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Abstract

The focus of this project is to address the problem of Temporal Action Seg-
mentation (TAS), which consist in temporally segment and classify fine-grained
actions in untrimmed videos. The enhancement of this procedure represents
a significant albeit intricate challenge. Some of the main challenges for this
problem are that different actions can occur with different speed or duration,
also some of them can be ambiguous and overlap. Successfully addressing this
challenge can yield substantial advancements in various domains of work, in-
cluding robotics, medical support technologies, surveillance and many more.

Currently, the best performing state-of-the-art methods are fully-supervised.
Consequently, they require huge annotation cost, are not scalable and not sui-
ted for applications where data collection is costly. To alleviate this problem,
we propose a self-supervised transformer-based method for action segmenta-
tion, that does not require action labels, and demonstrate the effectiveness
of the learned weights in a weakly-supervised setting. Precisely we built a
Siamese architecture based on an improvement version of an already existing
Transformer architecture. To validate our approach, we performed an ablation
study and compared our results with the state-of-the-art to draw some con-
clusion.

All the work is done using Pythorch as deep learning framework. The reason
for this choice are multiple like array-based programming, automatic differen-
tiation to automate the calculation of derivatives, open source ecosystem, and
of strong library as ’torchvision’ and ’torch’.
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Capitolo 1

Introduction

The realm of artificial intelligence is an expanding domain that has captured
the interest of numerous scholars and innovators due to its remarkable poten-
tials. These capabilities have been enhanced by the increase in computational
power and the abundance of available data.

Presently, computer vision stands out as a potent and captivating category
of AI that finds utility in a broad spectrum of scenarios. Instances such as
autonomous vehicles or the identification of cancer exhibit noteworthy and
valuable applications of computer vision. Within this sphere lies a collection
of relatively well-defined tasks pertaining to computer vision, encompassing
techniques to process and comprehend digital images, generating meaningful
insights. One of these tasks includes temporal action segmentation.

Figura 1.1: Example of Temporal Action Segmentation problem.

1.1 Temporal Action Segmentation

Temporal Action Segmentation (TAS) is a problem in the field of computer
vision and video analysis. In essence the challenge of Temporal Action Segmen-
tation revolves around automatically dividing a video into action segments each
having precisely determined temporal boundaries. Finding a solution to this
issue has implications, for video comprehension, content retrieval and various
applications that heavily rely on accurate temporal action information. Some
real-life scenario where these methods can be implemented are surveillance
cameras[1], action recognition[2] and human computer interaction[3].
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To formally define the Temporal Action Segmentation problem we consider
an input video sequence V consisting of T frames. The objective is to detect
and locate instances of actions within the video. Each action instance has its
starting and ending timestamps indicating its temporal extent. The segmen-
tation process entails dividing the video into overlapping segments with each
segment representing a coherent action. It is crucial to determine the tempo-
ral boundaries of these segments in order to provide an accurate description
of when each action occurs.

Addressing the Temporal Action Segmentation problem requires solving
several challenges, including:

Action Variation: Actions can vary in terms of their appearance, speed,
duration and context. Effective segmentation methods should consider these
variations. Be able to apply across different instances of the same action.

Temporal Localization: Accurately determining the boundaries of ac-
tions is crucial for action segmentation. This involves identifying the frame or
timestamp where an action starts and ends.

Overlapping Actions: Videos often feature actions happening at the
same time or one after another causing segments to overlap. It is important
to handle cases properly in order to achieve accurate segmentation.

Scalability: Real world videos can have lengths so a segmentation algori-
thm should be able to handle both short and long videos effectively.

Data Annotation: Creating training data for Temporal Action Segmen-
tation usually involves annotating boundaries and assigning action labels for
each segment. This process is time consuming. Requires expertise in the
domain.

Researchers have tackled these challenges by employing techniques such as
deep learning architectures, temporal modeling, motion analysis and attention
mechanisms. Methods like convolutional networks (TCNs)[4] recurrent neural
networks (RNNs)[5][6] and Transformers[7][8] have been utilized to capture
temporal dependencies and patterns, in videos. Furthermore the evaluation
and comparison of approaches, in terms of accuracy and efficiency rely on ben-
chmark datasets. As the task needs a frame-wise classification, the models
need to classify all the frames within a video and so the final prediction will be
performed on the original temporal resolution. For this case are used mainly
two approaches; the first is the use of an encoder-decoder model, while the
second is the use of an architecture that can process a video maintaining its
length unchanged. Both methods have some advantages and some drawbacks.
The first one helps decreasing oversegmentation errors but the reduction of the
temporal length, inside the encoder, can lead to loss of relevant information,
which could compromise in the final prediction. The second one is commonly
based on dilated convolutions, this models can acquire large receptive fields
without increasing the number of parameters, neither shrinking the video’s
temporal length. All these methods will be discuss better later, on the Rela-
ted works chapter.
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1.2 Objectives

The goal of this project is to build a new model to perform Temporal Action
Segmentation by minimizing the amount of labeled data required for this task.
Specifically, the aim is to learn in an weakly-supervised fashion a representa-
tion space where we could use a simple clustering algorithms, like K-means, to
classify each frame correctly. Moreover we wanted to test whether the Tran-
sformer architecture is a competitive model for solving the TAS problem.

1.3 Summary of work done

After a deep review of the actual state-of-the-art methods for Temporal Action
Segmentation, we identified transformer-based approaches as the most efficient
ones, and proposed a self-supervised transformer-based method to address the
problem in an weakly-supervised fashion.

We did not only deeply analyze the state-of-the-art models, but we also
dedicated some work to better understand the dataset used for this type of
problem.

After this first part of studying the problem, we started building our so-
lution, for the case of the weakly-supervised scenario. Initially we improved
an already existing architecture[7], and then we used it as a backbone of our
model. Then, to solve Temporal Action Segmentation problem, we built a
Siamese architecture which scope is to distinguish between video of the same
activities. The new features representation found by the Siamese architecture
play a key role to solve this problem.

Moreover, to make our architecture work properly, we also applied curricu-
lum learning, a way to make the training of the network more efficient[9][10].

Finally, we validated the architecture through an ablation study, optimized
performance through hyper-parameter tuning and made a comparison to the
actual state-of-the-art.
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Capitolo 2

Background

This chapter introduces the history and the technical background of the mo-
dern deep learning algorithms with a focus on the Transformer architecture, a
key model for this work.

2.1 Artificial Neural Network

Artificial neural networks (ANNs), sometimes abbreviated as neural networks
(NNs) or neural nets, represent a subset of machine learning models that are
built using principles of neuronal organization, discovered by connectionism
in the biological neural networks constituting animal brains. The approach
within this methodology involves grouping multiple artificial neurons (also
referred to as perceptrons or nodes) to generate a final predictive outcome.
Neural Networks aim to find abstract relationships within data, for classifica-
tion purposes. To achieve this, each neuron learns a specific set of parameters
(weights) to aggregate signals from neurons in the preceding layer, ultimately
yielding a response. To generate predictions, networks incorporate a final li-
near layer that transforms the accumulated features into a distribution of class
scores.

2.1.1 Perceptron

The perceptron was introduced by American psychologist and computer scien-
tist Frank Rosenblatt in the late 1950s. It was inspired by the biological neuron
and its simplified mathematical model. Rosenblatt aimed to develop a com-
putational model that could mimic certain aspects of human brain function,
such as pattern recognition and decision-making.

In 1958, Rosenblatt published a paper titled ”The Perceptron: A Proba-
bilistic Model for Information Storage and Organization in the Brain”[11]. In
this paper, he described the basic structure of the perceptron and its learning
algorithm. The perceptron is a very simple algorithm consists of the following
components: inputs, weights, summation function and activation function.
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Figura 2.1: Perceptron architecture.

While the perceptron showed promise in solving simple classification tasks,
it was limited to linearly separable problems. This limitation led to initial
skepticism about the perceptron’s capabilities and to a decline of interest in the
1960s after a research by Marvin Minsky and Seymour Papert[12] highlighted
the its limitations and its inability to solve certain non-linear problems.

It wasn’t until later advancements in neural network research, with the de-
velopment of multi-layer networks (multi-layer perceptrons or MLPs) and more
sophisticated activation functions, that neural networks regained attention and
became the powerful machine learning models we know today[13][14].

To conclude, the perceptron is a foundational concept in neural network
history, representing an early attempt to model artificial neurons and their
learning capabilities.

2.2 Transformer

Nowadays there are a lot of powerful machine learning algorithms able to solve
complex task, among these there is also the Transformer architecture, which
is the core architecture used in this work.

The Transformer architecture is a groundbreaking deep learning model
that revolutionized the field of natural language processing (NLP) and other
sequence-to-sequence tasks. It was introduced in the paper ”Attention Is All
You Need” by Vaswani et al. [15] in 2017 and has since become the foundation
for many state-of-the-art models in NLP.

Before the Transformer, recurrent neural networks and their variants, such
as long short-term memory networks, were commonly used for sequence tasks
like machine translation, text generation, and speech recognition. However,
RNNs have limitations in parallelism and struggle to capture long-range de-
pendencies in sequences. The Transformer architecture emerged as a solution
to these challenges by introducing a novel approach to handling sequences th-
rough the use of self-attention mechanisms.
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Figura 2.2: Original Transformer model architecture.

The main components of the Transformer Architecture, as we can see also
from Figure 2.2, are:

• Self-Attention Mechanism: The core innovation of the Transformer
is the self-attention mechanism, which allows the model to weigh the
importance of different ”words” in a sequence relative to each other.
This enables the model to consider the context of each word in relation
to all other words in the sequence, capturing long-range dependencies
effectively. The formula for the self-attention, that in the main paper[15]
is called ”Scaled Dot-Product Attention”, is the following:

Attention(Q,K, V ) = softmax(QKT
√
dk

) · V

Here Q, K, V stand for Query, Key, Value and they are linear projec-
tions of the input embeddings. Briefly, queries represent the positions
for which we want to compute attention weights, keys help in determi-
ning how well a query aligns with different positions in the input and
finally values contain information that will be combined according to
the attention weights computed from the queries and keys.

• Multi-Head Attention: The Transformer employs multi-head atten-
tion, where the self-attention mechanism is applied multiple times with
different learned weights. This allows the model to focus on different
aspects of the input data in parallel, enhancing its ability to learn com-
plex relationships.

• Positional Encoding: Since the Transformer does not have a built-in
notion of sequence order (unlike RNNs), positional encoding is added to
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the input embedding to provide the model with information about the
position of each token in the sequence. The positional encoding have
the same dimension dmodel as the embedding, so that the two can be
summed. There are many choices of positional encoding, in the original
paper[15] is used a positional encoding based on sine and cosine functions
of different frequencies:

−→p
(i)
t = f(t)(i) =

{

sin(ωk · t) : if i = 2k
cos(ωk · t) : if i = 2k + 1

where

ωk =
1

100002k/d

• Encoder-Decoder Architecture: The Transformer’s original design
includes both an encoder and a decoder. The encoder processes the
input sequence, while the decoder generates the output sequence. This
architecture is widely used for sequence-to-sequence tasks like machine
translation.

• Residual Connections and Layer Normalization: The Transformer
uses residual connections (skip connections) and layer normalization to
stabilize and accelerate training. These techniques help alleviate the
vanishing gradient problem and improve the flow of gradients during
training.

• Feed-forward Neural Networks: Each layer of the Transformer con-
tains feed-forward neural networks that operate independently on each
position in the sequence. These networks contribute to the model’s
ability to capture complex patterns in the data.
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Capitolo 3

Related work

There has been plenty of work done in the area of action segmentation for
untrimmed videos. Most of them are based on a fully supervised scenario,
which relies on a complete frame annotations, or weakly supervised approaches
that use some form of metadata. However, to counter the dependence on
annotated data, interest in unsupervised approaches has grown. All these
approach and the most important state-of-the-art methodologies in this field
are reported in the paper: ”Temporal Action Segmentation: An Analysis of
Modern Techniques”[16]. Here we will report only most efficient methods for
each approach.

3.1 Fully-Supervised approaches

In a fully-supervised context, comprehensive action labels are assigned to each
frame within training video sequences. The process of collecting these dense
labels is the most time-consuming, requiring annotators to review all videos for
their entirety. Alternatively, in a semi-supervised scenario, annotation effort
is reduced by densely annotating only a subset of videos, while treating the
remaining ones as unlabeled samples. In this context the main approaches are
Temporal Convolutional Networks (TCNs), Improving Existing Architectures
and the use of the Transformer architecture.

For what concern TCNs the idea behind these methods is to capture tem-
poral patterns through a series of hierarchical convolutional layers. Lea et al.
[17] implemented an encoder-decoder architecture with 1D temporal convo-
lutional and deconvolutional kernels in order to capture long-range temporal
patterns. Moreover they prove that TCN-based solutions are fast compared
to other methods. The reasons because this method is fast is that, even if
Lea et al. said that they work on a fullresolution, they applied strong down-
sampling to the frames of the videos to speed-up the process, but this type
of preprocessing may cause the loss of important details. To overcome this
issue Yazan Abu Farha and Juergen Gall[4] used a multi-stage architecture
(MS-TCN) maintaining the temporal resolutions and expands the receptive
field with progressively larger dilated convolutions. This strategy for sure in-
crease the computational cost, but it allows to preserve better the temporal
information especially the boundary information between actions. This two
approaches are shown in Figure 3.2.
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Figura 3.1: Temporal Convolutional Networks (TCN) for temporal action seg-
mentation.

Other fully-supervised approaches, but much less explored and used, are
the ones based on Transformer architecture. In this category there are two
main works: UVAST[8] and ASFormer[7]. The reason Transformer architec-
ture are implemented for Temporal Action Segmentation is due to attention
mechanism. In fact thanks to the encoder, the transformer can attends frames
within the inputs, which is often referred as self-attention (SA). Moreover the
ability of the Transformer is confirmed by X. Wang et al.[18] where it compares
the ability of his network to find non-local relationship (that is nothing more
than temporal information) to the self-attention mechanism inside the Tran-
sformers. Transformers are experiencing a gradual acceptance in the context
of TAS; however, their application remains constrained. The main reason for
that is that transformers lack inductive biases, necessitating huge datasets (col-
lection of videos) for optimal training. Furthermore, another problem found
by [19] is that the self-attention mechanism could struggle to assign significant
weights across extensive input ranges. F. Yi et al.[7] try to solve these problem
with their ASFormer architecture. For this reason their architecture is very
important for this project, and will be resumed later, in fact part of our work
is to transform this model into an weakly-supervised method at activity level.
Finally the last fully-supervised approaches are the ones which tries to im-
prove the already existing architectures. The main work done in this case is
Fast Inference Approximation for Action (FIFA) by Y. Souri et al.[20]. They
were able to improve the results of most of the works mentioned above (MS-
TCN, UVAST and ASFormer), in some cases they improved the accuracy up
to 4%. But the most important features is that their methods is able to im-
prove the speed of the previous ones, in some cases by more than 5 times while
maintaining similar performance. The main core of their work is to defines
a differentiable energy function to approximate the probabilities of possible
segment alignments, instead of using the Viterbi algorithm that is much more
computational demanding.

3.2 Weakly-Supervised approaches

Comparatively, weak labels necessitate less annotation effort compared to den-
se video labels. The weak labels encompass various forms, such as lists of
actions or action sets for individual frames, as well as activity labels. Single-
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frame annotations, also referred to as time-stamp annotations, are sparsely
labeled frames, essentially presenting an ordered list of actions associated with
representative frames. The objective of weakly supervised techniques is to
avoid intensive frame-level supervision. A. Yao et al.[16] divide this approa-
ches in five main categories. Here, is briefly described each one of them, for
further information consult the original paper.

• Transcripts of ordered list of actions:
Transcript-based supervision involves only the actions occurring in a vi-
deo along with their sequential arrangement. This method substantially
cuts down the expenses associated with labeling videos, as it eliminates
the need for annotating each frame individually. These approaches are
divided into two overarching categories: iterative two-stage methods[21]
and single-stage[22] solutions.

• Action Set:
An action set entails a grouping of action labels provided for training
purposes, without including information about their specific timing, se-
quence, or occurrence frequency. This form of labeling can resemble
meta-tags attached to videos on platforms for sharing video content,
such as video-sharing platforms. There are many works in this category
like the one of A. Richard et al. [23], J. Li et al[24] and M. Fayyaz et al.
[25]

• Single-Frame Supervision:
In this case, instead of labelling all the frame of the videos, is labelled
only one single frame for each action inside the video. There is not a
specific strategy to choose the frame for each action, could it be done
casually. But this will reduce a lot the effort of annotating each videos.
Here the most important work of this scenario are the ones of Z. Li et
al. [26] and A. Richard et al. [23]

• Narrations & Subtitles:
This category refers to all methods which use textual data within the
videos. In this case text data could be subtitles or some text which is
describing the actions or the frame in the video. The main drawbacks of
this category is that the methods assume that all the video and the text
are correctly temporally aligned and, moreover, they need that all input
videos have their owns text, not always the case. Nevertheless there are
multiple works in this category such as the one of Sener et al.[27] and
Fried et al. [28]

• Activity Supervision:
The models inside this category assumes that the activity of which each
video is part of is a given information. Despite being considering to be
weakly supervised, these methods uses the same amount of information
as the majority of unsupervised works. Also the work done during this
project can been considered of this category.
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3.3 Unsupervised approaches

Regarding the unsupervised setup, it revolves around collections of videos that
showcase identical activities. However, it isn’t entirely label-free, as it hinges
on the presence of activity labels to assemble these video collections. There-
fore, the unsupervised setup aligns with weak activity label guidance in terms
of label information, yet these two setups diverge in the treatment of video
collections during training. To elaborate, unsupervised approaches focus on
one group of videos with the same activity at a time, whereas activity label
supervision operates concurrently across videos from all activities. The un-
supervised approach is the most difficult since it assumes that the videos are
completely label-free, even if almost all of them are considering each activi-
ty per time, but is the the most useful since in real-life scenario most of the
videos are unlabeled. Is worthy to mention that in this case no one used a
Transformer architecture or at least no one was able to get competitive results
with it.
Since these methods uses unlabeled data is needed to use the Hungarian mat-
ching to get the metrics like accuracy. This is a bit absurd because Hungarian
matching needed the ground truth of the frame, but is one of the few solutions
to compare different models. Also in this case there are a lot of works done,
but most of them works at video levels[29] [30] [31] [32] , few of them at acti-
vity level [33] [34] (the scope of this work) and none of them at global level.
The problem of working at global level in this scenario is that, if you classify
a video in a wrong activity, is very likely to classify all the frames inside the
video wrongly. The only way to classify them correctly is that the misclassify
activity and the right activity share some common actions between them.
One of the first work done on unsupervised scenario is the one of Sener and
Yao[35]. They proposed a general Mallow Model(gMM) to model the sequen-
tial structures of actions, the drawbacks is that the gMM cannot depict re-
peated actions since the ordering of actions is considered as a permutable
sequence of steps. To improve the performance and especially the flexibility of
the model, A. Kukleva et al.[36]; proposed a method that first learn continuous
frame-wise temporal representation and afterwards each frame is clustered and
finally the video order is found using the Viterbi algorithm.

Figura 3.2: Proposed architecture by Kukleva et al.

The final method that is worth to cite in the unsupervised case is the one
of M. Saquib Sarfraz et al.[32]. They proposed a model called Temporally-
Weighted Hierarchical Clustering (TW-FINCH), the advantage of this model
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is that it doesn’t require any training phase since it is directly applied to the
precomputed features to find out the action boundaries. To work it applies
temporally weighted hierarchical clustering to group together similar video
frames. This method seems to outperform the previous ones, the only problem
is that it work only at video level and it can not be extend to activity level,
our focus for this project.
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Capitolo 4

Methodology

In this chapter, we describe our contribution and the methodology used to
build our proposed self-supervised approach. First, we describe a transformer-
based architecture that we improved and used as building block to build a
Siamese architecture that we used in a self-supervised fashion to learn action
representations. We describe in details the structure of our architecture and
how it works. Finally, we detail how we implemented curriculum learning to
train the network in a efficient mode.

4.1 AS Former: problems and improvements

The first part of this work is to verify and see if it is possible and useful to
implement a Transformer architecture for Temporal Action Segmentation in
a weakly-supervised scenario. To do so we did not start from scratch but we
started from an already existing architecture: the AS Former of F. Yi et al.[7].

The ASFormer utilizes an encoder-decoder structured Transformer. Given
the pre-computed features of the video, the encoder will first predict the action
probability of each frames. After that the output of the encoder is passed
thought different decoders which scope is to refine the action prediction and
improve the results. The original architecture can be seen in Fig. 4.1.

Figura 4.1: Original Transformer architecture proposed by F. Yi et al.

The main part of this architecture, as for every Transformer, are the en-
coder and the decoder. Here is briefly described their implementation since it
will be used for this work.
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Encoder

The input of the encoder are the pre-computed feature and they are passed in
a fully connected layer, in order to adjust the dimension of the input feature.
After this layer a series of encoder blocks are concatenated. Finally, a fully
connected layer will compute the first output predictions that will be given
to the decoder as input. The main difference in the encoder block, respect to
the vanilla Transformer, is the use of a dilated temporal convolution instead
of point-wise fully connected layer. This is due to give more importance to the
temporal relationship between features, in fact every action occupies continued
timestamps in the input video.

Decoder

The decoder here is used to refine the output of the encoder. The idea is to
use the cross-attention to encode better the temporal relations among multiple
action segments. The cross-attention mechanism allows every position in the
decoder to attend over all positions in the refinement process by generating
the attention weights. So the goal of the decoders is to reduce the weight of
external information to avoid the problem of error accumulation. The use of
the decoders in their case seems very important to boost their results, and
the use of multiple decoders, for their case four, improve the results respect
to using only one. For this work the decoder part is not implemented, this
because it needs the ground truth of every frames to work properly and to do
the refinement, an information that we assumed we did not have.

4.1.1 Problems

There are different problem of implementing a Transformer architecture for
TAS. As F. Yi et al.[7] pointed out the following ones as the main concern
about implementing a vanilla Transformer. Also in their work they try to find
a solution for them and this is why we chose their model as backbone for our.

Lack of inductive biases

This problem is due to the small size of the (training) dataset. In fact the
Transformer are data ”hungry”, especially compared to CNNs, and for this
type of problem (TAS) usually the training set is relatively small. In fact
it takes a lot of time to do all the data acquisition, for example the whole
Breakfast dataset is ≈77 hours of video but it has only around 180 example
for each activity. The lack of inductive biases makes difficult to learn a target
function from a large hypothesis space.

Hard to form an effective representation

Instead this problem is related to the to the deficit of self-attention for the long
input data (in this case videos). In fact a video can have up to 9741 frames,
so it will be difficult for the self-attention mechanism to give attention to the
whole input sequence in a meaningful way. At initialization, the self-attention
layer give nearly uniform attention weights to all the elements in the sequence.

22



But due to the length of the videos, it is difficult for the self-attention layer to
learn appropriate weights in meaningful locations. Moreover if the transformer
block in the first stages are not able to find meaningful location where to put
their attention it means that this task will be even more difficult for encoders
block in the next stages.

Encoder-decoder architecture

Finally the last problem is intrinsic in the architecture of the vanilla Tran-
sformer. The main problem of an encoder-decoder architecture is in the pre-
servation of the temporal information between frames and especially in the
refinement process. Other architectures like CNNs and TCNs add additional
information over the initial prediction to perform refinement, something that
is not possible in the Transformer due to the decoder part, that is not designed
for this purpose.

Solutions

To solve this problems they proposed simple but efficient solution that we
will briefly describe here. First of all we do not need to deal with the third
problem, since our problem is considering a weakly-supervised scenario instead
of a fully supervised, as their case, so in our case there is not the decoder part,
in fact it is not possible to do the refinement without the ground truth of the
frames. To solve the first problem they relied on one property of the action
segmentation task, in fact this problem has high locality of the features, this
is because every action occupies continued timestamps. For this reason local
inductive and temporal bias is very important to the action segmentation task.
To enforce this bias they applied an additional temporal convolutions in each
layer.

For the problem that with a Transformer architecture with serials of self-
attention layers is hard to form an effective representation over long input
sequence, they simply constrained each self-attention layer with a pre-defined
’window’ of attention of increasing size. This way they obtained an hierar-
chical representation pattern, which forces the low-level self-attention layers
to focus on local relations at first and then gradually enlarges their atten-
tion to capture longer dependencies. This process seems to solve the problem
and, since the attention window gradually increase, the self-attention layer can
cooperate better to achieve faster convergence speed and higher performance.
This hierarchical representation has also another benefit, in fact it reduces the
total space and time complexity to make our model faster and scalable. In
Fig. 4.2 is reported an example of their self attention for a particular frames
considering both the normal and hierarchical phase.

23



Figura 4.2: The visualization of the original attention weights for an anchor
frame (+) in each encoder block.

4.1.2 Improved Self-Attention

Before using directly their model as a back-model for our, we decided to test
their implementation to understand if there are some errors or possible impro-
vement. Since here we just wanted to test their model, we decided to work
in a fully-supervised scenario, like them. The first thing that we noticed is
that the self-attention calculation is the bottle neck of their architecture. In
fact is very time expensive and moreover the attention window for the frames
in the border (starting and ending frames) is bad implemented, this because
half of the attention window is wasted on padding frame. To solve these pro-
blem we implemented our version of the hierarchical self-attention, based on
the following work [37]. A snippet of code with the most relevant part of our
implementation of the sliding window self-attention is reported below:

# Create windows around each token.
windows = torch.stack([x[:, :, i:i + self.w] for i in range(n)])
windows = windows.view(b * n, d, self.w)

# Compute queries, keys, and values for each window.
q = self.q linear(windows).view(b, n, self.n heads, self.d model // self.n heads,
self.w).transpose(2, 4)
k = self.k linear(windows).view(b, n, self.n heads, self.d model // self.n heads,
self.w).transpose(2, 4)
v = self.v linear(windows).view(b, n, self.n heads, self.d model // self.n heads,
self.w).transpose(2, 4)

Here self.w is the dimension of the sliding window, that is double at each
encoder block. In Tab. 4.1 are reported some comparison of the results ob-
tained using ours and their implementation of the self-attention, considering
different number of encoder block and considering the case with and without
the decoder. Compare to the previous implementation ours is much more faster
and the accuracy results are almost the same. From the Epoch time column
we can notice that our implementation is almost 10 times faster compared to
theirs, this is very important for this work. The only drawback is in the F1
score, where there is a big drop in performance. Nevertheless our implemen-
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tation is way to fast compare to their and since time complexity is a problem,
due to the size of the dataset, we decided to use our implementation.

# Layer # Decoder Type Accuracy F1 Epoch time (s)
8 0 Ours 83.17% 35.40 6.69
8 0 Their 81.79% 46.28 60.38
8 2 Ours 82.94% 73.05 21.22
8 2 Their 82.14% 68.67 174.62
9 0 Ours 82.72 % 40.26 7.62
9 0 Their 82.36% 50.10 62.27
9 2 Ours 81.69% 68.29 22.81
9 2 Their 82.90% 70.51 174.22
10 0 Ours 82.35% 33.33 8.70
10 0 Their 82.99% 46.82 68.85
10 2 Ours 81.91% 67.81 25.16
10 2 Their 82.58% 68.29 177.25

Tabella 4.1: Time comparison of our implementation of the self-attention and
theirs.

Finally in the Fig. 4.3 we reported the self-attention weight, using our
implementation, of different frames belonging to video of different activities.
From the image we can see the attention windows that increase, double, at each
encoder block. Also the color represent the attention weight to the neighbors
frames, here the more blue the segment is (frames) the more attention the
model is giving to that particular neighbor frame, vice-versa the more white
it is the less attention is given to that frame.
Also is worth to notice the bottom right figure of the image. Here is represented
the self-attention weight matrix respect to a frame in the end of the video. As
we can see from this image most of the attention is put on the left part of the
window, since the right part are just padding frames. This padding frames are
added to fit the attention window also the ’border’ frames, the ones that are
in the start or at the end of a video.

Positional encoding

Another difference within the original ASFormer of [7] and our work is the use
of the Positional Encoder. In fact in their work they did not use the positional
encoder, typical of the vanilla Transformer architecture. The reason why they
did so is because, and citing the original paper:
”The redundant absolute position encoding might be harmful to the temporal
convolutions to learn the feature embedding”. we tried to add the positional
encoder to our implementation and we did not notice any drop in the perfor-
mance and especially in the time required to train the network. So, since the
positional encoder, is a key element of the vanilla Transformer we decided to
used it also for our architecture.
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Figura 4.3: Self-attention weight using our implementation. For each row
there is different number of encoder block. From the first row to the last are
reported the results with 8, 9 and 10 encoder block. Instead the first column
is considering 0 decoder while the second one 2 decoder blocks in series. Every
self-attention is considering a frame from videos of different activity.
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4.2 Siamese Architecture

Having implemented and improved the Transformer encoder block for our mo-
del, we can finally construct the main architecture to solve the Temporal Ac-
tion Segmentation problem. We decided to build a Siamese architecture to
distinguish between video of the same activity or different activities. Briefly
a Siamese architecture is a type of neural network architecture used in tasks
related to similarity or distance measurements between inputs.

In a Siamese architecture, two identical subnetworks are created, and they
share the same parameters and weights. These subnetworks took two different
inputs, often referred to as ”anchor” and ”comparison” inputs. The goal is
to learn a similarity metric, meaning that the network aims to determine how
similar or dissimilar the two inputs are.

For this particular problem the scope of the Siamese architecture is to
decide if two video belongs to the same activity or not. The similarity metric
is calculated through a constrastive loss. So the scope of the network is no
longer to classify each frames of the video, as supposed for TAS problem, but is
to make the features of the frames of the videos belonging to the same activity
more closer (similar) and the features of the videos of dissimilar activities
more distant (dissimilar). This will be explained better in the next section.
The structure of the encoder block is reported in Fig.4.4, and for constructing
the two subnetworks we used nine encoder blocks in series. This means that
the maximum size of the ’window attention’ that the architecture can give to a
single frames is 512 (29). Therefore, in some video the self-attention of a single
frame is calculated respect to all the other frames while in most of the cases
the self-attention of a single-frames is related to just a portion of the video.
This of course speed-up the training procedure.

In Fig. 4.5 is reported the final architecture of the Siamese model that was
implemented to solve this problem.

Figura 4.4: Encoder block inside the Siamese architecture.
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Figura 4.5: Siamese architecture.
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4.2.1 Curriculum Learning

Curriculum learning[38] is a machine learning (ML) training strategy inspired
by how humans learn. In the context of ML algorithms, curriculum learning
involves gradually introducing training examples or concepts to the model in
a structured order, making it easier for the model to learn progressively more
complex patterns. Basically the idea is to train with the more easier classes
or task initially, and when the model has started to learn those tasks, we can
gradually insert more and more complexity into the training data. This stra-
tegy is used with a contrastive loss, explained in the next section, in order to
train the simaese model.

First of all, if we want to apply he curriculum learning we need to define
the stages, from the easiest to the difficult ones, to train progressively the ar-
chitecture. Recall that the goal of this Siamese architecture is to discriminates
between videos of same activity and videos that represent two different acti-
vity. To do so we added a flag value to all the couple of video given as input
to the network, where ’0’ represent couple of video belonging to the same ac-
tivity (positive cases) and ’1’ to different activities (negative cases). We need
the positive and negative cases in order to apply the contrastive loss, but this
will be explain better in the next section.

To create different stages we need to divide the couples of videos based on
some common features of the video themselves. From the names of the videos
it can be extracted the following information: person who take the video, kit-
chen where is taken the video and which camera was used. We relied only on
those information to separate the couple of videos, of course watching every
single video to extract more information is unfeasible due to the time required.

If two videos are in the same kitchen it means that the background is the
same, so it will be easier for the architecture to distinguish between them.
While if two activity are done by the same person it means that the order
of action for completing it will be the same. Finally if two videos are taken
with the same camera it means that the quality of the videos (and frames) are
the same. Also is worth to mention that if a couple of video are taken in two
different kitchen it means also that the person and the camera are different
between the two videos.

In Tab.4.2 are reported the way we used these information to create diffe-
rent stages, from the easiest case to the most difficult one, both for the positive
and negative case. From the table we can notice that the easiest combination
of the positive case is the most difficult of the negative case and vice-versa.
Finally we also considered an additional stage (Stage 5) that is simply the
combination of all the previous stages.
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Positive (Same Activity) Negative (Different Activity)
Stage Stage Stage # Reduced
P1 same kitchen, same person, diff. camera N1 different kitchen
P2 same kitchen, diff. person, same camera N2 same kitchen, diff. person, diff. camera
P3 same kitchen, diff. person, different camera N3 same kitchen, diff. person, same camera
P4 different kitchen N4 same kitchen, same person, diff. camera

P5 Combination of the previous cases N5 Combination of the previous cases

Tabella 4.2: Different stages for positive and negative pair of videos.

With these information we computed all the possible combination of couple
of videos. In Tab.4.3 and Tab.4.4 we reported the number of the total combi-
nation for each stages both in the case of training phase and test phase. From
these Tables we can notice two things. First that the number of possible com-
bination is huge, especially in the negative case. In fact for the positive case
we have a strong constriction that is: a pair of video must belong to the same
activity. This will create some problems, in fact considering all the possible
combination will take to much time during the training phase. Moreover, the
number of total combination in positive and negative cases for the same stage
differs a lot, creating an unbalanced dataset for the training and the testing
phase related to a particular stage. To solve both of these problem we reduced,
randomly, the number of possible combination for each stage in a way that the
positive and negative case has more ore less the same number of combinations,
this can be viewed in the Tables4.3 4.4.

Positive Negative
Stage # Original # Reduced Stage # Original # Reduced
P1 1402 1402 N1 671392 2237
P2 1361 1361 N2 41876 2463
P3 4639 4639 N3 12155 6077
P4 74684 12399 N4 1325 12325
P5 82086 19801 N5 737748 23102

Tabella 4.3: Total number of combination on train phase.

Positive Negative
Stage # Original # Reduced Stage # Original # Reduced
P1 150 150 N1 75327 251
P2 132 132 N2 3938 196
P3 423 423 N3 1284 642
P4 8400 1400 N4 1262 1262
P5 9105 2105 N5 81811 2351

Tabella 4.4: Total number of combination on test phase.

Finally in the Tab. 4.5 are reported the times required to train each stage
of the architecture. These times are the best case scenario, when no other pro-
gram is running in the server, otherwise it can require up to double the time for
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each stages to running the training phase. This is to highlight the importance
of time management in this work, in fact to train the whole network in the
wrong scenario it can require up to a full week. This is why it is important to
reduce the number of possible combination for each stages. Finally in the Tab.
4.5 are reported also the accuracy result for the validation set. To do so we
just put a threshold on the similarity result, produced by the contrastive loss,
between the two video. The results are quite good, in fact in the last stage is
able to reach 87.96% of accuracy. This mean that the Siamese architecture is
able to produce a new representation of the videos (and so also of the frames)
to distinguishes them between video of the same activity or not.

Recall that here we are in a supervised setting, since the network has the
information if each pair of videos belong to the same activity or not.

Time (sec) Time (min) # Epochs Total time (hours) Accuracy
Stage 1 ≈ 139 ≈ 2.31 80 < 4 93.01%
Stage 2 ≈ 140 ≈ 2.3 80 < 4 92.37%
Stage 3 ≈ 417 ≈ 6.95 60 < 7 84.22%
Stage 4 ≈ 956 ≈ 15.93 50 < 13 84.52%
Stage 5 ≈ 1641 ≈ 27.25 40 < 25 87.96%

Tabella 4.5: Times required to train the architecture for each stages.

4.2.2 Cropping and padding

As described before in the Dataset section, each video as a different length
that can different a lot from each other.In fact for this dataset the shortest
video has only 130 frames, while the longest 9741. To solve this problem and
to have all the video at the same length we applied a cropping and padding
strategy. We basically cropped videos, removing random frames within it, that
are longer than the chosen length and padded the videos, adding zeros vector
to the start and end, that are shorter than the chosen length. Cropping, and
so reducing the video size, will also speed up the training process. Instead
padding with zeros is not a problem since, inside the encoder blocks of the
architecture, is present a mask that gives no attention (zero values) to all the
zeros vector (padding frames), wasting no time on them. Finally we found out
that the best padding/cropping value is 4096. We tried also to increase the
possible length of the video in order to preserve more information but, already
with a value of 8192, we had some problems since it overflow the GPU memory.

4.2.3 Contrastive Loss

Contrastive loss was first introduced in 2005 by Y. Le Cunn et al. [39] in this
paper and its original application was in dimensionality reduction. Briefly, the
goal of dimensionality reduction is to reduce the features space while preserving
as much information as possible. Moreover, it should preserve neighborhood
relationships between data points and been able to generalize to new unseen
data.
Thanks to the contrastive loss the Siamese architecture is trained to map the
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original features of the frames in such a way that the new embeddings of the
frames of the videos belonging to the same activity are close to each others,
while the embedding of frames of videos belonging to different activity are far
from each other. Finally to verify if two videos are belonging to the same
activity or not, you give them as input of the architecture and calculate the
similarity between the obtained embeddings. If the similarity is small, the
videos are likely to belong to the same activity, viceversa, if the difference is
big enough, the two videos are likely to belong to two different activity.

More in detail the original formula of the contrastive loss[39] is the following
one:

L(
−→
X1,

−→
X2) = (1− Y )1

2
(DW )2 + (Y )1

2
{max(0,m−DW )}2

where m, is a hyperparameter, defining the lower bound distance between

dissimilar samples.
−→
X1 and

−→
X2 are the features matrix of the two videos. Y is

binary value that specify if the two videos belong to the same activity (Y =
0) or to two different activities (Y =1). Instead DW is the similarity metrics,
in this architecture is used the Euclidean distance

The formula is highly similar of the Cross-entropy. The main difference is
that Cross-entropy loss is a classification loss which operates on class proba-
bilities produced by the network independently for each sample, instead the
contrastive loss is a metric learning loss, which operates on the data points
produced by the architecture and their similarity relative to each other.

Instead, to be more specific, “margin” is a minimal distance that dissimilar
points need to keep. So it penalizes dissimilar samples for beings closer than
the given margin. We used a margin value of 1.0. Y. LeCun et al.[40] prove
that increase to much the value of margin is counterproductive.

An improvement of contrastive loss is triplet loss that outperforms the
former by using triplets of samples instead of pairs[41].

Specifically, it takes as input an anchor sample Iα, a positive sample I+ and
a negative sample I−. During training, the loss enforces the distance between
the anchor sample and the positive sample to be less than the distance between
the anchor sample and the negative sample:
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When a model is trained with the triplet loss, it require fewer samples for
convergence since it simultaneously update the network using both similar and
dissimilar samples. That’s why triplet loss is more effective than contrastive
loss.

For this work we used the contrastive loss due to the way the architecture
is constructed and because the model achieves good results anyway.

4.3 Other strategies

To improve the result of the Siamese architecture we tried also other strategies,
which did not prove to be effective.
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First of all we tried to calculate the self-similarity matrix of the input
features, to understand from the raw data if there are some natural division
between frames, basically to see if is possible to divide the frames into action
directly from raw data. A similarity matrix is symmetric, with the diagonal
elements representing the similarity of each data point with itself (usually
set to the maximum similarity value). The off-diagonal elements capture the
pairwise similarities between different data points.

We calculated the self-similarity matrix of the input features considering
two different similarity measures, the euclidean distance and the cosine simi-
larity. In Fig.4.6 are reported the self-similarity obtained for the features of
a single video. In the image the vertical red dot lines are the boundary bet-
ween the actions within the video. Already from these similarity matrix we
can see that are not able to capture any meaningful information about that
action boundary. In the cosine case we can notice high similarity in the top-left
region, corresponding to the first action. Although, it is not sufficient since
for the rest of the matrix e can not find any other region of high-similarity.
Nevertheless we tried to multiply the similarity matrix to the input features
to test empirically if it will improve the results, but it did not.

Figura 4.6: Similarity matrix considering euclidean distance and cosine
similarity.

Another approach, to speed up the training of the network and to try
to improve the results, is to apply directly to the input raw videos a down
sampling. Briefly we removed randomly some frames of the video in order to
get all the video to a specific length. The idea here is to reduce the redundancy
of the frames next to each other. In fact, the videos are at taken at 15 fps
and some actions can take minutes to accomplish them. This approach is not
based only on an intuition but it follow also the work of Lei at al.[42], but in
their case they applied it to a Temporal Convolutional Networks instead of a
Transformer. We tried to implement also this downsampling strategy directly
on the video and it did not work. There was a huge improvement in the time
complexity but the MoF drops a lot.
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Capitolo 5

Experimental setting

In this section, we introduce and analyze in details the dataset used for trai-
ning and testing our architecture. We then explained how to use the Hungarian
matching algorithm in order to calculate the evaluation metrics used to com-
pare our model with the state-of-the-art. Finally we describe the algorithm
used to classify each frame to their respective action cluster.

5.1 Dataset

There are a lot of available dataset concerning Temporal Action Segmentation
problems. In this section there is a complete explanation of the datasets used
in this work and also a brief explanation of the most important datasets for
this kind of problem.

5.1.1 Breakfast dataset

The most important dataset for this work, and in which most of the experi-
ments were done, is the Breakfast dataset[43]. The choice of this dataset is not
random. First of all, most of the state-of-the-art models used this dataset to
compare their results with the others. Secondly this dataset is well annotated
and the quality of the videos is good enough. Moreover, for this dataset, the
task of TAS is not trivial, especially in the weakly-supervised and unsupervised
scenario, instead for the fully-supervised case the state-of-the-art models are
able to achieve a Mean over Frame ≈76.0%. In Fig.5.1 are reported random
frames from videos of this dataset, so we can have an idea of the type of images
(frames) our model is gonna working with. To reduce the overall amount of
data, all videos were down-sampled to a resolution of 320×240 pixels with a
frame rate of 15 fps.
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Figura 5.1: Frames from the videos of Breakfast dataset.

5.1.2 File names

A very important thing to understand for this work is the way every video is
named. For this purpose we can check a random video name like the following
one:

P25 cam02 P25 juice

First of all ’P25’ represent the person that took the video. In total there
are 52 persons and in this specific case the video is taken by person 25. After,
’cam02’ is saying to us with which camera the video is taken, different cameras
implies different quality of the videos and so also of the frames. And finally
’juice’ told us which activity is performed in the video. Is not intuitive but
the information of the person who is taken the video is very important for this
problem, for two main reasons. The first is that each person can complete
the activity on their own way, so they can take more or less time to complete
it and also the order of action can differ. Moreover knowing which person is
doing the activity give us another important information: the background. In
fact different person did the activities (videos) in different kitchens and so, the
background of the video can change a lot between them. To only way to find
out to which kitchen each person corresponds, is to check manually at least one
video for each person. In Tab. below5.1 are reported these correspondences.

5.1.3 Exploratory data analysis

The Breakfast Actions Dataset comprises of 10 actions related to breakfast
preparation, performed by 52 different individuals in 18 different kitchens. The
dataset is one of the largest fully annotated datasets available. The actions are
recorded in real life scenario as opposed to a single controlled lab environment.
It consists of over 77 hours of video recordings. Each activity is composed of
different actions, in total there are 48 of them and they can belong among
different activity. Moreover one of these action is the Background, this special
action is when the frames in the videos cannot be assigned of any of the other
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Kitchen ID People ID
1 P03
2 P04
3 P05 - P06
4 P07
5 P08 - P09 - P10
6 P11
7 P12 - P13
8 P14 - P15
9 P16 - P17 - P18
10 P19 - P20
11 P21 - P22 - P23 - P24
12 P25 - P26 - P27
13 P28 - P29 - P30 - P31 - P32 - P33
14 P34 - P35
15 P36 - P37 - P38
16 P39 - P40 - P41 - P42 - P43
17 P44 - P45 - P46 - P47 - P48
18 P49 - P50 - P51 - P52 - P53 - P54

Tabella 5.1

actions. In Tab. 5.2 and Tab. 5.3 are reported the relations between the
activity and their actions.

Activity # Actions # Videos avg length
Cereals 5 214 704.08
Coffee 7 200 586.57
Friedegg 9 198 3119.84
Juice 8 187 1490.50
Milk 5 224 948.59
Pancake 14 173 5968.94
Salad 8 185 3429.51
Sandwich 9 197 1535.45
Scrambledegg 12 188 3117.33
Tea 7 223 716.20

Tabella 5.2: Number of action and videos for each activity.

As we can see from Tab. 5.2, every activity is composed by a different
number of action and also the average length of the videos can change a lot.
In fact Coffee has an average length of 586.57 while Pancake 5968.94. This
suggest that different activity can be distinguished by each others by intrinsic
properties of the activity itself, in fact some activities are more complicated
than other since they require more time and they need more actions complete
it. Also the shortest video is ’P51 webcam01 P51 coffee’ with 130 frames and
the longest is ’P42 stereo 01 P42 pancake’ with 9741 frames. This huge diffe-
rent in the length could be a huge problem, since we need to define a model
that is able to work with very different input length.
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Activity Actions
Cereals take bowl - pour cereals - pour milk - stir cereals
Coffee take cup - pour coffee - pour milk - pour sugar - spoon sugar - stir coffee
Friedegg pour oil - butter pan - take egg - crack egg - fry egg - take plate add salt and pepper -

put egg onto plate
Juice take squeezer - take glass - take plate - take knife - cut orange - squeeze orange - pour

juice
Milk take cup - spoon powder - pour milk - stir milk
Pancake take bowl - crack egg - spoon flour - pour flour - pour milk - stir dough - pour oil -

butter pan - pour dough into pan - fry pancake - take plate - put pancake onto plate
Salad take plate - take knife - peel fruit - cut fruit - take bowl - put fruit to bowl - stir fruit
Sandwich take plate - take knife - cut bun - take butter - smear butter - take topping - add

topping - put bun together
Scrambledegg pour oil - butter pan - take bowl - crack egg - stir egg - pour egg into pan - stir fry egg

- add salt and pepper - take plate - put egg onto plate
Tea take cup - add teabag - pour water - spoon sugar - pour sugar - stir tea

Tabella 5.3: List of activity and corresponding actions inside the dataset.

Other useful metrics to analyze this dataset are the repetition score, the
order variation score and the imbalance ratio (IR). These metrics helps un-
derstand better the relationship between actions for each video/activity. The
results are reported in Tab.5.4

Repetition score

The repetition score counts how many times unique actions are repeated inside
a video.

r = 1− u
g

where u is the number of unique action in a video and g is the number of
action in that video. The value is between 0 and 1, where 0 means that no
action are repeated within a video.

Order variation score

The order variation score gives us information on how much the order of actions
change between video of the same activity. Value close to 1 means that the
actions follow a strict order, with less variation between videos. On the other
hand, a value near 0 indicates a high amount of ordering variations, making
modeling the temporal relations between actions more difficult. The order
variation score is defined as the average edit distance, between every pair
of sequences. Then the result is normalized with respect to the maximum
sequence length of the two.

v = 1− e(S1, S2)/max(|S1| , |S2|)
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Imbalance Ratio

The imbalance ratio [44] is a way to check the skewness of the input data,
in this case of the actions distribution. This parameter is important to check
because some metrics, like the Mean over Frame, are meaningful if the data
are too unbalanced. To calculate it we need to compute the ratio between the
number of frames in the head (action more frequents and with more frames)
and the tail classes (actions with less frames).

Dataset Rep. score Order var. score Imb. Ratio
Breakfast 0.11 0.15 639

Tabella 5.4

5.1.4 Pre-Computed Features

The owner of the dataset[43] provide also the pre-computed features of the
input videos. This is very useful for multiple reasons. Firstly, because it save
a lot of work and time since the the input features are already extracted from
the videos. Secondly because it provides a common baseline, so is possible
to compare our model with the state-of-the-art, since the results are obtained
starting with the same feature and so they cannot be attribute on the way
the features are extracted. The owners of the dataset provided two type of
pre-computed features: Fisher Vector and Inflated 3D.

Fisher Vector

This methodology is based on Improve Dense Trajectory (IDT). The original
dense trajectories features[45] are spatiotemporal features computed using op-
tical flow while the improvement is a correction on camera motions. To been
able to use this type of features for this problem the raw trajectories are en-
coded using Fisher Vectors (FV) [46]. In order to have further information on
how the FV are extracted please consult the original paper by H. Kuehne et
al.[47]. The main ideas of the work can be seen in Fig.5.2. Briefly the Improve
Dense Trajectory features are computed and the corresponding descriptor is
reduced to 64 dimensions. After a total of 200,000 features are randomly sam-
pled and fitted to Gaussian Mixture Model, with different number of clustering
(K). Then an FV representation is computed for each frame of the video. The
corresponding representation is further reduced from 2048–32,768 (depending
on the value of K) down to 64 dimensions.
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Figura 5.2: Original pipeline by H. Kuehne et al. to extract Fisher Vectors.

Inflated 3D ConvNet (I3D)

The features from videos are extracted using Inflated 3D ConvNet (I3D)[48]
a state-of-the-art model to extract features from videos based on Inception-
V1[49] architecture. The main idea is to inflates all NxN spatial kernels to
NxNxN by replicating the original kernels N times and rescaling them with
a temporal factor of N=1. The main problem with this features and the
reason they were not chosen for this work is their dimension. In fact the folder
containing the pre-computed features is ≈ 25.7 GB. This means that they
are much more heavy to compute respect the Fisher Vector representation (≈
2 GB) but the main problem was that there was not enough space in the
server to stored them. For these reasons we worked with the Fisher Vector
representation.

Other datasets

As we mention at the beginning of this section there are a lot of available
datasets for this type problem. Here we will do a quick review of most of
them, for further information check the reference.

• GTEA[50]: The Georgia Tech Egocentric Activities (GTEA) dataset
contains seven types of daily activities such as making sandwich, tea, or
coffee. Each activity is performed by four different people, for a total
of 28 videos. For each video, there are about 20 fine-grained action
instances such as take bread, pour ketchup, in approximately one minute.

• 50-SALADS[51]: This dataset consists in 50 recorded videos, this col-
lection features 25 participants engaged in the creation of two distinct mi-
xed salads. The camera captures these videos from a top-down perspec-
tive, showcasing the participants’ activities on the work surface. Each

40



participant is furnished with a set of recipe steps, drawn randomly from
a statistical recipe model.

• CrossTask[52]: CrossTask dataset contains instructional videos, collec-
ted for 83 different tasks. For each task is provided an ordered list of
steps with manual descriptions. The dataset is divided in two parts: 18
primary and 65 related tasks. Videos for the primary tasks are collected
manually and provided with annotations. Videos for the related tasks
are collected automatically and don’t have annotations.

• COIN[53]: The COIN dataset is alarge-scale dataset for COmprehensive
INstructional video analysis. It consists of 11,827 videos related to 180
different tasks in 12 domains (e.g., vehicles, gadgets, etc.) related to our
daily life. The videos are all collected from YouTube.

• HA4M[54]: the Human Action Multi-Modal Monitoring in Manufac-
turing (HA4M) dataset is a collection of multi-modal data relative to
actions performed by different subjects. In particular, 41 subjects exe-
cuted several trials of the assembly task, which consists of 12 actions.
Data were collected in a laboratory scenario.

• Epic-Kitchens[55]: Epic-Kitchens dataset comprises a set of 432 ego-
centric videos recorded by 32 participants in their kitchens at 60fps with
a head mounted camera. There is no guiding script for the participants
who freely perform activities in kitchens related to cooking, food pre-
paration or washing up among others. Each video is split into short
action segments with specific start and end times and a verb and noun
annotation describing the action.

• Ikea-ASM[56]: The IKEA ASM dataset is a multi-modal and multi-
view video dataset of assembly tasks. It contains 371 samples of furniture
assemblies and their ground-truth annotations. Each sample includes
3 RGB views, one depth stream, atomic actions, human poses, object
segments, object tracking, and extrinsic camera calibration.

• Meccano[57]: MECCANO Multimodal comprises multimodal egocen-
tric data acquired in an industrial-like domain in which subjects built
a toy model of a motorbike. The multimodality is characterized by the
gaze signal, depth maps and RGB videos acquired simultaneously.

• YouCook2[58]: YouCook2 is the largest task-oriented, instructional vi-
deo dataset in the vision community. It contains 2000 long untrimmed
videos from 89 cooking recipes; on average, each distinct recipe has 22
videos. The procedure steps for each video are annotated with tempo-
ral boundaries and described by sentences. The videos were downloaded
from YouTube and are all in the third-person viewpoint.
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Dataset Year Duration # Videos # Activity # Action Domain View
Breakfast 2014 77h 1712 10 48 Cooking 3rd Person
GTEA 2011 0.4h 28 7 71 Cooking Egocentric
50Salads 2013 5.5h 50 10 17 Cooking Top-view

Epic-Kitchens 2020 200h 700 - 4053 Daily activity Egocentric
Meccano 2021 0.3h 20 1 61 Assembly Egocentric
HA4M 2022 6h 217 1 12 Manufacture 3rd Person

YouCookII 2018 176h 2k 89 - Cooking Mixed
CrossTask 2019 376h 4.7k 83 107 Mixed Mixed
COIN 2019 476h 11.8k 180 778 Mixed Mixed

Tabella 5.5: Summary and comparisons of procedural activity datasets.

5.2 Hungarian matching

The Hungarian Matching algorithm, also known as the Hungarian method or
Kuhn-Munkres algorithm[59], is a combinatorial optimization algorithm used
to solve the assignment problem in bipartite graphs. The assignment problem
involves finding the optimal way to assign a set of agents to a set of tasks, with
each agent being capable of performing certain tasks and having associated
costs or values for performing those tasks. The goal is to find an assignment
that minimizes the total cost or maximizes the total value.

Formally, let’s consider a bipartite graph where there are n agents and m
tasks, represented by a cost or value matrix C of dimensions n x m. The
element C [i] [j] in the matrix represents the cost or value associated with assi-
gning agent i to task j. The Hungarian algorithm seeks to find an assignment
matrix X of the same dimensions, where X [i] [j] is 1 if agent i is assigned
to task j and 0 otherwise, such that the sum of the values of C [i] [j] where
X [i] [j] = 1 is minimized or maximized.
The algorithm follows these main steps:

1. Row Reduction

2. Column Reduction

3. Marking Zeros

4. Augmenting Paths

5. Augmenting Path Update

6. Line Removal

7. Iteration

8. Solution Construction

The Hungarian algorithm guarantees to find the optimal assignment in poly-
nomial time complexity, making it a powerful tool for solving practical assi-
gnment problems. Its significance extends to various applications such as job
scheduling, resource allocation, and matching problems in various domains. In
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unsupervised TAS, Hungarian matching links the frames X of N clusters to
the action label corpus Y of M classes.
But why is needed the use of Hungarian Matching? This work is in an un-
supervised scenario (or weakly-supervised), this means that there are not a
correlation between the estimated segments and ground truth actions. So, in
order to compare our results with the state-of-the-art and to obtain the me-
trics like Mean of Frames (MoF) and Intersection over Unit (IoU), we needed
to use the Hungarian matching.

Figura 5.3: Hungarian matching applied at different levels.

As we can see from Figure 5.3 there are three possible levels for the appli-
cation of Hungarian matching for TAS problem, and they are:

• Video level: This is the most trivial level. Here the scope is to match
the labelled frames withing the ground truth frames of the same video.
So the algorithm needs only to find relationship between the frames of
the same video. This matching produces the best performance of the
thre, due the fact that it is done per video.

• Activity level: In this case the Hungarian algorithm have to find the
correspondence between frames and their ground truth considering all
the videos of the same activity. This level is more challenging than the
one before because here the proposed models need to find relationship
also between different videos, related to the same activity. The work
done for this thesis is considering this level for the Hungarian Matching
algorithm.

• Global level: This one is the most difficult case. Here the algorithm
need to find not only relationship between frames of different videos
but also between videos concerning different activity, different activity
means also different set of actions. There are not relevant works for
unsupervised approaches for this level. The only one is the one of Kukleva
et al.[36], but they assumed that each activity has a different set of
actions that is not always true.
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5.3 Evaluation metrics

The evaluation metrics for Temporal Action Segmentation are Mean of Frames
(MoF), mean of Mean of Frames (mMoF), Edit Score, and F1-scores. These
metrics are divided in two main categories: frame-based measure and segment-
based measure. The first ones consider how any frames are predicted correctly
while the second ones are evaluation metrics that focus on the segment errors.
For the case of unsupervised and weakly-supervised learning, that are the ones
of this work, only the MoF and F1 score are reported in most of the state-
of-the-art models. Of course in these cases before computing the metrics we
need to applied the Hungarian matching, as it was described in the previous
section.

5.3.1 Frame-based metrics

The frame based metrics are Mean over Frames (MoF), that is basically the ac-
curacy, and the mean Mean over Frames. The formula of MoF is the following
one:

MoF = # correct frames

# all frames

The main problem with this metric is that it does not work well when the
dataset is imbalanced, so when there are activity that has much more frames
(because they are longer) then other ones, like in most of the case. To mitigate
this problem was introduced the mean of Mean over Frame:

mMoF =
∑

a MoF (a)/|a|

where MoF(a) is the frame accuracy per class a and |A| is the size of it.
The main drawbacks of these metrics is that they don’t give any information
on the quality of the segmentation of the video. This means that the MoF
score might appear high even in cases where the segmentation results are ac-
tually disjointed. This phenomenon, where a continuous action is divided into
multiple disconnected sub-segments, is known as over-segmentation. To check
if the problem of over-segmentation is present in the results we can rely on
segment based metrics.

5.3.2 Segment-based metrics

F1-score [17] and Edit Score [60] are the two segment-based methods used for
this kind of problem. The F1-score evaluates the Intersection over Union (IoU)
between each segment and its corresponding ground truth using a threshold
of τ/100. A segment is categorized as a true positive if its score surpasses
the threshold in relation to the ground truth. In cases where multiple correct
segments exist within the range of a single ground truth action, only one of
them is counted as a true positive, while the remaining segments are designated
as false positives.
The formula for F1-score is:

F1 score = 2 ∗
precision ∗ recall

precision + recall
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Usually the values for τ are: 10, 25, 50.

The Edit Score instead quantifies the similarity of two sequences. It is ba-
sed on the Levenshtein distance and considers the minimum number of inser-
tions, deletions, and replacement operations required to convert one segment
sequence into another. The formula of the Edit score is:

Edit = 1−e(X,Y )
max(|X|,|Y |) · 100

This metric measures how well a model predicts the action segment ordering
without requiring exact frame-wise correspondence to the ground truth.

Combining the frame-based and the segment-based methods we were able
to have a clearer and more complete understanding on how well the model is
performing.

5.4 Clustering

To cluster all the frames to their action we tried with some basics clustering
algorithms. This because the scope of this work is to define an architecture
powerful enough to learnt a new features representation for each actions so
they will be easy to cluster them correctly. The methods that we tried are the
following: K-Means, Spectral clustering, Hierarchical clustering, DBSCAN [61].

K-Means

This is the most common and intuitive algorithm to cluster data in an un-
supervised way. The main advantages of this algorithm are that is easy to
implement, and is computationally efficient. The problem is that it has many
drawbacks. For example it assumes that the data points are distributed in a
spherical shape, not always the case, and also is sensitive to the presence of
outliers and noise in the data. But the main drawback, that is also in this
work, is that requires the user to specify the number of clusters in advance.

Spectral clustering

Spectral clustering is an algorithm designed for cluster identification, levera-
ging the eigenvectors of a similarity matrix. This similarity matrix is crafted
using a kernel function, quantifying the resemblance between data point pairs.
Spectral clustering excels in scenarios where clusters exhibit non-linear struc-
tures, offering superior performance in handling noisy data compared to the
k-means algorithm. Also it does not require the user to specify the number of
clusters in advance.

Hierarchical clustering

This clustering algorithm creates a hierarchy of clusters, with each cluster being
divided into smaller sub-clusters until all objects in the dataset are assigned to
a cluster. The algorithm would start by treating each input data as a singular
cluster, and then it would iteratively merge the closest pairs of clusters until all
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the data are grouped into a single hierarchy of clusters. The benefit compared
to the k-means are that it can also data sets with varying densities and cluster
sizes and that it does not require the number of cluster beforehand. Also this
algorithm could be very useful for visualizing the structure of the data and
identifying relationships between clusters.

DBSCAN

DBSCAN is a clustering algorithm that groups data points into clusters based
on the density of the points. The algorithm works by identifying points that
are in high-density regions of the data and expanding those clusters to include
all points that are nearby. Moreover this algorithm is able to detect outliers
and noisy point, that do not belong to high-density regions or that are not
close to each other. Those point for this work will be automatically classified
as ’background’ action. There are many advantages over the k-means. First
of all DBSCAN can handle data sets with varying densities and cluster sizes
also it an identify clusters with arbitrary shapes, as it does not impose any
constraints on the shape of the clusters. Finally, as the Hierarchical clustering
algorithm, it does not require the number of clusters in advance.

5.4.1 Problems and application

All of these clustering algorithm are already implemented in ’sklearn.cluster’
library, and in fact is the one that we used for this work. As stated previously,
DBSCAN, Spectral and Hierarchical algorithms, theoretically, are much better
than k-means, especially because they do not require the number of cluster in
advance. Instead, practically, the only algorithm that is useful to use for this
problem is k-means, this is because it is very computationally efficient and
can work nicely also with huge amount of data. The problem here is that,
since we are working at activity level, we need to perform a concatenation of
all videos of the same activity before clustering each frames. This lead to a
huge dimension of the input data (frames), that need to be clustered. In Tab.
5.6 are reported the total number of frames of all video concatenated for each
activity and also are reported the number of cluster (action) for each activity.

Activity # frames # cluster
Cereals 129551 5
Coffee 97958 7
Friedegg 539733 9
Juice 241462 8
Milk 177387 5
Pancake 937125 14
Salad 558928 8
Sandwich 259495 9
Scrambledegg 517478 12
Tea 131782 7

Tabella 5.6: Number of total frames and clusters (actions) for each activity.
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As we can see from the table, the number of concatenated frames is pretty
high. For example, using DBSCAN all the frames are classified as −1, this
means that are all considering as outliers or noisy data. So the algorithm is not
able to find different area of density points and so it classify all the frames as
background action. The Spectral clustering instead gave us memory issue, in
fact when we tried to run it for the Cereals activity it gives the following error:
” MemoryError: Unable to allocate 125. GiB for an array with shape (129551,
129551) and data type float64 ” . Finally, also the Hierarchical clustering failed
with this huge number of data. In fact, the algorithm does not converge, or at
least in a feasible time, since it consider all the points as a cluster and then it
started combining the in an hierarchical way, based on their distance. So, in
the end, the only clustering algorithm that was possible to use for this problem
was K-means.
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Capitolo 6

Results

In this section we report quantitative results in terms of Mean of Frames and
F1-score, and qualitative results through visualizations of the features space
via t-SNE considering both video and activity level. Finally we reported the
segmentation results of our model to understand better the strengths and
weaknesses of our approach.

6.1 Quantitative results

Finally, the last thing to do is to test how well the model works for Temporal
Action Segmentation. To do so we used the pretrained Siamese network, trai-
ned on the last stage of curriculum learning. We considered just one of the two
streams, so its no longer a Siamese network, and pass all the video through it.
Doing so we obtained a new and better representation of the videos frames.
Finally all the video belonging to the same activity were concatenated. The
last part consists of applying the K-means algorithm to classify the frames into
their respective action clusters.

6.1.1 Ablation study and hyper-parameter tuning

To first thing we did to improve the results was tuning the hyperparameters
of the Siamese architecture. The parameter that we tried to change are: op-
timizer, dropout, padding, number of layer, weight decay and learning rate.
In Tab.6.1 are reported the possible choices for these parameter and in bold
are the one that are the best within them. We considered the best parameter
as the ones that minimize the validation loss. To check the performance of
different combination of the parameters, we considered only the first stage of
the curriculum learning and for 20 epochs. This of curse is due to time rea-
son, as is not feasible to wait almost a week to have the results of only one
combination.
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Parameter Values
num layers 8, 9, 10
padding 2097, 4096
optimizer ’adam’, ’SGD’
learning rate 0.01, 0.001, 0.0001
dropout 0.1, 0.3, 0.5
weight decay 1e-8, 1e-5

Tabella 6.1: Possible combination of hyperparameters.

To calculate all these possible combination we used a program calledWeights
& Biases [62] (W&B) . The reasons why we decided to use this tools are that
is a popular platform for experiment tracking, hyperparameters optimization,
and visualization of data in machine learning (ML) and deep learning.

In Fig.6.1 are reported all the runs, with different combination of hyper-
parameters, respect to the validation loss. In total we ran 139 combination of
hyperparameters, chosen randomly between the ones in Tab.6.1; in the image
is highlighted only the run with the lowest validation loss.

Figura 6.1: Validation loss respect to possible combination of hyperparameters.

The difference with the previous architecture are that now the learning rate
is set to 0.001 while before it was 0.0005. The weight decay is now 1e-8 and the
dropout is 0.1 while previously they were 1e-5 and 0.3 respectively. Moreover
the encoder block inside the Transformer architecture are now 8 instead of 9.
This mean that the self-attention mechanism has a reduce attention window of
a maximum of 256 instead of 512. Finally the padding size remains unchanged
to 4096.

In Tab.6.2 we can notice the improvement in the results thanks to this new
configuration of the architecture. This new architecture is able to improve the
Mean over Frame of ≈ 12% respect the original features and ≈ 8% respect the
features find by the previous configuration. Also the F1-score increase to 29.53
improving the previous results that are around 23. Moreover we can notice
that this new architecture performs much better for certain activities respect to
others. For example in the case of Cereals and Coffee it reaches a MoF of 55.6%
and 56.25% respectively, while for activities such as Pancake and Scrambledegg
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it reaches only a MoF of 34.65% and 38.85%. This is due for two main reasons:
the number of cluster and the total number of concatenated frames for each
activity. In fact activities Cereals has only 5 possible actions (the lowest with
Milk) and Coffee has the lowest number of total frames. Instead Pancake and
Scrambledegg are the ones with more actions, respectively 14 and 12, and also
Pancake is the one with the most total number of frames, 937125.

Original New Features Best Parameters
Activity MoF F1 MoF F1 MoF F1
Cereals 42.16 30.42 48.52 32.63 55.16 37.66
Coffee 32.48 19.56 38.48 19.76 56.25 27.98
Friedegg 27.69 18.75 30.78 19.74 43.10 26.04
Juice 37.25 27.55 44.72 28.82 54.65 33.15
Milk 46.30 36.76 37.06 24.38 48.77 34.64
Pancake 27.34 16.75 27.00 17.33 34.65 23.83
Salad 32.33 27.06 39.53 28.18 43.83 31.68
Sandwich 30.61 18.25 38.60 22.80 42.12 29.05
Scrambledegg 30.37 17.89 34.97 21.50 38.85 25.15
Tea 37.13 20.23 40.47 20.27 44.04 26.09

Total 34.37 23.32 38.01 23.54 46.14 29.53

Tabella 6.2: Results for every activity considering the original features, the
first features extracted by the network (New Features) and the one extracted
by the improved network (Best Parameters)).

After we found the best hyperparameters for our architecture, we wanted
to test out if the hierarchical structure of the encoder block is essential for
this problem. To do so we implemented the same architecture as the previous
one but we fixed the size of self-attention window to 512, the maximal size
of the previous architecture, for all encoder blocks. While we were training
the Siamese network for each stage we noticed a worsening on the accuracy
and of course an increment in the time required to train each epoch. For
example for the last stage, the one considering the combination of the previous
stages, this new architecture, without the hierarchical self-attention window,
got an accuracy of 81.40% that is much worse than the previous case, in fact
previously we got an accuracy of 87.96%. Moreover the time required increase
a lot, now the architecture need ≈40 minutes to compute an epoch, that is
almost the double if we considered the previous case, where it needed ’only’
≈27 minutes. Nevertheless we computed the new features of the videos, as done
previously, in order to check the results without considering the hierarchical
representation. With this modified architecture we obtained a MoF of 30.96%
and a F1-score of 18.81. This results are much worse if we consider the previous
case, where we obtained a MoF of 46.14% and a F1-score of 29.53. Moreover
the time required to train an epoch for each stage is almost duplicated. This
prove, also empirically, that the use of an hierarchical representation is essential
to find out significant relations between frames of the same action.
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6.1.2 Comparative results

Finally, we compare the results obtained by our model with those of state-of-
the-art architectures. In Tab.6.3 are reported the Mof and the F1 score of the
unsupervised and weakly-supervised models. First of all we can notice that the
best results are obtained by CAD[34] for what concern MoF and by UDE[30]
if we consider the F1-score. The probable reason for their results is that they
used the Inflated 3D ConvNet (I3D) features representation, instead of the
Improved Dense Trajectory (IDT) + Fischer Vector (FV) ones. As stated
previously, we used the FV representation due to the time required to train
the whole network and to compare to most of state-of-the-art methods that
have been tested taking FV features as input. In fact, if we consider only the
models that are using the FV features representation, our model reach similar
results to the others, in fact is not the best in term of MoF and F1 score but
is close enough.

Model Year Input/Feature F1 MoF Scenario
[35] Mallows 2018 IDT + FV - 34.6 unsupervised
[63] Prism 2019 IDT + FV - 33.5 unsupervised
[36] CTE 2019 IDT + FV 26.4 48.1 unsupervised
[31] JVT 2021 IDT + FV 29.9 41.8 unsupervised
[34] CAD 2021 IDT + FV - 49.5 weakly-supervised
[34] CAD 2021 I3D - 53.1 weakly-supervised
[30] UDE 2021 I3D 31.9 47.4 unsupervised
[64] TOT 2021 IDT + FV 31.0 47.5 unsupervised

Ours 2023 IDT + FV 29.5 46.1 weakly-supervised

Tabella 6.3: Performance of unsupervised and weakly-supervised methods eva-
luated on the Breakfast Actions dataset. Weakly-supervised methods use the
same amount of information of unsupervised ones.

6.2 Qualitative results

For representing the new features representation we decided to use the t-
distributed Stochastic Neighbor Embedding (t-SNE) algorithm. t-distributed
Stochastic Neighbor Embedding is a dimensionality reduction algorithm de-
veloped by L. van der Maaten et al. in 2008 [65] To be more specific t-SNE
is a nonlinear dimensionality reduction algorithm, and can be used instead of
PCA. t-SNE is mostly used to understand high-dimensional data and project
it into low-dimensional space, like in 2D. This algorithm is non-deterministic
and iterative, so each time it runs it obtains different representations. For this
reason it can be used to try to understand high-dimensional datasets but not
to perform dimensionality reduction for ML training, like PCA.

In Fig. 6.2 and Fig. 6.3 are plotted difference t-SNE representation for
different activity both in the case of video and activity level. The dimension
of the features are reduced from 64 to 2 and each color in the plots represent
a different action. The first difference we can notice between the two levels is
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that the video level is much more easier respect to the activity one. Of course
this is due to the fact that at video level there are much less frames respect
considering all video from an activity and, moreover, because the frames are
more similar, done by the same person in the same kitchen. Even for more
difficult cases like ’P41 cam01 P41 pancake’, top left in Fig. 6.2, clustering the
action should not be to difficult since each action are well separated, especially
in the case of the modified feature by our model.
The case is completely different if we check the t-SNE representation at activity
level. From Fig.6.3 we can notice that algorithm is not able to find some
pattern and divide correctly each action within their respect activity. All
representation look like a random cloud of points, due to the huge amount
of input data (frames). In some activity like ’coffee’ and ’sandwich’ (bottom
right and top left) we can distinguish some area where some colors (actions)
are more present than the others. But in cases like ’friedegg’ (bottom left)
is almost impossible to distinguish these area, due also to the ’background’
action, light green in the plot, that is much more numerous than the other
ones.
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Figura 6.2: t-SNE features representation at video level.

Figura 6.3: t-SNE features representation at activity level.
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6.2.1 Segmentation result

To get a better understanding on how good our model works, we reported
four action segmentation result in Fig.6.4. Four each of the four example are
reported the action cluster (of a single video) based on three different feature
representations. In fact, we have in the second line the result of the clustering
obtained by applying K-means to the original features (ORI), in third line
in the case of the features extracted by our model in the first run (FIRST),
and finally in the final line are reported the actions cluster obtained with the
features extracted by the network after the tuning of the hyperparameters.
Moreover, in the first line are reported the ground truth (GT) and of course at
each color corresponds a particular action. These bar plot gives us some useful
insight information about the results, that can be more explicit than just the
MoF and F1-score. The first thing that we can notice from the image is that
the results obtained with the first new features representation learned by the
network (FIRST) suffer a lot the problem of over-segmentation. In fact, even
if the results are similar to the original features, from the image we can see
that in this scenario the video is divided multiples times in small and different
segments, suggesting that this features representation is not able to capture
the temporal relationship between frames and so it lost the natural continuity
of the actions. Instead, in the FINAL case we can notice that this problem of
over-segmentation is less present, is still not as good as the ground truth but
this may be the reason of the huge improvement in the results compared to
the two other methods (ORI and FIRST).
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Figura 6.4: Segmentation results with different features representation. Here
in the images GT represent the ground truth of each frames respect to their
actions. ORI are the segmentation results using the original features. FIRST
are the segmentation results using the first configuration of our architecture.
FINAL are the segmentation results using the best hyperparameters combina-
tion for our architecture.
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Capitolo 7

Conclusion

This work addressed the problem of Temporal Action Segmentation on video
data, at activity level in a weakly-supervised fashion. The main contribution
is a self-supervised transformer based architecture that learns action represen-
tations useful in a weakly-supervised scenario, hence significantly reducing the
annotation cost of existing fully-supervised transformer-based architectures as
ASFormer[7] and UVAST[27].

To achieve this result, we analyzed the state-of-the-arts architectures and
we chose the ASFormer model as starting point for our project. The first
part was focused on the understanding if this architecture was able to fit this
problem in the weakly-supervised scenario. After changing and improved the
ASFormer architecture we moved on the solution of the problem. We used our
improved network to construct a Siamese architecture, which scope is a binary
classification tasks, that has to distinguish between video of different activities
and learn new frame representation. The key point for a good training of
the Siamese architecture was to implement curriculum learning, that implied
to divide the dataset (videos) in different stages, from the easiest pairs to
the most complex ones. Finally all the new videos representations, of the
same activity, were passed to a clustering algorithm, the k-means, to classify
each frames. Compared to the state-of-the-arts the results obtained with our
architecture are quite satisfactory. In fact there are not huge improvement
on the actual results but they are align with the others, suggesting that even
the Transformer architecture can be implemented for this kind of problem
and, maybe, with some further studies on it, it can also surpass the actual
state-of-the-arts results.

7.1 Future work

Since using the transformer-based architecture to solve the Temporal Action
Segmentation problem is largely unexplored in the scenario of unsupervised
and weakly-supervised learning, there are a lot of possibilities to improve the
results.

First of all, the model should be tested on other datasets to get more in-
sights about strengths and weaknesses points of the architecture. Also it can
be useful to understand if the model is able to generalize and still work effi-
ciently using video of different nature and with different degrees of complexity
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in terms of temporal semantics. Also, another possible strategy to improve
the results, could be doing some boundary refinement to reduce the problem
of over-segmentation. This strategy was introduced by Z. Wang et al. [66]
for multi-stage segmentation algorithms. It is not designed for a Transformer
architecture, but it could be adapted to work with it.

Finally, the last thing as possible future work and probably the most dif-
ficult one, is trying to work as a global level instead of activity level. For
unsupervised and weakly-supervised scenario there are not relevant state-of-
the-arts methods working at this level. The main difficulty is that the architec-
ture needs to model the inter-activity association between actions. Moreover,
if the model classifies the wrong activity for a video the model, it is likely to
misclassify all the frames, since the action between activities are different.
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