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Foreword

Quantum Computing is not only a matter of conceiving a new kind of hardware but designing com-
pletely di�erent algorithms by means of a new kind of software too. Therefore, it is paramount to
accurately know all the preeminent libraries, software development kits and programming languages
that enable to do so. This work purpose is exactly to explore the variety of options available and
compare them highlighting their bene�ts and drawbacks.

Particularly, the author weigh several solutions to code quantum circuits against each other and came
to his conclusions also interviewing and working directly in contact with a quantum algorithm designers
and software engineers team. Although this thesis does not claim to be exhaustive (for example, it
focuses only on gate-based Quantum Computing SDKs and does not cover the ones dedicated to
quantum annealing or measurement-based Quantum Computing), it is not only a good starting point
for further detailed studies and extensions but most of all a very useful reference guide for both students
and professionals who want to begin in programming a Quantum Computer, taking advantage from
the insights it provides.

Dr. Davide Corbelletto

Quantum Technology Specialist at Intesa Sanpaolo
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Abstract

The rapid development of gate-based Quantum Computers has opened new possibilities for solving
complex computational problems. However, programming these Quantum Computers introduces new
challenges due to the fundamental di�erences between classical and Quantum Computing paradigms.
Programming quantum systems requires a new set of tools and programming languages that are specif-
ically designed to deal with the nature of quantum physics. This thesis presents a comparative analysis
of Software Development Kits (SDKs) conceived for circuit design automation in gate-based Quantum
computers. The objective of this research is to evaluate and compare the capabilities, features, and
usability of existing SDKs focusing on the functionalities such as allowing users to de�ne quantum
circuits, apply gate operations, and simulate their behaviour.

Apart from the widely adopted frameworks such as Qiskit, TKET, and Cirq, the analysis also includes
the recently developed SDK from the University of Padova: Quantum Matcha TEA. The comparative
analysis is conducted through a series of experiments and benchmarks performed on each SDK hav-
ing as central points the programming interfaces usability, the documentation completeness, and the
availability of support provided by the vendor or the related developer community. Another goal of
this work is to explore the e�ciency and �exibility of the various SDKs in handling common Quan-
tum Computing tasks, such as quantum circuit design, gate operation, and circuit execution both on
simulators and real quantum hardware.

The ambition of this comparative analysis is to give useful insights to researchers, developers, and
practitioners in order to identify strengths and weaknesses of di�erent SDKs depending on the speci�c
requirements of the algorithms that need to be implemented. Additionally, the research aims to
contribute to the advancement of SDKs by identifying areas of improvement and potential future
directions in the development of quantum programming tools.

Keywords: Quantum Computing, Gate-based Quantum Computing, Software Development Kits
(SDKs), Circuit Design Automation
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Chapter 1

Introduction

"Future can not be predicted, but futures can be invented."

Dennis Gabor

Quantum Computing (QC) is a di�erent kind of hardware (qubit-based) with respect to classical
computing, but more importantly a di�erent kind of software (quantum mechanics based algorithms).

The aim of this Thesis' chapter is to give an introduction to Quantum Computing, starting from basic
concepts and emphasizing why and how this new technological paradigm can help to overcome the
limitations of a classical approach in solving intractable problems. There are types of problems which
in fact are impossible to solve by traditional computers, even by the most powerful ones. This hardness
is often expressed in terms of unsatisfactory quality of the solution, for example:

� When one tries to approximate the simulation of a chemical compound, like a drug, and one
wants to �nd the best con�guration of atoms that can minimize the energy of the molecule.

� When one attempts to optimize a �nancial portfolio searching the best solution which maximizes
the revenue minimizing at the same time the volatility of the investment.

� When one wants to optimize a logistic chain such as the best route for a delivery service.

In most of the cases these problems are impossible in terms of execution time, for instance:

� The decomposition of an integer number into its prime factors (�unfeasibility� on which is based
the current state-of-the-art asymmetric cryptography).

� The daily forecast of a �nancial scenario when the market is still open.

� When one tries to calculate the optimal route in real time.

So there are many questions: how these limitations can be overcomed? Why a quantum approach can
be more e�cient than a classical one? This chapter covers the main di�erences between a classical and
a quantum computation, the main principles and paradigms of QC and, at the end, a brief overview
of the current QC hardware and software together with their main applications.

1.1 Quantum Computing

The modern incarnation of computer science was announced by the great mathematician Alan Turing
in a remarkable 1936 paper [1]. Turing developed in detail the notion of what nowadays is called
programmable computer: a model of computation now known as the Turing machine [2]. Furthermore,
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1.2. Limits of Classical Computing Chapter 1. Introduction

he claimed the concept of "Universal Turing Machine" which provided a theoretical framework for
understanding computation, in particular what it means to perform a task in an algorithmic way of
thinking.

The invention of the transistor in the late 1940s revolutionized computing by enabling smaller, faster,
and more reliable electronic components [3]. In the 1950s and 1960s, the �eld of computer science
further expanded with the introduction of high-level programming languages like FORTRAN and
COBOL, as well as the development of operating systems [4]. Advancements in integrated circuits
and microprocessors in the 1970s and 1980s enabled the miniaturization and widespread adoption
of computers [5], leading to the personal computer revolution and, in the late of 20th century, to
the advent of Internet and World Wide Web [6]. These incredible milestones drove the development
of the modern computing era, connecting computers worldwide and revolutionizing communication,
commerce, and information sharing. In the 1990s and 2000s, researchers began exploring the concept
of Quantum Computing, leveraging the principles of quantum mechanics to perform computations.
Quantum computing is a beautiful fusion of quantum physics with computer science. It incorporates
some of the most stunning ideas of physics from the twentieth century into an entirely new way of
thinking about computation [7].

Below is an overview of the key reasons why QC is so important and why it is considered to be one
of the next technological revolutions. Quantum Computers, by harnessing the principles of quantum
physics, provide the ability to simultaneously represent and manipulate vast amounts of information.
Moreover, we have good reason to believe that a Quantum Computer would be able to e�ciently
simulate any process that occurs in Nature [8]. With QC one should be able to examine more deeply
the properties of complex molecules and exotic materials, and also to explore fundamental physics in
new ways, for example by simulating the properties of elementary particles, or even reproducing the
quantum behaviour of a black hole. However, it remains a great challenge for future physicists and
engineers to develop techniques to perform large-scale quantum information processing.

The main reason is that the quantum world is very di�erent from the classical world, and the quantum
behaviour of a system is often very di�cult to control and manipulate. However, Quantum Computing
has the potential to change many �elds by solving complex problems faster and more e�ciently than
classical computers.

1.2 Limits of Classical Computing

Traditional computers are reaching the limits of their computing power: the ever-increasing demands
for performance, miniaturization and production are becoming more and more di�cult to meet.
Moore's law (which can be visually understood in the Fig. 1.1 below) tells us that the number of
transistors in a �xed size integrated circuit doubles about every two years.

This statement (true from 1965 to the present) is indeed reaching a point where the size of transistors
is so small (≈ 3nm) that quantum e�ects are becoming important, and the classical approximation,
which ignores quantum e�ects, is no longer valid. At the atomic scale, indeed, nature obeys to quantum
mechanics laws. Quantum Computing can therefore provide a technological solution to help High
Performance Computers (HPC, the most powerful classical devices) to solve some speci�c problems
and, at the same time, to the challenge posed by the eventual failure of Moore's law.

Quantum Computers indeed o�er a speed advantage over classical computers. For example, the Shor [9]
and the Grover [10] algorithms give exponential and quadratic speed-up respectively over classical
solutions. This speed advantage is so signi�cant that many researchers believe that no conceivable
amount of progress in classical computation would be able to overcome the gap between the power of
a classical computer and the power of a quantum computer [2].

The �rst place where this quantum speed advantage is being tested is in the simulation of quantum
systems. Simulating complex systems without considering quantum correlation e�ects, can require
computational power that grows exponentially with the size of the system, making accurate simulations
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Chapter 1. Introduction 1.2. Limits of Classical Computing

Figure 1.1: Visual representation of the Moore's law: a semi-log plot of transistor counts for microprocessors
against dates of introduction, nearly doubling every two years

on traditional HPC di�cult or even impossible. Indeed, classical computers are particularly weak at
simulating the dynamics of many-particle quantum systems; therefore quantum dynamics is a promising
area where Quantum Computers may have a signi�cant advantage over classical ones [8]. In the worst
case scenario, storing the quantum state of a system with n distinct components arrives to require cn

bits of memory on a classical computer, where c is a constant which depends upon details of the system
being simulated, and the desired accuracy of the simulation. By contrast, a Quantum Computer can
perform the simulation using kn qubits, where k is again a constant which depends upon the details of
the system being simulated. This allows QC to e�ciently perform simulations of quantum mechanical
systems.

Achieving faster and more accurate simulations of such systems may therefore have the welcome ef-
fect of enabling advances in other areas where quantum phenomena are important. Nevertheless a
signi�cant caveat is that, though a Quantum Computer can simulate much more e�ciently than a
classical computer, this does not mean that a faster simulation will lead to a better result in terms of
accuracy [2].It is therefore important to keep in mind that QC is not a panacea for all computational
problems, but it is a new powerful tool that requires a deep understanding.

1.2.1 Storage and Processing Power

The two main limitations of traditional computer science are represented by the storage and the
processing power.

Even if classical HPC are continuously growing, they will not be able to store all the information
required, for example, by simulation problems (e.g., molecule con�guration or market forecast). This
is also called Space Complexity, which is a measure of the amount of memory that an algorithm
needs. The bit is the fundamental unit of classical information. Quantum Computing and quantum
information theory, are built upon an analogous concept, the quantum bit, or qubit for short. A
more detailed explanation of this concept will be given in the section 1.3.1, for now it is important to
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1.2. Limits of Classical Computing Chapter 1. Introduction

understand that qubits, thanks to quantum properties, lead to more information being processed with
respect to classical bits.

The attempt of representing all the possible con�gurations of a molecule requires the storage of a huge
amount of bits of information. Why is it important to e�ciently represent all the possible con�gurations
of a molecule? If it were possible to fully simulate all chemical con�gurations, one could study and
produce antigens and drugs with 100% e�cacy and, most importantly, without side e�ects. Comparing
this number with the number of qubits needed to represent the same information, the di�erence is huge.

Molecule Chemical Formula # Bits # Qubits

Water H2O 103 10

Ethyl Alcohol C2H6O 1012 40

Ca�eine C8H10N4O2 1048 160

Penicillin C16H18N2O4S 1086 286

Table 1.1: How many bits are needed vs qubits (in superposition) to simulate all the con�gurations of a speci�c
molecule

The Tab. 1.1 shows the calculations made in [11], considering all the energy con�gurations given by
the orbitals of the atoms in the molecule. One can see that it would take 1048 bits to represent all
the possible con�gurations of a molecule of ca�eine, which is about the number of atoms in the planet
Earth (≈ 1050); penicillin even requires 1086 bits (approximately the estimated number of atoms in
the universe) versus 286 interconnected qubits.

The approach taken by Quantum Computing can also help traditional computers improve their pro-
cessing power by increasing the number of operations a machine can perform in a given time. This
is also part of what is known as complexity, which is a measure of the amount of resources, such as
memory and time, needed to run an algorithm.

1.2.2 Complexity of Algorithms

Computational complexity theory is the classi�cation of computational tasks' hardness, both classical
and quantum. A complexity class can be thought of as a collection of computational problems, all of
which share some common features with respect to the computational resources needed to solve those
problems [2].

An idea behind commplexity is that one imposes an upper bound on how much resources your computer
can use [12]. One can de�ne TIME(f(n)) to be the class of problems for which every instance of size n
is solvable in an amount of O(f(n)) steps. Here "solvable" means tractable in reasonable time by some
particular type of idealized computer which is �xed as a reference. Likewise, SPACE(f(n)) is the
class of problems solvable by our reference machine using an amount of space (i.e. units of memory)
that grows like O(f(n)).

An important reference to understand the complexity of algorithms is Fig. 1.2 below, which shows the
behaviour of the computational time t as the size of the problem n increases.
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Chapter 1. Introduction 1.2. Limits of Classical Computing
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Figure 1.2: Computational time vs. size of the problem

To summarize, complexity looks at how the size of TIME(f(n)) and SPACE(f(n)) grow as the
problem size n grows. In computer science, an algorithm is called e�cient if, solving a task, it takes
polynomial time or less to execute a certain number of steps. Polynomial time can also mean that
the units of memory used by the algorithm scale as a polynomial in n. Problems of this kind belong
to complexity class P, which stands for Polynomial-Time. Some problems in P include matchmaking
in the �stable marriage problem�, determining if a number is prime, and maximizing a linear function
constrained by linear inequalities.

On the other hand, an algorithm is ine�cient if it takes more than polynomial time, called superpoly-
nomial time. This includes algorithms that take exponential time, such as O(2n), which are regarded
to be infeasible for large n.

Another complexity class is the problems for which a solution can be quickly veri�ed by a computer
in polynomial time. This class is called NP (Non-deterministic Polynomial), and it includes problems
such as factoring or testing if two networks are equivalent. Certain problems within NP have a special
property called completeness, these are called NP-COMPLETE. If one can �nd an e�cient solution
to any NP-COMPLETE problem, then it can be used to �nd an e�cient solution to any NP problem
since all NP problems can be transformed into an instance of an NP-COMPLETE problem. Some
NP-COMPLETE problems includes:

� Finding the shortest possible tour that visits a list of cities exactly once and returns to its starting
point, known as the �traveling salesman problem�

� Determining whether a tour that visits each location once and returns to its starting point exists,
which is called the �Hamiltonian path problem�

It is known that all problems in P are contained within NP, since if one can e�ciently solve a problem,
one can also e�ciently check proposed solutions by comparing them to the answer. However, it is
unknown whether NP contains any problems that are not in P. The general conjecture is that P ̸= NP .
Another complexity class is PSPACE, which contains all the problems that can be solved by a computer
using a polynomial amount of memory, without any limits on time. It is known that NP is contained
in PSPACE because one has unlimited of time to check all possible answers. Although it seems like
PSPACE should be a larger class of problems than NP, there is currently no proof [13]. The BPP
complexity class (Bounded-error Probabilistic Polynomial time) contains decision problems that can
be e�ciently solved by a probabilistic Turing machine in polynomial time with a bounded probability
of error. The BPP class covers problems that can be solved with the help of randomness [2]. In simpler
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1.3. Principles of Quantum Computing Chapter 1. Introduction

terms, a problem is in the BPP class if there exists an algorithm that can decide the problem with
high con�dence in a polynomial amount of time.

Focusing on the QC contributions to complexity theory, problems e�ciently solved by a Quantum
Computer are classi�ed in the BQP class. This stands for Bounded-Error Quantum Polynomial-
Time. Quantum Computers can e�ciently simulate classical computers, so they can e�ectively solve
everything that a classical computer can optimally solve. Moreover, as it stated in [14] BQP ⊃ BPP.

To summarize, a convenient division of complexity classes includes:

� P (Polynomial) class: problems solvable by a Turing machine in polynomial time. In other words,
P is the union, over all positive integers k, of TIME(nk).

� NP (Nondeterministic Polynomial) class: problems which have solutions that can be checked in
polynomial time.

� NP-Complete class: the hardest tasks in NP. In other words, they are the problems in NP
whose solutions can be used for any other problem in NP.

� PSPACE class: problems solvable in polynomial space (but unlimited time). In other words, it
is the union over all integers k of SPACE(nk).

� EXP class: problems solvable in exponential time. In other words, it is the union over all integers
k of TIME(2n

k
).

� BPP class: problems that can be solved using randomized algorithms in polynomial time, if a
bounded probability of error in the solution is allowed.

� BQP (Bounded-Error Quantum Polynomial-Time) class: problems e�ciently solved by a Quan-
tum Computer, where a bounded probability of error is allowed.

The relationship between classical and quantum complexity classes is shown in Fig. 1.3 below.

PSPACE

NP

NP-
COMPLETE

P

BQP

EXP

Figure 1.3: Relationship between complexity classes

1.3 Principles of Quantum Computing

1.3.1 Bit vs. Qubit

As a �rst concept, it is indispensable to understand the di�erences between a classical bit and a
quantum bit.
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Chapter 1. Introduction 1.3. Principles of Quantum Computing

A bit is just a binary digit, which can be 0 or 1, and it represents the minimal unit of information
storage used in classical computation. A qubit is the quantum counterpart of a bit. Unlike a bit, which
is limited to one of the two possible states 0 or 1, qubits can take on an in�nite number of values that
can be expressed as a linear combination of these two states.

While a classical bit corresponds to one of two alternatives (e.g., on/o�, black/white, north pole/south
pole), a qubit can be represented as a column vector in a Hilbert two-dimensional complex vectorial
space. The special states |0⟩ and |1⟩1 form an orthonormal computational basis for this vector space
and the general state of a qubit can be written as a linear combination of these two:

|ψ⟩ = α |0⟩+ β |1⟩ (1.1)

Where the coe�cients α and β are complex numbers.

|0⟩ and |1⟩ can also be expressed as column vectors:

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
With this additional representation, the generic state which a qubit takes on (Eq. (1.1)) can be written
as

|ψ⟩ = α |0⟩+ β |1⟩ = α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)

The vector

(
α
β

)
represents α |0⟩+β |1⟩. Here α and β respectively represent the amplitude of outcome

|0⟩ and |1⟩.

The bit has the property that it can be measured to determine whether it is in the state 0 or 1. For
example, computers do this all the time when they retrieve the contents of their memory. Rather
remarkably, one cannot examine a qubit to determine its quantum state, that is, the values of α and
β. In quantum mechanics one can only acquire much more restricted information about the quantum
state. When a qubit is measured in the Z-basis one gets either the result 0, with probability |α|2, or the
result 1, with probability |β|2. Since the probabilities must sum to one, the state must be normalized
to 1 which means |α|2 + |β|2 = 1.

The following geometric representation is a useful way of thinking about qubits. First of all, one may
reparametrize the coe�cients of Eq. (1.1) in spherical coordinates as

α = r · cos
(
θ

2

)
and β = r · eiφ · sin

(
θ

2

)
,

where 0 ≤ r ≤ 1 is a real number, as well as θ and ϕ, which indicates the Euclidean distance of the
statevector to the origin. θ is the polar angle from the positive z-axis and the statevector and φ is
the azimuthal angle from the x-axis to the orthogonal projection in the xy-plane of the statevector
(Fig. (1.4)).

Qubits describe normalized state so one can assume r = 1. Other conditions for θ and φ are 0 ≤ θ ≤ π
and 0 ≤ φ < 2π. Except for a global phase (eiγ) the state can therefore be written as

|ψ⟩ = eiγ
[
cos

(
θ

2

)
|0⟩+ eiφ · sin

(
θ

2

)
|1⟩

]
. (1.2)

The global phase given by eiγ has no observable e�ects and for that reason one can e�ectively write

1According to Dirac's notation, a column vector is expressed with '| ⟩' which is called ket
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1.3. Principles of Quantum Computing Chapter 1. Introduction

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ · sin

(
θ

2

)
|1⟩ . (1.3)

The angles θ and φ de�ne a point on the unit three-dimensional sphere, as shown in Fig. (1.4): the
�rst one is correlated with the amplitude probability while the second represents the phase. This unit
sphere is often called the Bloch sphere; it provides a useful means of visualizing the state of a single
qubit, and is often used as an excellent testbed for ideas about quantum computation and quantum
information.

Figure 1.4: Bloch sphere representation of a single qubit state |ψ⟩ which is the vector represented in blue

The set of states a system can occupy is called the state space S of that system. For classical bits, S
contains just two states, S = {0, 1} whereas a qubit can be in in�nitely-many states: the north pole
corresponds to |0⟩, the south pole to |1⟩, but in general a qubit can be any point on the Bloch sphere.
It is like moving from being able to tell whether a point is in the north or south hemisphere (which
is the same as telling if a bit is 0 or 1) to being able to identify the exact position on the Earth, by
adding the latitude and longitude coordinates.

Recall that measuring a qubit, e.g. at the end of a computation in order to read the result, gives
a single, de�nite value, only either 0 or 1. Furthermore, the measurement changes the state of a
qubit, collapsing it from the linear combination |ψ⟩ to one of the two basis state |0⟩ or |1⟩.A single
measurement only provides a single bit of information about the state of the qubit.It turns out that
only by measuring an in�nite number of identically prepared qubits would one be able to determine
α and β for a qubit in the state given by Eq. (1.1). It is fundamental to emphasize, as in [7], that
the act of measurement changes the qubit with a permanent loss of information. This phenomenon,
known as the collapse of the quantum state, occurs for almost all the experiments one might run and
it is a probabilistic process.

The study becomes even more interesting when one considers a system that involves many qubits.

When dealing with multiple qubits, the states are written as a tensor product ⊗. For example, two
qubits, both in the |0⟩ state, are written

|0⟩ ⊗ |0⟩ = |00⟩

With two quibits the possible states are four (22):
{
|00⟩ , |01⟩ , |10⟩ , |11⟩

}
. In this case, a general state
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Chapter 1. Introduction 1.3. Principles of Quantum Computing

can be expressed as
c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩

where c0, c1, c2, c3 are complex numbers.

If a measurement is performed, one gets |00⟩ with probability |c0|2, |01⟩ with probability |c1|2, |10⟩ with
probability |c2|2 and |11⟩ with probability |c3|2. Thus, the total probability is |c0|2+ |c1|2+ |c2|2+ |c3|2
and it should equal to 1.

More generally, if a system of n qubits is considered, the computational basis states are like |x1x2 . . . xn⟩,
where xi ∈ {0, 1}. The possibile quantum states are 2n. For n = 300 this number is greater than the
estimated number of atoms in the Universe. Trying to store all these complex numbers would be
impossible on any classical computer. To quote [2], Hilbert space is indeed a big place.

Finally, to summarize the di�erences between a bit and a qubit, as in [15], a classical bit:

� admits two states, labelled 0 and 1,

� can be freely read

With 'can be freely read' is that one can read the state of any bit in a computer's memory without
any kind of obstruction and without changing that state. The qubit instead:

� admits an entire space of states, which can be represented as the Bloch Sphere

� can only be subjected to rotations of that sphere,

� can only be accessed through quantum measurements, having as a consequence the collapse of
the quantum state

1.3.2 Superposition and Entanglement

This section explores the concept of superposition and introduces entanglement: the two fundamental
properties of quantum mechanics.

For any isolated region of the universe that one wants to consider, quantum mechanics describes the
evolution in time of the state of that region, which can be represented as a linear combination of all
the possible con�gurations of elementary particles in that region. This linear combination is called
superposition of states. As shown in the previous section, a qubit can be in a superposition of the
states |0⟩ and |1⟩, which means that it can be in a state |ψ⟩ that is a probabilistic combination of |0⟩
and |1⟩. This is the ability of a quantum system to be in multiple states simultaneously until it is
measured.

To understand this concept, let us consider the following example. Suppose one has a coin and wants
to toss it. In the classical world, the coin can be either heads or tails, but not both. In the quantum
world, the coin can be in a superposition of heads and tails, that is, it can be in a state |ψ⟩ that is a
linear combination of the two sides of the coin. It is as if one were observing the coin spinning in the
air, with the possibility of working with a state that is a probabilistic combination of both heads and
tails. Only after performing a measurement operation on the coin, it will collapse to either heads or
tails, but not both. It is like when the coin lands on the ground and one observes it.
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For example, an equiprobable combination of |0⟩ and |1⟩ can be written mathematically as

1√
2

(
|0⟩+ |1⟩

)
or

1√
2

(
|0⟩ − |1⟩

)
(1.4)

In these states, the coe�cient of |0⟩ are 1√
2
and the coe�cient of |1⟩ also are ± 1√

2
, so they are equally

probable1. These particular states are called plus state and minus state respectively, often denoted by
|+⟩ and |−⟩. Given this, if one represents them geometrically on the Bloch Sphere as in Fig. (1.5),
being the two vectors on the equator (x-axis), the couple {|+⟩ , |−⟩} is also called X-basis since they
are the eighenvectors of σx.

Figure 1.5: Bloch sphere representation of the plus state |+⟩ and the minus state |−⟩

The superposition principle enables QC to process and manipulate vast amounts of information simul-
taneously. As in Fig. (1.6), the representable information grows exponentially. With 3 Qubits one can
express 23 = 8 states in a coherent superposition, gaining an advantage in the amount of information
that can be managed with respect to the classical paradigm.

1Remembering that the outcome probability is equal to the square modulus of the amplitude
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Figure 1.6: Analysis of the expressible information classicaly with 3 bits and quantumly with 3 qubits

The other fundamental principle of quantum mechanics is entanglement, which plays a key role in all
the applications of QC.

Entanglement is the term used to describe the quantum correlations between the parts of a quantum
system, which are quite di�erent from the classical correlations. To understand the concept of en-
tanglement, imagine a system with many parts, for example a book which is 100 pages long. For an
ordinary classical 100-page book, every time you read another page you learn an additional 1% of the
book's content, and after you have read all of the pages, one by one, you know everything that is in the
book. Classical (not entangled) systems are like this, the information they contain is additive. Now
suppose instead you are dealing with a quantum book, where the pages are very highly entangled, i.e.
very interconnected with one another. Information in such a quantum book does not follow the order in
which is imprinted on the individual pages. Rather, it is almost entirely encoded in how the pages are
correlated with each other. Therefore, if one wanted to read the book, it would be needed a collective
observation on many (if not all) pages at once [8]. This is the essence of quantum entanglement, the
unique feature that makes information carried by quantum systems very di�erent from information
processed by ordinary digital computers.

To understand the property of entanglement, let us return to quantum state vectors expressed in Dirac
notation. Some quantum states can be tensorably factored into individual qubit states. For example,

1

2

(
|00⟩ − |01⟩+ |10⟩ − |11⟩

)
=

1√
2

(
|0⟩+ |1⟩

)
︸ ︷︷ ︸

|+⟩

⊗ 1√
2

(
|0⟩ − |1⟩

)
︸ ︷︷ ︸

|−⟩

= |+⟩ ⊗ |−⟩

Such factorizable states are called product states or separable states. In the example above, each
single-qubit state can be visualized on the Bloch sphere, so |+⟩ |−⟩ would be two Bloch spheres, with
the �rst on the x-axis, and the other on the −x-axis as follows in Figure (1.7)
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Figure 1.7: Bloch sphere representation of the two qubits in the state |+⟩ |−⟩ after being separated

However, there exist quantum states that cannot be factored into product states. For example, with
two qubits,

|ϕ+⟩ = 1√
2

(
|00⟩+ |11⟩

)
Such states are called entangled states since the state of the qubits are intertwined one with each other.

In a product state, measuring one qubit cannot a�ect the others, while in an entangled state, measuring
one qubit can a�ect the other qubits. For example, consider the entangled state |ϕ+⟩ = 1√

2

(
|00⟩+|11⟩

)
.

If one measures the left qubit, one gets |0⟩ or |1⟩, each with probability 1
2 , and the state collapses to

|00⟩ or |11⟩, respectively. So, if one measures the left qubit and get |0⟩, one knows that the right qubit
is also in the state |0⟩, and similarly, if one measures the left qubit and get |1⟩, one knows that the
right qubit is also in the state |1⟩.

As in Fig. (1.8), a measurement of one part of a system a�ects the other.

Figure 1.8: Schematic representation of entanglement

1.4 Quantum Computer Paradigms

When exploring the landscape of Quantum Computing, one has to face with the intriguing challenge
of selecting between two primary paradigms: gate-based Quantum Computing, with its circuit design,
and quantum annealing, tailored for optimization problems.
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� Gate-Based Quantum Computing

Gate-based QC, also known as the circuit model, is the paradigm at the center of this work. It
involves the manipulation of individual qubits and entangling them through a series of quantum
logic gates to perform computations. In this paradigm, qubits are initialized in a desired state,
properly prepared, and then a sequence of quantum gates is applied to change their states.
Quantum gates are analogous to logic gates in classical computing except that they performed
operations on qubits. They involve operations that will be the focus of the next chapter 2. By
combining these gates and applying them to qubits in a controlled manner, gate-based Quantum
Computers can perform various quantum algorithms and computations.

� Quantum Annealing

Quantum annealing is a di�erent approach to Quantum Computing that is particularly suited for
optimization problems. It focuses on �nding the global minimum or maximum of an objective
function, known as the energy landscape, by exploiting quantum e�ects. In this approach, qubits
are used to represent variables of the optimization problem, and the goal is to �nd the lowest
energy con�guration of the system that corresponds to the optimal solution.

The system is prepared in a superposition of all possible states, and quantum �uctuations are
used to explore the energy landscape and �nd the solution. The annealing process involves
gradually decreasing the energy of the system to steer it towards the low-energy states. The
system evolves over time and ideally settles into a state corresponding to the optimal solution
where energy is minimized.

For example, suppose one has the graph given in Fig. (1.9) and want to �nd the lowest point�the
absolute minimum. Think of the graph as being the bottom of a two-dimensional bucket. The
ball is drop into the bucket. It will settle at the bottom of one of the valleys. These are labeled
A, B, and C in the �gure. One wants to �nd C.

Figure 1.9: Example of an energy landscape of an optimization problem

Quantum annealing adds quantum tunneling. This is a quantum e�ect (with no classical ana-
logue) where the ball is able to overcome a hill but, instead of going over it, it can go through.
This happens since the particle is also a wave and can pass through the barrier even if it does
not have enough energy to overcome it.

It is important to note that gate-based and quantum annealing are not mutually exclusive. They
represent two di�erent approaches to harnessing the power of quantum mechanics for computation.
Gate-based quantum computing o�ers more general-purpose computational capabilities, while quantum
annealing is focused on e�ciently solving optimization problems.
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1.5 QC Hardware Overview

Currently we are in the NISQ (Noisy Intermediate-Scale Quantum) era, which is characterized by
quantum devices that have a number of qubits typically ranging from tens to a few hundreds [8].
Quantum Computers are not yet powerful enough to outperform classical computers for a wide range
of practical problems, primarily due to the presence of errors and noise. These errors arise from various
sources, such as qubit decoherence, imperfect gate operations, and limited qubit connectivity.

The hardware scene of Quantum Computing is currently heterogeneous, meaning that there are dif-
ferent types of QC platforms with di�erent characteristics at the technical level, but also in terms of
the underlying physical principles. This heterogeneity arises because there are di�erent approaches
to implementing and manipulating qubits, the fundamental building blocks of quantum computation.
Each type of framework has its own unique characteristics, architectures, and limitations.

These di�erences pose several challenges for the development, standardization, and practical implemen-
tation of Quantum Computing technology. Regarding gate-based QC, the hardware includes various
platforms such as superconducting, trapped ion, photonic, and neutral atoms. There are also other
approaches such as topological qubits [16], silicon quantum dots [17] and diamond vacancies [18]. Each
architecture has its own strengths and weaknesses, and the choice of a particular framework is usually
application dependent. Each Quantum Computing hardware implementation has its own performance
metrics that are decisive in determining computational power, reliability, and scalability, such as co-
herence times, gate �delities, and qubit connectivity. Due to this lack of a standardized set of metrics,
comparisons and benchmarks of the di�erent platforms performances are currently non-trivial. The
following is a brief overview of the main QC hardware platforms, with the key features, advantages
and drawbacks of each one.

� Superconducting [19]

It is based on circuits made of superconducting materials that exhibit quantum behavior at ex-
tremely low temperatures, close to the absolute zero. Superconductive hardwares involve things
called Cooper pairs and Josephson junctions. The electrons in a superconductor pair up, form-
ing what are called Cooper pairs. These pairs of electrons act like individual particles. If one
sandwiches thin layers of a superconductor between thin layers of an insulator, one obtains a
Josephson junction. These junctions are now used in physics and engineering to create sen-
sitive instruments for measuring magnetic �elds. The energy levels of the Cooper pairs in a
superconducting loop that contains a Josephson junction are discrete and can be used to encode
qubits.

� Advantages: extremely fast gate operations and good scalability.

� Drawbacks: the cryostat must be maintained at working temperatures around 0 K; huge
sensibility to the environment, i.e. reduced coherence that leads to a degradation of the
information contained in the qubits

� Trapped ion [20]

Trapped ion architectures use, as qubits, individual ions typically trapped by using an array of
lasers or electromagnetic �elds. The qubits are typically encoded in the internal energy levels of
the ions, and their states can be manipulated using laser pulses.

� Advantages: extreme stability, long coherence times, high precision in operations and very
interconnected qubits.

� Drawbacks: ususally slow in terms of gate execution time; hard to scale, challenges in
trapping and manipulating large ion arrays.

� Photonic [21]

Photonic hardware is based on the use of photons as carriers of quantum information. It exploits
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the quantum properties of photons, such as polarization, which can be vertical or horizontal,
or a superposition of both. Photons can be generated, manipulated, and detected using optical
components.

� Advantages: high reliability; no special environment setup required; high-speed computa-
tions.

� Drawbacks: non-universal set of gates due to the lack of strong interactions between photons;
complex output digitalization.

� Neutral atoms [22]

This technological design uses atoms with no eletric charge as qubits, often manipulated by light
beams in the encoding and readout phases. The qubits are typically encoded in the internal
energy levels or electronic states of the atoms.

� Advantages: long coherence times; easily scalable; high connectivity within qubits.

� Drawbacks: low processing rate; as a working pressure they must be kept at ≈ 10−7Pa.

All these di�erent technologies are currently being developed by several companies and research groups
around the world. They all su�er from the same problems. As it is disclosed on [7], the most serious is
decoherence: the problem that qubits interact with something from the environment that is not part
of the computation. Since qubits are more sensitive to errors than classical bits, small interactions
with the environment can move the qubit to a di�erent location inside the Bloch sphere. In practice,
decoherence is the biggest obstacle to building large-scale Quantum Computers, because it is very
di�cult to isolate a qubit from its environment while making it accessible for quantum gates and
measurements.

Furthermore, heterogeneity in hardware necessitates platform-speci�c programming languages, soft-
ware stacks, and development tools. Developers need to adapt their algorithms and software imple-
mentations to the speci�c hardware they are targeting. This fragmentation can hinder the development
of a uni�ed software ecosystem and make it more di�cult for researchers and developers to work with
di�erent platforms.

1.6 QC Applications

This section explores some of the applications that are bene�ting from the impact of Quantum Com-
puting.

� Simulation

Quantum Computers can simulate complex systems more e�ciently than classical computers.
This has applications in �elds such as materials science, drug discovery, and quantum chem-
istry [23]. The use of these technologies can accelerate drug discovery by simulating the behaviour
and interactions of molecules, exploring chemical reactions, understanding protein folding, and
designing new materials with speci�c properties. In addition, QC can be used in fundamental
physics simulations such as high-energy physics and condensed matter physics [24]. Further-
more, a quantum approach can be applied to �nancial modelling, risk analysis, and portfolio
optimization [25].

� Optimization

QC can have a signi�cant and valuable contribution to optimization problems in areas such as
logistics, supply chain management, �nancial portfolio optimization, and resource allocation [26].
In this �eld the paradigm of quantum annealing can be used to �nd the lowest energy state of a
system that corresponds to the optimal solution of a problem [27].
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� Machine Learning and Arti�cial Intelligence

Quantum Computing can enhance Machine Learning and Arti�cial Intelligence algorithms [28].
Quantum algorithms such as the Quantum Support Vector Machine (QSVM) and the Quantum
Neural Network (QNN) have the potential to improve pattern recognition and optimization
tasks [29]. Quantum Machine Learning (QML) can also bene�t from quantum data clustering,
dimensionality reduction, and generative modelling.

� Cryptography and security

Shor's algorithm [9] can e�ciently be employed to factorize large numbers, posing a threat to
widely used encryption methods such as RSA. Moreover, the Quantum Key Distribution (QKD)
protocol [30], which enables secure communication through quantum entanglement, is developing
to become a future standard for communication.

These are just some of the applications that are taking advantage of the potential of Quantum Com-
puting. In general, it is important to remember that QC is not a replacement for classical computing,
but rather a complementary technology that can be used to solve speci�c problems more e�ciently.

As it is remarked in [2] designing algorithms for Quantum Computers is challenging because designers
face two di�cult problems not faced in the construction of traditional algorithms. First, our human
intuition is rooted in the classical world. If one uses that intuition as an aid to the construction of
algorithms, then the algorithmic ideas one comes up with will be classical. To design good quantum
algorithms one must turn o� the classical intuition, using truly quantum e�ects to achieve the desired
goal. In the following sections the fundamental principles of quantum mechanics are presented, with
the aim of providing the necessary background to understand the quantum approach to computation.
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Chapter 2

Programming Gate-based Quantum

Computers

The history of classical computing teaches us that when hardware becomes available, it stimulates and
accelerates the development of new algorithms [8]. For example, theorists eventually explained why
the simplex method for linear programming worked well in practice, but only long after it had been
found to be useful experimentally. A more recent example can be found in deep learning: there is
still a lack for a good theoretical explanation for why it works as well as it does. Gate-based quantum
computing is a programming paradigm that allows users to harness the power of quantum systems
by manipulating individual qubits and applying quantum logic gates to perform computations. The
algorithms developed with this approach involve the design and implementation of quantum circuits,
which are sequences of quantum gates applied to qubits to perform speci�c operations. Quantum
circuits are analogous to classical digital circuits, but it is fundamental to understand the di�erence
between the logic gates of the two paradigms.

This chapter introduces the basic concepts of quantum circuits and quantum gates, starting with the
classical logic gates and then analyzing how they can be extended to the quantum case.

2.1 Classical Logic Gates

Classical computation can be broken down into a series of steps [31], each of which is a logical operation
called a logic gate. Classical logic gates are fundamental building blocks of classical digital circuits;
they perform logical operations on classical bits, taking one or more input bits and producing an output
bit based on prede�ned truth tables. The simplest logic gates take one bit as input and then output
one bit, which one can draw as a circuit diagram:

Input Gate Output

This circuit is read left to right. The input bit on the left travels along the line or wire into the gate,
which one has drawn as a generic box. A bit comes out of the gate on the right, traveling along the
line, and it is the output. Depending on which gate, the outputs will be di�erent. Some examples of
single bit gates are shown below:

� The identity gate does nothing to the bit: how it is shown in the following truth table 0 remains
0, and 1 remains 1
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Input I Output
Input Output

0 0
1 1

� The NOT gate reverses the input: as in the truth table, from 0 to 1 and from 1 to 0

Input NOT Output
Input Output

0 1
1 0

A two-bit logic gate takes two bits as input, say A and B. Therefore there will be four possibile inputs,
that can be listed in 00, 01, 10, 11.

A

Gate Output

B

Some examples of two-bit gates are shown below:

� The AND gate outputs 1 if both inputs are 1, and 0 otherwise

A

AND Output

B

A B A ∧ B

0 0 0
0 1 0
1 0 0
1 1 1

� The OR gate outputs 1 if either input (or both) is 1, and 0 otherwise

A

OR Output

B

A B A ∨ B

0 0 0
0 1 1
1 0 1
1 1 1

� The XOR gate outputs 1 if either input (but not both) is 1, and 0 otherwise

A

XOR Output

B

A B A ⊕ B

0 0 0
0 1 1
1 0 1
1 1 0

These above are the most common logic gates, but there are many others, such as NAND, NOR,
XNOR, etc. With these basic ingredients, one can build classical circuits to perform computation.

2.2 Quantum Gates

Classical devices are built using wires and logic gates to perform operations on bits, executing the
instructions of a classical algorithm to obtain the desired output. Gate-based QC is based on the same
principle, but with the fundamental di�erence that the logic gates operate on qubits. In fact, changes
that occur in a quantum state can be described using the language of quantum computation.
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A quantum gate transforms the state of a qubit into another state, and it is often labelled with the
capital letter U . The action of a quantum gate on a qubit can be described by a matrix with some
speci�c properties due to the quantum mechanichs behind the computation. First of all, one has
to keep in mind that the normalization condition for a quantum state |ψ⟩ = α |0⟩ + β |1⟩ requires
|α|2 + |β|2 = 1. This condition must also hold for the quantum state |ψ′⟩ = α′ |0⟩ + β′ |1⟩ after the
gate has been applied. Therefore a quantum gate must be linear, which means that, to be valid, the
overall probability must remain 1.

Consequently, the matrix U representing the action of the gate must be unitary i.e. it has to satisfy
the property

UU † = I

where U † is the conjugate transpose of U .

For this reason, quantum gates must be reversible, which is another aspect of the di�erence between
classical and quantum computation. In fact, not all classical gates are reversible and cannot be used
in QC.

A reversible gate, is a logic gate where, given the output(s) of the gate, one can always determine what
the input(s) was (were). An example is the NOT gate, where the outputs are unique and it is always
possible to reverse the operation. That is, if one knows that the output of the NOT gate is 1, one
knows that the input must have been 0, and if one knows that the output is 0, one knows that the
input must have been 1. The gate is reversible because, given the output, one can always determine
the input.

An irreversible gate is the opposite of a reversible gate. Given the output(s) of the gate, it is not always
possible to determine what the input(s) was (were). An example is the AND gate: if the output of
the gate is 1, then one knows with certainty that the inputs were both 1. If the output of the gate is
0, however, then it is impossible to know from this information alone which of the other three inputs
(00, 01, and 10) were used. (see Tab. 2.1) As a general rule, classical reversible logic gates are valid
quantum gates, therefore to give some examples:

� The identity gate I turns |0⟩ into |0⟩ and |1⟩ into |1⟩, hence:

I |0⟩ = |0⟩
I |1⟩ = |1⟩

I I =
[
1 0
0 1

]

� The Pauli X gate, or NOT gate, turns |0⟩ into |1⟩, and |1⟩ into |0⟩:

X |0⟩ = |1⟩
X |1⟩ = |0⟩

X =

[
0 1
1 0

]

� The Pauli Y gate turns |0⟩ into i |1⟩, and |1⟩ into −i |0⟩:

Y |0⟩ = i |1⟩
Y |1⟩ = −i |0⟩

Y Y =

[
0 −i
i 0

]

� The Pauli Z gate has no e�ect on |0⟩, while it turns |1⟩ into − |1⟩:

19



2.2. Quantum Gates Chapter 2. Programming Gate-based Quantum Computers

Z |0⟩ = |0⟩
Z |1⟩ = − |1⟩

Z Z =

[
1 0
0 −1

]

� The Phase gate S leaves untouched |0⟩ while it turns |1⟩ into i |1⟩:

S |0⟩ = |0⟩
S |1⟩ = i |1⟩

S S =

[
1 0
0 i

]

� The Hadamard gate H turns |0⟩ into |+⟩, and |1⟩ into |−⟩:

H |0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩

H |1⟩ = 1√
2
(|0⟩ − |1⟩) = |−⟩

H H =
1√
2

[
1 1
1 −1

]

These gates represent just a few examples of the most basic operations that one can perform on a qubit.
Some of these gates are equivalent to the classical ones, such as the identity I and the NOT gate, others
are only applicable to quantum systems, since they deal with complex numbers and leverage quantum
mechanical principles that have no classical counterpart.

In general one-qubit quantum gates correspond to rotations on the Bloch sphere. As it is displayed in
Fig. 2.1 the X, Y, and Z gates correspond to a rotation of π respectively around the x,y and z axes of
the Bloch sphere.

Figure 2.1: Bloch sphere representation of the Pauli gates X, Y, Z

Moreover, as is it shown in Fig. 2.2, the Hadamard gate corresponds to a rotation of π around the
x+ z-axis.
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Figure 2.2: Bloch sphere representation of the Hadamard gate

The Hadamard gate is a fundamental quantum gate that plays a crucial role in several Quantum
Computing algorithms and protocols. Its usefulness and its uniqueness derive from its ability to create
superpositions and perform basis transformations. When applied to a qubit, the Hadamard gate
transforms the computational basis states |0⟩ and |1⟩ into equal superpositions of these states.

2.3 Quantum Circuits

Quantum circuits are the quantum analog of classical circuits. They are a sequence of quantum
gates applied to qubits to perform speci�c operations. One can combine these operations to create
more complex gates, and can also combine them to create quantum circuits. Quantum circuit diagrams
consisting of qubits and quantum gates. They are read left-to-right, just like a classical circuit diagram.
The following example starts with a single qubit in the |0⟩ state and apply a Hadamard gate H to it,
then a phase gate S, and �nally another H gate. It is implied that one measures the qubit at the end
of the circuit and can also explicitly draw the measurement as a meter:

|0⟩ H S H

Quantum gates can also operate on two qubits at the same time. The most important example is the
CNOT gate. The Controlled-NOT gate or CNOT gate takes two inputs and gives two outputs. The
�rst input is called the control bit x. If it is |0⟩, then it has no e�ect on the second bit (called the
target y). If the control bit is |1⟩, it acts as a NOT gate on the second bit. The �rst input bit x
has never changed and becomes the �rst output. The second output equals the second input y if the
control bit is |0⟩, but it is �ipped when the control bit is |1⟩. To summarize, the CNOT gate inverts
the second qubit (the target y) if the �rst qubit (the control x) is |1⟩:

CNOT |00⟩ = |00⟩
CNOT |01⟩ = |01⟩
CNOT |10⟩ = |11⟩
CNOT |11⟩ = |10⟩

CNOT (x, y) =

{
(x, y) if x = 0

(x, y) if x = 1

The control qubit is unchanged by CNOT, while the target qubit becomes the XOR (exclusive OR) of
the inputs, as also shown in the truth table, Tab. 2.3:
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CNOT |x⟩ |y⟩ = |x⟩ |x⊕ y⟩

Input Output

x y x x ⊕ y

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Thus, CNOT is a quantum XOR gate and as a matrix, the columns correspond to CNOT acting on
|00⟩ , |01⟩ , |10⟩ , |11⟩ respectively:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |x⟩ target

|y⟩ control

Notice that this operation is invertible: given any pair of output values, there is exactly one pair of
input values that corresponds to it. The CNOT gate is not just invertible, but it also has the nice
property that it is its own inverse. This means that if you put two CNOT gates in series, where the
output of the �rst gate becomes the input of the second gate, the output from the second gate is
identical to the input to the �rst gate. The qubits 0 and 1 correspond to the bits 0 and 1. If one
runs the quantum CNOT gate just using the qubits |0⟩ and |1⟩, and not any superpositions, then the
computation is exactly the same as running a classical CNOT gate with 0 and 1.

This gate is one of the most important in QC since it can be employed combined with the Hadamard
Gate H to produce entanglement. For example:

CNOT
(
H |0⟩ ⊗ |0⟩

)
= CNOT

(
|+⟩ ⊗ |0⟩

)
= CNOT

1√
2

(
|00⟩+ |10⟩

)
=

1√
2

(
|00⟩+ |11⟩

)
= |ϕ+⟩

CNOT
(
H |0⟩ ⊗ |1⟩

)
= CNOT

(
|+⟩ ⊗ |1⟩

)
= CNOT

1√
2

(
|01⟩+ |11⟩

)
=

1√
2

(
|01⟩+ |10⟩

)
= |ψ+⟩

CNOT
(
H |1⟩ ⊗ |0⟩

)
= CNOT

(
|−⟩ ⊗ |0⟩

)
= CNOT

1√
2

(
|00⟩ − |10⟩

)
=

1√
2

(
|00⟩ − |11⟩

)
= |ϕ−⟩

CNOT
(
H |1⟩ ⊗ |1⟩

)
= CNOT

(
|−⟩ ⊗ |1⟩

)
= CNOT

1√
2

(
|01⟩ − |11⟩

)
=

1√
2

(
|01⟩ − |10⟩

)
= |ψ−⟩

These four states |ϕ+⟩ , |ψ+⟩ , |ϕ−⟩ , |ψ−⟩ are called Bell states or EPR states (for Einstein, Podolsky,
and Rosen). They form an orthonormal basis and they all are entangled states.

Another relevant quantum gate is the SWAP gate, which simply swap the two qubits:

SWAP |00⟩ = |00⟩
SWAP |01⟩ = |10⟩
SWAP |10⟩ = |01⟩
SWAP |11⟩ = |11⟩

In other words,

SWAP |x⟩ |y⟩ = |y⟩ |x⟩

This gate cannot produce entanglement because, if the qubits are in a product state, swapping the
factors results in a product state. The matrix representation and the circuit diagram of the SWAP
gate are following:
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SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 |x⟩ |y⟩

|x⟩ |y⟩

|x⟩ |y⟩

|y⟩ |x⟩

A three-qubit gate that often appears in quantum computing is the To�oli gate, or controlled-controlled-
NOT gate, Since it is reversible, it is a quantum gate, and it �ips the right qubit (the target) if the
left and middle qubits (the controls) are both |1⟩:

To�oli |000⟩ = |000⟩
To�oli |001⟩ = |001⟩
To�oli |010⟩ = |010⟩
To�oli |011⟩ = |011⟩
To�oli |100⟩ = |100⟩
To�oli |101⟩ = |101⟩
To�oli |110⟩ = |111⟩
To�oli |111⟩ = |110⟩

Therefore it can be expressed as

To�oli |a⟩ |b⟩ |c⟩ = |a⟩ |b⟩ |ab⊕ c⟩

Also here it is reported for completeness the matrix form and the circuit representation of the gate:

To�oli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


target

control

control

Quantum circuits are constructed by arranging and connecting quantum gates in a speci�c sequence.
The order and connectivity of gates determine the �ow of quantum information and the outcome of
computations. Designing quantum circuits involves carefully selecting gates, considering qubit con-
nectivity, and optimizing the circuit to achieve the desired computational results. Programming gate-
based Quantum Computers and quantum circuits requires a solid understanding of quantum mechanics,
quantum algorithms, and quantum gates. As the �eld advances, it o�ers exciting opportunities to ex-
plore new computational paradigms and solve complex problems that are beyond the reach of classical
computing.

As gate-based quantum computing continues to advance, programming techniques and tools are evolv-
ing. Researchers and developers are working on optimizing quantum circuits, designing e�cient quan-
tum algorithms also thanks to the several Software Development Kits (SDKs) that are available. In
line with this theme, the next chapters introduce and compares some of the main frameworks that
have been developed developed for programming gate-based Quantum Computers.
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Chapter 3

Quantum Application Development

This chapter delves into the pivotal intersection between quantum theory and practical implementation.
It addresses the challenges and opportunities presented by translating theoretical concepts into tangible
quantum algorithms, applications, and solutions. As the �eld rapidly advances, bridging the gap
between quantum theories and real-world applications has become a primary focus, and for this reason
the development of quantum software plays a key role.

However, the development of quantum applications di�ers signi�cantly from classical application de-
velopment and currently depends heavily on the hardware used [32]. The quantum paradigm indeed
requires a new way of thinking, concerning the implementation process of algorithms and the choice of
programming resources to be employed in practice. The implementation of a quantum algorithm can
also be done in di�erent programming languages, which require speci�c compilers and transpilers. As
a result, there is a wide range of tools and services available which can be used to develop quantum
applications.

Moreover, the choice of the more proper technique for a particular QC program relies on several factors.
First, it depends on the quantum hardware being used. On the one hand, Software Development Kits
(SDKs) that enable quantum applications to be implemented and run are often tailored to Quantum
Computers with a speci�c design, thereby limiting the execution on such particular hardware. On
the other hand, the physical limitations of current quantum architectures play a central role in the
implementation of quantum algorithms. Today NISQ's devices have computational results which are
not completely accurate, and their size is at an "intermediate scale" in terms of qubits. Nontheless,
the most appropriate setting for a particular quantum application development use case requires a �ne
selection of (i) the quantum cloud service provider, (ii) the quantum hardware used for the execution,
(iii) and the implemented quantum algorithm itself. In addition, developer preferences and capabilities,
including programming language and available tutorials, also play an important role in deciding which
tools to use. Due to the variety of options and the lack of a uni�ed view and characterization, it is not
so simple to compare individual tools and services.

Finally, programming languages employed in quantum applications could be considered as a separate
category. As the di�erent SDKs, compilers, transpilers, and quantum cloud services support di�erent
coding idioms, programming languages are a key factor when considering the compatibilities between
di�erent technological settings. In the next sections, after looking at the quantum work�ow in more
detail, all the phases and resources involved in quantum application development will be discussed.
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3.1 Quantum Implementation Process

As one may know, programming a computer means telling it to perform certain actions in a speci�c
language that the machine understands, either directly or through the intermediary of an interpreter. A
program is a set of instructions that de�ne the behaviour of a computing device and can be summarized
in two main steps: control and data [33]. Control here means that the program is built from a set of
basic instructions and control structures (i.e. conditionals, jumps, loops) which operate on the input
data. In QC, these two steps change. Quantum data is represented by an addressable set of qubits,
and the allowed operations to control and manipulate it, are of two types: unitary operations which
evolve quantum data, and measurments which are used to inspect their value.

Furthermore, it remains challenging to understand which type of problem can be e�ciently solved by
which paradigm and corresponding quantum algorithm. A typical quantum algorithm work�ow on a
gate-based Quantum Computer is shown in Fig. 3.1. The implementation process starts with a high-
level problem de�nition, e.g., 'solve the Travelling Salesman Problem on graph X'. The �rst step is to
choose an appropriate quantum algorithm for the problem at hand. A quantum algorithm is de�ned
as a �nite sequence of steps for solving a problem, where each step can be executed on a Quantum
Computer. Then, the coder implements the algorithm into a program which is called quantum circuit.
This is a sequence of quantum gates that are applied to the qubits in order to solve the problem, for
example �nd the optimal solution in this case. If the scale of the quantum system is still classically
simulable, the resulting quantum circuit can be executed directly on a quantum simulator. Otherwise,
for the compilation stage a Quantum Processing Unit (QPU) is chosen based on quantum hardware
paradigms seen in Sec. 1.5.

Figure 3.1: Visualization of a typical quantum algorithm work�ow on a gate-based Quantum Computer. First
the problem is de�ned at a high-level and an appropriate quantum algorithm is chosen based on the nature of
the problem. Next, the quantum algorithm is expressed as a quantum circuit, which has to be compiled to a
speci�c quantum gate set. Finally, the quantum circuit is either executed on a quantum processor or simulated
with a quantum simulator

In the gate-model paradigm a full-stack library is de�ned as software that covers the creation, compi-
lation/embedding, simulation and execution of quantum instructions as illustrated in Fig. 3.1. Open
source software in Quantum Computing covers all paradigms and all stages of expressing a quantum
algorithm. The software comes in di�erent forms, implemented in di�erent programming languages,
each with its own vocabulary, or occasionally even de�ning a domain-speci�c programming language.

3.2 Quantum Programming Languages

A Quantum Programming Language (QPL) consists of low-level instructions that specify which gates to
perform on which qubits. QPLs are essential for translating ideas into operations that can be executed
by a quantum computer [34], facilitating the discovery and development of quantum algorithms, the
control of existing physical devices, and even on the design of new ones. The purpose of programming
languages is to enable such a communication by representing an idea or concept in a way that allows the
reader to visually distinguish and identify the key components and how they �t together. QPLs serve
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as a facilitator for clearly expressing and executing quantum algorithms, but also for exploring and
developing applications and the hardware to support them. Suitable tools can help analyzing, under-
standing and mitigating noise in quantum programs, and developing automatic calibration and tuning
protocols for quantum devices. Considering the characteristics of available programming languages for
quantum applications, the type of language, the syntax implementation, and standardization become
relevant [32]. Currently, four types of programming languages can be distinguished:

� Assembly Languages, such as Open-QASM [35] are low-level and provide a textual representation
of every operation the Quantum Computer is performing.

� High-level programming languages such as Q# [36] are machine independent and provide features,
such as loops and recursion.

� Work�ow Languages allow modelling the control �ow of (hybrid quantum-classical) applications.

� Graphical Circuit Description Languages provide graphical representations of quantum circuits.

Regarding syntax implementation one can distinguish between two cases. On one hand there are
QPLs that have their own independent syntax (Standalone Quantum Programming Languages). On
the other hand, a programming language can also be embedded into another programming language, for
example, Qiskit [37] and Cirq [38] which provide a convenient set of Python Application Programming
Interfaces (API). Finally, the standardization of QPLs is an important aspect. The standardization
consist in developing a set of common rules for programming languages.

When a program is sent to a quantum backend, it is �rst compiled into gates that the computer can
actually implement. This compilation is expressed in a lower level language - Quantum Assembly or
command language - which is sent to the computer. At the lowest level, the gates are implemented by
physical operations on the qubits. These physical operations can be microwave pulses, laser pulses or
other interactions acting on a qubit, depending on the physical realization of the architecture. Since
it would be very tedious to program this manually, when interfacing Quantum Computers it is better
to use a higher-level QPL in a development library. In fact, to avoid the intricacies associated with
hardware, QPLs are abstracted into SDKs that provide features to help developers in circuit design
automation. All of these languages are tought to be used with a QC framework, either on real hardware
on-premises or in the cloud. A fundamental phase in the development of quantum applications after
the implementation of the quantum algorithm, it is represented by the execution: the following sections
explore the di�erent exploitation resources available for quantum applications.

3.3 Quantum Computing as a Service

The Quantum Cloud Services aspect identi�es the layer at which the development tools and services
are available and how they can be accessed by users. In general, four di�erent types of service models
can be distinguished, namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Function
as a Service (FaaS), and Software as a Service (SaaS).

� IaaS o�erings provide access to processing, storage, networking, and other fundamental compu-
tation resources that users can use in much the same way as they would on-premises hardware.
The di�erence is that the cloud service provider hosts, manages and maintains the hardware and
computing infrastructure in its own data centers.

� PaaS o�erings provide an application platform for developing, running, and managing applica-
tions. The cloud service provider hosts, manages and maintains all the hardware and software
included in the platform.

� FaaS allows users to execute code without managing the complex infrastructure typically as-
sociated with building and running applications. In this model, the physical hardware, virtual
machine operating system, and web server software management are all handled automatically
by the cloud service provider. This allows developers to focus solely on individual functions in
their application code.
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� SaaS o�erings provide users ready-to-use softwares. The application and all of the infrastructure
required to deliver it (e.g., servers, storage, networking, etc.) are hosted and managed by the
SaaS provider.

In the speci�c case of Quantum Computing things are slightly di�erent. The lack of a direct access to
quantum hardware and the need for specialized expertise to develop quantum applications has led to
a di�erent service model, which is a sort of overlap of the ones previously listed. In fact, one speaks of
Quantum Computing as a Service (QCaaS), where QC providers o�er their quantum hardware, soft-
ware tools, and other resources as a cloud service, enabling researchers, developers, and organizations
to harness the power of Quantum Computing without the need to own quantum hardware. Cloud
computing is therefore a key enabler for QC, which is serverless by nature, as it represents more or
less the only way to access quantum resources by now. Major technology companies and research insti-
tutions provide QCaaS platforms, contributing to the advancement and democratization of Quantum
Computing, and increasing the accessibility to quantum hardware and software, reducing at the same
time the overall costs.

In order to access a cloud service, providers o�er di�erent access methods: SDKs, are a typical way
by which quantum cloud providers o�er access to their services. For example, Qiskit and Cirq o�er
the ability to execute written source code on their respective quantum cloud services. In addition,
access can be provided via web services. For example, IBM provides online API for circuit design
and execution. IBM Quantum Composer [39] is a graphical quantum programming tool that allows
drag and drop operations to build small quantum circuits and run them on real quantum hardware or
simulators. On the other hand, in Quantum Lab [40] users can write scripts that combine Qiskit code,
equations, visualizations, and narrative text without the need to install any software. Cloud Quantum
Computers make it possible to run algorithms on real quantum hardware, and development libraries
enable this capability. However, in order to test code before running it on a Quantum Computer, most
QC frameworks provide a simulator which runs on a classical computer.

3.4 Quantum Execution Resources

The quantum execution resources aspect considers the characteristics of available resources for the ex-
ecution of quantum algorithms. Since quantum applications are currently highly dependent on quan-
tum infrastructure and resource availability, developers need to considere this early in the development
phase. Two general types of execution are available for running quantum algorithms: Quantum Pro-
cessing Units (QPUs) and simulators. QPUs represent physical hardware capable to compute quantum
programs. Simulators are an alternative, as they simulate quantum programs on classical hardware.
As QPUs are still limited, in number and capabilities, simulators are essential for developers to build
and test quantum applications before migrating to real hardware.

3.4.1 Quantum Processing Units

A Quantum Processing Unit can be tought as the brain of a Quantum Computer, responsible for
performing quantum computations. Unlike classical Central Processing Units (CPUs), which execute
sequential instructions on bits, QPUs manipulate qubits and quantum gates to perform quantum
algorithms. QPUs are designed to exploit the unique properties of quantum mechanics, which allow
qubits to exist in superposition and entanglement states. As shown in Sec. 1.5, QPUs are available in a
variety of technologies, such as superconducting qubits, trapped ions, or photonic qubits, each o�ering
advantages but also challenges.

Nowadays one can speak of Quantum Computing scarcity that is a concept related to the limited
availability of quantum hardware. Since the number of QPUs is limited, the access to them is restricted
and the execution of quantum algorithms is subject to a queuing system. At the moment, there are not
enough QPUs to meet user demand, so the question is: who gets priority access to them? Fortunately,
the availability of QPUs in the cloud or via software is increasing, making Quantum Computing more
accessible to researchers, developers, and organizations. Several technology companies and research
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institutions o�er cloud-based Quantum Computing services, allowing users to access quantum hardware
remotely. Here are some notable platforms that provide cloud-based access to QPUs:

� IBM Quantum Experience: IBM provides cloud access to its Quantum Computers through its
platform. It allows users to run quantum circuits on real quantum devices.

� Microsoft Azure Quantum: Microsoft's Azure platform provides access to various quantum hard-
ware technologies, including superconducting qubits and trapped ions from vendors such as
Quantinuum, IonQ, and Pasqal.

� Amazon Braket: Amazon Web Services (AWS) o�ers cloud access to Quantum Computing
through Amazon Braket. Users can run quantum algorithms on a variety of quantum hard-
ware providers, including Rigetti Computing, IonQ and QuEra.

� Google Quantum Computing Service: Although Google has developed its own quantum proces-
sors, it does not provide access to them through its cloud platform. Instead, it allows researchers
to run quantum experiments and quantum algorithms by accessing quantum hardware of other
providers, such as IonQ and Pasqal.

� D-Wave Leap: D-Wave o�ers cloud access to its quantum annealing processors, enabling users
to solve optimization problems using quantum annealing techniques.

3.4.2 Quantum Simulators

Not all quantum software platforms provide connectivity to real Quantum Computers, but many
platforms include a quantum circuit simulator. This is a program that runs on a classical CPU that
mimics the evolution of a quantum-based system, as shown in Fig. 3.2. As with quantum hardware,
it is important to consider not only how many qubits a simulator can handle, but also how fast it can
process them, in addition to other parameters such as adding noise to precisely emulate the behaviour
of the current NISQ Quantum Computers.

Figure 3.2: Quantum simulators mimic quantum processes. In the preparation step, the initial state is prepared
in |ψ(0)⟩, an analogous state with respect to the quantum system |φ(0)⟩. Then, applying the U operation to
the initial state, the simulator emulates the evolution given by U ′. At the end, in the measurement step, the
�nal state |ψ(t)⟩ is measured.

Quantum simulators are powerful tools that allow researchers and developers to explore and test quan-
tum algorithms without the need for physical quantum hardware. These software-based simulations
provide a valuable platform for algorithm development, veri�cation, and optimization. Quantum simu-
lators o�er several advantages, including the ability to run large-scale quantum circuits more e�ciently
and at lower cost compared to real QPUs. They also facilitate debugging and �ne-tuning of quantum

29



3.5. Compilation and Transpilation Chapter 3. Quantum Application Development

code, allowing researchers to gain insights into the behaviour of quantum algorithms under di�erent
conditions and error scenarios.

Simulations are a valuable tool for validating whether the algorithm and the implementation work as
expected. Depending on the application and the quantum algorithm, some simulation tasks can be
much simpler. In fact, the ability to analyze or simulate a quantum program on classical hardware is
often much more convenient and informative than actually running it on quantum hardware. However,
quantum simulators are limited by their classical nature, and as quantum systems grow in complexity,
they face challenges in emulating quantum e�ects at scale. Since they operate on a classical computer,
they obviously cannot process actual quantum states, but it is helpful to test the code syntax and
the work�ow. There are many techniques to classically simulate quantum circuits, but they all su�er
from the "exponential explosion" of classical memory: to store the most general state of an n qubit
system, all 2n complex numbers of the system's wavefunction must be stored. The problem is that this
memory requirement is reaching the limits of today's best supercomputers, even for a modest number
of qubits. Despite these limitations, simulators remain indispensable resources in the QC ecosystem,
accelerating research and providing a stepping stone in the development of quantum algorithms and
applications for future quantum hardware.

3.5 Compilation and Transpilation

An indispensable part of the quantum software stack is represented by the compilation process: quan-
tum compilers and transpilers are essential components of the Quantum Computing ecosystem, en-
abling the e�cient translation and optimization of quantum algorithms for execution on di�erent
quantum hardware platforms.

Quantum compilation is the process of translating high-level quantum algorithms, expressed in Quan-
tum Programming Languages, into lower-level quantum instructions that a speci�c quantum hardware
can understand. This crucial step bridges the gap between the abstract mathematical representation
of quantum algorithms and the physical constraints of quantum processors. Every Quantum Com-
puter has a basis set of gates and a given connectivity, and the compiler's job is to take a given input
circuit and return an equivalent circuit that satis�es that requirements. Compilation actually connects
the abstract quantum circuit description to the actual hardware or the simulator: it is the process of
mapping the quantum gate set G of a quantum circuit C to another quantum gate set G∗, resulting in
a new equivalent quantum circuit C∗. The main reason for this is that QPUs and some simulators are
usually only able to implement a limited set of quantum gates that can be used for quantum circuits
design.

On the other side, quantum transpilation is a speci�c aspect of quantum compilation that focuses on
mapping quantum circuits from one quantum hardware platform to another. Since di�erent quantum
processors di�ering for qubit connectivity and support di�erent gate sets, quantum transpilation aims
to adapt a quantum circuit designed for one type of quantum hardware to run e�ciently on a di�erent
quantum device. Compilers and transpilers are often included in the quantum SDKs and are used
to translate quantum circuits into the gate set of the target quantum hardware. These tools are
essential for developers who need to create quantum applications and execute them on real hardware
or simulators.
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With the growing interest in Quantum Computing, there is an increasing number of development
libraries and tools for the �eld. Indeed, there is a wide range of environments and frameworks that
allow researchers and developers to explore the possibilities of Quantum Computing, in all the languages
they are aquainted to including Python, C/C++, Java and others. Many of the leading QC research
centers have focused on Python as the language of choice for circuit design automation [41]. One of
the reasons for choosing Python is that it is a �exible, high-level language that allows programmers
to focus on the problem at hand, rather than on the details of the language. Moreover, Python is
well-known and has a large ecosystem of libraries and tools that can be used to build QC applications.
A wide variety of di�erent tools, services, and techniques are available for the development of quantum
applications. Choosing which SDK/library to use is the very �rst step that a developer has to take -
for both the implementation of classical and quantum applications. However, for the implementation
of quantum applications, this decision can also be constrained on which quantum hardware one wants
to use.

SDKs, distributed by quantum cloud service providers or by third-party providers, o�er advanced
developer tools which are the interfaces between the high-level programming language and the low-
level assembly language. They can include libraries that provide implementations of algorithms from
diverse �elds such as chemistry, cryptography, and Machine Learning. SDKs also usually include
compilers and transpilers and a local simulator that can be installed locally on a classical computer.
However, libraries, compilers, transpilers, and simulators are not necessarily part of an SDK, but
can also be available as standalone technologies, such as in TKET [42]. Humans write algorithms in
quantum programming languages that can then be applied to solve various problems. In recent years
organisations have developed cloud services to access a quantum computer through API or Graphical
User Interface (GUI). The user writes a program in one of the QPLs, which is then queued to run on
a real quantum computer but, as it is shown in Fig. 4.1, the program can also be simulated on a local
or a cloud-based classical computer.

The aim of this chapter is to discuss Software Development Kits for Quantum Computing. As QC
becomes increasingly important in various �elds of science and technology, Python is emerging as a
widely used programming language due to its versatility and extensive ecosystem. The SDKs provide
a crucial bridge between the powerful capabilities of quantum hardware and the convenient nature
of Python programming, enabling researchers and developers to easily explore, simulate, and develop
quantum algorithms.

In addition, this chapter provides a comparative overview of the Python SDKs conceived for circuit de-
sign automation in gate-based Quantum Computers, including Qiskit, Cirq, and other notable libraries.
It highlights the capabilities, features, and usability of existing SDKs, focusing on the functionalities
that allow users to de�ne quantum circuits, apply gate operations, and simulate their behaviour. By
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Figure 4.1: Di�erent ways to run a program written in a Quantum Programming Language

gaining insight into these SDKs and their operational characteristics, researchers and developers can
start, with more awareness, their Quantum Computing journey towards the development of quantum
algorithms and applications.

4.1 Qiskit

Institution / Vendor IBM

First Release Mar 2017

Open Source Yes

Homepage Homepage [43]

GitHub Git [44]

Documentation Online Doc [45]

Supported OS Mac, Linux, Windows

Classical Host Language Python

Quantum Language OpenQASM

Table 4.1: Overview of the Qiskit development library

IBM Quantum Experience is a cloud-based platform that allows the general scienti�c community to
access real Quantum Computers. The Quantum Information Science Kit, or Qiskit for short, is an
open source SDK developed by IBM. The Qiskit library is a �exible framework to construct quantum
programs and run them on simulators or on real hardware. The Qiskit development library consists of
two core modules distributed across the Quantum Computing stack:

� Qiskit Terra: Terra provides core elements and fundamental data structures for composing quan-
tum programs at the level of circuits and pulses, and optimizing them for the constraints of a
particular physical quantum processor.

� Qiskit Aer: Aer provides a simulator framework and tools for constructing noise models for
performing realistic noisy simulations of the errors that occur during execution on real devices.

Recently, two other core modules (Qiskit Ignis and Qiskit Aqua) have been deprecated. The Qiskit
Ignis module, a framework for understanding and mitigating noise in quantum circuits and devices,
has been integrated into the Qiskit Terra module. Moreover, the Qiskit Aqua module, a library of
cross-domain quantum algorithms, has been divided into separate packages:
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� Qiskit Finance: contains components for stock/securities problems. It includes applications
such as portfolio optimization, and data providers to source real or random data for �nance
experiments.

� Qiskit Nature: supports solving quantum mechanical natural science problems using Quantum
Computing algorithms. This includes �nding ground and excited states of electronic and vibra-
tional structure problems, measuring the dipole moments of molecular systems, and solving the
Ising and Fermi-Hubbard models on lattices, among other tasks.

� Qiskit Machine Learning: introduces fundamental computational building blocks - such as Quan-
tum Kernels and Quantum Neural Networks - used in di�erent applications, including classi�ca-
tion and regression.

� Qiskit Optimization: enables the representation and modelling of a wide range of optimization
problems.

Utilizing some backends, Qiskit cloud services allow users to execute quantum programs in specialized
hardware that leverages quantum mechanical phenomena for quantum computation, not only designed
by IBM but also by other companies, such as Rigetti, IonQ, IQM and Quantinuum. Qiskit is agnostic
with respect to the underlying architecture of a speci�c quantum system, allowing the compilation of
a quantum circuit adapting to the characteristics of a quantum device, mapping the native set of gates
and optimizing the resulting circuit. Furthermore, the library of IBM includes several simulators that
run locally (both con CPU and GPU) or on cloud computing resources, such as:

� Statevector: It simulates a quantum circuit by computing the wavefunction of the qubit's stat-
evector as gates and instructions are applied. It supports general noise modeling.

� Qubits: 32

� Noise modeling: Yes

� Stabilizer: An e�cient simulator of Cli�ord1 circuits. It can simulate noisy evolution if the noise
operators are also Cli�ord gates.

� Qubits: 5000

� Noise modeling: Yes (Cli�ord only)

� Extended Stabilizer: It approximates the action of a quantum circuit using a ranked-stabilizer
decomposition. The number of non-Cli�ord gates determines the number of stabilizer terms.

� Qubits: 63

� Noise modeling: No

� MPS: A tensor-network simulator that uses a Matrix Product State (MPS) representation for
the state that is often more e�cient for states with weak entanglement.

� Qubits: 100

� Noise modeling: No

� QASM: A general-purpose simulator for simulating quantum circuits both ideally and subject to
noise modeling. The simulation method is automatically selected based on the input circuits and
parameters.

� Qubits: 32

� Noise modeling: Yes

1In Quantum Computing and quantum information theory, the Cli�ord gates are the elements of the Cli�ord group, a
set of mathematical transformations which normalize the n-qubit Pauli group, i.e., map tensor products of Pauli matrices
to tensor products of Pauli matrices through conjugation
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Regarding the available QPU provided by IBM, the following Tab. 4.2 shows the characteristics:

QPU Max Number of Qubits Notable Features

Canary 16
Optimized connectivity

with a 2D lattice

Falcon 27 Qubits with good coherence properties

Egret 33
Fast and high-�delity

two-qubit gates (approaching 99.9%)

Hummingbird 65
Heavy-hexagonal qubit layout,

nice scalability

Eagle 127
Multiple chip layers with high-density I/O

without sacri�cing performance

Osprey 433
3-layers architechture, more control of noise

(Access granted at enterprise level)

Table 4.2: Overview of the Qiskit quantum processors types

According to IBM's roadmap, Condor will be the next quantum processor to be released. It will reach
the peak of 1121 qubits. Another key implementation for the growth of quantum hardware will be
IBM Heron. It will be characterized by a modular architecture that can be stacked and interconnected
to enable parallelized Quantum Computers.

The documentation provides instructions on installing and con�guring, including example programs
and information about actual quantum devices, project organization, and release notes. Background
information on Quantum Computing is also available for those new to the �eld. The SDK reference is
a valuable resource where users can access source code documentation. In addition, Qiskit provides a
signi�cant number of tutorial notebooks (Qiskit Textbooks [46]) that cover a broad spectrum of topics,
ranging from fundamental quantum algorithms to didactic quantum games.

The IBM library provides a Python-based programming environment that allows one to generate and
manipulate OpenQASM programs. OpenQASM is a gate-based intermediate representation for quan-
tum programs. It expresses quantum programs as lists of instructions, often intended to be consumed
by a quantum processor without further compilation [34]. OpenQASM allows for abstractions in the
form of quantum gates, which can be composed in a hierarchical fashion, based on a set of intrin-
sic functions that are assumed to be available on the target processor. An example can be a To�oli
gate composed of CNOT gates, and H gates. OpenQASM also supports single-qubit measurement
and basic classical control operations. Qiskit SDK leverages Python's abstraction capabilities, such as
the ability to synthesize gate decompositions and certain unitary transformations. As an open source
SDK, Qiskit has a large community of users and contributors. Anyone can contribute to the project
by requesting bug �xes or suggesting new features through GitHub issues. There is also a dedicated
Slack channel [47] where the community can discuss or ask for support.

4.1.1 Syntax and Code Examples

When using Qiskit a user work�ow nominally consists of following four high-level steps:

1. Build: Design a quantum circuit(s) that represents the problem you are considering.

2. Compile: Compile circuits for a speci�c quantum service, e.g. a quantum system or classical
simulator.

3. Run: Run the compiled circuits on the speci�ed quantum service(s). These services can be
cloud-based or local.

4. Analyze: Compute summary statistics and visualize the results of the experiments.

Here is an example of the entire work�ow, with each step explained in detail below.
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1 from qiskit import QuantumCircuit, transpile

2 from qiskit_aer import AerSimulator

3 from qiskit.visualization import plot_histogram

4

5 # Create a Quantum Circuit with a 2 qubits register and 2 classical bits

6 circuit = QuantumCircuit(2, 2)

7

8 # Add a Hadamard gate on qubit 0

9 circuit.h(0)

10

11 # Add a CX (CNOT) gate on control qubit 0 and target qubit 1

12 circuit.cx(control_qubit = 0, target_qubit = 1)

13

14 # Map the quantum measurement to the classical bits

15 circuit.measure([0, 1], [0, 1])

16

17 # Draw the circuit

18 circuit.draw("mpl")

19

20 # Select the quantum simulator. In this case Aer's QASM_simulator

21 simulator = AerSimulator()

22

23 # Compile the circuit for the support instruction set (basis_gates)

24 # and topology (coupling_map) of the backend

25 compiled_circuit = transpile(circuit, simulator)

26

27 # Execute the circuit on the Aer simulator for 1000 shots

28 job = simulator.run(compiled_circuit, shots=1000)

29

30 # Grab results from the job

31 result = job.result()

32

33 # Return measurement counts from the results

34 counts = result.get_counts(compiled_circuit)

35 print("Total count for states |00> and |11> are:", counts)

36

37 # Plot a histogram of the simulation results

38 plot_histogram(counts)

After importing the Qiskit development libraries, the program declares a quantum and classical register
with two qubits each, which is then used to create a circuit. Then, the circuit is initialized with a
Hadamard gate applied on the �rst qubit and a CNOT gate where the �rst qubit acts as control and
the second qubit is the target (controlled). Finally, the circuit is measured and the results are stored
in the classical registers. In order to simulate this simple circuit, in Qiskit one has to choose a speci�c
simulator and declare a backend for the execution. Furthermore, the circuit is compiled and simulated.
At the end, the results are retrieved and the measurement statistics (counts) are printed. Running this
code one obtains a random output due to the probabilistic nature of Quantum Computing. In Qiskit,
measurement outcomes are stored as dictionaries (a Python data type consisting of key-value pairs)
where keys are bit strings and values are the number of times each bit string was measured.

1

2 "Total count for states |00> and |11> are: {'00': 492, '11': 508}"
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3

Qiskit has the ability to draw and save circuits as �les in addition to printing out text representations.

(a) (b)

Figure 4.2: Drawing of the circuit synthesized by the code above (a) and histogram of the simulation results of
the code above (b)

The program above can be broken down into six stages.

Import Packages

When programming with Python, the �rst step is to import the packages that are needed, the basic
elements of the program are imported as follows:

1 from qiskit import QuantumCircuit

2 from qiskit_aer import AerSimulator

3 from qiskit.visualization import plot_histogram

More in detail, the imports are:

� QuantumCircuit : instructions that hold all the quantum circuit operations.

� AerSimulator : a high-performance simulator framework for quantum circuits that includes
noise models and backend options.

� plot_histogram : a functionn to visualize in a histogram the results of a simulation.

Variables and Gates

1

2 circuit = QuantumCircuit(2, 2)

3

The function QuantumCircuit speci�es that the circuit is composed by a register with 2 qubits
initialized to the zero state and with 2 classical bits set to zero. At this stage, gates (operations) can
be added to manipulate the registers of the quantum circuit.

1 circuit.h(0)

2 circuit.cx(control_qubit = 0, target_qubit = 1)
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3 circuit.measure([0, 1], [0, 1])

The gates are added to the circuit one-by-one to form the state

|ψ⟩ = 1√
2
(|00⟩+ |11⟩)

The code above applies the following gates:

� QuantumCircuit.h(0) : A Hadamard gate H on qubit 0, putting it in a superposition state.

� QuantumCircuit.cx(control_qubit = 0, target_qubit = 1) : A controlled-NOT operation

(CX or CNOT) on control qubit 0 and target qubit 1, putting the qubits into an entangled
state.

� QuantumCircuit.measure([0,1], [0,1]) : when passing the entire quantum and classical reg-

isters to measure , the measurement result of the ith qubit is stored in the ith classical bit.

Circuit Visualization

One can use qiskit.circuit.QuantumCircuit.draw() to view the designed circuit in the various
forms used in many textbooks and research articles.

1

2 circuit.draw("mpl")

3

Figure 4.3: Drawing of the designed circuit

In Qiskit qubits are arranged in numerical order, starting from qubit 0 at the top and qubit 1 at
the bottom. The circuit is read from left to right, so that gates that are applied earlier will appear
farther to the left. The text backend is the default for QuantumCircuit.draw() . In this case, the

mpl backend is used to generate a Matplotlib �gure which is the most commonly used Python
visualization library.

Simulation and Results

Qiskit Aer is framework for simulating quantum circuits with high performance. It provides sev-
eral backends to achieve di�erent simulation objectives. To simulate the circuit, in this case the
AerSimulator was chosen. Every circuit run will yield either the bit string |00⟩ or |11⟩.

1 simulator = AerSimulator()

2 compiled_circuit = transpile(circuit, simulator)è
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3 job = simulator.run(compiled_circuit, shots=1000)

4 result = job.result()

5 counts = result.get_counts(compiled_circuit)

6 print("Total count for states |00> and |11> are:", counts)

As expected, the output bit string |00⟩ appears about 50 % of the time. It is possible to specify the
number of times the circuit runs through the use of shots argument of the execute method. The
number of shots of the simulation was set to be 1000 (the default is 1024).

Qiskit o�ers various visualizations functions, in addition to the histogram for the simulation results
one can also plot the statevector on the Bloch sphere to observe the state of the qubits.

1 plot_histogram(counts)

Figure 4.4: Histogram of the simulation results

The observed probabilities Pr(00) and Pr(11) can be computed by taking the respective counts and
dividing by the total number of shots.

Qiskit provides a full-stack approach to Quantum Computing, including tools and modules for circuit
creation, simulation, error mitigation, and accessibility to real quantum hardware through IBM cloud
services. This approach allows users to conduct experiments with quantum algorithms and applications
at di�erent levels of abstraction. Additionally, Qiskit is actively maintained and updated, and the
o�cial documentation and community forums are excellent resources to learn more and get support.

The choice of the SDK typically depends on factors such as the speci�c use case, research interests, and
hardware compatibility. Nevertheless, Qiskit's design, which is oriented towards accessibility and ease
of use for both beginners and experienced quantum researchers, has made it one of the most widely
used SDK.
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4.2 Cirq

Institution / Vendor Google

First Release Apr 2018

Open Source Yes

Homepage Homepage [38]

GitHub Git [48]

Documentation Online Doc [49]

Supported OS Mac, Linux, Windows

Classical Host Language Python

Quantum Language /

Table 4.3: Overview of the Cirq development library

Cirq is an open source Python library developed by Google for programming Quantum Computers.
With the increasing availability of NISQ computers, the development of algorithms to harness the
power of these machines is becoming increasingly important. This SDK provides an abstraction for
writing, manipulating, and optimizing quantum circuits, and then running them on real hardware or
on quantum simulators.

Cirq is composed by three main libraries:

� OpenFermion: library used to compile and analyze quantum algorithms for simulating fermionic
systems, which includes quantum chemistry. The package contains everything for translating
problems in chemistry and materials science into quantum circuits that can be executed on
existing platforms.

� TensorFlow Quantum: library that facilitate the prototyping of hybrid quantum-classical ML
models. It integrates QC algorithms and logic designed in Cirq, and provides functions that
are compatible with existing TensorFlow APIs, along with high-performance quantum circuit
simulators.

� qsim: C++ library for simulating quantum circuits. The module is integrated in Cirq and has
the capacity to run simulations of up to 40 qubits.

The initial two modules are adaptations of existing classical libraries, intended to provide interoper-
ability within the Cirq framework.

Cirq is not based on a speci�c Quantum Language, but rather on a Python API. This allows the user to
write quantum circuits in a more natural way, taking advantage of the �exibility of Python. Although
Google has its own quantum processors, speci�cally Foxtail (22 qubits), Bristlecone (72 qubits) and
Sycamore (53 qubits), they are currently not accessible to commercial users. However, Cirq can be
used to run programs on local simulators or via Google cloud on real hardware from third-parties such
as IonQ, Rigetti, Pasqal and Alpine Quantum Technologies (AQT).

In terms of simulators, Cirq has several built-in features that also support general noise modelling,
such as:

� State vector simulator: This calculates the �nal quantum state of a quantum circuit, repre-
senting the amplitudes of all possible computational basis states. It allows users to retrieve the
�nal state of a quantum circuit without performing measurements.

� Density matrix simulator: This simulator provides the �nal density matrix of a quantum
circuit, capturing the probabilities of each computational basis state. This is useful for simulating
quantum circuits with measurements.

� Cli�ord simulator: An e�cient simulator of Cli�ord circuits. It can also simulate noisy evolu-
tion when the operators are Cli�ord gates.
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� Monte Carlo simulator: A Monte Carlo simulation tool that estimates the output probabilities
by repeatedly sampling measurement outcomes.

� Simulator: The basic simulator in Cirq, based on sparse matrix statevector methods using
NumPy.

Additionally, in the Cirq SDK it is possible to use Quantum Virtual Machine (QVM). It is a virtual
Google quantum processor that allows circuits to be run by using a virtual engine interface. Behind
this interface, it uses simulation with noise data to mimic Google quantum hardware processors with
high accuracy: in internal tests, the virtual and actual hardware are within experimental error of
each other [38]. It also supports internal use of the high-performance qsim simulator, for fast exe-
cution of larger circuits. In this case, circuits can then be simulated using either QSimSimulator

or QSimhSimulator , depending on the desired output. The �rst is a Schrödinger full-statevector
simulator and essentially performs repeated matrix-vector multiplications. One matrix-vector multi-
plication corresponds to the application of one gate. It is suitable for acquiring the complete state of
a reasonably-sized circuit (≈ 25 up to 40 qubits). The second consists in a di�erent approach, it is a
hybrid Schrödinger-Feynman simulator and raises its upper bound on the number of simulated qubits
(50+ qubits, depending on depth) at the cost of being limited to return amplitudes for certain output
bitstrings.

Detailed documentation for Cirq is available online, including an installation guide and a tutorial to
help new users familiarize with Cirq. In-depth sections are also available for more detailed descrip-
tions of Cirq's features, including a complete API reference. As Cirq is a Python framework, it can
also take advantage of the wide range of tools available to facilitate the development of quantum ap-
plications. Furthermore, the Google team o�ers the opportunity to partecipate in weekly organized
meetings to discuss about the development of the SDK. As with any open source SDK, Cirq receives
contributions from the community and is supported through the GitHub repository and the Stack
Exchange forum [50]. Notable features of Cirq include built-in utilities for optimizing quantum circuits
by reducing the number of gates, automatic hardware-speci�c compilation, and several useful tools for
managing noise and working with variational hybrid algorithms. An interesting functionality is the
ability to simulate a "sweep" of the parameters, i.e. to try a particular set of angles in parameterized
gates. This simpli�es and can speed-up the optimization process. Moreover, Cirq allows programmers
to de�ne schedules and devices that operate at the lowest level of algorithm execution, for example,
specifying the duration of physical pulses and gates.

4.2.1 Syntax and Code Examples

Unlike other languages where qubits can be dinamically allocated, Cirq layout is performed manually.
Qubits can only be arranged by specifying their position (e.g., row and column for a GridQubit )

or some other globally unique identi�er (for instance, a string for a NamedQubit ). This means that
programmers must decide which physical qubits to use for each part of an algorithm, but as a result
they have more control over how a NISQ computer's limited number of qubits are used. In addition,
programmers have several options when it comes to scheduling each quantum operation. A circuit in
Cirq is divided into 'moments', which are discrete units of time in which all operations at the same
moment are performed simultaneously. Only a single operation can a�ect a particular qubit at any
given moment. When operations are added to the circuit, they can be added as part of a new moment
(increasing the total length of time of the program), or instead can 'slide' back to an earlier moment,
if the a�ected qubits are not already in use at that time. Since Cirq is embedded in Python, it is easy
to manipulate circuits as their division into moments makes them behave similarly to other Python
sequences. For example, higher-level quantum operations can be created by de�ning Python functions,
which can also be iterated, transformed or �ltered.

Various aspects of the Cirq syntax are examined in detail in what follows.
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Qubits

The �rst part of creating a quantum circuit is to de�ne a set of qubits (also known as a quantum
register) to act on.

Cirq has three main ways of de�ning qubits:

� cirq.NamedQubit : used to label qubits by an abstract name.

� cirq.LineQubit : qubits labelled by number in a linear array.

� cirq.GridQubit : qubits labelled by two numbers in a rectangular lattice.

Here are some examples of de�ning each type of qubit.

1 import cirq

2

3 # Using named qubits can be useful for abstract algorithms

4 # as well as algorithms not yet mapped onto hardware.

5 q0 = cirq.NamedQubit('source')

6 q1 = cirq.NamedQubit('target')

7

8 # Line qubits can be created individually

9 q3 = cirq.LineQubit(3)

10

11 # Or created in a range

12 # This will create LineQubit(0), LineQubit(1), LineQubit(2)

13 q0, q1, q2 = cirq.LineQubit.range(3)

14

15 # Grid Qubits can also be referenced individually

16 # The following create a 2d-grid with 4 rows and 5 columns -> 20 qubits in total

17 q4_5 = cirq.GridQubit(4, 5)

18

19 # Or created in bulk in a 2d-square

20 # This will create 16 qubits from (0,0) to (3,3)

21 qubits = cirq.GridQubit.square(4)

There are also pre-packaged sets of qubits called Devices. These are qubits along with a set of rules for
how they can be used. A cirq.Device can be used to ensure that two-qubit gates are only applied
to qubits that are adjacent in the hardware, and other constraints.

Gates and Operations

The next step is to use the qubits to create operations that can be used in the circuit. Cirq has two
fundamental concpets:

� A Gate is a single instruction that can a�ect one or more qubits.

� An Operation is the overall e�ect of a gate applied in a cirquit to an input set of qubits.

For instance, cirq.H is the quantum Hadamard and is a Gate object.

cirq.H(cirq.LineQubit(1)) is an Operation object and consists in the Hadamard gate applied to

a speci�c qubit (line qubit number 1).

Gates and Operations in Cirq are considered to be immutable objects. This means that a cirq.Gate

or cirq.Operation should not be modi�ed after its creation. If attributes of these objects need to
be modi�ed, a new object should be created.
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Gates can generally be applied to any type of qubit ( NamedQubit , LineQubit , GridQubit , etc.)

to create an Operation . Many gates explained in 2.2 are included within Cirq. cirq.X , cirq.Y ,

and cirq.Z refer to the single-qubit Pauli gates. cirq.CNOT , cirq.SWAP are just a few of the

common two-qubit gates. cirq.measure is a function to apply a MeasurementGate and perform a
measurement in the computational basis. Here are some examples of operations that can be performed
on gates and operations:

1 # Example gates

2 cnot_gate = cirq.CNOT

3 pauli_z = cirq.Z

4

5 # Use exponentiation to get square root gates.

6 sqrt_x_gate = cirq.X**0.5

7

8 # Some gates can also take parameters

9 sqrt_sqrt_y = cirq.YPowGate(exponent=0.25)

10

11 # Create two qubits at once, in a line.

12 q0, q1 = cirq.LineQubit.range(2)

13

14 # Example operations

15 z_op = cirq.Z(q0)

16 not_op = cirq.CNOT(q0, q1)

17 sqrt_iswap_op = cirq.SQRT_ISWAP(q0, q1)

18

19 # One can also use the gates specified earlier.

20 cnot_op = cnot_gate(q0, q1)

21 pauli_z_op = pauli_z(q0)

22 sqrt_x_op = sqrt_x_gate(q0)

23 sqrt_sqrt_y_op = sqrt_sqrt_y(q0)

Circuits and Moments

A Circuit is a collection of Moments . A Moment is a collection of Operations that all act during

the same abstract time slice. Each Operation must be applied to a disjoint set of qubits compared

to each of the other Operations in the Moment . A Moment can be thought of as a vertical slice of
a quantum circuit diagram, as shown in Fig. 4.5.

Circuits can be constructed in several di�erent ways. By default, Cirq will attempt to slide the
operation into the earliest possible Moment with respect to the one when the operation is inserted.
One can use the append function in two ways:

� By appending each operation one-by-one:

1 circuit = cirq.Circuit()

2 qubits = cirq.LineQubit.range(3)

3 circuit.append(cirq.H(qubits[0]))

4 circuit.append(cirq.H(qubits[1]))

5 circuit.append(cirq.H(qubits[2]))

� Or by appending some iterable of operations. A preconstructed list works:
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Figure 4.5: Circuit moments are vertical slices of a circuit diagram. A Gate can be thought as a factory that,

given input qubits, produces an associated Operation object

1 circuit = cirq.Circuit()

2 ops = [cirq.H(q) for q in cirq.LineQubit.range(3)]

3 circuit.append(ops)

A generator that yields operations also works. This syntax is often used in the documentation, and
works both with the cirq.Circuit() initializer and the cirq.Circuit.append() function. Note

that all of the Hadamard gates are pushed as far left as possible, and put into the same Moment since
none overlap.

If operations are applied to the same qubits, they will be put in sequential, insertion-ordered moments.

Simulation

A Simulator can be used to calculate the outcomes of applying a a quantum circuit. The base
simulator included in Cirq is capable of calculating circuits results up to 20 qubits. It can be initialized
with cirq.Simulator() .

There are two di�erent approaches to use a simulator:

� simulate() : During classical circuit simulations , the simulator can directly access and view the
resulting wave function. This feature can be useful for debugging, learning, and understanding
how circuits operate.

� run() : When using real quantum devices, one can only access the �nal computation result and
need to sample it to obtain the result's distribution. Running the simulator as a sampler mimics
this behavior, and the output will only contain a sequence of bit strings.

As an example, one can consider the following code to simulate a 2 qubits state:

1 # Create a circuit to generate a the quantum state:

2 # 1√
2
(|00⟩+ |11⟩)

3

4 # Define the circuit

5 bell_circuit = cirq.Circuit()

6

7 # Create a register with two qubits in Line topology

8 q0, q1 = cirq.LineQubit.range(2)

9
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10 # Add a Hadamard gate on qubit 0, putting this qubit in superposition.

11 bell_circuit.append(cirq.H(q0))

12

13 # Add a CNOT gate on control qubit 0 and target qubit 1

14 bell_circuit.append(cirq.CNOT(q0, q1))

15

16 # Display the circuit

17 print(bell_circuit)

18

19 # Initialize Simulator

20 sim = cirq.Simulator()

21

22 print('Simulate the circuit:')

23 results = sim.simulate(bell_circuit)

24 print(results)

25

26 # For sampling, need to add a measurement at the end

27 bell_circuit.append(cirq.measure(q0, q1, key='result'))

28

29 # Sample the circuit

30 samples = sim.run(bell_circuit, repetitions=1000)

The output of the code above will be:

1

2 0: ----H----@----

3 |

4 1: ---------X----

5

6 Simulate the circuit:

7 measurements: (no measurements)

8

9 qubits: (cirq.LineQubit(0), cirq.LineQubit(1))

10 output vector: 0.707|00> + 0.707|11>

11

12 phase:

13 output vector: |>

The circuit is printed out in ASCII text, which is the standard way of displaying circuits in Cirq.
Besides the output vector that contains each state and the corresponing amplitudes, the simulator also
shows the phase of the output vector.

Visualizing Results

One can obtain a sample distribution of measurements by using the run() method. Then, simulated

samples can be represented as a histogram using cirq.plot_state_histogram and Matplotlib .

1 import matplotlib.pyplot as plt

2

3 cirq.plot_state_histogram(samples, plt.subplot())

4 plt.show()
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Figure 4.6: Histogram of the simulation results

The measurement results are expressed in decimal form. Nevertheless, this histogram has some unoc-
cupied qubit states, which may become problematic working with a larger number of qubits. To plot
sparsely sampled data, retrieve the Counts with the histogram() function from the obtained results

and pass them to cirq.plot_state_histogram for plotting. By collecting the results into counts, all
the unobserved qubit states are excluded.

1 # Pull of histogram counts from the result data structure

2 counts = samples.histogram(key='result')

3 print(counts)

4

5 # Graph the histogram counts instead of the results

6 cirq.plot_state_histogram(counts, plt.subplot())

7 plt.show()

The output will be return a Counter object of key-value pairs corresponding to measurement outcome
and frequency of occurrence:

1

2 Counter({3: 516, 0: 484})

3

Cirq provides �ne-grained control to the end users. It provides mechanisms for �ne-tuning exactly
how a quantum program runs on the targeted quantum hardware, and tools for simulating hardware
constraints, such as limitations due to noise or the physical layout of the qubits. The qubit types
available to the programmer further demonstrate Cirq's focus on NISQ hardware. Cirq also allows for
qubit types that do not impose any physical layout, either for developing quantum programs that are
only intended to be simulated, or to be used as part of the de�nition of a custom layout. Once a qubit
type is selected, device constraints can be speci�ed programmatically, and Cirq will validate that a
given circuit satis�es all the constraints.

Cirq is a Python library for quantum programming with a strong focus on supporting near-term
quantum hardware. The primary goal of Cirq is to facilitate the development of programs that can run
on Quantum Computers available now or in the near future (NISQ hardware), depending on speci�c
device topologies. Google's SDK is tailored for NISQ hardware, but this has a potential limitation: it
may not be suitable and �exible enough for when Quantum Computers will scale up in terms of qubit
numbers and performance.
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Figure 4.7: A histogram over the states that were actually observed can often be more useful when analyzing
results

4.3 Quantum Development Kit - Q#

Institution / Vendor Microsoft

First Release Jan 2018

Open Source Yes

Homepage Homepage [36]

GitHub Git [51]

Documentation Online Doc [52]

Supported OS Mac, Linux, Windows

Classical Host Language Python, C#

Quantum Language Q#

Table 4.4: Overview of the Quantum Development Kit library

Q# (pronounced "Q sharp") is part of Microsoft's Quantum Development Kit (QDK) and provides
support for an Integrated Development Environment (IDE) and tools for program visualization and
analysis. One of its main purposes is to assist in the development of future large-scale applications,
while supporting the e�orts of users working with current quantum hardware. Q# is a standalone QPL
with a high level of abstraction. It implements programs in the form of statements and expressions, like
in classical programming languages. This language has the possibility to be integrated into a Python
SDK for greater �exibility, using tools and packages with a lower level of abstraction.

In addition to the standard library, which provides a set of essential functions and operations for
developing quantum programs, Q# includes domain-speci�c packages such as:

� Quantum Chemistry: library for simulating problems in chemistry and material science.

� Quantum Machine Learning: library which is designed to perform hybrid quantum/classical
Machine Learning experiments.

� Quantum Numerics: library that provides a set of numerical methods and functionalities for QC.

As with the other major open source programming languages, Q# programs can be targeted to run
on di�erent quantum hardware backends. In this case, Microsoft has developed Azure Quantum [36],
a full-stack cloud ecosystem for quantum solutions. It provides a set of tools and services, from the
design of quantum algorithms to the deployment of quantum applications. On Azure Quantum, it is
possible to run Q# programs on local simulators or via cloud on real hardware from third-parties such
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as IonQ, Rigetti, Pasqal, Toshiba and more others.

As written on the GitHub page, the Q# language is designed according to some principles:

� Q# is hardware agnostic. The goal is to express and exploit powerful Quantum Computing
concepts regardless of how hardware evolves in the future.

� Q# is designed to scale to the full range of quantum applications. To be applicable to a wide
range of applications, Q# allows the creation of reusable components and layers of abstractions.
To achieve performance as quantum hardware scales, automation is critical.

� Q# focuses on expressing information to optimize execution. The goal is to ensure e�cient
execution of quantum components, independently of the context in which they are invoked.

� Q# will grow and evolve over time. Quantum devices are constantly growing: Q# is designed
to adapt and change as the technology advances.

The Quantum Development Kit includes several quantum simulators that provide di�erent environ-
ments for running and testing quantum programs. As shown in Tab. 4.5, quantum simulators are
responsible for providing implementations of quantum operations for an algorithm. This includes
primitive operations such as H, CNOT, and measure, as well as qubit management and tracking.

Simulator Syntax Description

Full state
simulator

QuantumSimulator
Base Q# simulator that runs and debugs
quantum algorithms up to 30 qubits

Sparse simulator SparseSimulator
Simulates quantum algorithms with sparse states,

small number of states in superposition

Trace-based
resource estimator

QCTraceSimulator

Runs advanced analysis of resources consumptions
for quantum algorithm instances,
and supports thousands of qubits

To�oli simulator ToffoliSimulator

Simulates quantum algorithms that are limited to X ,

CNOT , and multi-controlled operations,
supporting million of qubits

Noise simulator NoiseSimulator
Simulates quantum algorithms
under the presence of noise

Table 4.5: Overview of the simulator types available in Q#

In addition to these local in-memory simulators, the QDK supports backend quantum simulators that
are provided by third-party Microsoft partners. In particular, IonQ, Quantinuum, and Rigetti supply
quantum emulators with speci�c purposes and capabilities.

The code samples and libraries are a great way to learn the Q# language, and the online documentation
contains information on how to get started with the QDK, including how to install it and set up the
environment, how to run a �rst quantum program, and lots of advice on developing algorithms using
the Q# programming language and the Python SDK. This documentation is very detailed and contains
a large number of tutorials and examples that are very useful for learning the language and developing
quantum programs. In addition, the QDK includes a set of Quantum Katas [53], which are a series
of self-paced tutorials that guide the user through the process of learning Quantum Computing and
Q# programming by solving programming exercises. Being Q# and open source language, through
GitHub it is possible to access the source code and contribute to its development. An addition or
modi�cation to the Q# language starts with a suggestion, for instance by opening an issue on Git.
After a review by the Language Design Team, the proposal feature can be approved or declined. In
the �rst positive case, the suggestion is implemented and tested, and �nally released into the master
branch.
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4.3.1 Syntax and Code Examples

The syntax of Q# is characterized by a high level of abstraction. It is a strongly-typed language,
which implies that Q# does not implicitly cast between distinct types. Q# is supported by a number
of useful operations, functions, and user-de�ned types that make up the Q# standard libraries. The
standard libraries allow working with data structures and modelling. The Microsoft.Quantum.Canon

namespace provides operations, functions, and types for working with classical data, such as tuples
and arrays. In addition, this namespace provides a variety of di�erent control constructs to make it
easier to express high-level algorithms as quantum programs. The Microsoft.Quantum.Intrinsic

and Microsoft.Quantum.Math namespaces contain the implementations of the Pauli operators and
other common quantum gates on one hand, and mathematical functions and data types on the other.
In general, three separate �les are required to execute programs using the QDK:

1. A .qs �le, where quantum operations (analogues of functions in Python) are stored.

2. A .cs driver �le where quantum operations are executed in the main program.

3. A .csproj �le that de�nes the project and contains metadata about the chosen architecture
and package references.

In the following, the general parts that compose a Q# program will be explored in more detail. Consider
for intstance the following code:

1 namespace HelloQuantum {

2

3 open Microsoft.Quantum.Canon;

4 open Microsoft.Quantum.Intrinsic;

5

6 @EntryPoint()

7 operation SayHelloQ() : Unit {

8 Message("Hello quantum world!");

9 }

10 }

@EntryPoint can be used to tell the Q# compiler where to begin executing the program. The program
prints this message:

1 Hello quantum world!

Namespaces

Every Q# �le typically starts with a Namespace declaration. A Namespace is a container for a set of
related operations, functions, and user-de�ned types.

1 namespace HelloQuantum {

2 // Here functions and operations are defined

3 }

Libraries

Q# makes extensive use of libraries. A library is a package that contains functions and operations
that can be used in quantum programs. For example, the Microsoft.Quantum.Chemistry library
allows to perform quantum calculations related to chemistry. There are several standard libraries that
include all sorts of basic operations. When a function or an operation is called, it is necessary to

48



Chapter 4. Python SDKs for QC 4.3. Quantum Development Kit - Q#

specify the namespace of the library in which this functionality is contained. Here is an example that
calls the Message function from the Microsoft.Quantum.Intrinsic library to print a message to
the console:

1 namespace HelloQuantum {

2

3 operation SayHelloQ() : Unit {

4 Microsoft.Quantum.Intrinsic.Message("Hello quantum world!");

5 }

6 }

To include the namespace of a library, it is possible to use the open keyword. This allows to invoke
library's functions and operations without having to specify the namespace each time. The Q# docu-
mentation provides complete reference documentation for each built-in library that can be included.

Types

Q# provides many built-in types such as Int , Double , Bool , and String , as well as types that

are speci�c to Quantum Computing. For example, the Result type represents the result of a qubit
measurement and can take one of two possible values: One and Zero . Q# also provides types that
de�ne ranges, arrays, and tuples, in addition to the ability to de�ne custom types.

Allocating Qubits

In Q#, qubits are allocated through the use keyword. Users can allocate one or many qubits at a
time. Here there is a simple example that allocates one qubit:

1 // Allocate a qubit.

2 use q = Qubit();

By default, every allocated qubit with the use keyword starts in the zero state |0⟩.

Quantum Operations and Functions

Once allocated, a qubit can be passed to operations and functions, also referred as callables.

� Operations are the basic building blocks of a Q# program. A Q# operation is a quantum
subroutine that contains quantum operations that modify the state of the qubit register. In this
language they are non-deterministic: they take a single (potentially tuple) input argument and
return a single, again possibly tuple, value as output. Calls to operation values can have side
e�ects, and the output can vary for each call, even when called with the same argument.

� Fuctions instead represents a deterministic callable. Functions have no side e�ects, and the
output will always be the same given the same input.

To de�ne a Q# operation, you specify a name for the operation along with its inputs and its output.
A basic example:

1 operation SayHelloQ() : Unit {

2 Message("Hello quantum world!");

3 }

Here, SayHelloQ is the name of the operation. It takes zero arguments as its input and returns

of type Unit , which means that the operation returns no information. Q# treats qubits as opaque
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objects that can be passed to both functions and operations, but can only be interacted with by passing
them to instructions that are native to the targeted quantum processor. Such instructions are always
de�ned as operations, since their purpose is to modify the quantum state. The Q# libraries also
provide operations such as the Hadamard or H operation. Given a qubit in Z-basis, the H operation
puts the qubit into a superposition of |0⟩ and |1⟩. All direct actions on the state of a qubit are all
de�ned by intrinsic callables such as X and H , that is callables whose implementations are not de�ned
within Q# but are instead de�ned by the target machine. What these operations actually do is only
made concrete by the target machine chosen for the execution of the Q# program.

For example, if the program is run on the full-state simulator, the simulator will perform the appro-
priate mathematical operations on the simulated quantum system. When the target machine is a real
Quantum Computer, calling such operations in Q# will instruct the quantum device to perform the
corresponding real operations on the real quantum hardware (e.g., in trapped-ions quantum operations
are realized by precisely timed laser pulses). A Q# program recombines these operations as de�ned by
a target machine to create more general and higher-level operations to express quantum computation.

Measuring Qubits

A Q# program has no ability to introspect into the state of a qubit, and is therefore completely agnostic
about what a quantum state is or on how it is realized. Rather, a program can call operations such as
Measure to learn information about the quantum state of the computation. There are many types of
quantum measurement, but Q# focuses on projective measurements on single qubits, also known as
Pauli measurements. When measuring in a given basis (for example, the computational basis |0⟩ and
|1⟩) the qubit state is projected onto the basis state that was measured, destroying any superposition
between the two.

In Q#, Pauli measurements are achieved by applying Measure operation, which performs a joint
measurement of one or more qubits in the speci�ed Pauli bases. Measure operation returns a Result

type. For example, to perform a measurement in the computational basis |0⟩ and |1⟩ (Pauli Z basis),
one can use Measure([PauliZ], [qubit]) or the equivalent M(qubit) . A simple example is the

following program, which allocates one qubit in the |0⟩ state, then applies a Hadamard operation H

to it and measures the result in the PauliZ basis.

1 operation MeasureOneQubit() : Result {

2 // Allocate a qubit, by default it is in zero state

3 use q = Qubit();

4

5 // Apply a Hadamard operation H to the state

6 // It now has a 50% chance of being measured 0 or 1

7 H(q);

8

9 // Now measure the qubit in Z-basis.

10 let result = M(qubit);

11

12 // Reset the qubit before releasing it.

13 if result == One { X(qubit); }

14

15 // Finally, return the result of the measurement.

16 return result;

17 }

The Microsoft.Quantum.Measurement namespace contains more speci�c measurement operations.

For instance, the MultiM operation takes an array of qubits and returns an array of measurement
results in the computational basis.
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The following simulates the same circuit tested for the other SDKs in Sec. 4.1 and Sec. 4.2. First of
all, Namespaces and a Q# operation has to be de�ned in the Circuit.qs �le.

1 namespace Circuit{

2 open Microsoft.Quantum.Intrinsic; // for H and CNOT operations

3 open Microsoft.Quantum.Measurement; // for the measurement operations

4

5 // Operation to prepare an entangled state

6 // q0 and q1 are the inputs with type Qubit

7 // Unit means that the operation has no return value

8 operation PrepareEntangledState(q0: Qubit, q1: Qubit) : Unit {

9 H(q0); // apply Hadamard gate to qubit q0

10 CNOT(q0, q1); // apply CNOT gate to with control q0 and target q1

11 }

12

13 // Operation to measure the entangled state

14 // no input arguments , a tuple of Result type is returned (the two measurements)

15 operation MeasureEntangledState() : (Result, Result) {

16

17 use q0 = Qubit(); // allocate qubit q0 in |0>

18 use q1 = Qubit(); // allocate qubit q1 in |0>

19

20 // call the operation to prepare the entangled state

21 PrepareEntangledState(q0, q1);

22

23 // Return the measurement results

24 return (M(q0), M(q1));

25 }

26 }

The PrepareEntangledState operation takes two qubits as input and prepares an entangled state

between them. The MeasureEntangledState operation allocates two qubits, calls the previously
de�ned entanglement operation, and then measures the state of the qubits. In this case the qubits are
de�ned as separate variables, but it is also possible to de�ne them as an array Qubit[] or a tuple

(Qubit, Qubit) . The same applies for the measurement results, which can be de�ned as an array

Result[] instead of a tuple (Result, Result) . To simulate this circuit, using the Python SDK of

Q#, it is possible to avoid the .cs and .csproj �les, only requiring:

1 # import the Python SDK for Q#

2 import qsharp

3

4 # import the operation defined in the .qs file

5 from Circuit import MeasureEntangledState

6

7 simulation = [] # define an empty list to store results

8

9 # simulate the operation MeasureEntangledState for 1000 shots

10 # and append the results to the list

11 for shots in range(1000):

12 simulation.append(MeasureEntangledState.simulate())

The imported qsharp package allows Q# namespaces to appear as Python packages, and one can
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import Q# callables more easily. One can employ Q# functions and operations as Python objects,
and use methods on these objects to take advantage of more �exibility of an environment with a lower
level of abstraction (e.g., the for statement in the example above). Furthermore, with some basic
operations on the retrieved Python list and with Matplotlib , it is possible to obtain the histogram

of the simulation results (Fig. 4.8).

1

2 {'00': 494, '11': 506}

3

Figure 4.8: The histogram retrieved after measure the entangled two qubits state 1000 times

By default, the import qsharp command loads all of the .qs �les in the current folder and makes
their Q# operations and functions available for use within the Python script. To load Q# code from
a di�erent folder, the qsharp.projects API can be used to add a reference to a .csproj �le for a
Q# project that contains de�ned operations and functions.

With the %trace magic command (available only in Q# Jupyter Notebooks) one can trace a run of
the Q# program and visualize the quantum circuit based on that execution. An example of the output
of the %trace command is shown in Fig. 4.9.

Figure 4.9: The quantum circuit obtained with the Q# magic command %trace available on the Python SDK

The Q#Microsoft SDK for QC provides a powerful and comprehensive platform for quantum algorithm
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development and experimentation. Its nature as a standalone high-level programming language makes
it easier to de�ne a process for creating quantum programs. Q# also provides an extensive library of
quantum operations and functions, enabling users to design complex quantum circuits and algorithms
with ease, also thanks to its interoperability with Python. Another notable feature of this SDK is that
it supports integration with quantum hardware through the Azure Quantum cloud service, allowing
researchers and coders to harness the power of real quantum processors for their experiments.

4.4 t|ket⟩

Institution / Vendor Quantinuum

First Release Dec 2018

Open Source Yes

Homepage Homepage [54]

GitHub Git [55]

Documentation Online Doc [56]

Supported OS Mac, Linux, Windows

Classical Host Language C++, Python

Quantum Language /

Table 4.6: Overview of the t|ket⟩ development library

t|ket⟩ is an advanced Software Development Kit developed by Quantinuum for the creation and exe-
cution of programs for gate-based Quantum Computers. This SDK is a powerful tool for optimizing
and manipulating platform-agnostic quantum circuits, and it is speci�cally designed to focus on the
development of quantum algorithms for NISQ devices. t|ket⟩ consists of two main components: (i)
a powerful optimising compiler written in C++ and (ii) a �exible user interface and runtime system
written in Python. This Python layer allows the user to de�ne circuits and call compiler functions,
while the runtime environment manages kernels for execution, and provides convenient methods for
de�ning loops, updating parameters, and collecting statistics.

t|ket⟩ is open source and easily accessible through the Pytket Python package, with extension modules
providing compatibility with many quantum hardwares, classical simulators, and popular quantum soft-
ware libraries. Indeed, the Pytket package provides an API for interacting with t|ket⟩ and transpiling
to and from other quantum circuit speci�cations. There are also separate packages for managing the
interoperability between the Quantinuum SDK and other quantum software packages, such as Qiskit,
Cirq, Q#, and more others.

Pytket provides many shortcuts and higher-level components for building circuits, including custom
gate de�nitions, circuit composition, gates with symbolic parameters, and conditional gates. On the
other hand, Pytket's �exible interface allows to import circuits de�ned in other SDK languages, or even
in raw source code languages such as OpenQASM. In addition to the core Pytket package, extension
modules are available to interface with quantum devices and simulators from various providers including
Quantinuum, IBM, IonQ, and others. In t|ket⟩ this is done by de�ning a Backend , which represents a
connection to a QPU or simulator for processing quantum circuits, locally or via the cloud. The types
of Backend supported in Pytket are the following:

� QPUs: Real Quantum Computers that return shot-based results. E.g., QuantinuumBackend .

� Cloud Access: Interfaces with cloud platforms to access additional QPUs and simulators. E.g.,
AzureBackend .

� Emulators: Classically simulate a circuit and produce shot-based results.
In some cases emulators use a noise model and have connectivity constraints to emulate real
QPUs. E.g., IBMQEmulatorBackend .
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� Statevector Simulators: Calculate the pure quantum state prepared by a circuit. Examples of
statevector simulators are the ForestStateBackend and the AerStateBackend .

� Unitary Simulators: Calculate the unitary operator that is applied by a circuit.
AerUnitaryBackend , an example of such a simulator, returns a unitary matrix/array.

� Density Matrix Simulators: Compute the density matrix generated by a circuit. The result can
be a statistical mixture of states, in contrast to the statevector simulation.
E.g., CirqDensityMatrixSampleBackend

� Other specialised simulators: There are extensions for simulating speci�c types of circuits. For
instance, the SimplexBackend is designed to simulate Cli�ord circuits.

t|ket⟩ attempts to provide a consistent interface across the various backend platforms, so that a user
can easily switch backends for an experiment without changing anything else in their code. t|ket⟩ is
indeed designed to be retargetable, meaning that it can generate code for many di�erent quantum
devices, and is language agnostic, meaning that it accepts input from most of the major quantum
software platforms. This is related to the compilation process of this SDK. In particular, the compiler
performs an intermediate step between the frontend and backend, where it performs data and control
�ow analysis on an Intermediate Representation (IR) of the program, which is independent of both the
source and the target languages. Standard quantum circuits are easily embedded in the t|ket⟩ IR, and
this simpli�es the translation with respect to di�erent frameworks. Once the input has been translated
into the IR, the central circuit transformation engine can begin its work. The transformation engine
performs a user-con�gurable sequence of rewrites of the IR. This process is usually done in two stages:

1. Optimisation phase: an architecture-independent step aimed at reducing the size and complexity
of the circuit.

2. Preparation phase: an architecture-dependent stage that prepares the circuit for execution on
the target machine. This phase is itself divided into a rebase, which maps the gates present in
the circuit to those supported by the chosen device, and a qubit mapping phase. The mapping
phase is necessary to ensure that all the qubits that need to interact during the program are
physically able to do so; this typically increases the size of the circuit, since most devices have
limited interactions between qubits.

The end product of this process is a kernel: a circuit that can be executed on the chosen target device.
The kernel can then be scheduled for execution by the runtime environment, or simply stored for later
use. Thanks to its retargetability, t|ket⟩ can be used as a cross-compiler: source programs produced
from any supported frontend can be compiled to run on hardware produced by any vendor.

The t|ket⟩ documentation available online it is very detailed and complete, with an accurate and
constantly updated changelog. It also contains a large number of tutorials and examples that are very
useful for learning the language and how to interface with the other SDK extensions. The Github
repository contains the full source code of the quantum SDK. Opening an issue is the preferred way to
report bugs with t|ket⟩ or request the implementation of new features. There is also a Slack channel [57]
for community discussion and support and a Stack Exchange forum [58] for Pytket-related questions.

4.4.1 Syntax and Code Examples

To use Pytket, one can simply import the appropriate modules into Python code or in an interactive
Python notebook. Circuits can be built directly using the Pytket interface by creating a blank circuit
and adding gates in the desired order.

1 from pytket.circuit import Circuit, OpType

2

3 # Create a circuit with 4 qubits

4 c = Circuit(4, name="Example Circuit")
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5

6 # Add gates to the circuit

7 c.H(0).X(1).Y(2).Z(3)

8 c.X(0).CX(1, 2).Y(1).Z(2).H(3)

9 c.Y(0).Z(1)

10 c.add_gate(OpType.CU1, 0.5, [0, 1])

11 c.Z(0).H(1).CX(3, 0)

In this example, the Circuit class (the main interface for creating circuits in Pytket) is used to create
a new circuit with 4 qubits. Then, gates such as Hadamard H , Pauli gates ( X , Y , Z ) are added to
the circuit. Note that special gates that require additional parameters, such as CU1 , must be speci�ed
with the add_gate method. The generated circuit is returned in the output as a string containing

all the operations that have been applied. Some methods of the Circuit class allow to access to the
ciruit parameters:

� circuit.name returns the name of the circuit.

� circuit.n_qubits and circuit.n_bits return the number of qubits and classical bits re-
spectively.

� circuit.depth returns the depth of the circuit.

� c.get_commands returns a list of all the operations in the circuit.

There are several ways to produce useful visualizations of circuits from Pytket, mainly using the
methods in the pytket.circuit.display class. Using the function render_circuit_jupyter it is
possible to render a circuit in a Jupyter notebook obtaining Fig. 4.10.

Figure 4.10: The circuit generated with the Pytket interface

Alternatively, t|ket⟩ Python converters provide support for several SDKs including Qiskit, Cirq, and
Q#. These converters allow users to write code in the source language, and then convert it to the
t|ket⟩ IR for compilation. An example of this conversion is shown below:

1 from qiskit import QuantumCircuit

2 from pytket import Circuit

3

4 # Define qiskit QuantumCircuit

5 qc = QuantumCircuit(3)

6 qc.h(0)

7 qc.cx(0, 1)

8

9 # Convert to pytket

10 tk_circ = qiskit_to_tk(qc)
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In this case, the conversion is accomplished by the qiskit_to_tk function, which takes a Qiskit

QuantumCircuit object as input and returns a Pytket Circuit object. Conversion in the opposite

direction can be performed with tk_to_qiskit() or tk_to_cirq() . If there is no replacement for a
Pytket operation in Qiskit or Cirq, the unsupported operation is implemented in terms of the available
gates. Then, to render the quantum circuit, the visualization methods of the arrival language can be
used.

Circuits, Gates and Boxes

The standard intermediate representation (IR) in t|ket⟩ is the circuit. A circuit can be tought as a
labelled graph with some additional structures. The vertices of the graph correspond to operations,
usually quantum or classical logic Gates , but also Boxes . Edges in the graph trace the �ow of
computational resources from operation to operation. Typically, these resources are qubits, and the
operations are unitary gates. There is a wide array of allowed gates in t|ket⟩, covering the native
gates of the platforms that can be interfaced. The most common quantum gates are one- and two-
qubits gates, mirroring the gates on physical superconducting and ion trap hardware, but some others
with arbitrary quantum controls are allowed. Boxes are a special class of operations in t|ket⟩. A
box is a container which encapsulates an entire circuit. Boxes allow users to incorporate additional
subroutines. As these subcircuits can in turn contain further boxes, a single circuit can contain a
hierarchy of arbitrary rank.

The CircBox is the most general type of box, implementing an arbitrary circuit. But Pytket supports
several other useful box types:

� Unitary1qBox (implementing an arbitrary 2× 2 unitary matrix);

� Unitary2qBox (implementing an arbitrary 4× 4 unitary matrix);

� ExpBox (implementing eitA for an arbitrary 4× 4 hermitian matrix A and parameter t);

� PauliExpBox (implementing e−
1
2
iπt(σ0⊗σ1⊗··· ) for arbitrary Pauli operators σi ∈ {I,X,Y,Z} and

parameter t).

An example of a circuit containing a box is shown in the following code:

1 import numpy as np

2 from pytket.circuit import Circuit, ExpBox

3

4 # Create a circuit with 4 qubits

5 circ = Circuit(4)

6 circ.H(0).CX(0, 1).CX(1, 2).CX(2, 3)

7

8 # Define the 4x4 matrix A

9 A = np.asarray([[1, 2, 3, 4 + 1j],

10 [2, 0, 1j, -1],

11 [3, -1j, 2, 1j],

12 [4 - 1j, -1, -1j, 1]])

13

14 # Define the ExpBox with Matrix A and exp parameter 0.5

15 ebox = ExpBox(A, 0.5)

16

17 # Add the ExpBox to the circuit circ on qubits 0, 1

18 circ.add_expbox(ebox, 0, 1)

The ExpBox class is used to implement the exponential of a matrix A on a subset of qubits. In this
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case, the matrix A is de�ned as a 4× 4 numpy array and the ExpBox is added to the de�ned circuit
on qubits 0 and 1.

Moreover, Circuits can be composed either serially, by connecting wires together, or in parallel, using
the append command.

Symbolic Parameters

To enable the e�cient compilation of algorithms, t|ket⟩ supports symbolic parameters. Many of the
gates supported by Pytket are parametrized by one or more phase parameters, representing rotations
in multiples of π. For example, Rz(12) represents a quarter turn, i.e. a rotation of π/2, around the Z
axis. The gates can be directly implemented specifying the values of these parameters or, to construct
and manipulate circuits in a di�erent way, without specifying these values. This makes it possible
to perform calculations in a general setting and only later specify values for the parameters. Thus,
Pytket allows to declare any of the parameters as a symbol. All manipulations (such as combining and
cancelling gates) are performed on the symbolic representation:

1 from pytket.circuit import Circuit

2 from sympy import Symbol

3

4 # Create a circuit with 1 qubit

5 c = Circuit(1)

6

7 # Add a Rz gate with angle 1
2π

8 c.RZ(0.5, 0)

9

10 # Declare a symbol "a"

11 a = Symbol("a")

12 # Add a Rz gate with symbolic parameter "a"

13 c.Rz(a, 0)

14

15 # at this point the circuit is: [Rz(0.5) q[0];, Rz(a) q[0];]

16 from pytket.transform import Transform

17

18 Transform.RemoveRedundancies().apply(c)

19

20 # after the transformation the circuit is: [Rz(0.5 + a) q[0];]

21

22 # Substitute the symbol "a" with the value 0.75

23 c.symbol_substitution({a: 0.75})

24 # after the substitution the circuit is: [Rz(1.25) q[0];]

This class of circuits is handled using partial compilation: the circuit is precompiled with unknown,
symbolic parameters using an expressive symbolic manipulation (e.g., simpy ). The result can be used
as a template circuit and, after parameter values at a given iteration have been substituted, the circuit
can be compiled to obtain the resulting kernel.

In order to substitute values for symbols one can use the symbol_substitution method, supplying

a Python dictionary symbol:value . Above, the symbol a has been substituted with the value 0.75,
obtaining the �nal circuit with a single Rz gate with angle 1.25π. Note that in the code above it has
been applied a transformation to remove the redundant gates, obtaining a circuit with a single gate
with parameter 1

2 + a.
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t|ket⟩ Transform System and Backends

In general, a quantum algorithm can be expressed in multiple ways using a given set of gates; the
goal is to express it in a way that minimises the gate count and circuit depth. The core of t|ket⟩ is
a powerful circuit rewriting engine called the transform system. A function that performs rewrites
using this system is called a Transform pass. Apart from optimization, the transform system plays
an essential role in generating circuits that are executable on the target hardware.

t|ket⟩ provides several Backends , each supporting a di�erent quantum hardware or classical simulator.
Supporting a speci�c platform means, �rstly, generating a circuit that respects the constraints of the
hardware or simulator (generally, connectivity and primitive gate limitations); secondly, the backend
must dispatch the kernel for execution and collect the results.

The following code shows an example of using a backend to execute the circuit simulated also with the
other analyzed SDKs.

1 from pytket.circuit import Circuit

2 from pytket-qiskit import AerBackend

3

4 # Create a circuit with a register of 2 qubits and 2 bits

5 c = Circuit(2,2)

6 c.H(0) # Hadamard gate on qubit 0

7 c.CX(0, 1) # CNOT gate with qubit 0 as control and 1 as target

8

9 # Measure all qubits and store the result in the classical register

10 c.measure_all()

11

12 # Create an AerBackend object

13 backend = AerBackend()

14

15 # Compile the circuit for the AerBackend

16 c = backend.get_compiled_circuit(c)

17

18 # Execute the circuit on the AerBackend for 1000 shots

19 handle = backend.process_circuit(c, n_shots=1000)

20

21 # Get the result of the execution

22 counts = backend.get_result(handle).get_counts()

After creating a circuit with t|ket⟩, the Qiskit AerBackend is selected for the execution. A key step

is represented by Backend.get_compiled_circuit() . The compilation step maps from the universal

computer abstraction presented at Circuit construction to the restricted fragment supported by the
target Backend . Each aspect of the compilation procedure is handled by Pytket: �rst it solves the
constraints of the Backend to get from the abstract model to something executable. Secondly, it
optimizes/simpli�es the Circuit to make it faster, smaller, and less prone to noise. When the circuit
processing is complete, the �nal output of the two qubits state is retrieved from the Qiskit backend
and the results are stored in a Python dictionary.

1

2 Counter({(0, 0): 514, (1, 1): 486})

3

Furthermore, with Matplotlib it is possible to get the histogram of the simulation results (Fig. 4.11).
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Figure 4.11: The histogram retrieved after measure the entangled two qubits state 1000 times

Predicates and Platform Agnosticism

t|ket⟩ is designed to focus on circuit compilation: taking a circuit representation and solving the gate-
level constraints of the target device such as the restricted gate set, physical connections layout, and
measurement model. The functions that verify that properties are satis�ed are called Predicates .
Each predicate is a function from a Circuit to a Boolean value: True if the circuit satis�es the
corresponding property and False otherwise. These functions can incorporate some external in-
formation about the target hardware, such as connectivity graph and desired gate set. The set of
Predicates required by a Backend can be queried with Backend.required_predicates . More-

over, calling Backend.valid_circuit() one can check if a Circuit full�ls all the requirements to

run on a Backend . If the answer is negative, then Backend.get_compiled_circuit() will try to
solve any remaining constraints if possible and return a new circuit.

Platform agnosticism is the principle that the tools and software developed can be made independent
of the target hardware on which they will run on, rather than being locked behind speci�c inter-
face software. t|ket⟩ enables this by providing Predicates and Transformations , key features for
converting circuits between a variety of other quantum software frameworks.

t|ket⟩ is characterized by a compiler system for NISQ devices that aims to optimize the use of available
hardware. The core of this open source SDK is indeed the compiler, which handles the translation of
circuits between di�erent QC frameworks. It is speci�cally designed for NISQ devices, and this can
represent a possible limitation in relation to constantly evolving hardware. Nevertheless, the �exible
design of t|ket⟩ o�ers many possibilities for future improvements.
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4.5 Quantum Matcha TEA

Institution / Vendor
University of Padova &

INFN - Istituto Nazionale di Fisica Nucleare

First Release Nov 2021

Open Source Yes

Homepage Homepage [59]

GitHub GitLab [60]

Documentation Online Doc [61]

Supported OS Mac, Linux, Windows

Classical Host Language Python, FORTRAN

Quantum Language QASM

Table 4.7: Overview of the Quantum Matcha Tea development library

Quantum TEA stands for Quantum Tensor network Emulator Applications. This SDK combines a
suite of applications that use tensor network methods to simulate quantum systems and solve Machine
Learning problems. It has been developed by the University of Padova and INFN (Istituto Nazionale
di Fisica Nucleare) and it consists of a set of di�erent applications, also called �avours:

� Quantum Green TEA: solves the static and time-dependent Schrödinger and Lindblad equa-
tions, e.g., one can simulate ground states, �nite temperature states, and time evolutions.

� Quantum Chai TEA: contains the Machine Learning applications using tensor networks.

� Quantum Red TEA: contains the tensor libraries on which the other TEA libraries rely on
for their tensor operations. It provides the interfaces to BLAS/LAPACK and CUDA for the
higher-level applications.

� Quantum TEA Leaves: Auxiliary libraries, Python-FORTRAN interfaces, and Python solu-
tions for common tensor network geometries are combined in this part of the Quantum TEA
library.

� Quantum Matcha TEA: This is the main Python interface for users to interact with the
Quantum TEA libraries and applications.

This thesis analyzes this last component of the Quantum TEA library, also because this and the
Quantum TEA Leaves are the only two parts of the library that are currently available as open source
projects.

Quantum Matcha TEA is a Quantum Computer emulator based on Matrix Product States (MPS).
Its interface is completely written in Python, eliminating the need for the user does to care about the
backends. It can be used to simulate quantum circuits de�ned with the Qiskit API or directly from
its own API. However, it is also possible to simulate qudits systems: through the FORTRAN backend,
one can emulate bosonic systems not only with 2 levels, but with an arbitrary number of dimensions.
The simulation backends are tunable between CPUs and GPUs, and between Python and FORTRAN,
and are scalable up to Message Passing Interface (MPI) for running on HPC clusters. With access
to the �nal MPS state, one can perform any measurement accessible on a Quantum Computer, such
as projective measurements, local observables, and Hamiltonians decomposed into Pauli matrices. In
addition, users can access, for example, the entanglement entropy between di�erent subsystems, and
optimized methods for sampling the �nal state.

Quantum Matcha TEA (Quantum MAny Target quantum Circuit Hpc App) interfaces with the FOR-
TRAN MPS quantum circuit simulator. This library allows to simulate quantum circuit with di�erent
local dimensions. Indeed, one can simulate qubits using the Qiskit interface, photonic circuits using
the Strawberry Fields [62] interface, or d-level quantum systems or qudits, coding a suitable class. The
Python library is meant as an interface for the FORTRAN core, which is composed of an optimized
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tensor network library, able to run on multiple cores. The run_simulation() function transpile the
circuit to adapt it to the linear structure of the MPS and run the circuit, obtaining in output the
measurements.

It is possible to choose between di�erent approaches for running the simulation by setting several
parameters such as (i) the backend (Python 'PY' or FORTRAN 'FR' ); (ii) the machine precision;
(iii) the device of the simulation ( cpu or gpu ); and (iv) the number of processes for the MPI simulation

(serial or in parallel). The default way of running programs in this SDK is serial. Although this it
may be slower than a parallel implementation, it is safer as the approximations made to the states are
less. There are various options to run the program serially:

� FORTRAN backend ( mpi_approach='SR' ). This is the fastest implementation, but requires

the presence of the main_qmatchatea.exe executable.

� Python backend ( backend='PY' ). The backend is entirely built with NumPy , it is optimized
but slightly slower than the FORTRAN backend.

� Python GPU backend ( backend='PY' , device='gpu' ). The backend is fully built with CuPy

and runs the simulation on a GPU, returning back the results on the CPU.

� Using the Python FORTRAN backend (approach='PF'). This backend uses the Python backend,
but simulates the FORTRAN I/O �les.

Instead, there are three possibilities when selecting a program to run in parallel on multiple cores:

� Master/Worker approach ( mpi_approach='MW' ), where the state is stored in the master process
and the application of the evolution operators are applied on the workers. It has the advantage
that fewer workers are not in use during the computation.

� Cartesian approach ( mpi_approach='CT' ), where the MPS is evenly partitioned among di�erent
processes, and each process performs the evolution only on its subsystem.

� Running multiple independent serial simulations on multiple cores, using the mpi4py library.

At the end of the evolution, the MPS is reassembled into the master process and the measurements are
performed. Tensor network emulators are able to e�ciently compress quantum state information. This
allows a large number of qubits to be simulated at the cost of limited entanglement and correlation
within qubits.

The Quantum Matcha TEA documentation available online it is very detailed and complete, with an
accurate and constantly updated changelog. It also contains many useful explanations on how to best
use the interaction between Python and FORTRAN. The GitLab repository contains the complete
source code. On this platform, users can open issues to report bugs, discuss new features, and ask for
support.

4.5.1 Syntax and Code Examples

Tensor Network Interface

The Quantum Matcha TEA interface is based on tensor networks. In general, to represent a quantum
state one has to deal with a number of parameters that grows exponentially with the number of
qubits. Tensor networks are able to e�ciently represent some subsets of the state space, in particular
those with low entanglement. The main idea is to represent the state of a quantum system as a
tensor network, where each tensor representing a subsystem is connected to its neighbours by a set
of coe�cients as shown in Fig. 4.12. Such networks compress these coe�cients, i.e. they compress
the quantum entanglement between the subsystems in the sense only the most important, the most
meaningful correlations are preserved. Instead of using all the coe�cients to represent the state, only
those that express more information are retained.
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Figure 4.12: Schematic representation of a tensor network. The |ψ⟩ state is decomposed into a sum of subsystems
|A⟩ and |B⟩. Tensor networks compress the quantum correlations between these subsystems acting on the
coe�cient λα.

With this representation, where in each qubit encodes a subsystem of the quantum state and the
links between qubits encode the entanglement between them, Quantum TEA obtains the MPS rep-
resentation. Using this decomposition, the memory requirements pass from being exponential in the
number of qubits (O(2n)) to being linear in the number of qubits and polinomial in the bond dimension
(O(2nχ2)). The bond dimension, denoted by χ, determines the level of entanglement that can be repre-
sented between neighbouring subsystems. Tensor networks are not able to represent highly-entangled
states since the bond dimension parameter scales exponentially having to capture an exponentially
large number of degrees of freedom.

Work�ow

The Quantum Matcha TEA work�ow is based on the following steps:

1. Preprocessing: the circuit is preprocessed to be suitable for the MPS simulation.

2. Circuit de�nition: the quantum circuit is de�ned using the Qiskit API or the Quantum Matcha
TEA API.

3. Observables de�nition: the observables to be measured are de�ned using Quantum TEA
Leaves package.

4. Circuit simulation: the circuit is simulated, serially or in parallel, using the MPS emulator on
the chosen backend (CPU or GPU).

5. Measurements and statistics: the measurements on the observables are performed, the run-
time statistics and the convergences checks are computed.

Preprocessing Phase

In order to simulate a quantum circuit a crucial phase is the preprocessing. First, the circuit must be
exploited in a way that is suitable for the MPS simulation. In this type of simulation, each degree of
freedom (qubit, mode, particle) is treated as a rank-3 tensor. Thus, the allowed operators are local
or applied to nearest neighbours. This means that, when a circuit is passed to the preprocessing, it
is translated into an equivalent circuit that follows these two properties. When using Qiskit, some
transformations are performed:

� The circuit is mapped using a pre-de�ned set of gates, called basis_gates . These gates can
be passed to the function, to satisfy a particular constraint of a physical machine wanted to be
simulated.

� Map the circuit to a linear circuit. By an optimized application of swap gates, the non-local
two-qubit gates are mapped into a series of local two-qubit gates.

These operations are performed automatically by the higher-level function run_simulation() . How-
ever, it is important to note that these operations take time proportionally to the size of the circuit.
Afterwards, if a FORTRAN backend is selected, the parsing process is applied, i.e. a suitable input
�le is generated for the FORTRAN backend.
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Circuit De�nition

Quantum circuits are de�ned in QMatcha TEA as a list of layers, and each layer is a list of Instructions,
i.e. a list [ QCOperation , sites ]. The �rst element of the list, QCOperation , represents all the possi-

ble operations that can be applied to the circuit, gates, but also the so-called ClassicalConditions :
conditions to be checked for applying the operation on the simulation. The sites element instead,
stands for the qubits on which the operations are applied: Moreover, there are two key features when
one has to de�ne qubits and classical bits of the circuit:

� qregisters : registers to keep track of quantum bits. Qubits can be added or removed, respec-

tively using the methods add_qregister() and remove_qregister() . To apply an operation
one can always specify to which register are referring, without having to worry about the indexing.
In particular, qubits in the same register are naturally ordered from left to right.

1 from qmatchatea.circuit import circuit as qcirc

2

3 # Create a Quantum Circuit with 2 sites/qubits

4 circ = qcirc.Qcircuit(num_sites = 2)

5

6 # Attach the register "q1" to the left

7 circ.add_qregister("q1", [0])

8

9 # Attach the register "q2" in the middle of the two original sites

10 circ.add_qregister("q2", [1])

11

12 # Attach the register "q3" to the right

13 circ.add_qregister("q3", [2])

14

15 # Apply a NOT gate on the first qubit of the register "q3"

16 qcirc.Qcircuit.x(circ , 0, "q3")

This code creates a circuit with 2 qubits, and then it adds three quantum registers in di�erent
positions, to track the indexes of the qubits in the circuit with a name. So, if one wants to
apply a NOT gate to the left-most qubit of the register "q3" of the circuit circ has to call

Qcircuit.x(circ, 0, "q3") , since the left-most has index 0 for the register "q3".

� cregisters : classical registers to store the information about projective measurements per-
formed on the system and the relative probability.
Thus, the position index of the cregister will contain the tuple (meas_result, meas_prob) .

By calling the method inspect_cregister(creg, idx)() , where creg is the string name of

the classical register, one can access the value of the bit at the index idx .

Furthermore, there are three di�erent ways of adding operations to the circuit, as shown in the following
code:

1 from qmatchatea.circuit import circuit as qcirc

2

3 # Create a Quantum Circuit with 2 sites/qubits

4 circ = qcirc.Qcircuit(num_sites=2)

5

6 # Add a Hadamard gate with the add() method

7 circ.add(operation = qcirc.QCHadamard(), sites = 0)

8
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9 # Add a Hadamard gate with the insert() method

10 circ.insert(operation = qcirc.QCHadamard(), sites = 0, layer = 0)

11

12 # Add a Hadamard directly from the gate operation

13 circ.h(pos = 0)

For example, to add a Hadamard gate, the add() method requires to specify the QCOperation to

be applied and the qubit/site on which the operation is applied. In addition to these arguments,
with the insert() method needs the layer of the circuit in which the operation is inserted. Finally,

with the Qcircuit.h() method, one can apply the Hadamard gate directly to the circuit circ ,
only specifying the qubit/site position pos . In all these three ways, it is also possible to specify the
quantum register name in which the operation will be applied.

Circuits can also be initialized from Qiskit circuits, using the from_qiskit() method.

Observables De�nition

The code related to the observables is included in the Python package QTEA Leaves. However,
they are a fundamental element of the Quantum Matcha �avour. Observables de�ne the quantities
one is interested in measuring at the end of the simulation and can be of several types. For instance,
Projective Observables allows the �nal projective measurements after the quantum state evolution.
This observable gives single-shot measurements: the system is projectively measured a number of times
equal to the argument num_shots . In this way, users can observe a statistic of the distribution of the
states. The output of this measurement is a dictionary where the keys are the measured states on a
given basis and the values are the occurrences of each measured state. When working with qubits, the
measurement is performed on the computational basis.

Other types of observables that can be de�ned are Local Observables , which measure an operator
de�ned at a single site over the complete system (e.g., the expectation value of the Pauli matrix σz);
Bond entropy Observables which measure the quantum correlation between two subsystems (the

Von Neumann bond entropy SV ) at the end of a circuit. More generally, one can have observables
de�ned as the tensor product (or weighted sum of a tensor product) between one-site or two-site local
observables ( Tensor Product Observables ), or even observables to measure the probabilities of the
state con�gurations at the end of an evolution ( Probabilities Observables ).

Circuit Simulation and Measurements

The last stage of the work�ow is the simulation of the circuit and the measurements of the observables.
First of all one has to de�ne the backend and the device on which the simulation will be performed.
Optionally, one can also specify the number of processes for the MPI simulation and the approach to
be used (serial or parallel). In some simulations of optimization problems users have to tuned some
important convergence parameters such as:

� Maximum bond dimension χ: encodes the amount of entanglement that can be encoded in the
quantum state, and also the computational resources that will be used. A low bond dimension
means a quick but (maybe) inaccurate simulation. In general, users have to �nd the correct value
to coherently represent the system.

� Cut ratio ε: represents the threshold for the singular values cut. The singular values cut are an
indication of the approximation taking place during the simulation.

� Fidelity: the lower bound of the �delity of the simulation. The �delity is a measure of the
closeness between the simulated state and the real state. It gives a measure of how much the
simulation results re�ect what would be obtained on a real Quantum Computer. If the �delity is
equal to 1, then the simulation is exact. Otherwise, if it is 0 there is probably a truncation error
due to the chosen bond dimension, so not always this correspond to a bad simulation.
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As done for the other analyzed SDKs, in the following code is shown an example of a simulation of a
quantum circuit with Quantum Matcha TEA.

1 from qmatchatea.circuit import Qcircuit

2 from qmatchatea.py_emulator import QcMps

3 from qmatchatea import QCConvergenceParameters

4

5 # Create a quantum circuit with 2 qubits

6 qcirc = Qcircuit(num_sites = 2)

7

8 # Hadamard gate on qubit 0

9 qcirc.h(0, qreg="default")

10

11 # CNOT gate on qubits as a control 0 and 1 as a target

12 qcirc.cx([0, 1], qreg=["default", "default"])

13

14 # Add a classical register with two bits

15 qcirc.add_cregister(name="creg", num_bits=2)

16

17 # Measure the qubits and store the result in the classical register

18 qcirc.measure_projective(pos=0, cl_idx=0, qreg="default", creg="creg")

19 qcirc.measure_projective(pos=1, cl_idx=1, qreg="default", creg="creg")

20

21 # Initialize the MPS simulator using the default convergence parameters

22 mps = QcMps(num_sites=2, convergence_parameters=QCConvergenceParameters())

23

24 # Run the simulation

25 mps.run_from_qcirc(qcirc)

26

27 # Print the measurement results

28 mps.meas_projective(nmeas=1000)

The �rst part of the code de�nes the quantum circuit, with two qubits and two classical bits. Then,
the Hadamard gate is applied to the �rst qubit, and the CNOT gate is applied to the �rst qubit as the
control and the second qubit as the target. The two qubits are then measured and the results are stored
in the properly added classical register creg . Then, the MPS simulator is initialized with the default

convergence parameters, and the simulation is run using the run_from_qcirc() method. Finally, the

dictionary obtained by projective measurement on the computational basis ( meas_projective ), for
1000 shots, is printed.

The output of the simulation is the following:

1

2 {'00': 505, '11': 495}

3

Furthermore, with Matplotlib it is possible to get the histogram of the simulation results (Fig. 4.13).
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Figure 4.13: The histogram retrieved after measure the entangled two qubits state 1000 times

Quantum Matcha TEA still lacks of its own circuit visualization: to graphically represent circuits users
have to go through Qiskit.

This SDK cannnot be used to run quantum algorithms and applications directly on real quantum hard-
ware, but only to simulate them through tensor networks. Matrix Product State simulations are not
limited by the number of qubits, but by the entanglement one wishes to describe. Therefore, Quantum
Matcha TEA is not suitable for general quantum states, but only for those without strong correlations.
In fact, one of the main purposes of this library is to run algorithms on hybrid quantum-classical
computers, in particular HPCs. Therefore, a core feature of this library is to optimize and parallelize
algorithms as much as possible in order to achieve the maximum e�ciency in the implementation pro-
cess. This last capability distinguishes Quantum TEA from the other analyzed SDKs, and provides
the opportunity to experiment with Quantum Computing from a di�erent perspective.
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Comparative analysis and Discussion

The aim of this chapter is to provide a comparative analysis of the di�erent quantum programming
frameworks, in order to highlight their strengths and weaknesses. The �rst part of the analysis is
based on characteristics and key features of the Python SDKs presented in the previous chapter.
Furthermore, after presenting the quantum teleportation protocol, the second part of the analysis
focuses on highlighting the di�erences in the implementation in the various frameworks. Finally, the
third part of the comparison deals with a coding speci�c metric, the cyclomatic complexity, in order
to evaluate the code quality of the analyzed libraries.

5.1 Diversity of Quantum Programming Frameworks

The premise of this section is that all the analyzed platforms are signi�cant achievements in the �eld
of Quantum Computing and excellent tools for students and researchers to program real Quantum
Computers. Open source projects are fundamental for the development of QC, to share knowledge and
build communities and ecosystems. Discussion channels and forums are indeed essential to progress,
to share ideas and strengthen the software application.

The choice of one SDK with respect to the others depends on various factors. Obviously, the application
one wants to develop will drive the choice of the framework. In addition, some syntax elements or
certain statements of the programming language can be very important. However, one of the most
relevant factors is de�nitely the ability to run the designed circuit on simulators and on real quantum
hardware. Some SDKs, as seen in the previous chapter, take the path of being hardware agnostic, while
others are more focused on a speci�c hardware architecture. Moreover, some Software Development
Kits are designed to focus on current (or near-term) NISQ architectures, while others think about
future Quantum Computers with a higher number of qubits, more connectivity and also fault-tolerant,
i.e. without errors in computation.

This leads to another discussion: which of these two approaches is better? There is no de�nitive
answer to this question, as each direction has its own advantages and disadvantages. On one hand,
the �rst approach allows the designed circuit to run on current hardware architectures, which are
constantly growing and improving. SDKs such as Cirq and t|ket⟩ are of this type; the goal of optimizing
algorithms and applications can achieve advances in QC architectures, but at the same time it can
represent a limitation. The second approach indeed, not focusing only to NISQ hardwares, o�ers the
opportunity to design circuit without being constrained by the limitation of the present architectures
(such happens in Qiskit or in Q#). In addition, this second framework allows researchers to design
long-term codes, without having to rewrite and adapt programs when new hardwares becomes available.
As a disadvantage, the design of these SDKs is more complex, since it is not easy to organize a �exible
structure that is able to translate the code on any physical layout of the qubits. It is important to
underline that current softwares are built to encode only notable vectors standing on the Bloch Sphere,
so that the preparation of the quantum state is not completely free, but it is constrained starting from
these vectors.
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SDK
Simulator
backend

availability

Own QPU
backend

availability

Level of
agnosticism

Level of
interoperability

Qiskit ✓ ✓ Low Medium

Cirq ✓ ✗ High Medium

Q# ✓ ✓ High Medium

t|ket⟩ ✓ ✓ High High

QMatcha TEA ✓ ✗ Medium High

Table 5.1: Comparison of the main features of the analyzed frameworks.

Another important consideration when choosing a QC framework is the interoperability with other
programming languages and with hardwares from di�erent vendors. This allows to take advantage
of the strenghts of di�erent platforms and to combine them to solve a speci�c problem. In this
sense, Q# and QMatcha TEA are good examples, since they are designed to be interoperable with
other frameworks. Moreover, Cirq provides an interface with third parties hardwares, validating the
designed circuit to be exectuted following the constraints of the target architecture. The various SDKs
also have di�erent levels of hardware agnosticism, focusing on a speci�c type of hardware (such as
the superconducting for Qiskit) or o�ering the ability to design algorithms to be run on di�erent
technologies.

The Tab. 5.1 summarizes the main features of the analyzed frameworks, highlighting some di�erences
between them.

Gate-based Quantum Computing SDKs are powerful tools, but like any software, they have their own
set of challenges, limitations, and potential drawbacks. A common problem associated with these SDKs
is certainly the complexity for beginners, as learning how to code a quantum algorithm is not trivial,
since it requires knowledge of quantum mechanics. Documentation and tutorials are essential to help
users to learn how to use the framework and to understand the quantum concepts behind the code, but
apart from the fact of not always being exaustive, they do not always cover the interoperability with
other frameworks. Each SDK is designed with its own purposes and speci�c domains of application, so
in most of the cases users have to make a single choice for the development of their use cases. This is
indeed a very important aspect of quantum programming, since it is really di�cult (if not impossible)
to formulate Quantum Computing languages which are universal.

5.2 Quantum Teleportation Protocol

The quantum teleportation protocol is a fundamental protocol in quantum computing. It is a protocol
that allows the state of a qubit to be transferred from one location to another, without physically
moving the qubit itself. A sender (Alice) transmits a qubit state to a receiver (Bob) by making use
of a shared entangled state, together with two bits of classical communication. Alice holds a qubit
A, Bob holds a qubit B, and together the pair (A,B) is in the entangled state |ϕ+⟩. It could be, for
instance, that Alice and Bob were at the same place in the past, they prepared the qubits A and B
in the state |ϕ+⟩, and then went their separate ways with their qubits in hand. Or it could be that
some other process, such as one involving a third party or a complex distributed process, was used
to create this shared entangled state. These details are not part of the teleportation protocol itself.
Alice then comes into possession of a third qubit Q which she wishes to send to Bob. The state of
the qubit Q is assumed to be unknown to Alice and Bob, and no assumptions are made about it. For
example, the qubit Q might be entangled with one or more other systems that neither Alice nor Bob
can access. To say that Alice wants to transmit the qubit Q to Bob means that Alice would like Bob
to be holding a qubit that is in the same state that Q was at the start of the protocol, with all the
correlations that Q had with other systems, as if Alice had physically handed Q to Bob. The quantum
circuit implementation of the this protocol is show below.
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The quantum teleportation can be divided into various steps:

1. Alice and Bob share an entangled pair of qubits |ϕ+⟩.

2. Alice performs a controlled-NOT operation on the pair (A,Q), with Q being the control and A
being the target, and then performs a Hadamard operation on Q.

3. Alice then measures both A and Q, with respect to a standard basis measurement in both cases,
and transmits the classical outcomes to Bob. The outcomes of the measurement of A and B are
referenced as a and b respectively.

4. Bob receives a and b from Alice, and depending on the values of these bits he performs these
operations:

� if a = 1 then Bob performs a bit �ip applying a Pauli-X gate (NOT) on his qubit B.

� if b = 1 then Bob performs a phase �ip applying a Pauli-Z gate on his qubit B.

That is, conditioned on ab being 00, 01, 10, or 11, Bob performs one of the operations I, Z, X,
or ZX on the qubit B.

Therefore, the various possibilities of measure results for ab are:

� Alice measures |00⟩: Bob does nothing. I |B⟩

� Alice measures |01⟩: Bob applies a Pauli-X gate. X |B⟩

� Alice measures |10⟩: Bob applies a Pauli-Z gate. Z |B⟩

� Alice measures |11⟩: Bob applies a Pauli-X gate followed by a Pauli-Z gate. XZ |B⟩

This is the complete description of the teleportation protocol, it has e�ectively implemented a perfect
qubit communication channel, where the state of Q has been "teleported" into B. When the protocol
is �nished, the state of the qubit Q will have changed from its original value to |b⟩ as a result of the
measurement performed on it. Note also that the initial shared entangled state has e�ectively been
"burned" in the process: the state of A has changed to |a⟩ and is no longer entangled with B (or any
other system). This is the cost of teleportation.

To analyze the teleportation protocol, the behavior of the circuit described above is now examined, one
step at a time, beginning with the situation in which the qubit Q is initially in the state α |0⟩+ β |1⟩.
With this assumption on Q, the state of the three qubits (B,A,Q) together at the start of the protocol
is therefore

|π0⟩ = |ϕ+⟩ ⊗
(
α |0⟩+ β |1⟩

)
=
α |000⟩+ α |110⟩+ β |001⟩+ β |111⟩√

2

The �rst gate that is performed is the controlled-NOT gate, which transforms the state |π0⟩ into

|π1⟩ =
α |000⟩+ α |110⟩+ β |011⟩+ β |101⟩√

2
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Then the Hadamard gate is applied, which transforms the state |π1⟩ into

|π2⟩ =
α |00⟩ |+⟩+ α |11⟩ |+⟩+ β |01⟩ |−⟩+ β |10⟩ |−⟩√

2

=
α |000⟩+ α |001⟩+ α |110⟩+ α |111⟩+ β |010⟩ − β |011⟩+ β |100⟩ − β |101⟩√

2

Using the multilinearity of the tensor product, we may alternatively write this state as follows:

|π2⟩ =
1

2

(
α |0⟩+ β |1⟩

)
|00⟩

+
1

2

(
α |0⟩ − β |1⟩

)
|01⟩

+
1

2

(
α |1⟩+ β |0⟩

)
|10⟩

+
1

2

(
α |1⟩ − β |0⟩

)
|11⟩

Considering the four possible outcomes of Alice's standard basis measurements, it is possible to examine
the actions that Bob performs on his qubit.

� ab = 00: The outcome of Alice's measurement is |00⟩ with probability∥∥∥∥12
(
α |0⟩+ β |1⟩

)∥∥∥∥2 = |α|2 + |β|2

4
=

1

4

in which case the state of (B,A,Q) becomes(
α |0⟩+ β |1⟩

)
|00⟩

Bob does nothing in this case, and so this is the �nal state of these three qubits.

� ab = 01: The outcome of Alice's measurement is |01⟩ with probability∥∥∥∥12
(
α |0⟩ − β |1⟩

)∥∥∥∥2 = |α|2 + | − β|2

4
=

1

4

in which case the state of (B,A,Q) becomes(
α |0⟩ − β |1⟩

)
|01⟩

In this case Bob applies a Z gate to B, leaving (B,A,Q) in the state(
α |0⟩+ β |1⟩

)
|01⟩

� ab = 10: The outcome of Alice's measurement is |10⟩ with probability∥∥∥∥12
(
α |1⟩+ β |0⟩

)∥∥∥∥2 = |α|2 + |β|2

4
=

1

4

in which case the state of (B,A,Q) becomes(
α |1⟩+ β |0⟩

)
|10⟩

In this case Bob applies a X gate to B, leaving (B,A,Q) in the state(
α |0⟩+ β |1⟩

)
|10⟩
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� ab = 11: The outcome of Alice's measurement is |11⟩ with probability∥∥∥∥12
(
α |1⟩ − β |0⟩

)∥∥∥∥2 = |α|2 + | − β|2

4
=

1

4

in which case the state of (B,A,Q) becomes(
α |1⟩ − β |0⟩

)
|11⟩

In this case Bob performs the operations ZX on the qubit B, leaving (B,A,Q) in the state(
α |0⟩+ β |1⟩

)
|11⟩

In all four cases, that Bob's qubit B is left in the state α |0⟩+ β |1⟩ at the end of the protocol, which
is the initial state of the qubit Q.

5.2.1 Teleportation Protocol with the analyzed SDKs

In this section, the quantum teleportation protocol is coded in the analyzed SDKs, in order to high-
light the di�erences in the implementation. Indeed, each SDK has its own syntax and its own way
of representing quantum circuits, providing an additional level of comparison between the di�erent
frameworks.

Teleportation in Qiskit

The following code shows the implementation of the quantum teleportation protocol in Qiskit.

1 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister

2

3 qubit = QuantumRegister(1, "Q") # Create a q register - Qubit to be teleported

4 ent0 = QuantumRegister(1, "A") # Create a q register - Alice

5 ent1 = QuantumRegister(1, "B") # Create a q register - Bob

6 a = ClassicalRegister(1, "a") # Create a cl register to store measurement

7 b = ClassicalRegister(1, "b") # Create a cl register to store measurement

8

9 # Create a quantum circuit with the created registers

10 protocol = QuantumCircuit(qubit, ent0, ent1, a, b)

11

12 # Prepare the entangled state used for teleportation

13 protocol.h(ent0) # Apply a Hadamard gate to the first qubit

14 protocol.cx(ent0, ent1) # Apply a CNOT gate using A as control and B as target

15 protocol.barrier()

16

17 # Alice's operations

18 protocol.cx(qubit, ent0) # Apply a CNOT gate using Q as control and A as target

19 protocol.h(qubit) # Apply a Hadamard gate to the Q qubit

20 protocol.barrier()

21

22 # Alice measures and sends classical bits to Bob

23 protocol.measure(ent0, a) # Measure Alice's qubit A and store the result in bit a

24 protocol.measure(qubit, b) # Measure qubit Q and store the result in bit b

25 protocol.barrier()

26
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27 # Bob uses the classical bits to conditionally apply gates

28 with protocol.if_test((a, 1)): # If 'a' is 1, apply X gate to qubit B

29 protocol.x(ent1)

30 with protocol.if_test((b, 1)): # If 'b' is 1, apply Z gate to qubit B

31 protocol.z(ent1)

After importing the necessary libraries, the �rst step is to create the quantum and classical registers.
Then, the quantum circuit is created on the registers, and the shared entangled state is prepared for the
teleportation protocol. The circuit �rst initializes (A,B) to be in a |ϕ+⟩ state (which is not part of the
protocol itself), followed by Alice's operations, then her measurements, and �nally Bob's operations.
The �rst two gates are the Hadamard gate and the CNOT gate, which entangles the two qubits. Then,
the controlled-NOT gate and the Hadamard gate are applied to the qubit to be teleported. After that,
the two qubits are measured and the classical bits are sent to Bob. Finally, Bob applies the Pauli gates
depending on the classical bits received from Alice, using the method if_test() .

The circuit makes use of a few features of Qiskit such as the barrier and if_test functions.

The barrier function creates a visual separation making the circuit diagram more readable, and it
also prevents Qiskit from performing various simpli�cations and optimizations across barriers during
compilation when circuits are run on real hardware. The if_test function applies an operation
conditionally depending on a classical bit or register.

Teleportation in Cirq

The following code shows the implementation of the quantum teleportation protocol in Cirq.

1 import cirq

2

3 circuit = cirq.Circuit()

4

5 # Prepare the three qubits involved in the teleportation protocol

6 # Q -> the qubit to be teleported

7 # A -> Alice's qubit

8 # B -> Bob's qubit

9

10 Q , A , B = cirq.LineQubit.range(3)

11

12 # Create the entangled pair between Alice and Bob

13 circuit.append([cirq.H(A), cirq.CNOT(A, B)])

14

15 # Measurements of the message Q and Alice's entangled qubit A

16 circuit.append([cirq.CNOT(Q, A), cirq.H(Q)])

17 circuit.append(cirq.measure(Q, key='Q'))

18 circuit.append(cirq.measure(A, key='A'))

19

20 # Use two classical bits to recover the original quantum state on Bob's qubit

21 # if Alice's qubit is 1, then apply a NOT gate on B

22 # if Q is 1, then apply a Z gate on B

23 circuit.append(cirq.X(B).with_classical_controls('A'))

24 circuit.append(cirq.Z(B).with_classical_controls('Q'))

In this SDK the qubits are not in a register but are created individually in a linrear array. Then the
operations are appended to the circuit, and the with_classical_controls method is used to apply
the Pauli gates conditionally on the classical bits received from Alice.
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Teleportation in Q#

In the next block of code there is the implementation of the quantum teleportation protocol in Q#.

1 namespace Teleport{

2 open Microsoft.Quantum.Arrays;

3 open Microsoft.Quantum.Canon;

4 open Microsoft.Quantum.Measurement;

5 open Microsoft.Quantum.Intrinsic;

6 open Microsoft.Quantum.Preparation;

7

8 // This operation prepares an entangled Bell pair between two qubits.

9 operation PrepareBellPair(left: Qubit, right: Qubit) : Unit is Adj + Ctl {

10 H(left);

11 CNOT(left, right);

12 }

13

14 // The teleportation protocol

15 @EntryPoint()

16 operation TeleportProtocol(prepBasis: Pauli, measBasis: Pauli) : Result {

17 use Q = Qubit(); // The qubit to be teleported

18 use A = Qubit(); // Alice's qubit

19 use B = Qubit(); // Bob's qubit

20

21 PreparePauliEighenstate(prepBasis, Q); // Prepare Q in a random state

22 PrepareBellPair(A, B); // Prepare the entangled Bell pair A-B

23 Adjoint PrepareBellPair(Q, A); // Prepare the entangled Bell pair A-Q

24

25 if (MresetZ(A) == One) { X(B); } // Apply X gate to B if A is 1

26 if (MResetZ(Q) == One) { Z(B); } // Apply Z gate to B if Q is 1

27

28 let result = Measure([measBasis], [B]); // Measure B in the desired basis

29 Reset(B);

30

31 return result; // Return the measurement result of B

32 }

33 }

First of all the namespace is de�ned, opening the necessary libraries. Then, the PrepareBellPair

operation is de�ned, which prepares an entangled Bell pair between two qubits. Finally, the telepor-
tation protocol is implemented, using the PreparePauliEighenstate operation to prepare the qubit
to be teleported in a random state. The operations on the Bob's qubit are applied conditionally on
the classical bits received from Alice, using if statements with respect to the MResetZ operation,
which measures the qubit in the Z basis and resets it to |0⟩. At the end, the state of the qubit B is
measured in the desired basis and the result is returned as output.

Teleportation in t|ket⟩

Following the implementation of the protocol using t|ket⟩ SDK.

1 from pytket.circuit import Circuit

2

3 # Create a circuit with 3 qubits and 2 classical bits

4 # Qubit 0 -> Qubit to be teleported
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5 # Qubit 1 -> Qubit A

6 # Qubit 2 -> Qubit B

7 circuit = Circuit(3,2)

8

9 # Prepare the Bell state A-B

10 circuit.H(1)

11 circuit.CX(1,2)

12

13 # Prepare the Bell state Q-A

14 circuit.CX(0,1)

15 circuit.H(0)

16

17 # Perform measurements of Q and A

18 circuit.Measure(0,0)

19 circuit.Measure(1,1)

20

21 # Apply corrections to B wrt the measurement results

22 circuit.X(2, condition_bits=[1]) # Apply X to B if A is 1

23 circuit.Z(2, condition_bits=[0]) # Apply Z to B if Q is 1

First of all the circuit is created, specifying the number of qubits and classical bits. Then, the Bell
state is prepared between the qubits A and B, followed by the preparation of the Bell state between
the qubits Q and A. After that, the qubits Q and A are measured and the Pauli gates are applied
conditionally on the classical bits received from Alice, using the condition_bits parameter of the

X and Z methods.

Teleportation in QMatcha TEA

The following code shows the implementation of the quantum teleportation protocol in QMatcha TEA.

1 from qmatchatea.circuit import Qcircuit, ClassicalCondition

2 from qmatchatea.py_emulator import QcMps

3 from qmatchatea import QCConvergenceParameters

4

5 # Instantiate the Qcircuit with Alice qubits

6 # Qubit 0 -> Qubit to be teleported

7 # Qubit 1 -> Qubit A

8

9 num_qubit = 2

10 qc = Qcircuit(num_qubit)

11

12 # Create Bell's pair

13 qc.h(0, qreg="default")

14 qc.cx([0, 1], qreg=["default", "default"])

15

16 # Add Bob's register

17 qc.add_qregister(new_register="qbob", positions=[0], reference_register="default")

18

19 # Entangle Bob's qubit with one of Alice's

20 qc.cx([0, 0], qreg=["qbob", "default"])

21 qc.h(0, qreg="qbob")

22

23 # Add the classical register necessary to store the output of a projective
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24 # measurement in the circuit.

25 qc.add_cregister(name="cbob", num_bits=2)

26

27 # Measure the qubit in position 'pos' of the quantum register 'qreg'

28 # storing the result in the index 'cl_idx' of the classical register 'creg'

29 qc.measure_projective(pos=0, cl_idx=0, qreg="qbob", creg="cbob")

30 qc.measure_projective(pos=0, cl_idx=1, qreg="default", creg="cbob")

31

32 # Define the classically conditioned gates, i.e. gates that will be applied

33 # based on the result of a previous measurement.

34 cond_x = ClassicalCondition(cregister="cbob", value=1, idx=0)

35 qc.x(1, qreg="default", c_if=cond_x) # Apply X gate if A is 1

36

37 cond_z = ClassicalCondition(cregister="cbob", value=1, idx=1)

38 qc.z(1, qreg="default", c_if=cond_z) # Apply Z gate if Q is 1

39

40 mps = QcMps(num_qub, convergence_parameters=QCConvergenceParameters())

41 mps.run_from_qcirc(qc)

After the import of the necessary libraries, the quantum circuit is created, specifying the number of
qubits. Later, the Bell state is prepared between the qubits Q and A, followed by the preparation of
the entangled state between the qubits A and B. Moreover, the classical register necessary to store the
output of a projective measurement in the circuit is added. Then, the qubits Q and A are measured
and the Pauli gates are applied conditionally on the classical bits received from Alice (employed with
ClassicalCondition ), using the c_if parameter of the x and z methods. Finally, the circuit is
run on the emulator using the default convergence parameters.

5.3 Cyclomatic Complexity Analysis

Cyclomatic complexity [63] is a software metric used to measure the complexity of a program's control
�ow. It is a quantitative measure of the number of independent paths through the code, which can
be used to assess the code's complexity, maintainability, and potential points of failure. Therefore, a
lower score (corresponding to lower complexity) is considered better, as it indicates a less convoluted
codebase. Cyclomatic complexity is easy to extract from Python projects, using tools such as radon [64].
The concept of cyclomatic complexity was introduced by Thomas J. McCabe in 1976 and it is calculated
based on the graph representation of the code's control �ow, where nodes represent decision points
(such as conditional statements) and edges represent the possible transitions between nodes. The
formula to calculate this metric M is:

M = E −N + 2P

where:

� E is the number of edges in the control �ow graph

� N is the number of nodes in the control �ow graph

� P is the number of connected components (usually 1, unless the program has disconnected parts)

Cyclomatic complexity provides several insights:

1. Code readability and maintainability: Higher values of cyclomatic complexity indicate more
complex code with multiple decision points and paths. Such code may be more di�cult to read,
understand, and maintain.
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SDK Cyclomatic Complexity

Qiskit 2.42

Cirq 2.77

Q# 2.61

t|ket⟩ 2.91

Quantum
Matcha TEA

3.05

Table 5.2: Cyclomatic complexity of the analyzed SDKs.

2. Testing: The cyclomatic complexity metric can be used as a guide for testing. It suggests the
minimum number of test cases required to achieve full coverage of di�erent paths in the code.

3. Error-prone code: Areas with high cyclomatic complexity tend to be more error-prone because
they have a greater number of possible paths, increasing the likelihood of errors.

4. Refactoring: Cyclomatic complexity can help identify parts of the code that might bene�t from
refactoring to simplify the control �ow and reduce complexity.

5. Code reviews: Teams can use cyclomatic complexity as a basis for code reviews, helping to
identify sections that might need improvement before being merged into the codebase.

Cyclomatic complexity is calculated using the radon library, which provides an interface for measuring
the cyclomatic complexity of a Python project. This metric is computed for each Python �le in the
codebase, and the average of these values is taken as the �nal score, excluding the minimum and the
maximum.

It's important to note that cyclomatic complexity is just one metric among many used to assess code
quality. While it provides valuable insights into control �ow complexity, it does not take into account
other factors such as code duplication, function length, or overall design. In the following table 5.2,
the cyclomatic complexity of the analyzed SDKs is shown.

From this table it is possible to see that the SDK with the lowest cyclomatic complexity is Qiskit.
This is due to the fact that Qiskit is the most mature SDK, and it has been developed for a longer
time with respect to the others. After that, Cirq and Q# have a similar result in terms of this metric,
meaning that is in both cases the code is stable and well structured. As expected, t|ket⟩ and Quantum
Matcha TEA have the highest cyclomatic complexity, since they are newer SDKs with respect to the
others. The latter two achieve a good result anyway, considering that the �rst rank score for the radon
library has a cyclomatic complexity between 1 and 5.
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Conclusions

The research and analysis presented in this thesis has attempted to clarify the landscape of program-
ming gate-based Quantum Computers, focusing on the comparative evaluation of various Software
Development Kits for circuit design automation. Various features, capabilities, and limitations of
prominent SDKs, including Qiskit, Cirq, and Q#, have been examined. This study has highlighted
the importance of these tools in democratizing access to Quantum Computing and supporting ad-
vancements in quantum algorithm development. The comparative analysis has not only illustrated the
distinctive programming paradigms employed by each SDK, but also revealed the underlying challenges
and opportunities presented by quantum programming. As it turns out, the inherent complexity of
quantum systems requires a �ne balance between high-level abstraction and low-level control, and each
SDK approaches this balance di�erently, responding to various user preferences and skill levels. These
challenges show the nature of Quantum Computing and the ongoing e�orts required to harness its full
potential.

As QC moves forward, driven by technological advancements and innovative research, the SDKs an-
alyzed in this work contribute to its development. The decision of which SDK to use depends on
factors ranging from user expertise and project requirements, to the SDK's community support and
adaptability to evolving quantum hardware. As quantum technologies continue to mature, these SDKs
will continue to evolve, transforming the theoretical potential of Quantum Computing into practical
solutions for complex challenges across a wide range of disciplines.

In the end, Quantum Computing is not a strange way of doing special calculations, but a new way of
thinking about computation. QC can be used to experiment and see what new things can be built.
There is no telling what we will discover, but now is the time for exploration and innovation.

Probably, the greatest years for Quantum Computing are ahead of us.
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