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ABSTRACT 

This thesis aims to investigate the role of global uncertainty shocks in affecting the Global 

Financial Cycle (GFC). Three kinds of uncertainty are considered: financial uncertainty, the 

uncertainty surrounding economic policies and the geopolitical uncertainty. The contribution 

and the impact of each uncertainty shock is assessed through a SVAR analysis, that employs 

multiple sets of identification strategies and estimation techniques. Specifically, the uncertainty 

shocks are identified alternatively with the Cholesky decomposition technique and with the 

Penalty Function Approach, whereas the VAR models are estimated by means of OLS and 

Bayesian estimations. We find that the three uncertainty measures have heterogenous effects on 

GFC, which are substantially negative and depend on the underlying econometric specification. 

However, financial uncertainty, as measured by the Global Financial Uncertainty indicator, 

proves to be the most important driver of GFC, since its shock explains the highest percentage 

of variance of GFC and triggers the most relevant reaction in GFC in every econometric 

specification. 
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INTRODUCTION 

Globalization is a phenomenon that has affected our world since the first decades from the end 

of World War II, becoming more and more evident over the course of the years.  It involves 

many aspects of our reality, ranging from society to economics, and, in a simple way, it could 

be defined as the process of increasing worldwide integration from a political, social, cultural, 

and economic standpoint (Cambridge Dictionary). In particular, financial globalization 

concerns the increasing volume of cross-border financial flows among economies from many 

different areas of the world, facilitated by technical advances and financial market deregulation 

(Kose et al., 2006). Consistently with this framework, Helene Rey documented the existence of 

the Global Financial Cycle, the phenomenon representing the high degree of co-movement in 

risky asset prices, capital flows, leverage, and financial aggregates around the world (Miranda 

- Agrippino and Rey, 2021). 

The aim of this thesis is to investigate the role of global uncertainty in affecting the Global 

Financial Cycle, by examining the contribution of several sources of uncertainty. Overall, three 

kinds of uncertainty are considered: geopolitical uncertainty, the uncertainty surrounding 

economic policies, and financial uncertainty. 

Each type of uncertainty will be proxied by a specific index. The geopolitical uncertainty will 

be measured by the Geo-Political Risk (GPR) index, the economic policies’ uncertainty by the 

Global Economic Policy Uncertainty (GEPU) index and, finally, the financial uncertainty by 

the Global Financial Uncertainty (GFU) index. 

The first chapter will introduce the Global Financial Cycle and it will briefly explain why 

uncertainty could be a determinant for the Global Financial Cycle. In addition, it provides a 

definition of the three measures of uncertainty, i.e., GEPU, GPR, and GFU, and a brief literature 

review of their effects on some of the most important macroeconomic aggregates. 

Chapter 2 details the state of the art of the econometric techniques employed to carry out the 

empirical research by providing a brief dissertation on Structural Vectorial Auto Regressive 

(SVAR) models, Impulse Response Functions (IRFs), Forward Error Variance Decompositions 

(FEVDs), Bayesian econometrics, Cholesky decomposition, and the Penalty Function 

Approach (PFA). 

Chapter 3 describes the econometric framework and the identification strategies employed to 

carry out the analysis. To sum up, a specific SVAR model is implemented for each kind of 
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uncertainty and, for every model, three strategies are taken into account to identify the structural 

uncertainty shock. The first one consists just of zero-restrictions on the Cholesky decomposition 

of the variance-covariance matrix of the reduced form VAR model. By construction, it provides 

a lower bound estimate of the effects of uncertainty shocks. The second one follows the Penalty 

Function Approach, elaborated by Uhlig (2005), and assumes the Minnesota prior distribution 

for the reduced form parameters. More precisely, it coincides with the identification strategy 

used by Caldara et al. (2016). Notice that, by construction, the PFA estimates the effects of 

uncertainty shocks at their maximums. The third and last identification strategy follows the 

PFA as well, but it imposes the Conjugate Gaussian Inverse-Wishart prior distribution for the 

reduced form parameters. It aims mainly at testing whether the results coming from the second 

specification change with varying the prior for the reduced form parameters. 

Chapter 4 outlines a preliminary analysis of the uncertainty measures with respect to the 

business cycle and the GFC, focusing on pairwise correlations and Granger causalities. These 

instruments will be used also to analyse the relationships between the three kinds of uncertainty. 

By considering the Granger causality tests, GFC seems to be steadily predated by movements 

in the GFU index. In addition, the three uncertainty measures do not exhibit significant pairwise 

correlations and, hence, each of them should convey a distinct type of information. 

The results of the analysis will be illustrated in the fifth and last chapter. The role of each kind 

of uncertainty in determining the GFC is evaluated through the Impulse Response Function of 

GFC to the uncertainty shock and through the relevance of the GFC in the Forward Error 

Variance Decomposition of each uncertainty shock. It emerges that both GEPU and GFU 

shocks impact significantly on the GFU and, in particular, GFU provides the most remarkable 

contribution in terms of IRF and FEVD, regardless of the selected identification strategy. 
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1.THE GLOBAL FINANCIAL CYCLE AND GLOBAL UNCERTAINTY MEASURES: 

A BRIEF LITERATURE REVIEW 

This chapter will be devoted to briefly review the literature concerning the Global Financial 

Cycle and uncertainty, with a focus on the measures of global uncertainty that will be used for 

the empirical analysis, i.e., the GEPU, GFU and GPR indexes. More specifically, the first part 

of this chapter will concern the definition and the facts related to the Global Financial Cycle 

and economic uncertainty, whereas the second one will be about the documented effects of the 

three overmentioned measures of global uncertainty. 

 

1.1 The Global Financial Cycle: definition and linked global factors 

Helene Rey (2013) documented that the time series of capital inflows, capital outflows, credit 

growth, leverage, and risky assets prices from many areas of the world follow the same common 

cyclical pattern synchronized with the VIX index. The latter is a measure of the realized 

volatility of the U.S. stock market based on the prices of the S&P 500 index call and put options. 

She called this phenomenon “Global Financial Cycle” (Rey, 2013). 

More specifically, she firstly reported a negative correlation of VIX with gross capital flows, 

credit growth and the levels of leverage observed in the main financial centres. Secondly, by 

employing a dynamic factor model on a large cross section of 858 risky assets coming from all 

around the world, she showed that about a quarter of the variance of risky returns is explained 

by one single global factor, that exhibits a strong negative correlation with VIX (Rey, 2013). 

The sample of risky assets covers commodity prices, corporate bonds and the components of 

the equity indices traded in the largest markets worldwide, considering a period from 1990 to 

2010 (Miranda - Agrippino and Rey, 2021). 

The latter result has been confirmed more recently by Miranda - Agrippino, Nenova and Rey 

in an analysis which has been extended over the sample and enriched in variety with respect to 

the original one. This study also reports a negative correlation between the global factor and 

VIX which amounts to -0,649 (see Miranda - Agrippino and Rey, 2021).  

In addition, Miranda - Agrippino and Rey (2021) documented the existence of two global 

factors for worldwide gross capital inflows and outflows, using a dynamic factor model similar 

to the one exploited to estimate the global factor for risky assets’ prices. These two global 
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factors together account for about thirty five percent of the variance of gross capital flows and 

the first one is highly correlated with the global factor in asset prices - the pairwise correlation 

amounts to 0,815.  The latter result led the authors to interpreting the global factor in risky 

assets prices and the first global factor in gross capital flows as the factors that reflect GFC. 

Since both factors explain a significant share of variation of the respective data, they concluded 

that GFC plays an important role in characterizing fluctuations in world risky assets prices and 

international gross capital flows. 

As previously mentioned, the global factors are estimated using Dynamic Factor Models 

(DFM). The authors assumed that the cross-section of data 𝑥𝑡 – whether asset prices, capital 

flows, or private credit – can be represented as the sum of two orthogonal components, as in:  

                                𝑥𝑡 = Λ𝑓𝑡+ κt        

                                                                                                                                               (1.1) 

where 𝑓𝑡 and 𝜅𝑡 are vectors which collect the common factors and the idiosyncratic terms 

specific to 𝑥𝑡, respectively. Each factor loading represent the extent to which each variable in 

𝑥𝑡 loads on the common factors and is stored in the matrix Λ (Miranda - Agrippino and Rey, 

2021). 

For further technical details about the dynamic factor model, see Miranda - Agrippino and Rey 

(2020). 

It is important to disclose that our empirical research will focus just on the global factor related 

to risky assets prices, which will be denoted by GFC for simplicity. The related time series is 

illustrated by Figure 1, which considers a time window which spans from January 1990 to April 

2019.  

 

1.2. Uncertainty 

The modern definition of uncertainty was provided by the notorious economist Frank Knight 

(1921). According to him, uncertainty refers to any circumstance where the odds of possible 

outcomes are unknown and hence it is impossible to make precise forecasts about the likelihood 

of events happening. Importantly, it does not coincide with risk that, instead, denotes situations 



20 
 

where estimating the likelihood of future realizations is possible. Therefore, both uncertainty 

and risk share randomness, but only risk entails quantifiable randomness (Knight, 1921).   

However, despite this difference, we will use the term “uncertainty” to indicate a mixture of 

both concepts, hereafter. In addition, we define uncertainty shocks as sudden events that raise 

the number of possible future scenarios, generating more heterogenous forecasts. Uncertainty 

shocks make forecasting more complicated.  

Uncertainty can be measured in many ways, but this dissertation will consider only two kinds 

of measures: the text-based measures and the implied volatility measures.  

Implied volatility measures rely on the assumption that the volatility of a data series is a good 

proxy for the related uncertainty since the higher the volatility is, the harder it is to forecast the 

series. Relevant examples of such measures are the VIX and GFU indexes (Bloom, 2014). 

Text-based measures of uncertainty, instead, estimate the quantity of uncertainty as the 

frequency of newspaper articles containing words that are usually related to uncertainty. The 

GEPU and GPR indexes are both text-based measures (Bloom, 2014). 

1.2.1 The interconnection between economic growth and uncertainty 

Uncertainty seems to be countercyclical, in the sense that it spikes during recessions, regardless 

of whether it concerns macroeconomic aggregates or microeconomic ones. As a matter of fact, 

theory literature provides evidence that surges in uncertainty might be led by bad economic 

conditions. In addition, some exogenous shocks that typically cause recessions, such as oil price 

shocks, terrorist acts, financial panics, and wars, might increase uncertainty. Indeed, these 

dramatic events reduce people’s confidence in their forecasts on future economic growth. 

Lastly, uncertainty shocks seem to negatively impact on business cycle (Bloom, 2014). 

There are multiple reasons why recessions might trigger higher macroeconomic uncertainty. 

First, a deteriorated business induces firms to trade less actively and thereby to spread less 

public information, which increases uncertainty. Furtherly, there is evidence that firms are more 

willing to innovate in distressed times, destinating more resources to research and development. 

This generates heightened microeconomic uncertainty, which could induce potentially higher 

macroeconomic one. In addition, people are less confident during recessions, since they are 

unfamiliar with such rare events. A lower level of confidence makes forecasting harder. Lastly, 
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economic policies tend to be more unclear and experimental during recessions, raising 

uncertainty (Bloom, 2014).  

As well as macroeconomic uncertainty, financial uncertainty rises in correspondence of 

recessions too. As a matter of fact, several financial prices, such as stock market returns, 

exchange rates and bond yields, experience a surge in volatility during recessions. For example, 

the VIX index, which measures stock market volatility, increases by 58 percent on average. 

This could be due mainly to two reasons. First, firms tend to increase their level of indebtedness 

during recessions and, as a result, their stock-returns volatility rises. Second, recessions trigger 

higher risk aversion, which in turn causes higher option prices and thereby higher levels of the 

VIX index (Bloom, 2014). 

As previously mentioned, economic literature provides evidence that a rise in uncertainty leads 

to lower levels of economic growth in the short run. In fact, it reduces investment, consumption 

and hiring through several mechanisms and raises the borrowing costs for every kind of 

financial player (Bloom, 2014). 

An important channel through which uncertainty affects consumption, investment, and hiring 

is represented by the positive effect of heightened uncertainty on the value of real options which 

consumers and firms are provided with. More specifically, an uncertainty shock raises the 

option value of waiting related to investment and hiring decisions of firms and to the decisions 

of purchasing durable goods. In fact, such choices cannot be reverted without bearing an 

irreversible capital cost and, hence, when uncertainty is high, people find more convenient to 

postpone them. Summing up, an uncertainty shock causes a drop in consumption, investment 

and hiring by making economic players more cautious. Secondly, a higher level of uncertainty 

leads consumers to increase their precautionary savings, which reduces consumption and is 

likely to negatively impact on economic growth in the short run. Finally, a rise in uncertainty 

causes a drop in investment due to the lack of diversification usually observed in top managers. 

Indeed, an executive whose financial assets and human capital are disproportionately tied up in 

their firm is likely to delay long-term investment decisions, when uncertainty is high (Bloom, 

2014). 

Heightened uncertainty raises the cost of finance since it mainly increases risk premia (Bloom, 

2014). As a matter of fact, when uncertainty grows, investors want to be compensated for the 

higher levels of risk in their investments and will demand a higher excess return, since they are 

risk averse. In order to achieve this objective, they will be less willing to pay every kind of risky 
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financial asset and, as a consequence, the prices of risky financial assets fall, which makes it 

harder to raise funds for firms and financial institutions. 

In conclusion, uncertainty and the business cycle are deeply interconnected and influence each 

other. It is useful for our empirical research to identify the channels through which uncertainty 

affects economic growth since it allows us to elaborate a hypothesis as to how a global 

uncertainty shock may impact on macroeconomic aggregates and especially on the global factor 

of worldwide risky assets prices. In fact, following these arguments, the world economic growth 

and GFC should drop in response to a rise in worldwide uncertainty. More specifically, due to 

the overmentioned irreversible capital adjustment costs, firms tend to postpone important 

investment decisions in periods of elevated uncertainty, which negatively impacts on their 

financial assets value. In fact, in response to a reduced volume of financial assets in firms’ 

balance sheets, investors expect lower future profits from firms, leading to lower returns for 

firms’ financial assets, for example. Hence, the GFC, which is based on the returns of 

worldwide financial assets, experiences a low phase. 

 

1.3 Uncertainty measures and their economic and financial impacts 

This paragraph will briefly present the measures of uncertainty which will be used for the 

empirical research. In addition, some of their documented effects on macroeconomic and 

financial aggregates will be illustrated. 

1.3.1 GFU 

The Global Financial Uncertainty index is a measure of global financial uncertainty, elaborated 

by Castelnuovo and Caggiano in 2022. They computed the GFU index by estimating a dynamic 

hierarchical factor model a la Moench, Ng, and Potter (see Caggiano and Castelnuovo, 2023). 

It is based on about 38,000 financial volatility observations covering the period from 1992 to 

2020 and including 42 countries from all over the world, which account for about 83% of global 

industrial production (Caggiano and Castelnuovo, 2023). 

By estimating several SVAR models, they concluded that GFU shocks negatively impacts on 

GFC and World Industrial Production (WIP), a measure of global output that will be explained 

in detail afterwards. The median contribution of such shocks to GFC variance and to that of 

global output is about 30% and 9%, respectively. Besides, they showed that GFU shocks were 
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relevant in determining the loss in WIP observed during the Great Recession: in absence of 

GFU shocks, loss would have been 13% lower in magnitude (Caggiano and Castelnuovo, 2023). 

GFU index turns out to be a reliable measure of global financial uncertainty for many reasons. 

First of all, it spikes in association with well-known historical episodes of global financial 

volatility, e.g., the Great Recession, and it is highly and positively correlated with proxies for 

global financial uncertainty, such as VIX and the financial uncertainty index recently proposed 

by Ludvigson, Ma, and Ng (Caggiano and Castelnuovo, 2023). 

Secondly, it shows a strong positive correlation with uncertainty specific to “hegemon” areas, 

such as Europe and North America. On the other hand, GFU is correlated with uncertainty in 

small-open economies, e.g., Australia, and it is poorly correlated with uncertainty specific to 

areas and countries that typically follow idiosyncratic dynamics, such as Italy and China 

(Caggiano and Castelnuovo, 2023). 

Besides, the authors found, through a SVAR analysis, that GFU outperforms VIX in impacting 

GFC, even though it displays a lower correlation with GFC than VIX. Their interpretation, 

indeed, is that GFU is a more proper measure for global financial volatility, given that it is 

based on volatilities coming from all around the world and not only from the US market, as 

instead VIX does. Hence, VIX is not a perfect substitute for GFU, as illustrated by Figure 3, 

and it can function just as a mere proxy for GFU. As a matter of fact, GFU seems to react more 

to the Great recession compared to VIX. In that period, GFU peaks with a value that is 5,5 times 

higher than the value that it records in the first month of 2008, while the maximum associated 

to VIX is just 2,5 times bigger than its own value in the first month of 2008 (Caggiano and 

Castelnuovo, 2023). 

1.3.2 GEPU 

The Global Economic Policy Uncertainty (GEPU) index is a measure of global uncertainty 

regarding economic policies, ideated by Baker, Bloom and Davis in 2016. It is the GDP- 

weighted average of the country-specific Economic Policy Uncertainty (EPU) index of 21 

countries from all around the world, that cover two-thirds of global output (Baker, Bloom, and 

Davis, 2016). 

The EPU index quantifies the policy-related economic uncertainty of a given country and was 

computed by Baker, Bloom and Davis as well. It is based on the share of newspaper articles 

related to economic policy uncertainty published in a given month. More specifically, this index 
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is constructed on an algorithm that selects the newspaper articles containing at least a term for 

each of the following three categories: uncertainty, economy, and policy. The aim of EPU is to 

capture uncertainty about the contents of economic policies, their economic implications and 

the subjects that eventually will make such decisions (Baker, Bloom, and Davis, 2016). 

The EPU index turns out to be a reliable measure of economic policy uncertainty, being strongly 

correlated with other text-based measures of policy uncertainty, e.g., the frequency with which 

the Federal Reserve System’s Beige Books mention policy uncertainty. Notably, the US EPU 

spikes around 9/11, COVID-19 pandemics, the Lehman Brothers bankruptcy, and other well-

known episodes of elevated economic policy uncertainty for US. In addition, it received 

significant market validation, since it is used by important commercial data providers, including 

Bloomberg and FRED. Lastly, a human audit on 12,000 articles drawn randomly from U.S. 

newspapers was carried out in order to provide a further robustness check. The human- and 

computer-generated indices turn out to be highly correlated (Baker, Bloom, and Davis, 2016). 

As regards the macroeconomic effects of EPU, its shocks are found to foreshadow declines in 

investment, output, and employment in the United States and in 12 relevant economies (Baker, 

Bloom, and Davis, 2016).). 

The authors realized two versions of GEPU, both starting in 1997 and being updated 

approximately every month. This research will focus just on the one based on PPP-adjusted 

GDP. This kind of GEPU Index clearly peaks in reaction to historical events characterized by 

heightened worldwide economic policy uncertainty, chiefly the Asian and Russian Financial 

Crises, 9/11, the Great Recession in 2008- 09 and, the burst of COVID-19 pandemics in 2020. 

This pattern, which is extremely consistent with the theoretical time path of global uncertainty 

surrounding economic policies, confirms the plausibility of the GEPU index (Baker, Bloom, 

and Davis, 2016). 

 Figure 4 plots GEPU time series in subsample which goes from January 1997 and April 2019. 

Finally, GEPU was found to affect crude oil volatility (Yongjian Lyu et al., 2021) and stock 

volatility in nine emerging economies (Yu, Huang, and Xiao, 2021). Besides, Ozcelebi (2021) 

showed that GEPU has an impact on the global economic activity and hence on oil prices. 
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1.3.3 GPR 

The geopolitical risk index captures the uncertainty concerning geopolitics or better still the 

circumstance that international actors will continue to have peaceful relationships with each 

other. It was elaborated by Caldara and Iacoviello (2022) and it aims at measuring the 

geopolitical risk as perceived by newspapers, investors, and people in general. The authors 

define geopolitical risk as “the threat, realization, and escalation of adverse events associated 

with wars, terrorism, and any tensions among states and political actors that affect the peaceful 

course of international relations” (Caldara and Iacoviello, 2022, p.1197). 

The time series has a monthly frequency, starting in 1985, and it is updated on a monthly basis. 

The GPR is equal to the number of newspapers articles which discuss adverse geopolitical 

events and threats, in a given month, divided by the total number of published articles in the 

same month. This share was computed by applying a specific algorithm. The selected 

newspapers are six leading newspapers from US, United Kingdom, and Canada, which means 

that GPR reflects the perspective of just a few countries. The articles contributing to GPR 

mention words that align with the definition of geopolitical risk given by the authors or that in 

general have a high probability to be associated with adverse geopolitical events (Caldara and 

Iacoviello, 2022). 

GPR index turns out to be a plausible measure of geopolitical risk for a variety of motives. First 

of all, it peaks during well-known historical episodes of war and international crises, such as 

the Gulf War, the 2003 invasion of Iraq, and the North Korea crisis in 2017-2018, as showed 

by Figure 2. Additionally, relevant spikes are reached after notorious terrorism acts, such as 

9/11 and Paris terrorist attack. Importantly, differently from GEPU and GFU, it does not react 

at all to the Great financial crisis, highlighting the fact that it captures just geopolitical risk 

fluctuations. Another key feature of GPR time series is its high volatility compared to GFU and 

GEPU (Caldara and Iacoviello, 2022). 

Besides, the authors carried out a formal audit of a sample of 7,000 newspaper articles, found 

GPR being highly correlated with a narrative counterpart and performed other robustness 

checks that furtherly testify that GPR is an accurate and meaningful index (Caldara and 

Iacoviello, 2022). 

GPR has important macroeconomic effects. As a matter of fact, shocks to geopolitical risk have 

been found to lead a reduction in stock prices, investment, and employment. In addition, there 
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is a link between higher values of the GPR index and higher probability of economic disasters, 

lower expected GDP growth, and higher downside risks to GDP growth (Caldara and 

Iacoviello, 2022). 
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2. STATE OF THE ART  

This chapter will provide an introductory illustration of the state of the art of structural and 

reduced form Vectorial Autoregressive (VAR) models, detailing the tools, the identification 

methods, and the estimation techniques that will be employed for carrying out the empirical 

research of Chapters 4 and 5. The same notation will be used for denoting variables along the 

entire chapter, exception made for the cases where variables are explicitly specified in different 

manners. 

 

2.1 VAR models 

Vector Autoregressive (VAR) models are one of the most widely used tools for carrying out 

empirical researches concerning multivariate time series, in particular when referring to the 

fields of macroeconomics and finance (Kilian and Lütkepohl, 2017). In fact, since the seminal 

work of Sims (1980), they have proved to be extremely useful and reliable instruments for 

forecasting and for describing economic and financial time series (Stock and Watson, 2001).  

VAR models are the vector generalization of univariate autoregressive processes. They assume 

that each variable is a linear function of at least its own past and of the past of the other model 

variables. More specifically, given a number k of variables, VAR models consist of a system 

of k linear regression equations, each one regressing a specific model variable on its own lagged 

values and on the lagged values of the remaining k-1 variables. The maximum number of lags 

considered takes the name of “lag-order” or simply “order” of the VAR model. A VAR model 

of order p, commonly referred to as VAR(p), is indeed a model that takes account of the lagged 

observations of the data series up to the p-th lag. The data frequency is usually monthly or 

quarterly (Kilian and Lütkepohl, 2017). 

There are two main versions of VAR models: reduced form VAR models and structural VAR 

models. Reduced form VAR models assume that all the actual values of the k time series are 

explained by just their own lagged values, the lagged values of the other model variables, a 

constant, and an error term. Therefore, the contribution of contemporaneous relationships 

between the variables is excluded in a reduced form VAR model. The observed time path of a 

set of macroeconomic aggregates is generally approximated by reduced form VAR models, 

since they provide a reliable finite-order approximation for general linear processes (Kilian and 

Lütkepohl, 2017). 
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If we suppose p being equal to two and the number of model variables equal to 3, we get the 

following reduced form VAR model: 

{

𝑥𝑡 = 𝑐1 + 𝑎11,1𝑥𝑡−1 + 𝑎12,1 𝑧𝑡−1 + 𝑎13,1𝑔𝑡−1 + 𝑎11,2𝑥𝑡−2 + 𝑎12,2 𝑧𝑡−2 + 𝑎13,2𝑔𝑡−2 + 𝑢1𝑡

𝑧𝑡 = 𝑐2 + 𝑎21,2𝑥𝑡−1 + 𝑎22,1 𝑧𝑡−1 + 𝑎23,1𝑔𝑡−1 + 𝑎21,2𝑥𝑡−2 + 𝑎22,2 𝑧𝑡−2 + 𝑎23,2𝑔𝑡−2 + 𝑢2𝑡

𝑔𝑡 = 𝑐3 + 𝑎31,2𝑥𝑡−1 + 𝑎32,1 𝑧𝑡−1 + 𝑎33,1𝑔𝑡−1 + 𝑎31,2𝑥𝑡−2 + 𝑎32,2 𝑧𝑡−2 + 𝑎33,2𝑔𝑡−2 + 𝑢3𝑡  
 

(2.1) 

Its vector representation is: 

𝒚𝒕 = 𝒄 + 𝑨𝟏𝒚𝒕−𝟏 + 𝑨𝟐𝒚𝒕−𝟐 + 𝒖𝒕 , 

(2.2) 

where 𝒚𝒕, 𝒚𝒕−𝟏, and 𝒚𝒕−𝟐 are the vectors collecting, respectively, the actual values of model 

variables, the values at lag 1, and the values at lag 2. The vector of error terms -also referred to 

as residuals or innovations- denoted by 𝒖𝒕 , represent the unpredictable component of each 

equation, given the past observations of model variables. It is supposed to be a zero mean white 

noise process with covariance matrix 𝚺𝒖, in order to allow for serially uncorrelated error terms. 

However, notice that this hypothesis does not rule out mutual correlation of residuals. In 

addition, 𝑨𝟏, and 𝑨𝟐 are the matrix containing the coefficients associated to first lags and second 

lags variables, respectively. Lastly, c denotes the vector of constants, as follows: 

𝒚𝒕 = (

𝑥𝑡

𝑧𝑡

𝑤𝑡

) , 𝒄 = (

𝑐1

𝑐2

𝑐3

) , 𝑨𝒊 = (

𝑎11,𝑖 𝑎12,𝑖 𝑎13,𝑖

𝑎21,𝑖 𝑎22,𝑖 𝑎23,𝑖

𝑎31,𝑖 𝑎32,𝑖 𝑎33,𝑖

) , 𝑖 = 1,2, 𝑎𝑛𝑑  𝒖𝒕 = (

𝑢1𝑡

𝑢2𝑡

𝑢3𝑡

)  

However, a more compact way to write reduced form VARs is the so-called “companion form”. 

It allows to represent a generic k-dimensional VAR(p) process as the following pk-dimensional 

VAR (1) process: 

𝒀𝒕 = 𝒄 + 𝑨𝒀𝒕−𝟏 + 𝑼𝒕 , 

(2.3) 

where 
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𝒄 ≡
[

𝑐
0
⋮
0

]

𝑘𝑝 × 1

, 𝑨 ≡

[
 
 
 
 
𝑨𝟏 𝑨𝟐 … 𝑨𝒑−𝟏 𝑨𝒑

𝑰𝒌 𝟎 … 𝟎 𝟎

𝟎 𝑰𝒌 𝟎 𝟎

⋮ ⋱ ⋮ ⋮
𝟎 𝟎 … 𝑰𝒌 𝟎 ]

 
 
 
 

𝑘𝑝 × 𝑘𝑝

 , and  𝑼𝒕 ≡
[

𝑢𝑡

0
⋮
0

]

𝑘𝑝 × 1

 

The matrix A is referred to as the companion matrix of the process. The matrixes A and 𝚺𝒖 and 

the vector 𝒄 are defined as the reduced form parameters of the VAR model. 𝒀𝒕 equals to 

(𝒚𝒕
′ , … , 𝒚𝒕−𝒑+𝟏

′ )
′
and 𝑰𝒌 corresponds to the k-dimensional identity matrix (Kilian and Lütkepohl, 

2017). 

An important property of VAR models is stability since, if present, it allows to express key 

features of the time series into an easy form and to deduce stationarity. Relatively to linear 

difference equations, a stable model is such that a shock to one of the model variables does not 

lead to persistent variations in model variables (Hamilton, 1994). Formally, a VAR process is 

stable if all the roots of its own characteristic lag polynomial lie outside the unit circle or, 

equivalently, if all the eigen values of the related companion matrix A lie inside the unit circle 

(Kilian and Lütkepohl, 2017). 

Stability is useful since it implies weakly stationarity of the VAR process under the common 

assumptions that the mean is a constant term, and the residuals are white noises. In contrast, 

weakly stationarity always entails stability, but it is difficult to be assessed directly. A weakly 

stationary or covariance stationary process is such that its first and second moments exist and 

are time invariant. As regards VARs, they are stationary if all the model variables are stable. 

Weakly stationarity in VARs is extremely important, since it primarily allows the computation 

of FEVD and IRF and the existence of a unique companion matrix A (Kilian and Lütkepohl, 

2017). 

In this dissertation the hypothesis according to which the reduced form residuals follow a white 

noise process will be assessed graphically by means of the charts of the Sample Auto 

Correlation Function (SACF) and the overall time path of such errors. Indeed, if these two 

charts show specific characteristics, the process of the reduced form residuals can be reasonably 

approximated by a white noise one. More precisely, the sample autocorrelations must quickly 

die out, loosing almost completely significance after the first or second lag on the one hand, 

and the time series of residuals must not exhibit clear trends, on the other one. 



30 
 

Weakly stationarity allows to write the VAR process as the sum of its present and past 

innovations, using the so- called Wold Moving Average (MA) form: 

𝒚𝒕 = 𝒄 + ∑𝚽𝒊𝒖𝒕−𝒊

∞

𝑖=0

 , 

(2.4) 

where 𝚽𝟎 = 𝑰𝒌, 𝚽𝒊 = ∑ 𝚽𝒊−𝒋𝑨𝒋
𝒊
𝒋=𝟏 , 𝒊 = 𝟏, 𝟐,…, and 𝑨𝒋 = 𝟎 for 𝑗 > 𝑝. 

This representation of a VAR process as a weighted average of its current and past shocks is 

extremely useful for expressing the structural IRF and FEVD into handy formats, as it will be 

better explained in the next paragraphs (Kilian and Lütkepohl, 2017). 

In addition, weakly stationarity permits consistent estimates through classical methods, i.e., ML 

and OLS. However, it is not strictly required to get such a result. In fact, even in presence of 

unit rooted variables, standard estimation techniques can retrieve consistent estimates. As 

suggested by Canova (see Caggiano and Castelnuovo, 2023), it is enough to model possible 

unit-rooted variables in log-levels and to assess that estimated residuals are indeed white noises. 

If they are, then OLS or ML leads to consistent estimates; if they are not, instead, the order of 

the VAR model has to be increased. 

2.1.1 Structural VAR models and the identification problem 

A structural VAR(p) model, often referred to as SVAR, is such that: 

𝑩𝟎𝒚𝒕 = 𝑩𝟏𝒚𝒕−𝟏 + ⋯+ 𝑩𝒑𝒚𝒕−𝒑 + 𝒘𝒕, 

(2.5) 

where 𝒚𝒕 is the vector of the time series of interest as in equation 2.2, 𝑩𝒊 collects the slope 

coefficients at the i-th lag, analogously to 𝑨𝒊 in equation 2.2, 𝒘𝒕 is the vector of the so-called 

structural residuals or shocks, and 𝑩𝟎 is the matrix whose elements capture the 

contemporaneous relationship between model variables (Kilian and Lütkepohl, 2017)..  

SVARs allow for instantaneous relations among model variables, differently from reduced form 

VARs. In addition, they assume that the structural shocks are zero mean white noises which are 

both serially and mutually uncorrelated. This implies that the covariance matrix of the structural 
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shocks 𝚺𝒘 is a diagonal matrix of full rank, such that the number of variables coincides with 

the number of shocks. In other words, mutual uncorrelation allows to attribute a distinct kind 

of economic interpretation to each shock and, in this sense, these shocks are “structural”. 

Besides, uncorrelation leads to the possibility of computing the IRFs of SVARs as simple 

functions of the structural shocks. Consequently, every fluctuation in the data series of a stable 

VAR could be viewed as generated by the structural innovations (Kilian and Lütkepohl, 2017).. 

SVARs and reduced form VARs share an important link with each other: reduced form VARs 

indeed can be interpreted as the data created by an underlying SVAR. A SVAR model can be 

easily converted into the related VAR representation by multiplying both sides of equation 2.5 

by 𝑩𝟎
−𝟏. Hence, 𝑨𝒊 = 𝑩𝟎

−𝟏𝑩𝒊 and 𝒖𝒕 = 𝑩𝟎
−𝟏𝒘𝒕. The reduced form innovations can be 

represented as linear combinations of the structural ones. On the other hand, knowing the matrix 

𝑩𝟎 or its inverse is all what we need to retrieve the SVAR process underlying an estimated 

VAR model. By normalizing 𝚺𝒘 to the identity matrix 𝑰𝒌 without any loss of generality, it is 

possible to use this equation to recover 𝑩𝟎
−𝟏: 

𝚺𝒖 = 𝑩𝟎
−𝟏𝑩𝟎

−𝟏′
 

2.6) 

This is a system of nonlinear equations, whose unknown parameters are the elements of 𝑩𝟎
−𝟏. 

It can be solved, only if the number of unknown parameters does not exceed the number of 

independent equations provided by 𝚺𝒖. This is the so-called order condition, which is a 

necessary condition for the exact identification of structural shocks and it is not met in the 

equation. In fact, there are 𝑘2 unknown parameter and only 𝑘(𝑘 + 1) 2⁄  independent equations. 

Consequently, it is necessary to impose some restrictions on the elements of 𝑩𝟎
−𝟏 to satisfy the 

order condition. Choosing the suitable economic restrictions in order to uniquely identify 𝑩𝟎
−𝟏, 

and hence the other structural parameters, represents the so-called identification problem in 

structural autoregressions. A variety of strategies has been implemented over the years to 

address this problem (Kilian and Lütkepohl, 2017). 

However, this dissertation will present just those that will be employed in the empirical research 

of the next chapters, i.e., the widely used Cholesky decomposition, which leads to the 

recursively identified models, and the Penalty Function Approach (PFA). Before illustrating 

them, this chapter will be devoted to explaining IRF, FEVD, Granger causality, and Bayesian 

estimation. 
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2.2 Granger causality 

Granger proposed a way to assess the theoretic dynamic relationships between economic 

variables in a VAR framework, which nowadays takes the name of Granger causality (see 

Kilian and Lütkepohl, 2017). Let suppose a bivariate reduced form VAR (p) model with 

variables g and x: 

{
𝑔𝑡 = 𝑐1 + 𝑎11,1𝑔𝑡−1 + 𝑎12,1 𝑥𝑡−1 + 𝑎11,2𝑔𝑡−2 + 𝑎12,2 𝑥𝑡−2 + 𝑢1𝑡

𝑥𝑡 = 𝑐2 + 𝑎21,2𝑔𝑡−1 + 𝑎22,1 𝑥𝑡−1 + 𝑎21,2𝑔𝑡−2 + 𝑎22,2 𝑥𝑡−2 + 𝑢2𝑡
  

(2.7) 

The variable x is said to Granger cause g, if x is helpful for predicting g, reducing the mean 

squared error for g. This happens if at least one of the lags associated with x displays a slope 

coefficient different from zero in the equation whose dependent variable is 𝑔𝑡. Therefore, a 

common way to assess whether x Granger causes g is to the test the null hypothesis that imposes 

joint zero restrictions on all the slope coefficients related to the lags of x in the overmentioned 

equation. This is typically done by conducting a standard Wald test, if the VAR model is weakly 

stationary. On the contrary, if we are not sure about the stationarity, it is recommended to add 

a number of lags to the VAR process equal to the suspicious integration order of the process. 

In Chapter 4, Granger causality analysis will be carried out only in bivariate VARs. 

It is important to stress that Granger causality is not a bidirectional concept: if x is found to 

Granger cause g, g might not Granger cause x. Hence, it is required to run another test to 

evaluate if g Granger causes x. If both tests lead to the rejection of the null, x and g are said to 

be in a bidirectional Granger causality relationship. 

Despite what its name might suggest, nowadays Granger causality is not used for establishing 

causal relationships among the variables of a VAR model. As a matter of fact, both Granger 

causality and Granger non causality between two variables can be justified by the omission of 

a third one or by other factors. Granger causality just reflects the dynamic correlations between 

variables and can be useful only for rejecting strict exogeneity of a variable with respect to 

another one. It does not entail causality but precedence. In fact, if x Granger causes g, x leads 

or predate movements in g and it is said to lead g. On the other hand, if there is a bidirectional 
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Granger causality between g and x, g and x are said to be in a feedback relationship (Kilian and 

Lütkepohl, 2017). 

 

2.3 The structural Impulse Response Functions 

One of the main research questions investigated by economists concerns how economic 

aggregates react to unanticipated changes in another economic variable. With reference to 

equation 2.5, this maps into assessing the effects of a one-time variation or impulse in the 

structural shocks 𝒘𝒕 on the model variables 𝒚𝒕, after having identified 𝒘𝒕. Formally, given a 

number of periods h after the impulse to structural shock 𝑞 = 0,1,2, … , 𝑘 occurred at time t (h 

is the so-called horizon), the marginal effect of the impulse of 𝑤𝑞𝑡 on the model variable 𝑦𝑗𝑡 is 

the partial derivative of 𝑦𝑗𝑡 with respect to 𝑤𝑞𝑡 at horizon h. This is the so-called structural 

impulse response of 𝑦𝑗𝑡  to 𝑤𝑞𝑡 at horizon h, denoted by θ𝑗𝑞,ℎ hereafter: 

θ𝑗𝑞,ℎ =
𝜕𝑦𝑗,𝑡+ℎ

𝜕𝑤𝑞𝑡
, ℎ = 0,1,2, … , 𝐻. 

(2.8) 

H is the maximum propagation horizon of the shock. The matrix whose elements are the 

structural impulse responses of 𝒚𝒕 at a given horizon h for every different shock is the structural 

impulse response matrix at horizon h, which is equal to: 

𝚯𝒉 =
𝜕𝒚𝒕+𝒉

𝜕𝒘𝒕
′  . 

(2.9) 

One of the main goals of economic SVAR analyses is typically to plot the impulse responses 

of each variable to a specific shock j over time, i.e., over different horizons, up to H. This gives 

place to k squared charts, defined as the structural impulse response functions. IRFs provide a 

useful representation of how much and in which direction the model variables react after an 

economically interpretable shock has occurred.  

As previously mentioned, if a VAR (p) process is weakly stationary, a handy expression for the 

structural impulse responses can be recovered. In fact, by exploiting the MA form and the 
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relation between the structural and the reduced form errors outlined in the paragraph 2.1.1, 

every weakly stationary VAR (p) model can be written as the following weighted average of 

past structural shocks: 

𝑦𝑡 = ∑ 𝚽𝒉𝑩𝟎
−𝟏𝒘𝒕−𝒉 

∞

ℎ=0

 

(2.10) 

where 𝚽𝒉 denotes the matrix of reduced form impulse responses of the VAR (p) model in 

question at horizon h, i.e., 𝚽𝒉 =
𝜕𝒚𝒕+𝒉

𝜕𝒖𝒕
′  with 𝒖𝒕 representing the vector of reduced form errors. 

In addition, covariance-stationarity implies that:  

𝚯𝒉 =
𝜕𝒚𝒕+𝒉

𝜕𝒘𝒕
′ =

𝜕𝒚𝒕

𝜕𝒘𝒕−𝒉
′  

(2.11) 

Thus, combining equation 2.10 with equation 2.11, the structural responses can be expressed 

as follows: 

𝚯𝟎 = 𝑩𝟎
−𝟏 

𝚯𝟏 = 𝚽𝟏𝑩𝟎
−𝟏 

𝚯𝟐 = 𝚽𝟐𝑩𝟎
−𝟏 

⋮ 

By definition, stability ensures that all the structural and reduced form impulse responses will 

die out after some horizons, totally reverting to zero. However, the structural impulse responses 

can be derived from the related reduced form ones by using the same equations, even if the 

model is not stable. 

Since 𝚯𝟎 is equivalent to 𝑩𝟎
−𝟏, 𝑩𝟎

−𝟏 is often referred to as the structural impact multiplier matrix. 

In fact, 𝚯𝟎 represents the responses of model variables to the structural shocks at horizon 0, that 

is upon impact. This matrix 𝑩𝟎
−𝟏 is commonly chosen such that each structural shock represents 

a one standard deviation of the time series of structural shocks. 
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Operationally, the estimates of the structural IRFs are typically computed through OLS 

estimates of A and 𝚺𝒖 and the chosen identification restrictions. The uncertainty of these 

estimates is often replicated by applying bootstrap algorithms, which simulate a sample of data 

of the actual data sample n-times and compute the structural IRF for each simulated sample. 

From these n- structural IRFs values, the researcher typically picks two percentiles as upper 

and lower bounds of the uncertainty point estimates e.g., [5th, 95th] and [16th, 84th ], also known 

as the confidence bands, per each horizon. In addition, a researcher usually uses the median or 

the mean of the density of simulated IRFs as main point estimate of the structural IRFs (Kilian 

and Lütkepohl, 2017). 

 

2.4. Forward error variance decomposition 

Structural VAR analysis is able to estimate the relevance of each identified structural shock in 

explaining the average deviation of each variable from its own prediction at a certain horizon, 

or, in other terms, the importance of each structural shock in determining the unexpected 

fluctuations of each model variable by means of the so-called Forward Error Variance 

Decomposition. Indeed, with respect to equation 2.5, the FEVD describes how much of the 

forecast error variance or prediction mean squared error (MSPE) of 𝒚𝒕+𝒉 at horizon ℎ =

0,1,2, … ,𝐻 is explained by each structural shock 𝑤𝑞𝑡 , with 𝑞 = 0,1,2, … , 𝑘. 

Firstly, let us define the mean squared prediction error at horizon h for a VAR model as: 

𝑀𝑆𝑃𝐸(ℎ) = ∑ 𝚯𝒊𝚯𝒊
′

ℎ−1

𝑖=0

 

(2.12) 

where Θ𝑖 represents the structural impulse matrix at horizon i as in the previous paragraph. 

Hence, using the same notation as in paragraph 2.3, the contribution of shock q to the MSPE of 

𝑦𝑗𝑡 at horizon h corresponds to: 

𝑀𝑆𝑃𝐸𝑞
𝑗(ℎ) = θ𝑗𝑞,0

2 + ⋯+ θ𝑗𝑞,ℎ−1
2  

(2.13) 



36 
 

As a consequence, the total MSPE of 𝑦𝑗𝑡 at horizon h can be written as: 

𝑀𝑆𝑃𝐸𝑗(ℎ) = ∑𝑀𝑆𝑃𝐸𝑖
𝑗(ℎ)

𝑘

𝑖=1

 

(2.14) 

Therefore, the MSPE of 𝑦𝑗𝑡 can be decomposed as follows: 

1 =
𝑀𝑆𝑃𝐸1

𝑗(ℎ)

𝑀𝑆𝑃𝐸𝑗(ℎ)
+

𝑀𝑆𝑃𝐸2
𝑗(ℎ)

𝑀𝑆𝑃𝐸𝑗(ℎ)
+ ⋯+

𝑀𝑆𝑃𝐸𝑘
𝑗(ℎ)

𝑀𝑆𝑃𝐸𝑗(ℎ)
 

(2.15) 

where 
𝑀𝑆𝑃𝐸𝑖

𝑗(ℎ)

𝑀𝑆𝑃𝐸𝑗(ℎ)
 represents the fraction of the contribution of shock q to the forecast error 

variance of variable j. 

Operationally, FEVDs estimates are computed similarly to IRFs, using bootstrap algorithms in 

order to infer the confidence bands and the mean or median values (Kilian and Lütkepohl, 

2017). 

 

2.5 Bayesian estimation: prior, likelihood and posterior distributions 

As previously mentioned, VAR models are traditionally estimated through Maximum 

Likelihood and OLS methodologies, which are based on the so-called “frequentist approach”.  

Given a parameter vector of interest, say θ, which governs the process generating the sample 

of data under observation, frequentists assume θ to be deterministic and the samples of data to 

be stochastic. They aim at inferring θ from the available sample, by exploiting the properties of 

the estimator θ in repeated sampling. In contrast, Bayesians consider data non-stochastic, 

whereas θ is treated as stochastic. In fact, they estimate θ by using the researchers’ beliefs about 

this parameter, expressed in the form of subjective probability distributions. The assumed 

distribution of θ before observing the sample takes the name of prior distribution (or simply 

prior), denoted by 𝑔(𝜽). The subjective distribution of θ after having observed the data is called 

posterior distribution or posterior, indexed by 𝑔(𝜽|𝒚), where 𝒚 is a vector of data. The link 

between the prior and the posterior distributions is given by the Bayes’ theorem: 
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𝑔(𝜽|𝒚) =
𝑓(𝒚|𝜽)𝑔(𝜽)

𝑓(𝒚)
 

(2.16) 

where 𝑓(𝒚|𝜽) is the sample probability distribution function conditional on a given value of θ 

and 𝑓(𝒚) indicates the unconditional sample density. The former function is identical to the 

likelihood function and represents the amount of information conveyed by the data. Hence, 

Bayesians start by assuming a specific prior and a likelihood function for θ and then, after the 

observation of the sample of data, update their beliefs in the form of the posterior. Finally, they 

infer and estimate θ, by exploiting the posterior. If the prior results in a posterior that has the 

same functional form, it is said to be a conjugate prior. Additionally, if a conjugate prior shares 

its distribution family with the likelihood, it is called a natural conjugate prior. 

More specifically, the objective of Bayesian inference is to randomly draw n-times from the 

posterior distribution of θ or from a function of it, such as the structural IRF of a VAR model. 

Random samples are easy to draw if the posterior is from a known distribution family, by using 

the random number generator, a tool commonly available in modern software packages, which 

generates automatically a prespecified number of random samples from a known distribution. 

However, this is rare in practice and hence it is necessary to employ more sophisticated 

sampling techniques, such as the Markov Chain Monte Carlo methods, which will be used for 

the empirical research. They exploit a Markov Chain algorithm to generate a large number of 

serially dependent random draws of the parameter vector. Creating a high number of random 

draws and discarding a large number of initial sample values, also known as the burn-in sample, 

are usually necessary conditions to ensure that the posterior can be well approximated by the 

distribution of the random sample. 

The main advantages of the Bayesian approach are to reduce the uncertainty surrounding the 

unrestricted LS estimates of θ and to incorporate extraneous information. On the contrary, the 

main issue linked to Bayesian analysis is represented by the often-required extensive 

computations. Recently, it has become a quite popular estimation method, since modern 

computers have allowed to reduce the cost of making calculations, regardless of their 

complexity. 

The next subsections will illustrate the priors and the respective posteriors used for the empirical 

research (Kilian and Lütkepohl, 2017). 
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2.5.1 The Minnesota prior  

The prior is usually specified in a way that the posterior is from a known distribution family, or 

the posterior analysis is at least simplified. A common practice to get such a result is to use 

priors from a known distribution family. In addition, priors are usually provided with an 

additional structure in order to reduce the number of parameters required for a full specification 

of the prior to a small number of parameters, known as hyperparameters. The hyperparameters 

can be selected following different criteria. An important example is choosing the values of the 

hyperparameters that maximize the marginal likelihood function, i.e., the sample density 

function conditional on the hyperparameters (Kilian and Lütkepohl, 2017). 

Before defining the Minnesota prior, it is useful to notice that, for 𝑡 = 1,… , 𝑇, where T denotes 

the size of the sample, a generic reduced-form VAR(p) model can be rewritten as follows: 

𝒀 = 𝑨𝑿 + 𝑼, 

(2.17) 

where 𝒀 ≡ [𝒚𝟏, … , 𝒚𝑻], 𝑨 ≡ [𝒄, 𝑨𝟏, … , 𝑨𝒑], 𝑿 ≡ [𝑿𝟎, … , 𝑿𝑻−𝟏] with 𝑿𝒕−𝟏 ≡

(𝟏, 𝒚′
𝒕−𝟏

, … , 𝒚′
𝒕−𝒑

)
′

 (Kilian and Lütkepohl, 2017).All the priors which will be treated are 

imposed on the reduced-form parameters, i.e., the matrixes 𝚺𝒖 and A. 

One of the most notorious priors in VAR literature is the so-called Minnesota prior, which dates 

back to Doan, Litterman, and Sims (1984). The Minnesota prior assumes that the distribution 

of the coefficient matrix A is centred at a value which implies a random-walk dynamics for the 

VAR variables. In other words, each model variable is supposed to depend just on its own value 

at lag 1 and on the error term. There exist two alternatives to implement the Minnesota prior: 

the first one is to specify a distribution for A, whereas the second one consists of using the so-

called dummy observations. Dummy observations are fictitious observations of the model 

variables which might be actual observations from other countries or observations generated by 

simulations or by introspections. They are plugged in matrixes Y and X in order to create priors 

for VARs parameters. The main advantage of using dummy observations for implementing the 

Minnesota prior is the fact that it allows to introduce plausible correlations between VARs 

parameters in a parsimonious way (Del Negro and Schorfheide, 2011).  
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The Minnesota prior is usually specified by employing several hyperparameters and in the 

empirical research they will be used to create the dummy observations as in Del Negro and 

Schorfheide (2011). The overmentioned authors exploit seven hyperparameters. Two 

hyperparameters are the vectors of the means and of the standard deviations of a given pre-

sample. Each one of the remaining hyperparameters is stacked in the vector λ and governs a 

specific characteristic of the priors of the VARs parameters, by interacting with the vectors of 

the pre-sample means and standard deviations. The hyperparameter 𝛌1controls the tightness of 

the prior for the matrix of the coefficients associated to the variables at lag 1, i.e., the inverse 

of the standard deviations of the priors for the elements of matrix 𝑨𝟏. The hyperparameter 𝛌2 

controls the tightness of the priors for the coefficient matrixes of the remaining lagged variables, 

namely the matrixes from 𝑨𝟐 to 𝑨𝒑. The hyperparameter 𝛌3 regulates the prior for the 

covariance matrix Sigma, centred at a matrix that is diagonal with elements equal to the pre-

sample variance of model variables. Finally, the hyperparameters 𝛌4 and 𝛌5 govern the 

strength of two different beliefs about VARs parameters. More specifically, 𝛌4 refers to the 

belief that the pre-sample mean of a variable is likely to be a good forecast for its own actual 

value, if its lagged values are at the pre-sample mean level, regardless of the value of other 

variables; whereas 𝛌5 is related to the belief that the actual values of the model variables tend 

to persist at their own pre-sample means, if all their lagged values are at this level (Del Negro 

and Schorfheide, 2011). 

A crucial advantage of using the Minnesota prior is the fact that it implies Normal posteriors, 

which are simple and analytically tractable. Lastly, it is important to notice that the Minnesota 

prior is reasonable only for non-stationary economic time series, since it implies a random walk 

behaviour for the model variables, as previously explained (Kilian and Lütkepohl, 2017). 

2.5.2 The natural conjugate gaussian – inverse wishart prior 

The natural conjugate gaussian – inverse Wishart prior assumes that the covariance matrix of 

the error term, Sigma, follows an inverse Wishart prior distribution and the coefficient matrix 

A in its columnwise vectorized form, i.e., vec(B), follows a Normal prior distribution, 

conditionally on Sigma (Uhlig, 2005). More formally, the following priors are specified: 

vec(𝑨)|𝚺𝒖 ∼  𝑁(vec(𝑨𝟎
̅̅̅̅ ), 𝚺𝒖⨂𝑵𝟎

−𝟏 ),  

𝚺𝒖 ∼ 𝐼𝑊𝑘 (
𝑺𝟎

−𝟏

𝑣0
, 𝑣0 ). 
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As we can see from this equation, four parameters define the priors: a positive definite mean 

covariance k x k matrix 𝑺𝟎, a mean coefficient matrix kp x p 𝑨𝟎
̅̅̅̅ , a positive definite matrix 𝑵𝟎 

of size kp x kp and the real number of degrees of freedom, 𝑣0, that is non-negative and indicates 

the uncertainty of A and 𝚺𝒖 around 𝑨𝟎
̅̅̅̅  and 𝑺𝟎, respectively. These four parameters are freely 

chosen by the researcher (Uhlig, 2005). The operator “vec” denotes the so-called vectorization, 

a linear transformation which converts a generic matrix C of size m x n into a column vector of 

size mn x 1. The symbol “⨂ ” stands for the Kronecker product. If C is an m × n matrix 

and D is a generic p × q matrix, then the Kronecker product C ⊗ D is the following 

pm × qn matrix: 

[
𝑐11𝑫 ⋯ 𝑐1𝑛𝑫

⋮ ⋱ ⋮
𝑐𝑚1𝑫 ⋯ 𝑐𝑚𝑛𝑫

] 

The Wishart distribution can be deemed as the multivariate generalization of a 𝜒2(𝑛) 

distribution and derives from the interaction of a number n of k-dimensional, independent, and 

identically distributed Normal random vectors (Kilian and Lütkepohl, 2017). 

The previously specified priors for A and 𝚺𝒖 are such that they imply the same distribution 

family for the respective posteriors and, hence, they are conjugate priors. More precisely, it is 

a natural conjugate prior, since the posterior has the same functional form as the likelihood. In 

fact, given the matrix Y of the actual T-periods- observations of equation 2.17, the posteriors 

are the following: 

vec(𝑨)|𝚺𝒖, 𝑣𝑒𝑐(𝒀) ∼  𝑁(vec(𝑨𝑻
̅̅̅̅ ), 𝚺𝒖⨂𝑵𝑻

−𝟏 ),  

𝚺𝒖|𝑣𝑒𝑐(𝒀) ∼ 𝐼𝑊𝑘(𝑺𝑻
−𝟏/𝑣𝑇 , 𝑣𝑇  ), 

where 𝑣𝑇 = 𝑣0 + 𝑇, 𝑵𝑻 = 𝑵𝟎 + 𝑿𝑿′, 𝑨𝑻
̅̅̅̅ = 𝑵𝑻

−𝟏(𝑵𝟎𝑨𝟎
̅̅̅̅ + 𝑿𝑿′�̂�), 𝑺𝑻 =

𝑣0

𝑣𝑇
 𝑺𝟎 +

𝑇

𝑣𝑇
 𝚺�̂� +

1

𝑣𝑇
(�̂� − 𝑨𝟎

̅̅̅̅ )
′
𝑵𝟎𝑵𝑻

−𝟏𝑿𝑿′(�̂�−𝑨𝟎̅̅ ̅̅ ). �̂� and 𝚺�̂� denote the OLS estimates for A and 𝚺𝒖, respectively 

(Uhlig, 2005). 

One of the main advantages of using the natural conjugate gaussian – inverse Wishart prior is 

the fact that, if the structural VAR model is just identified, the posterior distributions of the 

structural impulse response functions can be easily simulated by drawing from the joint 

posterior distribution of the reduced form parameters A and 𝚺𝒖 (Kilian and Lütkepohl, 2017). 
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Drawing from the inverse Wishart distribution 𝐼𝑊𝑘 (
𝑺𝑻
−𝟏

𝑣𝑇
, 𝑣𝑇 ) is pretty straightforward. Indeed, 

a draw for 𝚺𝒖 is equal to (𝑹𝑹′)−𝟏, where R is a k x v matrix whose columns are independent 

draws from the Normal distribution 𝑁 (0,
𝑺𝑻
−𝟏

𝑣𝑇
) (Uhlig, 2005). 

 

2.6 Recursively identified models and the Cholesky decomposition 

A common way of uniquely identifying the structural shocks is to exploit the so-called lower-

triangular Cholesky decomposition of 𝚺𝒖
𝟐, which is a k x k lower triangular matrix P with 

specific characteristics (Kilian and Lütkepohl, 2017). It is provided with a positive main 

diagonal such that 𝚺𝒖 = 𝑷𝑷′(Kilian and Lütkepohl, 2017). Thus, using the Cholesky 

decomposition to address the identification problem previously mentioned means imposing 

𝑩𝟎
−𝟏 = 𝑷, since it allows to satisfy the order condition (Kilian and Lütkepohl, 2017). In fact, 𝑷 

has 
𝑘(𝑘−1)

2
 zero parameters, given that it is a lower-triangular matrix. In other words, this 

identification strategy imposes 
𝑘(𝑘−1)

2
  zero restrictions on the elements of 𝑩𝟎

−𝟏 as well as of 𝑩𝟎. 

It makes the reduced form errors mutually uncorrelated, on one hand, and introduces a particular 

recursive order or causal chain between the structural shocks and between the model variables, 

on the other one (Kilian and Lütkepohl, 2017). Using the same notation as equations 2.5 and 

2.2, an example of a trivariate SVAR identified through the Cholesky decomposition will 

clarify this: 

(

𝑢1𝑡

𝑢2𝑡

𝑢3𝑡

) = (

𝑏11 0 0
𝑏21 𝑏22 0
𝑏31 𝑏32 𝑏33

)(

𝑤1𝑡

𝑤2𝑡

𝑤3𝑡

) 

(2.18) 

In this example, the structure of matrix 𝑩𝟎
−𝟏 implies the following assumptions: the structural 

shock 𝑤3𝑡 has not any contemporaneous impact on the other shocks, 𝑤2𝑡 does not affect 𝑤1𝑡, 

and 𝑤1𝑡 influences all the other variables contemporaneously. An analogous recursive order 

can be easily proved to exist for the related variables. This means that it is supposed that x 

causes or predates z and z causes or predates g in the system of three equations 2.1. Therefore, 

the use of the Cholesky decomposition is reasonable only if the implied causal chain between 

the model variables is somehow justified from an economic point of view (Kilian and 
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Lütkepohl, 2017). In the literature, there exist many different sources of this economic rationale, 

but the most common is surely the use of economic theory or of an underlying economic model 

(Kilian and Lütkepohl, 2017). However, in practice, it is important to underline that economic 

aggregates are rarely found to be in a recursive relationship with each other and hence the use 

of Cholesky decomposition as identification strategy could give place to imprecise or even 

incorrect estimates of IRFs and FEVDs. Consequently, researchers tend to rely more often on 

other identification strategies, which are usually more complicated but imply more realistic 

restrictions on VARs coefficients, such as the Penalty Function approach, that will be illustrated 

in the next subsection. Nevertheless, the Cholesky decomposition turns out to be a useful 

strategy, since it provides a reliable lower bound of the effects of the last-placed variable on the 

other ones. 

 

2.7 The Penalty Function Approach 

The Penalty Function Approach was introduced by Faust (1998) and Uhlig (2005). Over the 

years, many authors have employed it, by providing some variations to suit their research 

questions. Hereafter, the version of the PFA elaborated by Caldara et al. (2016) will be 

followed. First of all, let rewrite the structural VAR model in equation 2.5 as: 

𝒚′
𝒕
𝑩𝟎 = 𝑿′

𝒕𝑩+ + 𝝎′
𝒕, 

(2.19) 

where 𝑩+ = [𝑩′
𝟏 …𝑩′

𝒑 𝒄
′] and 𝑿′

𝒕 = [𝒚′
𝒕−𝟏

…𝒚′
𝒕−𝒑

 𝟏] . 𝑩𝟎 and 𝑩+ are the so-called 

structural parameters. The structural IRF of the i-th variable to the j-th structural shock at the 

finite horizon h is equal to the element in the i-th row and the j-th column of the matrix 

[𝑩𝟎
−𝟏𝑱′𝑭𝒉

𝑱] , where  

 𝑭 =

[
 
 
 
 

𝑩𝟏𝑩𝟎
−𝟏 𝑰𝒏 ⋯ 𝟎

⋮ ⋮ ⋱ ⋮
𝑩𝒑−𝟏𝑩𝟎

−𝟏 𝟎 ⋯ 𝑰𝒏

𝑩𝒑𝑩𝟎
−𝟏 𝟎 ⋯ 𝟎 ]

 
 
 
 

    and   𝑱 = [

𝑰𝒌

𝟎
⋮
𝟎

]. 

Let this structural IRF be denoted by 𝑳𝒉(𝑩𝟎, 𝑩+)𝑖𝑗. Defining 𝒪(𝑘) as the set of all orthonormal 

k x k matrixes 𝑸, 𝑩𝟎
−𝟏 can be set equal to the product 𝑷𝑸, where 𝑷 is the Cholesky 
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decomposition of  𝚺𝒖
𝟐, which satisfies the equation 2.6. So, the identification problem can be 

solved by adding restrictions on 𝑸. In fact, for instance, imposing 𝑸 = 𝑰𝒌 means using the 

identification strategy based on the Cholesky decomposition. On the other hand, this kind of 

expression for 𝑩𝟎
−𝟏 returns (𝑷−𝟏, 𝑨𝑷−𝟏) as structural parameters, where A is the matrixes of 

the reduced-form coefficients as in equation 2.17 (Caldara et al., 2016). 

The PFA consists of identifying just a subset n of the k- structural shocks. Any identified shock 

𝒒𝒋 corresponds to 𝑸𝒆𝒋, where 𝑗 = 1,… , 𝑛 and 𝒆𝒋 is the j-th column of 𝑰𝒌. This approach 

identifies each structural shock j as the value 𝒒𝒋
∗ that minimizes a penalty function 

Ψ(𝒒𝒋) subject to three constraints on the structural IRFs. More specifically, it assumes that the 

sign of the structural IRF of some variables is restricted to be negative or positive for 𝐻 ≥ 0 

periods.  The set of variables whose IRF is restricted to be positive is denoted by 𝐼𝑗
+, whereas 

the set of variables whose IRF is required to be negative is indexed by 𝐼𝑗
−. Both sets are subsets 

of {0,1, … , 𝑘}. The third constraint requires that the shock j is orthogonal to shocks 1,… , 𝑗 − 1 

(Caldara et al., 2016).  

As regards the penalty function, it is made of the sum of the tightness - weighted IRFs of the 

model variables. Indeed, the IRF of a variable is divided by the standard deviation of that 

variable. In addition, the IRFs restricted to be positive are flipped by sign. More precisely, the 

penalty function Ψ(𝒒𝒋) is equal to: 

 ∑ ∑ (−
𝒆𝒊

′𝑳𝒉(𝑷−𝟏,𝑨𝑷−𝟏)𝒒𝒋

𝜔𝑖
)𝐻

ℎ=0𝑖∈𝐼𝑗
+ + ∑ ∑ (

𝒆𝒊
′𝑳𝒉(𝑷−𝟏,𝑨𝑷−𝟏)𝒒𝒋

𝜔𝑖
) ,𝐻

ℎ=0𝑖∈𝐼𝑗
−   

where 𝜔𝑖 denotes the standard deviation of variable i and can be estimated by the OLS residuals 

associated to variable i and 𝒆𝒊
′𝑳𝒉(𝑷

−𝟏, 𝑨𝑷−𝟏)𝒒𝒋 corresponds to the IRF of variable i to the 

structural shock 𝒒𝒋. Thus, the PFA identifies the structural shocks as those that provide the 

largest sum of tightness - weighted IRFs, satisfying the three previously mentioned constraints 

(Caldara et al., 2016). 

More formally, the PFA solves the following optimization problem: 

𝒒𝒋
∗ = min

𝒒𝒋

Ψ(𝒒𝒋) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
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𝒆𝒊
′𝑳𝒉(𝑷

−𝟏, 𝑨𝑷−𝟏)𝒒𝒋 > 0, 𝑖 ∈ 𝐼𝑗
+ 𝑎𝑛𝑑 ℎ = 0,… ,𝐻; 

𝒆𝒊
′𝑳𝒉(𝑷

−𝟏, 𝑨𝑷−𝟏)𝒒𝒋 < 0, 𝑖 ∈ 𝐼𝑗
− 𝑎𝑛𝑑 ℎ = 0,… ,𝐻; 

𝑸𝒋−𝟏
∗′

𝒒𝒋 = 0, 

where 𝑸𝒋−𝟏
∗′

= [𝒒𝒋
∗ …𝒒𝒋−𝟏

∗]. 

It is important to stress that the third constraint implies a sort of recursive ordering to model 

variables, if each structural shock is identified sequentially through the PFA. In fact, the 

sequential identification through PFA is not invariant to the ordering of the shocks and, if the 

penalty function of each variable j consists only of the response upon impact of variable j, it 

coincides with a Cholesky decomposition identification strategy. However, except for this case, 

this sequential approach does not imply any zero restrictions on the structural parameters or on 

the IRFs for any horizon h, allowing structural innovations to influence each other. In addition, 

note that the original specifications of Uhlig (2005) and Faust (1998) employed a penalty 

function based on FEVDs rather than on IRFs, as the version elaborated by Caldara et al. (2016) 

does. This difference is due to the fact that maximizing IRFs is a more suitable criterion for the 

types of shocks that Caldara et al. (2016) identified. 
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3. DATA AND ECONOMETRIC SPECIFICATIONS 

This chapter briefly illustrates the data series and the three econometric specifications that will 

be employed for the SVAR models. Every econometric specification denotes a different 

combination of assumptions, estimation techniques and identification strategies used to retrieve 

the FEVDs and the IRFs of the model variables to each uncertainty shock. 

3.1 Data  

All the econometric specifications are based on the same dataset, consisting of the monthly time 

series of the World Industrial Production (WIP), the Consumer Price Index (CPI), the shadow 

rate, the Global factor for risky financial assets returns (GFC) - that is the global financial cycle 

measured by Miranda - Agrippino and Rey (2021) - GPR, GFU, and GEPU. More specifically, 

three econometric specifications will be used, each one estimating three SVAR models. Each 

one of the three SVAR models considers a specific uncertainty measure, six lags, and monthly 

frequency. The number of lags of the models has been chosen by taking inspiration from 

Caldara et al. (2016). The estimated reduced form VAR models will have the same form as eq. 

2.2, whereas the estimated SVAR will be in the form of eq. 2.5, since the constant will be 

always included. However, all of these 9 models consider the following vector of variables:  

[𝑈𝑁𝐶𝑡, 𝐺𝐹𝐶𝑡 , 𝑠ℎ𝑎𝑑𝑜𝑤𝑟𝑎𝑡𝑒𝑡, log(𝑊𝐼𝑃𝑡) ∗ 100, 𝐶𝑃𝐼𝑡]
′ 

where 𝑈𝑁𝐶𝑡 stands for one of the three measures of uncertainty.  

The choice of including shadow rate, the WIP growth rate and CPI in the models takes 

inspiration from Caggiano and Castelnuovo (2023), who achieved very striking results on the 

effects of GFU shocks in estimated SVAR models comprehensive of these three variables and 

GFC. 

The order in which the time series appear in this vector is not random, but it aims mostly at 

imposing a plausible recursive order between the model variables, when identifying the 

structural shocks by means of the Cholesky decomposition, used only in the first econometric 

specification. Indeed, this identification strategy specifies a causal chain between the variables 

and between the related structural shocks according to their ordering in the vector, as mentioned 

in Chapter 2. More specifically, starting from the right-hand-side of the vector, the first variable 

is supposed to be not contemporaneously determined by the others, i.e., to happen 

independently from the other series’ contemporaneous levels, and hence could be deemed as 
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the first variable to be observed in a month. On the other hand, the first variable influences all 

the remaining ones contemporaneously. The second one is assumed to be contemporaneously 

led only by the values of the first variable and to impact on all the others. Following this 

reasoning, the latest should be determined by all the other series contemporaneous levels and 

should not impact on any of them. Even if this order is mainly useful for the first econometric 

specification, it will remain the same across all the specifications and VAR models. 

Importantly, notice that PFA, that is employed for the rest of the econometric specifications, 

imposes a sort of causal chain between model variables and between structural shocks as well, 

which depends, however, on the order followed to optimize the penalty function and hence to 

identify the structural shocks. Indeed, the sequential identification of the structural shocks is 

conditional on their sequential orthogonalization. 

Going back to the reasons which underline the order of the model variables in the vector, the 

uncertainty measure is always ordered as the latest variable in order to minimize its impacts on 

the other ones, when using the Cholesky decomposition. In other terms, this means that the 

estimated effects of uncertainty shocks will be just a lower bound of what they could be. In fact, 

as previously explained, the last variable is supposed to occur chronologically after every other 

one, which implies that every related shock cannot affect the other time series 

contemporaneously and that its effects should be the least of what they could be in a recursive 

model. 

GFC is the fourth variable in the vector, following Caldara et al. (2016), that placed the proxy 

for the financial conditions in the same position. The shadow rate, instead, is in the central 

position because of the following standard macroeconomic assumption: policy rate is supposed 

to be set by central banks after having observed the actual levels of unemployment and GDP. 

In fact, the policy rate is an important instrument in the hands of central banks to offset 

unpleasant economic conditions. Besides, shadow rate, which is a measure of US conventional 

and unconventional monetary policies, should impact on the Global financial cycle, as 

documented by Miranda - Agrippino and Rey (2020). 

The log of WIP multiplied by one hundred is the second variable since it is typically driven by 

oil price shocks and other inflation shocks. Consequently, CPI occupies the last position, being 

not theoretically affected by any other time series of the model by assumption.  
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It is worth underlying that the uncertainty measure have no economic reason to be placed after 

GFC. Indeed, as showed in Chapter 1, GFC should be highly correlated with measures of 

uncertainty and, more generally, fluctuations in financial aggregates and in uncertainty often 

happen at the same time. Due to this motive, whatever the sequential ordering and the 

identification strategy are, it is usually difficult to identify financial and GFC shocks separately 

from the uncertainty shocks. Hence, the recursiveness implied by the Cholesky decomposition 

is unrealistic for these shocks, since it introduces unplausible dynamics between uncertainty 

and GFC. 

As the vector clearly points out, all the time series are taken in levels, with the exception of 

WIP, that is modelled in natural logarithms and multiplied by one hundred. Log-levels 

transformation allows to make a clearly trending and highly skewed time series, such as WIP, 

more stationary and more normalized. As opposed to using growth rates, log-levels 

transformation is useful to minimize the problems due to over differencing. In addition, as 

suggested by Canova, modelling the variables of a reduced form VAR in log-levels leads to 

consistent estimates with classical methods if the residuals are stationary. This holds even in 

presence of unit-rooted time series (see Caggiano and Castelnuovo, 2023). 

The sample used to perform the SVAR analyses ends in April 2019, regardless of the model, 

due to the limitation given by the Global factor time series. On the contrary, the starting month 

of the sample varies according to data availability specific to every SVAR model. In fact, the 

GPR-related SVAR models cover the sample from January 1990, the initial month of the 

shadow rate series; the period underlying the GFU- related SVAR models begin in July 1992, 

the first available observation of GFU; lastly, the SVAR models specific to GEPU focus on a 

period starting in January 1997, the first month associated to the GEPU series. These 

considerations hold for all the econometric specifications. 

In what follows, this section will briefly present WIP, CPI, and shadow rate. 

3.1.1 Shadow rate 

The shadow rate variable was elaborated by Wu and Xia (2016), with the goal of better 

describing US monetary policies’ time path compared to the traditional effective federal fund 

rate. In fact, it has one main advantage with respect to the effective federal fund rate. It is 

structured to capture not only the movements in the federal fund rate but also the changes in the 

unconventional monetary policy tools, such as forward guidance and quantitative easing. These 
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are important instruments for the FED and the ECB nowadays and were crucial for raising 

inflation during the Great Financial crisis of 2008. In that period, indeed, the nominal interest 

rates reached the zero lower bound and thereby it was impossible for central banks to stimulate 

the economic system through traditional monetary policies. 

Therefore, in contrast with the effective federal fund rate, the shadow rate can be negative and 

hence it can convey information about the monetary policies adopted, even in times where the 

federal fund rate reaches the zero lower bound, as it can be noticed in Figure 5. 

We consider the subsample of the monthly time series, which starts in January 1990 and ending 

in April 2019. 

3.1.2 WIP 

The WIP index works as a measure of the global industrial production and was developed by 

Baumeister and Hamilton (2019). It is based on the national industrial productions from 

countries all around the world, which account, all together, for 79% of worldwide petroleum 

consumption and 75% of global GDP. It includes all OECD nations and other six important 

developing economies. The data series is downloaded by Baumeister’s web site, and it covers 

a period spanning from January 1950 to July 2022. However, the time series represented in 

Figure 6 covers a time window that starts in January 1990 and ends in April 2019, which is the 

most extended common subsample for SVAR models, as previously explained. As we can 

notice from Figure 6, WIP growth rate exhibits an increasing pattern over time, despite the log 

– transformation. 

3.1.3 CPI 

CPI is a measure of US inflation as experienced by consumers in their day-to-day living 

expenses and is computed by the U.S. bureau of labour statistics. More specifically, “the CPI 

index is a measure of the average change over time in the prices paid by urban consumers for a 

representative basket of consumer goods and services” (U.S. Bureau of Labor Statistics). The 

series has a monthly frequency, and it is plotted in Figure 7. We employ the subsample which 

starts in January 1990 and ends in April 2019. 
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3.2 The econometric specifications 

As previously anticipated, there are three econometric specifications used to carry out the 

empirical research. The first one is based on the Cholesky decomposition and on the OLS 

estimation of the reduced form VAR models. As underlined in paragraph 3.1.1, the recursive 

ordering, which is implied by the Cholesky decomposition, is unrealistic in order to identify 

uncertainty shocks and hence the IRFs and FEVDs computed with this first specification are 

not that reliable. It is useful only to get a lower bound of the effects and of the contributions of 

uncertainty shocks on the GFC. This first specification will be referred to as the “Chol” 

specification hereafter.  

The other two specifications follow the same econometric approach used by Caldara et al. 

(2016), which exploits economically meaningful assumptions and sophisticated econometric 

techniques resulting in suggestive and economically consistent findings related to uncertainty 

and financial shocks. Thus, such a methodology should suit the empirical research, leading to 

more reliable results compared to those coming from the Cholesky decomposition. This 

approach is characterized by the use of a specific PFA and the Bayesian estimation, where the 

posterior distributions of the IRFs and of the FEVDs are simulated through a Markov Monte 

Carlo Chain with 1000 draws and burn-in sample equal to 200 observations. However, 

differently from Caldara et al. (2016), the number of lags is not determined by using the 

overmentioned algorithm, but it is fixed to six, as previously mentioned. 

By construction of the PFA à la Caldara et al. (2016) that will be explained better in the next 

paragraph, these two specifications estimate the effects and the contributions of uncertainty 

shocks at their maximums, retrieving a useful upper bound. Therefore, the use of the three 

econometric specifications aims at providing the lowest and the highest values that can be taken 

by the IRFs and the FEVDs associated to the uncertainty shocks. This allows to identify a 

reliable interval of values within which the “true” effects of the uncertainty shocks are situated.  

The only difference between the two last specifications is represented by the prior. In fact, the 

second specification employs the Minnesota prior, whereas the third one is based on the 

Conjugate Gaussian Inverse Wishart prior. More specifically, the second specification, which 

will be denoted by “PFA - Min” specification, imposes the Minnesota prior for the reduced 

form parameters, as defined in Chapter 2, by means of dummy observations. The random walk 

dynamic imposed by the Minnesota prior is consistent with the fact that the model variables are 

typically unit rooted. Besides, following the approach of Caldara et al. (2016), the five 
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hyperparameters are selected by maximizing the marginal data density through the CMA-ES 

algorithm elaborated by Hansen et al. (2003), with the exception of the third one, which is set 

to 1 by hypothesis. 

On the other hand, the last specification employs the conjugate natural Normal inverse Wishart 

prior such that v0 and N0 are both set to 0, as in Uhlig (2005). The objective of the third 

specification, indeed, is to assess that the relevance of each uncertainty measure in affecting 

GFC is invariant to changing prior for the reduced form parameters. Due to the specific kind of 

prior imposed, the third strategy will be referred to as the “PFA - Conj” specification hereafter. 

3.2.1 The Penalty Function Approach used to identify the structural shocks 

Except for the Chol specification, all the econometric specifications employ the PFA elaborated 

by Caldara et al. (2016) to identify the structural shocks. Specifically, this empirical research 

identifies only the uncertainty and GFC shocks. Following the PFA ideated by Caldara et al. 

(2016), uncertainty shocks are identified as those innovations that trigger the greatest surge in 

uncertainty for the first six months. More specifically, they are the shocks that maximize the 

sum of the tightness - weighted IRFs of the related uncertainty measure until the fifth month 

after the impact, where each IRF is restricted to be positive. The maximization covers until the 

fifth month, because in our notation, which is the one used by Caldara et al. (2016), the impact 

response happens in month 0. Hence, with reference to the general form presented in section 

2.17.1, the penalty function that has to be minimized for the uncertainty shock 𝒒𝒋 is the 

following:  

∑ (−
𝒆𝟏

′𝑳𝒉(𝑷
−𝟏, 𝑨𝑷−𝟏)𝒒𝒋

𝜔1
)

5

ℎ=0

, 

where 

𝒆𝟏
′𝑳𝒉(𝑷

−𝟏, 𝑨𝑷−𝟏)𝒒𝒋 > 𝟎, ℎ = 0,… ,5; 

𝑸𝒋−𝟏
∗′

𝒒𝒋 = 0. 

Notice that i = 1, because the uncertainty shock is the first variable in the VAR models and j = 

1, since the uncertainty shock is the first one to be identified. As a consequence, the 
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orthogonality condition, i.e., the equation 𝑸𝒋−𝟏
∗′

𝒒𝒋 = 0, is ruled out, when identifying the 

uncertainty shocks. 

Analogously to uncertainty shocks, the GFC shock is identified as the one that generates the 

most relevant increase in GFC for the first six months. Therefore, the penalty function that has 

to be minimized to identify GFC innovation is identical to that used to identify the uncertainty 

shocks, with the only difference that i = 2, because the GFC shock is identified after the 

uncertainty one. 

These specific penalty functions used to identify uncertainty and GFC shocks derive from one 

fundamental assumption: perturbances in uncertainty measures and fluctuations in GFC are 

explained mainly by uncertainty shocks and GFC shocks, respectively. In addition, both these 

shocks lead their corresponding variable to rise persistently in the short-term. However, it is 

important to stress that, differently from the identification through the Cholesky decomposition, 

both variables are allowed to react contemporaneously to the other variable’s shocks (Caldara 

et al., 2016). 
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4. A PRELIMINARY ANALYSIS OF THE UNCERTAINTY MEASURES 

This chapter performs an analysis of the relationships that GPR, GFU and GEPU have with 

each other, with the Global financial cycle, and with the WIP index. Every relation will be 

examined by just considering correlations and Granger causalities between the overmentioned 

variables. This kind of analysis is useful to assess whether the chosen measures of uncertainty 

are indeed countercyclical and able to predate future perturbances in the global financial cycle. 

In addition, it allows to check whether each measure of uncertainty conveys an independent 

and peculiar type of information compared to the others and if the measures of uncertainty are 

somehow linked to each other. For the sake of simplicity, the term “causality” will denote any 

“Granger causality” relationship between two variables. 

 

4.1 How the measures of uncertainty relate to each other 

In this section the relationships between GEPU, GFU, and GPR will be investigated, by 

analysing their time series’ charts, their pairwise correlations, and their bidirectional Granger 

causalities. Each series will be standardized and then summed to one hundred to facilitate 

comparisons. For each relationship a different sample will be used, in order to exploit all the 

available data and hence to achieve the most reliable results as possible. In fact, for each of 

them, the most extended common sample will be taken into account. 

Every plot chart represents a couple of series over the overmentioned sample and displays their 

Pearson correlation index, denoted by “𝜌𝑋𝑌’’. 

Two Granger causality tests have been run for each possible couple of uncertainty measures, in 

order to assess whether one of the two variables Granger causes the other one at the 95% 

significance level. The test assumes that each couple of time series is described by a bivariate 

VAR model with 6 lags; consequently, the underlying null hypothesis to be tested is that none 

of the 6 lags is different from zero with a level of significance equal to 95%. The choice of 6 

lags descends from the fact that the SVAR analysis is based on VAR models with the same 

number of lags. 

Additional Granger causality tests on 12 and 24 lags VAR models have been conducted to 

assess possible longer term causal relationships, even though they are not the focus of the 
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empirical research. The Granger causality test on 7 lags VAR models has been run as well, 

since the model variables are potentially unit rooted. 

Lastly, a specific causality test with a significance level of 97.5% has been carried out for those 

couples of variables with a feedback relationship documented by the overmentioned Granger 

causality tests.  

4.1.1 A preliminary overview 

As a preliminary step, we analyse the chart of the time series of the standardized uncertainty 

measures, plotted together in their common sample, covering the period from January 1997 to 

May 2020.  

Two main remarks can be made, by looking at Figure 8. First, all the measures spike in 

correspondence of famous geopolitical adverse events, such as invasion of Iraq in 2003 and the 

9/11, with GPR displaying the highest peak. Secondly, as previously stated, GPR does not react 

to very well-known episodes denoted by high levels of global uncertainty, primarily the begin 

of Covid 19 pandemics and the Great financial crisis, showing an opposite pattern with respect 

to GEPU and GFU. Consequently, GPR might be a driver of GEPU and GFU, while GFU and 

GEPU should not lead GPR. This could make sense, since heightened geopolitical uncertainty 

could make the forecasts on future financial returns more volatile, as well as it could make 

economic policies more unpredictable. These circumstances raise GFU and GEPU, 

respectively. However, there could be just the fact that adverse geopolitical acts impact on all 

the three variables. 

 In addition, the common responses of GEPU and GFU to many globally relevant events do not 

exclude the possibility that the two measures share some link with each other. In fact, higher 

uncertainty regarding economic policies could lead to higher future levels of financial 

uncertainty. Actually, even past values of financial uncertainty could determine actual 

economic policy uncertainty. These hypotheses will be evaluated in the following subsections, 

by means of the Granger causality analysis. 

4.1.2 GPR vs GEPU 

Figure 9 shows the time series of standardized GPR and GEPU in the period from January 1997 

to July 2022. The extended sample allows to monitor the variables’ reactions to the Russian 

invasion of Ukraine, occurred in March 2022, and to COVID-19 pandemics. Both series 



56 
 

increase dramatically in response to these events, confirming the pattern pointed out in the 

previous subsection. 

The correlation computed in the overmentioned common sample is statistically insignificant, 

being the related p-value equal to 0,452, and poorly positive (0,0704). This weak association 

confirms the fact that both measures are sources of distinct uncertainties.  

The null hypotheses that one of the two variables Granger causes the other one are both rejected 

at the 95% level, in a VAR setting with 6 lags. This means that there should not be lagged 

values of GEPU, up to lag 6, that help in predicting actual GPR or vice versa. The same holds 

with 7, 12 and 24 lags. Hence, GPR and GEPU carry on different types of information, that do 

not share any causal link with each other. 

4.1.3 GFU vs GPR 

The sample common to both variables coincides with the overall available sample for GFU, as 

we can see from Figure 10. Relatively to this time span, they appear to be uncorrelated, 

confirming that the two data series are independent sources of information. The correlation 

index is equal to 0,0526 and is not significant at the 90% confidence level. In addition, Granger 

causality hypotheses are always rejected at any number of lags, suggesting the absence of causal 

relationships.  

4.1.4 GEPU vs GFU 

Figure 11 shows GFU and GEPU over the period spanning from January 1997 to May 2020, 

that is the same used in Figure 11. As for the previous couples, their correlation index, equal to 

-0,1779, is insignificant at the 95% level. However, differently from the other relationships, 

GEPU and GFU seem to Granger cause each other at any number of lags. As a matter of fact, 

the null hypothesis that none of the lags of GEPU helps in predicting GFU can be rejected in 

any VAR setting at a level of significance of 97.5%. The same holds for the lags of GFU. In 

other words, the two series appear to be in a strong feedback relationship, even though they are 

uncorrelated.  

4.1.5 Concluding remarks  

To sum up, each uncertainty measure conveys information specific to a peculiar kind of 

uncertainty, which differs from the others’ ones, since the correlation index turns out to be 
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always insignificant at 10% level. In other terms, this implies that it is reasonable to perform a 

separate SVAR analysis for each of them, as it will be done in the following chapter. Secondly, 

they seem to not share any causal link, with the exception of GFU and GEPU, which, instead, 

preliminarily share a feedback relationship hard to be rejected. 

4.2 Are uncertainty measures indeed countercyclical? 

The countercyclicality of each measure of uncertainty has been assessed by comparing each 

standardized time series with that of WIP growth rate, computed as the first difference of log 

WIP * 100. Both series are scaled by one hundred. Thereby, three figures have been generated, 

each one representing the time series of an uncertainty measure and WIP growth rate in their 

largest common sample and displaying the related correlation index. They are Figure 12, Figure 

13, and Figure 14. 

The period of analysis for GPR is the largest among the three measures. In fact, it spans from 

January 1980 to July 2022, while for GFU and GEPU it goes from July 1992 to May 2020 and 

from January 1997 to July 2022, respectively.  

Each time series turns out be countercyclical, since all the three correlation indexes are negative 

and statistically significant. Hence, the considerations made in the first chapter are empirically 

confirmed. However, GPR and GEPU display poorly significant and weakly negative 

correlations, equal to -0,085 and -0,109, respectively. The significance is at 5% for both the 

measures. On the contrary, GFU’s correlation index with WIP growth rate is strongly 

significant and much more negative (-0,312). In fact, the associated p-value is below the 1% 

threshold. 

In addition, as previously underlined and pointed out by Figures 13 and 14, GEPU and GFU 

spike in correspondence of the Great Recession and Covid 19 pandemics, which record 

dramatic reductions in WIP growth rate. In fact, the three lowest values of WIP growth rate are 

reached during the overmentioned negative events and the Russian invasion of Ukraine in 2022, 

that triggered heightened levels of GEPU and GPR. 
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4.3 The relationships between the uncertainty measures and the Global financial cycle 

In this section we will investigate how the uncertainty measures relate to the Global Financial 

Cycle in their longest common sample. Both the uncertainty measures and the Global Financial 

Cycle will be standardized and summed to one hundred to make easier and more immediate 

graphical comparisons. In fact, as a first step, the time series of each uncertainty variable will 

be represented together with the time series of the Global Financial Cycle. The time series are 

plotted in Figures 15, 16, and 17, specifically. Consequently, as for the previous analyses, three 

charts will be created, one for each uncertainty measure. Every chart displays the correlation 

between the represented time series.  

Secondly, nine Granger causality tests will be carried out to assess whether the uncertainty 

measures could be deemed as determinants of the global financial cycle. Each Granger causality 

test assumes a bivariate VAR setting for standardized GFC and the standardized uncertainty 

measure. Six, seven, twelve, and twenty-four lags will be considered. The confidence level is 

always at the 95% threshold. 

Other nine Granger causality tests will be run to evaluate the possibility that the Global 

Financial Cycle may Granger cause the uncertainty data series. They employ the same 

hypotheses that have been outlined in the previous paragraph. 

Additional Granger causality tests have been performed to assess possible feedback 

relationships with a confidence level of 97,5%. 

As robustness checks, the same overmentioned Granger causality tests have been carried out in 

the period in which the SVAR analyses will be indeed conducted. Hence, the Granger causality 

tests have been made in the time spans from January 1990 to April 2019 for GPR, from January 

1997 to April 2019 for GEPU, and from July 1992 to April 2019 for GFU. 

4.3.1 GPR vs GFC 

The comparison has been made in the period from January 1985 to April 2019. The related 

correlation index turns out to be negative (-0,1779) and statistically significant, displaying a p-

value lower than 0,01. Their time series are showed by Figure 15. However, despite the 

significance, this is a barely negative value, which indicates a weak negative relation between 

GPR and GFC. This is furtherly confirmed by the fact that the two variables do not share 

important historical peaks. 
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The Granger causality tests lead always to not reject the null, suggesting the absence of causality 

between GPR and GFC, regardless of the direction. This means that, even if the underlying 

VAR model should account for lower frequency data, GPR would still not causally relate to 

GFC. These results hold in the subsample going from January 1990 to April 2019. 

4.3.2 GFU vs GFC 

Their relationship has been analysed in the time span from July 1992 to April 2019 and their 

time series are plotted in Figure 16. Their correlation equals to -0,3309 and it is statistically 

significant at the 99% level. This is a relevant negative relation, which is furtherly corroborated 

by the circumstance that both series spike in the opposite direction during the same historical 

episodes, mainly the Great financial crisis, the European sovereign debt crisis, and the covid-

19 pandemics.  

The Granger causality analysis signals that GFU and GFC share a strong feedback relationship 

at 6 and 7 lags: indeed, the series Granger cause each other at a 97.5% significance level. In 

addition, GFU Granger causes GFC when considering 12 and 24 lags. Therefore, GFU Granger 

causes GFC at any number of lags. The results are robust to considering the overmentioned 

subsample. 

Preliminarily, GFU appears to be an important driver of GFC, confirming the results of 

Caggiano and Castelnuovo (2023). 

4.3.3 GEPU vs GFC 

Their common sample spans from January 1997 to April 2019. Strikingly, GEPU displays the 

most negative correlation with GFC (-0,6285) among the three uncertainty measures, with a 

level of significance equal to 99%. In fact, as stressed by Figure 17, these two series exhibit 

opposite time paths, which clearly react in the opposite directions in correspondence of the 

same events. 

However, despite the strong negative correlation, the Granger causality analysis leads to 

unstable results across different VAR specifications. As a matter of fact, GFC seems to Granger 

cause GEPU in the VAR settings provided with 6 and 7 lags, whereas GEPU Granger causes 

GFC in the 12 lags-model. Findings are robust to the previously explained sample variation. 
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4.3.4. Concluding remarks 

All the uncertainty measures show a negative and statistically significant correlation with the 

Global Financial Cycle, confirming the theoretical negative link argued in the first chapter. 

However, from the Granger causality analysis, only GFU seems to be a stable determinant of 

GFC. This is just a preliminary result but might suggest that GFU affects the most GFC among 

the uncertainty variables. Such a hypothesis will be more formally evaluated in the next chapter 

through the SVAR analyses outlined in the previous chapter.   
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5. FINDINGS AND RESULTS 

The fifth and last chapter of this dissertation will be devoted to illustrating the results of the 

empirical research based on the econometric specifications described in Chapter 3. The effects 

of a unitary variance shock to GPR, GEPU and GFC will be investigated, focusing on GFC 

dynamics. More specifically, the structural IRFs, the structural FEVDs to the uncertainty 

shocks, the eigen values of the companion matrix, the SACFs, and the charts of the reduced 

form errors will be commented for all the SVAR models of each econometric specification. 

Hence, starting from the Chol specification, the stability of the three specification-related 

reduced form VAR models and the contribution of each different structural uncertainty shock 

in affecting GFC will be assessed separately for every specification. In addition, comparisons 

between different specifications will be detailed to investigate the impact of changing 

econometric tools, techniques, and assumptions on the results. 

 

5.1. The characteristics of the structural IRFs and FEVDs 

The IRFs and the FEVDs consider a horizon of 24 months, comprehensive of the month upon 

the impact and the following 23 months. The first month will be indexed as the month number 

0 and the last month as the 23rd one. The confidence bands correspond to the 16th and the 84th 

percentiles. Their computation is based on the application of bootstrap algorithms, as regards 

the Chol specification, whereas it employs the simulation of the posterior distribution by means 

of the Markov Monte Carlo chain with reference to the remaining specifications. The results 

about IRFs are always presented in charts, where the confidence bands are represented in 

coloured - dashed areas. The solid – dotted or just solid black line displays the main response, 

which corresponds to the mean response, in case of the Chol specification, and the median one 

for the rest. The charts of the FEVDs follow the same representation scheme just detailed for 

the IRFs. However, FEVDs will be analysed through tables too, which report the median 

contributions, exception made for the Chol one, where mean values are considered. Each one 

of these tables illustrates the overmentioned FEVDs in five different periods: upon impact, 6, 

12, 18, and 23 months after the uncertainty shock. They are: Table 1, Table 2, Table 3, Table 

4, Table 5, Table 6, Table 7, Table 8, and Table 9. 

Moreover, in order to provide a clearer exposition of the results, a specific colour motif will be 

assigned to the IRFs and the FEVDs resulting from each econometric specification. 
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Specifically, a light blue motif will be applied to the results of the Chol specification, while the 

IRFs and the FEVDs of the PFA – Min and the PFA - Conj specifications will present a yellow 

motif and a green motif, respectively. 

Lastly, it is important to clarify that the economically consistent responses of model variables 

to a generic uncertainty shock should be the following: 

- the uncertainty measures surge and revert to zero some months after the shock occurred; 

- the GFC drops due to the reasons explained in the first chapter; 

- shadow rate declines, as effect of GFC reduction, as proved by Miranda Agrippino and Rey 

(2020); 

- the reduction in GFC and the rise in uncertainty lead to a drop of WIP growth, since 

deteriorated financial conditions and higher levels of uncertainty are typically associated to 

recessions; 

-a lower WIP growth and a lower shadow rate should be associated to declining inflation. 

 

5.2. Reduced form residuals: an overview of the related time series and SACFs 

Preliminarily, it is worth emphasising that, by considering the SACFs and the time series of the 

estimated reduced form residuals, all the estimated VAR models return reduced form errors that 

can be reasonably approximated by zero mean white noises. Indeed, the reduced form residuals 

do not follow trends over time, on one hand, and their sample autocorrelations are almost never 

significant after the first lag, on the other one, reverting to zero very quickly. Thus, all the VAR 

models can be deemed as weakly stationary if they are stable, given that their means are 

supposed to be constant over time by default. More precisely, the VAR models will be weakly 

stationary if the eigen values of the companion matrix of the lag coefficients A has all the eigen 

values which, in module, are lower than one. 

The charts of the SACFs and the charts of the residuals’ time series will be provided only for 

the Chol specification, since they follow the same pattern across the other specifications. Figure 

29, Figure 30, and Figure 31 display the SACFs, while Figure 32, Figure 33, and Figure 34 

show the time series of the reduced form residuals. 
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5.3. The Chol specification 

The specification whose results will be showed firstly is the Chol one, since, as previously 

explained, the Cholesky decomposition represents the most basic identification strategy and 

hence the most natural starting point of the current analysis. 

The first important result is that, for every uncertainty measure, the estimated companion matrix 

A retrieves only eigen values that are lower than one in absolute values. Therefore, the three 

models are stable and weakly stationary.  

5.3.1 The IRFs 

As we can notice from Figures 24, 25, and 26, which depict the structural IRFs resulting from 

this specification, the space between the mean response and the confidence bands is in a light 

blue colour. However, only the mean responses, represented with the solid black lines, will be 

commented in this section. As a clear consequence of the zero restrictions, the responses of all 

the variables, exception made for the uncertainty measures hit by the shock, of course, are 

always null upon impact, i.e., at the horizon equal to zero. 

The responses of GPR, GEPU and GFU to their own shocks revert completely to zero before 

the end of the horizon. The IRFs of GPR and GEPU peak upon impact, by taking on values 

higher than 30% and 15%, respectively, and decline in the following months, by reaching levels 

below the threshold of 5% at the sixth month. Instead, the response of GFU shows its maximum 

at the first month after the shock and decreases in the following months. Importantly, it takes 

on very small values compared to other uncertainty measures: it equals to 0,06% at the sixth 

month and even its maximum is below 0,2%. 

The most striking fact that stands out from the observation of these IRFs is that the responses 

of the variables to GPR and GEPU shocks are extremely inconsistent with economic theory. 

The WIP growth rate and shadow rate increase for the most in response to the GPR shock, 

whereas shadow rate and CPI experience a slight increase and show an overall pattern which is 

very close to zero in response to the GEPU shock. In addition, GFC generally exhibits a positive 

response after the occurrence of both shocks. Precisely, its responses take on positive values 

for all the months after the GPR shock, showing even some persistence and reaching a peak of 

about 1,7% at the 20th month circa. On the other hand, GFC reacts more heterogeneously after 

GEPU shock, by declining and experiencing a contraction in the first month and in the fifth one 
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right after the impact and displaying a positive pattern for the remaining months, which reverts 

almost totally to zero after 24 months. However, the magnitude of the reaction is very limited: 

its maximum, reported at the 4th month, amounts to approximately 1,3%.  

It is worth emphasizing that the responses of the model variables to GEPU shocks are generally 

insignificant and very uncertain, being surrounded by relatively wide confidence bands. 

In stark contrast with the IRFs estimated for GEPU and GPR shocks, all the responses of the 

economic and financial aggregates to the GFU shock are economically consistent. Especially, 

GFC declines significantly for all the months following the shock, by reaching the minimum of 

about 8,5% at the sixth one. Its reaction dies out at the end of the horizon, which confirms the 

stability of the SVAR model. 

Summing up, only GFU shock originates a plausible dynamic for GFC and for the other model 

variables. As regards the other shocks, the evident inconsistencies found might be due to the 

circumstance that the zero restrictions imposed by the Cholesky decomposition are generally 

unrealistic for identifying uncertainty shocks, as explained in Chapter 3. Thus, considering the 

PFA as identification strategy, which introduces more reasonable assumptions for identifying 

uncertainty shocks, could be useful for addressing the problem of economically inconsistent 

IRFs.  

5.3.2 The FEVDs 

The FEVDs resulting from the Chol specification are illustrated by Table 3, Table 6, and Table 

9, and they corroborate the hypothesis that the Cholesky decomposition does not identify 

properly uncertainty shocks and provides just a lower bound. In fact, the contribution of the 

GEPU and GPR shocks in explaining other variables does not overcome the thresholds of 1% 

and 2%, respectively, exception made for the FEVD related to CPI that reaches the 4,5% level 

circa. Specifically, the highest contribution of GPR and GEPU shocks to GFC amounts to 

1,86% and 0,735%, respectively. Such low values are quite unplausible and are justified by the 

application of the Cholesky decomposition. However, the FEVDs referred to GPR and GEPU, 

especially, are quite high in the first six months after their own shocks. In fact, the first one 

equals to 96% upon impact and 90% after six months, whereas the second one amounts to 82% 

and 58% in the same horizons.  

The shock to GFU contributes more significantly to explaining the variances of other variables. 

The FEVD associated to GFC reaches the 21% level at the 12th month after the shock and the 
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other FEVDs are always higher than the 5% threshold. However, the FEVD concerning GFU 

equals to 66% upon impact and 71% after six months, which are relatively low values and might 

signal an incorrect identification strategy. 

Therefore, an important result coming from the Chol specification is that GFU shock is 

associated with the most significant and economically consistent responses and FEVDs related 

to GFC. On the other hand, the GPR shock originates the least relevant responses of GFC and 

the GEPU shock contributes the least to the forward variance of GFC among the uncertainty 

shocks. 

 

5.4. The PFA - Min specification 

The use of the PFA and of the Minnesota prior make this econometric specification more 

reasonable than the Chol one, as explained in Chapter 3. In addition, by maximizing the IRFs 

of uncertainty measures, it provides an upper bound measure of the effects of uncertainty shocks 

on the remaining model variables. However, this specification has a quite unpleasant result: for 

every estimated SVAR model there is at least one eigen value that is higher than one in module. 

Hence, all the three estimated SVAR models are unstable and their IRFs and FEVDs are hard 

to die out over the horizon of 24 months after the occurrence of the uncertainty shock, indeed. 

As regards the three structural IRFs plotted in Figures 18, 19, and 20, only the median 

responses, which are represented in the solid black lines, will be commented in this section. 

5.4.1. The IRFs 

With respect to the Chol specification, the IRFs associated to GEPU and GPR shocks are 

decidedly more economically significant, in general. In fact, WIP growth rate, shadow rate and 

GFC exhibit an overall negative pattern in response to both the overmentioned shocks. Only 

the IRFs of CPI remains inconsistent with economic theory, reporting an overall increase over 

the horizon. However, its median reaction is very limited and does not overcome the threshold 

of 0,021%. The response of GFC to GPR shock peaks at the first month, by taking on a value 

of about -2,5%, and takes on positive values between the 16th and the 24th month after the shock. 

The IRF of GFC to GEPU shock shows its minimum of approximately -11,5% at the fifth month 

after the shock and it does not revert to zero before the end of the horizon. 
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On the other hand, GFU shock originates all responses that remain economically consistent and 

acquire more significance relatively to the Chol specification. Specifically, GFC displays an 

overall negative pattern over time, by peaking at the fifth month after the impact, with a value 

of -16% circa, and shows some persistency at the end of the horizon. Hence, GFU turns out to 

be the shock associated with the highest impact on GFC in this specification. 

The fact that this specification gives place to economically consistent IRFs signals that the PFA 

is a more realistic identification strategy for identifying uncertainty shocks compared to the 

Cholesky decomposition. 

Another evident effect of the PFA is the circumstance that the responses of GFU, GEPU and 

GPR to their own shocks are more relevant compared to the Chol specification, especially in 

the first six months, of course. Indeed, recall that the PFA maximizes the IRFs of the uncertainty 

shocks until the sixth month after their happening. The values of the IRFs of GPR, GEPU and 

GFU upon impact are about 32%, 21%, 0,17% respectively, whereas their values at the sixth 

month after the shock are around 14%, 11%, 0,12%, respectively. Hence, with respect to the 

same periods, the responses are always higher or at least equal than those implied by the 

application of the Cholesky decomposition. 

The main drawback of this specification is the fact that almost all the IRFs, including those of 

GEPU, GFU and GPR, show persistency at the end of the horizon, as a consequence of the 

instability of their related SVAR models, as previously underlined.  

5.4.2. The FEVDs 

The FEVDs resulting from this specification have two common traits: they are generally more 

significant than those implied by the Chol specification and do not revert to zero at the end of 

the horizon, but, on the contrary, they tend to maintain or increase the levels showed at the sixth 

month after the shocks occurred. They are displayed by Tables 1, 4, and 7. The first trait is a 

consequence of the fact that the PFA identified the uncertainty shocks better and hence, as just 

illustrated, the IRFs are more significant. Specifically, the much higher values of the FEVDs 

associated to GEPU, GFU and GPR represent one of the main facts in favour of the thesis 

according to which the PFA outperforms the Cholesky decomposition in identifying such 

uncertainty shocks. Upon impact, the FEVDs of GFU, GPR and GEPU are about 96.5%, 98.6% 

and 94%, whereas, at the sixth month after their own shocks, they amount to about 98%, 98.6% 
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and 96.3%. As concerns the second common characteristic, this is due to SVARs models 

instability, of course. 

Therefore, the capacity of all shocks of explaining GFC has been improved by this specification, 

compared to the Chol one. In fact, the FEVDs are always higher than those implied by the Chol 

specification in the same periods. The contributions of GFU, GEPU and GPR are always higher 

than 25%, 23% and 1.5%, respectively, and their maximums equal to circa 56%, 27.5% and 

3%, respectively.  

Summing up, GFC displays the most relevant FEVDs and IRFs in response to GFU shock, as 

in the Chol specification, while it has the least significant IRFs and FEVDs after GPR shock. 

 

5.5. The PFA - Conj specification 

As underlined in the last two sections, the PFA combined with the Minnesota prior has proved 

to have an important drawback in both the two related specifications: it implies unstable 

estimated SVAR models which map into IRFs and FEVDs that hardly go to zero. In order to 

address this problem, it could be useful to employ the PFA together with a different prior for 

the reduced form parameters as well as this specification does, by considering the Conjugate 

Gaussian inverse Wishart prior. Besides, this choice allows to test whether the results found in 

the PFA – Min specification are robust to changing prior. 

The PFA - Conj identification proves to solve the problem successfully: there is no eigen value 

which is higher or equal to one in all the three estimated SVAR models. Hence, all the SVAR 

models are stable and their IRFs and FEVDs should revert to zero. In the following subsections, 

only the median responses and the median contributions illustrated in Figure 21, Figure 22, and 

Figure 23, and in Table 2, Table 5, and Table 7, respectively, will be commented. 

5.5.1. The IRFs 

Analogously with the PFA - Min specification, the IRFs tend to be more economically 

consistent and more relevant compared to those associated to the Chol specification, in general, 

corroborating the thesis according to which the PFA should be a more reasonable strategy for 

identifying uncertainty shocks. In fact, all the responses show an overall pattern that is 

economically coherent. However, the IRF of CPI after GEPU shock and the reactions of shadow 
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rate, WIP growth rate and GFC to GPR shocks are inconsistent for about the half of months 

after the occurrence of the shocks. In addition, the IRF of GFU is slightly negative for about 

ten months. Thus, compared to the PFA - Min specification, there is a higher number of 

responses that are partly or totally economically inconsistent. 

GFC exhibits a negative time path from the occurrence of the GPR shock until the 15th month 

and takes on its lowest value, which equals to circa -4%, at the first month. From the 16th month 

on, this IRF is positive and does not die out before the end of the horizon. On the contrary, the 

IRFs of GFC in response to GEPU and GFU shocks are never positive, revert to zero after 23 

months and display their minimums at the sixth month, which amount to about -13% and -16%, 

respectively. Hence, GFU and GPR still trigger the highest and the lowest reduction in GFC, 

respectively. Notice that the minimums associated with these three IRFs are even lower than 

their analogous of the PFA - Min specification.  

Lastly, as for the PFA - Min specification, the responses of the uncertainty measures after their 

own shocks are generally more significant than their Chol specification counterparts in the first 

six months, suggesting the effectiveness of the PFA in maximizing these IRFs in the first half 

of the first year after the occurrence of the related uncertainty shocks. The values of the IRFs 

of GPR, GEPU and GFU upon impact are about 30%, 20% and 0.17%, respectively, whereas 

their values at the sixth month after the shock are 5%, 6% and 0.09%, respectively. So, they are 

lower or equal to their counterparts in the PFA - Min specification. 

5.5.2 The FEVDs 

Analogously to the IRFs and the FEVDs of the PFA – Min specification, the FEVDs are 

characterized by a higher relevance compared to those of the Chol specification, suggesting a 

higher plausibility of the PFA for identifying uncertainty shocks with respect to the Cholesky 

decomposition. In fact, GFU, GPR and GEPU contribute to the forward variance of GFC for a 

value that is always higher than 24%, 5% and 27%, respectively. The maximums of these three 

FEVDs are 65%, 8% and 39%, respectively, which are higher than their counterparts of the 

PFA - Min specification. In addition, GFU shock explains the highest percentage of fluctuations 

in GFC on average and the FEVDs concerning GFC tend to be more significant than those 

associated to the PFA - Min specification. 
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Strikingly, uncertainty shocks contribute to the fluctuations of other variables in percentages 

that are almost always higher than those associated with the PFA - Min specification. Only the 

contribution of GFU to the CPI fluctuations does not follow this rule.  

In addition, for each uncertainty measure, the percentage of movements that is attributed to its 

own shock is usually higher compared to the Chol specification in the first six months. This 

confirms the fact that the PFA outperforms the Cholesky identification in identifying such 

uncertainty shocks and the circumstance that the PFA should bring to upper bound estimates, 

by construction. The only exception is represented by the FEVD of GPR, which amounts to 

95.65% upon impact and hence is lower than its Chol counterpart by 0.4% circa. Upon impact, 

the FEVDs of GFU, GPR and GEPU are about 94.4%, 95.6% and 84%, whereas, at the sixth 

month after their own shocks, they amount to about 95%, 90.3% and 80.4%. Notice that these 

values are less relevant compared to the PFA – Min specification. 

Summing up, GFU shock causes the most significant drop in GFC and is associated with the 

highest contribution to the variance of GFC. On the opposite side, GFC suffers the lowest 

contraction from the shock to GPR, which in turn explains the lowest percentage of 

perturbances in GFC. Besides, even if the IRFs and the FEVDs of the uncertainty measures 

after their own shocks are less relevant relatively to the PFA – Min specification, GFC shows 

more significant FEVDs and IRFs compared to the overmentioned specification. Overall, the 

significance of each uncertainty shock in affecting GFC is fairly stable with respect to the PFA 

– Min specification. 

 

5.6. A focus on the effects of the uncertainty shocks on GFC 

To make clearer and more immediate comparisons between the IRFs and the FEVDs of GFC 

in the three different specifications, Figure 28 and Figure 27 will be analysed. They show an 

overview of the estimated IRFs and the FEVDs with respect to GFC, respectively, by providing 

a graphical representation to them and assigning to each specification the same colour - motif 

as in the tables and in the charts of the IRFs previously described in this chapter. Hence, the 

Chol, PFA - Min, and the PFA - Conj specifications are characterized by confidence bands in 

the colours of light blue, yellow, and green, respectively. As before, we will refer to mean or 

median responses unless it is differently specified. 
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5.6.1 The IRFs 

As Figure 28 clearly points out and as illustrated in the previous subsections, GPR shock 

originates the least economically consistent and the least significant reactions of GFC in all the 

specifications. The responses of GFC after this shock are positive for at least seven months and 

they are not lower than -4,5%. In addition, they are surrounded by very wide confidence bands 

compared to the remaining variables and take on their minimums upon impact. In contrast, GFU 

shock gives place to the most relevant IRFs of GFC in every specification; in addition, they are 

usually the most coherent with economic theory. The reaction of GFC after GFU shock reaches 

the threshold of -15%. The minimums are reached at the sixth month after the shock, regardless 

of the specification. Importantly, the IRF of GFC that is denoted by the lowest minimum is the 

IRF generated by the GFU shock in the PFA - Min specification; nevertheless, this minimum 

is not so different from the one associated to GFU shock in the PFA - Min specification. 

Moreover, GFC reacts to GFU shocks by displaying the thickest confidence bands among the 

uncertainty measures in relative terms. Lastly, the IRFs associated to GEPU shock are usually 

economically consistent and very significant in the PFA - Min and PFA – Conj specifications, 

reaching a minimum of -11%. As well as for GFU, the minimums are taken on in 

correspondence with the sixth month after the uncertainty shock. 

On the other hand, Figure 28 shows that the IRFs linked to the PFA – Conj specification tend 

to be the most relevant and they are the most realistic, given that they are economically 

consistent almost in every month and they are not persistent throughout the horizon. In addition, 

this specification is characterized by the thickest confidence bands and hence by the lowest 

estimation uncertainty. On the opposite side, the Chol specification is denoted by wide 

confidence bands and by inconsistent and quite insignificant IRFs. Hence, the PFA has helped 

the uncertainty shocks to significantly increase their negative influence on GFC. 

5.6.2. The FEVDs   

Figure 27 graphically illustrates the FEVDs of uncertainty shocks relatively to GFC. The most 

outstanding result regarding these charts is the fact that GFU shock is the shock that contributes 

to the volatility of GFC for the highest percentages in every econometric specification. 

Remarkably, its contribution amounts even to over 50% and over 60% in the PFA - Min 

specification and in the PFA – Conj specification, respectively, which are very high values in 

absolute terms and make GFU the most important driver of the fluctuations of GFC among all 
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the model variables in these two specifications. Besides, this contribution reaches the 21% 

threshold in the Chol specification, even if it is estimated at its minimum by construction.  

The GEPU shock explains a high portion of the variance of GFC in the PFA - Min specification 

and in the PFA – Conj specification as well, since both the FEVDs overcome the threshold of 

30%. However, these FEVDs are substantially less relevant than those associated with the GFU 

shock in the same two specifications. The GEPU shock can be reasonably deemed as the second 

most important determinant of the movements of GFC among the three identified uncertainty 

shocks, because the related FEVDs are higher or at least almost equal to the FEVDs of the GPR 

shock in every econometric specification, when they regard GFC. In fact, GPR shock 

contributes to the 8% of volatility of GFC at most.  

Also, Figure 27 points out that the PFA – Conj specification gives place to the most relevant 

FEVDs on average, even if they are not remarkably higher than those associated to PFA - Min 

specification. In both these two specifications, the FEVDs of GFU and GEPU shocks are really 

significant, reaching values that are higher than 25% almost in each month after the impact. 

Hence, the PFA allows the three uncertainty shocks to increase their explanatory power for 

GFC fluctuations with respect to the Cholesky decomposition. 

 

5.7. Concluding remarks on the econometric specifications and limitations of the empirical 

research 

From the results illustrated in this chapter two main conclusions can be drawn about the 

econometric framework underlying the five overmentioned specifications. First of all, the PFA 

proves to be effective in retrieving economically consistent responses and IRFs and FEVDs that 

are more significant than those associated to the Cholesky decomposition.  

Secondly, the relevance and the economic consistency of the IRFs and of the FEVDs turn out 

to be affected by the choice of the prior for the reduced form parameters of the SVAR models. 

In fact, the Conjugate Gaussian Inverse Wishart prior is generally linked with higher absolute 

values of FEVDs and of IRFs with respect to the Minnesota prior and less economically 

consistent IRFs. However, the results concerning GFC do not show significant variations in 

these two specifications and hence can be deemed as robust to changing prior for the reduced 

form parameters. 
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Finally, it is important to stress that this empirical research has the limitation of not taking into 

account the effects of varying the optimization order of the shocks in the PFA. In fact, results 

might change a lot when identifying the GFC shock as the first one, since it could lead to less 

significant and less economically consistent estimated FEVDs and IRFs. Fluctuations that 

should be attributed to uncertainty shocks could be mistakenly attached to the GFC shock, 

lowering the importance of uncertainty in affecting GFC. Indeed, financial aggregates, such as 

GFC, and uncertainty measures – financial uncertainty measures, especially – move in response 

to the same events typically and, consequently, it is hard to disentangle their respective shocks 

properly. 

 

5.8. Concluding remarks on GFC 

The most outstanding result of this empirical research is the fact that GFU turns out to be the 

most important driver of GFC among the uncertainty shocks, confirming the conclusion of the 

Granger causality analysis carried out in Chapter 4. Regardless of the econometric specification, 

it explains the most relevant percentages of GFC movements - the highest percentage is about 

65% - and generates the greatest contractions of GFC - the most significant drop is circa of -

16%. In addition, this shock triggers the most economically consistent and accurate estimated 

responses of GFC among the shocks: the pattern of GFC after GFU shock is substantially 

negative and displays thin confidence bands in each econometric specification.  

GEPU is another important determinant of GFC, triggering reactions of GFC that are often 

consistent and relevant - the minimum is circa -13% - and FEVDs that can be very high, with a 

maximum of about 40%. GPR impacts the least on GFC and contributes the least to its 

movements on average. After this shock, the IRFs of GFC are generally insignificant and at 

least partly inconsistent and the FEVDs related to GFC are the least relevant in two of the three 

specifications.  

As regards the econometric specifications, the PFA – Conj specification is associated with the 

most significant reductions in GFC after uncertainty shocks and with the highest contributions 

of uncertainty shocks to GFC future movements. Moreover, the responses are the most 

economically consistent among the specifications, since each one shows a pattern that remains 

negative for the highest number of months and tends to die out over the course of time. 
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CONCLUSION 

Consistently with theory literature, this thesis provides evidence that global uncertainty 

measures are able to lead the Global Financial Cycle to a low phase under specific assumptions. 

By employing a multiperspective approach for the identification of uncertainty shocks, which 

includes the widely used Cholesky decomposition and the PFA à la Caldara et al. (2016), we 

have estimated an upper bound and a lower bound for the adverse effects of GPR, GFU and 

GEPU on GFC. Financial uncertainty, proxied by the GFU index, and economic policies’ 

uncertainty, measured by GEPU, turned out to significantly impact on GFC, since the average 

responses of GFC to these shocks exhibit a maximum contraction of about -13% and -16%, 

respectively. By following the same approach, we have showed that global uncertainty 

measures could be reasonably deemed as important determinants of GFC movements, being 

GFU and GEPU able to explain even the 65% and the 40% of the forward variance of GFC, 

respectively. Besides, GFU proved to steadily Granger cause GFC, regardless of the chosen 

lags, as shown in Chapter 4. Therefore, this empirical research provides evidence of the 

relevance of global uncertainty measures in affecting GFC, especially for the GFU index, which 

proves to be the most significant driver of GFC, irrespective of the underlying econometric 

assumptions. 

 

  



76 
 

 

  



77 
 

REFERENCES 

 

BAKER, S., R., BLOOM, N., and DAVIS, S., J., 2016. Measuring economic policy uncertainty. 

The quarterly journal of economics, 131(4), 1593–1636. 

BAUMESTEIR, C., and HAMILTON, J., D., 2019. Structural interpretation of vector 

autoregressions with incomplete identification: Revisiting the role of oil supply and demand 

shocks. American Economic Review, 109.5, 1873–1910. 

BLOOM, N., 2014. Fluctuations in uncertainty. Journal of Economic Perspectives, 28.2, 153–

176. 

CAGGIANO, G., and CASTELNUOVO, E., 2023. Global Financial Uncertainty. Journal of 

Applied Econometrics. John Wiley & Sons, Ltd., 38(3), 432-449. 

CALDARA, D., and M. IACOVIELLO, 2022. Measuring Geopolitical Risk. American 

Economic Review, 112(4), 1194-1225. 

CALDARA, D., FUENTES - ALBERO, C., GILCHRIST, S., and ZAKRAJŠEK, E., 2016. The 

Macroeconomic Impact of Financial and Uncertainty Shocks. European Economic Review, 88, 

185–207. 

CANOVA, F., 2007. Methods for Applied Macroeconomic Research. In: CAGGIANO, G., and 

CASTELNUOVO, E., 2023. 

DEL NEGRO, M., and SCHORFHEIDE, F., 2011. Bayesian Macroeconometrics in: The 

Oxford Handbook of Bayesian Econometrics, Chapter 7, 293-389, Oxford University Press, 

Oxford, J. Geweke, G. Koop, and H. van Dijk (Eds). 

DOAN, T., LITTERMAN, R., and SIMS, C., A., 1984. Forecasting and conditional projection 

using realistic prior distributions. Econometric Reviews, 3, 1–100. 

FAUST, J., 1998. The robustness of identified VAR conclusions about money. Carnegie-

Rochester Conf. Ser. Public Policy, 49, 207–244. 

GRANGER, C., W., J., 1969. Investigating causal relations by econometric models and cross-

spectral methods. In: KILIAN, L., and LÜTKEPOHL, K., 2017. 

HAMILTON, J. D., 1994. Time Series Analysis. Princeton, NJ: Princeton University Press. 

HANSEN, N., MÜLLER, S.D., KOUMOUTSAKOS, P., 2003. Reducing the time complexity 

of the derandomized evolution strategy with Covariance Matrix Adaption (CMA-ES). 

Evolutionary Computation, 11(1), 1–18. 

KILIAN, L., and LÜTKEPOHL, K., 2017. Structural Vector Autoregressive analysis. UK: 

Cambridge University Press. 

KNIGHT, F., 1921. Risk, Uncertainty, and Profit. Boston and New York: Houghton Mifflin 

Company, The Riverside Press Cambridge. 



78 
 

KOSE, A., M., PRASAD, E., ROGOFF, K., and WEI, S., 2006. Financial Globalization: A 

Reappraisal. IMF Working Paper 06/189, (Washington: International Monetary Fund). 

LUDVIGSON, S. C., MA, S., and NG, S., 2021. Uncertainty and Business Cycles: Exogenous 

Impulse or Endogenous Response. In: CAGGIANO, G., and CASTELNUOVO, E., 2023. 

LYU, Y., TUO, S., WEI, Y., and YANG, M., 2021. Time-varying effects of global economic 

policy uncertainty shocks on crude oil price volatility：New evidence. Resources Policy, 70, 

101943. 

MIRANDA – AGRIPPINO, S. and REY, H., 2020b. U.S. Monetary Policy and the Global 

Financial Cycle. Review of Economic Studies, 87(6), 2754–2776 

MIRANDA – AGRIPPINO, S. and REY, H., 2021. The Global Financial Cycle in: Handbook 

of international Economics, Volume 6, Chapter 1, 1-43, G. Gopinath, E. Helpman, and K. 

Rogoff (Eds.). 

MIRANDA – AGRIPPINO, S., TSEVETELINA, N., and REY, H., 2019. Global Footprints of 

Monetary Policies. In: MIRANDA – AGRIPPINO, S. and REY, H., 2021. 

MOENCH, E., NG, S., and POTTER, S., 2013. Dynamic Hierarchical Factor Models. In: 

CAGGIANO, G., and CASTELNUOVO, E., 2023. 

OZCELEBI, O., 2021. Assessing the impacts of global economic policy uncertainty and the 

long-term bond yields on oil prices. Applied Economic Analysis, 29 (87), 226-244. 

REY, H., 2013. Dilemma not Trilemma: The Global Financial Cycle and Monetary Policy 

Independence. In: Proceedings - Economic Policy Symposium. Jackson Hole, Federal Reserve 

of Kansas City Economic Symposium, 285-333. 

STOCK, J., H., and WATSON, M., W., 2001. Vector autoregressions. Journal of Economic 

Perspectives, 15.4, 101–115. 

UHLIG, H., 2005. What are the effects of monetary policy on output? Results from an agnostic 

identification procedure. Journal of Monetary Economics, 52, 381–419. 

WU, J., C., and XIA, F., D., 2016. Measuring the macroeconomic impact of monetary policy 

at the zero lower bound. Journal of Money, Credit and Banking, 48.2-3, 253–291. 

YU, X., and HUANG, Y., XIAO, K., 2021. Global economic policy uncertainty and stock 

volatility: evidence from emerging economies. Journal of Applied Economics, 24 (1), 416–440. 

  



79 
 

SITOGRAPHY 

Globalization | English Meaning, Cambridge Dictionary, viewed 02/10/2022, available at: 

https://dictionary.cambridge.org/dictionary/english. 

Handbook of Methods: U.S. Bureau of Labor Statistics, U.S. Bureau of Labor Statistics, viewed 

21/08/2022, available at: https://www.bls.gov/opub/hom/cpi/. 

  

https://dictionary.cambridge.org/dictionary/english
https://www.bls.gov/opub/hom/cpi/


80 
 

FIGURES 

 

Figure 1: GFC time series 
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Figure 2: GPR time series 
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Figure 3: GFU time series 
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Figure 4: GEPU time series 
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Figure 5:Shadow rate time series 
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Figure 6: WIP growth rate time series 
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Figure 7: CPI time series 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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Figure 17 
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Figure 18: IRFs of PFA - Min specification (GPR shock) 

 

 

Figure 19: IRFSs of PFA - Min specification (GFU shock) 
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Figure 20: IRFs of PFA - Min specification (GEPU shock) 

 

 

Figure 21: IRFs of PFA - Conj specification (GEPU shock) 
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Figure 22: IRFs of PFA - Conj specification (GFU shock) 

 

 

 

 

Figure 23: IRFs of PFA - Conj specification (GPR shock) 
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Figure 24: IRFs of Chol specification (GEPU shock) 

 

 

Figure 25: IRFs of Chol specification (GPR shock) 
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Figure 26: IRFs of Chol specification (GFU shock) 
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Figure 27: FEVDs of uncertainty shocks with respect to GFC 
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Figure 28: IRFs of GFC 
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Figure 29: the SACF of the reduced form residuals of the SVAR model with GEPU (Chol 

specification) 
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Figure 30: the SACF of the reduced form residuals of the SVAR model with GFU (Chol 

specification) 
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Figure 31: the SACF of the reduced form residuals of the SVAR model with GPR (Chol 

specification) 
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Figure 32: the time series of the reduced form residuals of the SVAR model with GPR (Chol 

specification) 
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Figure 33: the time series of the reduced form residuals of the SVAR model with GPR (Chol 

specification) 
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Figure 34: the time series of the reduced form residuals of the SVAR model with GPR (Chol 

specification) 
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TABLES 

 

Table 1: FEVDs of GPR shock (PFA- Min specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,72% 1,42% 1,49% 1,63% 1,83% 

WIP growth rate 0,63% 2,50% 2,10% 2,40% 2,74% 

Shadow rate 0,53% 3,23% 2,66% 2,59% 2,61% 

GFC 3,04% 1,76% 2,20% 2,90% 3,31% 

GPR 98,42% 98,07% 97,16% 96,27% 95,39% 

 

 

Table 2: FEVDs of GPR shock (PFA- Conj specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,75% 1,41% 3,01% 4,43% 5,12% 

WIP growth rate 1,38% 4,16% 3,00% 3,79% 4,25% 

Shadow rate 0,61% 2,12% 2,12% 2,62% 2,95% 

GFC 7,76% 5,33% 5,52% 6,39% 6,78% 

GPR 95,65% 90,29% 85,25% 80,61% 77,89% 

 

 

Table 3: FEVDs of GPR shock (Chol specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,00% 0,26% 2,07% 3,88% 4,70% 

WIP growth rate 0,00% 0,20% 0,29% 0,98% 1,75% 

Shadow rate 0,00% 0,29% 0,31% 0,80% 1,22% 

GFC 0,00% 0,29% 0,51% 1,15% 1,86% 

GPR 96,06% 87,42% 83,07% 80,90% 79,84% 
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Table 4: FEVDs of GEPU shock (PFA- Min specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 2,22% 3,25% 2,75% 2,84% 3,17% 

WIP growth rate 0,33% 8,96% 12,11% 12,39% 12,54% 

Shadow rate 1,04% 5,64% 5,73% 5,63% 5,21% 

GFC 24,80% 26,65% 26,82% 27,32% 27,08% 

GEPU 93,83% 96,08% 95,29% 93,92% 92,49% 

 

 

Table 5: FEVDs of GEPU shock (PFA- Conj specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 4,12% 3,35% 4,10% 5,11% 6,02% 

WIP growth rate 0,61% 14,65% 14,35% 12,17% 11,52% 

Shadow rate 2,76% 7,50% 7,30% 7,09% 7,33% 

GFC 39,38% 39,01% 33,74% 29,82% 27,67% 

GEPU 84,07% 84,36% 77,69% 72,65% 69,40% 

 

Table 6: FEVDs of GEPU shock (Chol specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,00% 0,39% 0,21% 0,16% 0,13% 

WIP growth rate 0,00% 0,21% 0,53% 0,69% 0,85% 

Shadow rate 0,00% 0,13% 0,08% 0,11% 0,15% 

GFC 0,00% 0,33% 0,40% 0,62% 0,73% 

GEPU 82,15% 57,54% 52,35% 49,35% 47,03% 
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Table 7: FEVDs of GFU shock (PFA- Min specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,34% 1,62% 5,08% 8,05% 9,85% 

WIP growth rate 2,01% 30,91% 33,28% 30,78% 28,77% 

Shadow rate 0,32% 4,38% 6,67% 7,84% 8,10% 

GFC 27,27% 59,06% 57,24% 54,87% 53,35% 

GFU 97,05% 97,92% 95,28% 91,46% 88,19% 

 

Table 8: FEVDs of GFU shock (PFA- Conj specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,38% 1,55% 3,70% 5,35% 5,85% 

WIP growth rate 2,89% 35,02% 35,34% 29,81% 25,35% 

Shadow rate 0,68% 6,17% 9,45% 11,22% 11,40% 

GFC 24,14% 64,93% 62,81% 56,50% 51,36% 

GFU 94,43% 95,04% 85,34% 75,01% 68,65% 

 

Table 9: FEVDs of GFU shock (Chol specification) 

Horizon/variable Upon impact 6 months 12 months 18 months 23 months 

CPI 0,00% 0,68% 2,75% 4,63% 5,54% 

WIP growth rate 0,00% 10,16% 12,73% 12,27% 10,97% 

Shadow rate 0,00% 1,93% 3,70% 5,46% 6,30% 

GFC 0,00% 19,69% 21,41% 20,30% 18,69% 

GFU 65,90% 71,92% 71,16% 61,64% 54,90% 
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MATLAB CODES 

 

In this section the most important MATLAB codes used to retrieve the results of this empirical 

research will be displayed. More specifically, five MATLAB files will be reported. The first 

one refers to the codes required to run the Granger Causality tests and to get the figures 

described in Chapter 4. The second and the third ones contain the codes employed to achieve 

the results illustrated in Chapter 5. The fourth one is comprehensive of all the codes used to 

plot IRFs and to write the tables of FEVDs. Finally, the fifth one allows to generate Figure 27 

and Figure 28. 

Notice that we have made use of two main sources: the third version of the VAR toolbox 

elaborated by Ambrogio Cesa-Bianchi and the codes employed by Caldara et al. (2016). The 

VAR toolbox can be freely downloaded at: “https://sites.google.com/site/ambropo/ 

MatlabCodes”. Some adjustments have been applied to both these sets of codes in order to 

produce the overmentioned results, of course. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://sites.google.com/site/ambropo/%20MatlabCodes
https://sites.google.com/site/ambropo/%20MatlabCodes
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%========================================================================= 

%% A PRELIMINARY ANALYSIS OF THE RELATIONSHIPS BETWEEEN UNCERTAINTY MEASURES 

AND GFC: GRANGER CAUSALITY TESTS AND CORRELATIONS  

%========================================================================= 

 

%% PRELIMINARIES 

%========================================================================= 

clear all; clear session; close all; clc 

warning off all 

 

for i=1:10 

model_vec       = 

{'GPRvsGEPU','GPRvsGFU','GEPUvsGFU','GPRvsGFC','GEPUvsGFC','GFUvsGFC','GPR

vsWIP','GEPUvsWIP', 'GFUvsWIP', 'GFCvsWIP'}; 

% Load data 

[xlsdata, xlstext] = xlsread('DATI_tesi4.xlsx',model_vec{i}); 

X = xlsdata; 

dates = xlstext(2:end,1);  

vnames = xlstext(1,2:end); 

nvar = length(vnames); 

D=datenum(dates,'yyyy-mm'); 

 

%pairwise correlations 

[rho,pval] = corr(X,X) 

correl= num2str(round(rho(2,1),3)); 

 

%% PLOT UNCERTAINTY MEASURES 

%========================================================================= 

%plot time series, displaying pairwise correlations 

figure 

if i==1 

plot(X(:,1),'LineWidth',1.5,'Color','g'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','c'); 

elseif i==2 

plot(X(:,1),'LineWidth',1.5,'Color','g'); 

hold on 
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plot(X(:,2),'LineWidth',1.5, 'Color','b'); 

elseif i==3 

plot(X(:,1),'LineWidth',1.5,'Color','c'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','b'); 

elseif i==4 

plot(X(:,1),'LineWidth',1.5,'Color','g'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','r'); 

elseif i==5 

plot(X(:,1),'LineWidth',1.5,'Color','c'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','r'); 

elseif i==6 

plot(X(:,1),'LineWidth',1.5,'Color','b'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','r'); 

elseif i==7 

plot(X(:,1),'LineWidth',1.5,'Color','g'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','m'); 

elseif i==8 

plot(X(:,1),'LineWidth',1.5,'Color','c'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','m'); 

elseif i==9 

plot(X(:,1),'LineWidth',1.5,'Color','b'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','m'); 

elseif i==10 

plot(X(:,1),'LineWidth',1.5,'Color','r'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','m'); 

end 

 

h=size(D,1); 

SelectedDates=datestr(D(1:12:end),'yyyy-mm'); 
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ax=gca; 

set(ax,'XTick',(1:12:h),'XTickLabel',SelectedDates); 

txt = {['\rho_{XY} = ' correl]}; 

if i==10 

text(150,102,txt,'FontSize',13) 

else   

text(150,103,txt,'FontSize',13) 

end 

title([vnames{1} ' and ' vnames{2}],'FontSize',15); 

legend(vnames{1},vnames{2},'FontSize',11); 

grid on 

savefig(['./results/comparisons/' model_vec{i} '.fig']); 

hold off 

 

%% GRANGER CAUSALITY TESTS 

%========================================================================= 

%Granger causality test 6 lags 

causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc(1),pvalue(1),stat(1),cvalue(1)] = gctest(causedata,EffectsData,... 

    NumLags=6) 

 

%Granger causality test 6 lags 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_1(1),pvalue_1(1),stat_1(1),cvalue_1(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=6) 

 

%Granger causality test 7 lags 

causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc_2(1),pvalue_2(1),stat_2(1),cvalue_2(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=7) 

 

%Granger causality test 7 lags 
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causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_3(1),pvalue_3(1),stat_3(1),cvalue_3(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=7) 

 

%Granger causality test 12 lags 

causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc_2(1),pvalue_2(1),stat_2(1),cvalue_2(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=12) 

 

%Granger causality test 12 lags 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_3(1),pvalue_3(1),stat_3(1),cvalue_3(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=12) 

 

%Granger causality test 24 lags 

causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc_4(1),pvalue_4(1),stat_4(1),cvalue_4(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=24) 

 

%Granger causality test 24 lags 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_5(1),pvalue_5(1),stat_5(1),cvalue_5(1)] = 

gctest(causedata,EffectsData,... 

    NumLags=24) 

 

%% FEEDBACK TESTS 

%========================================================================= 

%Feedback test at lag 6 
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causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc_f1(1),pvalue_f1(1),stat_f1(1),cvalue_f1(1)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=6) 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_f1(2),pvalue_f1(2),stat_f1(2),cvalue_f1(2)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=6) 

 

%Feedback test at lag 7 

causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc_f2(1),pvalue_f2(1),stat_f2(1),cvalue_f2(1)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=7) 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_f2(2),pvalue_f2(2),stat_f2(2),cvalue_f2(2)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=7) 

 

%Feedback test at lag 12  

causedata = X(:,1); 

EffectsData = X(:,2); 

[hgc_f2(1),pvalue_f2(1),stat_f2(1),cvalue_f2(1)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=12) 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_f2(2),pvalue_f2(2),stat_f2(2),cvalue_f2(2)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=12) 

 

%Feedback test at lag 24 

causedata = X(:,1); 
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EffectsData = X(:,2); 

[hgc_f3(1),pvalue_f3(1),stat_f3(1),cvalue_f3(1)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=24) 

causedata = X(:,2); 

EffectsData = X(:,1); 

[hgc_f3(2),pvalue_f3(2),stat_f3(2),cvalue_f3(2)] = 

gctest(causedata,EffectsData, Alpha=0.025,... 

    NumLags=24) 

 

save(['./results/comparisons/' model_vec{i} '.mat']) 

 

clear 

end 

 

%% PLOT ALL THE UNCERTAINTY MEASURES IN THE SAME FIGURE 

%========================================================================= 

% Load data 

[xlsdata, xlstext] = xlsread('DATI_tesi4.xlsx','GPRvsGEPUvsGFU'); 

X = xlsdata; 

dates = xlstext(2:end,1);  

vnames = xlstext(1,2:end); 

nvar = length(vnames); 

D=datenum(dates,'yyyy-mm'); 

 

figure 

plot(X(:,1),'LineWidth',1.5, 'Color','g'); 

hold on 

plot(X(:,2),'LineWidth',1.5, 'Color','c'); 

hold on 

plot(X(:,3),'LineWidth',1.5, 'Color','b'); 

h=size(D,1); 

SelectedDates=datestr(D(1:12:end),'yyyy-mm'); 

ax=gca; 

set(ax,'XTick',(1:12:h),'XTickLabel',SelectedDates); 

title([vnames{1} ', ' vnames{2} ' and ' vnames{3}],'FontSize',15); 

legend(vnames{1},vnames{2},vnames{3},'FontSize',11); 
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grid on 

savefig('./results/comparisons/GPRvsGEPUvsGFU.fig'); 

hold off 

 

 

 

%========================================================================= 

%% CHOLESKY SPECIFICATION: ESTIMATION, IRFS AND FEVDS 

%========================================================================= 

%% PRELIMINARIES 

%========================================================================= 

clear all; clear session; close all; clc 

warning off all 

% Determine where your m-file's folder is 

folder = fileparts(mfilename);  

% Add that folder plus all subfolders to the path 

addpath(genpath(folder)); 

addpath(genpath('./v3dot0')) 

 

model_vec = {'GEPU','GPR','GFU'}; 

 

for i=1:3 

% Load data 

[xlsdata, xlstext] = xlsread('DATI_tesi.xlsx',model_vec{i}); 

X = xlsdata; 

dates = xlstext(2:end,1);  

vnames = xlstext(1,2:end); 

nvar = length(vnames); 

D = datenum(dates,'yyyy-mm'); 

% Observations 

nobs = size(X,1); 

 

%% TIME SERIES AND SACFs 

%========================================================================= 

%Plot GEPU 

if i==1 

figure 
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FigSize(26,18) 

    plot(X(:,5),'LineWidth',3,'Color',cmap(1)); 

    title(['GEPU time series'],'FontSize',15); 

    h=size(D,1); 

    SelectedDates=datestr(D(1:12:end),'yyyy-mm'); 

    ax=gca; 

    set(ax,'XTick',(1:12:h),'XTickLabel',SelectedDates); 

    grid on;  

    savefig(['./results/Cholesky/GEPU time series.fig']); 

end 

hold off 

 

%Plot WIP, CPI, shadowrate, GPR and GFC 

model_variables = {'CPI','log(WIP)100','shadowrate','GFC','GPR'}; 

if i==2 

    for ii = 1:5 

    figure 

    FigSize(26,18) 

    plot(X(:,ii),'LineWidth',3,'Color',cmap(1)); 

    title([model_variables{ii} ' time series'],'FontSize',15); 

    h=size(D,1); 

    SelectedDates=datestr(D(1:12:end),'yyyy-mm'); 

    ax=gca; 

    set(ax,'XTick',(1:12:h),'XTickLabel',SelectedDates); 

    grid on;  

    savefig(['./results/Cholesky/' model_variables{ii} ' time 

series.fig']); 

    hold off 

    end 

end 

hold off 

 

%Plot GFU 

hold off 

if i==3 

    figure 

    FigSize(26,18) 
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    plot(X(:,5),'LineWidth',3,'Color',cmap(1));  

    title(['GFU time series'],'FontSize',15); 

    h=size(D,1); 

    SelectedDates=datestr(D(1:12:end),'yyyy-mm'); 

    ax=gca; 

    set(ax,'XTick',(1:12:h),'XTickLabel',SelectedDates); 

    grid on; 

    savefig(['./results/Cholesky/GFU time series.fig']); 

end 

hold off 

 

%Plot series together 

figure 

FigSize(26,18) 

title(['Variables time series - ' model_vec{i}],'FontSize',15); 

for ii=1:nvar 

    subplot(3,2,ii) 

    H(ii) = plot(D,X(:,ii),'LineWidth',3,'Color',cmap(1)); 

    title(vnames(ii)); 

    datetick('x', 'yyyy-mm'); 

    grid on;  

end 

savefig(['./results/Cholesky/Variables time series - ' model_vec{i} 

'.fig']); 

hold off 

 

%compute SACF of time series 

figure 

title(['Time series SACF - ' model_vec{i}],'FontSize',15); 

for ii=1:nvar 

subplot(3,2,ii);    

autocorr(X(:,ii)); 

title(vnames(ii)); 

end 

savefig(['./results/Cholesky/Time series SACF - ' model_vec{i} '.fig']); 

 

%% VAR ESTIMATION 
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%========================================================================= 

% Set deterministics for the VAR 

det = 1; 

% Set number of nlags 

nlags = 6; 

% Estimate VAR 

[VAR, VARopt] = VARmodel(X,nlags,det); 

% Print estimation on screen 

VARopt.vnames = vnames; 

[TABLE, beta] = VARprint(VAR,VARopt,4); 

VARopt.frequency = 'm'; 

 

% white noise test for residuals. As a first step, display residuals time 

series. If they are not white noises, we have to 

% add lags  

figure 

title(['Residuals overview - ' model_vec{i}]); 

for ii=1:nvar 

subplot(3,2,ii);    

plot(D(7:end,:),VAR.resid(:,ii)); 

title(vnames(ii)); 

datetick('x', 'yyyy-mm'); 

end 

savefig(['./results/Cholesky/Residuals overview - ' model_vec{i} '.fig']); 

 

%Second, plot residuals ACF  

figure 

title(['Residuals ACF - ' model_vec{i}]); 

for ii=1:nvar 

subplot(3,2,ii);    

autocorr(VAR.resid(:,ii)); 

title(vnames(ii)); 

end 

savefig(['./results/Cholesky/Residuals ACF - ' model_vec{i} '.fig']); 

 

%% COMPUTE IR and VD 

%========================================================================= 
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% Set some options for IRF calculation 

VARopt.nsteps = 24; 

VARopt.ident = 'short'; 

VARopt.vnames = vnames; 

VARopt.FigSize = [26,12]; 

VARopt.pctg  = 68;      % confidence level for bootstrap 

% Compute IRF 

[IRF, VAR] = VARir(VAR,VARopt); 

% Compute error bands 

[IRinf,IRsup,IRmed,IRbar] = VARirband(VAR,VARopt); 

% Plot 

VARirplot(IRbar,VARopt,IRinf,IRsup); 

 

% Compute VD 

[VD, VAR] = VARvd(VAR,VARopt); 

% Compute VD error bands 

[VDinf,VDsup,VDmed,VDbar] = VARvdband(VAR,VARopt); 

 

% Retrieve Forecast Error Variance Decomposition on an excel file 

FEVD_Table(1, :) = VD(1:24,5,1); 

FEVD_Table(2, :) = VD(1:24,5,2); 

FEVD_Table(3, :) = VD(1:24,5,3); 

FEVD_Table(4, :) = VD(1:24,5,4); 

FEVD_Table(5, :) = VD(1:24,5,5); 

 

filename = 'FEVD_thesis.xlsx'; 

writematrix(FEVD_Table,filename,'Sheet', [model_vec{i}]); 

 

%% SAVE RESULTS 

%========================================================================= 

model_vec_1=strcat('./results/Cholesky/',model_vec{i},'_Chol.mat'); 

model_vec_2=strcat('./results/Cholesky/',model_vec{i},'_Chol_results.mat')

; 

save(model_vec_1,"IRbar","IRmed","IRsup","IRinf","VDbar","VDmed","VDsup","

VDinf"); %to save only the IRFs and FEVDs 

save(model_vec_2) % save all 

end 
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%========================================================================= 

%% PFA SPECIFICATIONS: ESTIMATION, IRFS AND FEVDS 

%This is a modified version of the code elaborated by Caldara et al.(2016) 

to estimate the SVAR models applying the PFA 

%========================================================================= 

%---------------------- 

%% Maximization of Marginal Density functions for Minnesota prior 

%---------------------- 

 

MAIN_MAX_MDD_1 

 

%---------------------- 

%% Housekeeping     

%---------------------- 

 

clear all;   

clc;  

close all; 

 

 

addpath(genpath('./thesis_codes/EER-D-16-00143_replication_files/EER-D-16-

00143_replication_files/results')) 

addpath(genpath('./thesis_codes/EER-D-16-00143_replication_files/EER-D-16-

00143_replication_files/auxfiles')) 

addpath(genpath('./v3dot0')) 

 

%---------------------- 

%% Specify Settings 

%---------------------- 

 

for minn_prior= 0:1 % Minnesota Prior (0= natural conjugate gaussian inverse-

wishart prior) 

model_vec       = {'GPR','GFU','GEPU'}; % Select models to be estimated (see 

model_spec_1.m) 

 

p   = 6;          % Number of lags 
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T0  = 24;         % Pre-sample for Minnesota Prior 

nex = 1;          % Deterministic terms (1: constant)    

 

nd    = 1000;    % Number of draws in MC chain 

bburn = 0.2*nd;   % Burn-in, i.e. the number of draws from MC chain that we 

discard intentionally starting from the first draw. This should ensure more 

accurate estimates from MC 

 

Horizon = 23;     % Horizon for impulse responses and forecast 

                  % error variance decomposition 

pctg=68;          %Confidence band for irf and fevd. 

pctg_inf = (100-pctg)/2;           %16 for pctg=68; 

pctg_sup = 100 - (100-pctg)/2;     %84 for pctg=68 

                   

 

ptileVEC  = [pctg_inf 50 pctg_sup]; % Percentiles of posterior distributions 

to be stored 

 

randn('state',294015341); % Seed for random number generator (create a square 

matrix 294015341 by 294015341 whose elements are numbers drawn randomly and 

independently from a normal distribution). 

                          % This works as pseudo casual number generator for 

Monte Carlo chain in the sense that it provides draws of numbers to seed the 

MC chain 

%---------------------- 

%% Load database 

%---------------------- 

 

data_file = 'Dati_tesi1'; 

 

newData1 = importdata(strcat(data_file,'.xlsx'),' '); 

 

% Create new variables in the base workspace from those fields. 

 

vars = fieldnames(newData1); 

for i = 1:length(vars) 

    assignin('base', vars{i}, newData1.(vars{i})); 
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end 

YYdata = data; 

 

clear data 

nDate = datenum(textdata(2:end,1)); 

 

for iii = 1:size(model_vec,2) 

    mmodel = model_vec(:,iii);     

    model_spec_1 

    n = size(i_var_str,2);  % Number of Endogenous variables 

     

    %------------------------------------------------- 

    %% Generate dummy observations for prior 

    %------------------------------------------------- 

 

    vm_dummy_1 

 

    %------------------------------------------------- 

    %% Generate settings for penalty function algorithm 

    %------------------------------------------------- 

 

    RR =zeros(nv); 

         RR(1,1) = 1; % Selection matrix of variables entering the penalty 

function (see uhligpenalty.m) 

         RR(2,2) = 1;    

         nper = 6;    % Include impulse responses from period 1 to nper in 

the PF 

         nshocks=2;   % Number of shocks to be identified 

 

    %--------------------------------------------------------------- 

    %%     DEFINITION OF DATA, LAG STRUCTURE AND POSTERIOR SIMULATION 

    %--------------------------------------------------------------- 

 

    if minn_prior ==0 

        X          = XXact; 

        Y          = YYact; 

        T          = nobs; 
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    elseif minn_prior ==1 

        X          = [XXact; XXdum]; 

        Y          = [YYact; YYdum]; 

        T          = nobs+Tdummy; 

    end 

 

    %-------------------------- 

    %% Estimation Preliminaries 

    %-------------------------- 

 

 

    % Define matrices to compute IRFs   

 

    J = [eye(n);repmat(zeros(n),p-1,1)]; 

    F = zeros(n*p,n*p);    % Matrix for Companion Form 

    I  = eye(n); 

    for i=1:p-1 

        F(i*n+1:(i+1)*n,(i-1)*n+1:i*n) = I; 

    end 

 

    % Compute OLS estimates 

 

    B = (X'*X)\(X'*Y); % Point estimates 

    U = Y-X*B;      % Residuals 

    Sigmau = U'*U/(T-p*n-1);   % Covariance matrix of residuals 

 

% white noise test for residuals. Display residuals of VAR model and the 

related SACFs for each time series. If they are not white noises, we have to 

% add lags 

init=sample_init_row+T0; 

if minn_prior==0 

ndate1=nDate; 

elseif minn_prior==1 

ndate2= (nDate(end)+1:30:nDate(end)+(Tdummy*30)); 

ndate1=[nDate;ndate2']; 

end 
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figure('Name','Residuals overview'); 

for i=1:5 

subplot(3,2,i);    

plot(ndate1(init:end,:),U(:,i)); 

title(i_var_str_names(i)); 

datetick('x', 'yyyy-mm'); 

end 

savefig(strcat('./results/Residuals 

Overview_',model_vec{iii},'_',num2str(minn_prior),'.fig'));  

 

figure('Name','Residuals ACF'); 

for i=1:5 

subplot(3,2,i);    

autocorr(U(:,i)); 

title(i_var_str_names(i)); 

end 

savefig(strcat('./results/Residuals 

ACF_',model_vec{iii},'_',num2str(minn_prior),'.fig')); 

 

    % Identification of shocks at OLS estimates 

    s = sqrt(diag(Sigmau)); 

    LC = chol(Sigmau)'; 

 

    % initialize Omega1 for calculation of impulse responses  

 

    Omega1 = [LC;zeros((p-1)*n,size(LC,2))]; 

    A0 = (LC')\eye(size(LC,1)); 

    F(1:n,1:n*p)    = B(1:n*p,:)'; 

    Fols = F; 

    eigen           = eig(F); 

    eigen           = max(eigen); 

    largeeig        = abs(eigen);   % Compute the largest eigenvalue 

 

    [mufactorOLS, fflag] = uhligpenalty(LC,Fols,s,RR,nper,nshocks); 

 

    %-------------------------- 
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    %% Bayesian Estimation 

    %-------------------------- 

    % Define objects that store the draws 

    nCalc=0; 

    i_transf=[]; 

 

    LtildeAdd   = zeros(nd-bburn,Horizon+1,n,nshocks); % Array that stores 

impulse responses  

    Ltilde      = zeros(nd-bburn,Horizon+1,n,nshocks);  % Array that stores 

impulse responses from model variables 

    W           = zeros(nd-bburn,Horizon+1,n,nshocks); % Array that stores 

forecast error variance decomposition 

 

    % Set preliminaries for priors 

    %The general formulae to retrieve the parameters that 

    %describe the posterior distribution for Sigma and B, that is supposed 

to be a normal-Wishart one, are provided. According to the 

    %hypotheses that they applied, the parameters are simply equal to: 

nnuT=T, NT=X'*X, BbarT=OLS 

    %estimate for B, ST= the OLS estimate for Sigma. 

    if minn_prior ==0 

        N0=zeros(size(X',1),size(X,2)); 

        nnu0=0; 

        nnuT = T +nnu0; 

        NT = N0 + X'*X;     

        Bbar0=B; 

        S0=Sigmau; 

        BbarT = NT\(N0*Bbar0 + (X'*X)*B); 

        ST = (nnu0/nnuT)*S0 + (T/nnuT)*Sigmau + (1/nnuT)*((B-

Bbar0)')*N0*(NT\eye(n*p+nex))*(X'*X)*(B-Bbar0); %This is equal to Sigmau, 

i.e. the OLS estimate for var cov matrix 

        STinv = ST\eye(n); %the inverse matrix of ST 

        m=size(B,1); 

        R=zeros(n,nnuT); 

    end 

 

%Here, we are starting the loop for Bayesian estimation based on MC Direct 
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%sampling. Record goes from 0 to 1000, the number of draws that we have set. 

    record=0;      

    counter = 0; 

 

    disp('                                                                  '); 

    disp('        BAYESIAN ESTIMATION OF VAR: DIRECT SAMPLING...            '); 

    disp('                                                                  '); 

 

    while record<nd 

 

        if minn_prior == 1 

            %Monte Carlo chain sampling starts, when supposing Minnesota 

prior 

            % Draws from the density Sigma | Y 

            Sigmadraw   = iwishrnd(Sigmau*(T-n*p-1),T-n*p-1);   

            % Draws from the density vec(Phi) |Sigma(j), Y 

            B_new = 

mvnrnd(reshape(B,n*(n*p+1),1),kron(Sigmadraw,inv(X'*X)));  

            % Rearrange vec(Phi) into Phi 

            Bdraw     = reshape(B_new,n*p+1,n); 

 

        elseif minn_prior == 0 

 

            %Monte Carlo chain sampling starts, when supposing Conjugate 

Gaussian Inverse Wishart prior 

            % Step 1: Draw from the marginal posterior for Sigmau 

p(Sigmau|Y,X) 

            R=mvnrnd(zeros(n,1),STinv/nnuT,nnuT)'; 

            %   It returns a N-by-D matrix R of random vectors 

            %   chosen from the multivariate normal distribution with 1-by-

D mean 

            %   vector MU, and D-by-D covariance matrix SIGMA. This is the 

            %   first draw for R, that is the matrix used to retrieve a draw 

for Sigma from its posterior. 

            Sigmadraw=(R*R')\eye(n); %this is the inverse of squared R and 

a draw for the var cov matrix from its posterior. 
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            % Step 2: Taking newSigma as given draw for B using a 

multivariate normal     

            bbeta = B(:); %reshape B as column vector 

            SigmaB = kron(Sigmadraw,NT\eye(n*p+nex)); %we are making the 

kronocker product, i.e. we are multiplyng each element of the inverse of 

squared R by the matrix NT\eye(n*p+nex) 

            SigmaB = (SigmaB+SigmaB')/2;  

            Bdraw = mvnrnd(bbeta,SigmaB); %draw B from its posterior, that 

we assume to follow a mvrnd with mean equal to sample OLS estimates of 

coefficients and variance-coviariance matrix  

            %equal to SigmaB 

            Bdraw     = reshape(Bdraw,n*p+1,n); 

          

        end 

 

        Bdraw= reshape(Bdraw,n*p+nex,n); % Reshape Bdraw from vector to 

matrix 

        LC =chol(Sigmadraw,'lower'); 

        F(1:n,1:n*p)    = Bdraw(1:n*p,:)';     

 

        record=record+1; %in such a way, the procedure of sampling restarts 

for each posterior parameter 

        counter = counter +1; 

 

        if counter==0.05*nd 

            disp(['         DRAW NUMBER:   ', num2str(record)]); 

            disp('                                                                  '); 

            disp(['     REMAINING DRAWS:   ', num2str(nd-record)]); 

            disp('                                                                  '); 

            counter = 0; 

        end 

 

        if record > bburn  %when we have drawn a number of observations 

higher than bburn, i.e.200, we can use each draw to compute IRFs and FEVDs 

            s = sqrt(diag(Sigmadraw)); 

            [mufactor, fflag] = uhligpenalty(LC,F,s,RR,nper,nshocks); 
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            Utildedraw = YYact-XXact*Bdraw; 

 

            IRF_T = vm_irf(F,J,mufactor,Horizon+1,n,Omega1); 

            IRF_T = IRF_T(:,:,1:nshocks); 

 

            Ltilde(record-bburn,:,:,:) = IRF_T; 

 

            if fflagFEVD ==1 

                W(record-

bburn,:,:,:)=variancedecompositionFD(F,J,Sigmadraw,mufactor(:,1:nshocks),n

,Horizon,i_transf); 

            end     

        end 

 

    end  

 

    LtildeAdd(:,:,1:n,:) = Ltilde; 

    LtildeFull = prctile(LtildeAdd(bburn+1:end,: ,:,:),ptileVEC); 

    VAR.LtildeFull = permute(LtildeFull,[3,2,1,4]); 

 

    WhFull = prctile(W(bburn+1:end,:,:,:),ptileVEC); 

    VAR.WhFull = permute(WhFull,[3 2 1 4]); 

 

    VAR.i_var_str_names = i_var_str_names; 

     

    %% Plot IRFs and store FEVDs into an excel file 

    IRF_plots 

 

%save FEVD and IRF for each model and prior in different mat files 

        

save(strcat('./results/PFAspec_',char(mmodel),'Iden_1_PF',num2str(nper),'.

mat'),'VAR'); 

end 

end 

 

%========================================================================= 

%% IRFS AND FEVDS OF UNCERTAINTY SHOCKS  
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%It is the MATLAB file IRF_plots.m 

%========================================================================= 

 

%% PRELIMINARIES 

%========================================================================= 

h=size(VAR.LtildeFull,2); 

% Define a timeline 

steps = 1:1:h; 

x_axis = zeros(1,h); 

LtildeFull1=VAR.LtildeFull([5 4 3 2 1],:,:,:); %reorder rows of matrix of 

IRF in a way that the order of variables will be the same as that of the 

Cholesky specification 

i_var_str_names1=VAR.i_var_str_names(:,[5 4 3 2 1]); %reorder variables' 

names in a way that the order will be the same as that of the Cholesky 

specification 

 

%% IRFs to uncertainty shocks 

%========================================================================= 

figure; 

FigSize(26,12) 

SwatheOpt = PlotSwatheOption; 

SwatheOpt.marker = '*'; 

SwatheOpt.trans = 1; 

if minn_prior==1 

SwatheOpt.swathecol= 'yellow'; 

else 

SwatheOpt.swathecol= 'green'; 

end 

for i=1:size(LtildeFull1,1) 

    subplot(2,3,i); 

    plot(steps,LtildeFull1(i,:,2,1),'LineStyle','-

','Color','k','LineWidth',2,'Marker',SwatheOpt.marker); hold on 

    PlotSwathe(LtildeFull1(i,:,2,1),[LtildeFull1(i,:,1,1); 

LtildeFull1(i,:,3,1)],SwatheOpt); hold on; 

    plot(x_axis,'--k','LineWidth',0.5); hold on 

    xlim([1 h]); 
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    title([i_var_str_names1{i} ' to ' model_vec{iii}], 

'FontWeight','bold','FontSize',10);  

    set(gca, 'Layer', 'top'); 

    savefig(['./results/IRF to a ' model_vec{iii} ' shock_' 

num2str(minn_prior)]); 

end 

 

%% FEVDs of uncertainty shocks 

%========================================================================= 

WhFull1=VAR.WhFull([5 4 3 2 1],:,:,:); %reorder rows of matrix of FEVD in a 

way that the order of variables will be the same as that of the Cholesky 

specification 

%display FEVDs in a table 

FEVD_Table = WhFull1(:,:,2,1); 

disp(' ') 

disp(['Percentage Variance due to a ' model_vec{iii} ' shock (t= from 0 to 

23)']) 

disp('---------------------------------------------------') 

filename = 'FEVD_thesis.xlsx'; 

%store FEVDs into a specific excel file 

writematrix(FEVD_Table,filename,'Sheet',strcat('PFA_',num2str(minn_prior),

'_',model_vec{iii})); 

 

%save IRFs and FEVDs 

if minn_prior==1 

   result_str={'Minn'}; 

else 

   result_str={'Conj'}; 

end 

result_name=strcat('./results/',model_vec{iii},'_',result_str,'.mat'); 

save(char(result_name),"LtildeFull1","WhFull1"); 

 

 

%========================================================================= 

%% IRFS AND FEVDS OF GFC: AN OVERVIEW 

%========================================================================= 

%% PRELIMINARIES 
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%========================================================================= 

clear all; clear session; close all; clc 

warning off all 

 

addpath(genpath('./EER-D-16-00143_replication_files/EER-D-16-

00143_replication_files/results')) 

addpath(genpath('./EER-D-16-00143_replication_files/EER-D-16-

00143_replication_files/auxfiles')) 

addpath(genpath('./v3dot0')) 

 

variable_vec={'GEPU','GEPU','GEPU','GFU','GFU','GFU','GPR','GPR','GPR'}; 

spec_vec={'Chol','PFA - Min','PFA - Conj','Chol','PFA - Min','PFA - 

Conj','Chol','PFA - Min','PFA - Conj'};  

 

h=24; 

% Define a timeline 

steps = 1:1:h; 

x_axis = zeros(1,h); 

 

%% IRFs TO UNCERTAINTY SHOCKS 

%========================================================================= 

figure; 

FigSize(26,12) 

for i=1:9 

if i==1 

load ./results/Cholesky/GEPU_Chol.mat 

elseif i==2 

load ./results/GEPU_Minn.mat 

elseif i==3 

load ./results/GEPU_Conj.mat 

elseif i==4 

load ./results/Cholesky/GFU_Chol.mat 

elseif i==5 

load ./results/GFU_Minn.mat 

elseif i==6 

load ./results/GFU_Conj.mat     

elseif i==7 
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load ./results/Cholesky/GPR_Chol.mat 

elseif i==8 

load ./results/GPR_Minn.mat 

else 

load ./results/GPR_Conj.mat 

end 

spec_vec_1= spec_vec(:,i); 

SwatheOpt = PlotSwatheOption; 

SwatheOpt.trans = 1; 

if strcmp(spec_vec_1,'PFA - Min') 

    SwatheOpt.swathecol= 'yellow'; 

elseif strcmp(spec_vec_1,'PFA - Conj') 

    SwatheOpt.swathecol= 'green'; 

end 

if strcmp(spec_vec_1,'Chol') 

    subplot(3,3,i); 

    plot(steps,IRbar(:,4,5),'LineStyle','-

','Color','k','LineWidth',2,'Marker',SwatheOpt.marker); hold on 

    PlotSwathe(IRbar(:,4,5),[IRinf(:,4,5) IRsup(:,4,5)],SwatheOpt); hold 

on; 

    plot(x_axis,'--k','LineWidth',0.5); hold on 

    xlim([1 h]); 

    xlabel(spec_vec_1,'FontWeight','bold','FontSize',10); 

    title(['GFC to ' variable_vec{i}], 'FontWeight','bold','FontSize',10);  

    set(gca, 'Layer', 'top'); 

 else 

    subplot(3,3,i); 

    plot(steps,LtildeFull1(4,:,2,1),'LineStyle','-

','Color','k','LineWidth',2,'Marker',SwatheOpt.marker); hold on 

    PlotSwathe(LtildeFull1(4,:,2,1),[LtildeFull1(4,:,1,1); 

LtildeFull1(4,:,3,1)],SwatheOpt); hold on; 

    plot(x_axis,'--k','LineWidth',0.5); hold on 

    xlim([1 h]); 

    xlabel(spec_vec_1,'FontWeight','bold','FontSize',10); 

    title(['GFC to ' variable_vec{i}], 'FontWeight','bold','FontSize',10);  

    set(gca, 'Layer', 'top'); 

end 
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end 

savefig("IRF of GFC to uncertainty shocks"); 

hold off 

 

%% FEVDs of uncertainty shocks with respect to GFC 

%========================================================================= 

figure; 

FigSize(26,12) 

for i=1:9 

if i==1 

load ./results/Cholesky/GEPU_Chol.mat 

elseif i==2 

load ./results/GEPU_Minn.mat 

elseif i==3 

load ./results/GEPU_Conj.mat 

elseif i==4 

load ./results/Cholesky/GFU_Chol.mat 

elseif i==5 

load ./results/GFU_Minn.mat 

elseif i==6 

load ./results/GFU_Conj.mat     

elseif i==7 

load ./results/Cholesky/GPR_Chol.mat 

elseif i==8 

load ./results/GPR_Minn.mat 

else 

load ./results/GPR_Conj.mat 

end 

spec_vec_1= spec_vec(:,i); 

SwatheOpt = PlotSwatheOption; 

SwatheOpt.trans = 1; 

if strcmp(spec_vec_1,'PFA - Min') 

    SwatheOpt.swathecol= 'yellow'; 

    WhFull1=WhFull1*100; 

elseif strcmp(spec_vec_1,'PFA - Conj') 

    SwatheOpt.swathecol= 'green'; 

    WhFull1=WhFull1*100; 
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end 

if strcmp(spec_vec_1,'Chol') 

    subplot(3,3,i); 

    plot(steps,VDbar(:,5,4),'LineStyle','-

','Color','k','LineWidth',2,'Marker',SwatheOpt.marker); hold on 

    PlotSwathe(VDbar(:,5,4),[VDinf(:,5,4) VDsup(:,5,4)],SwatheOpt); hold 

on; 

    plot(x_axis,'--k','LineWidth',0.5); hold on 

    xlim([1 h]); 

    ylim([0 80]); 

    xlabel(spec_vec_1,'FontWeight','bold','FontSize',10); 

    title(['GFC to ' variable_vec{i}], 'FontWeight','bold','FontSize',10);  

    set(gca, 'Layer', 'top'); 

 else 

    subplot(3,3,i); 

    plot(steps,WhFull1(4,:,2,1),'LineStyle','-

','Color','k','LineWidth',2,'Marker',SwatheOpt.marker); hold on 

    PlotSwathe(WhFull1(4,:,2,1),[WhFull1(4,:,1,1); 

WhFull1(4,:,3,1)],SwatheOpt); hold on; 

    plot(x_axis,'--k','LineWidth',0.5); hold on 

    ylim([0 80]); 

    xlim([1 h]); 

    xlabel(spec_vec_1,'FontWeight','bold','FontSize',10); 

    title(['GFC to ' variable_vec{i}], 'FontWeight','bold','FontSize',10);  

    set(gca, 'Layer', 'top'); 

end 

end 

savefig("FEVD of GFC to uncertainty shocks"); 

 

 

 


