution.

2



1.2 LiteratureReviewofRiskMeasurementandRisk
Quantization

Wewill take a closer look on traditional riskmeasurement and quantizationmethods to create a
solidbackground. Every approach considered in this reviewkeeps contributing themodern risk
assessment. However the limitations of each approach will be also mentioned to understand
the need of themore comprehensivemeasurement. Tounderstand the characteristics of a good
risk measure we should start by defining it.

Definition 1.1. Let Ω be a sample space and X : Ω → R be the profit or loss variable, risk,
associated with a given investment, over a single period of time 0 to t. Then consider a probability
space (Ω,P) and letX be the set of all risks. A risk measure is a function (see [7]):

ρ : X → R (1.1)

Desirable characteristics of risk measures includes several key aspects that are important for
their effective application in risk management. Firstly, a risk measure should have intuitiveness
which means it should align with a comprehensible notion of risk, such as unexpected losses.
This intuitive quality helps in transporting the measure’s importance to decision-makers.

Stability is also an essential characteristics of a risk measures. We will see the importance
of stability in the results of our experiments in the Section 3. A robust risk measure should
show resilience tominor changes inmodel parameters and should not yield drastic shifts in the
estimated loss distribution, see [10]. Additionally, when re-running simulations to generate
loss distributions, the risk measure should remain reasonably consistent. It should avoid to
have an unreasonable sensitivity to minor alterations in underlying model assumptions.

Thirdly, computational ease is a practical consideration. A risk measure should be compu-
tationally efficient, ensuring that its calculation doesn’t impose undue complexity (see [10]).
More complex risk measures should only be chosen when demonstrable improvements in ac-
curacy outweigh the added computational burden.

Moreover, comprehensibility is vital for senior management’s understanding. A risk mea-
sure should be transparent and easily understood by senior executives, ideally linked to well-
known risk measures that already influence the bank’s risk management practices (see [10]).
Without this understanding, its impact on daily risk management and business decisions may
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be limited. In this research we’re comparing the new risk measure we created with the most
traditional Value-at-Risk.

Coherence is another important attribute. The risk measure should hold to certain condi-
tions, including monotonicity, positive homogeneity, translation invariance, and subadditiv-
ity. Of particular interest is subadditivity, ensuring that the measure appropriately accounts
for diversification, a crucial aspect of portfolio risk assessment (see [6]).

Definition 1.2. Let the risk measure ρ be defined as the Definition 1.1. Then we have the follow-
ing axioms to define a risk measure as coherent, accordingly to Artzner et al., see [6].

1. Subadditivity: For any pair of loss variables x1, x2 ∈ X,

ρ(x1 + x2) ≤ ρ(x1) + ρ(x2) (1.2)

2. Monotonicity: If, for all x1, x2 ∈ X with x1 > x2, then

ρ(x1) ≥ ρ(x2) (1.3)

3. Homogeneity: For any constant λ > 0 and random loss variable x ∈ X,

ρ(λx1) = λρ(x1) (1.4)

4. Translational invariance: For any constant d ∈ R and random loss variable x ∈ X,

ρ(x+ d) = ρ(x) + d (1.5)

Finally, meaningful risk decomposition is also an essential characteristic. A valuable risk
measure should be decomposable into smaller units, allowing risk to be allocated to exposures.
Furthermore, it should accurately distribute diversification effects among these components,
providing meaningful information for daily risk management practices (see [10]).

1.2.1 Value-at-Risk

Value-at-Risk, a fundamental component of riskmanagement, provides a quantitative estimate
of the possible loss an investment or portfoliomay encounter over a defined time horizon. Due
to its ability to reduce complicated risk scenarios to a single point of reference, VaR is a widely
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used risk measure (see [25]). This makes it important for decision makers seeking to identify
and mitigate risks from adverse consequences.

Mathematically, VaR is defined as the threshold value beyond which the probability of ac-
tual losses exceeding this value is equal to or less than the desired confidence level α (see [21]).
Mathematically, VaR can be represented as follows:

V aR(α) = inf {x ∈ R |P (X ≤ x) ≤ α} (1.6)

where the confidence level α ∈ (0, 1) and P (X ≤ x) represents the cumulative probability
distribution function of the portfolio’s value. The cumulative distribution function gives the
probability that the random variable X is less than or equal to x. [30]

VaR is primarily used for risk assessment in many investment strategies and portfolios due
to its ability to provide a clear estimate of potential loss, see e.g. [21]. By calculating the maxi-
mum loss that could occur under normal market conditions, decisionmakers will gain a better
understanding of the potential negative effects of their investment choices.

However, it is important tonote thatVaRhas its limitations. Onenoticeableweakness is that
it ignores the detailed distribution of losses above the confidence level and instead concentrates
only on the size of the potential loss (see [11]). This limitation becomes more obvious in
conditions where tail risk or extreme market events are of major concern.

To further illustrate the notion of VaR, consider a practical example. Let’s develop a hypo-
thetical dataset capturing the daily returns of a stock over a specified period. The VaR for this
dataset will then be computed and displayed.

The density distribution of daily returns is shown by the blue histogram in the resulting the
Figure 1.2. The VaR values at different confidence levels are shown as red dashed lines. A VaR
of 0.95, for instance, indicates that there is a 5% chance that the portfolio’s loss will be greater
than that value. This example shows howVaR can be applied to a dataset of stock returns how
it offers an understanding of the possible losses of an investment portfolio.

Choosing a confidence level for VaR assessments in practice frequently depends on the in-
vestor’s or organization’s risk tolerance and particular goals. In general 90, 95, and 99 percent
confidence levels are being used. A more conservative risk assessment is implied by a greater
confidence level, such as 99 percent, which concentrates on capturing extreme tail events that
may happen with very low likelihood. Detailed researches has been made into different field’s
use of confidence interval estimate for VaR, see e.g. [38]. In this research, 99 percent confi-
dence level is used for the VaR calculations in an attempt to provide a comprehensive picture
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Figure 1.2: Value‐at‐Risk of the hypothetical dataset

of potential losses while taking into account the worst-case situations.

1.2.2 Expected Shortfall

Expected Shortfall, also known as Conditional Value-at-Risk, has become a popular risk mea-
sure in response to VaR’s limitations. The estimated value of potential losses that are greater
than the VaR level is measured by ES, see [2]. VaR only offers a single-point estimate, whereas
ES calculates the average loss above the VaR threshold.

If X is a random variable expressing the risk distribution of a portfolio, thenmathematically,
ES can be defined as follows:

ES(α) =
1

1− α

∫ 1

α

V aRγ(X), dγ (1.7)

where the confidence level α ∈ (0, 1), V aRγ(X) is the Value at Risk at confidence level γ,
where γ ∈ (α, 1). Hence the integral calculates the average of VaR values over the tail of the
distribution from α to 1, normalized by (1 − α). By considering both the potential amount
and probabilities of losses, ES captures the behavior of the loss distribution’s tail and offers a
more complete measure of risk (see [3]). It gives details on average losses that exceed the VaR
threshold as well as the average impact of extreme events.
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Elicitability is a mathematical property, satisfied by some risk measures, that allows for the
ranking of risk models’ performance. If a risk measure is elicitable, then there exists a scor-
ing function for that risk measure that can be used for comparative tests on models. VaR is
considered as elicitable but not a coherent risk measure, while ES is a coherent law invariant
risk measure but is not elicitable. By law invariant we mean that it assigns the same value to
two risky positions having the same distributionwith respect to the initial probabilitymeasure.
However ES is elicitable of higher order in the sense that the pair (V aR(α), ESα) is jointly
elicitable, see e.g. [17].

Illustration of the concept of Expected Shortfall with a graphical example is shown in the
Figure 1.3. Hypothetical distribution of portfolio losses are generated and then VaR and ES
with a 99 percent level of confidence level is calculated.

Figure 1.3: Expected Shortfall of the hypothetical dataset

The blue histogram in the Figure 1.3 illustrates the distribution of portfolio losses. The
Expected Shortfall at a 99% confidence level is shown by the green dashed line, while the VaR
is shown by the red dashed line. A deeper understanding of the potential risks associated with
the portfolio is provided by the ES value, which provides information about the average loss
above the VaR threshold.

Riskmanagers are better able tounderstand thepotential risks associatedwith their portfolio
or business by combining VaR and ES.While ES provides additional understanding of tail risk
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and the amount of potential loss, VaR helps in setting risk limits and assessing downside risk

1.2.3 Stress Tests

Another important risk assessment tool is stress testing, which allows organizations to deter-
mine their resilience to difficult economic conditions and unexpected events. These tests in-
volve putting multiple hypothetical stress scenarios such as market shocks, economic down-
turns, or crisis driven by a single event onto portfolios or financial institutions (see e.g. [16]).
The stress tests helps identifying vulnerabilities and measuring potential losses that might be
encountered under challenging conditions by imitating these extreme conditions.

Depending on the degree of severity of the stress scenario, multiple confidence levels are
commonly used while performing stress testing. A stress test with different confidence level, as
mentioned in Var and ES calculations, can be implemented according to the need. Results of
stress tests demonstrate an institution’s risk exposure, fund adequateness, and overall financial
health. The adoption of this risk management tool by financial institutions to ensure effective
risk management processes has grown in significance for regulatory compliance. Specifically,
stress testing have been crucial for enhancing the financial sector’s resilience in following of the
2008 global financial crisis, see [5]. Stress testing enable institutions to establish suitable risk
mitigationmethods and sustain financial stability in times of instability bymodeling severe yet
reliable scenarios.

An example is shown in the Figure 1.4 to demonstrate this. We can think about a scenario
that we wish to evaluate the robustness of a stock and bond portfolio to a major market shock.
We can design a stressful scenario in which the stock market drops significantly,by 20%in a sin-
gle day. We learnmore about the portfolio’s behavior under extreme circumstances by applying
this stress scenario to it and examining the losses that occur.

The portfolio value under normal circumstances is represented by the blue line in the Fig-
ure 1.4,while the valueunder the stress scenario is representedby theorange line. Thedeviation
between the two lines during the stress period illustrates the potential impact of the extreme
market shock on the portfolio.

1.2.4 The Essential Supremum

The essential supremum is another risk assesment tool thatwe should consider. Before defining
the eseential supremumwe should understand what supremum is.
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Figure 1.4: Stress Test for hypothetical dataset

Definition 1.3. LetX be a non-empty set and f : X → R be a real-valued function defined on
X . The supremum sup of the function f over the setX , denoted as supX f , is defined as follows
(see [34]):

sup
X
f := min{M ∈ R : f(x) ≤M for all x} (1.8)

Then we can mathematically define the essential supremum as:

Definition 1.4. LetX be a non-empty set and f : X → R be a real-valued function defined
onX . The essential supremum, ess sup, of the function f over the setX , denoted as ess supXf , is
defined as follows (see [34]):

ess supXf := inf{M ∈ R : µ{x : f(x) > M} = 0} (1.9)

where µ is a measure, such as a probability measure, defined over the setX
In other words it’s the supremum of a function which holds almost everywhere. The essen-

tial supremum is particularly useful when dealing with probability and random variables be-
cause it allows us to describe the behavior of random variables without being overly concerned
about rare, almost negligible events that might affect the function’s values.

For the risk measure we can denote the essential supremum as ρ∞ (X). As the converse of
VaR it quantifies the largest possible loss without revealing any information about the associ-
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ated probability (see [29]).

ρ∞(X) := ess supX (1.10)

Themost extreme potential loss is captured by this riskmeasure, often known as the worst-case
scenario or tail VaR, regardless of the likelihood that the event will occur. As a result, it offers
a careful estimate of the worst case scenario but fails to offer a comprehensive risk assessment
that takes into account both magnitude and propensity factors (see e.g. [12]). One of the
main advantages of ρ∞ (X) lies in its simplicity and ease of interpretation. Risk managers can
identify the worst-case scenarios and allocate capital reserves accordingly by concentrating on
the largest possible loss. ρ∞ (X) offers a useful upper bound for risk exposure in scenarios
where extreme events may have significant consequences, ensuring that institutions are ready
for the worst-case scenarios.

Figure 1.5: Essential Supremum for hypothetical dataset

However, this extreme focus on maximum loss has several impacts. By ignoring probabili-
ties, ρ∞ (X) neglects the likelihood of less extreme but still significant losses. Risk managers
may therefore overlook the effects of moderately severe but more likely events if they simply
rely on this measure, resulting in poor risk management techniques. Furthermore, ρ∞ (X)

can be very sensitive to extreme observations and outliers, which makes it vulnerable to esti-
mate errors and model misspecification. For example, financial data frequently displays heavy-
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tailed distributions in the real world, whichmeans that extreme events happenmore frequently
than a normal distribution would have predicted. Therefore, ρ∞ (X)might overestimate the
worst-case scenarios, resulting in inappropriate risk evaluations and a potential overallocation
of capital reserves. It’s a good example of understanding why we need not only single but mul-
tiple dimensinal risk measure and the three point distribution approach aims to fill this gap by
giving moderate and extreme risk scenerios with their probabilities.

The blue histogram in the Figure 1.5 illustrates a heavy-tailed loss distribution, which is char-
acteristic of financial data. The largest possible loss in the distribution is represented by the
essential supremum, ρ∞(X), which is shown as a red dashed line. The essential supremum,
unlike VaR or ES, only considers the worst-case scenario and disregards probability.

1.2.5 Risk Quantization

The field of risk analysis’ essential area of research, known as risk quantization, has made a
significant impact on today’s risk management techniques. Given the diversity of risk charac-
teristics, new approaches are needed to better understand and reduce the complexity. Also it
is important to overcome the limitations of the risk measures we mentioned in the previous
sections. This has led to a many analysis and researches into different approaches which con-
centrate on the quantization of continuous risk distributions. These efforts has led to a major
change in risk management concepts. The two approaches that is used in Faugeras and Pagès’s
paper are the optimal mass transportation and the optimal quantization.

The optimal mass transportation technique is the problem of finding themost efficient way
to move one distribution of objects to match another distribution, while minimizing the cost
of transportation (see e.g. [37]). In this research it is based on the idea of reducing the cost that
needed to transfer the continuous distribution to the discrete distribution. The transportation
cost is defined on some distancemetric or cost function, which quantifies the effort or distance
required. The Wasserstein distance, used as a measure of dissimilarity between distributions,
is an example of optimal mass transportation that our proposed approach is also based on (see
[28]).

Definition 1.5. Let p ∈ N and P,R ∈ Pp(R) be two probability measures on R admitting
QP andQR as the quantile functions, respectively. Then, the p-Wasserstein distance between P
andR is (see [28]):

Wp(P,R) =

(
∫ 1

0

|QP (x)−QR(x)|
p dx

)1/p

(1.11)
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whereQP (resp. QR) denoted as:

QP (t) := inf{x : FP ≥ t}, 0 < t < 1. (1.12)

On the other hand, the optimal quantization technique is the problem of finding a set of
discrete points, often referred to as quantization points or centroids, that best represent the
original continuous distribution (see [18]). The technique origins in the engineering and sig-
nal processing literature, see e.g. [36] and [23]. It aims to reduce the number of quantiza-
tion levels while keeping as much information as possible to maintain the general structure
of the distribution. This research is also based on the Faugeras and Pagès’s (see [15]) opti-
mal quantization problem. It is defined as the constrained two-points quantizer with centers
{x0, x1} := {0,m}, i.e. as a mapping T : R+ → {0,m}with

T (x) =







m x ≥ a

0 x < a
, (1.13)

where a is a threshold to determine. Then, the optimal quantization problem forX ∼ PX

with constrained knot at zero writes

inf E[(X − T (X))2], a,m ∈ R
+ (1.14)

whereE represents the expected value whichmeasures the average of possible outcomes taking
into account their probability. From Gersho and Gray’s work paper introduces a distortion
function,

L(m) := E
[

X2 ∧ (X −m)2
]

. (1.15)

For the three point quantizer we create centers {x0, x1, x2} := {0,m1,m2}, i.e. as a map-
ping T : R+ → {0,m1,m2}with

T (x) =



















m1 x ≥ b

m2 x ≥ a and x < b

0 x < a

, (1.16)
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Then we can write the distortion function for three point quantizer as,

L(m1,m2) := E
[

X2 ∧ (X −m1)
2 ∧ (X −m2)

2
]

. (1.17)

1.3 Research objectives

The researchobjectives are intended to improveunderstanding anduseof thepropensity-magnitude
method to risk measurement. The following are the specific objectives:

• Extension of the Propensity-Magnitude Approach: Themain goal is to extend the exist-
ing two-dimensional propensity-magnitude framework to three-dimensional cases. By
integrating an additional dimension, the study aims to provide a more complete and
refined representation of risk. This extension will involve the development of a robust
methodology and computational techniques to effectively summarize and quantify the
risk in a multidimensional framework.

• Analyzing Large Data Examples: Analyzing big data sets that contain simulated profits
and losses produced from real-world scenarios is another objective. The research aims to
provide useful information into the performance, accuracy, and applicability of the sug-
gested magnitude-propensity risk measure in practical scenarios. This analysis will offer
empirical proof of the approach’s efficiency and potential value in risk management.

• Development of Prototypes: The research will involve creating a prototype with the
appropriate technology, Python. This prototype will serve as concrete examples of the
theoretical framework, proving its feasibility and usefulness in realistic situations.

By fulfilling these objectives, this research will improve the knowledge of the propensity-
magnitude technique and its use in multidimensional risk assessment.

1.4 Introductiontothemagnitude-propensityframe-
work

Measuring andquantifying risk is important inmany areas such as banking and insurance. Risk
measures have historically concentrated on capturing the uncertainty and potential losses con-
nected to specific events or scenarios, see e.g. [1]. However, frameworks such as themagnitude-
propensity method, that is introduced in Faugeras and Pages’ paper, have been developed in
response to the need for a more comprehensive and nuanced approach to risk assessment.
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The magnitude-propensity approach takes into account the fact that losses and risks can be
divided into twocategories basedon their correspondingmagnitudes andpropensities. Propen-
sity denotes a likelihood or probability of incurring such a loss, whereasmagnitude denotes the
severity or size of a possible loss. The magnitude-propensity approach offers a more complete
view on risk assessment by taking into account both dimensions simultaneously.

The magnitude-propensity approach addresses the limitation of traditional risk measures
by shifting from a one-dimensional representation to a two-dimensional framework (see [15]),
where the entire P&L distribution is summarized by a binomial distribution Bin(p), represent-
ing the probability (p) of incurring a loss of magnitude (m) and the probability (1-p) of no
losses.

Amass problemor an optimal quantization discretization canbe used to formulate the prob-
lem in order to find the optimal values (m, p) that best represent a given P&L distribution.
Finding the binomial distribution that minimizes the difference between the original P&L dis-
tribution and the quantized representation is the goal.

The idea of risk due to large magnitudes and risk due to high propensities is another essen-
tial idea within the magnitude-propensity framework. A profound understand of how risk
emerges across various dimensions is introduced by this idea. While risk due to high propensi-
ties captures the likelihood of frequent but relatively small losses, risk due to high magnitudes
captures the potential effect of significant losses. When analyzing stochastic ordering, compar-
ing various risks, and taking into account single risk variables, this dual nature of risk becomes
clear.

(a) Example 1: X1 has high magnitude risk (b) Example 2: X2 has high propensity risk

Figure 1.6: Intrinsic magnitude‐propensity aspect for a single random risk

Let’s look at two discrete measures to illustrate this duality: X1 and X2. X1 has a ’high’
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magnitude risk with a ’low’ propensity, P (X1 = 1000) = 0.1 and P (X1 = 0) = 0.9,
whereas X2 exhibits a ’small’ magnitude risk with a ’high’ propensity, P (X2 = 200) = 0.5

and P (X2 = 0) = 0.5. Furthermore, X1 and X2 demonstrate the varying implications of
magnitude andpropensity on the overall risk profile despite sharing the samemean. This idea is
illustrated visually in the Figure 1.6, which emphasizes howobserving risk from themagnitude-
propensity framework offers a more complete perspective.

The importance of the magnitude-propensity approach is further strengthened by this in-
trinsic understanding of risk dualities.

1.5 Previous studies on risk quantization and real-
case examples

Researchers and professionals searching to increase the accuracy and quality of risk measure-
ment have given the field of risk quantization a lot of attention. The different applications of
risk quantization in different industries, including as insurance, operational risk, and health-
care, have been investigated in a number of previous studies. These studies have provided un-
derstanding on the advantages and practical implications of using a quantized approach to risk
assessment. We will give a couple of example that is related to magnitude and propensity ap-
proach.

Figure 1.7: Frequency and Cost independently in ”Bollettino Statistico”

Risk quantization has been shown to be helpful in the insurance industry for increasing the
accuracy of calculations and policy pricing. Insurance firms can more accurately evaluate the
risk associated with insuring specific events or assets by estimating the severity and frequency
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of potential losses. For instance, the study of the ”Bollettino Statistico” in the Italian car in-
surance sector often reports the claims by taking into account both frequency and severity (see
[26]). In the Figure 1.7 and the Figure 1.8 shows the frequency and cost graphs that was shown
in the report. The analysis predicts that claim frequencywould partially increase in 2021, while
average claim expenses will remain stable. By investigating the frequency and severity of claims,
this example demonstrates how actuarial models support insurers in risk assessment and man-
agement. These insights are crucial for pricing and overall profitability.

Figure 1.8: Frequency and Cost analysis together in ”Bollettino Statistico”

In the field of insurance, frequency is based on observable frequencies, whereas severity is fre-
quently indicated by the average (or median) amount of claims. While the severity-frequency
framework and our magnitude-propensity approach are similar, there is a key difference to be
indicated. Empirical averages are used in traditional insurance policies tomeasure severity. Our
method based on Faugeras and Pages’ paper, however, goes a step beyond that. We aim to min-
imize information loss with respect to the continuous distribution by using a discretization
technique, resulting in a more precise representation of risk. This focus on minimizing infor-
mation distortion enables us to gain complex information and improve our capacity for risk
assessment.

Figure 1.9: LexisNexis: Wind Peril Trend
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LexisNexis Risk Solutions is yet another example from the insurance industry. It is a re-
spectable business known for providing comprehensive and trustworthy data-driven insights
in the insurance sector. The LexisNexis U.S. Home Insurance Trends Report (see [22]), their
annual publication, offers useful details on peril trends in the house insurance sector. The Fig-
ure 1.9 and the Figure 1.10 are from the report’s 2021 edition, which provides updated and
detailed information on loss cost, frequency, and severity for various perils.

Figure 1.10: LexisNexis: Wind Peril Six‐Year Average Seasonality

In the report, frequency and severity are key factors in assessing the impact of perils, such
as wind, on the home insurance industry. The frequency of wind-related claims per exposure
indicates how frequently the homeowners experience losses due to wind-related events. While
severity measures the average amount paid for wind-related claims, severity offers insights into
the financial impact of these events. Insurers are able to better understand the risks involved
with wind-related losses, modify their prices and assessing strategies, and create efficient risk
management plans by examining the frequency and severity patterns of wind peril.

Figure 1.11: Annual and Cumulative HACs

Risk quantification has been used in the healthcare industry to enhance patient safety and
optimize resource allocation. Healthcare professionals can prioritize interventions and allocate
resources to areas with higher risk profiles by measuring the frequency and severity of negative
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events. The report by the Agency for Healthcare Research andQuality (see [4]) in the United
States provides an illustration of this type of analysis that is shown in the Figure 1.11. The
report offers details on healthcare quality, including measures related to patient safety. The
Hospital-Acquired Condition (HAC) rate, which measures the frequency of adverse events
that happen during a hospital stay, is one of the metrics implemented. By giving each HAC
a weight or impact based on its clinical importance, severity is measured. These weights are
used to determine the overall severity of patient safety events inside a hospital and represent
the potential impact on patients.

These previous studies highlight the usefulness and advantages of risk quantification across
various kinds of fields. As we continue our research on the magnitude-propensity approach,
we will build upon the findings and methodologies of these previous studies.
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2
Dataset andMethodology

TheDataset andMethodology chapter of this thesis explores the data collectionprocess and the
analytical methods utilized in our research. It aims to provide a complete understanding of the
dataset and themethodology employed for creating and analyzing riskmeasures. In this and the
following sections the symbolF represents the cumulative distribution,Qdenotes the quantile
function and f denotes the probability density function of the given distribution. E denotes
the expected value, Var denotes the variance. Also E[X2] < ∞means the random variable X
has a finite second moment, allowing for well-defined statistical measures like variance.

2.1 Data collection and analysis methods

Before explaining the dataset we should take a look at some preliminaries about P&LDistribu-
tion and Risk Factors.

2.1.1 P&L Distribution

We use a space of probabilities to symbolize the uncertainty over how the world will evolve.
Consider a particular portfolio, such as a collection of stocks, a financial derivatives, a collec-
tion of loans, or even the overall risk profile of a financial institution. In the risk management
framework,Vt denotes the portfolio’s value at time t. Sowe assume that this random variable is
observable at time t. If we look for a time perspective at t and consider the time period [t, t+1],
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then the value Vt+1 is unknown to us. The distribution of (Vt+1−Vt) is called Profit and Loss
so it refers to the possible changes in the value of a portfolio over a specific time period, see [25].
We can denote the P&L by

Lt+1 = −(Vt+1 − Vt) (2.1)

The new P&L defined in (2.1) makes losses a positive number and profits negative. In this
research we will also indicate losses as positive number during some graphical illustrations in
the Section 3 for the sake of simplicity.

2.1.2 Risk Factors

We can model the Vt, the value of the portfolio, as a function of time and set a d-dimensional
random vectorZt = (Zt,1, Zt,2, . . . , Zt,d)′ of risk factors. Then we can write,

Vt = g(t,Zt), where g : R× R
d → R (2.2)

Equation (2.2) characterizes the portfolio’s value as a mapping that evolves over time in re-
sponse to the risk factors such as prices of financial assets, yields or exchange rates.

Considering a fixed holding period, the portfolio’s P&L can be defined as the change in the
portfolio’s value (see [25]), driven by the series of risk factor changes (Xt)t∈N where

Xt := Zt − Zt−∆ (2.3)

Combining the equations (2.2) and (2.3), the portfolio’s P&L distribution at a given time
horizon∆ is given by:

P&L[t,t+∆] = g(t+∆,Zt +Xt+∆)− g(t,Zt) (2.4)

In other words, P&L distribution consists in the range of potential profits and losses,denoted
as X, that a portfolio may experience over a specific time horizon. Therefore, estimating the
Cumulative Density Function of the P&L is the main part of measuring the risk of a portfolio.

F (X) = P (X ≤ x) (2.5)
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2.1.3 Historical Simulation

Risk evaluation is an important focus in financial analysis. Historical simulations and Monte
Carlo simulations, are important techniques for estimating portfolio volatility over a specific
period of time. Historical Simulation assumes that the distribution of changes in value of to-
day’s portfolio can be simulated bymaking draws from the historical time series of past changes,
see [31].

SpecificallyValue-at-Risk defined in the Section 1.2.1, ameasurement of possible losses in an
investment portfolio or the positions of financial institutions, is frequently calculated through
historical simulation. This non-parametric method simulates potential portfolio losses over a
specified time horizon using historical data on risk factor returns, see e.g. [20]. In this research
historical simulation technique will be used to calculate VaR. It’s worth noting that the ulti-
mate goal of VaRmodels in risk management is to provide a robust estimate or forecast of the
P&L distribution, even though the actual P&L distribution is unknown. The historical sim-
ulation approach is founded on the assumption that the most recent historical returns of risk
factors offer a reliable estimation of their distribution, whether or not time decay coefficients
are applied. Consequently, in this approach, these returns are plugged in to the current port-
folio, revalued through appropriate pricing functions, to derive the 1-day distribution of the
portfolio’s P&L. Furthermore, while some banks may choose to employ 500 days of historical
data, 250 days represent theminimum regulatory requirement. This choice may vary based on
specific institutional practices and regulatory guidelines. These 250 scenarios are subsequently
applied to revalue the current portfolio under each scenario, following a predefined formula.
This process concludes with the creation of an empirical Profit and Loss distribution, charac-
terized by 250 observations, performing as a valuable resource for risk assessment.

2.1.4 Dataset

10-month long daily P&L time series employed as the basis for implementation of the quanti-
zation approach. The specific details of the data used are as follows:

• Perimeter: The Regulatory VaR was calculated for a specific perimeter, focusing on the
portfolio. The calculation was limited to the risk factors validated by the Regulator, en-
suring compliance with regulatory requirements (see [9]).

• Portfolio: We focused on the portfolio of amajor Italian bank for the analysis. This port-
folio served as the basis for calculating the Regulatory VaR and evaluating the associated
risk.
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• TimeWindow: The time series ranged a period of 194 business days, starting from Au-
gust 9th, 2022, and ending on May 10th, 2023. This time frame provided a sufficient
time for capturing and analyzing the daily P&L data.

The methodology for calculating the loss distribution underlying the Regulatory VaR was
based on the full re-evaluation of positions using historical simulation of the risk factors as
mentioned in the Section 2.1.3. It is important to note that the Regulatory VaR calculation
had some variations compared to the similar measures calculated for management purposes.
These differences are essential to ensure compliance with regulatory guidelines and focus the
analysis on relevant factors for regulatory reporting.

Unlike other forms of VaR, such as Gestional VaR, which is adapted towards internal man-
agement and strategic decision-making, the primary goal of Regulatory VaR is to ensure that
banks hold adequate capital reserves to cover potential losses under adverse market conditions.
The application of Regulatory VaR is limited to the prudential portfolio and risk factors specif-
ically validated by the regulator. This restriction ensures that the analysis meets requirements
and focuses on factors deemed critical for regulatory purposes, see [24].

The Profit and Loss data used in the VaR distribution is equally weighted, meaning that a
decreasing weight over time was not applied. This simplified approach enables a straightfor-
ward calculation and analysis of P&L data, avoiding the introduction of additional weighting
considerations.

In the risk analysis conducted, the focus was on specific risk factors that had been validated
and approved by regulatory authorities as of September 30th, 2020 (see [14]). These validated
risk factors contains a wide range of elements, including generic risk on interest rates, generic
and specific risk ondebt and equity instruments, aswell as exposure to commodity-related risks.
In addition, the analysis take into account the risk associated with positions in financial instru-
ments such as ETCs (Exchange-Traded Commodities), ETFs (Exchange-Traded Funds), and
CIUs (Collective Investment Undertakings) with daily Net Asset Value (NAV). By focusing
the analysis on these validated risk factors, the approach ensures the compliance with regula-
tory guidelines and focuses on the elements that are considered significant for prudential risk
management.
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2.2 DataPreprocessingandExploratoryDataAnal-
ysis

On the provided dataset of daily P&L values, an extensive procedure of data preprocess and
exploratory data analysis was carried out in order to get useful insights and make informed
decisions. This crucial preliminary phase lays the foundation for the subsequent analytical
steps by ensuring data quality, identifying patterns, and uncovering potential anomalies. Data
preprocessing is the process of cleaning, transforming, and organizing raw data into a format
that can be analyzed.

Conversely, exploratory data analysis digs deeper into the dataset’s descriptive statistics, dis-
tributions, and visual representations to uncover hidden relationships and trends. This section
provides an detailed description of the stages involved in data preprocessing and EDA, illumi-
nating the conclusions drawn and the choices made in light of the processed data.

2.2.1 Time Series Graph

Figure 2.1: Time Series Graph of Profit and Loss Values

The time series graph shown in the Figure 2.1 offers a visual representation of the dynamic
changes inP&Lvalues over a periodof time. The x-axis corresponds to the business dates, while
the y-axis represents the P&L values. It provides a visual representation of the P&L values’ tem-
poral distribution, offering a glimpse into the financial performance trends of the organization.
The plot indicates the P&L volatility across various business dates. Interestingly we observe a
considerable sharp movements in P&L value, indicating a period of exceptional profitability

23



or loss. This could be attributed to possible reasons, such as market events, strategic decisions,
economic factors.

2.2.2 Summary Statistics

TheTable 2.1 presents a general overviewof the daily P&Lvalues for the observedperiod. From
the statistical results, several of important conclusions can be drawn. The financial perfor-
mance of the organization is dynamic, as seen by the large day-to-day variation in the mean
P&L numbers. Between relatively low values, like around 250,000, and significantly larger val-
ues, such over 2,000,000, the mean P&L might change over time implies both periods lower
and higher probability. Also some business days mean value ended up being negative, for ex-
ample the day 13.09.2022, which indicates the loss overcome the profit.

BUSINESS_DATE count mean std min max
9.08.2022 250 1,160,637 7,717,980 -28,924,882 34,629,316
10.08.2022 250 1,383,536 8,209,034 -21,554,105 41,479,325
11.08.2022 250 1,562,063 7,444,806 -25,293,732 35,470,560
... ... ... ... ... ...
19.06.2023 251 1,091,564 11,956,690 -31,394,175 42,721,738
20.06.2023 251 1,092,161 11,954,207 -32,632,343 43,715,888
21.06.2023 251 968,470 11,231,436 -31,253,164 43,743,416

Table 2.1: Summary Statistics

Furthermore, it is also important to notice the standard deviation of the P&Lvalues. Higher
standard deviation values denote higher volatility and variability in the data points. The high
standard deviation is a consequence of days with extremely high or low P&L figures, both in
the positive and negative directions. This could indicate that the organization is exposed to a
lot of risk and uncertainty, which could make financial planning and forecasting challenging.

TheminimumandmaximumP&Lvalues provide information about thepotential extremes
of the business’s financial performance. Theminimumvalues, often in the negative range, indi-
cates that days of significant losses, while the maximum values represent days of extraordinary
gains. These extremes highlight the potential for both significant obstacles and opportunities
within the business operations.

Additionally, it is clear from trends over time that the organization has periods of relative sta-
bility followed by unexpected increases or decreases in P&L values. In order to develop strate-
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gies to reduce risks and take advantage of advantageous circumstances, it may be important to
identify the causes of these fluctuations.

2.2.3 Distribution Analaysis

Figure 2.2: Distribution Analaysis of P&L

The Figure 2.2 provides a visual representation of the frequency distribution of P&L (Profit
and Loss) values in the dataset. This type of analysis is crucial for gaining insights into the
underlying patterns and characteristics of the data.We can determine the range of P&L values
that occur most frequently as well as any potential outliers or strange trends by looking at the
distribution of these values. The graph’s histogram and kernel density estimate plot show the
distribution’s shape, indicating whether it is symmetric, skewed, or has several peaks.

The overall distribution of the P&L values appears to be skewed and the negative values are
generally in the range between 0 to 10million. As we can see from the largest bin in the Graph
2.2 that themost frequent event is the case of small amount of losses. This asymmetry suggests
that the business may encounter more instances of under-performance compared to outstand-
ing success. However when we calculated the skewness, the distribution of P&L values shows
a positive skewness of 0.93. This positive skew suggests that there are a few instances of extraor-
dinarily high profits since it shows that the distribution shifts towards greater positive values,
which frequently imply that while most transactions yield modest profits, certain particular
occurrences or transactions produce disproportionally huge earnings.
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2.3 General IdeaofTwoPointQuantizationandthe
Constraint Experiments

Before explaining the new extension we should understand the two point quantization tech-
nique presented by Faugeras and Pagès. The general idea of the magnitude and propensity
approach in quantifying risks is to unreveal the magnitude and propensity of a distribution of
risks thereby gaining an understanding fuller picture of the underlying risk. It’s idea is based
on creating a risk measure ρ(X) that can be deterministic representative of the random risk X.

This approach addresses the limitations of risk measures that oftenmix both themagnitude
and propensity the into a single value, resulting in a lack of clarity and understanding of the
characteristics of the risk.

The optimal transport approach which is explained in the Section 1.2.5 challenges the con-
straints of traditional riskmeasures by reinterpreting them as outcomes ofmass transportation
from the original risk distribution PX to a Dirac δm measure. Let’s define the Dirac measure
to be clear on the idea.

Definition 2.1. Let (X,A) be ameasurable space andX be a nonempty set andx ∈ X . Define,
for everyA ∈ P(X),

δx(A) =







1 if x ∈ A

0 if x /∈ A
(2.6)

Then, δx is a measure in X, called the Dirac measure in x (see [35]).

Such measure is concentrated on the singleton x. This Dirac distribution condenses all risk
information into a single point with a magnitude denoted as m, representing both the magni-
tude andpropensity of risk sincemagnitudemcarries full propensity. To address this limitation
and provide amore extensive representation of risk, the optimal transport approach proposes a
two-point distribution P Y , which contains both magnitude and propensity aspects (see [15]).

P Y = (1− p)δ0 + pδm (2.7)

This approach allows for a more explicit representation of risk, where a loss of magnitude
mX occurswithprobabilitypX , andno loss occurswithprobability (1−pX). The riskmeasure
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is then determined by minimizing the squared WassersteinW2 distance between PX and P Y ,
considering a specific set of distributionsA0.

The general definition of Wasserstein function is already given in the Section 1.2.5. We will
consider theW2 version. Now we can define the general problem for two point quantization
that is given in Faugeras and Pagès’ paper.

Definition 2.2. LetA0 := {P Y = (1− p)δ0 + pδm, p ∈ (0, 1), m ∈ R
+} , as given in the

Definition 2.7, be the set of two-point distributions. ForX ∼ PX withE[X2] <∞, the bivariate
magnitude-propensity risk measure (mX , pX) is obtained by minimizing the WassersteinW2

distance from PX toA0,

(mX , pX) = arg infPY ∈A0
W2(P

X , P Y ) (2.8)

A direct optimization approach can be used to characterize the (mX , pX) by using the ex-
plicit form of the Wasserstein metric in dimension one: denote by QX the quantile function
of PX ,

QX(t) := inf{x : FX ≥ t}, 0 < t < 1. (2.9)

And the quantile function for Y ∈ A0 is

QY (t) = m11−p<t≤1. (2.10)

Then the following equation can be optimized to get more information about characteristic
(see [32]):

W2
2(PX , P Y ) =

∫ 1

0

(QX(t)−QY (t))
2dt (2.11)

for univariate PX , P Y with finite variance.

2.3.1 Main objective functionwith constraint

To extent Faugeras and Pagès’s paper we will conduct an experiment by defining constraints
to the optimization function. The computation of (mX , pX) in the constrained two point
distribution involves a minimization process to achieve a representative risk measure that effec-
tively balances both magnitude and propensity aspects of risk. This is achieved through the
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optimization of an objective function while considering specific constraints. One crucial con-
straint imposed on the optimization process is the preservation of the first moment derived
from the original loss distribution, within the newly formed two point distribution.

To be more clear we will implement a mean constraint. Since the new distribution will rep-
resent the losses, we will take the mean of the negative values of the original distribution. The
mean of the negative values in the distribution X, which corresponds to the empirical distribu-
tion derived from the daily P&L time series of the bank’s portfolio as defined in Section 2.1.4,
can be found as:

E[X|X < 0] =
n

∑

i=1

p(xi).xi.1xi<0 =
n

∑

i=1

xi1xi<0

k
(2.12)

where k is the number of values less than zero which represents the loss since all of the variables
in the distribution have the same probability. It is due to the fact that each observation is given
equal weight due to their empirical nature. In other words,

k =
n

∑

i=1

1Xi<0 (2.13)

Since the distribution Y consists of two points {0,mX} with probabilities {1 − pX , pX}, we
have the following mean

E[Y ] = mX .pX + 0.(1− pX) = mX .pX (2.14)

This constraint ensures that the resulting risk measure retains a meaningful connection to
the underlying loss data. By constraining themean of the newdistribution to closely alignwith
the mean of the historical loss distribution, the calculated risk measure (mX , pX)maintains a
consistency with the observed financial loss patterns.

Another important constraint involves both mean and variance. In this case, the objective
is to not only preserve the mean of the original loss distribution but also the variance. For the
variance again the negative valueswill be considered so that the variance of the newdistribution
of the risk and the variance of the losses in the original distribution can be equal. Let X be
P&L values as defined in Section 2.1.4, then the variance of the negative values in the original
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distribution:

Var[X|X < 0] =
n

∑

i=1

p(xi) · (xi − E[X|X < 0])2 · 1{xi<0} (2.15)

=
n

∑

i=1

(xi − E[X|X < 0])2 · 1{xi<0}

k

where k is given by the Definition 2.13
The variance of the distribution Y is calculated as:

V ar[Y ] = pX(mX − E[Y ])2 + (1− pX)(0− E[Y ])2 (2.16)

Incorporatingbothmean andvariance preservation constraints ensures that the riskmeasure
(mX , pX) not only captures the historical average loss but also the range of losses around the
mean.

2.4 Three point quantization

After gaining information about the new risk measurement, proposed by Faugeras and Pagès,
and implementing some experiments on it, we will develop this approach to another level. We
aim to extend this proposed two point quantization method to three point discrete distribu-
tion. In particular to refine one’s measure of risk into a moderate risk and a large risk we will
use directly a three points discrete measure,

P Y = (1− p1 − p2)δ0 + p1δm1
+ p2δm2

(2.17)

wherem1 < m2. With a such three points discrete measure, we can encode and quantify
both moderate, resp. large risk, in the magnitude and propensity scale with (m1, p1), resp.
(m2, p2).

Quantile function of the original distribution in the Definition 2.9 still holds in this exten-
sion. We can define the quantile function of the three point distribution Y as:

QY (t) = m111−(p1+p2)<t≤1 +m2.11−p2<t≤1 (2.18)
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where p1, p2 ∈ (0, 1) andm1,m2 ∈ R
+.

2.4.1 Main objective function

Similar to the two-point quantization, the main objective function in the three-point quanti-
zation plays an important role in guiding the selection of the three representative points. A
direct optimization approach can again be used to characterize the (m1, p1) and (m2, p2) by
using the explicit form of theWassersteinmetric in dimension one: denote byQX the quantile
function of PX , denoted in the above. Then we can define

W2
2(PX , P Y ) =

∫ 1

0

(QX(t)−QY (t))
2dt (2.19)

for univariate PX , P Y with finite variance where P Y is given by the Definition 2.17.

2.4.2 Main objective functionwith constraint

We will implement a constraint experiment as we did in the two point distribution however
this time wewill try a different idea. This time wewill makem2 to be as much extreme as it can
get by constraining it with VaR.

So we will implement the constraint

|m2| > |V aR| (2.20)

By imposing this constraint, the risk measure ensures that the magnitude of the extreme risk
m2 remains greater than the magnitude of the VaR threshold. This constraint highlights the
importance of adequately capturing extreme events and the associated potential losses that can
have great implications for financial institutions. The requirement (2.20) acknowledges that
extreme risks can pose severe systemic consequences and should not be underestimated in risk
assessments.

2.4.3 Theoretical analysis

The theoretical analysis of the three-point quantization approach investigates into the mathe-
matical foundations and properties of the methodology. This analysis involves exploring the
theoretical ground works of the objective function and the resulting quantized distribution.
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By conducting a theoretical analysis, we develop a solid foundation for the approach and gain
information about its strengths, limitations, and applicability to various risk quantification
scenarios. We will start by implementing theWasserstein function with the quantile functions
we defined in the previous section and try to derive some characterizations, i.e, we will try to
achieve necessary and sufficient conditions analysis as Faugeras andPagès’ did in their twopoint
quantization work.

Necessary Conditions Analysis: LetX s.t. E[X2] <∞

The squaredWasserstein distance between PX and P Y ∈ A0 writes

W2
2(PX , P Y ) =

∫ 1

0

(QX(t)−QY (t))
2dt (2.21)

=

∫ 1−(p1+p2)

0

(QX(t))
2dt+

∫ 1−p2

1−(p1+p2)

(QX(t)−m1)
2dt

+

∫ 1

1−p2

(QX(t)− (m1 +m2))
2dt

=

∫ 1−(p1+p2)

0

(QX(t))
2dt+

∫ 1−p2

1−(p1+p2)

(QX(t))
2dt

− 2m1

∫ 1−p2

1−(p1+p2)

QX(t)dt+m1
2p1 +

∫ 1

1−p2

(QX(t))
2dt

− 2(m1 +m2)

∫ 1

1−p2

QX(t)dt+ (m1 +m2)
2p2

= E[X2] +m1
2p1 + (m1 +m2)

2p2 − 2m1

∫ 1

1−(p1+p2)

QX(t)dt

− 2m2

∫ 1

1−p2

QX(t)dt

:= ψ(m1,m2, p1, p2)

ψ is differentiable and any optimalmagnitude-propensity (m1, p1) and (m2, p2) solving the
main objective function must satisfy the first order conditions:
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∂ψ(m1,m2,p1,p2)
∂m1

= 0

∂ψ(m1,m2,p1,p2)
∂p1

= 0

∂ψ(m1,m2,p1,p2)
∂m2

= 0

∂ψ(m1,m2,p1,p2)
∂p2

= 0

⇔



























2m1p1 + 2(m1 +m2)p2 − 2
∫ 1

1−(p1+p2)
QX(t)dt = 0

m2
1 − 2m1Q(1− (p1 + p2)) = 0

2(m1 +m2)p2 − 2
∫ 1

1−p2
QX(t)dt = 0

(m1 +m2)
2 − 2m1Q(1− (p1 + p2))− 2m2Q(1− p2) = 0

(2.22)

Form1 ̸= 0, p1 ̸= 0, m2 ̸= 0 and p2 ̸= 0, the following results obtained as a necessary
conditions:

• From the second and third equation in (2.22), we get:

m1 = 2Q(1− (p1 + p2)) (2.23)

(m1 +m2) =

∫ 1

1−p2
QX(t)dt

p2
(2.24)

• By using the equality (2.24) to solve the first equation in (2.22), we get:

m1 =

∫ 1−p2
1−(p1+p2)

QX(t)dt

p1
(2.25)

• By using the equality (2.23) to solve the fourth equation in (2.22), we get:

m2 = 2Q(1− p2)− 2m1 (2.26)

Sufficiency Condition Analysis: LetX s.t. E[X2] <∞.
If PX has density f such that f(Q(p)) > 0, then Q is differentiable with derivative the

quantile-density qx(p) = Q(p)′ = 1
f(Q(p))

. Thenψ is twice differentiable withHessianmatrix.
The goal is to identify the critical points, such as (m1, p1) and (m2, p2), where the function
reaches local minima or maxima. The Hessian matrix being positive definite at these critical
points is important because it ensures the function’s second derivative is positive, indicating a
local minimum. This helps us to confirm the stability of these points in the analysis.

Since ψ depends on four variables, we will take derivatives with respect to all of these four
variables. Because when we are calculating the Hessian matrix, we are examining how small
changes in each of these variables affect the function’s curvature. Hence the Hessain matrix is:
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H =













∂2ψ
∂m2

1

∂2ψ
∂m1∂p1

∂2ψ
∂m1∂m2

∂2ψ
∂m1∂p2

∂2ψ
∂m1∂p1

∂2ψ
∂p2

1

∂2ψ
∂m2∂p1

∂2ψ
∂p1∂p2

∂2ψ
∂m1∂m2

∂2ψ
∂m2∂p1

∂2ψ
∂m2

2

∂2ψ
∂m2∂p2

∂2ψ
∂m1∂p2

∂2ψ
∂p1∂p2

∂2ψ
∂m2∂p2

∂2ψ
∂p2

2













=











a b c d

b e f g

c f h i

d g i j











with

• a = 2p1 + 2p2

• b = 2m1 − 2Q(1− (p1 + p2)) = 2m1 −m1 = m1 by (2.23)

• c = 2p2

• d = 2(m1 +m2) − 2Q(1 − (p1 + p2)) = 2(m1 +m2) −m1 = m1 + 2m2 by the
condition (2.23)

• e = 2m1Q
′(1− (p1 + p2))

• f = 0

• g = 2m1Q
′(1− (p1 + p2))

• h = 2p2

• i = 2(m1+m2)−2Q(1−p2) = 2(m1+m2)− (m2+2m1) = m2 by the condition
(2.26)

• j = 2m1Q
′(1− (p1 + p2)) + 2m2Q

′(1− p2)

So in the end we have:
c = h, f = 0 and e = g.

Let’s modify the matrix accordingly to those equations.

H =











a b c d

b e 0 e

c 0 c i

d e i j
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In order to say that a matrix is positive definite, we should apply a test. Determinant of
all k × k upper-left sub-matrices must be positive. First break the matrix in to several sub
matrices, by progressively taking k × k upper-left elements. If the determinants of all the sub-
matrices are positive, then the original matrix is positive definite (see [19]). This test examines
whether all possible combinations of k rows and k columns within the matrix yield positive
determinants. If every single one of these determinants turns out to be positive, it validates the
positive definiteness of the original matrix. Thus each determinant being greater than zero will
construct our sufficiency conditions in order to have local minima with the optimal points.

So in our case the Hessian matrix is positive definite at the critical points (m1, p1) and
(m2, p2) if the following conditions are satisfied:

|a| > 0 (2.27)
∣

∣

∣

∣

∣

a b

b e

∣

∣

∣

∣

∣

> 0 (2.28)

∣

∣

∣

∣

∣

∣

∣

a b c

b e 0

c 0 c

∣

∣

∣

∣

∣

∣

∣

> 0 (2.29)

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b c d

b e 0 e

c 0 c i

d e i j

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0 (2.30)

Let’s calculate the determinants and construct the inequalities one by one.
For the condition (2.27), it is clear that |a| > 0 since p1 > 0 and p2 > 0which implies

a = 2p1 + 2p2 > 0 (2.31)

Since this holds by the definition of p1 and p2, we will not consider the inequality (2.31) as
a condition.
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Let’s calculate the second determinant in the condition (2.28),
∣

∣

∣

∣

∣

a b

b e

∣

∣

∣

∣

∣

= a · e− b2

= (2p1 + 2p2) · (2m1Q
′(1− (p1 + p2)))− (m1)

2

= m1((2p1 + 2p2) · (2Q
′(1− (p1 + p2)))−m1)

Hence the first sufficiency condition is:

m1((2p1 + 2p2) · (2Q
′(1− (p1 + p2)))−m1) > 0 (2.32)

Now let’s check the third determinant in the condition (2.29),
∣

∣

∣

∣

∣

∣

∣

a b c

b e 0

c 0 c

∣

∣

∣

∣

∣

∣

∣

= a · e · c− b2 · c− c2 · e

= c · (a · e− b2 − c · e)

= c · (e · (a− c)− b2)

= 2p2 · (2m1Q
′(1− (p1 + p2)) · (2p1 + 2p2 − 2p2)−m2

1)

= 2p2 · (2m1Q
′(1− (p1 + p2)) · 2p1 −m2

1)

= m1(4p1p2 · (2Q
′(1− (p1 + p2))−m1))

Hence the second sufficiency condition is:

m1(4p1p2 · (2Q
′(1− (p1 + p2))−m1)) > 0 (2.33)
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Lastly let’s take the determinant of the entire matrix:

∆H = acej − aei2 + ace2 + b2cj + b2i2 − c2ej + c2e2 − cd2e− 2bcei

+ 2bcde+ 2cdei

= cj(ae+ b2) + i2(b2 − ae) + c2e(e− j) + cei(6b− 2d) + ace2

= 32m1
2p1p2Q

′(1− (p1 + p2))
2
+ 32m1

2p2
2Q′(1− (p1 + p2))

2

+ 4m1
3p2Q

′(1− (p1 + p2)) + 16m1m2p1p2Q
′(1− p2)Q

′(1− (p1 + p2))

+ 32m1m2p2
2Q′(1− p2)Q

′(1− (p1 + p2)) + 4m1
2m2p2Q

′(1− p2) +m1
2m2

2

− 4m1m2
2p1Q

′(1− (p1 + p2))− 20m1m2
2p2Q

′(1− (p1 + p2))

+ 16m1
2m2p2Q

′(1− (p1 + p2))

After simplifying the equation we achieve the third sufficiency condition:

∆H = 4m1
2p2Q

′(1− (p1 + p2))[8(p1 + p2)Q
′(1− (p1 + p2)) +m1 + 4m2]

4m1m2p2Q
′(1− p2)[4Q

′(1− (p1 + p2))(p1 + 2p2) +m1]

m1m2
2[m1 − 4Q′(1− (p1 + p2))(p1 − 5)]

> 0 (2.34)

The inequalities (2.32), (2.33) and (2.34) we created, represents the sufficiency conditions
for (m1, p1) and (m2, p2) to become an optimal solution.

2.4.4 Quantile Function Experiment

To analyze the effectiveness of the new approach we will implement it on a synthetic data we
created. Synthetic datasets are created using different probability distributions, including Uni-
form, Exponential, and Pareto distributions. We will define the quantile functions of the dis-
tributions and solve the neccesary conditions provided in Section 2.4.3. The graphical results
of the examples will be shown in the Section 3.2.1.

Definition 2.3. LetX be a continuous random variable. Then, X is said to be uniformly dis-
tributed with minimum a and maximum b, denoted asX ∼ U(a, b), if and only if, for any
subinterval [c, d] within the range [a, b], the probability ofX falling within that subinterval is
proportional to the length of the subinterval. In other words, for any values c and d such that
a ≤ c < d ≤ b, the probability thatX lies in the interval [c, d] is given by:
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P (c ≤ X ≤ d) =
d− c

b− a
(2.35)

This means that all subintervals of the same length within the range [a, b] have the same prob-
ability of occurrence.

Example 1. Let X be a random variable following a continuous uniform distribution, X ∼

U(a, b).Then, the quantile function ofX is (see [36])

QX(p) =







−∞, if p = 0

bp+ a(1− p), if p > 0
(2.36)

In the researchwewill create distributionX ∼ U(0, b), which indicates that theQ(p) = bp,
for the different values of b = 1, 2, 5, 10

Afterwe solve the equations (2.23), (2.24), (2.25) and (2.26) for thequantile functionQ(p) =
bp, we get the following solutions:

m1 = 2b(1− (p1 + p2)) (2.37)

m1 +m2 = b−
p2
2

(2.38)

Definition 2.4. Let X be a random variable. Then, X is said to be exponentially distributed
with rate (or, inverse scale) λ

X ∼ Exp(λ), (2.39)

if and only if its probability density function is given by

E(x;λ) = λ exp[−λx], x ≥ 0 (2.40)

where λ > 0, and the density is zero, if x < 0 (see [36]).

Example 2. Let X be a random variable following an exponential distributionX ∼ Exp(λ).
Then, the quantile function of X is (see [36])
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QX(p) =







−∞, if p = 0

− ln(1− p)/λ, if p > 0
(2.41)

We will createX ∼ Exp(λ) for the different values of λ = 1, 2, 5, 10.
Afterwe solve the equations (2.23), (2.24), (2.25) and (2.26) for thequantile functionQX(p) =

− ln(1− p)/λ, we get the following solutions:

m1 =
−2 ln(p1 + p2)

λ
(2.42)

m1 +m2 =
1− ln(p2)

λ
(2.43)

Definition 2.5. The one-parameter Pareto distribution, denoted asX ∼ Pa(θ) is a continuous
probability distribution characterized by its shape parameter θ and defined by the cumulative
distribution function:

P (X > x) = (1 + x)−θ, x ≥ 0 (2.44)

where θ > 0 is the shape parameter (see [15]).

By calculating the inverse of the cdf we can find the quantile function QX(p) of the one-
parameter Pareto distribution is given by:

QX(p) = p−
1

θ − 1, 0 < p ≤ 1 (2.45)

where θ is the shape parameter.
In the research we used the different values of θ = 1, 2, 3, 5

Again afterwe solve the equations (2.23), (2.24), (2.25) and (2.26) for theQX(p) = p−
1

θ −1,
we get the following solutions:

m1 = 2((1− (p1 + p2))
− 1

θ − 1) (2.46)

m1 +m2 =
θ

(θ − 1) p2

(

1− (1− p2)
θ−1

θ

)

− 1 (2.47)

(2.48)
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3
Results

In risk analysis andmanagement, comparing riskmeasureswith theValue-at-Risk is very impor-
tant. It provides a threshold for risk assessment, indicating the point beyond which losses are
expected to occur with a specific likelihood. We gain valuable information into the weaknesses
or advantages of the different strategies by comparing alternate risk measures with VaR. We
can identify scenarios in which the alternative measures provide a better risk assessment when
comparing risk measures with VaR, especially in extreme and tail risk scenarios.

Additionally, by comparing the new risk measures with VaR, we can point out the precise
areas where they perform good and those they may fail, supporting professionals in making in-
formed decisions for efficient risk management strategies. Thus the graphical illustrations that
we provide in this section will contain VaR so that we can compare the quantization methods
and experiments.

3.1 Two Point Quantization

The results of the two point distribution analysis for the P&L values are presented in this sec-
tion. The VaR predictions and associated probabilities for the loss m and zero-loss scenario
are shown in the tables below. We provide the VaR, the probability of the no loss scenario p0
and its associated valuem0, as well as the probability pX of the lossmX for each business date.
The Table 3.1 provides the results for two point distribution without any constraint. The first
observation is whether mX values corresponds to moderate risk or which quantile they usu-
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ally represent. After checking the mean values of the negative values for each business day,
mX values usually equals to almost double the of the mean of the corresponding negative val-
ues. Further exploration reveals that these magnitudes frequently align with quantile ranges
spanning the 18th to 22nd percentiles of the whole distributionwhich indicatesmX represents
slightly more than a moderate risk but not an extreme risk, since the magnitude ofmX values
always much less than magnitude of VaR.

Date VaR m0 p0 mX pX
9.08.2022 -16,616,850.79 0 84.00% -8,676,690.91 16.00%
10.08.2022 -16,148,160.42 0 82.00% -9,465,722.81 18.00%
11.08.2022 -13,481,350.94 0 82.00% -7,194,371.27 18.00%

... ... ... ... ... ...
19.06.2023 -28,220,981.58 0 78.00% -12,311,082.3 22.00%
20.06.2023 -28,507,001.52 0 81.00% -14,541,955.04 19.00%
21.06.2023 -27,469,711.86 0 81.00% -11,961,379.04 19.00%

Table 3.1: Two Point Distribution without Constraints Results

Date VaR m0 p0 mX pX
9.08.2022 -16,616,850.79 0 68.00% -5,434,526.13 32.00%
10.08.2022 -16,148,160.42 0 67.00% -4,935,877.99 33.00%
11.08.2022 -13,481,350.94 0 67.00% -4,394,608.61 33.00%

... ... ... ... ... ...
19.06.2023 -28,220,981.58 0 64.00% -9,375,190.85 36.00%
20.06.2023 -28,507,001.52 0 65.00% -10,167,474.9 35.00%
21.06.2023 -27,469,711.86 0 66.00% -9,025,366.24 34.00%

Table 3.2: Two Point Distribution with Mean Constraint Results

On the other hand, theTable 3.2 shows the results for twopoint distributionwithmean con-
straint experiment we conducted which is mentioned in the Section 2.3.1. The introduction
of the mean constraint appear to create a trade-off between mean preservation and propensity
for losses. However, it is worth noting that while the mean constraint contributes to a more
moderated risk level, there exists a slight variance between the mean of the newly formed two
point distribution and the mean of the original distribution. This difference highlights that,
although the constraint influences the risk representation, it could not achieve an exact align-
ment between the two means. Nevertheless, the introduction of the constraint has succeeded
in reshaping the risk distribution to a form that makesmX closely approximates the mean of
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the negative values, which makes themX values more moderate with higher propensity. The
choice between the two approaches may depend on the specific risk tolerance and objectives of
the institution. The first table (the Table 3.1) offers a broader representation of potential loss
scenarios, while the second table (the Table 3.2) aligns more closely with the mean, which may
be preferred in certain risk management strategies.

Date VaR m0 p0 mX pX
9.08.2022 -16,616,850.79 0 92.00% -19,482,192.6 8.00%
10.08.2022 -16,148,160.42 0 91.00% -21,130,078.86 9.00%
11.08.2022 -13,481,350.94 0 91.00% -13,452,836.16 9.00%

... ... ... ... ... ...
19.06.2023 -28,220,981.58 0 89.00% -27,007,281.37 11.00%
20.06.2023 -28,507,001.52 0 81.00% -20,438,810.59 19.00%
21.06.2023 -27,469,711.86 0 91.00% -46,667,387.32 9.00%

Table 3.3: Two Point Distribution with Mean and Variance Constraint Results

The Table 3.3 provides the results for two point distribution with mean and variance con-
straints for the second experiment mentioned in the Section 2.3.1. The results provide a con-
servative approach to quantifying risk, where mean and variation are strictly controlled. The
magnitude ofmX values increased and pX percentage decreased significantly. Moreover when
we see some spesific examples such as the business day 21.06.2023, themX value act as an out-
lier. The minimum value of that day, the highest magnitude of the losses, is -31,253,164.73
however the calculatedmX value is -46,667,387.32. This points out that implementing two
constraints at the same time deconstructed the optimization problem.

3.1.1 Comparison ofmX with Value-at-Risk

A dynamic representation of risk evolution over a range of business days is shown in the time
series graph. The x-axis denotes the chronological progression of business days, while the y-
axis corresponds to the magnitude of losses. The plotted points on the graph consist of two
key components which are VaR values andmX values. As the graph extends along the x-axis,
the fluctuating VaR values highlight the changing risk exposure over time.

In theGraph 3.1, which is that case of twopoint distributionwithout constraints, we can see
thatmX values following the same trend as VaR.This alignment betweenmX and VaR values
suggests that the chosen risk measure is efficient in capturing and reflecting the underlying risk
dynamics.
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Figure 3.1: Two point distribution without constraints time series graph

In the Graph 3.2, a distinct pattern emerges from the comparison between the original two-
point distribution and its constrained version. Remarkably, the trend in themX values, which
represented themagnitudeof losses, exhibits a delicate deviation from theVaRvalues due to the
application of the mean constraint. Frequently sharpmovements of the risk values is observed,
as we can see from the sudden peaks throughout the business days, instead of a more stable
values.

Figure 3.2: Two point distribution with mean constraint time series graph

TheGraph 3.3 indicates a dynamic risk pattern resulting from the joint application ofmean
and variance constraints to the two-point distribution. The constrained approach leads to
sharper and more frequent shifts in the quantified risk levels over the observed business days
as we see in the results in the Table 3.3. It can be seen how much the mX values fluctuate.
Another observation is unlike the previous cases wheremX consistently remained below VaR,
this constrained version witnesses instances wheremX surpasses VaR.
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Figure 3.3: Two point distribution with mean and var constraints time series graph

3.1.2 Analysis of the original and new distributions

The graph createdprovides a representationof the original P&Ldistribution and the newdistri-
bution. Since the original distribution is a continuous distribution, the bell-shaped smoothed
probability density function curve is created. The VaR values for each business day provides
an important reference points for assessing risk alongside the curve. These VaR values are set
at a level where the probability of losses occurring is 1. And then finally we have the points
representing the new distribution which are (mX , pX) and (0, 1− pX)

Figure 3.4: Two Point Distribution without constraint PDF graph

In theGraph3.4 it is clear that the clustering of points in the graph signifies a relatively consis-
tent risk profile, where the distribution is compact. Conversely, in the Graph 3.5 the spreading
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of points in the graph suggests a wider range of potential risk scenarios, indicative of a higher
level of variability in the risk values. In particular, somemX values have been assigned notice-
ably high probabilities, which was not experienced with the unconstrained version. And it is
not preferred to have a lowmagnitude ofmX value with high propensity which is very close to
the point (0, 1−pX). The aim is to find two points that can represent thewhole. The transfor-
mation from a clustered point representation to amore spread representation signifies that the
mean constraint has introduced an element of variability that was absent in the unconstrained
distribution.

Figure 3.5: Two point distribution with mean constraint PDF graph

The spreading of points in the Graph 3.6 is even more clear compared to both Graph 3.4
and Graph 3.5. This suggests that the addition of variance constraints to the distribution has
introduced further variability into the risk profile. The wider distribution of points across the
magnitude values indicates awider range of possible risks.Unlike in theGraph3.5where certain
mX values had notably high probabilities, theGraph 3.6 presents amore balanced distribution
of probabilities across the risk magnitudes. Although the probabilities fluctuate across the dis-
tribution, they do not show unusually high peaks. Also in the Graph 3.5 we see the spread
causing lowmagnitude ofmX points however in the two constraint version it is the opposite.
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Figure 3.6: Two point distribution with mean and var constraints PDF graph

3.2 Three Point Quantization

In this section we will be using the same graphical visualization as in the Section 3.1. In addi-
tion to that we’re going to show the results of the experiment of different distributions with
synthetic data.

3.2.1 Synthetic Data for Different Quantile Functions

Figure 3.7: Magnitude‐propensity plots form1 and p1 values of Uniform DistributionU(0, a), Exponential Distribution
Exp(λ) and Pareto Distribution Pa(θ)

After creating the synthetic data with the parameters described in the Section 2.4.4, the Fig-
ure 3.7 and Figure 3.8 is created to see the changes of each magnitude between distributions
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with different parameters. In the Figure 3.7 we can see that both uniform and exponential
distributions have constant propensity. Their propensity stayed same after the change of the
parameters. For the uniform distribution, this behavior can be explained by the definition of
the uniform distribution given in the Section 2.4.4. In a uniform distributionU(0, a), all out-
comes within the interval (0, a) are equally likely. Therefore, regardless of the specific value
of a, the propensity of outcomes falling within the quantization threshold remains the same.
Because we are not changing the number of samples the distribution has instead we’re chang-
ing the range of values. However, as a increases, the range of possible values expands, leading
to higher magnitude values (mx). This is because there is a greater spread of values within the
distribution, some ofwhichmay be larger inmagnitude. For the exponential distribution as pa-
rameterλ increases the distribution becomesmore concentrated around zerowhich causesmX

to be larger. In general Pareto distribution has lower magnitude with higher propensity. And
the increment of the shape parameter θ resulted with higher magnitudes with higher propen-
sity. As θ increases, the distribution’s tail becomes heavier, leading topotentially extreme values.
However the expected outcome would be the decrease in propensity values.

Figure 3.8: Magnitude‐propensity plots form2 and p2 values of Uniform DistributionU(0, a), Exponential Distribution
Exp(λ) and Pareto Distribution Pa(θ)

On the other hand in the Figure 3.8 p2 remains constant in the uniform distribution and
exponential distribution just like in the previous case (p1). In the uniform distribution and
pareto distributionm2 have higher magnitude with less propensity which is an expected sce-
nario. However for the exponential distribution, unlike the uniform distribution, both m2

and p2 are higher thanm1 and p1. For the pareto distribution higher values of the shape pa-
rameter θ, both m2 and p2 are higher, indicating a higher likelihood of extreme values with
larger magnitudes since the tail of the distribution becomes heavier.
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3.2.2 Results of the Three Point Quantization

The results for three point distribution offers a comprehensive information into the risk quan-
tification. The values presented in the tables indicates the distribution of potential losses across
different magnitudes. Three distinctm values (m0,m1,m2) are given by their corresponding
probabilities (p0, p1, p2). Them values represent different levels of potential losses, while the
p values provide the probabilities associated with these loss values.

Date VaR m0 p0 m1 p1 m2 p2

9.08.2022 -16,616,850.79 0 76.00% -5,857,602.68 21.00% -17,136,050.75 3.00%
10.08.2022 -16,148,160.42 0 71.00% -5,353,215.68 24.00% -13,996,210.08 5.00%
11.08.2022 -13,481,350.94 0 72.00% -4,010,364.98 22.00% -10,466,383.81 6.00%

... ... ... ... ... ... ... ...
19.06.2023 -28,220,981.58 0 70.00% -9,374,225.23 25.00% -23,018,215.94 5.00%
20.06.2023 -28,507,001.52 0 71.00% -9,168,486.97 24.00% -22,617,174.73 5.00%
21.06.2023 -27,469,711.86 0 65.00% -7,433,802.8 28.00% -19,744,136.47 7.00%

Table 3.4: Three Point Distribution without constraint results

In the Table 3.4, representing the Three Point Distribution without constraint, several key
trends can be observed. The inclusion of the third magnitude m2 and its probability p2 ex-
pand the risk range. While the probability values form2 are relatively lower, they signify the
occurrence of even more extreme risk events that have a significant impact on the overall risk
assessment. In this casem1 values representing moderate risk by acted like a almost mean of
the negative values in the distribution.

Date VaR m0 p0 m1 p1 m2 p2

9.08.2022 -16,616,850.79 0 75.00% -5,363,846.0 22.00% -21,980,696.79 3.00%
10.08.2022 -16,148,160.42 0 71.00% -5,510,737.68 27.00% -21,658,898.1 2.00%
11.08.2022 -13,481,350.94 0 75.00% -4,981,025.38 23.00% -18,462,376.32 2.00%

... ... ... ... ... ... ... ...
19.06.2023 -28,220,981.58 0 71.00% -10,081,949.19 27.00% -38,302,930.77 2.00%
20.06.2023 -28,507,001.52 0 73.00% -10,302,648.16 26.00% -38,809,649.68 2.00%
21.06.2023 -27,469,711.86 0 69.00% -8,949,891.35 30.00% -36,419,603.21 2.00%

Table 3.5: Three Point Distribution with VaR constraint results

The values ofm2 in theTable 3.5 demonstrates a shift towards greatermagnitudes compared
to theTable 3.4. This shift is a direct result of the introduced constraint, which enforces amore
conservative perspective on extreme potential losses. It can be seen that increasement of the
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magnitude ofm2 did not shift the magnitude ofm1 so the general structure of the approach
still holds. In addition to the shift in magnitude, the probabilities (p0, p1, p2) in the Table 3.5
are adjusted to ensure that the probabilities align with the constraint while maintaining their
structure. There is no outlier seen from the table.

3.2.3 Comparison ofm1 andm2 with Value-at-Risk

Similar to two point distribution time series graphs are shown in the Figure 3.9 and Figure 3.10.
This time the graph hasm1 andm2 values with also VaR as before througout the business days.
Within this graph, several crucial elements are depicted for each business day.

Figure 3.9: Three point distribution without constraints time series graph

The Graph 3.9 reveals a clear trend in the behavior ofm1 andm2 values over time. Both
m1 andm2 generally follow a similar behaviour as the VaR values. This indicates that these po-
tential loss levels are sensitive to the market conditions and risk factors that are also impacting
the VaR. The graph also illustrates that, with the exception of four points,m2 values predom-
inantly remain below the VaR values. On the other hand, m1 appears to act as a moderate
risk indicator as previously stated. It generally follows the VaR trend but maintains a distinct
margin from it.

The most notable observation in the Graph 3.10 is the preservation of the trends in the
magnitudesm1 andm2. Unlike the two point distribution with constraints, where significant
fluctuations occurred due to the constraint implementation, the trends for bothm1 andm2

remain relatively stable in this graph. This stability indicates that the VaR constraint has not
induced major volatility in the potential loss levels. It can be seen that the VaR constraint has
successfully altered the relationship betweenm2 and the VaR.

48



Figure 3.10: Three point distribution with VaR constraint time series graph

3.2.4 Analysis of the original and new distributions

Similar to the Section 3.1.2, the original distribution and the VaR values presented with the
same logic as before. The smoothed probability density function curve retains its character-
istic bell shape. Additionally, the graph incorporates the points (0, 1 − p1 − p2), (m1, p1)

and (m2, p2) from the new distribution for each business day which corresponds to no loss,
moderate and extreme risk points, respectively.

Figure 3.11: Three point distribution without constraints PDF graph

It can be observed in the Figure 3.11 thatwhile them1 cluster forms a relatively compact and
concentrated group, them2 values exhibit slightly more variability within their cluster. This
indicates that the potential losses associated with m2 are more distributed than those ofm1,
considering a higher level of unpredictability.
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Figure 3.12: Three point distribution without constraints focused PDF graph

In the Figure 3.12, three point distributionwithout constraints focused PDF graph narrows
the analysis to thenegative segment of the smoothedPDFcurve, enabling a detailed exploration
of potential losses within the context of the three point distribution. So that the findings we
conclude before, such asm2 range, can be seen clearly. m2 values range between -7 million to
-25 million.

Figure 3.13: Three point distribution with VaR constraint PDF graph

The impact when introducing a VaR restriction to the three point distribution is shown in
the Figure 3.13. The range ofm2 values continues to reveal diversity, by considering different
potential loss magnitudes. However, a notable difference lies in the stability of the associated
probabilities. While these probabilities remain consistently low, the constraint has effectively
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confined their fluctuations. The characteristics ofm1 remain consistent, indicating moderate
risks.

Figure 3.14: Three point distribution without constraints focused PDF graph

In the Figure 3.14, an important transformation is observed in the (m2, p2) point. With the
constraint |m2| > |V aR|, the range ofm2 extends from -15million to greater than -40million,
showing an expanded span of extreme risk magnitude. This specific adjustment underscores
the impact of the constraint on the evaluation of extreme risk scenarios within the risk profile.
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4
Conclusion

The previous chapters provided clarity on many aspects of risk measurement, ranging from
traditional approaches to innovative approaches, as we explore the complexities of risk anal-
ysis and management. We have started out with better understand the Faugeras and Pagès’s
magnitude propensity approach by implementing on a real world dataset then experimenting
with the constraint implementation which was not mentioned in their paper. After having
the enough background, we created the extended version of Faugeras and Pagès’s paper, three
point quantization. The theoretical analysis is more complex than the two point quantization
however we achieved the sufficient conditions for the extended version we created. Before the
implementation of the real world dataset and the constraint experiments again implemented,
synthetic data of the uniform distribution, exponential distribution and pareto distribution is
conducted.

In this final chapter, we summarize our findings, offer perceptive explanations of the find-
ings, highlight the advantages and limitations of the suggested technique, and chart theway for
further research.

4.1 Interpretation of the results

The exploration of different risk quantification techniques has yielded useful information into
the financial risk world. The graphical analysis of the two point distribution, which is Faugeras
and Pagès’s work, illuminated a significant relationship between VaR values and (mX , pX)
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points. Since all of our analysis include VaRwe reveal a parallel trend and highlight the integral
role of VaR as a threshold for risk assessment. This trend further resonated in the two point dis-
tribution with two different constraint experiments. The experiments we conducted showed
that the mean and variance constraints broke the integrity of the new distribution. When we
added these constraints, the stability was disrupted, causing the distribution to fluctuate which
their effectiveness in risk assessment. An ideal risk measure should be intuitive, stable, easy
to compute, easy to understand, coherent and interpretable in economic terms (see [10]). It
means that small changes in model parameters should not produce large changes in the esti-
mated loss distribution and the risk measure. Therefore the constrained version is not an ideal
risk measure we are looking for.

The implementation of three point distribution resulted in smooth integration of (m1, p1)

and (m2, p2) points into the risk environment. The extended approach successfully created
and implemented to have the three point representation of the loss distribution. The subse-
quent exploration of the three point distribution with a VaR constraint reinforced the distinct
characteristics of extreme risk scenarios, as highlighted by the enhanced (m2, p2) points that
exceeded the VaR threshold. Unlike to the constrained version of two point distribution, the
extended version stayed stable showing an ideal characteristic of a risk measure. Moreover the
uniform distribution, exponential distribution and pareto distribution experiment allowed us
to assess how changes in distribution and also its parameters impacted the created riskmeasure.
As expected, both the uniform and exponential distributionsmaintained constant risk propen-
sity while exhibiting increased risk magnitudes as distribution parameters were altered. On the
other hand, the Pareto distribution displayed higher magnitudes with lower risk propensity.

4.1.1 Overlapping Rate

A fundamental criterion for assessing the effectiveness of risk measures is their stability over
time as mentioned in the beginning of the Section 4.1. A robust risk measure should consis-
tently capture the potential variability and uncertainties in a financial system. Thus we cre-
ated a statistical analysis that underscores this stability is the calculation of an ’overlapping rate’
among different magnitude measures.

This concept offers valuable information into the degree of alignment or convergence be-
tween various risk scenarios. Basically, the overlapping rate measures the extent to which adja-
cent magnitudes in a risk measure distribution intersect or overlap with each other. By quan-
tifying the percentage of overlapping between adjacent risk measures, we gain a deeper under-
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standing of how these measures behave within their respective ranges. For example, given a
distribution with multiple magnitude measures, such asm1 andm2, we can calculate the per-
centage of overlapping betweenm1 andm2, shedding light on their coherence and potential
range convergence. This analysis improves our understanding of the risk dynamics and helps
in assessing the reliability of risk measures.

Definition 4.1. Letm,n ∈ N, and letmn_values,mt_values be the list of points of the new
risk measure. Denote

R(mn_values) = range (min(mn_values),max(mn_values)) (4.1)

as the range ofmn.

The overlapping rate function, denoted OR(mn_values,mt_values), is defined as:

OR(mn_values,mt_values) =
∑

mt inmt_values δmt
(R(mn))

len(mt_values)
× 100 (4.2)

where len(mt_values) means the total number of values inmt_values.

The computed overlapping rate between m1 and m2 within the three point distribution
stands at %4.87. This indicates that there is amodest level of overlap between the adjacentmag-
nitudes ofm1 andm2. Such an overlapping rate implies that whilem1 andm2 shows some
degree of convergence within their respective ranges but they also retain a distinct separation.
This finding underscores the inherent dynamics of the risk scenario represented by the three
point distribution. Particularly, a higher overlapping rate could suggest a more clear conver-
gence, whereas a lower rate points to a greater difference between adjacent risk measures.

Intriguingly, the constrained three point distribution exhibits an overlapping rate of %0 be-
tweenm1 andm2. This result suggests a clear change from the three point distribution, indi-
cating a minimal to nonexistent alignment between these two adjacent magnitudes. The %0
overlapping rate underscores the impact of the imposed constraints, which appear to have led
to amore distinct and isolated behavior betweenm1 andm2. This outcomemay imply that the
constraints have effectively reduced the potential for convergence between these risk measures,
resulting in a more diversified distribution of outcomes.
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4.2 Strengthsandlimitationsoftheproposedmethod-
ology

The exploration of risk quantification approach introduced by the Faugeras and Pagès’ and
extending it with experiments revealed several notable strengths, as well as limitations. The
following arguments can be interpreted as strengths of the proposed three point quantization:

• ComprehensiveRisk Profiling: three point quantization approachprovides amore com-
plete view of risk profiles than the two point quantization by offering both moderate
and extreme risks. However both of them allow for a dynamic representation of risk
scenarios, considering bothmagnitude and propensity, thus enabling amore refined un-
derstanding of potential losses.

• Visualization: The visual representations offered by the graphs facilitate effective com-
munication of risk scenarios. The distribution of potential losses, VaR thresholds, and
the impact of various constraints can be easily understood.

• Identification of ExtremeRisks: The incorporation of constraints, such as the VaR con-
straint, sharpens the focus on extreme risk scenarios. This helps to identify the critical
risk thresholds and the assessment of vulnerabilities associated with unexpected events.

• Flexibility in Constraint Implementation: The methodology has successfully achieved
implementing the VaR constrained which providing the flexibility to align risk quantifi-
cation with particular business contexts.

However there are also some limitations that should be taking into account:

• Sensitivity to Data Quality: The accuracy of the risk quantification heavily relies on the
quality and completeness of the underlying data. Inaccurate or incomplete data may
lead to biased or unreliable results, affecting the integrity of risk assessments.

• Assumption Dependence: The methodology’s effectiveness is based on the appropri-
ateness of assumptions made during the distributional modeling. Deviations from real-
world conditions may impact the reliability of the information generated.

• Complexity of Interpretation: While the graphical representations improvesunderstand-
ing, interpreting the interactions of different points, thresholds, and constraints might
pose challenges theoretically, especially for non-experts in the field of risk management.
In the Section 2.4.3 we have encountered the challenge of mathematical computation
due to the complexity.
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Hence the proposed methodology presents a valuable framework for risk quantification, of-
fering comprehensive insights into risk environment and helping decision-making processes.
These information pave the way for future research directions aimed at refining and expanding
the applicability of risk quantification techniques.

4.3 Future research directions

Themethodology employed in this study opens up several promising paths for future research,
aiming to improve the robustness, applicability, andversatility of riskquantification techniques.

One of the most convenient direction is the extension to higher-dimensional. Building on
the foundation of the two point and three point distributions, a natural progression is the
exploration of higher-dimensional distributions. For instance, the incorporation of a five point
distribution could allow for a finer differentiation of risk scenarios. In this context, (m3, p3)

could representmoderate risks, while (m4, p4) could signify extreme the profit or loss scenarios.
This extensionwould offer amore refined and accurate representation of risk profiles including
profit scenarios. To be more clear the higher dimensional distribution can be defined as,

P Y = (1− p1 − p2 − p3 − p4)δ0 + p1δm1
+ p2δm2

+ p3δm3
+ p3δm3

(4.3)

where |m1| < |m2| and |m3| < |m4|.
Also another research can be implemented for the incorporation of external factors. Future

research could investigate the integration of external factors, such asmacroeconomic indicators
or geopolitical events, into the risk quantification framework. By accounting for these factors,
the methodology could provide a more comprehensive assessment of potential risk exposures,
improving the predictive power of the analysis.

Lastly adapting to contexts to specific industry might give a clear and specific aspect. The
methodology’s flexibility allows for adapting to specific industries and sectors. Future research
could focus on customizing the approach to address the unique risk scenarios of various sectors,
such as healthcare, energy, or technology.

In conclusion, the proposed methodology serves as a stepping stone for advancing the field
of risk quantification. By extending the approach to higher-dimensional distributions, incor-
porating external factors, and embracing innovative technologies, researchers can unlock new
insights and applications in risk analysis, ultimately empoweringdecision-makers tomakemore
informed and proactive choices in managing and mitigating risks.
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