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Abstract

This thesis aims at addressing the problem of anomaly detection in the con-
text of credit card fraud detection with machine learning. Specifically, the
goal is to apply a new approach to two-sample testing based on classifiers
recently developed for new physic searches in high-energy physics. This strat-
egy allows one to compare batches of incoming data with a control sample of
standard transactions in a statistically sound way without prior knowledge
of the type of fraudulent activity. The learning algorithm at the basis of this
approach is a modern implementation of kernel methods that allows for fast
online training and high flexibility. This work is the first attempt to export
this method to a real-world use case outside the domain of particle physics.
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Chapter 1

Introduction

In recent years, the realm of data-driven decision-making has been irrevoca-
bly transformed by the convergence of two groundbreaking trends: the rapid
advancement of machine learning techniques and the burgeoning era of big
data. The symbiotic relationship between these two phenomena has propelled
industries, scientific disciplines, and everyday life into an unprecedented era
of innovation and insight generation.

The Era of Machine Learning and Big Data

In the midst of this digital age, the exponential surge in data, coupled with
computational prowess, has enabled groundbreaking potential for businesses,
researchers, and policymakers to uncover transformative insights. Within
this landscape, machine learning, a subset of artificial intelligence, stands as
the linchpin, unraveling hidden value within the data deluge. By harness-
ing algorithmic power, machine learning delves into intricate patterns and
relationships that traditional methods couldn’t fathom. This synergy be-
tween machine learning and big data has spurred revolutionary applications,
from healthcare advancements and financial insights to personalized mar-
keting strategies. Examples include precision spam filtering, self-driving cars
navigating complex environments, intelligent chatbots understanding and re-
sponding to human language, and recommendation systems shaping person-
alized content delivery. These instances underscore the innovation that’s
been catalyzed, reshaping industries and driving progress beyond previously
perceived boundaries. The computational muscle of Graphics Processing
Units (GPUs) has further fueled these strides, particularly in deep learning,
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Chapter 1 Introduction

accelerating the training of complex models that underpin transformative
advances across society.

The Expansion of Machine Learning in Sciences

One domain where machine learning is leaving an indelible mark is the realm
of scientific exploration. In an era where the frontiers of knowledge are
expanding exponentially, the availability of data from various scientific dis-
ciplines has surged. Machine learning has emerged as an indispensable tool,
breathing life into these datasets and empowering scientists to glean meaning-
ful insights from the chaos. Beyond traditional hypothesis-driven methods,
machine learning’s ability to unveil hidden patterns, classify intricate data,
and forecast future trends has revolutionized scientific inquiry.

Machine Learning’s ability to handle complex, multidimensional data has
positioned it as a pivotal instrument for precision data analysis. Machine
learning offers invaluable benefits to the physical and natural sciences by
enabling data-driven insights, pattern recognition, and predictive modeling
from vast and complex datasets. It aids in accelerating scientific discovery,
from drug design and climate forecasting to medical imaging and particle
physics. Simultaneously, the domain-specific challenges in these sciences
contribute to the advancement of artificial intelligence. The intricacies of
scientific problems inspire the creation of specialized algorithms, while the
generation of synthetic data for simulations enhances artificial intelligence
training. Collaborations between domain experts and artificial intelligence
researchers lead to novel methodologies, benchmarks, and evaluation crite-
ria. This reciprocal relationship enriches both fields, fostering innovation
that addresses unique challenges and fuels broader technological progress.

Recent Applications to High Energy Physics

Based on experimental observations and compelling conceptual arguments,
it becomes apparent that our existing understanding of fundamental physics
is incomplete. The Standard Model of Particle Physics, the theory that cod-
ifies our understanding of fundamental particles and their interactions, has
demonstrated remarkable accuracy in predicting and explaining almost all
experimental results we have collected so far. Nonetheless, the limitations of
the Standard Model are evident as it leaves a number of inquiries unanswered,
spanning from the origin of the electroweak scale to the enigma of neutrino
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Chapter 1 Introduction

masses, along with the intricate flavor patterns within quarks, leptons, and
neutrinos. These considerations indicate the existence of underlying funda-
mental laws of nature that remain concealed and await revelation.

Unveiling these elusive laws necessitates a thorough examination of ex-
perimental data in pursuit of phenomena that deviate from the predictions of
the Standard Model. The prevailing approach involves scrutinizing data to
identify distinct signatures of models beyond the Standard Model, tackling
each proposal individually. Each analysis is meticulously tailored to detect
the unique characteristics associated with the specific new physics hypothesis
under consideration. However, this methodology often falls short of detect-
ing inconsistencies that stray from the predefined scenarios. Consequently,
a notable endeavor is underway to establish analytical strategies that re-
main impartial to the potential nature of new physics, offering a valuable
complement to the aforementioned model-dependent methods.

The aspiration is to develop approaches capable of discerning deviations
from the expected outcomes of a given reference model, even when these
deviations lack precise definition. This analytical paradigm, also known as a
model-independent approach, aims to exhibit sensitivity to a wide spectrum
of potential deviations, transcending the limitations posed by conventional
approaches.

Concurrently, the application of machine learning techniques in scientific
research heralds a paradigm shift in the formulation, testing, and validation
of hypotheses. Through the automated analysis of extensive and intricate
data, researchers can augment their ability to identify subtle nuances and
relationships, fostering the generation of hypotheses that surpass traditional
boundaries. Additionally, machine learning expedites the process of hypothe-
sis testing by minimizing manual intervention, enabling researchers to swiftly
iterate through complex hypotheses and refine their inquiries. This innova-
tive approach accelerates the pace of discovery and facilitates the exploration
of intricate interactions within natural systems, thereby empowering scien-
tists to unlock new realms of knowledge.

Consequently, a concerted effort has been directed towards harnessing
machine learning as a solution for model-independent searches in the realm
of high-energy physics. In line with this pursuit, we will examine a specific
recent approach known as New Physics Learning Machine ( [1, 2]). This
endeavor arises from the necessity to enhance our capability to detect indi-
cations of new physics without presupposing assumptions about their forms,
presenting a fresh perspective on the exploration of the universe’s fundamen-
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tal fabric.

Beyond Particle Physics

The deployment of tools and techniques developed in high energy physics
research in other societal domains is a fascinating prospective. The model
employed for the new physics searches has indeed exhibited potential for
application beyond the confines of the physics domain. Building upon this
notion, we have endeavored to leverage these models in the context of fraud
detection, which forms a specific subset of the broader anomaly detection
field. However, it is essential to emphasize that while the prevalent approach
in anomaly detection often pertains to outlier identification, our model di-
verges from this interpretation.Instead, we concentrate on discerning collec-
tive trends in the data that deviate from the expected norm.

In conventional anomaly detection practices, the emphasis is often on
identifying data points that deviate significantly from the norm, reflecting the
presence of outliers. While this paradigm has proven effective in numerous
contexts, our approach ventures beyond the mere identification of outliers.
We consider a different approach that involves identifying deviations from the
expected statistical distributions and patterns inherent in a given dataset.
By embracing this methodology, we aim to not only pinpoint outliers but also
uncover intricate statistical anomalies that might otherwise remain concealed
under conventional outlier-based approaches.

Outline of the Thesis

In this thesis, Chapter 2 will provide an exposition on machine learning,
elucidating the particular methods that will be employed in our research.
Moving forward to Chapter 3, we will delve into the concept of the physics
learning machine model, which forms the bedrock of the ideas presented in
this study. In the subsequent Chapter 4, we will elaborate on the formu-
lation of our method tailored to the specific dataset within the domain of
fraud detection. This will encompass the introduction of the dataset, the
methodology we have developed, and a comprehensive presentation of our
model’s outcomes and results. Finally, in Chapter 5 we will summarize our
findings and discuss future developments.
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Chapter 2

Machine Learning

Machine learning, a subfield of artificial intelligence (AI), focuses on devel-
oping algorithms and models that enable computers to learn from data and
make predictions or decisions without explicit programming. The learning
process is data-driven, as the algorithm or model learns from a set of train-
ing data containing input examples and corresponding outputs or labels. By
analyzing and processing this labeled data, the machine learning model ac-
quires patterns and relationships, enabling it to make accurate predictions or
decisions on new, unseen data. This generalization is achieved through itera-
tive adjustments of the model’s internal parameters based on the disparities
between its predicted outputs and the true labels in the training data, using
optimization techniques. This introductory part is mostly based on [3].

Machine learning can be categorized into three main types. The first
type is supervised learning, which aims to learn a relationship between input
and output data based on a labeled training set of input-output pairs, D =
{(xi, yi)}Ni=1. The inputs xi can be simple numerical vectors representing
attributes like height and weight, or they can be structured objects such
as images, sentences, emails, time series, molecular shapes, or graphs. The
outputs yi can be categorical variables from a finite set (e.g., male or female)
denoted as yi ∈ {1, . . . , C}, or they can be real-valued scalar variables (e.g.,
income level). Classification falls within the realm of supervised learning and
involves tackling the task of forecasting categorical outcomes. On the other
hand, regression, which is also a subset of supervised learning, pertains to
the prediction of outputs represented as real numbers.

The second type of machine learning is unsupervised learning. In this
approach, only input data D = {xi}Ni=1 is provided, and the objective is
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to discover interesting patterns within the data. This process is a more
difficult problem because there are no predefined patterns to search for, and
there is no clear error metric to evaluate the performance. Common tasks in
unsupervised learning are clustering and density estimation.

Reinforcement learning is the third paradigm in machine learning. It is
employed to learn how to act or make decisions while interacting with an
environment on the basis of reward signals, similar to how a baby learns to
walk.

Machine learning finds applications in various domains, including image
and speech recognition, natural language processing, recommendation sys-
tems, fraud detection, autonomous vehicles, and many others. It continues
to advance with new algorithms, techniques, and tools, enabling the devel-
opment of intelligent systems that can learn and adapt from data.

2.1 Supervised Learning

The scope of supervised learning is to forge a relationship between input data
x and its associated output data y by leveraging a labeled training set D.
This correlation aims to construct a model capable of offering predictions for
new, unseen data.

To model the relationship between the input x and output y, we aim to
learn a function f : X → Y that maps the input space X to the output space
Y .

The model selects the best map among a parameterized family of func-
tions fθ selected in advance. The selection of the most suitable function is
done by minimizing the average error between the predicted output fθ(x)
and the true output y across the training set D. The metric used to model
the error is known as loss function ℓ(y, f(x)).

The learning process in supervised learning can be formulated as an opti-
mization problem, seeking to minimize the average loss over the training set
(the empirical risk Ê(f)). Mathematically, this can be written as:

θ̂ = argmin
θ

Ê(f) = argmin
θ

1

N

N∑
i=1

ℓ(yi, fθ(xi)) (2.1)

The choice of loss function is part of the design of the learning model and
depends on the type of task and the nature of the problem. For classification
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tasks, commonly used loss functions include the cross-entropy loss or the
hinge loss. For regression tasks, popular choices of loss functions include the
mean squared error or the mean absolute error.

Given a loss function, the “best” map is the function f∗ : X → Y mini-
mizing the expected risk

E(f) = E[ℓ(y, fθ(x))] =
∫

dp(x, y)ℓ(y, fθ(x)), (2.2)

namely the expected value of the loss over the whole population p(x, y).
Since the latter is unknown, one relies on the minimization of the empirical
risk in Eq. (2.1). On the other hand, being interested in prediction on unseen
data, it is typically required to control how far is the solution of Eq. (2.1) to
the best solution. For example, one possibility is to require an algorithm to
be good in expectation, in the sense that

ED[E(fθ̂)− E(f∗)]. (2.3)

In simpler terms, a good algorithm should be able to fit the data while at
the same time be robust against noise, i.e. avoid overfitting. Most learning
models depend on a number of regularization parameters that control the
trade-off between data-fitting and stability.

To find the optimal parameters θ̂, various optimization algorithms can be
employed. One widely used approach is gradient descent, which iteratively
updates the parameters in the opposite direction of the gradient of the loss
function with respect to the parameters. This aspects will be addressed in
more details in the following sections.

Considering these fundamental ingredients, numerous techniques and mod-
els have been developed. These encompass support vector machines, decision
trees, random forests, as well as neural network models such as convolutional
and recurrent neural networks. These approaches provide diverse capabilities
and are well-suited for different applications.

2.2 Classification

In this chapter, we concentrate on the task of classification. As we already
mentioned earlier, the output of a classification model is a member of a set
of classes denoted as y ∈ {1, . . . , C}, where C represents the total number of
classes.
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The most common case of two classes is known as binary classification.
An example of binary classification is email spam detection, where the classes
are typically labeled as ”spam” and ”non-spam”. The goal is to determine
whether an incoming email is categorized as spam or not. In binary classi-
fication scenarios, it is common to assume that the output y belongs to the
set {0, 1} or {−1, 1}.

When the number of classes exceeds two, it is referred to as multiclass
classification. For instance, we could consider a scenario where we aim to
classify different types of animals based on their characteristics. In this case,
the classes could include ”dog”, ”cat”, ”bird”, and ”fish”. The objective is
to correctly assign the appropriate class label to each animal based on its
attributes.

In some cases, the class labels are not mutually exclusive. For instance,
let us take a classification task where the objective is to identify the emo-
tions conveyed in a text message. The classes could include ”joy,” ”sadness,”
”anger,” and ”surprise.” It is possible for a message to express multiple emo-
tions simultaneously. This type of classification is known as multi-label clas-
sification.

In the context of a classification task, it is more favorable to generate an
output in the form of a probability distribution. This distribution, denoted as
p(y|x), encapsulates the probabilities associated with potential labels, given
the input vector x which is drawn from the training set D. Generally, this
probability distribution is represented by a vector with a length of C, where
C denotes the number of classes. In scenarios involving only two classes,
it suffices to provide a single probability value, namely p(y = 1|x), as the
relationship p(y = 1|x) + p(y = 0|x) = 1 holds true. By explicitly incorpo-
rating the input x as condition, we signify that the probability is contingent
on this variable, indicated by the conditioning bar ”|”. Moreover, our proba-
bility computation inherently assumes the utilization of a specific predictive
model. In instances where diverse models are being compared, this can be
made explicit by denoting p(y|x,M), with M signifying the model. However,
if the model is evident from the context, we can omit M in the notation for
the sake of brevity.

Given a probabilistic output, we can determine our ”best guess” for the
”true label” by computing the class with the largest probability.
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2.2.1 Binary Classification

Binary classification is a form of supervised learning task in which the goal
is to categorize instances into either of two classes: positive or negative.
Typically, labels such as y = {0, 1} or y = {−1, 1} are commonly used. This
type of task is frequently encountered across diverse fields including spam
detection, disease diagnosis, sentiment analysis, and fraud detection.

A popular method for binary classification is logistic regression. It utilizes
the sigmoid or logistic function to map real-valued outputs to values between
0 and 1, hence allowing for a probabilistic interpretation of the results. How-
ever, before delving into the specifics of logistic regression, it is helpful to
review the concept of maximum likelihood estimation.

Maximum Likelihood Estimation (MLE) To understand MLE, let’s
consider a simple example where we have a dataset of independent and iden-
tically distributed (i.i.d.) observations denoted as x1, x2, . . . , xn, assumed to
be drawn from a probability distribution p(x, θ) with unknown parameters
θ. MLE is an approach to find the values of these unknown parameters by
maximising the likelihood of observing the given data.

The likelihood function, denoted as L(θ), represents the probability of
observing the given data for a given set of parameters θ. In other words,
it measures how likely the observed data is under the assumed probability
distribution. It is defined as the joint probability density function. evaluated
at the observed data points:

L(θ) =
n∏

i=1

p(xi; θ) (2.4)

Formally, we want to solve the following optimization problem:

θ̂ = argmax
θ

L(θ) (2.5)

It is more convenient to work with the logarithm of the likelihood func-
tion. Taking the logarithm of the likelihood function does not change the
location of the maximum, as the logarithm is a monotonically increasing
function. However, it has the advantage of transforming the product of prob-
abilities into a sum of logarithms, making the computation more efficient.

To find the maximum likelihood estimates, we differentiate the log-likelihood
function with respect to the parameters and set the derivatives equal to zero:
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Chapter 2 Machine Learning

∂ logL(θ)

∂θ
= 0 (2.6)

Solving this equation yields the values of the parameters that maximize
the log-likelihood function, which are then considered as the maximum like-
lihood estimates.

It is worth noting that in practice, instead of directly maximizing the log-
likelihood function analytically, iterative numerical optimization algorithms
such as gradient descent or Newton’s method are often employed.

MLE has several desirable properties, including consistency, asymptotic
normality, and efficiency under certain regularity conditions. Additionally,
MLE allows for statistical inference, such as constructing confidence intervals
and performing hypothesis tests, based on the estimated parameters. For
more information regarding this topic please refer to [3], [4], and [5].

Logistic Regression In logistic regression, one models the probability of
an instance xi to belong to the positive class by using the sigmoid function,
i.e. σ(fθ(xi)), where fθ(xi) is the output of the model which depends on the
specific class of functions that are being explored by the algorithm (typically
linear functions). In this way, the output is mapped into a probability value
between zero and one.

The logistic function (sigmoid function) is defined as:

σ(η) =
1

1 + exp(−η)
(2.7)

This function is an s-shaped curve (Figure 2.1), effectively squashing input
values within the range of zero and one, enabling interpretation of the output
as a probability.

The logistic regression model can be expressed as:

p(y = 1|x, θ) = σ(θTx) (2.8)

where p(y = 1|x, θ) represents the probability of the positive class given
the input variables x and the model parameters θ.

Training the logistic regression model means finding the optimal values
for the model parameters θ from the training data.

Assuming that the binary labels are independent and identically dis-
tributed (i.i.d.), the likelihood function can be expressed as the product of
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Figure 2.1: Sigmoid function

the individual probabilities:

L(θ) =
N∏
i=1

[p(yi = 1 | xi, θ)]
yi [1− p(yi = 1 | xi, θ)]

1−yi (2.9)

where N represents the number of instances in the dataset. Rather than
aiming to maximize the log-likelihood, we can achieve the same objective by
minimizing the negative log-likelihood (NLL) function. The NLL function
for logistic regression has the following form:

NLL(θ) = −
N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (2.10)

Here, yi represents the true outcome (0 or 1), and ŷi = p(yi = 1|xi, θ) rep-
resents the predicted probability of yi being 1 given the input data and the
model parameters θ. This conversion allows us to utilize optimization algo-
rithms designed for minimization problems.

The negative log-likelihood (NLL) function is a fundamental component
of logistic regression which is also known as the cross-entropy error function.
It measures the disagreement between the predicted probabilities ŷi and the
actual binary outcomes yi.

Once the model parameters are estimated, predictions for new instances
can be made by computing the probability p(y = 1|x, θ). A common decision
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rule is to classify an instance as positive (1) if p(y = 1|x, θ) exceeds a certain
threshold (e.g., 0.5), and as negative (0) otherwise.

Alternatively, we can consider a different encoding scheme by using a new
representation ỹi ∈ {−1,+1} instead of yi ∈ {0, 1}. This allows us to redefine
the probabilities as p(y = 1) = 1

1+exp(−θT x)
and p(y = −1) = 1

1+exp(θT x)
. These

probabilities are derived from the logistic function, which maps the linear
combination of the input data x and model parameters θ to a probability
value between -1 and 1.

With this transformation, the NLL function takes the form:

NLL(θ) = −
N∑
i=1

log(1 + exp(−ỹiθ
Txi)) (2.11)

Unlike the linear least square estimator, we cannot directly derive the
solution of the logistic regression problem in closed form. Instead, we need
to employ an iterative optimization algorithm to compute it. By iteratively
adjusting the model parameters based on these quantities, the optimization
algorithm converges to the optimal parameter values that minimize the NLL
function. To delve deeper into this aspect, additional information can be
found in references [3–6].

2.3 Nonlinear models

Non-linear models in machine learning are a crucial advancement that ex-
pands the capabilities of traditional linear models. These models are designed
to handle intricate relationships within data that defy simple linear patterns.

Although they provide versatility and precision, non-linear models are
susceptible to overfitting. To counter this challenge, regularization methods,
like L1 and L2 regularization, come into play by incorporating penalty com-
ponents into the loss function. An additional valuable tool for appraising a
model’s efficacy with unfamiliar data is cross-validation.

In the upcoming segment, we will briefly discuss two preeminent and
extensively utilized non-linear models that hold paramount significance in a
spectrum of machine learning endeavors. Specifically, we will shed light on
Neural Networks and Kernel Methods, elucidating their inherent strengths
and versatile applicability within diverse machine learning tasks.
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Neural Networks Neural networks are a class of models inspired by the
structure and functioning of the brain. They are composed of interconnected
nodes, called neurons, organized in layers. Neural networks have gained
significant popularity due to their ability to learn complex patterns and re-
lationships in data.

A typical neural network consists of three main types of layers: input
layer, hidden layers, and output layer. The input layer receives the input
data, which may undergo pre-processing procedures. The hidden layers, as
the name suggests, are intermediate layers between the input and output
layers. Their purpose is to combine and process the input data using non-
linear methods. The output layer produces the final predictions or outputs
of the model.

In a basic fully connected feed-forward network, the fundamental com-
putation happening at the level of the single neuron involves two primary
steps: the weighted sum of inputs and the application of an activation func-
tion. Each neuron receives inputs from the preceding layer, multiplies them
by a set weights, and calculates the weighted sum. Optionally, a bias term
can be incorporated into the weighted sum. For a neuron indexed as j in
layer l, the weighted sum zlj is then computed as:

zlj =
n∑

k=1

wl
jk · al−1

k + blj (2.12)

where wl
jk represents the weight connecting the k-th neuron in layer l− 1

to the j-th neuron in layer l, al−1
k is the output of the k-th neuron in layer

l − 1, and blj is the bias term for the j-th neuron in layer l.
After computing the weighted sum, an activation function is applied

element-wise to introduce non-linearities into the model. The activation func-
tion determines the output of the neuron based on the computed weighted
sum. Popular activation functions include:

• Sigmoid function : σ(z) = 1
1+e−z

• Hyperbolic tangent (tanh) function : tanh(z) = ez−e−z

ez+e−z

• Rectified Linear Unit (ReLU) function : ReLU(z) = max(0, z)

• Softmax function (for multi-class classification) : f(zj) =
ezj∑K

k=1 e
zk
,

where K is the number of classes.
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During the learning process of a neural network, the weights and biases
are adjusted to minimize a loss function. Backpropagation is a widely utilized
optimization algorithm for training neural networks based on the chain rule
to compute the derivative of composition of functions. It involves a backward
pass, starting from the output layer and moving towards the input layer, to
update the model’s parameters based on the gradient of the loss function.
By iteratively adjusting the weights and biases using backpropagation, the
network strives to improve its performance in making accurate predictions.

The architecture of a neural network, including the number of layers,
the number of neurons in each layer, the choice of activation functions, and
the optimization algorithm, can vary depending on the problem at hand.
Different architectures and hyperparameters can be explored and optimized
through experimentation and validation on a separate validation dataset.

Neural networks have been successfully applied to various domains, in-
cluding image recognition, natural language processing, speech recognition,
and many others. Their ability to learn complex representations and cap-
ture intricate patterns makes them powerful tools in machine learning and
artificial intelligence. [7], [8]

Kernel Methods Kernel methods are a popular class of models used for
solving non-linear learning problems. The main idea is to transform the input
data into a higher-dimensional feature space, where it may become easier to
separate or classify the data. This transformation is achieved by using a
non-linear feature map ϕ : X → Rd, from the space of the input data to Rd,
where the dimensionality d is higher than the one of the space X. This map
can be intepreted as a sort of preprocessing of the data. With this choice,
one then considers linear models of the following kind

fw(x) =
d∑

i=1

wiϕi(x), (2.13)

with w the parameters to be learned. Thanks to the Representer Theorem
( [9]), one can consider infinite dimensional maps as long as the following
kernel K = ϕTϕ can be computed. Eq. (2.13) can then be rewritten as

f(x) =
n∑

i=1

αiK(x, xi), (2.14)
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where the sum now runs over the data points and w =
∑n

i=1 ϕ
T
i (x)αi. A ker-

nel K, in order to be admissible, should behave like an inner product. More
precisely it should be symmetric and positive semi definite. The symme-
try property is typically easy to check, however positive semi definiteness is
more complicated to determine. Popular examples of positive definite kernels
include:

• linear kernel K(x, x′) = xTx′,

• polynomial kernel K(x, x′) = (xTx′ + 1)d,

• Gaussian (RBF) kernel K(x, x′) = exp
(
−∥x−x′∥2

2σ2

)
,

where the last two kernels have a hyper-parameter, the degree d and Gaussian
width σ, respectively.

The decision function can then be seen as a linear combination of kernel
evaluations between the new input x and the training samples xi. By us-
ing appropriate kernel functions, the decision function can capture complex
relationships and achieve non-linear decision boundaries.

The coefficients, represented by αi are typically learned using iterative
methods given a loss function but certain problems, such as kernel ridge
regression, can also be solved directly, although less efficiently.

Kernel methods provide several benefits. Firstly, they are advantageous
from an optimization perspective as they are linear models. Secondly, they
can be highly adaptive by selecting the appropriate kernel and with a careful
hyperparamter selection. Additionally, they avoid the need for an ad-hoc
selection of high-dimensional feature maps. Lastly, kernel methods have a
strong theoretical foundation rooted in functional analysis, offering mathe-
matical justification for their application and delivering robust algorithms
with statistical guaranties.

Examples of kernel-based algorithms include Support Vector Machines
(SVM), Gaussian Processes, and Kernel Principal Component Analysis (PCA).
[10]

2.4 Optimization

Optimization is a mathematical process utilized across various fields, includ-
ing mathematics, engineering, economics, and computer science, to determine
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the best possible solution within a given set of constraints. The primary goal
of optimization is to either maximize or minimize an objective function, which
represents the quantity or criteria being optimized.

To minimize the error function in a learning problem, iterative methods
that involve computing the gradient are commonly employed. One such
method is known as gradient descent, which is a first-order iterative algorithm
utilized to locate a local minimum of a differentiable function. [11], [7], [12]

Gradient Descent Gradient Descent (GD) is an iterative optimization al-
gorithm extensively utilized in model training, particularly in machine learn-
ing and deep learning, to locate the minimum of a differentiable objective
function. The primary concept behind GD is to iteratively adjust the model’s
parameters in the direction opposite to the gradient of the objective function.
This process leads to descending the surface of the function and ultimately
reaching a local minimum (Fig. 2.2).

Figure 2.2: Gradient Descent

The general update equation for GD can be expressed as:

θ = θ − α∇J(θ) (2.15)

In this equation: θ is the vector of model parameters. α is the learning rate,
which controls the step size in each iteration. ∇J(θ) denotes the gradient of
the objective function J(θ) with respect to θ.

During each iteration of GD, the algorithm calculates the gradient of the
objective function with respect to the parameters. This gradient informs the
algorithm of the direction in which the parameters should be adjusted to
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minimize the objective function. By multiplying the gradient by the learn-
ing rate, the algorithm controls the step size taken in each iteration. A
higher learning rate results in larger parameter updates, potentially leading
to faster convergence but risking overshooting the minimum. Conversely, a
lower learning rate ensures smaller and more cautious updates, at the cost of
slower convergence. Thus, the learning rate is a crucial hyperparameter that
needs to be carefully tuned.

GD iteratively updates the parameters by subtracting the learning rate
multiplied by the gradient from the current parameter values. This update
process continues until a stopping criterion is met, such as reaching a max-
imum number of iterations or achieving a sufficiently small change in the
objective function.

It is important to note that GD seeks to find a local minimum of the
objective function. Depending on the function’s characteristics, this local
minimum may correspond to the global minimum if the objective function is
convex. However, in non-convex scenarios, GD may converge to a suboptimal
solution that is not the global minimum.

Gradient descent (GD) is a commonly used optimization algorithm known
for its simplicity and effectiveness. However, there are variations of GD,
such as accelerated or conjugate gradient methods, that can achieve faster
convergence rates and address challenges associated with local minima or
saddle points. These alternative methods offer improvements in terms of
convergence speed and robustness when dealing with complex optimization
problems.

2.5 Anomaly Detection

Anomaly detection aims to recognize patterns or occurrences that signifi-
cantly deviate from the norm or expected behavior in a given dataset. These
anomalies can manifest as uncommon events, errors, outliers, or suspicious
activities that differ from the majority of the data. The field of anomaly de-
tection finds utility in diverse domains, including fraud detection, network in-
trusion detection, system monitoring, and medical diagnosis. [13], [14]. Sub-
sequently, we provide a brief mention of several typical anomaly detection
tasks and approaches, as they exhibit certain resemblances to the analysis
conducted in this thesis.
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Supervised anomaly detection Supervised anomaly detection leverages
labeled data, which includes both normal and anomalous instances, to train
a model for classifying new instances as normal or anomalous. The main
goal is to develop a mapping function that associates input features with the
anomaly label, based on the provided labels in the training set.

The objective is then to train a model that can effectively classify in-
stances as normal or anomalous based on their input features. Various mod-
els, such as support vector machines (SVMs), decision trees, random forests,
or neural networks, can be employed for this purpose.

Since these types of models are in essence traditional classification mod-
els, the process proceeds as explained in the previous sections. Different
evaluation metrics can be selected depending on the specific type of data or
domain of application. For a more in-depth understanding of this topic, one
may consult the reference [14].

Unsupervised Anomaly Detection Unsupervised anomaly detection in-
volves identifying anomalies in data without the use of labeled examples. The
goal is to detect patterns that deviate significantly from the norm, making
them potential anomalies. Unlike supervised anomaly detection, there are no
pre-labeled instances, and the detection is based solely on the characteristics
of the data itself.

The first step in unsupervised anomaly detection is to represent the data.
Each data instance is typically represented as a feature vector or a multidi-
mensional point. Let’s denote a data instance as x ∈ Rd, where d represents
the number of features or dimensions in the data.

Unsupervised anomaly detection assumes that the majority of the data
instances are representative of normal behavior, and anomalies are rare oc-
currences. The task is to build a model of the normal behavior that captures
the underlying patterns in the data. Various techniques can be used for this
purpose, such as density-based methods, distance-based methods, clustering
algorithms, or probabilistic models.

Density-based techniques aim to approximate the density of data points
within the feature space. Among these methods, the Gaussian Mixture Model
(GMM) is widely used. The GMM represents the data by combining multiple
Gaussian distributions, estimating their means, covariances, and weights.
Each Gaussian component captures a distinct mode of the data distribution.
Anomalies are identified as instances with a low probability of occurrence

23



Chapter 2 Machine Learning

based on the estimated density.
Distance-based methods, such as the k-nearest neighbors (k-NN) algo-

rithm, are utilized in anomaly detection by assessing the dissimilarity be-
tween instances. The k-NN algorithm involves several steps, including dis-
tance calculation, selection of the k nearest neighbors, computation of anomaly
scores, and determination of a threshold for classification. The widely adopted
Euclidean distance is employed to measure dissimilarity. Once distances are
calculated, the k nearest neighbors are identified, and anomaly scores are as-
signed based on the relationship with these neighbors. Thresholds are then
established to classify instances as anomalies or normal, considering their
scores. Customization of the distance metric and anomaly score calculation
allows adaptation to specific requirements. Anomaly scores provide a quan-
titative measure of the extent to which instances deviate from the normal
model, with lower scores indicating a higher likelihood of being an anomaly.

Various evaluation metrics can be used to assess the performance of un-
supervised anomaly detection. Common metrics include precision, recall, F1
score, receiver operating characteristic curve (ROC curve), and area under
the ROC curve (AUC-ROC). These metrics provide insights into the accu-
racy and effectiveness of the anomaly detection algorithm.

It is important to note that the specific equations and notions can vary de-
pending on the chosen unsupervised anomaly detection technique. Different
methods have different underlying assumptions and mathematical formula-
tions. Therefore, the equations and algorithms mentioned above are general
concepts that can be applied across different unsupervised anomaly detection
approaches.
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The New Physics Learning
Machine

3.1 Hypothesis Testing

Hypothesis test is a statistical method for testing claims about parameters in
a population from data. The process typically involves four steps. Initially,
we define the null and alternative hypotheses. Then, a test statistic is chosen
to summarizing the strength of evidence against the null hypothesis. After
that, a value is computed that characterizes the test statistic, indicating how
likely it is to obtain a similar or more extreme test statistic value under the
assumption that the null hypotheses is true. Lastly, the derived value is
employed to make a decision regarding the initial assumption.

Hypothesis testing divides the possibilities into two scenarios: the null
hypothesis H0 : θ ∈ Θ0 and the alternative hypothesis H1 : θ ∈ Θc

0. θ denotes
the population parameters, Θ0 is some subset of the parameter space, and
Θc

0 is its complement. H0 is the default belief about the world, while H1

represents something different and unexpected. The treatment of H0 and H1

is asymmetric, as we focus on using data to reject H0 and, in turn, provide
evidence in favor of H1. If we fail to reject H0, our conclusions become less
definitive. Meaning that we will be uncertain whether our failure to reject
H0 is due to the limited size of our sample (in such case, conducting another
test on a larger or higher-quality dataset could potentially lead to rejection)
or if H0 truly remains valid.

In order to establish evidence supporting or refuting the null hypothe-
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sis, we calculate a test statistic T that summarizes the degree of alignment
between our data and H0. The specific test statistic used depends on the
nature of the data and the hypothesis being examined.

The sampling distribution of the test statistic under the null hypothesis,
p(T |H0), describes how it behaves when we repeatedly draw samples from
the population under the assumption of the null hypothesis. The shape of
the distribution p(T |H0) is mainly influenced by the specific choice of the
test statistic T and the sample size.

The observed test statistic Tobs is the actual value computed from our
sample data. It is then compared to the sampling distribution p(T |H0) to
determine the likelihood of observing such an extreme value if the null hy-
pothesis were true. This comparison helps us evaluate the evidence support-
ing or contradicting the null hypothesis.

The p-value quantifies the probability of observing a test statistic as ex-
treme or more extreme than the observed one, given that H0 is true. A small
p-value indicates evidence against H0. The distribution of the test statistic
under H0 depends on the specific null hypothesis and test statistic used.

Hypothesis testing involves two types of hypotheses: a two-sided hypoth-
esis (also known as a two-tailed hypothesis) and a one-sided hypothesis (also
known as a one-tailed hypothesis). The choice between these two types de-
termines how the p-value is interpreted.

The P-value for a one-sided right-tail and test-statistic distribution is
defined as

p-value = P (T ≥ Tobs | H0) for right-tail

p-value = P (T ≤ Tobs | H0) for left-tail
(3.1)

And for a two-sided test-statistic distribution as

p-value = 2min (P (T ≥ Tobs | H0), P (T ≤ Tobs | H0)) (3.2)

In a two-sided hypothesis test, the goal is to assess whether there exists
a notable distinction between the sample data and the null hypothesis, en-
compassing various potential directions. For instance, if the null hypothesis
indicates the absence of a difference, the two-sided alternative hypothesis
implies the potential for differences to be observed in multiple directions.
This includes the possibility of observing values that are either greater or
lesser in magnitude. The two-sided p-value considers evidence in both tails
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of the sampling distribution p(T |H0), measuring the probability of observing
an extreme test statistic value in either direction.(Figure 3.1)

Figure 3.1: Two Tailed

In a one-sided hypothesis test, the emphasis is placed on assessing evi-
dence for a distinction in a particular direction. It quantifies the likelihood
of encountering an exceptionally extreme test statistic value in a single tail
of the sampling distribution p(T |H0), see Figures 3.2 and 3.3.

Figure 3.2: Left Tailed

Once we calculate the p-value corresponding to H0, we need to decide
whether to reject H0 or not. As already mentioned, a small p-value indicates
that the observed test statistic is unlikely to occur under H0, providing ev-
idence against H0. The significance level (often denoted as α) determines
when to reject H0; if the p-value is lower than this threshold, we reject H0

and claim a “discovery” as a strong evidence against H0 is present. The pre-
cise value of the threshold depends on the problem at hand (a typical value
is α = 0.05).
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Figure 3.3: Right Tailed

It is important to note that the p-value is often misunderstood. It does
not represent the probability thatH0 is true; instead, it signifies the frequency
of seeing such an extreme test statistic if we were to repeat the experiment
multiple times assuming H0 holds. Reporting a two-sided p-value is generally
recommended, except when there is a compelling reason to use a one-sided
p-value.

Hypothesis testing involves the consideration of two types of errors. Type
I errors, or false positives, occur when the null hypothesis is wrongly rejected
despite being true in the population. Type II errors, or false negatives,
arise when the null hypothesis is not rejected even though it is false in the
population. The significance level and the power of the test influence the
likelihood of committing these errors.

The power of a test is the probability that the test rejects the null hy-
pothesis when a specific alternative hypothesis is true. It is typically denoted
by 1−β , with β the probability of type II errors, and represents the chances
of a true positive.

The critical region corresponds to the set of values of the test statistic
for which the null hypothesis is rejected. It is determined based on the
significance level and the distribution of the test statistic. Values of the test
statistic falling within the critical region lead to the rejection of the null
hypothesis.

There are several hypothesis tests that can be used in different situations.
For instance, the Z-Test is used to test the mean of a population when the
population standard deviation is known or the sample size is large. On the
other hand, the t-Test is employed when testing the mean of a population
assuming the population standard deviation is unknown or the sample size is
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small. The Chi-Square Test is specifically used for hypothesis testing involv-
ing categorical data and examining the independence between variables. The
ANOVA (Analysis of Variance) is applied when testing the means of multiple
groups or treatments. For more details on hypothesis testing, please refer to
Ref.s [5, 6, 15].

3.2 A classifier for hypothesis testing

We utilize the New Physics Learning Machine (NPLM) method for hypothe-
sis testing, developed in [1,2] in the context of model-independent searches of
new physics in collider experiments. In that scenario, the method compares
measured data D = {xi}N1

i=1 with a reference dataset R = {xi}N0
i=1, which

follows the statistical distribution p(x|R) predicted by a reference model R
which is typically not known in closed form (i.e., the Standard Model of
Particle Physics). The primary goal is to evaluate the accuracy of the dis-
tribution prediction and determine whether the standard laws adequately
represent the experimental data or if new physical laws are required.

Adapting the NPLM approach to fraud detection problems is straightfor-
ward. In our fraud detection scenario, we initially analyze the distribution
of genuine data to understand its characteristics. With this understanding,
our next step involves detecting anomalies within the dataset that could
potentially signify instances of fraudulent behavior.

In the discussion that follows, one set of independent and identically
distributed random variables (i.i.d.) of p(x|R) is represented by

R = {xi}N0
i=1, where xi

i.i.d.∼ p(x|R), (3.3)

and the actual measured data by,

D = {xi}N1
i=1, where xi

i.i.d.∼ ptrue(x), (3.4)

where ptrue(x) is the true and unknown distribution of the data. It is crucial
to emphasize that in real-world scenarios, it becomes imperative to account
for the statistical uncertainties that impact the understanding of the reference
model. Similarly to Refs. [1, 16], we will adopt the assumption that N0 ≫
N1 to minimize the impact of the statistical uncertainties linked with the
reference sample. Although it is possible to integrate systematic uncertainties
as auxiliary variables, as exemplified in Reference [17] for neural network
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applications, for the context of this discourse, we will consider systematic
uncertainties as insignificant.

The concept outlined in Reference [1] involves converting the process of
maximizing the log-likelihood-ratio test into a machine learning challenge.
In this approach, the null hypothesis, which defines one of the likelihood
terms, corresponds to the reference hypothesis. Simultaneously, the alter-
native hypothesis linked to the other likelihood term remains undetermined
initially and is acquired from the data itself during the training phase. Con-
sequently, the resulting test statistic achieved through this method serves as
a commendable approximation of the optimal test statistic, as outlined by
the Neyman-Pearson lemma.

The likelihood of the data set D under a generic hypothesis H is defined
as

L(D, H) =
e−N(H)N(H)N1

N1!

N1∏
i=1

p(xi|H)

=
e−N(H)

N1!

N1∏
i=1

n(xi|H) (3.5)

where
n(x|H) = N(H)p(x|H) (3.6)

represents the data distribution normalized by the expected number of
events

N(H) =

∫
n(x|H) dx (3.7)

While p(x|R) is well-known and accurately represented by the reference
sample, ptrue(x) is unknown and must be approximated by a family of dis-
tributions p(x|Hw), parameterized by a trainable set of variables w. The
likelihood ratio test statistic is given by
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tw(D) = −2 log
L(D, R)

L(D, Hw)

= −2 log[eNw(1)−N(0)

N1∏
i=1

n(xi|R)

n(xi|Hw)
]

= −2[Nw(1)−N(0)−
N1∑
i=1

log
n(xi|Hw)

n(xi|R)
]. (3.8)

which is then optimized by maximizing over the parameter set w. 1 The
initial suggestion in Reference [1] proposed utilizing the capacity of neural
networks as universal approximators to establish a collection of functions
that delineate the logarithmic ratio of the density distributions mentioned in
Equation 3.8.

fw(x) = log
n(x|Hw)

n(x|R)
(3.9)

While it could be a neural network, in this case, we will opt for ker-
nel methods for specific reasons that will be clarified later. The model is
trained by adjusting its parameters to best fit the observed data, effectively
accommodating the best-fit hypothesis Hŵ with the trained parameters ŵ.

Following the above reasoning, the maximum of the test statistic can be
recast as the minimum of a loss function L(fw)

tŵ(D) = max
w

tw(D)

= −2min
w

L(fw)

= −2min
w

[
∑
x∈R

N(0)

N0

(efw(x) − 1)−
∑
x∈D

fw(x)] (3.10)

with the parameter set ŵ that maximizes tw(D)

n(x|Hŵ) = n(x|R)efŵ(x) ≈ ntrue(x), (3.11)

provides also the best approximation of the true underlying data distri-
bution and with it a first insight on the source and shape of the discrepancy,

1Note that, for simplicity, we are identifying the null hypothesis with the symbol used
for the reference model, i.e. H0 = R.
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if present. Deriving Equation 3.10 from Equation 3.8 requires an estimation
of the anticipated event count under the alternative hypothesis. This estima-
tion can be achieved through the utilization of Equation 3.11 in conjunction
with the Monte Carlo method, namely

Nw(1) =

∫
n(x|Hw) dx =

∫
n(x|R)efw(x) dx

≈
∑
x∈R

N(0)

N0

efw(x) (3.12)

In this study, we further elaborate on the aforementioned concepts by in-
corporating an alternative loss function, specifically a weighted cross-entropy
(logistic) loss function. This alternative was previously suggested as a viable
option in Reference [1], and we demonstrate its numerous advantages. Dur-
ing the tests of the NPLM method conducted so far, using the logistic loss
in place of the maximum likelihood loss has not shown any significant per-
formance degradation. [2].

To compute the ratio in Equation 3.11, we train a binary classifier utilizing
the weighted cross-entropy loss.

ℓ(y, f(x)) = a0(1− y) log(1 + ef(x)) + a1y log(1 + e−f(x)) (3.13)

where y represents the class label, taking on a value of zero for R and one
for D. The classifier is obtained by minimizing an empirical criterion.

ℓ̂(fw) =
1

N

N∑
i=1

ℓ(y, fw(x)) (3.14)

over a suitable class of machine learning models fw . If the class of such
models is adequately diverse, as the sample size becomes large, we would
converge towards a solution that minimizes the expected risk.

ℓ(f) =

∫
ℓ(y, f(x)) dp(x, y) (3.15)

where p(x, y) is the joint data distribution.

By establishing a0 =
N(0)
N0

and a1 = 1 through the utilization of Equation
3.13, the test statistics described in Equation 3.8 can be expressed as follows:
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tŵ(D) = −2[
N(0)

N0

∑
x∈R

(1− efŵ(x)) +
∑
x∈D

fŵ(x)] (3.16)

recovering the original result from Ref. [1].
In conclusion, it is important to highlight that the test statistic value

tŵ(D) is inherently a random variable, following a distribution denoted as
p(t|H). The significance level attributed to a particular test statistic value is
determined by calculating its p-value in relation to the distribution it follows
under the null hypothesis.

pD =

∫ ∞

t(D)

p(t|R) dt (3.17)

This can be further rewritten as a Z-score
.

Zobs(D) = Φ−1(1− pD) (3.18)

where Φ−1 is the quantile of a Normal distribution. In this way Zobs is
expressed in units of standard deviations. In accordance with the approach
detailed in Reference [1], we exploit the opportunity to draw samples from the
reference distribution. As a result, we opt to reconstruct p(t|R) by evaluating
the likelihood ratio test statistics across a set of Ntoy simulated experiments
conducted on synthetic datasets derived from the reference data. These
synthetic datasets share the statistical properties of the real data but lack
any anomalies.

The comprehensive analytical approach employed by the NPLM tech-
nique for fraud detection can be succinctly encapsulated within three distinct
stages:

• The empirical construction of the test statistic distribution under the
null hypothesis involves training through approximately Ntoy = O(300)
reference-distributed toy experiments against the reference sample R.

• A conclusive round of training is executed utilizing the dataset of in-
terest, denoted as D. In this context, the actual underlying hypothesis
is unknown, and the test statistic value t(D) is computed.

• The p-value associated with t(D) is calculated relative to the test statis-
tic distribution established during the first step under the null hypoth-
esis.

33



Chapter 3 The New Physics Learning Machine

Should a statistically significant deviation from the reference data be de-
tected, further insight into the nature of the discrepancy can be gained by
analyzing the acquired density ratio as described in Equation 3.11. This
quantity is anticipated to approach zero when no inconsistencies are present,
and its behavior can be explored in relation to input features or their com-
binations. Since we are working in a controlled scenario, we compute the
observed test statistics for multiple i.i.d. copies of D to characterize the
distribution under the alternative hypothesis.

Asymptotic Formula Typically, achieving an accurate estimate of p(t|R)
requires reconstructing the empirical distribution of the test statistic under
the reference hypothesis through a large number of toy experiments, which
can often be practically unfeasible. If the value of t(D) falls outside of the
range of the empirical distribution the p-value cannot be computed and only
a lower bound can be set. Drawing inspiration from the findings of Wald
and Wilks [18]- [19], which characterizing the asymptotic behavior of log-
likelihood test statistics, we approximate the null distribution using a χ2

distribution. This approximation involves determining the degrees of free-
dom of the χ2 distribution based on an empirical estimate derived from toy
experiments. We then employ a Kolmogorov-Smirnov test to evaluate the
consistency of the empirical test statistic distribution with the χ2 hypothe-
sis. This approximative approach holds up well in nearly all instances of our
model. This same approximation technique is also applied in the neural net-
work model presented in references [1] and [16]. It is important to emphasize
that in real-world scenarios, if the computed p-value using this approach sug-
gests a discovery, additional toy experiments would be executed to achieve
a precise empirical estimation by exhaustively utilizing extensive computing
resources.

This estimation method allows the computation of very small p-values,
which correspond to highly discrepant data with very large t(D). However,
the agreement between p(t|R) and the χ2 distribution cannot be verified in
the high t(D) region that the toys do not populate. Thus, the quantification
of the p-value is accurate only in the region where the toys are statistically
represented. For example, if 300 Toys are generated, only p-values larger
than approximately 1/300 can be accurately computed.

Moreover, the possibility of reconstructing the data distribution using
fŵ serves as a useful debugging tool. It enables verification of whether the
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learning model correctly recognizes deviations from the reference distribution
and how it handles such discrepancies. However, we did not explore this
possibility in this work and we leave it for future developments.

3.2.1 Efficient kernel methods

The performance of the kernel-based version of NPLM relies on the capabil-
ities of the Falkon library, which forms the foundation of our implementa-
tion. The fundamental theoretical and algorithmic concepts implemented in
Falkon, as outlined in Ref. [20]- [21], are summarized below.

In kernel methods, the functions are learned in the form of a weighted sum
of kernel functions applied to the training dataset. Specifically, the function
fw(x) is expressed as:

fw(x) =
N∑
i=1

wikσ(x, xi) (3.19)

where N = N0+N(1) where N(1) = N(0)+N(S) represents the total size
of the training dataset, kσ(x, xi) is the kernel function with a hyperparameter
σ, and w are the model parameters to be optimized. In our analysis, we
employ the Gaussian kernel

kσ(x, x
′) = e−||x−x′||/2σ2

(3.20)

where fw is a linear combination of Gaussians with a constant width σ
centered at the training data points. The optimization involves minimizing
the empirical risk L̂(fw) augmented with a regularization term:

L̂λ(fw) = L̂(fw) + λR(fw) (3.21)

The empirical risk L̂(fw) is determined by the logistic loss function (3.13)
and can be expressed as:

L̂(fw) =
N∑
i=1

ℓ(yi, fw(xi)) (3.22)

The regularization term R(fw) is given by:

R(fw) =
∑
i,j

wiwjkσ(xi, xj) (3.23)
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The hyperparameter λ controls the relative importance of the regulariza-
tion term in the optimization objective (3.21).

Kernel methods are categorized as non-parametric approaches because
the number of parameters w in Eq. (3.19) automatically increases with the
total number of data points. In the limit of a large sample, they have the abil-
ity to recover any continuous function (Ref. [22], [23]). However, optimizing
the function in Eq. (3.19) with the target in Eq. (3.21) involves dealing with
an N ×N matrix, known as the kernel matrix, with entries kσ(xi, xj). This
optimization process exhibits a cubic time complexity and quadratic space
complexity with respect to the number of training points N (Ref. [24], [20]),
making it computationally expensive for large-scale settings. Therefore, some
approximation methods are needed to handle such cases efficiently.

The Falkon library approaches the minimization problem of Eq. (3.21)
using an approximate Newton method, detailed in Algorithm 2 of [24]. This
algorithm relies on the Nyström approximation, which is employed twice.

Firstly, to reduce the problem’s size, solutions are considered in the form
of:

fw(x) =
M∑
i=1

wikσ(x, x̃i) (3.24)

where {x̃1, ..., x̃M} ⊂ {x1, ..., xN} are known as Nyström centres and are
sampled uniformly at random from the input data. The value of M < N is
a hyperparameter that needs to be determined.

Secondly, the Nyström approximation is used once again to obtain an
approximate Hessian matrix:

H̃ =
1

M
TD̃T T + λI (3.25)

Here, T is structured in such a way that T TT = K̃ (Cholesky decom-
position), where K̃ ∈ RM×M represents the kernel matrix subsampled with
respect to both rows and columns. Additionally, K̃ is a diagonal matrix where
the i-th element corresponds to the second derivative of the loss ℓ′′(yi, fw(xi))
concerning its first variable.

To perform conjugate gradient descent, Eq. (3.25) is used as a precondi-
tioner. By employing this strategy, the overall computational cost to achieve
optimal statistical bounds is O(N) in memory and, of particular importance
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for our scope, O(N
√
N logN) in time. For further elaboration, the reader

can refer to Ref. [24].

Hyperparameter tuning The process of selecting the three Falkon hy-
perparameters, namely M , σ, and λ, adheres to the guidelines outlined in
Ref. [2]. The hyperparameter selection is conducted using data gathered
under the reference working condition, and it follows the subsequent steps.

The parameter M , representing the number of centers, plays a vital role
in determining the model’s expressive power. To maintain sensitivity to
anomalous distributions with intricate shapes, M should be as large as pos-
sible. Furthermore, based on studies in Ref. [25], [26], it is necessary for
M to be at least as large as

√
N to achieve statistically optimal bounds for

training convergence. However, it is worth noting that smaller values of M
lead to faster training times. The experiments conducted in Ref. [2] reveal
that any value of M above approximately the data batch size (N1) does not
compromise sensitivity to anomalous distributions.

The Gaussian width σ is determined as the 90th percentile of the pairwise
distance between reference-distributed data points. This σ is related to the
resolution of the model and its ability to fit statistical fluctuations in the
data. To estimate the relevant scales of the problem and strike a suitable
trade-off between complexity and smoothness, we examine the distribution
of pairwise (Euclidean) distances in the reference data. Subsequently, we fix
σ approximately as the 90th percentile to achieve a balance between model
resolution and data characteristics. It is important to note that the model
(3.24) operates on an input vector x with input features that are standardized
to have zero mean and unit variance on reference-distributed data, and the
same standardization is applied before computing the distances.

The regularization parameter λ is carefully chosen to be as small as
possible, ensuring stable training and avoiding long training times or non-
numerical outputs. Several reference-distributed toy data batches are used in
this study, with each batch trained against the reference sampleR. We found
that increasing this parameter can typically raise the level of compatibility
between p(t|H0) with a χ2 distribution.
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Beyond particle physics: credit
card fraud detection

Recognizing fraudulent credit card transactions is of utmost importance for
credit card companies. This capability serves as a crucial safeguard to ensure
that customers are shielded from unwarranted charges linked to purchases
they have not authorized. By swiftly and accurately identifying such unau-
thorized activities, credit card companies not only protect their customers’
financial well-being but also fortify the trust that customers place in their ser-
vices. This proactive approach not only minimizes potential financial losses
for both the customers and the companies themselves but also fosters an
environment where secure and worry-free transactions can take place.

The primary goal of this endeavor is to leverage the NPLM method in a
realm that extends beyond the confines of particle physics, delving into the
uncharted territory of fraud detection, and uncovering the potentials it holds
within this new domain.

It is important to note that this particular approach is not explicitly
tailored for the task of identifying outliers. Instead, its central focus is di-
rected towards discerning whether the distribution of transactions subjected
to analysis conforms to the established norms of standard, or reference, be-
havior.
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4.1 Data

The dataset employed in this thesis has been obtained from the Kaggle web-
site1. It comprises credit card transactions conducted by European cardhold-
ers during September 2013 and presents transactions that occurred in two
days, where we have 492 frauds out of 284,807 transactions. The dataset is
highly unbalanced, with the positive class (frauds) accounting for 0.172% of
all transactions.

For privacy considerations, the original characteristics have not been dis-
closed. Consequently, attributes V1, V2, ..., V28 emerge as outcomes of a
PCA transformation process. The only features which have not been trans-
formed with PCA are “Time” and “Amount”. Feature “Time” contains the
seconds elapsed between each transaction and the first transaction in the
dataset. The feature “Amount” is the transaction amount.

In this section, our objective is to deepen our comprehension of the
dataset by conducting a thorough examination of its weighted distributions
across diverse input features.

The subsequent visual depictions (Figures 4.1 and 4.2) showcase the dis-
tributions of the input features of the dataset. The plots have been con-
structed with distributions displayed on a logarithmic scale. This specific
choice was made to strategically enhance the visual contrast between the
two classes, thereby magnifying any discernible differences between them.
Each histograms is normalized to have unit area to facilitate the comparison
(see A for technical details).

1https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Figure 4.1: Distribution of the input features.
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Figure 4.2: Distribution of the input features.
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4.2 Results

This chapter presents the results obtained from our dataset and model. We
will explore the hyperparameters of the model and assess its performance
while varying the sample size and other parameters characterizing the data.
We begin by discussing the preprocessing phase applied to the dataset. This
step holds significant importance as it serves as a vital and advantageous
stage within every machine learning approach.

Throughout this thesis, we employ simulation experiments, which referred
to as ”toys,” to approximate the distribution of test statistics under the null
hypothesis. For the null hypothesis, we generate 300 simulated experiments,
and for the alternative hypothesis, we generate 100. However, given the
benchmark nature of this scenario, we adopt a similar approach to estimate
the distribution under the alternative hypothesis. This approach enables
us to comprehensively evaluate the model’s effectiveness. In a real-world
context, one would typically have a single dataset associated with just one
specific test statistic value.

Prepossessing The dataset consists of PCA-transformed values, which are
typically standardized in advanced. However, the “Time” and “Amount”
features differ from this pattern, displaying distinct averages and standard
deviations. Consequently, we undertook preprocessing steps for these two
features to ensure consistent inputs for our model. To achieve this, we stan-
dardize these features by subtracting the mean and dividing by the standard
deviation.2 For additional details on the preprocessing procedures, please
consult Appendix B.

Tuning of the hyperparameters In the initial phase of our analysis, we
concentrated on tuning the hyperparameters, specifically referred to as σ, λ,
and M .

We begin by considering the kernel width σ, which we determine by fix-
ing it at approximately the 90th percentile of the pairwise eucildean distance
distribution (as thoroughly explained in the preceding chapter). This per-
centile value corresponds to 9.6 for the dataset considered in this work and
we keep this value for our entire analysis. In this way, we estimate the typical

2We utilized the StandardScaler class from the scikit-learn library available at [27].
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spread and variability of the data effectively. The method for choosing the
candidate sigma value for this analysis is detailed in Appendix C.

We then considered the hyperparameter M which dictates the number
of centers or Gaussians utilized, significantly influencing both the model’s
accuracy and the computational resources it demands. Previous research [20]
suggests that attaining optimal statistical bounds can be achieved by setting
M ∼ O(

√
N), where N corresponds to the total number of data points.

This suggests that as the size of the dataset increases, it becomes more
advantageous to increase the number of centers in order to capture the un-
derlying patterns and variations in the data. However, it is important to
consider the trade-off involved. Larger values of M can make the model
more sensitive to subtle changes in the data, potentially leading to improved
detection of patterns or anomalies. However, this comes at the expense of
increased training times and memory usage, which may limit the scalability
and efficiency of the model.

In the context of our particular study, we have maintained a constant
value for M , setting it at 1500, while concurrently considering training sets
of size N = O(1000). This choice is based on careful considerations and
balancing the need for accuracy with practical constraints. By setting M to
a reasonably large value, we aim to achieve a good balance between model
sensitivity and computational efficiency.

As outlined in Section 3.2.1, the regularization parameter λ is deliberately
chosen to be as small as possible. This choice is aimed at ensuring stable
training and preventing prolonged training times. During this specific stage,
we made deliberate decisions regarding certain parameter values. Notably, we
set N0 = 3000 and N(0) = 1000 (refer to Fig. 4.4). The specification of N(0)
and N0 takes into account the constraints posed by the limited availability
of data while guaranteeing an adequate quantity of reference data points.

We then proceeded to explore the compatibility between the chi-square
(χ2) and p(t) by examining different values of the parameter λ. This investi-
gation is aimed at identifying the value that yields the best fit between these
distributions, indicating a favorable alignment between them (Figures 4.3).

We observed that increasing the value of λ helps in obtaining a better
compatibility between p(t|R) and a χ2 distribution with a number of degrees
of freedom that is fitted from the data themselves. However, there exists
a trade-off between the utilization of this value, the resources at hand, and
the time involved. These limitations are dynamic and contingent upon the
distinct attributes of the dataset, available resources, and the efficiency of
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time in reaching a solution. Hence, in this thesis, we have selected a λ value
that strikes a balance, ensuring a strong concordance with the χ2 distribution
while maintaining a reasonable average training duration.
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Figure 4.3: compatibility with the χ2 distribution for various λ
(N0 = 3× 103, N(0) = 103)

The table (4.1) presents a comprehensive summary of the statistical out-
comes associated with different values of λ, offering valuable insights into
the model’s performance under various regularization strengths. This facil-
itates a thorough evaluation and comparison of the results, allowing for a
deeper understanding of how different regularization settings impact essen-
tial aspects, such as time, χ2 degrees of freedom (DoF), and p-value of the
Kolmogorov–Smirvon test.

The column on the average training time confirms that decreasing the
value of λ will result in a longer time for the model to train, indicating a
trade-off between time and model regularization, as expected. Additionally,
all the p-values show a robust agreement between p(t) and the χ2 distribu-
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Table 4.1: Statistical parameters for p(t) with different values of λ
(N0 = 3× 103, N(0) = 103)

Avg training time (s) DoF p-value λ

1.19 709 0.65 10−6

4.10 1301 0.75 10−7

16.29 1912 0.97 10−8

48.93 2221 0.49 10−9

tion, indicating a favorable fit. Having a variety of λ values offers important
observations regarding how this parameter impacts the statistical character-
istics of p(t), particularly when considering a less regularized model where
the DoF tend to increase. Therefore, the value λ = 10−8 appears to be a
suitable choice with a reasonable average training time. The compatibility
is visually validated in Figure 4.4.

While maintaining compatibility between p(t) and χ2 as the data parame-
ters undergo changes during the analyses is a crucial consideration, our inves-
tigations have consistently revealed that this compatibility perseveres across
our analytical processes. Specifically, upon observing that the compatibility
remains intact even when adjusting various data parameters, including N0

and N(0), while holding λ fixed at λ = 10−8, we have made the decision to
maintain this constant value for λ.

The last hyper-parameter in our configuration concerns the upper limit
on the number of iterations for the gradient descent process. For our specific
scenario, we have set this hyperparameter to a value of one million iterations,
which is quite large. This choice influences the convergence and refinement of
the model’s parameters over the course of the optimization routine, ensuring
that the algorithm performs a comprehensive exploration of the optimization
landscape to attain optimal performance.

Exploring the model performance

After determining the most suitable values for the hyperparameters of the
model, we studied the performance of the model while changing the param-
eters characterizing the dataset, such as for instance the sample size or the
amount of fraudelent transactions.

Our initial focus was directed towards the parameter represented asN(S).
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Figure 4.4: p(t) of Reference Samples
(N0 = 3× 103, N(0) = 103)

This parameter quantifies the presence of fraudulent transactions within the
data.

Before delving into the outcomes corresponding to different values of
N(S), it is important to note that there are different effects associated with
anomaly detection using the NPLM method.

Fraudulent transactions can occur either in conjunction with regular trans-
actions or replacing them partially. In the former scenario, the distribution of
features will deviate from the baseline distribution p(x|R). Additionally, the
total count of transactions within a given timeframe will be impacted due to
the introduction of abnormal data. Consequently, the average count of mea-
sured transactions can be expressed as < N1 >= N(1) = N(0) +N(S).This
scenario is denoted as a shape and normalization effect and it represent the
most general case.

In the second scenario, referred to as a shape-only effect, the expected
number of transactions remains unaffected by the presence of anomalous
data points. In this case, a subset of reference events within the data sam-
ple D (specifically, an expected N(S)) will be substituted with fraudulent
transactions, maintaining an unchanged overall expected transaction count
of N(0).

The fundamental concept involves enhancing the amount of signal present
in the dataset D to evaluate the model’s ability to detect anomalies. Conse-
quently, the model might react by recognizing and pinpointing these anoma-
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lies. Nonetheless, this outcome doesn’t inherently confirm that the model has
truly acquired meaningful insights about the data distribution. In the first
scenario described earlier, the response of the model could potentially solely
stem from the increased presence of signal compared to the reference-only
situation. We intend to tackle this matter through a targeted analysis.

The subsequent type of detection relates to the configuration of the dis-
tribution of references and data, while keeping the average dataset size con-
stant (e.g., N0 = 3000 and N(0) = 1000), as explained earlier. This concept
emphasizes the idea that diverse data batches could display different distri-
bution shapes for references and data. Although this fact marks an anomaly
on its own due to the dissimilar distribution shape, it does not necessarily
signify fraudulent behavior. This is due to the anticipated fluctuations in
the distributions caused by finite size effects. This possibility is taken into
account for when estimating the null distribution of the test statistic using
reference-distributed toys, although this does not guarantee the absence of
false positives.

In the rest of this chapter, we will go through the analyses outlined above.
In the full case of shape and normalization effects we will explore different
values for all the parameters characterizing the dataset. In the other scenar-
ios, we will only focus on the amount if injected signal N(S). Consequently,
this chapter is divided into three parts: NPLM with shape and normalization
effects, a test to evaluate the importance of the increase in data points due
to the presence of signal, and NPLM with shape-only effects.

NPLM for shape and normalization By adjusting the value of N(S),
we aimed to evaluate how sensitive our model is to the injection of anoma-
lous data in the dataset. Varying N(S) allowed us to explore the level of
complexity or granularity at which the model examines the data.

In our study, we observed a linear relationship between N(S) and the
model’s effectiveness in detecting fraudulent usage as measure by the Z-score,
as shown in Fig. 4.5. The bars used in all figures about the sensitivity of the
model with Z-scores represent the 68 percent confidence intervals.

Before proceeding to the exploration of the next data parameter, we would
like to present Figure 4.6. This figure showcases an example of the distri-
bution of the test statistic for the null and alternative hypotheses. These
distributions are depicted for specific fixed values: N0 = 3×103, N(0) = 103,
and N(S) = 50.

47



Chapter 4 Beyond particle physics: credit card fraud detection

0 20 40 60 80 100 120 140
N(S)

0

2

4

6

8
Z

2

NPLM

Figure 4.5: Comparing Z values for various N(S)
(N0 = 3× 103, N(0) = 103)

We now move on to the next data parameter, denoted as N0.We mon-
itor the model sensitivity by exploring three different ratios N(S)/N(0) ∈
{0.1, 0.3, 0.5}) while keeping the ratio of N(S) to N(0) fixed.

For a ratio of 0.1 percent, we observed (Fig. 4.7) that N0 had minimal
effect on the model’s behavior. However, for the other ratios, increasing the
value of N0 resulted in a higher level of sensitivity for the model.

As already mentioned earlier, we sought to examine the compatibility be-
tween p(t) and the χ2 distribution. Specifically, our investigation focused on
assessing how well these two distributions align with each other for different
values of N0, determining the degree of compatibility between them.

During our experiments, we found that the compatibility between the χ2
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Figure 4.6: p(t|R) and p(t|Hŵ)

distribution and p(t) remained intact (see Fig. 4.8), regardless of the changes
made to the reference sample size, N0. This indicates that the relationship
between these distributions was preserved throughout our analysis.

The data presented in Table 4.2 shows explicitly our findings regarding the
χ2 compatibility of p(t) under the null hypothesis. Moreover, it shows that
the the number of DoF decreases with larger and larger reference samples.
This could signify that less complex models emerge from training with larger
values of N0 as the reference distribution is better represented.

Lastly, we conducted an examination of the data parameter denoted as
N(0). This parameter also required compatibility checks to ensure its ef-
fectiveness within the model. To carry out this evaluation, we kept the
previously established ratios unchanged and proceeded to analyze the im-
pact of varying N(0) on the model’s behavior. Similar to our observations
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Figure 4.7: Comparing Z with different values of N0

(N(0) = 103)

with the N0 parameter, we found that increasing the value of N(0) resulted
in improved sensitivity of the model, particularly for ratios larger than 0.1
percent (see Fig. 4.9).

As in the previous analyses, we verified the alignment between the test
statistics and the χ2 distribution. The information is provided in Table 4.3.

Counting the number of events We ask here the question of whether
the model is detecting more than the excess of events in the case of the full
analysis. We address this problem with a comparison between the NPLM
method and an specific metric that focuses on the impacts of additional sig-
nal. To facilitate this comparative analysis, we introduce a new test statistic
value that enables the investigation of this particular influence
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Figure 4.8: Compatibility of p(t) with χ2 distribution for various N0

(N(0) = 103)

tN = ∆N/
√

N(0) (4.1)

It is also necessary to define an alternative metric to evaluate perfor-
mance, since the χ2 distribution does not characterize tN . Therefore, we
utilized the empirical Z score as a measure that quantifies the extent to
which an observed value differs from the mean of a distribution, expressed
in terms of standard deviations.

Figure 4.11 illustrates the empirical Z values of both methods across var-
ious values of N(S). This figure strongly suggests that the NPLM method is
acquiring knowledge beyond the impact of additional signal as the NPLM
results are consistently above the tN results. The confidence intervals are
however quite large and overlapping, hence a more detailed analysis with
potentially more data would be interesting.
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Table 4.2: Statistical parameters for p(t) with different values of N0

(N(0) = 103)

Avg training time (s) DoF p-value N0

9.18 3401 0.93 1000
9.82 2743 0.46 1500
11.08 2350 0.83 2000
11.35 2098 0.66 2500
16.29 1912 0.97 3000

Table 4.3: Statistical parameters for p(t) with different values of N(0)
(N0 = 3× 103)

Avg training time (s) DoF p-value N(0)

15.94 1414 0.52 600
13.28 1683 0.98 800
16.29 1912 0.97 1000
11.80 2119 0.99 1200

NPLM for shape-only effects In this part, we consider the NPLM
method with ”shape-only” effects, where the method identifies changes in
the shape of the distributions, and we compare it with the full case, where it
learns from the inclusion of additional signal as well, with same same amount
of expected signal N(S).

Figure 4.12 displays the Z values of both methods across various values
of N(S). This illustration effectively underscores that the NPLM method,
specifically in the context of shape and normalization, acquires insights that
extend beyond the sole shapes of the distributions, resulting in enhanced
performance with respect to anomaly detection within the dataset. As in
the previous analysis, the confidence intervals are large and, therefore more
studies would be needed to investigate this aspect in more details.
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(N0 = 3× 103)
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Figure 4.10: Compatibility of p(t) with χ2 distribution for various N(0)
(N0 = 3× 103)
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Figure 4.12: NPLM for shape-only and shape and normalization
(N0 = 3× 103, N(0) = 103)
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Chapter 5

Conclusions

In this thesis, a recent machine learning method, known as the New Physics
Learning Machine, developed within the context of [1,2], has been applied to
a completely new domain: the detection of fraudulent activities in credit card
transactions. This approach, notable for its model-independent nature, offers
a departure from the conventional path within the domain of anomaly de-
tection. Traditional anomaly detection often pertains to identifying outliers,
but the methodology we present here is distinct from that conventional tra-
jectory. Rather, its primary objective revolves around determining whether
the distribution of analyzed transactions adheres to the recognized standards
of conventional or reference behavior.

The central focus of this work revolves around enhancing computational
efficiency, which has been realized through the strategic utilization of state-of-
the-art large-scale kernel methods, most prominently the Falkon library [20].
Employing these advanced techniques facilitates the application of efficient
and expressive machine learning models while incurring minimal computa-
tional overhead.

The heart of our approach lies in training a classifier on a sample of
reference data and the data of interest, thereby constructing a hypothesis
testing procedure grounded in the likelihood ratio test. The assessment of
data compatibility with the reference is conducted to identify indications of
potentially fraudulent transactional cues. While the problem is presented
in a classification context, the focus isn’t on gauging classification accuracy;
instead, the ultimate aim revolves around fitting the likelihood ratio and exe-
cuting a hypothesis test. Consequently, the evaluation of performance entails
comparing the ideal statistical significance against the observed significance.
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Careful consideration is required when choosing a model. A significant
portion of attention is directed towards adjusting hyperparameters, which
hold a crucial position in achieving a subtle equilibrium between model in-
tricacy and alignment with statistical distribution. This iterative tuning
procedure, executed across various data sets, guarantees the strength and
dependability of our method.

Our exploration of data parameters further enriches the depth of our
investigation. The relationships and impacts of parameters such as the size
of the reference sample or the amount of anomalous transactions, have been
meticulously analyzed. By varying these parameters, we’ve uncovered their
profound influence on our model’s performance, providing valuable insights
into fraud detection performance and the delicate interplay between signal
identification and model behavior.

As we conclude this journey, it’s evident that this machine learning strat-
egy, coupled with thorough explorations of data parameters and hyperpa-
rameter tuning, contributes to the broader landscape of both fraud detection
methodologies and the convergence of machine learning with complex real-
world challenges. This work not only addresses the specific challenge of credit
card fraud but also opens avenues for applying similar techniques to various
other anomaly detection scenarios, where data-driven understanding is cru-
cial. In this pursuit, we have striven not only to uncover fraudulent activities
but also to uncover the potential of cutting-edge machine learning methods
in unraveling hidden insights across diverse domains. This thesis serves as
a remarkable illustration of how methodologies crafted for fundamental re-
search can make meaningful contributions to society, just as machine learning
provides indispensable advantages to sciences.

Looking ahead, our research lays the foundation for several promising di-
rections of future work. One promising avenue involves conducting a compre-
hensive comparison between our proposed approach and alternative methods.
By subjecting our approach to rigorous benchmarking against established
techniques, one can gain a deeper understanding of its strengths and identify
areas for refinement. Additionally, extending our study to encompass di-
verse datasets with carefully controlled variations in feature definitions will
enhance our understanding of the method’s adaptability and robustness. By
manipulating feature characteristics systematically, one can disentangle their
individual impacts on performance, yielding insights that contribute to more
precise model design and interpretation. Embracing such avenues of investi-
gation not only advances our current methodology but also propels the field
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forward by fostering deeper insights into the intricate dynamics between fea-
tures and their effects on analytical outcomes.
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Appendix A

Weighted Histograms

Below, one will find the code snippet designed to visualize the weighted
distributions effectively:

1

2 # Weighted Histogram

3

4 for col in data.columns:

5 if col not in ["Class"]:

6 sns.set_style("whitegrid")

7 fig, ax = plt.subplots()

8

9 # Calculate histogram bins for the specific column's data combined

10 combined_data = np.hstack((data[data['Class']==0][col],

11 data[data['Class']==1][col]))

12 hist, bins = np.histogram(combined_data, bins=20)

13

14 freq_G, _ = np.histogram(data[data['Class']==0][col],

15 weights=1/len(data[data['Class']==0][col]) *

16 np.ones(len(data[data['Class']==0][col])),

17 bins=bins)

18 freq_F, _ = np.histogram(data[data['Class']==1][col],

19 weights=1/len(data[data['Class']==1][col]) *

20 np.ones(len(data[data['Class']==1][col])),

21 bins=bins)

22

23 # Plotting the bars for Reference data

24 ax.bar(bins[:-1],freq_G,width=np.diff(bins)[0],

25 color='deepskyblue',alpha=0.5,label='Reference')

26

27 # Plotting the bars for Fraud data with an offset

28 ax.bar(bins[:-1],freq_F,width=np.diff(bins)[0],

29 color='none',edgecolor='red',linewidth=4,alpha=0.5,label='Fraud')

30

31 # Increase the size of ticks

32 ax.tick_params(axis='both', which='major',

33 labelsize=default_font_size * 0.8)
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34

35 ax.set_ylabel('Frequency', fontsize=default_font_size)

36

37 # Set y-axis to logarithmic scale

38 ax.set_yscale('log')

39

40 # Move the legend to the upper right corner

41 ax.legend(loc='upper right')

42

43 if col == "Time":

44 # Change font size for "Time" column

45 plt.rcParams.update({'font.size': 10})

46 ax.set_xlabel("Time (seconds)", fontsize=default_font_size)

47 ax.tick_params(axis='x', which='major', labelsize=10)

48 else:

49 ax.set_xlabel(col, fontsize=default_font_size)

50

51 if col == "Amount":

52 # Format x-axis labels with Euro symbol

53 formatter = FuncFormatter(euro_formatter)

54 ax.xaxis.set_major_formatter(formatter)

55 ax.tick_params(axis='x', which='major', labelsize=14)

56

The provided code systematically iterates through every column in the
dataset. For each column, with the exception of the Class column, the code
generates a histogram plot using the matplotlib and seaborn libraries. This
histogram visualization showcases data distribution for two well-defined cat-
egories: reference (Class 0) and fraud (Class 1). The script computes the
bin divisions and frequency counts for both categories, modifies the plotting
style to whitegrid, and establishes fresh figure and axis components for each
column. Additionally, the y-axis scale in each plot is configured to apply
a logarithmic representation, enhancing the clarity of the data distribution.
The histogram bars that correspond to reference data are displayed in a semi-
transparent blue hue, while the bars indicating fraud data are outlined in red
with increased line thickness and a comparable level of transparency.

This weighting technique ensures that the frequencies derived from the
histograms accurately depict the relative proportions of genuine and fraud
cases present in the dataset. By assigning equal weights, each data point
contributes equally to the overall frequency calculation, eliminating any po-
tential bias that could arise from differences in sample sizes between the
genuine and fraud classes. Consequently, the resulting frequencies provide a
reliable representation of the distribution and relative occurrence of genuine
and fraud cases within the dataset.
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Prepossessing

Presented below is the provided code snippet tailored for preprocessing:

1 '''

2 Since most of our data has already been scaled,

3 we should only scale the columns that are left (Amount and Time)

4 '''

5

6 from sklearn.preprocessing import StandardScaler

7

8 std_scaler = StandardScaler()

9 creds['scaled_amount'] = std_scaler.fit_transform(creds['Amount'].values.reshape(-1,1))

10 creds['scaled_time'] = std_scaler.fit_transform(creds['Time'].values.reshape(-1,1))

11

12 creds.drop(['Time','Amount'], axis=1, inplace=True)

13 scaled_amount = creds['scaled_amount']

14 scaled_time = creds['scaled_time']

15

16 creds.drop(['scaled_amount', 'scaled_time'], axis=1, inplace=True)

17 creds.insert(0, 'scaled_amount', scaled_amount)

18 creds.insert(1, 'scaled_time', scaled_time)

The provided code encompasses a data preprocessing operation that lever-
ages the StandardScaler module from the sklearn library. The central ob-
jective revolves around conducting transformations on features within the
dataset. Initially, the code applies the standard scaling technique, a widely
adopted method for normalization, to the amount and time columns. As a
result, two fresh attributes are generated: scaled-amount and scaled-time,
containing the standardized values of the original attributes correspondingly.

Following this, the code proceeds to eliminate the original time and
amount columns from the dataset, signifying a refining process geared to-
wards excluding superfluous or non-standardized data. By carrying out this
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sequence of steps, the code guarantees that the numerical attributes within
the dataset are rendered on a standardized scale. This standardization is
particularly advantageous when working with a diverse range of machine
learning algorithms, as scaled input features can lead to improved perfor-
mance and convergence during model training and evaluation. This system-
atic approach helps mitigate the impact of varying feature magnitudes on
the learning process, thereby enhancing the effectiveness of the subsequent
algorithmic operations.
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Selecting Sigma

1

2 def candidate_sigma(data, perc=90):

3 # this function estimates the width of the gaussian kernel.

4

5 pairw = pdist(data)

6 return round(np.percentile(pairw,perc),1)

7

8 # to estimate flk_sigma from data use candidate_sigma on a reference sample

9

10 ref_data = genuine_samples.sample(n= 30000, replace=False, random_state=123)

11 candidate_sigma(ref_data)

12

In the provided code, a function named candidate-sigma plays a pivotal
role in estimating the width of a Gaussian kernel. This estimation process is
achieved by leveraging the pairwise distances derived from a given dataset.
The function operates with two principal parameters: the dataset, denoted
as ’data,’ and an optional percentile value referred to as perc (which defaults
to 90 percent if not explicitly specified). By engaging in distance calculations
between individual data points, the function generates an output value that
is rounded to represent the designated percentile among these computed
distances.

This function’s operation entails the evaluation of how spread out the
data points are, a characteristic crucial for Gaussian kernel applications. By
considering the percentile of distances, the function provides insights into the
data’s distribution within the dataset.
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