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Abstract 

This study investigates the use of computer vision couples with artificial intelligence to detect 

mold in tomatoes during the drying process. 

Mold presence in tomatoes poses threats to human health and the food industry as it leads to 

several issues beyond appearance. It is primarily caused by fungi that spread rapidly over the 

tomato surface, compromising their quality, and potentially producing toxins that can harm 

human health. 

The experimental aim of this work focused on the issue of wastage and loss within the food 

industry. When tomatoes succumb to mold, they become unsuitable for consumption, resulting 

in a loss of food and resources. Considering that tomato production requires resources such as 

land, water, energy, and time, wasting tomatoes due to mold also represents a waste of these 

valuable resources. 

The goal was to evaluate the mold detection capabilities of an object detection algorithm, 

particularly in its early stages, to facilitate preventative measures. This experimental analysis 

entailed training the algorithm with an extensive array of images, encompassing a variety of 

healthy and spoiled tomatoes of different shapes, types, textures and drying stages. The chosen 

object detection algorithm, YOLOv7, is convolutional neural network-based and was utilized 

for image labeling and training epochs. Evaluation metrics, including precision and recall, 

were utilized to assess the algorithm's performance. 

The implementation of artificial intelligence in the future has significant potential for 

enhancing food production processes by streamlining mold identification. Prompt mold 

detection would expedite segregation of contaminated products, thus reducing the risk of toxin 

dissemination and preserving the quality of uncontaminated food. This approach could 

minimize food waste and resource inefficiencies linked to discarding significant product 

amounts. Furthermore, integrating computer vision in the HACCP (Hazard Analysis Critical 

Control Points) context could enhance food safety protocols via accurate and prompt 

detection. By prioritizing prevention, this technology offers a promising chance to optimize 

quality, efficiency, and sustainability of future food production processes. 
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Riassunto 

Il presente elaborato si propone di analizzare l'uso dell'intelligenza artificiale attraverso il 

riconoscimento di immagini per rilevare la presenza di muffa nei pomodori durante il processo 

di essiccazione. La muffa nei pomodori rappresenta un rischio sia per la salute umana sia per 

l'industria alimentare, comportando, anche, una serie di problemi che vanno oltre l'aspetto 

estetico. Essa è causata principalmente da funghi che si diffondono rapidamente sulla 

superficie dei pomodori. Tale processo compromette così la qualità con la conseguente 

produzione di tossine che possono influire sulla salute umana. 

L'obiettivo sperimentale di questo lavoro è il problema dello spreco e della perdita di prodotto 

nell'industria alimentare. Quando i pomodori sono colpiti da muffe, infatti, diventano inadatti 

al consumo, con conseguente perdita di cibo. Lo spreco di pomodori a causa delle muffe 

rappresenta anche la perdita di preziose risorse, utili alla produzione, come terra, acqua, 

energia e tempo. Il proposito è testare, anche nella fase iniziale, la capacità di un algoritmo di 

rilevamento degli oggetti per identificare la muffa, e adottare misure preventive. L'analisi 

sperimentale ha previsto l'addestramento dell'algoritmo con un'ampia serie di foto, tra cui 

pomodori sani e rovinati di diversi tipi, forme e consistenze. Per etichettare le immagini e 

creare le epoche di addestramento è stato quindi utilizzato YOLOv7, l'algoritmo di 

rilevamento degli oggetti scelto, basato su reti neurali. Per valutare le prestazioni sono state 

utilizzate metriche di valutazione, tra cui “Precision” e “Recall”.  

L'ipotesi di applicazione dell'intelligenza artificiale in futuro sarà un grande potenziale per 

migliorare i processi di produzione alimentare, facilitando, così, l'identificazione delle muffe. 

Il rilevamento rapido delle muffe faciliterebbe la separazione tempestiva dei prodotti 

contaminati, riducendo così il rischio di diffusione delle tossine e preservando la qualità degli 

alimenti non contaminati. Questo approccio contribuirebbe a ridurre al minimo gli sprechi 

alimentari e le inefficienze delle risorse associate allo scarto di grandi quantità di prodotto. 

Inoltre, l'integrazione della computer vision nel contesto dell'HACCP (Hazard Analysis 

Critical Control Points) potrebbe migliorare i protocolli di sicurezza alimentare grazie a un 

rilevamento accurato e tempestivo. Questa tecnologia potrà offrire, dando priorità alla 

prevenzione, una promettente opportunità per migliorare la qualità, l'efficienza e la 

sostenibilità dei futuri processi di produzione alimentare. 
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Chapter 1 – Introduction 

1.1  Tomatoes, history and production 

 

Tomatoes are a widely cultivated vegetable crop that has gained popularity in the last century. 

They are grown both in outdoor fields and greenhouses around the world. Tomato plants are 

highly adaptable, and two primary types of crops are grown: fresh market tomatoes and 

processing tomatoes. In recent decades, global production and consumption of tomatoes have 

significantly increased. In addition to their delicious taste, tomatoes are highly nutritious and 

serve as a rich source of vitamins A and C. Vitamin A is crucial for bone growth, cell division, 

differentiation, regulation of the immune system, and maintenance of the surface linings of 

various body structures, including the eyes, respiratory, urinary, and intestinal tracts. Vitamin 

C plays a key role in the formation of collagen, a protein that provides structure to bones, 

cartilage, muscle, and blood vessels. It helps maintain capillaries, bones, and teeth, and aids 

in the absorption of iron. Tomatoes are additionally a plentiful source of lycopene, an effective 

antioxidant preventing various forms of cancer. Cooked tomatoes and their products are the 

best source of lycopene as it is released during cooking. Nevertheless, both raw and cooked 

tomatoes are regarded as excellent sources of the antioxidant.1 

The tomato belongs to the Solanaceae family, which encompasses more than 3,000 species, 

including numerous economically important plants such as potatoes, eggplants, petunias, 

tobacco, peppers (Capsicum), and Physalis. From a botanical perspective, the tomato 

(Solanum lycopersicum L.) is classified as a fruit berry rather than a vegetable (Bergougnoux 

2013).  

The exact origins of the tomato are not completely clear, but it is thought to have originated 

in tropical regions of the Americas, possibly in Mexico or Peru. Some specialists propose that 

the cherry tomato may have been the precursor of our modern cultivated varieties. The term 

"tomato" has South American roots and comes from the Aztec word "zitomate" or 

"zitotomate." Native peoples in Mexico partook of the fruit known as "tomati." The tomato 

 
1 Source: Online interview written by Zvi Howard Wener, available via link Importance of the tomato (last 
access July 2023).   

https://www.agrisupportonline.com/Articles/importance_of_the_tomato.htm
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was probably brought to Europe from Mexico or Peru in the beginning of the 16th century. 

The small yellow tomato was brought to Spain by the Spanish conquistador Cortes after 

capturing Tenochtitlan, the Aztec city now known as Mexico City, in 1521. Later, the tomato 

was introduced to Italy via Naples, which was under Spanish control during that period  

(Bergougnoux 2013). The first known mention of the plant by European botanists can be 

traced back to Matthioli's Herbal (1554), where he reports that it had been recently introduced 

to Italy and was called pomi d'oro (golden apple) (Gould 1992).   

According to Andreas Matthioli, the tomato species has flattened and ribbed fruits that range 

in color from green to golden yellow and are sometimes consumed fried in oil with salt and 

pepper, akin to eggplant and mushrooms. Ten years later, Matthioli observes the existence of 

yellow and red tomato varieties. The Italian term for tomato, "pomodoro," appears to imply 

that the initial tomatoes to arrive in Italy yielded yellow fruit. In sixteenth and seventeenth 

century texts, the tomato is referred to by various names, including "mala aurea," the Latin 

equivalent of "pomodoro.”(Dominique Blancard 2012). The tomato gained popularity in 

France as the "pomme d'amour" (love apple) and was widely cultivated in Italy before 

becoming a curiosity in England and America. By 1623, there were four recognized tomato 

varieties: yellow, golden, red, and white (Gould 1992).   

In the Old World, the tomato was viewed with suspicion because of its association with other 

species of the Solanaceae family known to be poisonous, such as belladonna, nightshade, and 

mandrake, a plant with magical properties. The tomato was first grown as a decorative novelty 

and is still occasionally utilized for balcony adornment prior to its fruit being consumed. Its 

culinary use appears to have initially evolved in the form of sauces to enhance cooking. The 

consumption of tomatoes as a fresh fruit originated in the Mediterranean and then gradually 

expanded northward in the late 18th century (Blancard 2012).  
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 An Italian artist introduced the tomato to Massachusetts in 1802 but faced difficulties 

persuading people to give it a taste. The tomato remained relatively unfamiliar as a food in the 

United States until the period between 1830 and 1840 when its popularity started to skyrocket. 

This increasing demand led to the creation of new tomato varieties to satisfy the growing 

market. The number of varieties available to growers significantly increased within a few 

decades due to the introduction of European varieties and the development of new American 

ones (Gould 1992). 

Figure 1 - Map to show the possible expansion of the tomato crop worldwide (Blancard 2012). 

The tomato was not known in the Old World until the 16th century, and even during the 19th 

century, its use was limited. However, in the 20th century, it gained popularity as a star 

vegetable for commercial cultivation and home gardens alike. It is appreciated for its freshness 

and used in a variety of dishes, either raw or cooked, as a base or topping. The tomato is a 

traditional ingredient in sauces, particularly in Italy. Currently, tomatoes rank third globally, 

behind potatoes and ahead of onions, as one of the most widely consumed vegetables and one 

of the most popular garden crops. The global production of tomatoes has steadily increased 

throughout the twentieth century and significantly risen in the past three decades. In 1978, 

global tomato production was at 48 million tons. This figure increased to 74 million in 1992, 

89 million in 1998, and eventually peaked at 124 million in 2006. As of 2011, the worldwide 

production of tomatoes has approached nearly 160 million tons (Blancard 2012).   
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 Tomatoes are one of the world's most important crops, ranking seventh among key crops such 

as maize, rice, wheat, potatoes, soybeans, and cassava. Over the last twenty years, both tomato 

production and cultivation areas have doubled. While Europe and the Americas were the 

leading producers twenty years ago, Asia now dominates the tomato market. China, followed 

by India, the United States, Turkey, Egypt, Iran, Italy, Brazil, Spain, and Uzbekistan are the 

top producers. It is noteworthy that countries in northern Europe, where tomato cultivation is 

hindered by adverse climatic conditions and limited land availability, have the highest tomato 

yields. They primarily cultivate their tomatoes in artificial greenhouse environments.  

 

The increase in tomato production in recent years is primarily attributed to the rising demand 

for tomatoes. As of 2009, the typical yearly tomato consumption per person was 20.5 kg. 

Libya, Egypt, and Greece are the top three countries with the highest tomato consumption 

rates, exceeding 100 kg per person per annum. Generally, the countries that have the highest 

tomato consumption are those in the Mediterranean and Arabian regions. On average, these 

countries consume between 40 and 100 kg of tomatoes per person per year (Bergougnoux 

2013). The demand for tomatoes is projected to continue growing due to various factors, such 

as the increase in the human population, the capability of tomatoes to be transported over long 

distances without spoilage, the advancements in breeding new types of tomatoes, and the 

evolving dietary preferences of consumers that incline towards this vegetable (Blancard 2012).

Figure 2 - Production of the nine leading producers in 2011 
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1.2 Growing tomatoes  

Crop production depends on factors beyond soil quality, all of which must be met to achieve 

cost-effective yields.  Tomatoes are no exception, as their production is heavily influenced by 

factors such as plant vigor, insect management, and climatic conditions. The encouraging 

news is that most of these variables can be influenced or controlled by human intervention in 

tomato cultivation. The success of tomato cultivation ultimately depends on the growers and 

their effective methods. The selection of suitable fields, careful land preparation, and diligent 

planting and cultivation practices typically result in a successful harvest (A. Gould 1992).  

1.2.1 Climate and geography  

The tomato plant, a sub-tropical species, is highly susceptible to frost and flourishes in warmer 

seasons. It's typically grown during the summer, with a temperature range of about ±18°C to 

±30°C ideally supporting its growth. Nonetheless, these numbers act as approximate 

recommendations; for more specific information, it is crucial to ensure the night temperature 

never drops below 12°C. Persistent exposure to temperatures below the minimum threshold 

during fruit development can result in multiple physiological disorders. The same principle 

applies for tomato's maximum temperature tolerance. To avoid sticky pollination and 

decreased fruit set, it is recommended that the average maximum temperature does not surpass 

32°C, particularly during early morning pollination.  Hence, the evaluation of temperature 

effects requires consideration of qualitative aspects rather than relying solely on a numerical 

value. While an average determinate tomato plant requires over 3.5 months to grow and yield 

profitable outcomes, it is important to note that high humidity and elevated temperatures can 

promote rapid vegetative growth and increase susceptibility to diseases, leading to lower 

yields. It is worth noting that these responses are linked. On the other hand, in windy, warm, 

and dry climates, blossom drop occurs, causing a significant decline in yields. Daylight length 

does not significantly affect tomato plants. However, it is noteworthy that longer days and 

higher average temperatures lead to better quality and an increased number of fruits per cluster. 

Tomatoes cultivated under higher light intensity levels have been found to have a more 
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flavorful taste due to higher ascorbic acid content. Additionally, light intensity affects the color 

of tomatoes, with higher intensity resulting in a greater concentration of carotene in the fruit.2.  

1.2.2 Field selection 

The first step in tomato farming involves selecting the appropriate field, as this decision 

significantly minimizes the likelihood of future issues. The chosen area should be relatively 

even to allow for proper drainage. Ideal conditions call for fields that are level, with consistent 

soil composition, well-draining sandy loam, and adequate wind shelter. Conversely, low-lying 

fields with dense soil are less favorable for direct seeding. To reduce mechanical equipment 

maneuvers, the shape and size of the field should involve minimal turns. This consideration is 

especially important when using mechanical harvesting methods. Row lengths less than 200 

yards impede harvester effectiveness, while longer rows ease fruit collection, harvesting, and 

field clearing. Ideally, the tomato field selected for harvesting should have minimal or no 

stones and large soil clods, as well as a balanced organic matter content. Fields with high weed 

populations should be avoided to prevent equipment jams and halting of the harvesting 

process. Measures should be taken to eliminate excessive moisture caused by stagnant water 

in the field (Gould 1992).  

1.2.3 Soil selection  

Tomatoes are highly versatile plants, capable of adapting to a variety of soil types. However, 

some soils are better suited for optimal tomato growth. Typically, soils with high levels of 

organic matter produce superior yields 3.  

Among various soil types, loam is considered the optimal choice for planting tomatoes. Loam 

is a well-balanced mixture of sand, silt, and clay making it a perfect option for tomato 

cultivation. The soil's ability to retain and drain water efficiently offers many benefits. 

Additionally, incorporating organic matter, like manure, further improves the suitability of 

loam by providing essential nutrients to the plants and enhancing soil composition. Organic 

 
2 Source: Online interview written by Antonious Lecuona on 6th May 2016, available via link Basic horticulture 

of growing tomatoes (last access July 2023).  

3 Source: Official website of GrowFoodEasily via link How to grow healthy tomatoes  (last access July 2023).  

https://www.horticulture.org.za/field-grown-tomatoes/
https://www.horticulture.org.za/field-grown-tomatoes/
https://growfoodeasily.com/how-to-grow-healthy-tomatoes/
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matter, such as decayed leaves, compost, sawdust, or animal manure, can improve soil water 

and nutrient retention, promote root growth, and aid water and air infiltration. Composted 

manure is especially beneficial for growing tomatoes since it has lower nitrogen levels, 

reducing the risk of root burn (Starke Aires 2019).  

Although tomatoes are capable of growing in clay soil, it presents several challenges. Clay 

soil has a tendency to retain water excessively and exhibit higher alkalinity compared to other 

soil types. As tomatoes thrive in slightly acidic conditions (around a 6 to 6.8 pH level), clay 

soil may not be the most ideal choice. Another suitable option for tomato cultivation is silt 

soil; however, it shares similar downsides to clay soil due to its water-retaining properties. 

However, adding organic material to silty soil can alleviate its drainage constraints 4.  

For successful tomato cultivation, the soil must facilitate adequate root development to sustain 

the plant, provide water, oxygen, and mineral nutrients, and be devoid of harmful elements. 

The pace of root growth is determined by the soil's compaction or bulk density, which differs 

by soil type and location. Tomato plants, both above and below ground, flourish in well-

aerated soil. Root density is at its highest in places with optimal oxygen diffusion rates. When 

soil moisture and plant conditions are optimal, tomato plants can develop extensive root 

systems, reaching depths of up to 4.9 feet and expanding in width based on plant spacing. 

Encouraging early root development is crucial since most root growth occurs before fruit set 

(Starke Aires 2019).  

1.2.4 Land preparation 

Soil preparation is essential for maximizing the profitability of tomato farming. The primary 

goal of initial soil preparation is to establish optimal growing conditions for tomato plants, 

which will allow them to develop a healthy root system within a specific soil profile. The 

advantages of soil preparation are plentiful. It permits unobstructed root growth, lessens the 

possibility of compression, enhances oxygen levels in the soil, fosters superior root growth, 

raises yields, reduces production expenses, promotes vegetative growth, enhances drought and 

 
4 Source: Official website of GrowFoodEasily via link How to grow healthy tomatoes  (last access July 2023).  

https://growfoodeasily.com/how-to-grow-healthy-tomatoes/
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stress tolerance, diminishes the frequency of root diseases, elevates water retention, and 

improves the absorption of moisture and nutrients (Starke Aires 2019).  

One technique for readying the soil is autumnal ploughing, which allows for complete 

decomposition of roots and other organic matter within the soil. Ideally, established cover 

crops should be left undisturbed during autumnal ploughing in order to achieve satisfactory 

results. The land that has been ploughed in the fall should not be disturbed until spring or 

alternatively be sown with a winter cover crop that will not hinder early spring preparation 

and planting. If the land remains unplugged until spring, it should be ploughed as soon as the 

soil is dry, avoiding any work on wet soil. Tilling wet heavy clay soils can cause significant 

physical damage. Ploughing should be performed as deeply as the soil allows, gradually 

increasing the depth by 1.27 cm each season until reaching a minimum depth of 20 cm. This 

gradual increase in ploughing depth over time enables the deepening of the fertile cropping 

soil layer without affecting current crops (Gould 1992).  

For best outcomes, it is ideal to apply manure before plowing. Alternatively, finely textured 

and well-decomposed manure can be broadcasted after plowing at a rate of 6 to 8 tons per 1 

acre and incorporated into the soil by disking. Higher quantities like 10 or 12 tons can be 

utilized without any detrimental effects, particularly in instances where the organic content in 

the soil is low, and plant nutrients are deficient. However, caution must be exercised when 

applying manure on heavily manured soils or soils with high organic content, as excessive 

vine growth may occur at the expense of fruit set. (Adekiya e Ojeniyi 2002).  

Post-plowing land preparation for tomato planting requires a higher level of thoroughness 

compared to general farm crops. The topsoil should be well pulverized to a depth of 7.62 cm 

to 10.16 cm before setting the plants (Cubero e Baquiran 2017).  

When preparing the soil, it is crucial to take into account its pH level. The appropriate pH 

range for growing tomatoes is moderately acidic, between 6.0 and 6.8. If the soil is highly 

acidic with a pH of 5.0 or below, it is necessary to apply lime before planting tomatoes. Lime 

serves as a soil conditioner, decreasing acidity created by nitrogen (N) fertilizers, slurry, and 

heavy rainfall. Studies have proven up to a 50% growth in yield when liming highly acidic or 

calcium-deficient land for growing tomatoes. In fact, soils with a pH of 5.0 or lower greatly 

benefit from the application of 1 to 2 tons of finely ground limestone (Gould 1992).  
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1.2.5 Important tomato soil nutrients and fertilizers 

The growth of tomatoes is influenced by three essential nutrients: nitrogen, phosphorus, and 

potassium (potash), alongside minor nutrients like calcium, magnesium, sulfur, and trace 

elements such as boron and manganese. Nitrogen plays a significant role in crop quality. 

Sufficient nitrogen is necessary to generate proper foliage to shield fruit from excessive 

sunlight exposure. Additionally, nitrogen influences the crop's maturation phase. Early in the 

season, if there is an excess of readily available nitrogen, the plant may become too vegetative, 

leading to delayed fruit setting and maturity. It is advisable to avoid late nitrogen treatments 

to prevent prolonged growth, late fruiting, and split sets. Phosphorus is crucial in tomato 

fertility programs due to its diverse effects on fruit quality.  It facilitates robust root 

development, resulting in higher utilization of nutrients from the soil, and enhances plant 

efficiency by producing sturdy stems and healthy foliage. Fertilizer-derived phosphorus leads 

to a greater yield in a short growing season than in a prolonged growing season because the 

plant has more time to absorb slowly accessible phosphorus from the soil. We discovered the 

highest concentration of phosphorus in the top leaves and fruit of the tomato plant. Potassium 

is absorbed and utilized by the plant in abundance. During the vegetative stage, the 

concentration of potassium in the leaves is greater (around 3 to 4%), but it diminishes 

throughout the fruiting period.  It is essential for glucose metabolism, translocation, nitrogen 

metabolism, protein synthesis, and stomatal movement, which helps regulate water in plants. 

Inadequate potassium results in insufficient lycopene formation in fruit. High temperatures 

can cause the fruit to sunburn and deteriorate prematurely. Therefore, sufficient and optimal 

potash fertilization is crucial to producing high-quality fruit. Calcium, magnesium, and sulfur 

are essential micronutrients. Calcium and magnesium serve a dual purpose in the soil – 

neutralizing soil pH and acting as essential plant nutrients. Magnesium, in particular, is crucial 

in chlorophyll synthesis, while sulfur is vital for overall plant development. Iron, boron, 

manganese, copper, and zinc are trace elements that are recognized as vital for plant growth. 

Both boron and manganese are also necessary, but only in minute quantities (Gould 1992).  

A thorough soil analysis should be performed to identify the ideal type and amount of 

fertilizer. This study expands our understanding of soil composition and offers practical 

recommendations for future fertilization. While tomatoes tend to respond positively to 

significant fertilizer applications, excessive use can cause problems. Commercial fertilizers 
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typically consist of a blend of three essential nutrients in varying proportions. Currently, the 

most prevalent practice is to fertilize prior to plowing. Nevertheless, fertilization for 

mechanically harvested tomatoes should differ from that of hand-harvested tomatoes. 

Fertilization significantly influences the consistency and rate of tomato maturity. For instance, 

nitrogen plays a critical role in regulating tomato maturity consistency and timing (Gould 

1992).  

The nitrogen demand for an entire growing season can range from 13 to 45 kilograms per 0.40 

hectare, depending on tomato cultivar, soil type, previous crops, and soil fertility. 

Additionally, nutritional requirements differ among different plant growth phases. Nitrogen is 

highly needed during the first 0-5 weeks of vegetative development, while the blooming period 

requires an increase in potassium needs from 6 to 12 weeks. Finally, the need for calcium and 

magnesium is significant during the 12-20 week period that includes fruit set and filling 

(Starke Aires 2019).  

1.2.6 Planting and cultivation  

The decision of when to plant tomato plants or sow them directly in the field is dependent on 

weather and soil conditions. Various factors, such as geographical and climatic circumstances, 

transplanting or direct sowing methods, and mechanized or hand harvesting, must be taken 

into account when selecting the optimal planting period. The most crucial consideration, 

however, is temperature stability. Planting should commence when the soil temperature has 

remained at 14°C or higher for three consecutive days. Early plantings exhibit slower seed 

development rates, whereas later plantings experience accelerated growth, enabling seedlings 

to progress from the cotyledon phase to the first true leaf stage within a day or two. The 

duration from emergence to harvest, generally around 125 days, facilitates steady and 

consistent harvests, contingent on the crop variety cultivated. A wide range of precision 

planters for direct seeding with uniformly spaced seed distribution within rows are now 

commercially available. It is recommended to sow seeds directly, spacing them every 20 to 25 

centimeters in groups of 4 to 7 seeds, while maintaining rows that are 1.5 to 1.8 meters apart. 

This corresponds to a seeding rate of approximately 226 grams of seed per 0.40 hectares 

(Gould 1992).  
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Transplanting involves carefully moving young, immature tomato plants from their original 

locations to areas where their growth and ultimate maturity will benefit producers and 

processors. Even under ideal circumstances, transplanting can cause severe stress to the plants. 

It is crucial to begin sowing seeds 6 to 8 weeks after the area's anticipated last frost date, as 

the ground must be warm enough when the tomato plants are placed outside to ensure their 

survival. Only strong and well-developed plants should be selected for transplantation. It is 

recommended to adequately hydrate the soil in which they are grown before removing them 

from the bed. The use of phosphate-rich starting solutions during transplantation may provide 

benefits.5.  

Weed control is a key objective in tomato gardening as some weeds associated with tomato 

plants can spread diseases. Hence, it is crucial to prevent them from invading the tomato crop 

and remove them from neighboring lands. Mechanical cultivation, in combination with 

chemical control measures, can achieve effective weed control. Additionally, cultivation 

loosens compacted soil, increasing its permeability to water and facilitating the release of plant 

nutrients by soil microorganisms, thus enhancing crop growth (Gould 1992).  

1.2.7 Irrigation 

Providing a proper water supply to tomato plant roots is essential for optimal growth. 

Objective scheduling of water supply is critical. Both under and over-irrigation can devastate 

the crop, highlighting the need to irrigate at optimal intervals. Superior crop growth can be 

achieved through deep, thorough irrigation as opposed to short, frequent watering periods. 

This can be accomplished via drip or flood irrigation technologies, which are less prone to 

foliar diseases compared to overhead irrigation. The required water amount varies based on 

weather conditions. Tomatoes require approximately 25mm of water weekly during colder 

months, which may increase to 50mm during extremely hot, dry and windy conditions. 

Nevertheless, it is crucial to refrain from irrigating the crop towards the end of the season to 

avoid fruit rots and cracks once the crop has matured considerably (Starke Aires 2019).  

Tomatoes are prone to flood damage, so it is recommended to moisten the root zone during 

watering or irrigation, especially from the start of flowering until the final harvest. Quick 

 
5 Source: Official website of GrowFoodEasily via link How to grow healthy tomatoes  (last access July 2023). 

https://growfoodeasily.com/how-to-grow-healthy-tomatoes/
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furrow irrigation is advised to reduce soil erosion and promote healthy fruit growth. It is 

recommended to irrigate the plants 4-5 times between transplanting and 14 days before the 

final harvest. Sprinklers may be used when surface irrigation is unavailable, delivering one 

liter of water per hill each week (Cubero e Baquiran 2017). Irrigation is imperative to ensure 

uniform fruit maturation and should be readily accessible for the entire tomato field as needed. 

Inadequate water availability can hinder achieving consistent fruit maturity. Water is primarily 

necessary for maintaining overall plant health once the fruits have attained the appropriate size 

(Gould 1992).  

1.2.8 Harvesting  

One of the most essential parts of crop cultivation is harvesting. This, like all the other stages 

of tomato growing seek for maximum output and quality (Gould 1992). Because tomato 

cultivation provides income for many rural and peri-urban farmers in most of the world's 

impoverished countries, it's crucial to make the crop profitable while attempting to lower 

losses, which can surpass 42% worldwide.  Harvesting is one of several variables that affect 

tomato loss rates. Thus, it is crucial to employ sound agronomic harvesting techniques and to 

be able to identify the optimal time for harvesting. Harvesting is one of the most complex 

stages of the tomato growth process (Arah et al. 2015). 6 

Tomato fruit harvesting starts 15-20 days after flowering and takes place at weekly intervals 

depending on market need. Processing tomato harvesting begins in the latter decade of July 

and the first decade of August and lasts until the end of September. Tomatoes can be harvested 

in three stages: ripe red (harvested when the fruits are already red. This is the best time to 

harvest for home consumption); ripe green (harvested when the fruits begin to show cream-

colored streaks at the flower tips. This is applicable for far markets); and pink (when the flower 

end turns pinkish or reddish. This is applicable to the close market) (Cherrybel O. Cubero e 

Prisca B. Baquiran 2017; Londini et al. 2010).  

The first option is to let the tomatoes ripen on the vine.  They can grow to full maturity and be 

harvested at their peak when their color has fully developed, either red, yellow, or orange, 

 
6 Source: Official website of The Sage – Gardenuity Blog via link: Harvesting tomatoes: the complete guide (last 

access August 2023).  

file:///C:/Users/hp/Zotero/storage/MJ7Y6WFF/harvesting-tomatoes.html
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depending on the type, and the color has spread throughout the entire tomato. In addition, the 

texture should be firm. This practice results in higher quality since fruits allowed to fully 

develop on the plant have more flavor than those harvested prematurely. Certain types, like 

cherry tomatoes, have a tendency to split if left on the plant, resulting in premature spoilage. 

Therefore, they should be harvested as soon as they begin to turn red, rather than waiting for 

the peak of redness. 7 It is important to note that as tomatoes ripen, they become more 

susceptible to bruising. Instead of dropping them, pickers should delicately place the fruits in 

picking containers to avoid injury. Studies have shown that a 15-centimeter fall on a hard 

surface can cause internal injuries that are not visible until the tomato is opened. External 

bruising occurs when pickers transfer tomatoes aggressively from picking buckets to empty 

bins. Overcrowding the bins should be avoided, as too much weight can cause compression 

damage. Best practices for hand-picking also involve refraining from burning while waiting 

for pallets to be unloaded at the packinghouse and avoiding harvesting wet tomatoes, as 

surface moisture increases heat accumulation in the load and encourages disease growth 

(Kelley e Boyhan 2010).  

The second option is to gather tomatoes when green and allow them to mature in a domestic 

environment. This practice is commonly carried out under certain conditions such as 

temperatures above 30°C, sub-15°C temperatures, or industrial-scale conditions. Tomatoes are 

called "ripe green" when they have reached normal size and are showing signs of color 

development, based on their particular variety. As the coloring process begins at the base, it is 

essential to recognize and gather it at the point where the color alteration takes place in this 

area. 8 

Growers frequently take a representative sample of fruit from their fields and open it to check 

it internally because the ripe green stage is difficult to judge superficially. A normal mature 

green tomato has a gelatinous matrix throughout, and the seeds have grown enough that they 

do not be damaged when the fruit is sliced with a sharp knife (Kelley e Boyhan 2010). 

Furthermore, mature green tomatoes should be stored below a cover of CaC2+ polyethylene 

 
7 Source: Official website of The Sage – Gardenuity Blog via link: Harvesting tomatoes: the complete guide (last 

access August 2023). 

8 Source: Official website of The Sage – Gardenuity Blog via link: Harvesting tomatoes: the complete guide (last 

access August 2023).  

file:///C:/Users/hp/Zotero/storage/MJ7Y6WFF/harvesting-tomatoes.html
file:///C:/Users/hp/Zotero/storage/MJ7Y6WFF/harvesting-tomatoes.html
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to promote early ripening and color development while preserving the fruit's physicochemical 

quality throughout storage and marketing (Khandaker et al. 2009).  

It is crucial to bear in mind that even at the mature green stage, tomatoes are susceptible to 

mechanical damage. As a result, harvesting personnel should be instructed and supervised to 

ensure tomatoes are carefully handled when placed in containers (Brar e Danyluk 2013).  

Although handpicking and handling tomatoes was prevalent in the 1950s, it is now considered 

obsolete, with only a few small family enterprises still doing so. Handpicking tomatoes is a 

time-consuming procedure that requires physical effort, ability, and expertise since employees 

must be able to select ripe tomatoes and handle them carefully to prevent injury (Gould 1992). 

Handpicking tomatoes starts by identifying ripe tomatoes based on their color, size, and shape. 

Ripe tomatoes are usually red or orange and can be easily recognized by their tender texture. 

It is important for workers to be efficient and able to promptly identify these characteristics. 

They must use the "snap and pull" method to carefully pick ripe tomatoes from the vine. This 

method involves pulling the tomato off the vine with one hand while holding the vine with the 

other to ensure that the tomato is not damaged. It is necessary to remove the tomato from the 

vine by breaking the stem directly above the calyx or "cap" where it attaches to the stem. After 

harvesting, the tomatoes should be sorted according to size and quality. It is important to be 

able to identify any damaged or diseased tomatoes in order to discard them as unsuitable for 

consumption. 9 

Tomatoes were primarily harvested by hand in Georgia in 2010, with varying procedures 

employed by producers. There were no subjective evaluations given in the text. Ripe green 

tomatoes were frequently collected in polyethylene buckets, transported on a platform trailer, 

and then dumped into plastic bins holding 360 to 550 kg of fruit. Upon loading all the bins, 

they were transferred to a centralized packing station where the fruit was cleaned, sorted, and 

packaged (Kelley e Boyhan 2010). The nutritional content and shelf life of fruits are affected 

by their harvesting stage. Anju-Kumari et al. (1993) noted that harvesting tomato cultivars at 

the ripe green stage extended their shelf life, thus reducing fruit and vegetable loss. To 

minimize loss during distant sale, it is recommended to pick tomatoes when they are at the 

 
9 Source: Official website of Ablison via link: How are tomatoes harvested? (last access August 2023).  

file:///C:/Users/hp/Zotero/storage/4LBD6T26/how-are-tomatoes-harvested.html
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ripe green stage, and when meant for immediate consumption, at full maturity. (Khandaker et 

al. 2009).  

Despite this, hand picking tomatoes is time-consuming, inefficient, and impractical for large-

scale planting. Given the rising labor costs, automated harvesting has emerged as a potential 

option over the years. Interest in mechanized tomato harvesting increased during the 1960s. 

Some reasons for opting for mechanical harvesting include a shortage of affordable labor for 

manual picking, the necessity for mechanical and automated harvesting, efficient coordination 

of field and factory operations in a high-speed system, the agricultural machinery industry's 

curiosity in developing, producing, and operating such machinery, the introduction of novel 

cultivars adapted to one-time harvesting procedures, enabling in-field fruit preservation, and 

alterations in cultural practices (Wang Lil et al. 2017; Gould 1992).  

Mechanized harvesting is a method utilized by large-scale tomato farmers to increase 

efficiency and decrease costs. The use of mechanized tomato harvesting provides significant 

advantages for both producers and processors. Firstly, there is a notable reduction in labor 

costs. Secondly, provided that the weather allows, the machine can operate around the clock. 

Thirdly, machine harvesting is considerably less costly than manual harvesting, and, if 

executed correctly, the equipment can be paid off in three years or less. Fourthly, machine 

harvesting permits the management of detached tomatoes and reduces damage to the harvested 

fruit overall. 10 A cultivar requires a minimum of six key features in order to facilitate 

mechanical harvesting. The fruits must mature simultaneously to ensure optimal production; 

excessive foliage on plants cannot guarantee a high yield. The tomato stem must be completely 

intact. Additionally, tomatoes must be solid and resistant to cracking, possess good in-field 

storage potential after harvest, and remain impervious to mechanical damage (Gould 1992).  

 
10 Source: Official website of Ablison via link: How are tomatoes harvested? (last access August 2023). 

file:///C:/Users/hp/Zotero/storage/4LBD6T26/how-are-tomatoes-harvested.html
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Mechanized harvesting is a process that utilizes advanced machines to pick and sort tomatoes 

by size and quality. Various harvesting machines exist, each with unique characteristics and 

capabilities, but they all operate under the "one-time" principle, where the entire plant is cut 

and moved to the harvester, and the fruits are subsequently harvested. Consequently, the 

farmers cannot return immature fruits during the harvesting period. As a result, in order to 

avoid a substantial loss of their crop, tomato producers need to ensure that over 85% of the 

field is ripe for harvesting simultaneously. All mechanical tomato harvesters comprise four 

key components: a harvesting mechanism, an area in which to separate the fruit and vine, a 

section for manual sorting, and a mechanism for loading or unloading containers (Gould 

1992).  

In most cases, the harvester cuts the vine at or near ground level. The shoots and any loose 

fruit that has fallen to the ground are gathered on the machine's feed belt by the collecting 

discs rotating in the opposite direction. Loose fruit and dirt clods are then separated on the 

grooved chain and placed on separate sorting belts. On each belt, automated or manual dirt 

and color sorters ensure that all healthy fruit is retrieved, while discarding any unhealthy 

produce. The field is scattered with discarded fruit and mud clumps. Simultaneously, conveyor 

belts transport fruit-laden vines to another mechanism that induces a shaking motion, 

separating the fruit from the vine. The fruits are separated and transported to a conveyor 

situated below the shaking device. This conveyor delivers and distributes the fruit to sorting 

belts located on either side of the machine, where sorters remove rejects and undesired fruits. 

Figure 3 - The main systems on board a self-propelled harvester for processing tomatoes 

(Tecnologie e meccanizzazione: I segreti del pomodoro da industria) 

https://agronotizie.imagelinenetwork.com/agrimeccanica/2023/03/22/tecnologie-e-meccanizzazione-i-segreti-del-pomodoro-da-industria/78280
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To prevent human sorting, modern machines utilize electronic color sorters that can be 

calibrated to any sorting level. Usable items are directed to a communal discharge conveyor, 

while discarded vines are expelled onto the field behind the machine  (Gould 1992).  

To enable efficient crew work and prevent unnecessary sorting, the harvester operator must 

regulate the machine's pace along the rows. Each harvester is equipped with a variable that 

enables the operator to minimize fruit loss per acre. The sorting crew or operators of the 

machine's automated color sorter are arguably the most crucial aspect of harvester operation. 

It is imperative that these individuals are trained on how to sort and what to sort. Excessive 

sorting or removal of high-quality fruit can lead to a loss of earnings and inefficient use of 

harvesters. On the other hand, inadequate sorting can incur costs for both the farmer (by having 

to re-circulate wasted loads) and the processor (due to the costs of re-sorting). To avoid such 

expenses, sorting employees need to be trained to identify and eliminate flaws such as scald, 

mold, faulty fruit (insects, illness, fractures, and so on), and fruit of unsatisfactory color (Gould 

1992).  

However, declining agricultural labor productivity and concerns over global food security 

have been exacerbated by several factors, including rapid climate change and a shrinking 

workforce due to an aging population.  This problem is leading numerous countries and 

enterprises to invest in smart farming, which merges information and communication 

technologies with conventional farming equipment and infrastructure to move away from 

Figure 4 - Schematic of operation of the electronic sorter on board self-propelled harvesters 

(Tecnologie e meccanizzazione: I segreti del pomodoro da industria) 

https://agronotizie.imagelinenetwork.com/agrimeccanica/2023/03/22/tecnologie-e-meccanizzazione-i-segreti-del-pomodoro-da-industria/78280
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labor-intensive agriculture and enhance the competitiveness of the agricultural industry. The 

smart farm employs advanced farming technologies to optimally maintain, manage, and 

monitor the growing environment. However, technology for facility monitoring and 

management alone will not be enough to tackle the imminent shortage of competent human 

resources needed to perform professional agricultural tasks, such as harvesting. Therefore, 

there has been growing interest in next-generation smart farm technology which utilizes 

artificial intelligence (AI) and robots, to alleviate the labor shortage problem by automating 

agricultural operations that require intensive labor. Harvesting is a challenging activity to 

automate in reality, and as a result, many robotic harvesting systems have been developed over 

the last decade in response to the increasing demand. For instance, in 2015, Panasonic 

introduced a robot equipped with pulling hands to pick grape and cherry tomatoes (Kim et al. 

2022).  

Kyoto University developed a tomato harvesting robot equipped with a 5-degree-of-freedom 

(DOF) manipulator. Meanwhile, Okayama University created a 7 DOF robot that incorporates 

a motion system, vision system, end effector, manipulator, and control system. Subsequently, 

a new tomato harvesting robot was introduced, featuring a vision system, manipulator, control 

system, and rotating arm. The time lapse from identification to launch averaged around 15 

seconds for each tomato, yielding a success rate of 50% - 70%. The robots use tomato surface 

color detection, assessed by the vision system, to selectively choose ripe tomatoes. However, 

the robots' poor reaction time, awkward movement, and algorithm restrictions are primary 

issues that can be affected by light and ambient conditions, making it difficult to detect 

overlapping fruits. A 2017 study conducted by Beijing University in China developed a robot 

for harvesting ripe tomatoes in a greenhouse. Equipped with a binocular vision system, the 

robot recognizes ripe tomatoes with an accuracy rate of 99.3% and launches the picking 

process in approximately 15 seconds per tomato. The success rate of the system is 86% (Wang 

Lil et al. 2017).  

New research and technical advancements are occurring; thus far, robotic harvesting systems 

have proven a propitious technology in the past decade and will be increasingly so in the era 

of deep learning and artificial intelligence (Kim et al. 2022).  

 



23 

 

1.3  Tomato processing  

 

Tomatoes are a vital crop for fresh vegetables and the production of numerous processed 

products. Around 80% of fresh tomatoes in developed nations are used for processing. In 2017, 

each person in the United States consumed 9.2 kg of fresh tomatoes and 33.2 kg of processed 

tomato products. Canned tomatoes are the most popular canned vegetable in the United States. 

Sauce and ketchup are the most and second most famous condiments in that order. Also, each 

year, the global tomato processing business deals with approximately 40 million tons of 

tomatoes (Dr. S Azam Ali 2008; Wu, Yu, e Pehrsson 2022; Liadakis et al. 2022).  

The transformation of tomatoes into products meant to last the entire year has origins dating 

back to ancient times due to their brief growing season. Tomatoes sliced and sun-dried, or 

pressed and boiled down, have been present in rural areas since the 18th century. Nevertheless, 

it was only in the second half of the nineteenth century that the processing of vegetable 

preserves, starting with artisanal and later industrial methods, increased in the Parma region, 

accompanied by a shift in dietary preferences. Currently, major canning firms, which are 

leaders in their respective market sectors, use time-tested processing procedures and 

technologies to process large amounts of food. 11 Specifically, the aim is to lengthen the shelf 

life of fresh produce, make out-of-season products available (e.g., canned tomatoes), create 

products suited to home consumption (e.g., tomato ketchup), produce new food items with 

alternative, integrated flavor, and texture (e.g., sauces, soups) that have better nutritional 

properties and ultimately add value for consumers (Esra Capanoglu et al. 2010).  

It is crucial to note that high quality "salad" tomatoes are not processed, as they are more 

valuable when sold fresh and in good condition. Salad tomatoes are exclusively utilized in 

home settings to preserve surplus during the harvest season. Tomatoes should be ripe, red, and 

moderately firm to the touch, disease-free (by removing affected areas), and free of stems, 

leaves, dirt, and other contaminants (by washing). It is possible to store unripe fruits for later 

consumption. The presence of surface stains or splits/cracks on tomatoes (assuming they are 

not diseased) is of less importance since they are typically sliced or processed in most cooking 

 
11 Source: Official Website of Parma, I musei del cibo via link: Le fasi della trasformazione industriale del 

pomodoro (last access August 2023).  

https://pomodoro.museidelcibo.it/il-prodotto/caratteristiche/fasi-trasformazione-industriale-pomodoro/
https://pomodoro.museidelcibo.it/il-prodotto/caratteristiche/fasi-trasformazione-industriale-pomodoro/
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processes (Dr. S Azam Ali 2008). The quality of a tomato product is determined by the color, 

which is influenced by the redness of the tomatoes used. The red pigment (lycopene) can 

determine the quantity of tomato utilized in a product. To ensure quality processing, several 

factors must be taken into account. First and foremost, tomatoes must ripen uniformly on the 

plant, as yellow and greenish regions not only hide the red color but also cause browning due 

to oxidation during storage. The high quality of the food makes up for any loss incurred by 

discarding unripe tomatoes or cutting out partially ripe tomatoes' green parts. Therefore, the 

fruit's quality is a fundamental and essential factor that determines the final product's quality, 

including nutritional aspects (Ministry of Food Processing Industries, Govt. of India 2020; 

Esra Capanoglu et al. 2010). Most tomato product manufacturers add colorants to achieve a 

bright red appearance of the final product. These colorants mask the natural browning of fresh 

tomatoes used in making tomato products that aren't fully ripe and red, although browning can 

still occur during storage (Ministry of Food Processing Industries, Govt. of India 2020).  

Processing of tomato yield various products like tomato pulp, tomato puree and paste, dried 

tomatoes, ketchup, tomato sauce, chutneys, and many more. The processing techniques vary 

between basic to highly complex, depending on the final product. Fresh tomatoes require 

essential treatment methods like washing, fruit selection, packaging, transportation, and proper 

storage at the point of sale. The production process of tomato paste includes several sequential 

stages like washing, fruit selection, breaking, seed and peel removal, evaporation, 

pasteurization, canning and longer storage. The manufacturing stages of tomato products may 

involve several heat treatments and can significantly impact the nutritional properties of the 

final product (Dr. S Azam Ali 2008; Capanoglu et al. 2010).  

As previously mentioned, industrial processing in the United States involves multiple phases 

and varies depending on the end product to be achieved. To reach full capacity, processing 

plants must have a steady flow of fresh tomatoes. Otherwise, downtime, whether due to 

cleaning or operating below capacity, may result in waste — either fresh tomatoes waiting on 

trucks or tomatoes in different stages of processing. The diagram below illustrates some of the 

common industrial techniques used to process tomatoes (Wu, Yu, e Pehrsson 2022; Liadakis 

et al. 2022):  

Common preliminary procedures for all items involve evaluating and weighing the fruit. 

Tomatoes are initially assessed by taking a random sample based on pre-established guidelines 
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between agricultural and industrial parties. These guidelines specify the maximum allowable 

percentages of extraneous products, such as green fruit, soil, and stones, and tomatoes with 

minor defects, such as partially yellow or green ones. After this initial visual inspection, the 

residual sugar content of the fruit is evaluated, and the combination of these factors determines 

its final value. Finally, the lot is weighed. 12 

Mildly washing tomatoes by simply rinsing them with water does not suffice in eliminating 

mold filaments and other microorganisms located in their cracks, wrinkles, folds and stem 

cavities during this processing stage. To lower the amount of spores in washing water, adding 

chlorine to the water is a common practice (Dr. S Azam Ali 2008; Wu, Yu, e Pehrsson 2022).  

To be more precise, the tomatoes go through a pre-washing stage where they are submerged 

in water tanks. The tanks are fitted with air insufflators at the bottom that apply pressure to 

stir the fruits, which helps in better cleaning. The tomato then moves from the first tank to the 

following tank through an elevator mechanism. The conveyer then takes the fruits in a long 

roller system where workers perform a final quality check. Afterward, high-pressure water jets 

are used to remove any remaining contaminants from the tomatoes. A different sorting method 

 
12 Source: Official Website of Parma, I musei del cibo via link: Le fasi della trasformazione industriale del 

pomodoro (last access August 2023).  

Figure 5 - General industrial processing procedures for different tomato products.  

(Wu, Yu, e Pehrsson 2022). 

https://pomodoro.museidelcibo.it/il-prodotto/caratteristiche/fasi-trasformazione-industriale-pomodoro/
https://pomodoro.museidelcibo.it/il-prodotto/caratteristiche/fasi-trasformazione-industriale-pomodoro/
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uses fruit-cleaning disks that are mechanically rubbed. This rubbing action cleans the healthy 

surface of the fruit and eliminates any soft or spoiled areas. This method largely replaces hand 

sorting.  

Tomatoes that are moldy or rotten degrade the quality of the preserve. This reduces its color 

and aroma and also shortens the shelf life of the product. Unsuitable fruits that were not 

detected by the optical sorters during previous controls move through the final sorting process. 

The rotating rollers cause the tomatoes to move, enabling the staff to inspect them closely. 

This helps the control workers in their task. Afterward, workers assigned to this task manually 

remove them, while products regarded as unsuitable are placed on small mechanical (or 

hydraulic) belts located above the washing belt for removal. After this stage, the roller 

conveyor carrying the tomato moves upwards at an inclined angle, and the final wash using 

pressurized water jets is carried out here. As the process can strain a person's vision and cause 

a loss of necessary focus for the employees, an adequate illumination and a regular rotation of 

sorting personnel is necessary. As a rule, each attendant is designated to perform sorting tasks, 

such as removing green tomatoes, segregating split or decayed ones, and foreign material. 13 

 

Certain products, like whole, sliced, and diced tomatoes, undergo peeling before processing. 

Peeling is possible using steam or lye. The procedure is critical because it affects the taste, 

quality, and nutritional value of the final products. The peel is removed from the skin using 

steam or lye before mechanical extraction, which is a common practice. Despite the 

abnormally high pH values of the discharged wastewater, many tomato processors opt for hot 

leach peeling due to its higher output and better product quality. Compared to leaching, steam 

peeling is a chemical-free and ecologically friendly method, but it leads to more peel loss and 

produces an inferior product. Irregular heating during the procedure results in increased loss 

of peel and worse quality of the peeled fruit (Liadakis et al. 2022; Wu, Yu, e Pehrsson 2022).  

 

During the breaking step, tomatoes are chopped and crushed. Two methods are available for 

processing tomatoes: hot and cold breaking. Heated reactions mostly occur between 93 and 

99 degrees Celsius. Tomatoes are thinly sliced and briefly heated to increase enzyme activity 

and yield during the cold process. After being crushed, the diced tomatoes are processed using 

 
13 Source: Official Website of Parma, I musei del cibo via link: Le fasi della trasformazione industriale del 

pomodoro (last access August 2023).  

https://pomodoro.museidelcibo.it/il-prodotto/caratteristiche/fasi-trasformazione-industriale-pomodoro/
https://pomodoro.museidelcibo.it/il-prodotto/caratteristiche/fasi-trasformazione-industriale-pomodoro/
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an extractor, pulper, or finisher to remove their seeds and skins. The juice is extracted using a 

screw or paddle extractor. Finally, during the processing procedure, additional processes such 

as homogenization, concentration, and aseptic packing are carried out. Lastly, it should be 

noted that processing tomatoes into different end products involves mechanical treatment, 

several heat treatment procedures, and the use of additives like calcium, oil, or salt; all of 

which may change the nutritional profiles and bioavailability (Wu, Yu, e Pehrsson 2022).  

 

Drying, heating, and pasteurization all have different goals, such as inactivating microbes or 

enzymes, reducing moisture content and concentrating the product, or softening the tissue to 

remove the fruit from the skin. However, processing tomatoes changes not only their physical 

aspects, but also their nutritional and sensory attributes. It is assumed that processed fruits and 

vegetables have reduced nutritional value, although this is not always the case. Processing can 

improve bioavailability of lycopene (the most beneficial component), overall antioxidant 

activity, and amino acids. Although processed foods are typically considered inferior to 

unprocessed meals, "processing" is not always a bad term, and processed foods are not always 

nutritionally deficient or harmful. Food processing can have positive effects such as improved 

digestibility and nutrient bioavailability, and it certainly promotes food safety (Nasir, Hussain, 

e Jabbar 2015; Capanoglu et al. 2010; Wu, Yu, e Pehrsson 2022).  

 

When studying tomato processing, we must also consider the by-products of tomato 

processing. In fact, tomato processing by-products, such as solid and liquid wastes, are a major 

concern for the tomato industry. Tomato pulp (skin, seeds, and flesh) is a solid waste that 

remains after tomato processing, while liquid wastes include wash water, peeling chemical 

solutions and peeling water, cleaning water, and cooling water. Tomato leaves and bruised 

tomatoes are two other tomato byproducts. Culled tomatoes are fruits that do not meet 

customer expectations due to aesthetic defects (shape, size, color, etc.). Approximately 2% of 

the crop is wasted as macerated tomatoes. Tomato pomace is currently being processed to be 

used as a component in animal feed or as a fertilizer or can be disposed of in landfills. The oil 

industry utilizes only a small portion of the seed. The tomato processing industry faces 

significant economic and environmental challenges when it comes to disposing of this waste. 

The aim is to address this issue by creating a suitable waste management system to recycle 

and reuse tomato by-products. These by-products contain valuable bioactive compounds, such 
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as proteins, carbohydrates, fatty acids, dietary fiber, and phenolic compounds, which promote 

human health (Liadakis et al. 2022).  

 

1.3.1 Changes in color and flavor  

 

The plant pigment lycopene gives the attractive red color to tomatoes and their products. 

Lycopene's composition is similar to that of the famous yellow plant pigment carotene, which 

produces vitamin A (Ministry of Food Processing Industries, Govt. of India 2020).  

Contrary to popular belief, lycopene is located in the insoluble pulp or pericarp of the tomato, 

instead of in the clear serum component. It is most abundant in fully ripe red tomatoes. When 

heated, the pulp experiences significant oxidative changes, especially in the presence of air 

(Ministry of Food Processing Industries, Govt. of India 2020).  

As the color is the first thing a customer notices, even the slightest change in it is discernible. 

During processing, the browning processes may cause the color of tomato paste to become 

slightly darker and less vibrant. The development of red pigment caused by these processes 

has little impact on the quality of tomato paste, as it eventually contributes the red color to it. 

The shift in color is mainly caused by pigment loss, nonenzymatic browning (Maillard 

processes), sugar hydrolysis, and caramelization. High processing temperatures can cause 

caramelization.  Tomatoes contain a high concentration of ascorbic acid, commonly known as 

vitamin C, which is believed to be the main reason for whey color darkening during 

processing. However, browning can be minimized by decreasing both the pH and temperature 

Figure 6 - Structure of lycopene (https://www.licofarma.com/licopene) 

Figure 7 - Carotene structure (https://it.m.wikibooks.org/wiki/File:Beta-carotene.svg)  

https://www.licofarma.com/licopene)
https://www.licofarma.com/licopene)
https://it.m.wikibooks.org/wiki/File:Beta-carotene.svg
https://it.m.wikibooks.org/wiki/File:Beta-carotene.svg
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during processing. Color variation increases as temperature increases; in fact, solar drying 

yields the least color change because it is conducted at lower temperatures (Nasir, Hussain, e 

Jabbar 2015; Nikita S. Bhatkar et al. 2021).  

Iron and copper equipment should be avoided at every stage of the operation. Lycopene, a 

self-oxidizing acyclic isomer of carotene, turns brown when it comes into contact with iron. 

Iron also produces black compounds with the tannin in tomatoes and the spices used. 

Therefore, the equipment used should have a lining of glass or stainless steel. Tannins found 

in spices like cloves, cinnamon, and other spices used in making ketchup, sauces, and soups 

negatively affect their color. Therefore, limiting the absorption of such tannins through spices 

is crucial. To achieve that objective, it is recommended to use spice oils instead of whole 

spices (Ministry of Food Processing Industries, Govt. of India 2020).  

The flavor of processed tomato differs from that of fresh tomato due to the transformations 

that occur during processing. This could be attributed to the loss of volatile chemicals or the 

formation of new compounds. Two necessary chemicals that impact tomato taste, Cis-3-

hexenal and hexenal, are lost during processing. Moreover, the conversion of Cis-3-hexenal 

to trans-2-hexenal significantly contributes to tomato flavor loss. The breakdown of sugars 

and carotenoids produces chemicals that may cause the cooked aroma in processed tomatoes 

(Nasir, Hussain, e Jabbar 2015).  

1.3.2 Effects on nutrients  

 

The growing demand from consumers and producers to comprehend the nutritious 

components available in our meals and their potential impact on human health, especially from 

industrial processing processes, is driving up research interest in this field. Tomatoes are a 

significant ingredient in the Mediterranean diet that is thought to promote a healthier lifestyle. 

Tomatoes are a rich source of various nutrients, including lycopene, an antioxidant; vitamin 

C; and a range of polyphenols. The tomato components are mostly stabilized in vivo by the 

acidic pH of the fruit tissue, and a significant portion of the nutrients are preserved even during 

the most delicate and vulnerable processing stages. During transport and storage, both fruits 

and vegetables experience detrimental changes caused by respiratory, metabolic, and 

enzymatic processes, as well as drying, pests, microbial spoilage, and temperature-induced 
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damage. Several of these modifications can have a harmful effect on the antioxidant quality 

of tomato products (Capanoglu et al. 2010).  

 

Various processing methods have different impacts on the nutrients present in tomato 

products. In fresh tomatoes, lycopene exists as the most stable thermodynamic form, all-trans. 

However, it is known that lycopene concentration is affected by isomerization and oxidation 

during the processing. Under thermal conditions, the trans form transforms into the cis form 

by isomerization. Recent research from 2021 shows that the cis form is unstable, but it has 

higher solubility in organic solvents than the trans form. It has also been shown that the cis 

form is more bioavailable. However, impacts might appear contradictory and vague when 

comparing different scientific studies, which highlights the need for further research in this 

field in the coming years. It has been found that a specific dehydration method can increase 

lycopene content in some instances, while decreasing it in others (Ministry of Food Processing 

Industries, Govt. of India 2020; Nikita S. Bhatkar et al. 2021).  

 

For example, in 2020, the Indian Institute of Food Technology reported that processing 

tomatoes into value-added products can increase the bioavailability of some carotenoids, such 

as beta-carotene, lycopene, and phenolics. Additionally, it was found that processed tomato 

paste retains around 65 percent of the flavonoids that are present in fresh tomatoes. As per a 

2015 analysis, lycopene remains relatively stable throughout the process of tomato processing 

and preservation. Extended exposure to oxygen, low water activity, and relatively high 

processing temperature can destroy lycopene. Experts agree that in terms of degradation and 

isomerization, this molecule is relatively stable during commercial production and processing 

(Nasir, Hussain, e Jabbar 2015; Ministry of Food Processing Industries, Govt. of India 2020).  

 

A study published in 2022 reveals that heat treatment increases the bioavailability and bio 

accessibility of carotenoids by breaking down the cell wall and organelle membranes where 

these compounds are found. Heating denatures the protein-carotenoid complexes that 

constrain the bio accessibility of carotenoids and promotes the release of these compounds 

from the dietary matrix. Consequently, heat processing has a direct impact on tomato 

carotenoid profile and quantity. The raw tomato has a lycopene concentration of 2 mg t-

lycopene/g, and heating (at 88°C) can raise it by over 150%. In contrast, a 2010 study found 

significant decreases (9-28%) in lycopene and vitamin C in samples obtained from a 
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commercial facility that processed tomatoes into paste (Pereira Lima et al. 2022; Capanoglu 

et al. 2010).  

 

Furthermore, the 2015 analysis conducted an in-depth examination of the changes in numerous 

nutrients. Concerning amino acids, the amount of amino acids present in tomato juice is 

significantly increased when treated at temperatures above 100 °C for 20 minutes due to partial 

hydrolysis and protein denaturation. The concentration of amino acids increased the most for 

glutamic acid followed by aspartic acid, threonine, and alanine. During processing, some 

amino acids such as glutamine and asparagine were lost completely due to acid conversion.  

During tomato preparation, the oxidation process causes the majority of ascorbic acid (vitamin 

C) to be lost. The rate of ascorbic acid oxidation is affected by various factors such as dissolved 

copper, oxygen, enzymes, and processing temperature. Studies have shown that the 

decomposition of ascorbic acid is closely related to temperature and air, while reduced sugars 

are also transformed. In reality, their amount decreases due to chemical reactions such as 

caramelization and the Maillard reaction. The method used determines the amount of sugar 

lost. Studies have shown that reducing sugars in processed tomato juice leads to a 19% 

decrease. During juice processing, the concentration of acids increases. Studies have 

demonstrated that concentrations of acetic acid can increase by as much as 32.1%. One 

possible reason for the increased concentration of acids may be attributed to the oxidation of 

aldehydes, alcohols, and other chemicals. It is believed that the primary reason for the 

increased acid level in processed tomatoes is the decomposition of amino acids into their 

constituents (Nasir, Hussain, e Jabbar 2015).  

 

Non-thermal treatments have been shown to change the nutritional content of tomato products. 

Operations like cutting, homogenization, and peeling may affect the antioxidant components. 

Fresh-cut tissues are mainly exposed to oxidative stress, which is believed to harm cell 

membranes and alter the composition and amount of antioxidant chemicals. Several tomato 

products' hydrophilic antioxidant capacity was increased by homogenization, according to a 

2010 study. However, the exact process is unclear. Furthermore, in industrial processing, the 

"breaking" or homogenization stage was proven to considerably alter the biochemical 

composition (Capanoglu et al. 2010).  
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Considering all of these factors, the question "Are processed tomato products nutritionally 

equivalent to fresh tomatoes?" may not be a suitable one because the answer depends on 

several variables, such as the types of fresh tomatoes, the tomato products compared, and the 

method of data analysis and interpretation used. A straightforward "yes" or "no" answer to this 

question may be misleading. Responses based on comparing some fresh tomatoes and 

different tomato products or focusing on specific components (e.g., lycopene) may be 

misleading. Currently, there is insufficient evidence to fully comprehend all aspects and their 

impact on nutrients and bioactive compounds in processed tomatoes (Wu, Yu, e Pehrsson 

2022).  

A research conducted in 2022 states that various practical drying techniques have an impact 

on many chemicals, including antioxidants. Therefore, additional research must be conducted 

to bridge the knowledge gap and stay current with the development of new tomato cultivars 

and advancements in industrial processing technologies (Bakir et al. 2023; Wu, Yu, e Pehrsson 

2022).  

1.3.3 Drying 

 

Tomatoes are rich in carotenoids, lycopene, calcium, zinc, vitamin C, and calcium, and can be 

consumed in fresh or dried forms.  Their consumption has been associated with a reduced risk 

of chronic diseases and some types of cancer. Fresh tomatoes are known for being highly rich 

in vitamin C (on average 20 mg/100 g), providing 40% of the daily requirement. However, 

fresh tomatoes have a high water content, which makes them susceptible to damage during 

harvest. Natural product degradation may occur during cold storage, underscoring the 

importance of drying tomatoes to prevent these losses (Hamdi et al. 2023; Bakir et al. 2023).  

The objective of drying is not just to prevent spoiling and prolong shelf life. It also reduces 

weight and volume of the shipment, which in turn, improves handling and reduces 

transportation costs. Dried tomatoes serve as raw materials in ketchup, sauces, soup premixes, 

canned goods, drinks, and other products. Dried tomatoes are used as spices in various cooking 

recipes for the culinary sector. All types of dried tomato products (whole dried tomatoes, 

concentrate, powder) have various uses such as nutraceuticals, drugs, oil extraction, animal 

feed, and cosmetics (Bhatkar et al. 2021).  
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Conventional methods in arid and hot areas comprise sun-drying, which is feasible only in hot 

and dry regions. This is a thermodynamic approach to control moisture content through a free 

and sustainable energy source. Sun-drying is the earliest approach that involves slicing 

tomatoes, putting them cut side up on a level and sanitary surface (e.g., a roof), or hanging 

them on strings under the sun from a branch or a beam. The duration to decrease the moisture 

content to less than 15% varies between 3-4 days to 20 days, depending on the external drying 

conditions, type of the variety, and its initial moisture content. Prolonged exposure to sunlight 

results in a loss of ascorbic acid, lycopene, and phenolic content, and poor color retention. In 

contrast, sun-drying has been shown to maintain fat-soluble vitamins A and E. Sun-dried 

tomatoes are deemed high-quality because this method preserves the aroma and concentrates 

it, while preventing the undesirable caramelization of natural sugars that often causes a burnt 

aftertaste and undesirable browning in more intensive drying techniques. Moreover, the use 

of solar energy reduces operational costs and resolves environmental concerns related to 

traditional fuels (Dr. S Azam Ali 2008; Hamdi et al. 2023; Bhatkar et al. 2021; Bakir et al. 

2023; Hadibi et al. 2023).  

 

Even in Tunisia, sun-drying tomatoes is a common practice owing to its cost-effectiveness. 

However, this method has numerous issues, such as the risk of spoilage and quality 

degradation since the dried products are exposed to the sun for long periods, subjected to 

sudden showers and uncontrollable climatic conditions, and lack of proper supervision during 

the process. The use of this method is significantly limited due to the unpredictability of 

weather, uncontrollable drying temperatures and periods, high manpower costs, and the 

requirement of vast surfaces to carry out the process. Moreover, under certain conditions, the 

ultimate quality of the dried products can be significantly impacted by insect or virus 

infestation, sand or dust contamination, or other foreign objects present in the atmosphere 

(Hamdi et al. 2023; Bakir et al. 2023).  

To overcome these problems, newer approaches have significantly reduced drying time while 

improving quality. For instance, a solar dryer can be employed as a cost-effective technology 

for the drying process, which has several benefits such as the even distribution of drying 

products and high hygienic quality. In the drying field, solar dryers can be used to prevent 

tomatoes from atmospheric agents like dust, insects, and rain, ensuring exceptional quality 

(Bhatkar et al. 2021; Hamdi et al. 2023).  
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The hot air dryer is another example, used most frequently to economically dry fruits and 

vegetables. These methods are widely used to dry tomatoes due to their impact on drying 

kinetics, the quality of the resulting dried product, and the influence of temperature and speed. 

Temperatures between 50 and 70°C are typically utilized. However, the food products may be 

subject to high temperatures during the process, leading to significant shrinkage, cracking and 

hardening, as well as reduced rehydration capacity and bulk density. Moreover, the hot air 

drying method might adversely impact the final flavour, color, and nutritional content of the 

product produced (Nikita S. Bhatkar et al. 2021; Bakir et al. 2023; Mencarelli et al. 2023). 

Heat pump drying is an alternative option that functions at lower temperatures and could be 

more energy-efficient. Furthermore, the drying process is carried out at lower temperatures, 

which allows for the retention of more thermolabile chemicals. Other techniques comprise 

fluidized bed drying (mainly used in research to dry tomato processing waste), spout bed 

drying, microwave drying, infrared drying, cold drying, and osmotic drying. Recently, infrared 

drying has been proposed and provides multiple advantages over traditional drying methods, 

including faster drying times, higher energy efficiency, and a reduced airflow through the 

sample product (Bhatkar et al. 2021; Liadakis et al. 2022).  

On a mass scale, the drying procedure starts with tomato sorting, followed by sorting based 

on size and washing in order to remove surface bacteria, pesticide residues, insects, grubs and 

dirt. The tomatoes are then submerged for 3 minutes at 54 degrees Celsius to dislodge any 

foreign substances that remained stuck to the surface prior to washing. The soaking process 

occurs in tanks and can be made more effective by adding wetting agents, detergents, soda 

solution, or caustic soda, and washed after treatment. Sorting and pruning are the final stages. 

Tomatoes can be dried in slices, halves, quarters, or any other desired shape. Various factors 

affect the drying kinetics and quality of dried tomatoes, including external environmental 

conditions, the type of drying machine, pre-treatment, as well as intrinsic features of the 

samples such as variety, ripeness and shape. In fact, the shape of the dried samples affects both 

the duration of the drying process and the quality of the finished product (Bhatkar et al. 2021).  
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The resulting product is dark red, leathery pieces with a flavorful tomato taste. In case of low 

humidity, the dried product can be preserved for months without requiring specialized 

packaging. In case of increased humidity, the product is susceptible to mold growth and 

requires an appropriate packaging method such as sealed plastic bags or ceramic jars. 

Figure 8 - Process details and flow sheet of dried tomatoes (Dr. S Azam Ali 2008) 
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Alternatively, the pieces can be carefully dried over a fire until they contain minimal moisture 

and are hard and brittle. The appropriate drier type depends on the quantity of tomatoes, local 

availability, and climate (Dr. S Azam Ali 2008). Dried fruits and vegetables can often be 

consumed as they are, or they can be rehydrated by boiling or cooking. In recent times, semi-

dried goods have been gaining popularity because of the desire of consumers for a softer 

texture and food quality more closely resembling that of fresh fruits (Bakir et al. 2023).  

In certain situations, dehydration is used to treat waste generated by the tomato processing 

industry. This practice not only reduces waste from a sustainability standpoint, but also yields 

products that are just as promising as actual tomatoes. In certain aspects, it is a crucial step in 

the valorization of tomato waste. A crucial component involves processing trash, which 

comprises of seeds, peels, fibrous portions, and pulp remnants. This waste contains a high 

concentration of bioactive components like lycopene and phenolic compounds, making it 

useful for manufacturing functional foods (Bhatkar et al. 2021).  

Drying is now a feasible solution for managing byproducts and waste from the tomato 

processing industry in the long-term. The Business is worried about the high transportation 

cost of tomato pulp waste, combined with its high moisture content. To tackle these challenges, 

we propose thermally drying industrial tomato waste before using them as livestock feed or as 

boiler fuel in the form of pellets (Liadakis et al. 2022).  

One of the main challenges facing the dried tomato industry is the limited shelf-life resulting 

from yeast and mold growth. Numerous studies have demonstrated the efficacy of 

preservatives in mitigating such issues. Specifically, a 2003 study found that chlorine 

treatments are highly effective in reducing microbial growth. It has been demonstrated that 

when a typical drying temperature of 60°C is used and the initial microbial load is high, there 

is a risk of the dehydrator serving as an incubator for further microbial growth. This highlights 

the significance of pretreatment to reduce the initial microbial load before beginning the drying 

process (May e Fickak 2003).  
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1.4  Mold 

Molds are living organisms within the fungus kingdom, with eukaryotic cells unlike bacterial 

cells, which are prokaryotic. The term "mold" typically denotes a specific type of fungus that 

grows on plants and appears white, downy, or silvery. Mold is also used to describe fungi that 

grow on textiles, leather, or building exteriors. In reality, small mold particles exist in both 

indoor and outdoor settings. Approximately 100,000 fungi have been described so far, but the 

total fungal diversity is expected to be at least 7-10 times larger. Other estimates suggest that 

there may be up to 5 million fungal species awaiting research, description, and categorization, 

though the true value likely falls somewhere in between. Fungi, including molds, can be found 

ubiquitously. In reality, fungi are present in and on every human individual. The oral cavity 

alone may host more than 20 of the over 100 fungal species discovered (Mencarelli 2016; 

Parrott 2009; Borchers, Chang, e Gershwin 2017). Molds are saprophytic microorganisms, 

meaning they decompose and absorb dead and moist organic matter. Consequently, they play 

a crucial role in the ecosystem by reducing natural waste accumulation and providing essential 

nutrients such as nitrogen and phosphate to other bacteria. In fact, without mycorrhiza, a 

symbiotic association between the fungus mycelium and plant roots, most plants would not 

survive because mycorrhiza aids plants in obtaining vital nutrients and water (Parrott 2009; 

Borchers, Chang, e Gershwin 2017).  

Molds, which are obligate aerobes, possess a thick cell wall composed of 75% chitin and 25% 

protein/lipids. They propagate by extending hyphae, which are microscopic root hairs or 

multicellular filament strands. The hypha is a branching tubular structure with a diameter of 2 

to 10 μm, significantly larger than that of a bacterial cell. These hyphae proliferate and 

interweave to form a mass called mycelium. The mycelium buried in food or on surfaces is 

crucial for nutritional uptake, while the visible aerial mycelium contains spores or reproductive 

cells, hence why it is referred to as the reproductive mycelium (Laura Mencarelli 2016). In 

reality, molds reproduce asexually through sporification and budding. This means that tiny 

cells are released into the atmosphere. Mold colonies spread via spores, which act like seeds. 

Because many spores are so small, they can easily float in the air and be carried long distances 

by even the slightest breezes. Mold spores can remain inactive for long periods until the right 
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circumstances for growth arise. Conversely, molds and yeasts can also multiply through sexual 

reproduction (Parrott 2009; Mencarelli 2016). 14 

Humans benefit from yeasts, single-celled fungi, and molds in the production of various foods 

such as bread and certain cheeses, as well as beverages like beer and wine. In addition to this, 

they also serve as sources for medications, including antibiotics, immunosuppressants, and 

statins. Some species present on the skin of salamis play an important role in the maturation 

and aging of sausages by interfering with numerous processes, such as moisture control, 

deacidification, and proteolysis, and have a significant impact on the creation of the product's 

flavor. However, some molds produce mycotoxins, which are secondary metabolites that can 

cause a toxic reaction in vertebrates if ingested in large amounts. (When these poisons affect 

microorganisms, they are referred to as antibiotics.) Mycotoxins are not essential for primary 

growth or reproduction and their precise function is unknown; they can only be formed under 

specific conditions, and some scientists hypothesize that they serve as a defense mechanism. 

Mold growth and mycotoxin production can occur during primary production, which involves 

plant cultivation in soils, as well as during secondary production, which includes food 

handling, processing, and storage. It is important to note that these processes may contribute 

to the development of mold and mycotoxins.  

Several hundred mycotoxins have been discovered thus far. Only a small proportion of them 

affect global agriculture as they lower crop yields and jeopardize food security. These 

 
14 Source: Official Website of North Central District Health Department via link: What are molds? (last access 

August 2023).  

Figure 9 - Mould spores under the microscope (Laura Mencarelli 2016) 

https://www.ncdhd.org/what-are-molds
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mycotoxins are mostly produced by Aspergillus, Penicillium, and Fusarium fungi and include 

major aflatoxins such as AFB1, AFB2, AFG1, and AFG2; OTA (ochratoxin A); some 

trichothecenes; and fumonisins B1 and zearalenone. Molds capable of producing mycotoxins 

manifest as white, greenish, or black powdery forms on various types of food, primarily cereals 

and nuts, as well as animal feed, such as forages, silage, and extracted meal (Borchers, Chang, 

e Gershwin 2017; Mencarelli 2016).  

 

But what types of health problems can mold cause? Because there are so many different types 

of molds, the number of compounds produced that can harm individuals is vast. The health 

effects are impacted by the amount and duration of exposure. Additionally, some individuals 

are sensitive to molds. Infants, children, the elderly, and individuals with respiratory disorders, 

weakened immune systems, or known susceptibility to pollution are the most at risk. It is 

important to keep in mind that mold can sensitize individuals Exposure to mold can lead to 

increased sensitivity to future exposures. It may not require equivalent amounts or durations 

of mold exposure to elicit symptoms in the future. The potential health effects of mold can be 

classified as irritants, allergies, and asthma. Under certain circumstances, mold can also lead 

to illness or infection in humans (Parrott 2009).  

 

Damage caused by mycotoxins can be evident in human health. Although acute toxicoses are 

infrequent, an example is the 2004 aflatoxicosis epidemic in Kenya, which resulted in 317 

instances of acute liver failure and at least 125 deaths. In some people with heavy intake of 

specific dietary products, chronic mycotoxicosis is difficult to prevent, even in developed 

nations. Due to genetic variations in the enzyme pathways responsible for mycotoxin 

bioactivation and metabolism, as well as the varying impacts of age, gender, weight, diet, 

nutritional status, chronic infections, and potentially other lifestyle and environmental factors, 

humans exhibit diverse levels of susceptibility. The International Agency for Research on 

Cancer (IARC) has categorized the main types of aflatoxins as carcinogenic to humans 

(Borchers, Chang, e Gershwin 2017).  

 

Mold can have adverse effects on human health and cause food spoilage, posing a food safety 

concern due to the formation of mycotoxins or allergies. To minimize or reduce mold spoilage, 

various methods can be used, such as reducing food water activity, applying heat treatment, 

adding preservatives, reducing oxygen in packaging using vacuum, and storing items in a 
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chilled environment. These hurdle technologies have varying effectiveness against different 

groups of spoilage fungi. Using multiple barriers reduces the amount of fungal decay. In many 

countries, the maximum levels of the primary mycotoxins found in frequently contaminated 

foods are regulated, and acceptable levels of dietary consumption have been established. It is 

crucial to utilize preventative mycological detection techniques to mitigate the damage caused 

by these microorganisms to the fullest extent possible. Currently, classical methods utilizing 

well-validated protocols are able to identify a wide spectrum of fungi, but they are time-

consuming, with results taking days or even weeks. New molecular detection techniques are 

faster, but require good DNA isolation procedures and expensive equipment. They can identify 

live and non-viable fungus that are unlikely to harm a given product. Therefore, it is crucial to 

employ specialized personnel and conduct research in this field (Rico-Munoz, Samson, e 

Houbraken 2019; Borchers, Chang, e Gershwin 2017).  

 

1.4.1 Tomato mold types  

 

Fruits and vegetables are living organisms that derive energy through respiration after harvest. 

Post-harvest metabolism causes the products to ripen, ultimately leading to senescence. While 

fruits' beneficial properties make them edible, they also make them susceptible to disease. 

During this stage of ripening, the fruit is at risk of rotting due to bacteria that hasten ripening, 

damage internal and/or external appearance, cause unpleasant smells, produce mycotoxins, 

and contaminate adjacent produce. Rotting is the result of fungal and bacterial infections, 

although fungal infections are believed to have a greater ability to infect a wider range of hosts 

during the post-harvest period (Silvia 2014).  

Mold contamination presents an ongoing challenge in tomato processing, requiring 

comprehensive monitoring in both fields and processing facilities to ensure the production of 

high-quality end products. Tomatoes, a delicate crop with thin skin, are particularly vulnerable 

to parasitic infection during transportation, preparation, and storage. Regardless of their 

variety, tomatoes have a pleasant taste derived from their high carbohydrate content and free 

water matrix, which also renders them susceptible to disease (Doan et al. 2016; Hegazy 2017; 

Rodrigues e Furlong 2022).  
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The reference list contains extensive research on the prevalent fungi found in tomatoes. A 

2017 study carried out in the United States revealed that the most frequently isolated fungi in 

tomatoes are Alternaria, Aspergillus, Botrytis, Cladosporium, Geotrichum, Fusarium, and 

Penicillium. Among the 39 fungal species detected in an assortment of 116 healthy organic 

tomato products collected from the Asyut market in Egypt in 1994, Aspergillus Niger was 

identified as the most prevalent fungal infection. As per the published 2022 review, the major 

challenges to tomato output are black spot produced by Alternaria sp. and late blight caused 

by Phytophthora infectants. A wider investigation showed the existence of fungi belonging to 

Penicillium, Aspergillus, Fusarium, and Alternaria genera (Hegazy 2017; Rodrigues e 

Furlong 2022).  

In California, there are two widely used technologies for detecting and quantifying molds in 

processed tomatoes. The first method involves visual inspection of whole, unprocessed fruit 

at processor receiving stations (PTABs). The second is the Howard Mould Count (HMC), 

which involves examining a small drop of homogenized juice under a microscope. Using the 

PTAB method, a tomato is considered moldy if visible mold infection extends into the seed 

cavity or if more than 10% of the tomato's volume is clearly contaminated. The HMC, on the 

other hand, involves looking for mold particles in approximately 25 circular areas on a 

microscope slide containing a drop of juice. The percentage of fields with mycelial fragments 

of a minimum aggregate length is then calculated. Both procedures are performed subjectively 

by seasonal workers, who often have to perform the tests quickly due to the pressure of 

seasonal production schedules. The study included two types of samples of processed 

tomatoes: those reported by inspectors for the presence of visual indicators of severe mold 

contamination and a random sample of tomatoes. Mold was found in more than half of the 

fruit with visible mold symptoms and in about one-quarter of the randomly sampled fruit. 

Alternaria, Fusarium and Geotrichum spp. were the most common fungi found in both types 

of samples. Alternaria, Fusarium, and Geotrichum were found in 29.1%, 16.8%, and 9.2% of 

the samples with obvious symptoms, respectively, while 6.5%, 5.8%, and 4.1% were found in 

the random sample group (Doan et al. 2016).  

It is essential to note that post-harvest infections typically have a necrotrophic or saprotrophic 

lifestyle leading to a breakdown of host tissue and decreased marketable output. Ripe fruit is 

highly susceptible to infection by necrotrophic fungi, resulting in rapid onset of disease 
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symptoms. These fungi feed on dead host cells, secreting enzymes, toxins, and other virulence 

factors that degrade cell walls, inducing necrosis. These pathogens, however, often do not 

infect unripe fruit or remain inactive until host conditions promote effective infection. Three 

fungal diseases that display necrotrophic activity, in particular, are Botrytis cinerea, Fusarium 

acuminatum, and Rhizopus stolonifer. Necrotrophic infection is multidimensional, involving 

various traits previously believed to be limited to biotrophs, such as immune system 

suppression or symptomless endophytic development. The ability of necrotrophic fungi to 

easily infect ripe fruit but not unripe fruit or to enter a dormant phase until favorable 

environmental and host conditions promote a successful infection highlights the significance 

of host-pathogen compatibility in necrotrophic infections. Ripe fruit contains higher levels of 

total soluble solids, has greater titratable acidity (TA), reduced hardness, and different 

secondary and volatile metabolites compared to unripe fruit (Petrasch et al. 2019).  

Grey mold (Botrytis) is one of the most extensively studied molds. Botrytis is a Greek word 

that means "grape cluster". This name is based on the fungus' single-celled spores carried on 

conidiophores that resemble the structure of a grape cluster. According to a recent study, the 

fungus B. cinerea ranks second in scientific and economic importance among the world's top 

ten diseases. Because it reduces yield, tomato grey mold is a widespread and potentially 

devastating disease that can harm the entire crop and cause post-harvest fruit rot. This disease, 

caused by the fungus Botrytis cinerea, can be found anywhere tomatoes are grown. B. cinerea 

has a broad host range, rapid growth rate, high reproductive capacity, and high genetic 

variability, which make it easier to develop medication resistance, including multiple drug 

resistance. Damage attacks are most common during extended periods of rain, when crop 

tilling is minimal, in unheated or partially heated crops, in older greenhouses with limited 

space above the crop, near vents or dripping gutters, and towards the end of harvest. B. cinerea 

mainly infiltrates the plant through wounds and aging tissues (O’Neill 2012; Anum et al. 2023; 

Silvia 2014; Song et al. 2023).  

The fungus is a typical wound infection that thrives on the moisture and carbohydrates present 

in damaged tissue. Its hyphae can infiltrate plant tissue through wounds or natural openings, 

spreading from previously infected dead tissue to healthy tissue. The mycelium of B. cinerea 

is branching, septate, and hyaline to brown in color. Conidiophores grow straight from mycelia 

or sclerotia, and are tall and thin. They have irregularly branching terminal sections, with 
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expanded or rounded apical cells that carry clusters of conidia on short denticles. The conidia 

are smooth, hyaline or gray, egg-shaped, averaging 10m in length and 5m in width. Cool 

temperatures and humidity can facilitate infection. Spore germination occurs within the 

temperature range of 0 to 25°C, with 10-20°C being the optimal. To trigger spore germination, 

free water on the plant's surface or very high humidity (above 90%) is required. Furthermore, 

the plant's age and condition also affect infection susceptibility. Young plants grown in low 

light, old plants approaching the end of the season, and plants already affected by another 

disease seem to be more susceptible (O’Neill 2012; El Oirdi et al. 2011; Silvia 2014).  

Botrytis can infect various parts of the plant, including leaves, petioles, stems, flowers, fruit, 

fruit shoots, roots, and seeds. The primary symptoms are commonly found on leaves and 

stems, affecting both young and mature growth. Lesions of varying shades, from light to dark 

brown, appear on leaves, petioles, and stems, frequently in concentric circles from the front 

margin. The dense gray-brown spores that emerge on necrotic tissue are a distinct 

characteristic of the disease. If the tissue is disturbed in humid environments, it will expel 

clouds of spores. When spores infect green fruit without causing decomposition, a sign called 

"ghost spot" appears. The presence of ghost spot indicates that the host's resistance is effective, 

but unfortunately, the fruit becomes unmarketable due to the unsightly symptom. Each spot 

has a necrotic core surrounded by a halo of light. The fruit's appearance is ruined due to the 

presence of ghost spot. Phantom spot emerges when there is condensation on the fruit, which 

Figure 10 - Post harvest fruit Botrytis 

(O’Neill 2012) 
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typically occurs in the early morning. This phenomenon occurs more often in cultivars with 

larger fruit, which have a greater thermal inertia, causing them to heat up more slowly. As a 

result, conditions that reach the dew point persist for longer periods of time. Small-fruited 

cultivars are less vulnerable to the fungus, although they may still exhibit spots without the 

halo effect. In such cases, increasing heat input to elevate the plant and fruit temperature above 

the dew point is more effective and efficient than increasing ventilation to prevent 

condensation. The fungus primarily damages greenhouse-grown tomatoes near pruning 

wounds, leading to potential stem rot (O’Neill 2012; Williamson et al. 2007).  

The structure and chemical composition of the fruit enable the accumulation of high levels of 

mold. Furthermore, the fruit's delicate and thin skin results in rapid degradation after harvest. 

Post-harvest botrytis of the fruit may also result from contaminated harvest containers. The 

possibility exists for contaminated greenhouse tools and buildings to transmit disease from 

one season to the next. Fungal spores can survive for several days or even weeks, with their 

longevity dependent on the temperature, humidity, and sunlight exposure. Survival is most 

favorable during cold weather and at night. Objective temperature requirements for growth 

indicate a minimum of 0°C, an optimal of 20°C, and a maximum of 30°C. Thus, B. cinerea 

flourishes during the cold storage of fruits and vegetables (Song et al. 2023; O’Neill 2012; 

Silvia 2014).  

B. cinerea sclerotia, or resting structures, can persist for multiple years and produce spreading 

spores or fungal filaments that lead to illness. Additionally, B. cinerea disperses primarily 

through spores, or conidia, carried by air currents and dispersed via splashing water. When 

free water from sources like rain, mist, fog, or irrigation comes into contact with the plant 

surface in the field, spores fall onto tomato plants, germinate, and cause infection. The optimal 

temperature for sporulation of B. cinerea on infected tissue is between 13-17°C, with minimal 

spore formation below 10°C or above 22°C. Only temperatures exceeding 28°C can hinder 

the formation of spores for this fungal strain. Sporulation is triggered when the humidity 

exceeds 85%. It has been established that the disease can remain dormant for some time until 

conditions allow for rapid spread and sporulation, underscoring the need for careful 

surveillance, rapid response, and preventive control at the start of the season. Growing plants 

out of season in heated or unheated greenhouses and plastic tunnels, which are increasingly 

used to supply fruit, vegetables, herbs, and flowers in northern latitudes, significantly increases 



45 

 

the risk of infection, particularly for tomatoes (O’Neill 2012; Anum et al. 2023; Williamson 

et al. 2007).  

Botrytis cinerea has implemented a strategy recognized in 2011. In general, plants have 

sophisticated mechanisms to detect and respond to pathogen attacks. The activation of the 

salicylic acid (SA) signaling system is primarily against biotrophic pathogens, whereas the 

Jasmonic acid (JA) signaling pathway is necessary for resistance against necrotrophic 

pathogens. The SA signaling can be antagonistic to JA signaling, and vice versa. According 

to reports, the exchange of Salicylic Acid (SA) and Jasmonic Acid (JA) assists the plant in 

reducing fitness costs and creating a versatile signaling network. This network enables the 

plant to precisely regulate its defense mechanisms against external threats. The SA and JA 

signaling pathways may have antagonistic or synergistic effects, leading to either negative or 

positive functional outcomes. Botrytis cinerea, a necrotrophic pathogen, infects senescent or 

dead plant tissue, causing grey mold in vegetables and fruit softening. It leverages the 

antagonistic relationship between the SA and JA pathways to induce disease progression. 

Particularly, B. cinerea produces an exopolysaccharide that can elicit the SA pathway. The 

SA route, in turn, hinders the JA signaling system, enabling the fungus to inflict tomato 

disease. This highlights an innovative strategy adopted by B. cinerea to bypass the plant's 

defense mechanism and proliferate within the host (El Oirdi et al. 2011).  

Additionally, susceptibility to B. cinerea varies depending on tissue growth and age. Unripe 

green fruits tend to be more resistant to rot caused by B. cinerea, but ripe fruits are notably 

vulnerable, although the rot can infect at least some unripe fruits as well. The interaction 

between plants and necrotrophy is widely studied, and B. cinerea is commonly used as a model 

species for this research. B. cinerea produces toxins, CWDE, reactive oxygen species (ROS), 

and other virulence factors in appropriate hosts, such as ripe fruit, leading to rapid death and 

destruction of plant tissue. In unsuitable hosts, such as unripe fruit, B. cinerea produces 

dormant infections by suppressing the host's immune system and increasing its vulnerability. 

B. cinerea activates fruit ripening processes by altering plant hormone production and 

signaling and stimulating host CWDEs that soften the fruit. This promotes fungal growth and 

colonization (Shah et al. 2012; Petrasch et al. 2019).  

Fusarium is a fungus that can contaminate tomatoes.  F. acuminatum infects roots and fruits 

and is considered one of the most hazardous species of Fusarium. This fungus produces potent 
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mycotoxins such as trichothecene and fumonisins, which can damage host cells and cause 

tissue necrosis. F. acuminatum has the ability to infect both mature green (MG) and red ripe 

(RR) fruit due to its unusually broad host range, which includes insects and fruit. The fungus 

can germinate in artificial medium at a temperature of 5°C, forming colonies up to 3mm in 

diameter in certain conditions. However, growth does not occur at a temperature of 37°C. 

Various volatile metabolites including limonene, valencene, ethylene, ethyl alcohol, ethyl 

acetate, and methyl acetate have been detected. The conidial apparatus is delicate, often 

breaking up into multiple cellular components. Terverticulate conidiophores emerge from 

subterranean or aerial hyphae. They are irregularly branched and consist of short stipes. The 

conidiophores have a few metulae and branches that culminate in whorls of three to six 

phialides which are typically solitary and cylindrical with a short neck (Petrasch et al. 2019; 

Silvia 2014).  

Another fungus found in tomatoes is Alternaria alternata. Due to its synthesis of toxins, the 

fungus is associated with cases of food poisoning. Some of these toxins are harmful; for 

example, alternariol and alternariol methyl ester can promote the breaking of DNA in human 

cancer cells by impeding DNA relaxation and raising DNA cleavage. Furthermore, this species 

has been linked to fungal infections in the human eye. Morphological studies indicate that A. 

alternata colonies display hues ranging from lettuce green to olive green with a noticeable 

white edge (2-5 mm) when grown on potato dextrose agar. Within 7-10 days, isolates 

frequently develop colonies larger than 70 mm in diameter.  A. alternata is distinguishable by 

its sporulation pattern of single-pore colonies, characterized by the generating of conidial 

chains six to fourteen conidia long. Additionally, the fungus produces various secondary 

chains and sometimes tertiary chains, with two to eight conidia. Chain branching occurs 

sympodially, starting with the extension of secondary conidiophores from the distal terminal 

conidial cells, and culminating in the production of conidia. This species is recognized for 

producing small conidia (20-50m in length). These conidia are oval-shaped, separated by 

transverse and vertical walls, and have minimal apical extension growth. Alternaria ulceration 

has a dark brown-black color with concentric zoning on stems close to the ground or on 

tomatoes (M. Hegazy 2017; Silvia 2014).  

Alternaria is a fungus with resilience that permits it to survive in harsh environments. A. 

alternata can overwinter in numerous environments such as soil, seeds, infected agricultural 
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residuals, and even perennial host tissues like bark, knots, and scaly leaves, where it continues 

to exist as mycelia and/or conidia. Certain strains have the ability to construct survival 

structures in order to persist in hostile environments. In contrast to other Alternaria species 

that require specific triggers to induce conidiophore development and sporulation, A. alternata 

readily sporulates without such stimuli. The spores of A. alternata can be spread through the 

air due to changes in moisture levels, exposure to red light, or a shift from wet to dry 

conditions. The presence of free moisture promotes germination of Alternaria species. High 

relative humidity can promote germination, particularly when temperature changes cause 

temporary condensation of water vapor. Fungal infection of fruit can occur not only during 

the growing season but also at various stages such as harvesting, handling, transportation, post-

harvest storage, marketing, and even after consumer purchase. It is clear that A. alternata is a 

necrotrophic and damaging fungus that causes black spots on numerous fruits and vegetables 

after they are harvested. It is a non-active fungus that appears during marketing after being 

developed in cold storage of the fruit. This pathogen enters the fruit through wounds or natural 

openings and persists until the fruit ripens and conditions are more suitable for disease growth. 

In addition to the fruit, this fungus affects other plant components such as seeds, leaves, stems, 

and flowers (Silvia 2014).  

To summarize, conducting thorough research and swiftly identifying harmful microorganisms 

in agricultural produce like fruits and vegetables are crucial for implementing successful 

prevention and control measures. Additionally, comprehending pathogenic activity, the 

interactions with host plants, and environmental factors that foster disease transmission is 

crucial in creating effective preventative interventions throughout the post-harvest pipeline, 

from cultivation to storage and consumption. Research aimed at identifying species, features, 

Figure 11 - Alternaria Solani (https://extension.umd.edu/resource/alternaria-fruit-or-pod-rot-vegetables) 

https://extension.umd.edu/resource/alternaria-fruit-or-pod-rot-vegetables
https://extension.umd.edu/resource/alternaria-fruit-or-pod-rot-vegetables
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and dispersion methods of microbes enables early and targeted actions, aiding in the 

preservation of food quality, safety, and availability. Monitoring and controlling pathogenic 

microorganisms in agricultural goods is critical to ensuring healthy production and 

consumption in a future increasingly focused on sustainability and food safety. 

1.4.2 Consequences for human health and product quality  

 

Each year, 20-25% of all cultivated fruits and vegetables are lost due to fungal infections in 

the fields and post-harvest supply chain worldwide. Botrytis cinerea causes considerable harm 

after harvest due to its latent nature, resulting in losses after being transported to distant 

markets. Post-harvest losses make up 15-20% of the total yield in affluent countries and up to 

50% in underdeveloped nations, due to insufficient preventative measures and conservation 

conditions (Bu et al. 2021; Brian Williamson et al. 2007; Stefan Petrasch et al. 2019). Fungi 

on tomato crops not only affect productivity as an external illness but are also a significant 

source of mycotoxin contamination. Mycotoxins are highly toxic secondary metabolites 

produced by a diverse range of fungi that are projected to impact up to 25% of global food 

consumption annually. For instance, in 2021, the European Food Safety Authority identified 

Alternaria toxins as a severe risk to public health (Hegazy 2017).  

Contamination with hazardous mycotoxin-producing species (even if inactivated) has raised 

concerns since their heat-resistant toxins may persist even under heat-processing conditions. 

The fungal genus Alternaria is commonly found in tomatoes and significantly affects crop 

production (50-80%). It produces over seventy secondary metabolites, including mycotoxins. 

The European Food Safety Authority (EFSA) identifies alternariol (AOH), alternariol 

monomethyl ether (AME), tentoxin (TeA), and tenuazonic acid (TEN) as the main toxins 

produced by Alternaria sp. TeA is deemed the major mycotoxin present in dried and fresh 

tomatoes, as well as tomato-based items like sauce, juice, pulp, soup, and ketchup (Rodrigues 

e Furlong 2022).  

An examination of mold strains obtained from rotting tomatoes was reported in a 1979 study. 

Objective evaluations were emphasized and the positive results for crayfish larvae toxicity 

from some of the isolates could be attributed to poisonous compounds, like citrinin, tenuazonic 

acid, and T-2 toxin. For example, one instance showed that an Alternaria alternata isolate 

produced tenuazonic acid at levels up to 106 g/g in all seven tomatoes tested and alternariol 
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methyl ether at 0.8 g/g in one of the seven tomatoes. Another isolate of A. alternata produced 

tenuazonic acid or alternariol methyl ether in only three out of seven tomatoes at significantly 

reduced levels. One strain of Penicillium expansum produced patulin and citrinin at levels of 

up to 8.4 and 0.76 g/g, respectively. An isolate of Fusarium sulphureum produced T-2 toxin, 

HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8, and 5.6 g/g, respectively, in tomatoes 

incubated at 15°C. If these mycotoxins are heat-resistant, they could be present in measurable 

amounts in tomato products made from partially moldy tomatoes. The report emphasizes the 

significance of mycotoxins in tomatoes and the need for further toxicological research in this 

field (Joost et al. 1979).  

In conclusion, losses of fruits and vegetables due to fungal diseases throughout the supply 

chain represent a global issue, with Botrytis cinerea and Alternaria inflicting significant 

damage. To tackle this issue, collaborative efforts are needed to establish preventative policies, 

improve storage practices, and uphold global food security. 

1.4.3 Prevention and management    

 

Depending on the type of fungi, various preventive and management techniques are available. 

Cold chain transportation is one of the most commonly used storage systems. However, the 

impact of low-temperature transit is unclear, even when environmental conditions are 

regulated to slow down post-harvest fruit losses due to senescence. This approach is 

insufficient in preventing fruit rot. Some psychrophilic microorganisms, such as Bacillus, 

Pseudomonas, and Listeria monocytogenes, can thrive even in extreme cold conditions. 

However, the quality of fruits tends to decline due to changes in the cell wall caused by low 

temperatures (Bu et al. 2021).  

The most effective and cost-efficient treatment for Botrytis cinerea is to prevent stem and fruit 

infections, which are the most harmful forms of the disease. The main preventive measures 

are to control greenhouse humidity and manage the crops carefully. All of these factors must 

be considered meticulously for efficient management of gray mold. The goal is to evade 

prolonged periods of high humidity in the crop canopy and on the plant surfaces to prevent 

condensation. As a general rule, it is recommended to avoid days with relative humidity 

exceeding 85% for more than 6 hours to prevent unfavorable outcomes. Additionally, ensuring 

that the morning air temperature does not increase too quickly to avoid the formation of 
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condensation on cold plant surfaces (e.g. fruits and stems) is crucial. The temperature should 

not rise more than 2°C per hour. To avoid dew point formation and restrict temperature rise, 

ventilation is a more beneficial approach than increasing heat input, as previously stated. It is 

crucial to utilize fans for air circulation and/or a fan-and-duct system to achieve a uniform 

temperature throughout the house and prevent cold spots; botrytis often develops in cold spots 

(like near an exterior wall or at the end of a heating system), where condensation is more prone 

to occur (O’Neill 2012).  

In crop management, it is important to achieve balanced growth while avoiding weak and 

flimsy stems and leaves, peeling wounds, and aging leaves. To prevent excessive softness, 

practitioners should strive for adequate solution conductivity and balanced nutrition, with 

limited nitrogen input and sufficient potassium. Additionally, removing leaves from the plant 

head, utilizing generative temperature conditions, and meticulously removing dead material 

to eliminate inoculums can be effective methods for avoiding overly lush and soft growth. 

Plants with low levels of calcium have been found to be more susceptible to Botrytis, likely 

due to weaker cell walls, which can also increase the likelihood of leaf scorch. Gray mold is 

worsened by high humidity, inadequate light, and moderate temperatures. Therefore, 

promoting an open canopy in crop management can be advantageous for sufficient air 

circulation and optimum light reception, enabling rain or irrigation droplets to evaporate 

quickly. High relative humidity fosters the growth, germination, and infiltration of conidia 

into the host (Silvia 2014; O’Neill 2012).  

In addition, management strategies for Botrytis Cinerea range from synthetic chemical 

fungicides to non-harmful alternatives like potassium bicarbonate, chlorine treatment, and 

biocontrol agents (G. Dal Bello et al. 2007).  

Botrytis can be treated with a range of fungicides and biofungicides. Research shows that 

treatment is more effective when applied at the onset of an epidemic, rather than when Botrytis 

is already established in a crop. Early spring (March-May) is a critical period for protecting 

crops with preventive fungicide applications due to the wide range in daytime and overnight 

temperatures and the potential for condensation/high humidity during this time. B. cinerea has 

already developed resistance to fungicides, including thiophanate-methyl, pyraclostrobin, and 

fenhexamid. The frequency of fungicides with the same mechanism of action used is one of 
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the influencing factors in the development of resistance. As a result, it is crucial to adhere to 

product guidance for preventing resistance and substituting chemical groups (O’Neill 2012).  

Fungicides containing the same active components, Difenoconazole and Cyprodinil, were 

evaluated for their effectiveness against tomato gray mold disease in a 2020 study. Results 

indicate that the treatment rates of the fungicides were effective, particularly when applied 

three to four times. The biological effectiveness was high in these instances, ranging from 

80.5% to 87.5%. Fungicides containing the active ingredient Difenoconazole outperformed 

those containing Cyprodinil in terms of biological effectiveness. Although both fungicides 

were applied, Difen Super at 0.08% and Skor (250 g/l EC) at 0.05% showed the highest 

biological efficacy against gray mold disease in tomatoes. Given the minimal difference in 

biological efficacy between the third and fourth spraying, it is recommended to use Difen 

Super at 0.08% and Skor (250 g/l EC) at 0.05% for controlling gray mold in tomatoes. It is 

recommended to apply the product three times with a 10-day interval, considering economic 

factors, the cumulative effects of the fungicide, and the potential emergence of resistant 

isolates of Botrytis cinerea (M S Mamiev et al. 2020).  

B. cinerea is challenging to manage due to its numerous attack mechanisms, diverse hosts as 

sources of inoculum, and the ability to persist in crop debris as mycelia and/or conidia, or as 

sclerotia for extended periods. Thus, a single control approach is unlikely to be effective, and 

a comprehensive understanding of the host-pathogen relationship, the environment in which 

the fungus operates, and its microbial competitors on the host is necessary (Silvia 2014).  

Fungicide residues in tomato tissues may have adverse effects on human health, cause 

environmental pollution, and promote resistance to disease biotypes. Thus, it is crucial to 

identify safer and more sustainable alternatives to combat fungal infection in tomatoes. 

Contemporary agriculture emphasizes the identification, screening, and utilization of 

biological control agents (BCAs) that promote growth and enhance plant defense. Microbial 

bioagents, such as fungi, bacteria, and yeasts, have been demonstrated to effectively control 

plant diseases through antibiosis, competition for resources and space, and/or the production 

of volatile chemicals and extracellular enzymes. Biological control is a proven and 

ecologically sound method of managing diseases, involving the introduction of an organism 

that combats the pathogen, rather than the use of chemical pesticides. Microbial biocontrol 

agents use their metabolites to prevent, preserve, and manage disease by restricting pathogen 
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growth. Gram-positive Bacillus bacteria, found in soil, water, and air, produce an array of 

antifungal and antibacterial chemicals that are particularly effective in controlling disease. 

Bacillus species have been used in biocontrol to combat various diseases, such as Fusarium 

oxysporum f. sp. Lycopersici, Alternaria alternata, and B. cinerea, as reported in the literature 

(Rodrigues e Furlong 2022; Song et al. 2023; Zheng et al. 2023; Bu et al. 2021; Lee et al. 

2006).  

Bacillus altitudinis B1-15, which was isolated from saline-alkaline soils, exhibited significant 

antifungal activity against B. cinerea based on a 2023 research study. Strain B1-15 

demonstrated considerable biocontrol effectiveness against tomato gray mold in pot trials at 

the 3-leaf (87.63%) and 6-leaf (76.43%) stages, as well as at 39.83% after 35 days of 

inoculation at the 6-leaf stage. Furthermore, administering strain B1-15 through inoculation 

with or without wounding resulted in significant improvements in stem diameter, plant height, 

dry weight, and fresh weight in tomato plants. Studies suggest that strain B1-15 may 

effectively suppress gray mold and prolong the post-harvest shelf life of tomato fruits. Strain 

B1-15 displays potential as a biocontrol agent for managing tomato gray mold and enhancing 

tomato yield and storage quality in practical environments. A 2021 investigation found that 

another Bacillus species may hold promise. Bacillus subtilis, in particular, could prevent gray 

mold and other postharvest diseases during storage. B. subtilis L1-21 showed strong 

suppression of tomato gray mold, resulting in an 86.57% control effect. It was found in this 

study that inoculating the bacteria prior to the fungal spores led to increased occupation of 

space by the strain, resulting in intense competition for resources and space with the pathogen. 

The biocontrol strains' volatile chemicals heavily inhibited spore germination and germ tube 

elongation in the pathogenic fungus (Song et al. 2023; Bu et al. 2021).  

In 2023, researchers conducted a study to evaluate the antifungal effectiveness of eight 

biocontrol strains from tomato rhizosphere soil against B. cinerea. These strains demonstrated 

noteworthy antifungal activity, with inhibition rates ranging from 19.30% to 69.88%. The 

strain with the highest impact was D50, which had an inhibition rate of 69.88%. Further 

analysis of its morphology, physiology, and biochemistry led the researchers to identify it as 

Bacillus mojavensis. Bacillus mojavensis D50 fermentation supernatant (BMFS) inhibited 

mycelial growth and conidia formation, causing alterations in mycelial morphology. 

Additionally, BMFS exhibited remarkable stability (Zheng et al. 2023).  



53 

 

According to a recent study by Faiza Anum et al., the use of nanoparticles has emerged as an 

effective technique for protecting plants from harmful microbes. Nanoparticles are being 

effectively utilized in modern and sustainable agriculture techniques for products such as nano 

fertilizers, nano pesticides, and nano fungicides. Nanotechnology shows great potential for 

addressing and managing agriculture-related issues. Silver nanoparticles have garnered 

considerable attention for their catalytic, antibacterial, antifungal, and anticancer properties 

applicable in medical and agrochemical fields. For the production of nanoparticles, the chosen 

method was biological or green synthesis. The main objective of this study was to utilize green 

synthesis in order to create silver nanoparticles and assess their antifungal capacity against 

Botrytis cinerea by using extracts from A. viridis (which includes a range of functional 

phytochemicals like phenols, tannins, flavonoids, steroids, and saponins that are known for 

their antioxidant and antimicrobial qualities). The use of green-synthesized silver 

nanoparticles has shown the ability to mitigate the negative impacts caused by the pathogenic 

fungus, with effectiveness depending on the concentration. Ultimately, this approach enables 

us to decrease the dangers associated with environmental pollution and toxicity brought about 

by chemical fungicides (Anum et al. 2023).  

A 2008 study proposes yeasts as a final option for biological control. In postharvest scenarios, 

yeasts reduce the incidence of fungal infections significantly. Due to their potent inhibitory 

ability, rapid colonization of fruit wounds, and method of action based mainly on resource 

competition, direct physical interaction with fungal hyphae, and cell wall lytic enzyme 

synthesis, yeasts are an excellent choice for postharvest use. Disease management 

incorporating biological control seems to decrease the selection pressure on the Botrytis 

population while deterring the development of fungicide resistance (G. Dal Bello et al. 2007).  

The search for environmentally friendly methods of disease control has been prompted by the 

need to avoid fruit loss while causing minimal harm to human health. This involves 

understanding crop plant defense mechanisms and stimulating secondary metabolism in plants 

to produce chemical compounds that confer resistance to biotic and abiotic stresses. 

Additionally, the benefits of these chemicals on human health are being explored in tomato. 

A 2022 study will investigate the efficacy of bioactive compounds in tomatoes, including 

polyphenolic compounds, minerals, hormones, phytoalexins, defense enzymes, and amino 

acids, in defending against pests in the absence of pesticides. Food safety, environmental 
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protection, and low production costs are all advantages. Fruit loss in the field and during post-

harvest processing due to pathogen infection presents a significant concern for the global food 

supply chain. Quick and efficient activation of natural defense mechanisms, known as 

Constitutive Resistance or Induced Resistance, is crucial in inhibiting fruit-pathogen 

interactions. These mechanisms are complex and consist of multiple structural and 

biochemical barriers. Abiotic stressors, such as salt, dryness, and nutritional limitation or 

excess, can also occur when fruits are exposed to them. These stresses can often combine, 

leading to conditions of combined stress in the field. Research indicates that these abiotic 

stressors can impact plant resistance to infections, either positively or negatively (Rodrigues 

e Furlong 2022; Yuling Bai et al. 2017).  

The physical and chemical barriers present in a fruit's inherent defenses, such as cell walls, 

waxy cuticles, and peel, provide constitutive resistance. If the fruit becomes infected, it emits 

multiple systemic signals, which activate specific defense responses against the virus, 

protecting other tissues. This process is called acquired systemic resistance (ASR) and is 

triggered by the salicylic acid (SA) hormone, as opposed to induced systemic resistance (ISR), 

which is activated by the jasmonic acid (JA) hormone. The defensive chemicals within the 

fruits vary based on their ripeness stage. The composition of mature fruit plays a crucial role 

in the development of postharvest illnesses. Although, certain pathogens have the ability to 

overcome these fruit defenses and result in infections (Rodrigues e Furlong 2022).  

Genetic modification is an intriguing option for improving fruit output, plant performance, 

and disease resistance. The transfer of disease resistance genes from wild tomato cousins to 

cultivated tomato types has been a critical feature of tomato breeding procedures since the 

1950s. This has resulted in increased resistance to the most damaging pests and viruses. The 

transfer of disease resistance genes from wild tomato cousins to cultivated tomato types has 

been a critical feature of tomato breeding procedures since the 1950s. Currently, genes for 

resistance obtained from a limited group of wild species, including S. pimpinellifolium, S. 

habrochaites, S. pennellii, S. chilense, and S. peruvianum, can be utilized to genetically control 

around 20 infections (Yuling Bai et al. 2017; Rodrigues e Furlong 2022).  

In conclusion, the multitude of prevention and control measures available to address the 

various issues related to fungal infection in fruits and vegetables highlights the essential 

importance of protecting food quality and safety. Efforts to decrease post-harvest losses and 
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maintain consumer health encompass regulating growing and storage conditions, identifying 

biological control agents, and developing innovative technologies. Simultaneously, advances 

in biotechnology and sustainable agriculture are facilitating safer and more efficient strategies 

to combat these challenges. Moreover, the collective implementation of these solutions 

represents an essential progression towards mitigating post-harvest losses and achieving 

sustainable, high-quality food production.  
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1.5  HACCP 

 

Food safety is a significant public health concern, and guaranteeing a safe supply presents 

significant challenges for organizations in the food chain industry. Numerous foodborne 

hazards, both acknowledged and unknown, raise health concerns and obstruct global food 

trade. These hazards must be assessed, evaluated, and controlled effectively to manage the 

ever-expanding and intricate worldwide food networks. (H. Khalaf et al. 2021).  

HACCP is a food safety management system that focuses on prevention. This involves 

identifying potential risks before they occur and employing control measures to guarantee food 

safety during all stages of food production and handling. Meaning "hazard and critical control 

point analysis," HACCP is a globally recognized method for ensuring food safety. Endorsed 

by national and regional agencies, this science-based approach is highly systematic, 

addressing biological, chemical, and physical hazards throughout the entire food chain, from 

primary production to ultimate consumption. Implementing HACCP provides increased 

systematic controls, resulting in a higher degree of product safety assurance. Its global 

recognition enables communication between processes, which allows audits to follow a 

standardized protocol. This simplifies communication between food companies and inspectors 

or auditors, creating opportunities for mutual learning regarding hazard control (Food and 

Agriculture Organization of the United Nations 2023).  

Quality control has traditionally relied on inspection and testing. While comprehensive 

inspection may seem like the optimal method for ensuring product safety in theory, it is not 

always feasible in practice. For example, fruit manufacturing lines often rely on visual 

inspection by operators to identify physical and biological contaminants such as leaves, stones, 

insects, and infections. Several issues lower the effectiveness of this approach, such as 

employee distraction caused by noise, surrounding activities, and conversations, as well as the 

limited attention span when working on repetitive tasks and people's differing observational 

abilities (Mortimore e A. Wallace 2001).  

The Pillsbury Company, NASA, and the United States Army developed a "zero defects" 

approach in the 1960s to ensure the microbiological safety of food for space travel. This 

method was based on the engineering concept of failure mode and effect analysis (FMEA), 



57 

 

which evaluates potential issues at every stage of an operation and implements effective 

controls. In the early days of the United States' manned space program, this idea was utilized 

for a microbiological safety system to guarantee food safety for astronauts and decrease the 

likelihood of a foodborne illness outbreak while in space. Food safety and quality systems 

were previously reliant on end-product testing, but limitations in sampling and testing 

hindered the ability to ensure food safety. The development of the HACCP method provided 

a preventative and practical approach to address this need, guaranteeing a high level of food 

safety. Pillsbury initially introduced the HACCP method in 1971 at the United States National 

Conference on Food Protection; since then, the concept has progressively gained acceptance 

as a practical solution.  To combat significant botulism problems in the canning industry, the 

FDA implemented HACCP principles in its regulations for low-acid canned goods as early as 

1973. Even though the approach was not officially established until the 1970s, it has since 

gained global backing, and the World Health Organization (WHO) has acknowledged the 

HACCP methodology for safe food manufacturing as the most successful means of decreasing 

foodborne illnesses (Food and Agriculture Organization of the United Nations 2023; 

Mortimore e A. Wallace 2001; L. Hulebak e  Schlosser 2002).  

The Codex Alimentarius Commission recognized HACCP as a valuable tool for improving 

food safety in 1993 and established Codex guidelines for implementing HACCP. This had a 

significant impact on the dissemination of the HACCP system. Upon the formation of the 

World Trade Organization (WTO) in 1995 and its implementation of the Agreement on 

Sanitary and Phytosanitary Measures, the Codex regulations and recommendations became 

the global standard for national food safety regulations. To promote food safety, many major 

trade blocs now require domestic and exporting food enterprises to have HACCP-compliant 

food management systems. Additionally, the concepts of the HACCP system are now included 

in the national law of many countries (ISO, 2005). To ensure food quality and safety, various 

food quality assurance systems are necessary at each stage of the food chain and across all 

sectors of the food industry. Governments are responsible for developing the standards, laws, 

and enforcement programs necessary for ensuring food quality and safety. Meanwhile, the 

industry is accountable for implementing quality assurance systems, including HACCP as 

applicable, to ensure compliance with standards and laws (Food and Agriculture Organization 

of the United Nations 2023; H. Khalaf et al. 2021).  
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The HACCP system reduces instances of foodborne illness, enhances food safety, and offers 

tangible advantages to food establishments, including: Improving food production and 

handling efficiency through detailed operational analysis, maximizing food safety resources 

by focusing on critical areas and reducing expensive final product inspections and tests, 

preventing recalls by detecting issues before products are released, ultimately resulting in more 

efficient food safety management systems, enhancing the market competitiveness of HACCP-

affiliated companies nationally and internationally, building trust in food safety to promote 

trade, and advancing science-based goals to facilitate international trade (Food and Agriculture 

Organization of the United Nations 2023).  

Setting goals or standards encourages innovation and change to minimize risk from all sources 

of food hazards – biological, chemical, and physical. This approach also provides a tool to 

hold establishments accountable for achieving acceptable levels of food safety performance. 

The Hazard Analysis and Critical Control Points (HACCP) system and its application 

instructions are described in detail in the Codex General Principles of Food Hygiene (CXC 1-

1969) (L. Hulebak e Schlosser 2002).  

The successful implementation of the HACCP system requires the dedication and engagement 

of both top management and personnel. It is best to involve staff members from multiple 

departments with varied expertise in performing the gathering of essential information, 

documentation, and danger analysis. Finally, before implementing HACCP principles, food 

companies should establish well-defined precursor programs, such as GHP (good hygiene 

practices), to ensure basic environmental and operational conditions. If executed properly, 

these preparatory programs will establish the foundation for a successful implementation and 

execution of the HACCP system. Without proper execution of precursor programs, the 

HACCP system will not be effective. Inclusion of hygiene factors necessitates proper 

execution of preparatory programs, as their lack or poor execution might result in more 

complicated HACCP plans with more critical control points (CCPs) to monitor. The greater 

the number of CCPs, the more challenging it becomes to manage the plan, which could 

compromise its efficacy in ensuring food safety (Food and Agriculture Organization of the 

United Nations 2023).  
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The HACCP system is highly versatile, making it feasible for businesses of any size to 

implement. The system follows seven HACCP principles, but careful consideration must be 

given to the unique characteristics of each food operation, including its personnel, financial 

resources, infrastructure, procedures, knowledge, practical limits, and associated hazards 

when designing the system. These are the seven principles (Food and Agriculture Organization 

of the United Nations 2023):  

- Principle 1: Performing a risk assessment and establishing control strategies is the 

primary step in building a HACCP system. This involves thorough investigation of the 

product creation process from start to finish, identifying potential risks that could occur 

and determining when they are likely to happen. Controls need to be put in place to 

avoid their occurrence. To begin, all potential risks, whether biological, physical, or 

chemical must be identified. The hazard must be significant enough so that eliminating 

it or reducing it to acceptable levels is crucial for producing safe food. 

- Principle 2 involves identifying critical control points (CCPs) or the essential measures 

for maintaining food safety.  

- Principle 3 requires setting established critical limits for operating these controls. 

- Principle 4 entails implementing a monitoring mechanism to ensure that CCP control 

is effective and that the safe limit is not surpassed.  

- Principle 5: Specify corrective actions to be taken when monitoring indicates a 

deviation from a critical limit in a CCP. 

- Principle 6: Validate the HACCP plan and establish verification procedures to ensure 

the effectiveness of the HACCP system. This involves setting criteria and recording 

results at the time of creation.  

Figure 12 - The four key stages of HACCP (Mortimore e A. Wallace 2001)  
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- Principle 7: Document all procedures and records related to these principles and their 

implementation. This requires conducting regular performance evaluations and audits 

to confirm the proper functioning of the system. 

The principles aim to identify potential hazards at every stage of the food supply chain and 

establish preventative measures to avoid their occurrence (Mortimore e A. Wallace 2001; Food 

and Agriculture Organization of the United Nations 2023; L. Hulebak e Schlosser 2002).  

In addition, there are twelve steps to implement a reliable HACCP plan: 

1. Bring the HACCP team together and identify the scope of application. 

2. Describe the product. 

3. Identify the intended use and users. 

4. Construct the flowchart. 

5. On-site confirmation of the flowchart. 

6. List all potential hazards that may occur and are associated with each step, conduct a 

hazard analysis to identify significant hazards, and consider all measures to control 

identified hazards (Principle 1). 

7. Determine critical control points (CCPs) (Principle 2). 

8. Establish validated critical limits for each CCP (Principle 3). 

9. Establish a monitoring system for each CCP (Principle 4). 

10. Establish corrective actions (Principle 5). 

11. Validate the HACCP plan and verification procedures (Principle 6). 

12. Establish documentation and record keeping (principle 7). 

 

During steps 2 and 3 of the HACCP process, all relevant information, including product 

specifications, should be objectively evaluated. Abbreviations should be clearly defined upon 

first usage. The resulting findings should be clearly documented in a concise, two-page paper. 

The objective is to provide all HACCP team members with a comprehensive understanding of 

the product and procedure being considered, ensuring logical connections between statements 

and consistent use of technical terminology. The product description stage involves assessing 

the potential applications, materials and technology utilized, primary categories of hazards to 

consider, and necessary control measures. This document is a valuable resource not only for 

the HACCP team, but also for future HACCP plan auditors. When integrating food safety into 
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a product, it is vital to consider the product's composition and the process technology utilized. 

At this juncture, the HACCP team typically examines these specifications. Instead, to 

determine how raw materials and product formulation affect safety, it is necessary to 

understand the inherent characteristics of the product. Intrinsic variables in food safety include 

compositional features such as pH and acidity levels, the use of preservatives, water activity 

(a_w), and the ingredients themselves. These characteristics are crucial to consider when 

assessing the safety of food products. The next step is to develop the process flowchart, which 

will establish the basis for conducting the risk analysis. It provides a comprehensive depiction 

of the entire procedure. If the modular method is used, it can be presented as a comprehensive 

diagram that encompasses the entire process or a series of smaller diagrams. This should 

furnish enough technical information for team members to comprehend each phase of the 

process, starting with the raw material supply and ending with the final product delivery. The 

process flow diagram must feature all process activities, storage conditions, temperature and 

time profiles, and raw material and packaging details (Mortimore e A. Wallace 2001).  

Step 7, as well as Principle 2, involves the identification of critical control points. A critical 

control point is defined as a stage when "control can be applied and is essential to prevent or 

eliminate a food safety hazard or reduce it to an acceptable level" (Codex 1997b). Only 

significant food safety concerns are addressed by critical control points. To differentiate 

between CPs and CCPs, ask yourself this simple question: Is there a risk of a health hazard if 

Figure 13 - The HACCP study (Mortimore e A. Wallace 2001) 
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control is lost? If the answer is "yes," the point should be managed as a CCP. If the answer is 

"no," indicating that food safety is not necessarily compromised, the issue can be managed as 

a control point (CP). Cooking, refrigeration, specific sanitation methods, prevention of cross-

contamination, formulation controls, and personnel and environmental hygiene are all 

examples of critical control points (CCPs). All CCPs must be carefully planned and 

documented. CCPs, especially, can be identified using tools like decision trees, which provide 

an organized approach (Mortimore e A. Wallace 2001; L. Hulebak e Schlosser 2002).  

After identifying all CCPs, the team needs to determine criteria that differentiate between 

"safe" and potentially "unsafe" CCPs for each one, which are represented by parameters called 

critical limits. If the product surpasses specific limits, the CCP becomes uncontrollable, and a 

safety risk could arise. Critical limits can be determined through regulations, safety 

requirements, or scientifically confirmed values. In addition to critical limits, operational 

limits are often utilized to provide a buffer or action zone for process control. These parameters 

are intended to permit a certain level of variation in normal process operation, while 

simultaneously ensuring food safety (Mortimore e A. Wallace 2001).  

Monitoring is covered in Principle 4, which entails performing observations or measurements 

to determine whether a CCP is under control. Monitoring is used to identify deviations in a 

Figure 14 - Example of decision tree for process steps (Mortimore e A. Wallace 2001) 
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CCP and should be conducted at regular intervals so that the CCP is always under control. 

Nevertheless, in a processing operation, optimal conditions are not always present and 

deviations occur. To regain control over the CCP, corrective action plans must be 

implemented. These plans will determine the appropriate disposal method for nonconforming 

products and identify and address the source of deviations. Finally, the HACCP plan of an 

establishment, along with all accompanying data, must be retained for record-keeping 

purposes and inspection. The ultimate audit involves utilizing various techniques, processes, 

or tests besides those for monitoring in order to evaluate whether the HACCP system aligns 

with the plan or requires revising and revalidating (L. Hulebak e Schlosser 2002).  

If the company is sizeable, a multifaceted team is typically responsible for conducting HACCP 

research. Four to six members receive training in diverse areas like quality control, 

manufacturing, engineering, microbiology, R&D, and supplier quality assurance. It is essential 

that every team member comprehends the production process thoroughly (Mortimore e A. 

Wallace 2001).  

How do we know the HACCP system is working? Companies using HACCP can verify that 

the system is working in a number of ways. Typically these are: number of customer 

complaints (using information provided by customers as evidence that food preparation is not 

causing problems); audits and test results (routine and specially planned tests can be used to 

verify the effectiveness of the HACCP system) (Mortimore e A. Wallace 2001).  

Using systematic techniques for food risk control, such as HACCP together with strong GHP, 

is now considered the most effective and efficient way to ensure food safety. To reduce the 

risk of foodborne illness, many countries have acknowledged the need for proactive, science-

based food regulation regimes. This method introduced noteworthy scientific and policy 

considerations, including the establishment of objectives or criteria (referred to as 

microbiological limits or performance standards). Setting specific quantitative limits for each 

significant pathogen was not feasible because the scientific understanding of the relationship 

between specific levels of many pathogens and the risk of foodborne illness is insufficient. 

The standards cannot be based on public health considerations without this understanding.  

The Food Safety and Inspection Service (FSIS) adopted the strategy of establishing pathogen 

reduction goals that were believed to be achievable using current research and technology, and 

mandating facilities to meet these standards on a continuous basis. FSIS acknowledged that if 
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advancements were made in knowledge and procedures, additional illnesses could be 

considered, and the objectives could be strengthened (Food and Agriculture Organization of 

the United Nations 2023; L. Hulebak e Schlosser 2002).  

HACCP is often thought of as a challenging task that requires significant resources and skills 

like those found in larger corporations. While some specialized skills are necessary to apply 

HACCP principles, the fundamental requirement is a thorough understanding of the product, 

raw materials, and manufacturing processes, along with a comprehension of potential 

situations that could occur in the product or process being evaluated, which may pose health 

hazards for the consumer. All personnel involved in the use of HACCP should possess the 

capability to comprehend and implement its principles via instruction and instruction. 

Nevertheless, the implementation of HACCP concepts within small to medium-sized 

enterprises (SMEs) and underdeveloped organizations can occasionally pose more formidable 

challenges than anticipated. There are several reasons for utilizing the HACCP system in 

SMEs, and a study is currently underway to assess its suitability. Per the authors, the challenge 

stems from inadequate knowledge and skills among company personnel, as well as insufficient 

implementation of current protocols, including proper hygiene practices. Such circumstances 

can arise in any type of business (Mortimore e A. Wallace 2001).  

There are no case studies in the bibliography on the application of HACCP in a farm setting 

for the industrial production of sun-dried tomatoes. Nevertheless, it is important to underscore 

the theoretical significance of the experimental section of this thesis for possible CCP control 

of postharvest mold contamination.  

The utilization of AI software for identifying mold through picture recognition is an innovative 

strategy for overseeing a Critical Control Point (CCP) in the production of dried tomatoes. 

The software can be deployed at multiple stages throughout the manufacturing process to 

detect mold presence and take necessary preventative or corrective measures in real-time. 

After drying, during inspection and sorting, before packaging, as a final quality control, and 

for storage and monitoring are some possible connection points. To obtain a reliable outcome, 

choose a suitable AI program for mold recognition and train it using a set of pictures 

showcasing common molds that might occur at each point of the production process where it 

will be utilized.  
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In practice, this would have numerous benefits, such as the ability to quickly analyze vast 

amounts of photos, ensuring speedy diagnosis of mold on dried tomatoes. This would reduce 

the need for lengthy manual checks, speeding up the manufacturing process, and improving 

problem detection timeliness. Additionally, AI can identify mold with high accuracy, 

surpassing human limitations such as fatigue or human error. This could help decrease false 

positives and false negatives, enhancing the dependability of quality control. Additionally, it 

would enable better allocation of human resources. Human operators could focus on more 

advanced and demanding quality control tasks, while AI automatically handles mold 

recognition. Lastly, artificial intelligence could identify molds before they spread 

significantly. This will enable early detection and separation of contaminated batches, 

preventing the spread of mold to other products and reducing waste of raw materials and 

finished goods. Incorporating AI into a HACCP plan could also promote environmental 

sustainability and waste reduction, while offering significant cost savings related to product 

recalls or company reputation. Integrating AI software for mold detection can significantly 

increase the efficiency, quality, and sustainability of the tomato production process. However, 

appropriate implementation planning is essential, including employee training and ongoing 

evaluation of the system's effectiveness. 
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1.6  Artificial Intelligence  

 

Man-made machines are capable of performing a variety of high-intensity tasks. However, 

humans have attempted to instill human intelligence into machines in several instances, driven 

by the need for increased production or perhaps just curiosity, which is the basis of artificial 

intelligence (AI). Without our automated technologies, our civilization would not have 

progressed very far. These technologies have made life as we know it possible, from the wheel 

that revolutionized agriculture to the pulley that facilitated more complex construction projects 

to today's robotic production lines. Despite their seemingly limitless uses, humans have always 

been wary of machines, particularly the possibility that they would one day possess human 

intelligence and operate autonomously (Jiang et al. 2022; McKinsey Explainers 2023).  

The era before 1956 is considered the period in which AI was incubated. Prior to this, scientists 

and engineers had endeavored to supplant certain aspects of mental labor with robots. In 1936, 

mathematician Alan Turing developed a mathematical model for an ideal computer, which 

established the theoretical basis for subsequent electrical computers. In 1943, 

neurophysiologists W. McCulloch and W. Pitts created the first neural network model, known 

as the M-P model. The M-P model is considered the initial mathematical model for simulating 

the structure and functioning of organic neurons. It is recognized as the first artificial neural 

network. In 1949, Hebb proposed a learning process rooted in neuropsychology. Hebb's 

"learning rule" is an unsupervised learning algorithm that can extract statistical characteristics 

from training sets and classify data based on similarity. It is the earliest concept in machine 

learning (ML) and closely resembles human cognitive processes. In 1952, IBM scientist 

Arthur Samuel developed a checkers algorithm that could learn implicit patterns from the 

current position and suggest next moves. Checkers programs were among the first studies in 

evolutionary computing in this field. Several factors are fueling AI's resurgence. Firstly, the 

success of machine learning is a primary driver. Numerous key ML concepts and techniques 

have been proposed since the late 1980s, with many being essential components of modern 

ML textbooks. Secondly, vast amounts of data are readily accessible to train models. Thirdly, 

the rise of artificial intelligence is concomitant with a significant boost in processing power. 

Fourth, several AI systems that have outperformed leading human competitors in competitions 

and contests have impressed the public and reinstated confidence in AI (Jiang et al. 2022).  
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Rule-based expert systems were commonly used in the 1980s and 1990s, while artificial neural 

network models and fuzzy inference techniques took over around 1990. Hybrid systems, such 

as neuro-fuzzy or image processing systems combined with artificial neural networks, have 

been increasingly applied in recent times. These technologies aim to achieve better automation 

and precision by operating in real-time. The replication of human intelligence in computers to 

think and act like humans, encompassing learning and problem-solving, is known as artificial 

intelligence (AI).  This field encompasses machine learning, which is the methodology used 

to identify, understand, and evaluate patterns in data. In contemporary computer science, AI 

is a critical subject of study (Das et al. 2018; Sharma 2021),  

AI research has been ongoing for over 65 years, with notable achievements in both theoretical 

studies and practical applications. AI is now being utilized across various industries and is 

viewed as an essential skill for the future. The AI industry is projected to reach $190 billion 

by 2025, with a CAGR (compound annual growth rate) of more than 36% between 2018 and 

2025. Due to its rapid technological advancements and widespread usefulness in addressing 

challenges that often strain traditional computer architectures and human capabilities, this 

technology is gaining momentum (Jiang et al. 2022; Sharma 2021).  

Artificial intelligence (AI) has various definitions. In the Turing test, AI refers to the ability 

of computers to converse with humans (through electronic output devices) without revealing 

non-human identities, where the primary evaluation criterion is binary. According to one of 

AI's pioneers, Marvin Minky, AI is the ability of robots to perform tasks that require human 

intellect. According to the symbolic school, AI involves the manipulation of symbols, where 

the most basic symbols correspond to physical realities. Although definitions of AI vary, the 

concepts, methodologies, technologies, and research applications used to simulate, expand, 

and advance human intellect are considered central to AI (Jiang et al. 2022). Going through 

the definitions again, it is still unclear how to distinguish between AI and ML. AI is the science 

and engineering of creating robots that can act like humans, including understanding and 

imitating human intellect. Simply put, AI can be defined as the ability to develop a program 

that enables a computer to exhibit human-like behavior. However, the aim of an intelligent 

machine is not limited to accomplishing a specific task. It also encompasses the interaction of 

the machine with its surroundings, which may significantly impact the final result. This is 
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where machine learning comes into play. An intelligent machine not only performs tasks, but 

also analyzes data to adapt to its environment (Ramli et al. 2020).  

Companies utilizing AI can increase efficiency and profitability.   Nevertheless, the real value 

of artificial intelligence does not rest in the systems themselves, but rather in how 

organizations utilize this technology to aid humans, and in their ability to articulate to 

shareholders, the public, and peers how these systems function in a way that instills trust. 

Machine learning, a subset of AI, uses trained algorithms to process data. Instead of being 

given explicit programming instructions, these algorithms can recognize patterns and learn to 

make predictions and suggestions by analyzing data and experiences. Deep learning is a form 

of machine learning that can analyze a wider range of data resources, including pictures and 

text, with less human interaction. Additionally, it often produces more accurate results than 

classical machine learning. Deep learning processes data through multiple iterations using 

neural networks modeled after how neurons interact in the human brain. The network makes 

decisions based on the data and learns if they are accurate, applying this knowledge to make 

decisions based on new data. For instance, once the network has "learned" how to detect an 

item, it can recognize it in a new image. Machine learning utilizes numerous artificial neural 

networks, wherein convolutional neural networks (CNNs) are widely used and popular. A 

CNN is a type of feed-forward neural network patterned after the structure of the visual cortex 

of animals, which performs image processing. As a result, Convolutional Neural Networks 

(CNNs) are well-suited for perceptual tasks such as identifying bird or plant species based on 

photos. In the corporate world, use cases include recognizing a company's logo on social media 

to manage the brand's reputation or uncover possible collaborative marketing opportunities 

(McKinsey Explainers 2023).  

To date, AI has played unprecedented roles in industry, healthcare, transportation, education, 

and many other public-facing fields, both consciously and unconsciously. AI study includes 

systems and engineering, brain science, psychology, cognitive science, mathematics, 

computer science, and many more subjects. AI applications include speech recognition, image 

processing, natural language processing, intelligent robotics, autonomous vehicles, energy 

systems, healthcare, and other fields. AI is believed to be a significant catalyst for change in 

both social and economic realms. Historically, each scientific and technological revolution has 

brought about changes not only in technology, but also in human social structures, moral 
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values, laws, and education. The corporate sector is exploring options to address potential 

problems related to AI, and legislative proposals have been introduced to address these issues 

as well (Jiang et al. 2022; Wang 2019). Artificial intelligence (AI) will be crucial in the 

development of symbiotic systems in the future. Human-machine symbionts would assist 

individuals by surmounting limitations, enabling them (also referred to as "human 

augmentation"), and improving their intellectual capacity. With the current information 

overload, it has become increasingly challenging to navigate through available resources. 

However, a cognitive digital twin (CDT) can provide great value by collecting and pre-

screening relevant data and performing tasks on behalf of humans (Jiang et al. 2022).  

1.6.1 Artificial intelligence in agriculture 

 

Artificial intelligence (AI) is a significant area of research in computer science. Due to its 

rapid progression and extensive range, AI is increasingly becoming widespread due to its 

ability to tackle problems that people and conventional computer systems are unable to solve. 

Agriculture is a crucial sector, with approximately 30.7% of the world's population directly 

employed in working on 2,781 million hectares of agricultural land. To meet demand, it is 

predicted that the global population will exceed nine billion by 2050, requiring a 70% increase 

in agricultural production. Presently, agricultural operations are the main source of income, 

contribute to GDP, act as a cornerstone for national commerce, reduce unemployment, provide 

raw materials for other sectors and contribute to overall economic growth. Despite being 

challenging from seeding to harvesting, this task is critical. Climate change, rising production 

costs, restricted irrigation water supplies, and a dwindling agricultural workforce have all 

presented significant challenges to agricultural production systems in recent decades. 

Additionally, the COVID-19 pandemic has negatively impacted food security through the 

disruption of food supply chains and production. These variables collectively pose a threat to 

the sustainability of the environment and the future food supply chain. The major concern 

currently faced is how best to generate sufficient quantities of high-quality food to meet the 

demands of an ever-growing global population. Therefore, comprehending the meaning and 

significance of AI in agriculture and food may prove to be pivotal in guaranteeing the security 

of the world's food supply. Substantial changes are required to mitigate this challenge. 

Therefore, comprehending the meaning and significance of AI in agriculture and food may 

prove to be pivotal in guaranteeing the security of the world's food supply. Indeed, the crucial 
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aspects of AI in agriculture are its flexibility, high performance, accuracy and cost-

effectiveness. Objective evaluation of these aspects is important (Das et al. 2018; Eli-Chukwu 

2019; Sharma 2021; Sahni, Srivastava, e Khan 2021).  

In 1983, the first documentation of computer usage in agriculture was recorded. Several 

approaches have been suggested to tackle current agricultural difficulties, including databases 

and decision support systems, with pest and disease infestation, unsuitable chemical 

application, incorrect drainage and irrigation, weed control, yield prediction, among others, 

being the primary concerns. Among the available options, artificial intelligence-based systems 

have been shown to be the most successful in terms of accuracy and resilience. Agriculture is 

a dynamic subject, and its circumstances cannot be generalized to suggest a common remedy. 

AI approaches have enabled us to comprehend the deep aspects of each circumstance and 

deliver the best solution to that specific challenge. With the development of various AI 

approaches, increasingly complex issues are gradually being resolved (Das et al. 2018).  

McKinion and Lemmon first applied artificial intelligence techniques to crop management in 

their 1985 essay 'Expert Systems for Agriculture'. Boulanger developed another expert system 

for maize crop protection in his dissertation. In 1987, Roach presented POMME, an expert 

system designed for apple planting management. Stone and Toman created COTFLEX, 

another expert system for crop management. In order to obtain crop metrics in cultivated areas, 

the application of 3D laser scanning, hyperspectral imaging, and remote sensing techniques is 

necessary. This has the potential to revolutionize the way farmers manage their land, thereby 

saving them valuable time and effort (Sharma 2021).  

Smart agriculture, also referred to as 'Agriculture 4.0,' encompasses several technologies and 

advancements that can improve crop yields and reduce water and energy consumption. This 

Figure 15 - Application of AI in agriculture (Eli-Chukwu 2019)  
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can be achieved through the integration of environmental sensors and predictive tools. Smart 

agriculture facilitates the optimization of farming processes to increase productivity whilst 

conserving natural resources. This is possible through a variety of technologies and platforms 

that allow farmers to implement new techniques (Shaikh, Rasool, e Lone 2022).  

The most up-to-date machine learning implementations tackle three main areas: pre-harvest, 

harvest, and post-harvest. By evaluating sources of soil management data, such as temperature, 

weather, soil analysis, moisture, and historical crop performance, artificial intelligence 

systems will be capable of providing predictive information regarding the crops that should be 

planted in a given year, and the optimal dates for planting and harvesting in a specific area. 

This will result in enhanced agricultural yields while using less water, fertilizer and pesticides. 

The implementation of AI technology could reduce the impact on natural ecosystems and 

guarantee worker safety in addition to sustaining food production and stabilizing food costs. 

According to recent predictions by the United Nations Food and Agriculture Organization, the 

global population is expected to increase by 2 billion by 2050 while agricultural land will rise 

by only 4%.  In this context, more dependable farming methods are necessary, utilizing 

modern technological advancements and tackling the limitations still hindering agriculture. 

The use of artificial intelligence is becoming increasingly prevalent in the farming sector, with 

the aim of improving efficiency and accuracy of production through analysis of agricultural 

data (Meshram et al. 2021; Eli-Chukwu 2019; Sharma 2021).  

Crop diseases are a significant worry for farmers. Plant diseases have three primary causes: 

fungi, bacteria, and viruses. While some diseases are highly destructive and can result in the 

complete loss of plants, others are challenging to identify due to their subtle symptoms. The 

use of AI, particularly machine learning, for identifying and categorizing plant diseases holds 

vast potential for enhancing crop management techniques, reducing crop losses and enhancing 

food safety.  As a result, the employment of AI in agriculture is irrefutable in order to improve 

sustainable food production and meet the increasing global demand for food. Pests and 

diseases obliterate 35% of crops in India alone, leading to substantial losses for farmers. 

Human health is jeopardized by the unchecked use of pesticides since some can become toxic. 

Effective crop surveillance, disease diagnosis and appropriate treatment procedures can help 

to negate such adverse consequences.  Identifying a diseased plant and implementing the 

necessary recovery steps requires a high level of competence and experience. Plant diseases 
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significantly limit potential production gains. Different factors contribute to the development 

of various animal and plant diseases, including genetics, soil type, rainfall, dry environment, 

wind, temperature, and other factors. Due to these variables, in addition to the unforeseeable 

nature of certain pathogenic agents, managing their effects is challenging, especially in 

extensive agriculture. Computerized systems are widely used worldwide to detect diseases and 

offer management strategies. Disease detection involves analyzing images of leaves, where 

leaf images are segmented into categories such as non-diseased, background, and diseased. 

The affected leaf is subsequently gathered and dispatched to a laboratory for further 

examination (Ramli et al. 2020; Sundararaman, Jagdev, e Khatri 2023; Sharma 2021; Eli-

Chukwu 2019).  

The ongoing automation and deconstruction of the food supply chain emphasizes a new 

normal and renders the old reality unachievable. The food sector is being revolutionized by 

robots, augmented and virtual reality, 3D printing, sensors, computer vision, drones, 

blockchain, and the Internet of Things, all of which highlight the crucial role of artificial 

intelligence. The use of artificial intelligence to enhance food production is on the rise as the 

world transitions from the COVID-19 pandemic, and the demand for speed, efficiency, and 

sustainability is growing in tandem with the rapid population growth (Sahni, Srivastava, e 

Khan 2021). 

The bibliography lists various instances of AI employed in agriculture. For instance, multiple 

artificial neural network models have been fashioned for disease control in a range of crops. 

Moreover, there have been a number of hybrid systems put forth. A certain research, for 

example, proposed an image processing technique backed by an artificial neural network 

model to diagnose illnesses in orchid seedlings. In the agricultural industry, solutions based 

on artificial intelligence (AI) such as drones, robots and wireless ground sensors are gaining 

in popularity. Microsoft, for instance, worked alongside the International Crop Research 

Institute for the Semi-Arid Tropics (ICRISAT) to develop an AI-powered planting tool. In a 

similar vein, Nature Fresh Farms, a US-based technology company, is devising data analysis 

with AI-based technology to produce precise crop predictions on a large scale. The duration 

required for the maturation of flowers is determined via an AI system. In addition to pest and 

disease surveillance, crucial aspects of agriculture include crop preservation, desiccation, and 

classification (Das et al. 2018; Sharma 2021).  
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Moving on to the details of this project, references regarding the application of AI in tomato 

cultivation can be found in the bibliography. Artificial intelligence has shown potential for 

precise identification and categorization of tomato leaf diseases, enabling farmers to take 

necessary measures to avoid crop damage and yield reduction. AI algorithms are capable of 

interpreting vast volumes of data objectively and without human bias. This makes them a 

useful tool for detecting even the most minor alterations in plant diseases, which traditional 

approaches may overlook. The combination of AI algorithms and developments in computer 

vision has led to considerable breakthroughs in current literature on the classification of tomato 

leaf diseases using AI approaches (Sundararaman, Jagdev, e Khatri 2023).  

Artificial intelligence has significant potential in agriculture. However, there is a general lack 

of understanding of modern high-tech machine learning solutions in agriculture. Additionally, 

AI systems require a vast amount of data to train robots to make accurate predictions. While 

collecting geographical data over vast areas is relatively straightforward, obtaining time data 

is more challenging. Creating knowledge-based rules and effectively organizing them for 

multiple factors can be equally challenging. Crop-specific data is often only available once a 

year during the growing season, and building a robust AI machine learning model takes time 

as the database needs time to mature. This is why artificial intelligence is employed in 

agricultural products like herbicides, fertilizers, and seeds. Additionally, numerous cognitive 

agriculture solutions are quite costly, potentially restricting their widespread acceptance. More 

widely available AI-inspired solutions are crucial to ensure that AI technology benefits the 

farming community. Open-source platforms could enhance accessibility to these technologies 

for farmers, promoting quicker adoption and improved understanding (Sharma 2021).  

The main objective of this study is to propose a novel application of artificial intelligence (AI) 

in tomato farming, with the aspiration that this technology can eventually be implemented as 

a viable and sustainable solution on farms. As demonstrated in this research, AI holds great 

potential for streamlining crop administration, eradicating diseases and pests, boosting 

harvests, and reducing the use of resources such as water, fertilisers and pesticides. Adoption 

of AI in agriculture could be a potential solution to overcome these challenges and ensure 

global food security in a world where the global population continues to grow, and 

environmental issues become more critical. With its flexibility, efficiency and ability to 

process large amounts of data, artificial intelligence has the potential to shape the future of 
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agriculture and make it more sustainable and resilient. Objective evaluations suggest that with 

further research, funding and efforts to make AI more accessible to farmers, this technology 

will continue to improve and contribute to a safer and more efficient future for food 

production. 
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Chapter 2 – Objectives 

Food safety is a crucial concern in our society today. As food production becomes increasingly 

complex, ensuring that the food we consume is free of biological, chemical, and physical 

hazards has become a key issue. This means not only preventing potential threats to human 

health, but also instilling confidence in the food production process for consumers.  

To achieve this, prioritizing prevention over correction is fundamental. The Hazard Analysis 

and Critical Control Point (HACCP) method is a beneficial tool that focuses on preventing 

potential hazards at each stage of the production process. This approach shifts the focus from 

post-production analysis to proactive hazard management.  

Unlike traditional monitoring methods that can be costly and time-consuming, the HACCP 

system relies on effective surveillance at critical control points. 

 

Fortunately, advances in technology have enabled us to handle food safety issues more 

effectively and efficiently. Artificial intelligence and machine learning technologies have the 

potential to improve industrial processes, promote sustainability, and reduce costs.  

The automated procedures and improved risk detection process implemented by AI ensure 

higher quality food products that require fewer recalls once they are placed on the market.  

 

In this thesis, we examine the use of AI software in a critical control point phase of tomato 

production. The software's objective is to detect molds during the drying phase to ensure 

quality in the production process. Our research aims to determine if AI can be more widely 

utilized in the food industry to create safer, better quality products while minimizing food 

waste.  

Drying plays a crucial role in both enhancing the product's sensory characteristics and 

preventing mold formation. However, a prolonged drying process that enhances the product's 

quality may heighten the mold risk. The application of preservatives is a typical way to avert 

mold formation, but proper process control is crucial in managing drying conditions. Our 

objective is to create a control system utilizing computer vision (CV) and artificial intelligence 

(AI) for the early detection of mold to enhance process control. Studying AI integrated with 

HACCP plans in the food industry can determine whether we can guarantee the quality, safety, 

and sustainability of our food supply for future generations from a broader "One Health" 

viewpoint. 
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Chapter 3 – Materials and method 

 

For the experimental part of this paper, different procedures were carried out at different times.  

The goal was to "train" the image recognition software so that when the experiment was 

finished, it would be able to recognize spoiled tomatoes from healthy ones on its own. To do 

this, it was necessary to collect as many photos as possible of healthy and unhealthy tomatoes 

and of different shapes.  

In a first trial, photos already owned by the research team of the TESAF department of the 

University of Padua that depicted mostly healthy tomatoes, dried healthy tomatoes, and dried 

spoiled tomatoes were used (tomatoes all of the same variety).  

 

These photos, a total of 232 in number, were labeled thanks to YOLOv7 (further explanation 

in subchapter 3.1) into 3 labels: healthy, uncertain and spoiled. We thus obtained 4645 labeled 

tomatoes.  

At a later stage of analysis of these first data, it was seen that the category "uncertain" could 

be confusing and an unclear classification for the algorithm, so it was decided to do a second 

trial (still keeping 232 photos) and all the subsequent ones with only two labels: healthy 

(green) and spoiled (red).  

Figure 16a – 16b Photo held by the TESAF department of the University of Padua 
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Following the outcome of the analysis with only two labeling, it was realized that it was 

necessary to increase the number of photos that contained spoiled tomatoes, as, in the first two 

labeling there were only 344 spoiled tomatoes against 4281 healthy ones.  

 

After buying new tomatoes of different varieties, new photos of them were taken. The tomato 

varieties examined were Beefsteak, Cherokee Purple, San Marzano, Plum, Brandywine, 

Grape, Cocktail, and Cherry. Approximate measurements of each were taken to clarify the 

limits and application range of the model as indicate in the Table 1:  

Table 1 - Approximate measurements of each variety of tomato 

The process took 3 days using: a stove (which would allow us to dry the tomatoes), a camera, 

a scale and a photo light box. First the tomatoes were cut and placed in aluminum baking trays 

to hold food. The trays were weighed both with and without the tomatoes to keep track of 

water loss throughout the drying process.  

Since the ultimate goal of this step was to increase the number of spoiled tomatoes, 

contamination by rubbing was performed between the present tomatoes that already had mold 

and those that did not.  

 
Grape  Cherry  San Marzano  Cherokee Beefsteak  Plum  Brandywine Cocktail  

Width (cm) 3,36 4,85 4,17 8,14 8,85 6,05 10,44 4,35 

Length (cm)  5,33 4,28 8,62 7,63 7,12 10,66 14,28 4,75 

Figure 17 - Photo labelled with YOLOv7 
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Photos were taken of both individual tomatoes on a black background and inside the aluminum 

trays (a total of 11 trays) to increase the variables that the algorithm would then have to 

identify.  

The trays containing the tomatoes were placed inside the stove with a set temperature of 40°C 

for 24 hours. On the second day, the same photos and weighing of the trays were repeated, 

observing that mold had expanded on all the tomatoes inside the different trays.  

 

As on the previous day, the trays were placed in the stove at 40°C for another 24 hours. The 

third day was worked in two stages. In the morning, all photos and weighing of the 11 trays 

were still repeated, which were then placed in the stove again, but this time with a set 

temperature of 80°C.  

 

Figure 18 - Tomatoes inside the tray 

Figure 19 - Spoiled tomatoes after 24h 
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Two and a half hours passed and the last photos and weighing of the trays were taken. 

 

At the end of these three days there were 115 new photos obtained, including 76 photos of 

tomatoes inside the trays and 39 of tomatoes on the black background.  

Before adding the new photos to the old ones, the latter were rechecked and the photos that 

were repeated several times were removed thus arriving at a final total of no longer 232 but 

114. To these were added the 115 new photos and another 18 photos also already in the 

possession of the TESAF department of the University of Padua. This brought the total to 247 

photos (including those with tomatoes in trays and not). 

 

The new photos were labeled, again using the YOLOv7 algorithm, and a total of 3392 labeled 

tomatoes were obtained of which 2055 were healthy and 1337 were spoiled. Thanks to these 

new labeling subsequently the third data analysis was started. 

 

Following the creation of this new dataset, it became necessary to take additional photos 

portraying both healthy and dried tomatoes of different varieties. Therefore, new photos were 

searched that portrayed both healthy and spoiled dried tomatoes of each variety. This, to make 

sure that the algorithm had been trained to recognize both healthy and unhealthy dried ones of 

the same variety. To achieve this, new tomatoes were then bought and all the steps already 

performed last time were repeated.  

Figure 20 - Tomatoes after two and a half hours in the stove at 80°C 
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This time, however, the photos were taken on 4 different days and using the stove with a fixed 

temperature of 40°C every 24 hours.  

The initial goal of obtaining photos of dried and healthy tomatoes of the same variety 

unfortunately failed as mold contamination again affected all the trays but, nevertheless, all 

photos were taken.  

After 4 days, a total of 194 photos was obtained, 124 of which had the tomatoes inside the tray 

(a total of 18 trays) and 70 photos of individual tomatoes with the black background.  

These new 194 photos were labeled with YOLOv7 and added to the previous ones. This 

resulted in 441 photos to which another 21 photos (with only dry and healthy tomatoes) were 

added, again already in the possession of the TESAF department of the University of Padua, 

to try to increase the amount of dry and healthy tomatoes. As a result of labeling, 4644 labeled 

tomatoes were then obtained, of which 2688 were healthy and 1956 were spoiled. Again, 

thanks to this data, the fourth analysis was started.  

 

 

 

 

 

 

Figure 21a - 21b - Fourth trial tomatoes 
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3.1 Object detection and neural networks 

 

Object detection is a process within computer vision that involves the classification and 

localization of objects in images or videos. Computer vision represents one of the fastest-

growing areas in the field of artificial intelligence. Notably, Tesla has taken the lead in 

developing autonomous and self-driving vehicles, with other major automakers following suit 

by experimenting with similar technologies. Image identification and classification have been 

a long-standing concern, particularly due to the challenges of a standard algorithm in 

recognizing the same object from different viewpoints and angles. Although visual image 

recognition and discrimination come easily and automatically to us, it is challenging to 

perceive the difficulties encountered in automating this process. Initially, two types of 

difficulties must be differentiated: classification and localization. The less sophisticated 

challenge already arises with the former. For instance, recognizing a chair is easy but 

describing it unambiguously can be difficult. A chair, which is a piece of furniture for sitting, 

typically has four legs, armrests, and a backrest. Nevertheless, various issues exist: some have 

only three legs, some possess two legs, and some chairs in an office come with wheels. 

Regardless, we can immediately identify all of them as chairs. It is impossible to train a 

machine to recognize all potential exceptions. Consequently, rule-based recognition is bound 

to yield poor results, including both false positives (identifying chairs that do not exist) and 

false negatives (failing to recognize chairs that do exist). When presented with multiple 

orientations or missing sections, the situation becomes significantly more challenging. 15 

In other terms, object detection is the process of creating bounding boxes around observed 

items in order to identify them in a scene (or comprehend how they move within it). The 

distinction between picture recognition and object detection must be clarified.16 Image 

classification entails labelling an image with a class name, whereas object location entails 

creating a bounding box around one or more objects in an image. Object detection is more 

difficult and combines these two tasks by constructing a bounding box around each object of 

 
15 Source: Online interview by Paolo Costa on 26 June 2018, available via link: YOLO, un algoritmo ultra veloce 

open source per la computer vision in tempo reale (last access September 2023).  

16 Source: Online interview by Alberto Rizzoli on 10 June 2021, available via link: The ultimate guide to Object 

Detection (last access September 2023).  

https://www.spindox.it/it/yolo-riconoscimento-oggetti-real-time/
https://www.spindox.it/it/yolo-riconoscimento-oggetti-real-time/
https://www.v7labs.com/blog/object-detection-guide
https://www.v7labs.com/blog/object-detection-guide
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interest in the picture and labelling it.  Object recognition refers to the combination of these 

challenges. Object recognition is a broad word that refers to a group of related computer vision 

tasks that include identifying items in digital pictures. Image classification entails guessing 

the class to which an object in an image belongs. Identifying the position of one or more items 

in a picture and drawing a bounding box to their extent is referred to as object location. These 

two tasks are combined in object detection, which locates and classifies one or more things in 

a picture.  

However, the tasks of computer vision can be summarized as follows: Image classification is 

the process of estimating the type or class of an object in an image. Object localization: detect 

the existence of items in a picture and mark their position with a selection rectangle. Object 

detection: identify the presence of items in an image using a bounding box and the kinds or 

classes of objects found. 17 

 

 

 

 
17 Source: Online interview by Jason Brownlee on 22 May 2019, available via link: A gentle introduction to 

object recognition with Deep Learning (last access September 2023).  

Figure 22 - Overview of Object Recognition Computer Vision Tasks 

https://machinelearningmastery.com/object-recognition-with-deep-learning/ 

https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
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Classification offers benefits as a preferred alternative to tags without physical limits, such as 

"fuzzy" or "sunny." However, object detection systems consistently outperform classification 

networks in recognizing items with a physical presence, like an automobile. 18 

 

 

Object segmentation, also referred to as "object instance segmentation" or "semantic 

segmentation," is a computer vision technique that involves highlighting object-specific pixels 

to identify recognized object instances instead of relying on a crude bounding box. Picture 

segmentation is a related concept that involves defining the pixels in an image belonging to a 

specific class of objects. Semantic image segmentation identifies all pixels corresponding to a 

particular label but does not define the boundaries of individual objects.  

In contrast, object detection does not segment the object itself, but instead employs bounding 

boxes to precisely locate each object instance. When combining semantic segmentation and 

object identification, the result is instance segmentation. This method first recognizes object 

instances and subsequently identifies them inside specified windows, also known as areas of 

interest. 19 

 
18 Source: Online interview by Alberto Rizzoli on 10 June 2021, available via link: The ultimate guide to Object 

Detection (last access September 2023).  

19 Source: Online interview by Jason Brownlee on 22 May 2019, available via link: A gentle introduction to 

object recognition with Deep Learning (last access September 2023). Source: Online interview by Alberto Rizzoli 
on 10 June 2021, available via link: The ultimate guide to Object Detection (last access September 2023). 

Figure 23 - Image Classification vs. Object Detection 

https://www.v7labs.com/blog/object-detection-guide 

https://www.v7labs.com/blog/object-detection-guide
https://www.v7labs.com/blog/object-detection-guide
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://www.v7labs.com/blog/object-detection-guide
https://www.v7labs.com/blog/object-detection-guide
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Prior to 2013, most object identification was conducted using traditional machine learning 

algorithms. The Violet-Jones object recognition approach, Scale Invariant Feature 

Transformation (SIFT), and Histogram of Oriented Gradients (HOG) were the most widely 

used methods. These algorithms detected common features in the image and categorized them 

into clusters using logistic regression, color histograms, or random forests. However, 

contemporary deep learning-based approaches outperform these techniques by a wide 

margin.20 

Object detection techniques are classified into two types based on the number of times a 

network processes the same input image: single-shot detectors and two-stage detectors. 

 

 
20 Source: Online interview by Alberto Rizzoli on 10 June 2021, available via link: The ultimate guide to Object 

Detection (last access September 2023).  

Figure 24 - Object detection and Segmentation 

https://www.v7labs.com/blog/object-detection-guide 

Figure 25 - One and two stage detectors 

https://www.v7labs.com/blog/yolo-object-detection 

https://www.v7labs.com/blog/object-detection-guide
https://www.v7labs.com/blog/object-detection-guide
https://www.v7labs.com/blog/object-detection-guide
https://www.v7labs.com/blog/yolo-object-detection
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Single-shot object detection predicts the presence and placement of objects in an image 

through a single pass of the input picture. This approach processes the entire image in a single 

pass, which enhances computational efficiency. However, single-pass object detection may be 

less precise than other methods and can struggle with recognizing small objects. Nevertheless, 

these algorithms are capable of detecting objects in real-time, even in situations where 

resources are limited.  Two-shot object detection predicts object presence and placement using 

a two-pass method on input images. The initial phase generates a set of ideas or potential item 

positions, followed by a secondary refinement period that fine-tunes the suggestions and 

generates definitive forecasts. Despite the fact that this process is more precise than single-

shot object detection, it is also more computationally demanding. Generally, single-shot object 

identification is preferable for real-time situations, while two-shot object detection is more 

appropriate for precision-intensive applications. 21 

Standard quantitative measurements are essential for assessing the performance of object 

detection models. When evaluating such models, these metrics are indispensable. The 

Intersection over Union (IoU) and Average Precision (AP) are the most commonly used 

metrics. IoU is a key indicator for estimating location errors and measuring location accuracy 

in object recognition algorithms. It calculates the intersection between two bounding 

rectangles: one representing an expected bounding rectangle and the other representing the 

ground truth bounding rectangle. 22 

 
21 Source: Online interview by Rohit Kundu on 17 January 2023, available via link: YOLO, algorithm for Object 

detection explained (last access September 2023).  

22 Source: Online interview by Deval Shah on 30 May 2023, available via link: Intersection Over Union (IoU): 

Definition, Calculation, Code (last access September 2023).  

Figure 26 - Bounding rectangles 

https://www.v7labs.com/blog/intersection-over-union-guide 

https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide
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IoU is the ratio between the junction of the two boxes' areas and their combined area. The 

union area, which is the denominator, is included in both the ground truth selection rectangle 

and the predicted selection rectangle. In the numerator, we compute the overlap between the 

ground truth and anticipated selection rectangles. We write the following for binary 

classification:  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) = TPTP + FN + FP 

Where TP denotes true positive, FN denotes false negative, and FP denotes false positive. In 

particular: True positive: The model correctly predicted the existence of a bounding box at a 

certain place (positive). False positive: The model predicted the presence of a bounding box 

at a specific point (positive), but it was incorrect (false). False negative: The model predicted 

the existence of a bounding box at a particular place but was incorrect (false), indicating that 

a ground truth bounding box existed at that point. True negative: The model predicted a 

bounding box but was incorrect (true). This relates to the backdrop, the region without 

bounding boxes, and is not utilized in the final metrics calculation. 23 

   

 
23 Source: Online interview by Deval Shah on 30 May 2023, available via link: Intersection Over Union (IoU): 

Definition, Calculation, Code (last access September 2023). Source: Online interview by Aqeel Anwar on 13 
May 2022, available via link: What is Average Precision in Object Detection & Localization Algorithms and 
how to calculate it? (last access September 2023).  

Figure 27 - Intersection Over Union 

https://www.v7labs.com/blog/intersection-over-union-guide 

https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://www.v7labs.com/blog/intersection-over-union-guide
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If there is significant overlap between the expected and ground truth boxes, the IoU score will 

be high. Conversely, a low overlap will result in a low IoU score. An IoU score of 1 indicates 

a perfect match between the projected and ground truth boxes, while a score of 0 suggests that 

the boxes have no overlap. Let us take the example of using a deep learning model to detect a 

squirrel, for which the model will provide an estimated selection rectangle. However, it is 

important to note that the actual truth box, which has been accurately marked around the 

object, may differ from the predicted rectangle. The Intersection over Union (IoU) measure is 

used to evaluate the accuracy of the model by assessing how well the predicted rectangle 

matches the actual one. As shown in Figure 28, three instances arose from the computation of 

IoU. The model performs with high accuracy in the initial squirrel example. However, the 

second example, with an IoU of 0.79, is average. Finally, the third case shows poor 

performance with an IoU of 0.45, indicating that the object was not successfully detected. 24 

The IoU metric is crucial as it provides a numerical assessment of a model's competency in 

recognizing objects in images. Moreover, a minimum IoU score is essential to consider a 

projected box as an accurate positive detection while training the model, allowing IoU to be 

utilized for establishing a threshold for object identification. The threshold choice controls the 

balance between detection accuracy and false positives. There is no universally accepted 

threshold for Intersection over Union (IoU) as it depends on the specific item detection task 

and dataset. Nevertheless, a prevalent criterion in practice is 0.5, which suggests that a 

predicted box can be considered a true positive detection only if its IoU with a ground truth 

box is at least 0.5. In conclusion, IoU assists in evaluating our algorithms' performance and 

 
24 Source: Online interview by Deval Shah on 30 May 2023, available via link: Intersection Over Union (IoU): 

Definition, Calculation, Code (last access September 2023). 

Figure 28 - IoU comparative performance 

https://www.v7labs.com/blog/intersection-over-union-guide 

 

https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide
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establishing acceptable levels of detection accuracy. The actual or accurate values of the 

evaluated objects or regions are known as ground truth data in Intersection over Union (IoU). 

The expected values generated by a model or algorithm are compared to the ground truth data. 

Ground truth information in object detection, for instance, consists of the precise bounding 

boxes encompassing the elements of interest in an image, which human experts manually 

designate.  Obtaining accurate and reliable data is crucial for evaluating the efficiency of 

machine learning models and algorithms, as well as for comparing various models to 

determine the best performer. Additionally, TP, FP, and FN can be utilized to obtain two 

parameters for each labeled category - accuracy and recall. 25 

 

Precision demonstrates the accuracy of the model, specifically the number of identified cats. 

Illustrated below, it represents the ratio of true positives to the total number of cat predictions 

produced by the model (equal to the sum of true positives and false positives).  

Recall: This metric measures the model's ability to correctly identify cat images, or in other 

words, the number of cats it was able to recognize in the input image. The model calculates 

 
25 Source: Online interview by Deval Shah on 30 May 2023, available via link: Intersection Over Union (IoU): 

Definition, Calculation, Code (last access September 2023). 

Figure 29 - Object Detection and Localization – IoU                                                       

https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-

calculate-it-3f330efe697b  

https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
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the ratio of accurately identified cats (true positives) to the total number of actual cats (sum of 

true positives and false negatives) as shown below. 26 

The classifier is accurate as shown in the above image, with an 80% accuracy when predicting 

whether an image contains a cat or a dog. However, if a cat or a dog is present, the classifier 

can only identify it correctly 50% (80%) of the time. This leads to difficulty in recalling cats 

(cut image) in the model. Our goal is to achieve high accuracy and recall, meaning that all 

occurrences of a class are correctly identified by the model. The accuracy and recall values 

are determined based on the number of true positives detected by the model. The assignment 

of a bounding box TP, FP, or FN is determined by the following two factors:  

- The predicted label versus ground truth label.  

- The IoU between the two boxes.  

The model provides the conditional probability that the selection rectangle belongs to a 

specific class for a multiclass classification problem. As the probability for a class increases, 

the likelihood of the selection rectangle containing that class also increases. To classify a 

selection rectangle, the probability distribution is used along with a user-defined threshold 

value (ranging from 0 to 1). Lowering the probability confidence threshold will increase the 

model's detections, decrease the likelihood of missing ground truth labels, and thus improve 

overall recall (although not always consistently). Increasing the confidence threshold results 

in a more certain prediction from the model, leading to higher precision (although not always). 

 
26 Online interview by Aqeel Anwar on 13 May 2022, available via link: What is Average Precision in Object 

Detection & Localization Algorithms and how to calculate it? (last access September 2023).  

Figure 30 - Precision and Recall in Machine Learning                                                  

https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-

to-calculate-it-3f330efe697b  

https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
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This trade-off is dependent on the value of the confidence threshold. However, there is a trade-

off between precision and recall as we aim for maximum accuracy and feasibility.27 

 

The precision-recall curve enables us to visually comprehend the suitable confidence threshold 

for our application. A basic example of the PR curve is illustrated in Figure 31. 

The second evaluation metric, referred to as average precision (AP), is derived from this. 

Average accuracy, a crucial performance metric aimed at reducing dependence on selecting a 

confidence threshold value, is defined by the area beneath the PR curve. AP provides a scalar 

value that summarizes the PR curve. Average precision is high when both precision and recall 

remain high within a range of confidence thresholds, and low when either is low. The mean 

accuracy (mAP) of AP, which ranges from 0 to 1, is the average score across all classes in 

object detection. Precision and recall are not utilized for class prediction in object detection. 

The prediction model uses precision and recall evaluating the decision performance of 

boundary box predictions. Predictions with an IoU value above 0.5 are classified as positive, 

while those with values less than 0.5 are deemed negative. 28 

Another concept that requires explanation in the extensive field of machine learning is neural 

networks. An artificial neural network (ANN or NN) is a mathematical model composed of 

artificial "neurons" inspired by a biological neural network. In detail, ANNs are a technique 

 
27 Source: Online interview by Aqeel Anwar on 13 May 2022, available via link: What is Average Precision in 

Object Detection & Localization Algorithms and how to calculate it? (last access September 2023).  

28 Source: Online interview by Rohit Kundu on 17 January 2023, available via link: YOLO, algorithm for Object 

detection explained (last access September 2023). 

Figure 31 - Precision Recall Curve (PR Curve)                                                                

https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-

calculate-it-3f330efe697b  

https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
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utilized to solve intricate problems that are challenging to design, and they establish the basis 

of current machine learning. "Neural networks" are so called because their component nodes 

exhibit similar activity to actual neurons. A neuron processes incoming information from 

neighboring neurons via synaptic connections. If the resulting activation reaches a particular 

threshold, an Action Potential is generated and transmitted along the axon to one or more 

neurons. A neural network can be envisioned as a black box, consisting of inputs, intermediary 

layers where processing occurs, and outputs that constitute the final outcome. The network 

comprises individual "units," known as neurons, which are arranged in layers. Weighted 

connections join each neuron to every neuron in the subsequent layer.  A connection is simply 

a numeric value, or "weight," multiplied by the value of the connected neuron. Each neuron 

adds its bias value to the sum of weighted values from all linked neurons. An "activation 

function" is then applied to this result, modifying the value mathematically before forwarding 

it to the next layer. This process allows the input values to be transmitted through the network 

until they reach the output neurons, which is essentially the core function of a neural network. 

If a node's individual output exceeds the designated threshold value, it activates, and 

subsequently sends data to the next layer within the network. Conversely, if the output falls 

below the threshold value, no data is transferred to the subsequent network layer. 29 

As a result, neural networks comprise three layers: an input layer (which stores the input data), 

one or more hidden layers (which perform the actual processing), and an output layer (which 

saves the final outcome). The term "deep learning" originated from this neural network 

concept as this method employs "deep" neural networks, implying that they have multiple 

 
29 Source: Online interview by Paolo Costa on 20 February 2018, available via link: Machine Learning – Reti 

neurali demistificate (last access Septembre 2023).   

Figure 32 - Neural Networks     

https://www.spindox.it/it/ml1-reti-neurali-demistificate/  

https://www.spindox.it/it/ml1-reti-neurali-demistificate/
https://www.spindox.it/it/ml1-reti-neurali-demistificate/
https://www.spindox.it/it/ml1-reti-neurali-demistificate/
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layers. The multiple layers in the algorithm are necessary because each layer gradually 

"generalizes" more than the previous one. In the context of identifying geometric shapes, for 

instance, the initial layer simply distinguishes individual pixels, the next layer "generalizes" 

edges, the third layer begins recognizing basic shapes, and so forth. 30 

Convolutional neural networks (CNNs) are a type of neural network that is especially 

beneficial for categorizing and computer vision purposes. Prior to the advent of CNNs, 

pinpointing objects in photographs was an onerous task requiring time-consuming feature 

extraction methods. Now, CNNs offer a more scalable solution to image classification and 

object identification applications by utilizing linear algebra concepts, specifically matrix 

multiplication, to identify patterns within an image. However, training these models can be 

computationally intensive, and thus the use of Graphical Processing Unit (GPU) cards is often 

required. Convolutional neural networks outperform other types of neural networks in 

processing images, speech, and audio signals. They consist of three types of layers: 

convolutional, pooling, and fully connected (FC) layers. The first layer of a convolutional 

network is the convolutional layer. While convolutional layers may be followed by additional 

convolutional or pooling layers, the final layer is the fully connected layer. With each level, 

the complexity of the CNN improves, as does the percentage of the image that is detected. The 

initial stages concentrate on fundamental aspects like colors and shapes. As the visual data 

passes through the CNN stages, it detects greater details or shapes until the object is 

recognized.  31 

3.1.1 YOLO 

To be truly effective, object recognition must be capable of identifying complex scenarios that 

we encounter in our daily lives. The extensive use of neural networks in the age of big data, 

coupled with the emergence of deep learning, has completely transformed the field. 

Specifically, convolutional networks have led to a significant improvement. The "sliding 

window" approach, which scans the whole image region by region and accurately examines 

 
30 Source: Online interview by Paolo Costa on 20 February 2018, available via link: Machine Learning – Reti 

neurali demistificate (last access Septembre 2023).   

31 Source: Official website of IBM via link: Cosa sono le reti neurali convoluzionali? (last access September 

2023).  

https://www.spindox.it/it/ml1-reti-neurali-demistificate/
https://www.spindox.it/it/ml1-reti-neurali-demistificate/
https://www.ibm.com/it-it/topics/convolutional-neural-networks
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one area at a time, has been employed by nearly all algorithms. The goal of convolutional 

neural networks (CNNs) is to iterate the process using various window sizes, resulting in 

predictions for the content with varying levels of confidence. Subsequently, the predictions 

with the least confidence are removed.  

YOLO introduced single-pass decoding. It is a straightforward object detection framework 

with the acronym "you only look once." This is a unified neural network that takes as input an 

image and predicts bounding boxes as well as class labels for each of them, end-to-end. YOLO 

is a conventional one-stage detector. Today's requirements exceed basic classification or 

localization in static photos. Instead, real-time analysis is imperative. No passenger wants to 

be in an autonomous vehicle that takes several seconds or even minutes to recognize images. 

Thus, utilizing single-pass convolutional networks, which concurrently examine all picture 

areas, is a viable solution as it eliminates the need for the sliding window. 32 

 

Yolo was developed in 2015 by Redmon and Farhadi during their doctoral studies. Their 

approach involves analyzing a picture with a single glance to determine the objects present 

and their locations. A single convolutional network predicts multiple bounding boxes and class 

probabilities simultaneously. YOLO trains on complete photos and instantaneously enhances 

detection performance. This unified model surpasses previous object identification methods 

in various aspects. Firstly, YOLO is remarkably fast. Secondly, when generating predictions, 

YOLO takes into account the entire image. During both training and testing, YOLO views the 

entire image, thereby implicitly encoding contextual information about classes and their 

appearance. Lastly, YOLO acquires generalizable object representations (Redmon et al. 2016).  

Unified detection combines various components of object detection into a single neural 

network. The network predicts each chosen rectangle by utilizing information from the entire 

image. It simultaneously predicts the bounding boxes for all classes in the image, meaning 

 
32 Source: Online interview by Paolo Costa on 26 June 2018, available via link: YOLO, un algoritmo ultra veloce 

open source per la computer vision in tempo reale (last access September 2023). 

Figure 33 - The YOLO Detection System (Redmon et al. 2016). 

https://www.spindox.it/it/yolo-riconoscimento-oggetti-real-time/
https://www.spindox.it/it/yolo-riconoscimento-oggetti-real-time/
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that it considers the full image and all its objects together. It simultaneously predicts the 

bounding boxes for all classes in the image, meaning that it considers the full image and all its 

objects together.  In brief, the approach utilizes a sole end-to-end neural network, which is 

trained to receive an image as input and then to directly forecast the class labels and bounding 

boxes for each bounding box. The method yields lower prediction accuracy, as in a higher 

occurrence of localization mistakes, but functions at a speed of 45 frames per second. The 

model's speed-optimized version operates at up to 155 frames per second. The model divides 

the input image into a cell grid, with each cell predicting a bounding box when the center of a 

bounding box is within the cell. Each cell predicts a bounding box with x, y, width, and height 

coordinates, as well as confidence. The confidence prediction represents the IoU of the 

anticipated box with any ground truth box. Additionally, each cell predicts a class. For 

instance, an image can be divided into 77 cells, and each cell can predict two bounding boxes, 

which results in 94 bounding box predictions. Afterward, the confidence map of classes and 

bounding boxes integrates into a final set of bounding boxes and class labels (Redmon et al. 

2016). 33 

The YOLO technique receives an image as input and identifies objects within it through a 

deep convolutional neural network. The CNN model serves as the foundation of YOLO and 

is depicted in this section. The initial 20 convolutional layers of the model were trained in 

advance with ImageNet, including a transitory mean pooling and a fully connected layer. 34 

 
33 Source: Online interview by Jason Brownlee on 22 May 2019, available via link: A gentle introduction to 

object recognition with Deep Learning (last access September 2023). 

34 Source: Online interview by Rohit Kundu on 17 January 2023, available via link: YOLO, algorithm for Object 

detection explained (last access September 2023). 

Figure 34 - The Model (Redmon et al. 2016) 

https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
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The final, fully linked layer of YOLO predicts both class probability and selection rectangle 

coordinates. YOLO splits the input picture into S grids. If the center of an item falls within the 

boundaries of a grid cell, that cell is in charge of detecting the object. Each grid cell forecasts 

bounding boxes B and their confidence ratings. These confidence ratings represent the model's 

belief that the bounding box includes an item as well as the prediction's accuracy. Nonmaximal 

suppression (NMS) is a fundamental approach in YOLO models. NMS is a post-processing 

procedure used to increase object detection accuracy and efficiency.  Multiple bounding boxes 

are frequently created for a single item in an image during object detection. These bounding 

boxes may overlap or be located in various places, but they all represent the same item. NMS 

is used to detect and delete redundant or incorrect bounding boxes, resulting in a single 

bounding box for each item in the picture. The experimental part of this work utilized the 

YOLO software v7 version, which boasts significant enhancements over previous versions. 

One of the primary improvements includes the use of anchor boxes, a set of preconfigured 

boxes with varying aspect ratios that are used to identify objects of various forms. YOLO v7 

utilizes nine anchor boxes to identify a broader range of item shapes and sizes than earlier 

versions, thus reducing the occurrence of false positives. A noteworthy improvement in YOLO 

v7 involves the implementation of a novel loss function called "focal loss." Previous versions 

of YOLO utilized a standard cross entropy loss function, which has been shown to be less 

effective at identifying small objects. Focal loss mitigates this problem by minimizing the loss 

for accurately classified samples while prioritizing difficult cases, such as hard-to-detect 

objects. Additionally, YOLO v7 features higher resolution than previous iterations. The 

algorithm analyzes images at 608 x 608 pixels, an improvement from the previous 416 x 416 

pixels used in YOLO v3. This increase in resolution allows YOLO v7 to detect smaller objects 

with greater accuracy. Moreover, YOLO v7's rapid processing speed is one of its chief 

Figure 35 - YOLO Architecture 

https://www.v7labs.com/blog/yolo-object-detection  

https://www.v7labs.com/blog/yolo-object-detection
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advantages. With a processing speed of 155 frames per second, YOLO's basic model from the 

beginning qualifies it for sensitive real-time applications such as surveillance and self-driving 

automobiles, being substantially quicker than other cutting-edge object identification systems, 

which can only reach a maximum speed of 45 frames per second. Processing pictures, YOLO 

v7 outperforms other object detection algorithms in terms of accuracy, reaching an IoU 

(intersection over union) threshold of 0.5 and an average accuracy of 37.2%. 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
35 Source: Online interview by Rohit Kundu on 17 January 2023, available via link: YOLO, algorithm for Object 

detection explained (last access September 2023). 

https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
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3.2 Data processing – Colab  

Google Colab processed the data obtained from YOLO algorithm. It is a cloud-based platform 

that leverages the computational power of Google to execute codes. Jupiter Notebooks are 

used within this platform which allows users to create and run code in interactive cells that 

can complete a single analysis or processing procedure with a logical flow of information. 

Python is the most widely used and suitable programming language. To configure the 

notebook in Colab, the initial step is to utilize the GPU, followed by installing other Python 

modules and connecting Colab to Google Drive. This enables the creation of workbooks. Due 

to its features, Colab is highly advantageous for any data scientist or machine learning 

developer. Utilizing the power of the Cloud is crucial when handling massive amounts of data 

for analysis and processing. In essence, using Google Colab to run YOLO creates a user-

friendly environment for training, evaluating, and exploiting object detection models while 

harnessing Google's cloud computing capabilities. 36 

Training starts by setting up the configuration on Colab and linking it to Google Drive to get 

the YOLO data files and source code. Adequate data preparation is vital for the model to learn 

correctly. To begin with, compile a collection of photos labeled with the objects you intend to 

identify, which is outlined in the "Materials and Methods" section before this chapter (the 

labels should specify both the object classes and their locations in the images). Then, organize 

the material into a folder structure on Google Drive. A main folder, such as "YOLO_Dataset," 

is created with three subfolders designated as "Train" (for 60% of the training data), "Test" 

(for 30% of the test data), and "Validation" (for 10% of the validation data). In order to assess 

the model's efficacy, the data should be sorted into sets for training, testing, and validation. 

The "Training" directory is utilized for the purpose of training the model, while the "Testing" 

directory is utilized to appraise the model's performance. Finally, the "Validation" directory is 

used to fine-tune the model's parameters throughout the training process. The train-validation-

test split is a standard practice when training machine learning models. Its purpose is to ensure 

the model can generalize well to new (test) data and was not overfitted on the training data, 

which could lead to subpar performance on unknown data. 

 
36  Source: Online interview by Vito Gentile on 31 December 2019, available via link: Google Colab per il 

Machine Learning: cos’è e come si usa (last access September 2023).  

https://www.html.it/articoli/google-colab-per-il-machine-learning-cose-e-come-si-usa/
https://www.html.it/articoli/google-colab-per-il-machine-learning-cose-e-come-si-usa/
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The training parameters, including the model architecture, number of classes to be identified, 

training file names, and pre-trained weights, are defined in a configuration file. Once the 

YOLO model has been trained on Colab, it can recognize objects in images. The "Train" folder 

data is used to train the model, while the "Test" folder data is utilized to assess its performance.  

This metric measures the model's success in identifying objects in previously unseen data. 

Finally, the "Validation" dataset allows us to modify and optimize the model parameters to 

prevent overfitting (accurate predictions for training data but not for new data) and improve 

performance. 

 The paper presents the results of a series of training sessions, as outlined in the accompanying 

table that indicates the relevant train-validation-test split:  

 

Table 2 - Number of photos by session number 

 

 

 

 

 

 

 

 

 

     Training sessions    

 1 2 3 4 

(Total number of photo) 232 232 247 462 

TRAIN 139 139 148 277 

TEST 70 70 74 139 

VAL 23 23 25 46 



99 

 

Chapter 4 – Results 

The initial findings outside the YOLO algorithm's training output relate to the dehydration 

patterns of tomatoes. As outlined in the "Materials and Methods" chapter for the third and 

fourth sets (that purchased the tomatoes), we recorded the weight reduction of the tomatoes 

on the trays and therefore the loss of moisture after each incubation in the oven.  Table 3 

presents the weight loss data for the third set along with their corresponding incubation 

temperatures and resulting dehydration curve. 

Table 3 - Weight loss data for the third set 

TRAY 
TRAY WEIGHT 

ONLY g 

TOMATO 

WEIGHT g 

T. WEIGHT AFTER 

24H 40°C g 

T. WEIGHT AFTER 

24H 40°C g2 

T. WEIGHT AFTER 

2.5H 80°C g 

A 12,2 418,6 276,4 181,4 94,4 

B 12,3 532,8 376,9 270,2 164,3 

C 12,3 266,9 184,4 116,2 62,9 

D 12,4 377,9 257,2 193 113,7 

E 12,4 383,6 264,3 185 115,8 

F 12,4 417,7 309 201,4 108,6 

G 22,9 689,3 463,6 296,6 182,2 

H 22,4 828,1 581,7 419,4 311,9 

L 5,6 168,1 113,2 72,7 47 

M 22,5 859,8 650,3 403 246,5 

N 22,4 802,5 555,4 373,6 242,1 

Table 4 - Dehydration curve for the third set 
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The dehydration curve of tomatoes shows the dehydration that occurred on a dry basis 

throughout the process. The graph shows a reduction in moisture content over time as tomatoes 

are dehydrated. The x-axis displays the duration between drying procedures, measured in 

hours for this example. The y-axis represents the dehydration value expressed on a dry basis 

by making the ratio of water weight to dry weight for each tray. As oven incubation and time 

spent in a temperature-controlled environment increased, a significant decrease in moisture 

content for individual trays of tomatoes was observed. During the early period, the curve was 

steeper, indicating a quicker loss of moisture from the tomatoes. However, as the moisture 

content decreased, the curve became less steep due to the difficulty in removing remaining 

moisture. The fourth group underwent an identical study, with the findings presented in 

Dehydration Curve Graph and Table No.5. 

 

 

Table 5 - Weight loss data for the fourth set 

 

TRAY 

TRAY 

WEIGHT 

ONLY 

TOMATO 

WEIGHT g 

T. WEIGHT AFTER 

24H 40°C g 

T. WEIGHT AFTER 

24H 40°C g 

T. WEIGHT AFTER 

24H 40°C g 

A 14,1 458,1 347,4 266 181,9 

B 13,8 480,7 386,9 271,1 167,6 

C 13,8 462,2 342,4 226,2 124,3 

D 13,7 262,6 189,7 115,1 53,5 

E 13,8 229,4 148,4 83 40,9 

F 13,8 288,3 213,9 113,5 62,4 

G 13,7 266,3 159,3 96,6 30,7 

I 13,7 315,2 237,5 108,4 43,4 

L 5,6 99,5 56,7 20 3,8 

M 5,5 159,3 103,1 38,3 6,3 

N 5,6 276,8 227,6 168,8 84,9 

O 5,6 211,4 165 91 36 

P 5,5 253,3 193,3 127,9 61,7 

Q 5,6 258,3 196,1 132,8 82,6 

R 5,7 125,4 90 46,3 23 

S 5,4 126,7 92,6 42,2 16,9 

T 5,6 252,7 200,5 146,2 86,8 

U 5,6 220,7 174,4 97,3 52,6 
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This fourth group shows a considerable decrease in tomato weight at the conclusion of the 

fourth day of research. These statistics assist us to understand the validity range of our model; 

specifically, it will only be valid within this range of tomato dehydration and moisture loss. It 

is critical to emphasize that the validity of an experimental model is a key factor to examine, 

especially when it comes to potential practical applications like the one described in this study.  

Various output parameters were collected during the training sessions using Google Colab. It 

is essential to consider these parameters while evaluating our model. The initial set of training 

results was not used because we identified early on that dividing the model into the third class 

described as "Uncertain" would not clearly and accurately represent the model. This would 

lead to unwanted confusion and ambiguous indicators of recognition.  
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Table 6 - Dehydration curve for the fourth set 
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4.1 Second train 

Consider the results of the second training set validation, which are summarized in Table 6 

with a resolution of 640 and an infinite time of 27.7 milliseconds. Resolution, abbreviated as 

Res, refers to the resolution of the images used for training. YOLO, being a real-time object 

detection neural network, can be trained on photos of different resolutions. Higher resolutions 

can improve model accuracy, but they also require more processing resources. Therefore, it is 

customary to conduct initial training at lower or medium resolutions and then stabilize the 

model. "Infinite time," or "Inf time" in short, refers to the duration required for training when 

the model fails to converge or takes an abnormally prolonged time to reach sufficient 

convergence. For neural network training, a shorter "inf time" is desirable as it signifies faster 

convergence of the model and requires less time to attain an acceptable outcome. 

 
Labels P R mAP50 mAP95 

All 1842 0,309 0,885 0,548 0,405 

H 836 0,206 0,986 0,603 0,502 

S 1006 0,412 0,784 0,494 0,309 

Table 7 - Output of the second train 

The model has created a total of 1842 labels, consisting of 836 "Healthy" and 1006 "Spoiled" 

tomato classifications, which is a common feature for all training sets (Table 6). However, 

each set will have low Precision and Recall values. 

For the second train, we achieved an overall Precision score of 30.9%. This value denotes the 

proportion of accurate positive predictions made by the model. Accordingly, when the model 

labels a tomato as either "Healthy" or "Spoiled", there is a 30.9% likelihood of it being 

classified correctly. In contrast, the overall Recall score of 88.5% indicates that the model can 

detect 88.5% of all healthy and spoiled tomatoes within the validation test images.  Analyzing 

the data for each class (H and S), it can be inferred that the "Precision" value for healthy 

tomatoes, which is 20.6%, indicates a 20.6% probability that the model accurately predicted 

the tomato to be healthy. Similarly, a "Precision" of 41.2% for spoiled tomatoes indicates that 

41.2% of the model's predictions for spoiled tomatoes are indeed spoiled. In addition, we can 

make comments on the "Recall" values observed for each class. The model's high performance 

of 98.6% "Recall" for healthy tomatoes indicates effective capture of most healthy tomatoes 

in validation tests. This result can be explained by the second train, which had a significant 
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number of labeling for healthy tomatoes (4281) compared to spoiled tomatoes (344), as 

detailed in the "Materials and Methods" section. Accordingly, a 78.4 percent "Recall" rate for 

spoiled tomatoes denotes that the model captures 78.4 percent of spoiled tomatoes in the 

images. Nevertheless, this result implies the need for further improvement. 

Of these two parameters, we can also examine the graph or curve that describes them. Figure 

36 displays the "P curve" for the validation set of the second train. 

 

The threshold values or confidence level above which an observation is positively classified, 

and below which it is negatively classified, are represented on the x-axis. This value range is 

between 0 and 1. On the other hand, the y-axis depicts the accuracy of the model, which is the 

metric that measures the proportion of correct positive predictions made by the model. The 

graph illustrates the model's challenges in sustaining total precision due to multiple peaks and 

dips across varying confidence levels. As the confidence level increases, the model's precision 

shows an upward trend. However, at threshold values, it displays peaks or declines, resulting 

in an overall value of 30.9%. Similarly, the "R curve" or Recall graph presented in Figure 37 

can be assessed. 

 

 

Figure 36 - P curve of the second train 
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The horizontal axis displays the threshold value or confidence level that distinguishes positive 

from negative observations. The vertical axis shows the model's sensitivity, with "Recall" 

indicating the proportion of true positives to the total number of true positives and false 

negatives. This metric measures how accurately the model identifies positive examples. The 

graph illustrates an irregular pattern, demonstrating a higher recall for the healthy tomato class 

compared to the spoiled tomato class. As confidence levels increase, both classes show a 

decrease in the Recall value. The decline is fast and sharp for the spoiled class while gradual 

but sudden for the healthy class.  

 

Figure 37 - R curve of the second train 

Figure 38 - PR curve of the second train 
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The PR (Precision-Recall) curve graph, on the other hand, is used to visualize the accuracy 

and recall of a classification model when the classification threshold varies. The threshold 

value begins at zero and steadily increases to one. The model's accuracy is represented by the 

y-axis. Precision is the percentage of predictions made by the model that are correct. The recall 

or sensitivity of the model is shown by the x-axis. A straight line from the upper left corner to 

the upper right corner, then falling into the lower right corner, would be a perfect PR curve. 

In practice, such as ours, the shape may change depending on the model's performance. 

Sometimes drawing a horizontal reference line (baseline) that indicates the average accuracy 

of the random forecasts is also useful. To determine whether the model outperforms the 

random predictions, compare the PR curve to the baseline. In other words, as the threshold 

changes, the curve demonstrates how the model balances accuracy (how accurate it is) and 

recall (how well it collects positive samples). Calculating the area under the PR curve (AUC-

PR) is a standard approach to assess the overall performance of the PR curve. A higher AUC-

PR score implies that the model is performing better. Following these criteria, we may better 

comprehend and confirm the model's potential for improvement.  

Table 7 displays two additional metrics utilized for evaluating the performance of a 

classification or object detection model in computer vision issues. These metrics gauge the 

average accuracy (AP) at varying confidence levels for model predictions. mAP50 computes 

the average accuracy of model predictions by solely considering predictions with a probability 

or confidence greater than or equal to 50% (0.5). To calculate mAP50, the model generates 

predictions for each object in the image, accompanied by a confidence value. The average 

accuracy of the predictions is calculated by excluding those with less than 50% confidence. 

mAP50 is helpful in evaluating the model's ability to make predictions at a moderate 

confidence level. The value displayed in Table 6, which indicates a score of 0.548 for all 

classes, demonstrates that the model has an average accuracy of 54.8 % for predictions made 

with a confidence level of 50 % or higher. The provided metric value of 0.603 denotes that, 

on average, the model accurately predicts the "Healthy" class with a confidence of 50% or 

higher 60.3% of the time. In contrast, for the "Spoiled" class, the obtained value is 0.309, 

which indicates that the model performs with an accuracy of 30.9% in predictions made with 

a confidence of 50% or higher. Similarly, mAP95 is a metric that approaches mAP50, but it 

calculates the average accuracy by considering only forecasts with a probability or confidence 

greater than or equal to 95%. It is a valuable measure to evaluate the model's ability to make 
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precise and confident predictions. In this second training session, the value of 0.405 implies 

that, on average, the model has a 40.5% accuracy in the predictions made with a 95% 

confidence level or higher for all classes. The average accuracy of the model is 50.2% for 

predictions made with a 95% or higher confidence level, specifically for the "Healthy" class, 

as indicated by the value of 0.502. In contrast, the "Spoiled" class has an average accuracy of 

30.9% for the same confidence level, as shown by the value of 0.309. These values emphasize 

the need for improvement in the model's accuracy for both confidence levels.  

Thanks to the results in Table 7 of the second validation set, we can evaluate the machine 

learning model's performance using an additional tool. This tool is called a Confusion Matrix, 

which is essentially a table that visualizes the model's ability to classify different data 

categories. In a confusion matrix, the rows convey the actual classes of data, while the columns 

convey the classes predicted by the model. The matrix segregates the model's predictions into 

four primary categories, as discussed in the "Materials and Methods" chapter:  

 Class Predictions 

Actual classes 
TP FN 

FP TN 

Table 8 - Confusion Matrix 

To compute TP, TN, FP, and FN from P and R values, an extra evaluation metric is imperative 

to introduce. This metric accounts for P and R and is known as the F1 score. The F1 score 

represents the harmonic mean of P and R, thereby considering both metrics and heavily 

punishing models that have exceptionally low values in either metric. A high F1 score (ranging 

from 0 to 1) signifies effective classification by the model, while a low score indicates poor 

performance. Calculated as follows: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

This enables us to derive F1 scores for both analyzed classes. The "Healthy" class exhibits an 

F1 score of 0.3407, while an F1 score of 0.540 is observed for the "Spoiled" class.  The 

following chart summarizes these results. 
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The chart depicts the fluctuation of F1 score with alterations in decision threshold or 

parameter. The x-axis represents varied decision threshold values, ranging between 0 and 1. 

The y-axis presents corresponding F1 score values of each parameter, also ranging between 0 

and 1. The maximum point on the curve designates the ideal decision threshold value for the 

model to attain maximum F1 score. This is crucial since it informs us which model setup gives 

the optimal balance between "Precision" and "Recall." In relation to the second practice run, 

it is apparent that the graph lacks linear conformity, highlighting the need to assess the model's 

enhancement with subsequent runs. 

By utilizing the F1 score values for each class and applying the "Precision" and "Recall" 

formulas provided below, a system with unknowns can derive the four values for the four main 

categories (TP, FP, TN, FN):  

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 

The results are presented in Table 9, where the number of labels assigned by the model during 

validation for the "Healthy" and "Spoiled" classes correspond to values of 836 and 1006, 

respectively:  

 

Figure 39 - F1 score curve for the second train 
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 H S 
TP 38 

 

274 
 

FP 148 
 

100 
 

TN 74 
 

306 
 

FN 576 
 

326 
 

Table 9 - Value of the four main categories for the second train 

Finally, the Intersection over Union (IoU) is a helpful metric for evaluating an object detection 

model's accuracy by measuring how well the model's predictions overlap the true object 

positions in an image. The IoU value ranges from 0 to 1, where 0 means no overlap between 

the bounding boxes and 1 indicates perfect overlap between the predicted and reference 

bounding boxes. As previously stated in the "Materials and Methods" chapter, a higher IoU 

value indicates a better match between model predictions and reference truth. The IoU 

formula, which employs TP, FP, and FN metrics, is as follows: 

𝐼𝑜𝑈 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

Substituting the previously obtained values from the confusion matrix results in an IoU value 

of 0.23 for the second training. This value confirms that there is a low match between the 

model prediction and the ground truth. 

The second validation set's analysis can be concluded by examining batch examples of images 

labeled during the validation process. Batches refer to groups of data samples processed 

simultaneously by the machine learning model during training. In batch 1 image 40, all 

training-generated labels have been identified:  

Figure 40 - Batch 1 labels second train 
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In image 41, which is identical to batch 1, the model's prediction labeling is visible. It 

accurately labeled the tomatoes with clear boundaries and correctly identified the membership 

classes on 3 out of 8 images. By contrast, it failed to correctly identify the membership class 

and bounding box for the remaining four images in the batch. For instance, in the case of the 

second figure at the bottom left, it made no label predictions whatsoever.  

 

It can be concluded that the accuracy values of the second train are still low, as evidenced by 

the general values of "Recall," "Precision," and the accuracy percentages obtained with 50% 

or 95% confidence levels. These results enabled us to enhance the model and proceed to the 

third train.  

 

 

 

 

 

Image 41 - Batch 1 predictions second train 
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4.2 Third train  

Let us examine the results from the third train's set validation, summarized in Table 10 with a 

"Res" of 640 and an "Inf time (ms)" of 28.3. 

 

 

Table 10 - Output of the third train 

The results of this model are quite promising, indicating significant success in accurately 

classifying tomatoes into two groups, "Healthy" and "Spoiled." The model had an accuracy of 

85.1% for the "Healthy" (H) class. This indicates that when the programme predicted that a 

tomato was "Healthy," it was correct 85.1% of the time. Furthermore, this category's recall of 

92.9% shows that it accurately identified 92.9% of all healthy tomatoes in the dataset. The 

accuracy for the "Spoiled" (S) class was 86.2%, which means that 86.2% of the positive 

predictions were right. Furthermore, the 92.8% recall indicates that the model correctly 

detected 92.8% of all spoiled tomatoes in the sample. These findings show that the model is 

very reliable in recognising spoiled tomatoes, which is critical in controlling the spread of 

contaminated food products.  

As previously stated, we can also examine the graphical representation of these two 

parameters. Figure 42 displays the "P curve" for set validation of the third train. 

 
Labels P R mAP05 mAP95 

all 1842 0,857 0,929 0,947 0,805 

H 836 0,851 0,929 0,937 0,803 

S 1006 0,862 0,928 0,956 0,808 

Figure 42 - P curve of the third train 
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The graph depicting the second train shows a more linear and homogeneous pattern compared 

to the third train. It is evident that as the confidence value increases, the Precision also 

increases. Similarly, in Image 43, one can observe the variation in recall as the threshold 

changes. It is observable from the graph that the model can accurately capture most of the 

positive examples, although it is crucial to bear in mind that increasing precision can result in 

decreased recall. Therefore, it is necessary to select a confident value that is rationalized 

concerning this matter and identify the requirements and objectives intended to be achieved 

with the model. For instance, one might prioritize a higher sensitivity (thus recall) and 

consequently sacrifice precision, or vice versa. 

 

 

As mentioned earlier, Image 44 displays the PR curve plot, which provides a crucial visual 

representation of model performance when categorizing tomatoes as either 'Healthy' (H) or 

'Spoiled' (S). Upon examination, we can observe that the precision for the 'Healthy' (H) 

category increases almost linearly with increased recall along the PR curve. The results 

demonstrate that the model accurately identifies most healthy tomatoes while maintaining high 

precision. This indicates that positive predictions for this category are consistently accurate. 

With respect to the 'Spoiled' (S) category, the PR curve shows a similar trend as the 'Recall' 

value increases, suggesting that the model is equally adept in detecting spoiled tomatoes and 

has high accuracy in positive predictions for this category. Overall, the PR curve results 

validate the model's reliability in differentiating between the two tomato classes. A 

hypothetical assessment of the area under the PR curve showcases that the value is notably 

higher in comparison to the second train, hence indicating superior performance. 

Figure 43 - R curve of the third train Figure 44 - PR curve of the third train 
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Table 10 presents the third train metrics measuring the average precision (AP) at varying 

confidence thresholds for the model predictions. The mAP50 score of 0.947 for all categories 

confirms the model's high level of accuracy in detecting healthy and spoiled tomatoes, even at 

50% overlap with the reference truth. The model can accurately differentiate between healthy 

and spoiled tomatoes even when there is a 50% overlap between its prediction and the 

reference truth.  Additionally, the mAP95 score of 0.805 for all classes indicates that the model 

maintains accuracy in identifying both healthy and spoiled tomatoes even at a high level of 

overlap (95%) between its prediction and the reference truth. This implies that the model 

retains high accuracy despite significant overlap between the prediction and the reference 

truth, a crucial factor for detecting tomatoes under varying conditions. In summary, the model 

is highly reliable in distinguishing between healthy and damaged tomatoes in both moderate 

and extremely high overlap situations. The values of mAP50 and mAP95 support this claim. 

The "Healthy" class has an mAP05 value of 0.947, indicating high accuracy in detecting 

healthy tomatoes at a 50% overlap. The model also maintains good accuracy at a 95% overlap, 

with an mAP95 value of 0.805 for the "Healthy" class.  The mean average precision (mAP) at 

0.5 threshold for identifying spoiled tomatoes is 0.956, indicative of a high level of accuracy. 

Moreover, the mAP at 0.95 threshold is 0.808, implying that the model is capable of 

maintaining good precision even at high overlap levels. 

In this third train, we can also calculate the value of the F1 score using the mathematical 

formula given above. This calculation yields an F1 value of 0.891, allowing us to determine 

the F1 score values for the two classes being analyzed. Notably, the "Healthy" class has an F1 

score value of 0.888, while the "Spoiled" class has a value of 0.893. The obtained values are 

shown graphically below:  

Figure 45 - F1 score curve for the third train 
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An overall F1 score of 0.891 is considered a good result. The F1 score of 0.888 for the 

"Healthy" category reveals the model's good proficiency in accurately classifying samples in 

the "Healthy" category, considering both precision and recall. Nonetheless, it is crucial to 

examine the context to ascertain the acceptability of this value and whether or not further 

enhancement of model performance is required for this category. The F1 score of 0.893 for 

the "Spoiled" category denotes the model's aptitude in accurately categorizing instances from 

the "Spoiled" group, incorporating both precision and recall. It is pertinent to assess the context 

to discern the acceptability of this value or the requirement for additional performance 

advancement for this classification, as with the "Healthy" category. Overall, if the F1 scores 

for both classes are similar, it implies that the model is balanced in its ability to classify both 

classes. 

 Thus, by knowing the F1 score values of both classes and the formulas for "Precision" and 

"Recall", one can derive the four values of the four main categories (TP, FP, TN, FN) through 

a system with unknowns. 

 

 

 

Table 11 - Value of the four main categories for the third train 

As a result, the model's accuracy can be assessed by calculating the IoU value, which is an 

added metric. During the third training session, the obtained value was IoU = 0.81. When the 

IoU (Intersection over Union) value is 0.81, there is a high overlap between two bounding 

boxes or regions, and this value is generally considered to be very good. An IoU score of 0.81 

signifies that there is an 81% overlap between the two regions, which could be two bounding 

boxes or any other type of region.  This implies that the two regions are comparable, or that 

one of them is a reliable predictor of the other. Overall, an IoU score of 0.81 indicates high 

prediction quality and overlap between regions, implying accurate model predictions and 

region alignment. It's worth highlighting the noteworthy improvement over the second 

training. 

 H S 
TP 407 

 

533 
 

FP 63 
 

59 
 

TN 228 
 

372 
 

FN 138 
 

42 
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For this third train, we can also analyse the same batch of output to try to understand how 

much the model has improved. The picture 46 displays all labels created during the training 

phase:  

Contrarily, Image 47 depicts the model labels used for prediction. It is clear that, in contrast 

to the second train, bounding boxes were created for every tomato in the photos, even more 

than those that were identified during training. It is evident that class detection accuracy has 

improved as well, accurately reflecting the accuracy numbers mentioned above and acquired. 

Although accuracy is 94.7% with a confidence level of 50%, it can be noticed that certain 

inaccuracies still exist. For instance, tomatoes categorized as "Spoiled" when they are actually 

clearly healthy. 

 

Figure 46 - Batch 1 labels third train 

Figure 47 - Batch 1 predictions third train 
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4.3 Fourth train 

This final opportunity for improvement leads us to the fourth and final train. The results of the 

fourth train set validation are summarized in Table 11 with a "Res" of 640 and an "Inf time 

(ms)" of 28.3. 

 

 

 

Table 12 - Output of the fourth train 

Based on the values, we can conclude that the model has a good accuracy of about 89.4%. 

This suggests that the model's positive predictions are correct 89.4% of the time. In simpler 

terms, when a tomato is classified as either "Healthy" or "Spoiled" by the model, there is an 

89.4% chance that this prediction is accurate. Meanwhile, the model's overall "Recall" of 

91.3% means that it can detect 91.3% of healthy and spoiled tomatoes in the validation test 

images. Analysing the data for each tomato class (H and S), it can be inferred that the precision 

value for healthy tomatoes, which stands at 90.3%, indicates a 90.3% likelihood that the model 

correctly predicted the tomato's health status. For the same reason, a "Precision" score of 

88.5% for identified spoiled tomatoes indicates that 88.5% of the tomatoes classified as spoiled 

by the model are indeed spoiled. Additionally, we can observe the "Recall" values for each 

class. A "Recall" score of 90.3% for healthy tomatoes suggests that the model is highly 

effective at detecting most of the healthy tomatoes in the validation test images. The model's 

"Recall" of 88.5% for spoiled tomatoes indicates that it can identify 78.4% of the spoiled 

tomatoes in the images.  These results suggest that the model effectively classifies "Healthy" 

and "Spoiled" tomatoes. The high precision of the model demonstrates that it makes few errors 

when making positive predictions for each class, while high recall indicates that it can 

correctly identify most of the positive items for each class. 

 
Labels P R mAP50 mAP95 

All 1842 0,894 0,913 0,952 0,822 

H 836 0,903 0,903 0,932 0,832 

S 1006 0,885 0,885 0,893 0,812 
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Consequently, we may proceed to examine the graphs of these two parameters. Image 48 

displays the "P-curve" for the set validation of the fourth train:  

The P Curve illustrates the model's accuracy variation across different decision thresholds. 

Moreover, the graph presents a comparable look to that of the third train and outlines how the 

confidence value's increment steadily increases Precision. The trend in precision is similar for 

both classes, although the "healthy" class exhibits slightly higher precision. Image 49 depicts 

the R curve for the "Recall" metric. 

This graph displays a comparable trend to that observed in the previous train, further 

confirming the good results obtained in both trains.  The model shows a good recall, which 

represents the ability of the model to correctly identify the tomatoes that are actually classified 

as healthy or spoiled, with high values for both the "healthy" class (0.903) and the "spoiled" 

class (0.885). This suggests that the model effectively captures a majority of tomatoes from 

both categories, minimizing the risk of misclassifying a tomato as healthy or spoiled. 

Figure 48 - P curve of the fourth train 

Figure 49 - R curve of the fourth train 
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Consequently, these findings imply that the model has the capability of recognizing both 

healthy and spoiled tomatoes. 

Finally, image 50 illustrates the graph of the PR curve:  

The trend in this image closely resembles that of the second train. Examining the overall trend 

of the PR curve, Precision decreases as Recall increases. This is a common trade-off in PR 

curves: lowering the decision threshold to increase Recall (i.e., searching for more positives) 

risks including false positives and reducing Precision. The PR curve reflects the model's 

dynamic behavior in distinguishing between healthy and spoiled tomatoes. High Precision and 

Recall values for both classes indicate good discriminatory capability. However, selecting the 

appropriate decision threshold is crucial in balancing Precision and Recall based on the 

specific requirements of minimizing false positives or false negatives in the application 

context. In the fourth train, there is a significant increase in the area under the PR curve value 

as compared to the second train, even though it is only visually observed. 

As previously performed, another metric for evaluating the fourth train can be the average 

precision (AP) at various confidence thresholds for model predictions. The mAP50 metric 

computes the average precision of model predictions, only factoring predictions with a 

likelihood or confidence of at least 50 % (0.5). To calculate mAP50, the model delivers 

predictions for each object in the image with an affiliated confidence value. The average 

prediction accuracy was calculated by only considering those with a confidence level of 50% 

or greater. The information displayed in Table 12 indicates that the model has an average 

Figure 50 - PR curve of the fourth train 
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prediction accuracy of 95.2 % for predictions with a confidence level of 50 % or higher. The 

value of 0.932 suggests that, on average, the model accurately predicts with 93.2% confidence 

for the "Healthy" class with at least a 50% confidence rating. For the "Spoiled" category, 

however, the value reported is 0.893, indicating that the model predicts with 89.3% accuracy 

with at least a 50% confidence rating. Similarly, mAP95 is a metric that closely resembles 

mAP50, but it determines average accuracy only by considering predictions with a probability 

or confidence equal to or greater than 95%. It proves beneficial when evaluating the model's 

capability of generating highly accurate and confident forecasts. The obtained value of 0.822 

in the fourth train reveals that, concerning all categories, the model achieved an average 

accuracy of 82.2% in predictions made with 95% confidence or above. The average accuracy 

of the model's predictions, with 95% confidence or higher, for the "Healthy" class is indicated 

by the value of 0.832, which equates to 83.2%. In contrast, for the "Spoiled" class, the model's 

average accuracy in predictions with 95% confidence or higher is indicated by the value of 

0.812, which equates to 81.2%.  The data suggests that the model achieves high accuracy in 

predicting the health status of tomatoes with confidence. Furthermore, there was significant 

progress from the second training, and a minor improvement from the third training. 

Once again, we can calculate the F1 score using the provided mathematical formula based on 

the available data. This yields an F1 value of 0.903 and enables us to obtain the F1 score values 

for both classes under analysis. For the "Healthy" class, we recorded an F1 score value of 

0.903, while the "Spoiled" class scored 0.885. We observe a slight increase in the total F1 

score value compared to the third set, indicating satisfactory performance of the model in 

classification. These values are summarized in the graph presented below:  
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The F1-score of 0.903 signifies a remarkable balance of precision and recall in tomato 

classification. This result implies that the model successfully attains high precision in 

identifying both healthy and spoiled tomatoes while also capturing the majority of true 

positives in both categories. A noteworthy F1-score of 0.903 for the "Healthy" class 

demonstrates the model's exceptional accuracy and sensitivity in recognizing healthy 

tomatoes. The model exhibits dependable aptitude in precisely identifying healthy tomatoes 

without compromising the overall accuracy. The F1 score of 0.885 for the "Spoiled" group 

underscores its capacity to identify spoiled tomatoes. Once more, this value demonstrates a 

satisfactory equilibrium between Precision and Recall, signifying that the model can 

effectively categorize spoiled tomatoes without disregarding true positives. The high F1-

scores imply the model's effectiveness and robustness in classifying tomatoes based on their 

condition. A well-trained and reliable model is indicated by the high accuracy and good ability 

to capture true positives in the Healthy and Spoiled classes, as shown in the graph above. 

Then again, knowing the F1 values of the two classes and the formulas of "Precision" and 

"Recall", it is possible to derive, through a system of unknowns, the four values of the four 

main categories (TP, FP, TN, FN):  

 

 

 

 H S 
TP 350 

 

464 
 

FP 30 
 

58 
 

TN 300 
 

425 
 

FN 25 
 

59 
 

Figure 51 - F1 score curve for the fourth train 

Table 13 - Value of the four main categories for the fourth train 
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As a result, the value of l IoU can be calculated, which acts as an additional metric for assessing 

the model's accuracy. The obtained value in the fourth train is IoU = 0.83, which is slightly 

higher than that of the third train. The IoU value of 0.83 signifies a significant overlap between 

the two bounding boxes, indicating that approximately 83% of the two regions overlap.  

By analyzing the images of the same output batch, we can determine if the model has improved 

over the third training phase. Image 52 displays all the labels that were created during the 

training phase:  

Image 53, on the other hand, displays the model labels generated during prediction. It's evident 

that 7 out of 8 images precisely mirror the labels generated during the training phase. However, 

there remains a slight inaccuracy in the third image in the upper right corner, where the 

prediction model marked tomatoes as "Spoiled," even though they are healthy. While the 

model appeared to regress in comparison to the third train, where it successfully classified the 

class, the high accuracy achieved in the other batch images should still be noted. 

 

 

 

Figure 52 - Batch 1 labels fourth train 
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The model has demonstrated significant advances in accuracy and reliability based on the 

outcomes from its last three training sessions. The interpretation of these findings should 

consider the context in which they were obtained. During the second, third, and fourth 

sessions, we increased the types of tomato species that were used and added more complexity 

to the identification process, moving from a "controlled" environment with a black background 

to a context that better simulates a production environment where tomatoes are randomly 

arranged in trays. Despite achieving high accuracy and a high level of confidence in the results, 

it is important to note that the model is susceptible to errors and cannot be considered perfect 

in its identification and classification of tomatoes. Nonetheless, these results demonstrate 

significant advancement in the model's ability to detect both healthy and spoiled tomatoes. 

The development of artificial intelligence for enhancing tomato sorting process in production 

facilities constitutes an important milestone, although there may be further improvements to 

be made in the future. 

 

 

 

 

Figure 53 - Batch 1 predictions fourth train 
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Additional examples of image batches are provided below to illustrate the improvement from 

the first to the fourth train. 

 

Figure 54 - Batch 2 labels 

Figure 55 - Batch 2 predictions first train 
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Figure 56 - Batch 2 predictions second train 

Figure 57 - Batch 2 predictions third train 
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Figure 58 - Batch 2 predictions fourth train 
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Chapter 5 – Discussion 

Analysing the results from various training models is crucial in assessing the overall 

effectiveness of the approach in identifying "Healthy" and "Spoiled" tomatoes. Significantly 

different results were obtained from the three trainings, namely the second, third, and fourth, 

reflecting the evolution of model performance. Initially, during the second training, the model 

struggled to produce accurate and clear predictions, resulting in an overall accuracy of only 

30.9%. The model required improvement, which was achieved during the third training.  The 

performance of the model witnessed a substantial increase, with an overall accuracy of 85.1%, 

indicating its ability to accurately distinguish between "Healthy" and "Spoiled" tomatoes. 

Additionally, Recall significantly improved, reaching 92.9% for the "Healthy" class and 

92.8% for the "Spoiled" class. The findings imply that the third training session improved the 

model's identification accuracy. Subsequently, during the fourth training session, the model 

continued to show significant enhancement. The overall accuracy increased to 89.4%, with a 

recall rate of 91.3%. These results verify the continuous improvement of the model's 

performance in distinguishing between "Healthy" and "Spoiled" tomatoes. 

During the course of the model's trials and various trainings, multiple metrics were analysed 

to evaluate overall performance, as outlined in the "Results" section. Generally, these metrics 

offer a more detailed understanding of the model's capability to classify "Healthy" and 

"Spoiled" tomatoes in various contexts and with different confidence thresholds. 

For instance, when drawing final conclusions about the mAP50 and mAP95 metrics, it can be 

stated that during the second training session, a mAP50 value of 0.548 was achieved. This 

value indicates an average accuracy of 54.8% in predictions with 50% or higher confidence. 

In the third training session, this value remarkably improved to a mAP50 of 0.947, denoting 

an average accuracy of 94.7%. Additionally, the mAP95 metric experienced a significant 

improvement, increasing from 0.405 to 0.805 from the second to the third training session. 

The model's performance was further enhanced after the fourth training, exhibiting an 

exceptional mAP50 of 0.952 and a mAP95 of 0.822. These outcomes indicate commendable 

accuracy in average predictions with high confidence levels, affirming the model's improved 

ability to make precise and confident predictions. With regards to the F1 scores, we observed 

values of 0.3407 for the "Healthy" class and 0.540 for the "Spoiled" class during the second 
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training. The overall F1 score increased from 0.891 in the third training to 0.903 in the fourth, 

highlighting a noticeable improvement. The results demonstrate a noteworthy advancement in 

the model's aptitude to equalize precision and recall. Moreover, the Intersection over Union 

(IoU) presents substantial growth in model performance. During the second training, we 

attained an IoU of 0.23, disclosing a minimal overlap between model predictions and ground 

truth. However, during the third training, the Intersection over Union (IoU) rose to 0.81. In the 

following training session, the value further increased to 0.83, indicating a marked 

improvement in the model's predictive accuracy.  

Overall, the data suggests a gradual enhancement in model performance throughout the 

different trainings as we can see in the Table 14. Specifically, the third and fourth sessions 

yielded noteworthy advancements compared to the second, providing strong evidence 

supporting the effectiveness of the method.  

Finally, the results from the dehydration curves not only confirm the variation in water content 

within the tomatoes, but also indicate a crucial aspect in their interpretation. These results 

establish a range of validity for our experimental model, meaning it will only be accurate and 

reliable within this specific range of dehydration and moisture content for the tomatoes. This 

aspect is particularly significant when evaluating the potential practical applications of the 

findings, especially in the food industry. Our experimentation and model instruction have 
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Table 14 - Variation in model evaluation during the 4 models 
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revealed that the efficacy of our methodology is heavily reliant on the operational surroundings 

and the state of the tomatoes we are attempting to identify. It is vital to stress that our model 

is exclusively valid within the specific parameters and conditions pursuant to its training. We 

began with a controlled environment featuring a black background for the second training, 

followed by the third and fourth sessions that involved randomly arranged tomatoes in trays 

alongside the controlled environment. This variation from the controlled environment 

facilitated testing the model's adaptability to more practical production scenarios. 

Significantly, the augmented complexity also arose from the secondary training due to the 

introduction of a wider variety of tomato species, with distinct shapes and sizes. Notably, 

despite this complication, the model has demonstrated effective adaptation to these challenges 

and a steady enhancement of its performance. In conclusion, it is essential to acknowledge the 

constraints imposed on this model by tomato size and varieties, extent of dehydration, and 

usage context, given that the validity of an experimental model represents a critical parameter 

to be considered, as it can directly impact the applicability of the results that were obtained.  

A concluding discussion can analyse the errors of the model, specifically the False Positives 

and False Negatives. For error analysis, Images 59 and 60 serve as a reference point as they 

demonstrate error-free labelling. Image 59 depicts labelling of healthy tomatoes, whereas 

image 60 shows spoiled tomatoes.  

Figure 59 - Labelling of healthy tomatoes 
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In image 61, we observe a false negative error in which the model failed to detect the intended 

tomato. Specifically, the third tomato in the first row was not detected. 

Figure 60 - Labelling of spoiled tomatoes 

Figure 61 - Example of false negative 
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We can now analyze instances of false positives. Image 62 displays healthy tomatoes wrongly 

categorized as spoiled and spoiled tomatoes inaccurately labeled as healthy. Image 63 shows 

all but one healthy tomato labeled as spoiled. In contrast, image 64 reveals the labeling of one 

healthy tomato that had visible mold on the upper left side. To conclude, image 65 shows the 

model incorrectly identifying two healthy tomatoes as spoiled.  

 

 

Figure 62 - Example 1 of false positive 

Figure 63 - Example 2 of false positive 
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Figure 64 - Example 3 of false positive 

Figure 65 - Example 4 of false positive 
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If we analyze these errors, we can conclude that the model was understandably confused due 

to several factors. Firstly, photos 63 and 64 are very dark, which can lead to confusion and 

mistakes by the model. Secondly, recognition of the mold in this test was significantly 

influenced by the light color it possessed. Hence, any variation in the red color on the surface 

of the tomato may result in misinterpretation by the model. Most likely, algorithm confusion 

occurred in images 62 and 65 due to the reflection of water content in the tomatoes. Similarly, 

in image 63, the petiole attachments may have been misidentified as mold for the same reason. 

Hence, the errors in this model can mostly be attributed to the image collection conditions of 

the dataset. Once the root causes of the algorithm error are identified and analyzed, the training 

picture conditions can be improved for future performance enhancement. 

Nevertheless, the outcomes demonstrate notable advancements in the model's ability to detect 

"Healthy" and "Spoiled" tomatoes across different training sessions. Despite the error, these 

developments mark a critical milestone in applying artificial intelligence to enhance the 

process of tomato selection in manufacturing contexts. The findings are encouraging and 

imply that this method may have practical implications in tomato production and other related 

domains. However, it is imperative to conduct further analysis and enhance the model's 

performance to tackle future hurdles and increase the accuracy of its forecasts. 

 

 

 

 

 

 

 

 



132 

 

Chapter 6 – Conclusion 

In conclusion, this study investigated the use of artificial intelligence to detect mold in 

tomatoes during the drying process. The primary aim was to address the problem of waste and 

loss in the food industry caused by the presence of mold, which makes tomatoes unfit for 

human consumption. The YOLOv7 object detection algorithm was utilized to train artificial 

intelligence models on a vast image dataset illustrating healthy and spoiled tomatoes.  

Results from multiple training sessions demonstrate a progressive enhancement in the model's 

capacity to discriminate between "healthy" and " spoiled" tomatoes. The overall accuracy 

increased from 30.9% initially to 89.4% after the fourth session. Furthermore, metrics such as 

mAP50 and mAP95 showed a considerable boost in prediction accuracy with a high degree of 

confidence. Ultimately, F1 scores and Intersection over Union (IoU) asserted the model's 

ability to maintain a balance between precision and recall. 

Artificial intelligence, once trained, functions at an extraordinary speed in executing its tasks. 

Unlike a human worker, the model can analyze thousands of images within seconds. 

Therefore, it can detect mold in tomatoes promptly, which is critical for preventing 

contamination and ensuring product quality in a real-time production environment. Artificial 

intelligence maintains high performance under our control and direction, while humans may 

be subject to fatigue or errors. Nevertheless, it is crucial to note that the model operates under 

specific constraints, such as tomato size, degree of drying, and context of use. Therefore, the 

application of the obtained results relies on the training conditions and control variables. 

Furthermore, the model's validity is restricted to a particular range of tomato drying and 

moisture content. However, it can be conveniently modified and trained to suit diverse tomato 

types or production conditions.  

The progress made in this paper is a crucial advancement towards employing artificial 

intelligence in tomato cultivation and other related areas. This technology has the potential to 

aid in minimizing food waste, enhancing product quality, and improving industrial processes' 

speed and efficiency. Additional research will be necessary to tackle any remaining challenges 

and optimize the model's effectiveness. The incorporation of this technology into HACCP 

plans in the food industry may advance quality, food safety, and sustainability in food 
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production for future generations. The potential for artificial intelligence in this area is 

promising, with the pathway already laid out. 
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