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Abstract

In this work we borrow some ideas from the the theory of lifted Markov chains, which can
accelerate convergence of random walks algorithms thanks to the introduced memory effects,
and apply them to the control of networks of dynamical systems arranged on a line and on a
grid. We lift the dynamics by enlarging each node state and discuss how to compare the effect
of a control input on the lifted network and on the original one. We compute some metrics for
energy-related controllability, showing that the lifted network has better controllability properties
than the non-lifted one. This proves an advantage induced by the extra internal dynamics that
allows for memory effects. The potential of lifts is then explored via numerical simulations for
some paradigmatic examples.
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Sommario

In questo lavoro prendiamo spunto dalla teoria delle Lifted Markov Chains, le quali possono
accelerare la convergenza di algoritmi basati su random walks grazie agli effetti di memoria in-
trodotti, e applichiamo alcune tecniche utilizzate in quel contesto al controllo di reti di sistemi
dinamici disposti su una linea e su una griglia. In particolare, eseguiamo il lift della dinam-
ica aumentando le variabili di stato associate a ciascun nodo e discutiamo come sia possibile
confrontare l’effetto di un input di controllo sulla rete espansa e su quella originale. Calcoliamo
alcune metriche per l’energia di controllo, e dimostriamo che la rete lifted ha migliori proprietà di
controllabilità rispetto alla rete originale. Questo dimostra un vantaggio indotto dalla dinamica
interna aggiuntiva che consente effetti di memoria. Il potenziale dell’operazione di lifting viene
poi esplorato attraverso simulazioni numeriche per alcuni esempi paradigmatici.
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Nomenclature

ker(A) kernel of matrix A

λmin(A) minimum eigenvalue of a symmetric matrix A

∥v∥2 ℓ2 norm of vector v

✶n Column vector of dimension n whose entries are all equal to 1

Ep[x] Expected value under the probability distribution p of the random variable x

ρ(A) Spectral radius of matrix A

σ(A) Spectrum of matrix A

1[c,d](x) Indicator function, which takes value 1 if x belongs to the interval [c, d], otherwise takes
value 0

Im(A) image of matrix A

trace(A) trace of matrix A

|A| matrix whose entry |A|ij is the absolute values of the entry Aij of matrix A

A† Conjugate transpose of matrix A

AT Transpose of matrix A

ek,n k-th canonical vector of dimension n
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Introduction

The importance of network theory as a tool to describe the relations between different systems
has been widely highlighted in the last years. As the world is becoming every day more con-
nected, understanding how large-scale systems can be described and exploited to reach a target
result is of paramount importance from a control-theoretic perspective.
The development of network science proceeds in parallel to the interest given by the society to
these new technologies. Graph theory, algebraic graph theory and other mathematical tools have
been developed to tackle in rigorous and systematic ways problems of interest for the increas-
ingly connected society. Thanks to the abstraction given by mathematics, it became possible
to discover how some well-known and studied processes and phenomena őnd their natural and
most convenient description (from an engineering point of view) precisely in the framework of
networked systems and graph theory.
A useful class of probabilistic dynamics on graph is represented by Markov Chains. This stochas-
tic model is used in many computational algorithms to sample from a probability distribution
that is not directly available nor fully known. This is done by appropriately designing a stochas-
tic evolution that converges (mixes) to an equilibrium coinciding with the target distribution.
In order to accelerate the convergence speed of probabilistic algorithms, other stochastic pro-
cesses have been proposed such as Lifted Markov Chains, where a non-Markovian effect that can
be seen as added local memory is introduced by considering Markov evaluations on an enlarged
state space. The latter is based on the concept of graph lifting, and the induced memory effects
can be translated into connectivity patterns among the nodes of the extended network.
In this thesis we will borrow (from the above mentioned probabilistic models) the idea of lift on
a graph and how lift can be designed to add a local memory to processes naturally described on
networks. We will then apply these ideas to a completely different context: controlled networks
of interconnected systems.
Solving control problem for large scale networks is particularly difficult; for many complex net-
works the system parameters are not precisely known and the connections between different
systems are several and intricate. Among all the possible aspects of the control problem for
complex networks we will mainly constrain our attention to the effort necessary to control the
system (independently on the speciőc input applied to it), which is practically and conveniently
quantiőed by some metrics related to the so-called control energy. Control energy typically grows
exponentially with the number of components (nodes) in the network if the number of control
inputs remains constant.
Each node in the network is connected to several other units, hence it may receive control inputs
from multiple directions. The main idea we will develop in the thesis is to provide nodes with
a local memory that keeps track of the direction from which the inputs are received and with
a computational power that allows them to treat and spread the received inputs in the most
efficient way through the network.
The tool we will exploit to describe these extra capabilities given to the nodes is exactly the lift
of graph mentioned above.
We will assess how, by properly adding memory and computational power to nodes, the energy
required to control the system grows more slowly as the quantity of vertices in the network (and
hence its dimension) increases and the number of external control inputs remains constant.

To make the analysis meaningful we will impose some constraints on the allowed lifted dy-
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namics. Thanks to the extra capabilities provided, each node is allowed to spread signals through
the network differently from the original system, however it cannot inject additional energy by
amplifying signals. The imposed constraints play a crucial role in assessing whether the advan-
tages given by changing the internal node dynamics effectively stem from memory effects.

The thesis is structured as follows. After a brief summary of the background necessary to
understand the treated topics (chapter I) we will describe how it is possible to lift a controlled
network (chapter II). Subsequently, a comparison will be performed between the control energy
performances for a given network and its lifted counterpart. Most notably, this analysis will be
conducted for a couple of well-known and widely used network topologies: the line (Chapter
III) and the grid (Chapter IV). We will prove analytically and numerically how for these net-
work topologies, by appropriately performing lift, the expanded network with extra memory and
computation capabilities performs better than the simple counterpart.



Chapter 1

Preliminaries

In this chapter we introduce the background necessary to understand the main contributions of
this thesis. In particular, we will review some of the result available in the literature about struc-
tural and energy-related controllability by introducing the main tools exploited in the analysis.
We will then explain what it means to perform a lift on a graph and apply it to the context of
Lifted Markov Chains to show the usefulness of this operation.

1.1 Controllability of Linear Time-invariant Systems

One of the main questions that arises when we analyze a system is what are the states that can
be reached and the trajectories that can be followed by suitably choosing the available control
inputs. In this work we will consider only linear time-invariant (LTI) and discrete-time systems
which are often described in state space form, i.e., by a system of equations of the form:

Σ :

{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1.1)

where:

- x(t) ∈ R
n is the vector describing the state of the system;

- u(t) ∈ R
m is the input vector;

- y(t) ∈ R
p is the output vector which describes how the measurement taken by sensors are

inŕuenced by the state of the system and the input;

- A ∈ R
n×n is the state matrix which describes how the system behaves when no input is

applied;

- B ∈ R
n×m is the input to state matrix which describes how the input act on the system;

- C ∈ R
p×n is the output matrix and describes the inŕuence of the actual state on the output

vector;

- D ∈ R
p×m is the feedforward matrix that describes how the output of the system is

inŕuenced by the actual input.

After introducing the state space model for a linear time-invariant discrete-time system we now
introduce in detail the controllability problem.

1.1.1 Classical controllability

Before even considering the problem of designing an input to drive the system to some target
state it is necessary to check if the desired conőguration can be reached.
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Let Σ be a linear time-invariant discrete-time system. If the initial state is zero, x(0) = 0,
and the applied input is

u(0), u(1), . . . , u(k − 1) (1.2)

the state that is reached at time k is

x(k) =

k−1
∑

σ=0

Ak−1−σBu(σ) =
[

B AB . . . Ak−1B
]











u(k − 1)
u(k − 2)

...
u(0)











(1.3)

The set XR
k of reachable states in k steps is the image, namely, the set of all possible linear

combinations of the columns, of the matrix

Ck =
[

B AB . . . Ak−1B
]

(1.4)

The property of a system to be steered to any desired state via suitable inputs is known in
systems theory as controllability, the formal deőnition is given below.

Definition 1 (Controllability) A system is said to be controllable (reachable) in k steps if and
only if for every state xf ∈ R

n there exists an input sequence such that x(k) = xf with x(0) = 0.

There exist different controllability conditions which allow us to check if an LTI system is
controllable from a given set of inputs. A well-known condition is the Kalman’s rank condition
which makes use of the controllability matrix, deőned as:

C :=
[

B AB · · · An−1B
]

(1.5)

Theorem 1 (Kalman’s rank condition) The LTI system (A,B) is controllable if and only if
the controllability matrix C has full row rank.

If the matrix Ck in (1.4) has full row rank, then the system is said to be controllable in k steps.
Another interesting controllability criterion is the so called Popov, Belevitch and Hautus
(PBH) criterion and its corollaries. Employing the PBH criterion, the controllability analysis
of an n-dimensional LTI system is done by studying the rank of the corresponding PBH matrix,
namely:

[

A− zIn B
]

(1.6)

as z varies over the complex őeld.

Theorem 2 (PBH test) An n-dimensional discrete-time LTI system Σ as in (1.1) is control-
lable if and only if the matrix (1.6) has full row rank for all z ∈ C.

Remark 1 For arbitrary matrices A and B, the matrix (1.6) has row full rank, equal to n, for
any z that is not in the spectrum of A. Therefore, the only values z ∈ C for which it can have
rank less than n are the eigenvalues of the matrix A.

We will now brieŕy describe how it is possible to design an input to reach the target state in
a őnite time horizon [0, k]. It is easy to see that there exists a sequence u(0), u(1), . . . , u(k − 1)
that steers the system from the initial state x(0) = x0 to the őnal state x(k) = xf if and only if

xf −Akx0 ∈ Im
[

B AB . . . Ak−1B
]

= Xk
R, (1.7)

where Im(·) denotes the image of a matrix, namely if and only if xf − Akx0 is reachable, from
the zero state, in k steps. Therefore, in order to determine an input sequence we must solve the
equation

xf −Akx0 = Cku (1.8)
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where u is the vector:

u =
[

u(k − 1)T u(k − 2)T . . . u(0)T
]T ∈ R

km (1.9)

we consider as norm of the vector u the norm induced by the standard inner product in the input
space:

E(u, k) = ||u||2 = ⟨u, u⟩ =
(

k−1
∑

σ=0

uT (σ)u(σ)

)

1

2

(1.10)

This norm is often referred as control energy of the input signal u.
We need now to introduce the so called (controllability) Gramian of the system which will

be one of the core quantities to be considered in the energy-related controllability analysis that
we will describe later on. Given the system Σ described by equation (1.1), the Controllability
Gramian in k steps is deőned as:

Wk := CkCT
k =

k−1
∑

σ=0

Ak−1−σBBT (Ak−1−σ)T (1.11)

The Gramian Wk is always positive semideőnite and it is positive deőnite if and only if the
system is controllable.
Using the controllability gramian it is possible to determine the minimum-energy control input
ū that drives the system from the initial state x(0) = x0 to the őnal state x(k) = xf . Such input
is deőned as

ū = CT
k η, (1.12)

where η ∈ R
n is the solution of the auxiliary equation

Wkη = xf −Akx0. (1.13)

For sake of completeness we show below that the input ū is the minimum energy one.

Proposition 1 The solution ū obtained through (1.12) has minimum energy among all the so-
lutions to (1.8).

Proof : The solution ū = CT
k η belongs to Im CT

k = (ker Ck)⊥. Any other solution can be expressed
through ū + v, where v is the solution to Ckv = 0 and hence a generic element of ker Ck. Since
ū and v are orthogonal, it holds true that ||ū + v||2 = ||ū||2 + ||v||2, which shows that ū is the
minimum norm solution to (1.8). ■

Another useful controllability deőnition is the so-called output controllability, inspired by
the fact that in many engineering applications we are interested in controlling the output of the
system rather than its full state.

Definition 2 (Output controllability) The LTI system (1.1) is said to be output controllable
in k steps if and only if for every output yf ∈ R

n there exists an input sequence such that
y(k) = yf with y(0) = 0.

Output controllability can be checked similarly as standard controllability by applying the
Kalman’s rank condition to the so-called output controllability matrix deőned as:

CO := C
[

B AB · · · ABn−1
]

=
[

CB CAB · · · CABn−1
]

(1.14)

The output controllability Gramian is then given by:

WO
k = CWkC

T (1.15)

The minimum energy input steering the system output to the őnal state yf can be determined
with a procedure similar to the one illustrated before.
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Finally one may be interested in őnding the minimum energy input signal controlling the
system to a certain őnal state over an inőnite horizon. In this case we need to introduce the
inőnite horizon (output) controllability Gramian which is deőned as:

W =
∞
∑

k=0

AkBBT (Ak)T . (1.16)

Note that W is well-deőned only if the matrix A is Schur stable, i.e., all its eigenvalues have
modulus smaller than 1. In this case the Gramian can be computed as the solution of the
discrete-time Lyapunov equation:

W = AWAT +BBT (1.17)

The controllability deőnitions described up to now and the related Kalman and PBH tests are
very simple and effective. Indeed, thanks to the aforementioned theory it is possible to check
whether there exist control inputs able to steer the system to a desired target state and, if so, to
design them. However as the dimension of the system grows some limitations of this theory arise.

1.2 Controllability on networks

In the last decade the interest of research in control theory has moved from the development
of algorithms and mathematical tools to study and govern single actuators to the control of in-
creasingly interconnected networks of heterogeneous components. This interest is motivated by
the vast number of applications which can be framed in the context of networks such as power
networks, social networks, communication between groups of robots and traffic ŕow networks.
In these systems complexity arises primarily from the usually large and intricate interconnection
patterns and the rich dynamics of the isolated units. Due to the increasing complexity of net-
works the focus has shifted toward the framework of large-scale networks.

In this dissertation we will consider only discrete-time, linear and time-invariant networks
which can be described in the state space form (1.1) as explained below.

A network can be represented by a directed graph G := {V, E} where V := {1, 2, ...n} is
the set of nodes and E ⊆ V × V is the set of edges.

We deőne the adjacency matrix of G as A = [aij ] where aij ∈ R are the weight associated
to the edge (j, i) ∈ E , moreover aij = 0 if (j, i) /∈ E .

Example 1 (Adjacency matrix and related graph)
Consider the adjacency matrix:

A =





0 0 0.1
0.2 0 0.3
0 0.4 0



 (1.18)

The related graph is shown in őgure 1.1.
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Figure 1.1: First example of graph

The state of the system is described by the vector x(t) ∈ R
n, whose entry xi(t) represents the

state of node i ∈ V at time t ∈ N≥0. The evolution of the system is given by the difference
equation:

x(t+ 1) = Ax(t) (1.19)

Hence the edge (i, j) ∈ E and the associated weight, which are described by the quantity [A]ji, tell
us how the information on the state of node i at time t inŕuences the state of node j at time t+1.

Until now the system has been considered without any input. One of the main tasks that
needs to be handled when dealing with large-scale systems is the deőnition of the set of nodes
that can be controlled by means of an external input. This choice affects the controllability
properties of the system.

We assume the set of control nodes to be given and to be equal to K = {k1, ..., km} ⊆ V. Let
BK be the input matrix, where we made explicit the dependence on the choice of input nodes.
If we deőne the input signal uK(t) ∈ R

m, the difference equation describing the evolution of the
network state becomes:

x(t+ 1) = Ax(t) +BKuK(t). (1.20)

With this description we have found the state equation as in (1.1) for the network system, hence
controllability can be checked by applying Kalman’s rank condition or PBH test as before.

The problem of controlling large-scale networks can be tackled by different points of view;
beyond the classical deőnition that can be found in all the books of system theory, the concepts of
energy-related controllability (or practical controllability) and structural controllability
have been developed.

Energy-related controllability focuses on the more concrete assumption that even though
a system is controllable by a theoretical perspective, the effort necessary to reach a desired state
is not always sustainable in practice. The main aspects that inŕuence the energy necessary to
steer the system to the target state are the topology of the network (i.e., how the single units
composing the system are interconnected), the choice of the control nodes, and the dimension of
the network.

Structural controllability theory gives necessary and sufficient conditions for almost every
network system sharing the same connectivity pattern to be controllable with the usual meaning.

In the next two subsections we will describe more in detail these controllability concepts.
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1.2.1 Energy-related controllability

The classical notion of controllability is qualitative, in that it does not quantify the difficulty of
the control task. This effort can be measured via the control energy deőned in (1.10). Let
ūK(·) be the minimum energy input deőned in (1.12) where we made explicit the dependence
on the control nodes, and let λmin(WK,T ) denote the smallest eigenvalue of the controllability
Gramian of the system WK,T . It is possible to notice that:

E(ūK, T ) =

T−1
∑

τ=0

∥ūK(τ)∥22 = xTf W−1
K,Txf ≤ λ−1

min(WK,T )∥xf∥22 (1.21)

We can therefore quantify the effort required to control the network in terms of minimum-energy
control inputs.

Different metrics for the overall required energy given any target őnal state have been pro-
posed over the years:

1. λmin(WK,T ), which, in view of (1.21), is related to the worst-case control energy. The
system is less controllable as this metric decreases.

2. trace(W−1
K,T ) measures the average control energy over unit-norm random target states.

The system is less controllable as this metric increases.

3. det(WK,T ) is proportional to the volume of the ellipsoid containing the states that can be
reached with unit control energy.

4. trace(WK,T ) is a pseudo-metric that is often used in literature as a measure of controlla-
bility. Note that the system can be uncontrollable even if this metric takes large values.

All these metrics depends on the controllability Gramian and not on the speciőc target state,
hence they allow us to quantify the difficulty of the control task independently on the őnal state
we want to reach. If A is symmetric (or close to be symmetric) and the number of control nodes
remain constant as the network size increases, the control effort, which can be quantiőed using
the metrics above, grows exponentially with the size of the network.

A good introduction to energy related controllability and how control energy is inŕuenced by
the number of control nodes can be found in [1].

1.2.2 Structural Controllability

The last deőnition of controllability we will consider, even if only brieŕy, is that of structural
controllability. The idea behind structural controllability is that for many complex networks the
system parameters are not precisely known, in particular the weights of the links can not be
measured effectively, we only know when there is an edge between two nodes or not. Therefore
for systems over networks it is hard to verify numerically Kalman’s rank condition. Systems
showing these problems are called structured systems, the formal deőnition is given below.

Definition 3 (Structured system) An LTI system (A,BK) is a structured system if the el-
ements in A and BK are either őxed zeros or independent free parameters. The corresponding
matrices A and BK are called structured matrices.

We are now ready to give the deőnition of structural controllability.

Definition 4 (Structural controllability) The system (A,BK) is structurally controllable if
we can set the nonzero elements in A and BK such that the resulting system is controllable in
the usual sense.
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The power of structural controllability comes from the fact that if we are able to prove that
a system is structurally controllable then it is controllable for almost all possible parameters
realizations.

In the following, after giving a couple of required deőnition, we will introduce a criterion
useful to check when the systems is structurally controllable.
Consider an LTI system (A,BK) represented by a directed graph G = {V, E} where K ⊂ V is the
set of control (input) vertices.

Definition 5 A vertex xi is inaccessible if there are no directed paths reaching xi from the input
vertices.

Let S ⊂ V \ K and T (S) be the in-neighborhood of S, i.e the set of all the vertices vj for which
there exist a directed edge from vj to some other node in S.

Definition 6 The directed graph G contains a dilation if there is a subset of nodes S ⊂ V \ K
such that T (S) has fewer nodes than S itself.

The above mentioned criterion is now stated as a theorem.
Theorem 3 (Lin, 1974) The system (A,BK) is not structurally controllable if and only if it
has inaccessible nodes or dilations.

In őgure 1.2 it is depicted an example of what we mean with inaccessible nodes and dilations.
The nodes x1 and x2 on the left picture are inaccessible from the control node x6. Variations in
the input u1 can not inŕuence these two nodes since there does not exist any path joining the in-
put u1 with any of x1, x2. On the right picture instead we can appreciate a dilation, the node set
S = {x3, x4} has as neighboring set T (S) = {x5}, which contains only one node, hence the size of
T (S) is smaller than S implying that a single node in T (S) is requested to control two nodes in S.

While more sophisticated and systematic ways to check structural controllability were intro-
duced by Lin, they go beyond the scope of the present work. One relevant paper which gives a
complete and effective introduction to structural controllability is [2].

Figure 1.2: Inaccessible nodes and dilations.

1.3 Lift of Markov Chains

In this section we introduce Markov Chains on graphs and Lifted Markov Chains. The latter
have been mainly considered as a useful technique to speed up some performances of a classical
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Markov chain, such as mixing times, by effectively introducing memory in the dynamics. The
scope of this preliminary section is only to give a brief overview to these concepts which inspired
the ideas behind the thesis work. Starting from next chapter we will borrow from this framework
only the idea of lift on graphs.

1.3.1 Markov chains

The signiőcance of algorithms based on Markov chains has been extensively validated. In the
realm of computer science, random walks and Markov chain Monte Carlo play a crucial role
in numerous randomized algorithms. Practical applications of Markov chains encompass the
Google page ranking algorithm, solving average consensus problems, employing Markov chain
Monte Carlo methods to sample from unknown target distributions, and implementing simulated
annealing techniques. We now introduce some fundamental deőnitions that are essential to grasp
the concept of Markov chains and how they are employed in practical algorithms to engineer a
stochastic evolution that converges (mixes) to a target distribution.

Definition 7 Let (Ω,F ,P) be a probability space. A family of random variables {X(t); t ∈ T},
T ⊆ Z deőned on Ω is called a discrete-time stochastic process.

A stochastic process is called a Markov process if it satisőes the so-called Markovian property
which can be described as

"The future of the process depends on the past only through the present"

The formal deőnition is given below:
Definition 8 Consider a family of random variables X = {X(t); t ∈ N} all taking values in the
őnite or countable set X of cardinality n. The process is called a Markov chain if it satisőes the
Markov property:

P(X(t+ 1) = x|X(0) = x0, X(1) = x1, . . . , X(t) = xt) = P(X(t+ 1) = x|X(t) = xt) (1.22)

∀(x0, x1, . . . , xt, x) ∈ X t+2, ∀t ≥ 0

Definition 9 The distribution of X(t) is deőned as:

πi(t) = P(X(t) = i) (1.23)

Definition 10 Let i, j ∈ X The one-step transition probability is the probability of X(t+1)
being in state j given X(t) is in state i:

pij(t) = P(X(t+ 1) = j|X(t) = i) (1.24)

In many application the transition probabilities does not depend on time, in this case the Markov
chain is called time-homogeneous.
From now on we will consider only time-homogeneous Markov Chains, the probability of X(t+1)
being in state j is given by

πj(t+ 1) =
∑

i

pijπi(t) (1.25)

The transition probabilities can be arranged in a matrix P , and the distribution of every state
at time t in a vector π(t), i.e.,

P =











p11 p12 . . . p1n
p21 p22 . . . p2n
...

. . .
. . .

...
pn1 pn2 . . . pnn











π(t)T =
[

π1(t) . . . πn(t)
]T

(1.26)

The matrix P enjoys the following properties:
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1. pij ≥ 0 ∀i, ∀j

2.
∑

j pij = 1 ∀i
A matrix satisfying this two properties is called stochastic. The overall distribution on the node
set at time t can be easily expressed thanks to this notation as:

π(t+ 1) = P Tπ(t) (1.27)

Definition 11 A distribution π̃ is called stationary for the Markov chain X with transitional
probability matrix P if it satisőes

π̃ = P T π̃ (1.28)

Definition 12 A chain X is said to be irreducible (or ergodic) if its transition probability matrix
P is irreducible, i.e.

n−1
∑

i=0

P i > 0

Definition 13 A chain with stationary distribution π is said to be reversible if:

π̃ipij = π̃jpji (1.29)

Markov chains are often represented on graphs.
Consider a graph G = (X , E) where E is the set of edges and X is the same countable set
of n elements of before, now X is considered to be the set of nodes which we will label as
X = {i = 1 . . . N}. The transpose of the transition probability matrix P is now thought as the
adjacency matrix of the graph, i.e., its entries are the weights assigned to the edges connecting
the nodes in X . An important constraint on the matrix P is that [P ]ij = 0 ∀i, j s.t (i, j) /∈ E .
An example of how a Markov chain can be described on graph is shown in őgure 1.3.

One of the task that can be performed using Markov chains over graphs is that of designing
a mixing dynamics, the problem is formally deőned below.
Problem (Design of mixing dynamics): Design a discrete-time stochastic map that con-
verges toward a target distribution π̃ on X while respecting the locality associated to the graph.
A common approach to solve the mixing problem is to converge toward the steady state distri-
bution π̃ ∈ P by iterating the linear stochastic discrete time map described by equation (1.27).
Observation: P must be irreducible to allow π(t) to converge to π for any π(0).

This approach is often referred in literature as random walk as we can imagine a pawn
following a certain path among all possible nodes of the graph. The pawn has a certain proba-
bility to move in a direction and this probability is described by the entries of the matrix P . At
the end of the transition the presence of the pawn in one of vertices of the graph is given by a
probability distribution.

We now analyze an example of how a Markov chains can be designed in order to converge
toward a uniform distribution over states in X .

Example 2 (Markov chain for uniform mixing)
We aim to sample from a target distribution π̃ on a őnite set X by running an irreducible Markov
chain on X with transition probability matrix P built so that π̃ is the stationary distribution. We
consider the set X = {1, 2, . . . , N} and the target distribution π̃= 1

n✶n.
We set:

pij = pji =
1

2
where j = i± 1 i, j ∈ X

p11 = pnn =
1

2

(1.30)
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The underlying graph is depicted below.

Figure 1.3: Example of Markov Chain

This chain can be proved to converge to the desired distribution over element of X (it derives
from the fact that the transition probability matrix is doubly stochastic and primitive).
The convergence can be proven to take order N2 steps.

1.3.2 Lifted Markov Chains

Lifted Markov chains (LMC) are a stochastic evolution which can be used to accelerate con-
vergence with respect to classical Markov chains (described in the previous section) to a target
distribution. Considering random walks, the effect of the lift is that of "adding a local mem-
ory" to the walker which keeps partial track of the previous nodes explored. The lifted Markov
chain can be obtained from a classical Markov chain by performing a certain operation on the
underlying graph of the MC.

We consider again the setting of the previous section, i.e., a classical Markov chain on a graph
G = (X , E).
The lifted Markov chain can be obtained starting from G as formally described below.
Definition 14 (Lifted graph) A graph Ĝ = (X̂ , Ê) on N̂ nodes is called a lift of G if there
exist a surjective map ζ : X̂ → X such that:

(i, j) ∈ Ê =⇒ (ζ(i), ζ(j)) ∈ E . (1.31)

We denote ζ−1 the map that takes as input a single node k ∈ X and outputs the set of nodes
j ∈ V̂ for which ζ(j) = k.
Intuitively, we may think of lifting as the action of adding a certain number of copies of each
node j ∈ X in the vertex set X̂ .
The lift is said to be regular if the set X̂j = {k | ζ−1(k) = j} has the same cardinality ∀j ∈ X .
In a regular lifted graph we associate to each element in X the same number of elements in X̂ .
This concept of regular lift will be extensively used in the next chapters. Example 3 clariőes how
a regular lift can be obtained from a simple graph.

Example 3 (Regular Lift)
Consider the graph G = (X , E) where X = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)}.
A regular lift of G is Ĝ = (X̂ , Ê) where X̂={1, 2, 3, 4, 5, 6}, we deőne the map ζ(k) = ((k −
1) mod 3) + 1, the map ζ−1 is such that ζ−1(i) = {i, i+ 3}.
A possible edge set is given by Ê = {(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)}.

Let x be a probability distribution over the lifted graph nodes which belongs to the set X̂ . The
lifted Markov chains dynamics is then obtained by iterating a stochastic (Markov) evolution on
the lifted graph:

x(t+ 1) = Ax(t) (1.32)

The matrix A may be thought as the adjacency matrix of Ĝ, and it must satisőes the locality
constraints on the graph Ĝ induced by the underlying G, i.e., Aj,l ̸= 0 only if (ζ(j), ζ(l)) is an
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edge of G.

If we are however interested in the distribution π(t) on X at time t, this can be obtained as the
marginal of x(t), deőned as πk =

∑

j∈ζ−1(k) xj .
The relation on the marginal can be hence represented in vector form as:

π = Cx (1.33)

where the entries of C can be either 0 or 1.

When considering two distinct approaches (e.g., Markov Chains vs. Lifted Markov Chains),
it is crucial to comprehend their dissimilarities and identify the speciőc constraints under which
it becomes meaningful to make a comparison between their performances. Consequently, some
constraint needs to be imposed on the lift evolution, and the improvement in mixing performance
critically depend on them. A complete description of mixing performances results can be found
in [3]. The full knowledge of how constraints impact mixing performances goes beyond the scopes
of this introductory section, hence, in the following we list only some among the ones discussed
in the above paper to highlight their importance and the possible differences between LMC and
MC.

1. Constraints on the initialization of the lift:
One must specify how to choose the initial state of the stochastic dynamic, we distinguish
two cases:

• it is possible to initialize the lifted dynamics by choosing the initial distribution on
the nodes and how to lift πk(0) onto a distribution over its lifted nodes. The designed
initialization has to be a linear map F : π(0) → x(0) such that:

CFπ(0) = π(0) ∀π(0) (1.34)

• there is no control on the initialization of the lift dynamics. The set of relevant initial
condition is the whole PN̂ .

2. Invariance of the target marginal For a Markov chain mixing is toward its invariant
distribution, hence Pπ̃ = π̃. For a lifted Markov chain, however, if the marginal converges
to π̃, in the transient Cx(t) = π̃ does not necessary imply that Cx(t + 1) = π̃. We thus
identify two cases:

• it is imposed Cx(t) = π̃ ∀t > 0 whenever Cx(0) = π̃ for all the x(0) belonging to the
set of initial conditions.

• it is allowed Cx(t) ̸= π̃ for some t ≥ 0 and some x(0) even when Cx(0) = π̃.

3. Reducibility of the lift A Markov chain P that globally converges to a unique stationary
distribution π̃ with πi > 0, ∀i, must be irreducible, however the same does not necessary
apply to the lifted Markov Chain described by A.
We discuss two cases:

• the lifted Markov chain A is allowed to be reducible.

• the lifted chain A must be irreducible.

We give now an example of lifted Markov chain that will be of paramount importance for the
rest of thesis work.
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Example 4 (The Diaconis Lift)
We consider the same Markov chain described in example 1 where for any given node one moves
with equal probability to either of the two neighbors, we recall that this chain is reversible.
The idea now is to build a non-reversible Markov Chain where we make the walker next step
depend on its last move. The lift is build by associating to each node k ∈ X of the original
graph two nodes (±, k) which indicates if the current position k has been reached from k+1 or k-1
respectively.
The lifted node set is X̂ = {(s, k) : k = 1, 2, . . . , N and s ∈ ±1}. The allowed edge set consists
of the edges Ê = {((s′, k ± 1 mod N), (s, k)) : k = 1, 2, . . . , N and s, s′ ∈ ±1}.
By exploiting the Kronecker product (described in appendix A.1) the lifted transition map can be
written as:

A =
∑

i,j∈±1

Qi,jeie
⊤
j ⊗ P (j) (1.35)

where e±1 are the columns vectors (1, 0)T and (0, 1)T , P (±1) is the clockwise and anticlockwise
rotation on the G. Q is a stochastic matrix whose entries are deőned as:

Q+1,+1 = Q−1,−1 = 1− 1/N and Q+1,−1 = Q−1,+1 = 1/N. (1.36)

Figure 1.4: Diaconis Lift

Thanks to this lift it is possible to achieve mixing in order N step (as formally proved in [4]),
which is really less than order N2 steps required by the corresponding Markov chain of example 2.

The mixing problem described in this section is a stabilization problem, in fact we would like
to study whether the system converges to the target distribution on the nodes of the graph.
However controllability described in the previous section concerns the capability of steering the
system to a desired state through an appropriate input signal, this problem can not be treated
in the context of Markov chains, as no input is employed. One can hence wonder which are the
links between the topics presented in this preliminary section.

Although we have described how the lift operation can be employed in the particular contest
of MC and LMC to achieve improvement in mixing performances this is a completely general
operation and can be applied to any graph. In the next chapter we will describe how to perform
lift on controlled network of homogeneous component, and in chapters 3 and 4 we prove both
analytically and through some simulations the advantages in terms of controllability we have by
using lifts.



Chapter 2

Lifts of Controlled Networks

In this chapter we borrow the idea of lift of graphs which was previously described and used in
the context of Lifted Markov Chains to explore whether it is possible to exploit it to improve
controllability performances of a general network fed with a certain number of inputs.
In particular we are interested in proving the advantages of this construction as the cardinality
of the network grows and the number of control nodes remains constant.
The idea is that thanks to the local memory add to the graph by the lift operation we will be
able to improve the "directionality" of the control input and reach easily the nodes which are
farther away from the point where the input is applied. We will describe a way to design an
homogeneous local lift for a network with certain connectivity patterns.

2.1 The underlying network

In this section we present a method to describe the underlying non-lifted network.
We consider a graph G = (V, E) where V = {1, ..., n} is the set of nodes and E is the set of edges.
Moreover we label with K the set of control nodes. The state of the network at time t ∈ N is
described by the vector x(t) =

[

x1(t) . . . xn(t)
]

, x(t) ∈ R
nN whose entry xi(t) ∈ R

N is the state
of node i ∈ V.

We may think to the network as composed by n agents each one of them with its internal
dynamics. The dynamics of the i-th agent can be described by the linear time-invariant discrete-
time system:

Σi :

{

xi(t+ 1) = Aixi(t) +Bv,ivi(t) +Bu,iui(t)

yi(t) = Cixi(t)
(2.1)

Where

• Ai ∈ R
N×N is the state matrix of the node;

• Bv,i ∈ R
N×q is the input matrix describing how the input vi(t) ∈ R

q from other nodes in
the networks enter the state of node i.

• Bu,i ∈ R
N×1 is the input matrix which describes how the input ui(t) ∈ R, from the external

environment enters node i.

• Ci ∈ R
p×N is the output matrix which describes how the state of the node inŕuences its

output yi ∈ R
p.

For sake of simplicity we consider all the agents of the network to be identical, with the dy-
namics described by the same matrices Ai, Bv,i, Bu,i, Ci. From now on these matrices are hence
considered to be independent on the speciőc agent i. We maintain the subscript i to highlight
that these matrices are associated to the evolution of a single agent. Thanks to this assumption
it is possible to describe the overall system as a network of diffusively coupled linear systems by
adapting to the discrete time case the framework introduced in [5] chapter 8.
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Exploiting the Kronecker product (introduced in appendix A.1) we are now able to connect the
different agents and describe the overall network system in an easy and compact way:

Σ :

{

x(t+ 1) = (In ⊗Ai)x(t) + (In ⊗Bv,i)v(t) +Buu(t)

y(t) = (In ⊗ Ci)x(t)
(2.2)

Where:
Bu = B̃u ⊗Bu,i Bu ∈ R

n×m, v(t) = Ly(t). (2.3)

The matrix L ∈ R
qn×np describes the connections between the different nodes of the network,

its entries are either 0 or 1. In particular let yc,j be the j-th output from node c ∈ V and vd,s
the s-th output from node d ∈ V , [L](q−1)d+s,(p−1)c+j = 1 iff yc,j is connected to vd,s.

The matrix B̃u ∈ R
n×m maps an input to a speciőc control node, hence its columns are canonical

vectors.
The topology of the network is completely described by the two matrices L an B̃u.
The overall state equation can be written exploiting the Kronecker product as:

x(t+ 1) =
[

In ⊗Ai + (In ⊗Bv,i)L(In ⊗ Ci)
]

x(t) +Buu(t) = Ax(t) +Buu(t). (2.4)

We impose the matrix A to be Schur stable, i.e.,

|γ| ≤ 1, ∀γ ∈ σ(A). (2.5)

Remark 2 Some observations are in order.

• The stability constrain can typically be satisőed by taking each of the interconnected sub-
systems sufficiently far from instability.

• The internal dynamics of each subsystem can conveniently be thought as a dynamics on
subgraph itself, where the matrix Ai is the adjacency matrix of the subgraph and Bv,i, Bu,i

the matrices describing how the input from other subgraphs or from the external environment
act on each of the nodes of the subsystem.

• We may alternatively want to order the overall state vector as

x(t) =
[

x11(t) . . . xn1(t) x12(t) . . . xn2(t) . . . x1n(t) . . . xnn(t)
]

where xij(t) is the j-th component of the state vector of subsystem i.
The dynamics can be written in state space form by exchanging the order of the two factors
in each of the Kronecker product of equation (2.2), (M ⊗ N → N ⊗ M) and by properly
changing the matrix L (typically this matrix can be written as Kronecker product and it is
sufficient to exchange the order of the factors):

Σ :

{

x(t+ 1) = (Ai ⊗ In)x(t) + (Bv,i ⊗ In)v(t) +Bu,i ⊗ B̃uu(t)

y(t) = (Ci ⊗ In)x(t)
(2.6)

The overall state equation can be written as:

x(t+ 1) =
[

Ai ⊗ In + (Bv,i ⊗ In)L(Ci ⊗ In)
]

x(t) +Bu,i ⊗ B̃uu(t) = Ax(t) +Buu(t) (2.7)

With this alternative formulation we are just changing the basis for the overall state space.
We will describe better in the next chapter with the help of an example the meaning of the
two alternative notations.

We give now an example of how it is possible to describe a system of interconnected homogeneous
components thanks to the introduced notation.
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Example 5 (Interconnected systems)
Consider a system on network composed by 2 subsystems, each of them with state xi(t) ∈ R

2, the
two are connected as shown in őgure 2.1. The structure of a single subsystem is depicted in őgure
2.2. Each subsystem is identical, we can see them as composed by two nodes (as described by
remark 2), both nodes have a self-loop, moreover the őrst node of the subsystem has an input from
(vi ∈ R) and an output to (yi ∈ R) other subsystems. The input from the external environment
is ui(t) ∈ R and it only enters the őst node of the subsystem.
The matrices describing each homogeneous subsystem with notation of equation (2.2) are hence:

Ai =

[

0.3 0
0.1 0.3

]

Bv,i =

[

0.2
0

]

Ci =
[

1 0
]

Bu,i =

[

1
0

]

(2.8)

The state vector of the overall system is x(t) =
[

x11(t) x12(t) x21(t) x22(t)
]

∈ R
4, the in-

put vector from other nodes is v(t) =
[

v1(t) v2(t)
]

∈ R
2 and the output vector is y(t) =

[

y1(t) y2(t)
]

∈ R
2.

We recall that the matrix L describes how the outputs from each subsystem are connected to inputs
of other subsystems. Since only y1(t) is connected to v2(t), the matrix L can be written as:

L =

[

0 0
1 0

]

(2.9)

The matrix B̃u reads, by considering the input from the external environment only enters the
őrst subsystems:

B̃u =

[

1
0

]

(2.10)

Figure 2.1: Example of interconnected system: overall system

Figure 2.2: Example of interconnected system: single subsystem
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Note that, with this deőnition of L, some inputs and outputs of the subsystems are not con-
nected to any other subsystem (e.g., y2 in not connected to v1). The matrices A and Bu of the
overall system can be written thanks to Kronecker products as deőned in equation (2.4):

A =
[

In ⊗Ai + (In ⊗Bv,i)L(In ⊗ Ci)
]

=









0.3 0 0 0
0.1 0.3 0 0
0.2 0 0.3 0
0 0 0.1 0.3









(2.11)

Bu = B̃u ⊗Bu,i =
[

1 0 0 0
]T

(2.12)

2.2 Building homogeneous lifts

We describe now how it is possible to lift the aforementioned underlying network.
We consider now a graph Ĝ = (V̂, Ê) where V̂ is the set of nodes and Ê the set of edges. This graph
will represent the "expanded" or lifted graph associated to the "simple" or original graph G.
By considering the same notation used in the deőnition of lifted graph in the preliminary section,
and the non expanded network represented by G of the previous section, we will now describe
how it is possible to perform a lift which is local and homogeneous (all the extend subsystems are
governed by the same dynamical equations), hence obtained by lifting each node of the network
in the same manner by expanding its internal state.
We design a map ζ : V̂ → V which associate to each node in V k nodes in V̂ = {1, 2 . . . , nk}.

Remark 3 If the nodes in V have state vector of dimension N, each of the kn nodes in V̂ needs
to have state of the same dimension.

For sake of simplicity we reorder the nodes in the set V̂ so that ζ−1(i) = {(i− 1)k + 1, . . . ik}.
We can hence think to the network as composed by n subsystems of k nodes and the state of the
network at time t ∈ N is described by the vector xe(t) =

[

xe,1 xe,2 . . . xe,n
]

∈ R
knN where

xe,i(t) ∈ R
kN is the state of the i-th subsystem, it groups all the states of the nodes associated

with node i ∈ V.
We consider now the subsystem:

Σe,i :

{

xe,i(t+ 1) = Ae,ixe,i(t) +Be,v,ivi(t) +Be,u,iui(t)

ye,i(t) = Ce,ixe,i(t)
(2.13)

Where

• Ae,i ∈ R
kN×kN is the state matrix of the subsystem;

• Be,v,i ∈ R
kN×q is the input matrix from other nodes;

• Be,u,i ∈ R
kN×1 is the input matrix from the external environment;

• Ce,i ∈ R
p×N is the output matrix of the subsystem.

By considering all the subsystems identical. i.e. Ae,i, Be,v,i, Be,u,i, Ce,i are independent on i, the
overall expanded system can be described by exploiting the usual Kronecker products as:

Σe :

{

xe(t+ 1) = (In ⊗Ae,i)xe(t) + (In ⊗Be,v,i)ve(t) +Be,uue(t)

ye(t) = (In ⊗ Ci)xe(t)
(2.14)

Where:
Be,u = B̃e,u ⊗Be,u,i ∈ R

knN×m ve(t) = Leye(t) (2.15)



2.2 Building homogeneous lifts 19

The matrix B̃e,u ∈ R
n×m maps an input to a speciőc subsystem, hence its columns are canonical

vectors.
The overall state equation reads:

xe(t+ 1) =
[

In ⊗Ae,i + (In ⊗Bv,i)L(In ⊗ Ce,i)
]

xe(t) +Be,uu(t) =

= Aexe(t) +Be,uue(t)
(2.16)

We take inspiration from Lifted Markov Chains, the state matrix Ae needs to respect the locality
constraints on Ĝ induced by the underlying graph G. In other words if there was an edge between
nodes i, j ∈ V on the original graph, then there must exist a connection between subsystems Σe,i

and subsystem Σe,j .
This constraint can be satisőed by imposing ye,i ∈ R

p (as yi), ve,i ∈ R
q (as vi) and by choosing

L = Le.
As for the simple network we impose the matrix Ae (and hence the overall system) to be Schur
stable.

Remark 4 The state matrix of the expanded subsystem describes both the internal dynamics
of each of the k nodes composing the subsystem and how these nodes are connected each other.
The matrix Be,v,i and Be,u,i instead describe how the inputs from other subsystems and from the
external environment enter the nodes composing the subsystem. If the node in the simple system
was connected to a certain input/output we are not obliged to connect each node composing the
expanded subsystem to the corresponding input/output, however in order to respect the locality
constraints on the lifted network there must exist at least one node connected to that input/output.

Remark 5 If the state of each node in the simple system has dimension N > 1 when perform-
ing lift we associate to this node a set of k nodes in the lifted graph each of them with state of
dimension N (as described by the remark 3). Consequently, a decision needs to be made regard-
ing the speciőc internal dynamics to be applied to these nodes. The most logical approach is to
enforce them to adopt the identical internal dynamics as the original non-lifted node. By making
this selection of the internal dynamics, there still remains some ŕexibility in determining how
these nodes are interconnected with the other k − 1 which are part of the same subsystem on the
lifted network, with other subsystems and with the external environment (assuming the locality
constraints are respected).

Now we would like to "simulate" the marginalization operation that in Lifted Markov chains
was used to get the distribution over the underlying graph from the distribution over the lifted
graph, we are hence searching for a local linear operation which allow us to collapse the state of
each expanded subsystem to the state of the corresponding simple system. The state of of the
underlying network generated by the lifted dynamics will hence be:

xI(t) = C̃xe(t), (2.17)

where C̃ is the matrix describing the collapsing map. In particular, in the following, we will
always take the matrix C̃ so that xI,i(t) =

∑k
j=1 xe,ij(t), ∀i, where xe,ij(t) is the state of the

j-th node associated to the i-th subsystem of the simple network, hence:

C̃ = In ⊗ ✶
T
k ⊗ IN . (2.18)

x(t) may be visualized as the vector aggregation of an extra output from each subsystem whose
relation with xe(t) is described by the entries of C̃.
It is also useful to deőne the local collapsing map expressing in matrix form the equation
xI,i(t) =

∑k
j=1 xe,ij(t):

xI,i(t) = C̃e,ixe,i(t) = (✶Tk ⊗ IN )xe,i(t). (2.19)
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We will see in the next two chapters that a simple way to perform lift in order to add local
memory to the evolution whenever each subsystem has the same number of inputs from other
units and outputs is to introduce as many copies of node i ∈ V as the number of inputs from
neighboring nodes. Each of these copies is then connected to a single input and a single output
of the subsystem. Moreover we allow the possibility to create some interconnections between the
copies of the same node (the matrix Ae does not need to be block diagonal).

Remark 6 Similarly to remark 2 we may want to adopt a different notation and order the state
vector of the overall system as:

xe(t) =
[

x111(t) . . . xn11(t) x121(t) . . . xn21(t) . . . x1nk(t) . . . xnnk(t),
]

where xijl(t) is the j-th component of the state vector of the l-th node associated to the simple
subsystem i.
In this case the overall system can be written by exchanging the order of Kronecker products and
by properly changing matrix L and B̃u as:

Σe :

{

xe(t+ 1) = (Ae,i ⊗ In)xe(t) + (Be,v,i ⊗ In)ve(t) +Be,u,i ⊗ B̃e,uue(t)

ye(t) = (Ce,i ⊗ In)xe(t)
(2.20)

The overall state equation reads:

xe(t+ 1) =
[

Ae,i ⊗ In + (Bv,i ⊗ In)L(Ce,i ⊗ In)
]

xe(t) +Be,u,i ⊗ B̃e,uue(t)u(t) =

= Aexe(t) +Be,uue(t).
(2.21)

2.3 Performance comparison and constraints on the allowed dy-

namics

In this section we describe how it is possible to perform a comparison between the energy needed
to control the state x(t) of the underlying network through lifted dynamics or nominal dynamics.
The approach used to control the simple network through the lift is to feed the expanded system
with a control input u and let it evolve according to the dynamics described in state space form
in equation (2.14). The state xI(t) induced by the lift is then given by equation (2.17).
As said before it is possible to consider xI(t) as an extra output of the expanded system, what we
really want to control is this output. Therefore, the controllability deőnition which őts with the
required task is output controllability. The metrics identiőed for energy related controllability
analysis need to be applied not directly to the Gramian of the expanded system but to the output
controllability Gramian. In particular once computed the controllability Gramian (We) of the
expanded system, it is necessary to consider the output controllability Gramian related to xI(t).
Hence the correct Gramian to be used is:

WO
e = C̃WeC̃

T . (2.22)

In particular, since we are interested in controlling asymptotically the system’s state to the
target one we need to consider inőnite horizon controllability Gramians:

W =
∞
∑

k=0

AkBuB
T
u (A

k)T WO
e = C̃

∞
∑

k=0

Ak
eBe,uB

T
e,u(A

k
e)

T C̃T . (2.23)

We will then compare the two quantities λmin(W) and λmin(WO
e ). The expanded dynamics is

convenient in term of control energy if

λmin(W) < λmin(WO
e ) (2.24)
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We will consider also the two metrics trace(W−1) and trace((WO
e )−1) in this case the expanded

dynamics is convenient in term of control energy if

trace(W−1) > trace((WO
e )−1) (2.25)

As we are interested in assessing the advantages of the lifted network when the number of nodes
grows, we will not directly compare the two metrics applied to the systems but their rate of
growth. The latter are also called asymptotic rates. In the next chapters we will describe
how to conduct the comparison both analytically and numerically (by performing simulations).
Before proceeding with the computation of the metrics we need to identify some constraints
which makes the analysis signiőcant. We would like our lift to "act passively", as the advantages
needs to be given by the structure of the lift and not by giving the system extra control power.
We hence impose the following constraints:

• number of control nodes and signals: the expanded system needs to have the same
number of input signals of the underlying graph.

• locality of the control nodes We need to respect the locality induced by the underlying
graph, hence the i-th expanded subsystem is fed with an input iff the i-th simple system
has an input (from the external environment).

• non amplifying behaviour: the controllability metrics we will consider are related with
the energy of the control signals that enter the network. If the number of control nodes
remains constant, as imposed by the őrst constraint, a network which is more difficult to
control requires a control signal with higher control energy. If we allow subsystems in the
lifted network to amplify signals more than what the related simple subsystem does for
sure the expanded system would require signals with less energy.

We need now to understand how these constraints can be practically included in the model.
The őrst two constraints can be embedded by imposing in equations (2.2) and (2.14):

B̃e,u = B̃u (2.26)

As far as the last constraint is concerned, we would like that if the node and the expanded node
are fed with the same input signals, either from the external environment or from other nodes,
each of these signals is not ampliőed in terms of the ℓ2-norm by the lifted node dynamics more
than what the simple node dynamics does.
Recalling that each lifted subsystem and simple one have the same number of inputs, let xI,i,j,k(t)
be the k-th component of the induced state by the i-th subsystem when we consider only the j-th
input acting on it, (all the other are considered to be 0) and let xi,j,k(t) be the k-th component
of the state of the simple system when only the j-th input act on it. What want to impose is:

||xI,i,j,k(t)||22 ≤ ||xi,j,k(t)||22 ∀j, ∀i, ∀k (2.27)

When the inputs are step signals this constraint can be achieved at least asymptotically by
comparing the asymptotic gains of the two subsystems considering as output of the expanded
system the induced state and of the simple system its state. From now on we will always assume
step signals as input.
The open loop transfer function of interest for the simple system can be computed using the
notation of equation (2.1) as:

Wi(z) = (zIn −Ai)
−1
[

Bv,i Bu,i

]

. (2.28)

The asymptotic gain is given by:

Wi(1) = lim
z→1

Wi(z) = (In −Ai)
−1
[

Bv,i Bu,i

]

. (2.29)
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The open loop transfer function of the expanded system considering as output the induced
state can be computed with respect to the notation of equation (2.13) as:

We,i(z) = C̃e,i(zIn −Ae,i)
−1
[

Be,v,i Be,u,i

]

= C̃e,i
adj(zIn −Ae,i)

det(zIn −Ae,i)

[

Be,v,i Be,u,i

]

. (2.30)

The asymptotic gain is given by:

We,i(1) = lim
z→1

We,i(z) = C̃e,i
adj(In −Ae,i)

det(In −Ae,i)

[

Be,v,i Be,u,i

]

. (2.31)

Now we can express the condition on the asymptotic gain in a compact form, we impose:

|We,i(1)| ≤ |Wi(1)|, (2.32)

where |M | is the matrix whose entry |M |ij is the absolute values of Mij and M ≤ N means that
Mij ≤ Nij , ∀i, j.
Another constraint that can be considered is on the stability of the expanded and simple systems.
It is possible to require each expanded subsystem to be farther or at least as far as from instability
than the corresponding simple node. To do so we impose the spectral radius of the matrix Ae,i

(matrix which describes the internal dynamics of the expanded subsystems) to be smaller than
the spectral radius of Ai. Namely, let ρ(M) = max{|γ|, γ ∈ σ(M)}, we impose:

ρ(Ae,i) ≤ ρ(Ai). (2.33)

If the overall network simple network is stable, by imposing the constraint on the spectral radius
of expanded subsystems the lifted network should be stable (the relation with the stability of the
overall network is highlighted in some simulations in the next two chapters). This constraint is
also closely related with the amplifying behaviour of the system and in some cases implies that
the condition in equation (2.27) is satisőed not only asymptotically but also in the transient. The
relation is formally proved in the next chapters for the speciőc cases of line and grid networks. In
particular, we will always impose both the constraints on asymptotic gain and spectral radius and
we will prove that in all the cases we will consider for analytical computations and simulations,
the constraint on the spectral radius is more restrictive than the constraint on the asymptotic
gain, hence whenever we satisfy the former, the latter is satisőed.



Chapter 3

The Line Network Case

In this chapter we apply the methodologies developed in the preceding chapter to one of the
most well-studied network topologies: the line network.

3.1 Model description for simple and lifted lines

3.1.1 Non-lifted network and control placement

In this section we describe the model of simple line network we will use in the rest of the thesis.
We consider the directed line of n nodes depicted in őgure 3.1. To the network it is associated
a graph G = (V, E) where V = {i = 1, ..., n} is the set of nodes and E is the set of edges.
The state of the network is represented by the vector x(t) ∈ R

n whose entry xi(t) ∈ R is the
state of node i ∈ V at time t ∈ N; for sake of simplicity, we are hence considering each node to
have scalar state, with the notation of previous chapter the dimension of the internal state of
each node of the network is N = 1.

We describe now in detail the topology of a general bidirectional line network:

• Each node i ∈ V, except the őrst and the last one, has two outgoing edges one connecting
i with i+ 1 and the other one connecting i with i− 1, the weights assigned to these edges
are respectively br,i+1 and bl,i−1. The incoming edges from node i + 1 and from i − 1 are
labeled as bl,i and br,i.

• The first node has only a single outgoing edge to node 2 and an incoming edge from node
2.

• The last node has only an outgoing edge to n− 1 and an incoming edge from n− 1.

• Each node i ∈ V has a self loop with weight λi.

• The weight associated to the input from the external environment to node i is labeled as
bu,i.

Figure 3.1: Simple line network
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We now focus on the more convenient description (for our purposes) of the network as an
interconnection of subsystems made of single nodes. The prototype single node system we will
consider is depicted in őgure 3.2. Each node is considered to have the same number of inputs
and outputs as the number of incoming and outgoing edges described above. We label the input
from node i− 1 as vr,i(t) and the input from node i+ 1 as vl,i(t).
The weight associated to the edge (j, i) ∈ E is assigned to the corresponding input of node
i (i.e., vr,i(t) and vl,i(t) affect the system with weights respectively br,i and bl,i), the outputs
are considered to have unit weights, i.e. the outputs are exactly equal to the node state. Let

vi(t) =
[

vl,i(t) vr,i(t)
]T

be the vector whose entries are the inputs from other nodes as described

above, let ui(t) ∈ R be the input from the external environment, yi(t) =
[

yl,i(t) yr,i(t)
]T

the
vector of the outputs; the system can be written in state space form as:

Σi =

{

xi(t+ 1) = Aixi(t) +Bv,ivi(t) + bu,iui(t)

yi(t) = Cixi(t)
(3.1)

The matrices representing the system are:

Ai = λi ∈ R, Bv,i =
[

bl,i br,i
]

∈ R
1×2, bu,i ∈ R, Ci = ✶2 ∈ R

2×1. (3.2)

In the upcoming section of this chapter, we will discuss the constraint on the lifted dynamics, to
this aim it is convenient to compute the open loop transfer function of the single node system
considering its state as output:

Wi(z) = (z −Ai)
−1Bi =

Bi

s− λi
=
[

bl,i
z−λi

br,i
z−λi

bu,i
z−λi

.
]

(3.3)

The asymptotic gain is given by:

Ki = lim
z→1

Wi(z) =
[

bl,i
1−λi

br,i
1−λi

bu,i
1−λi

.
]

(3.4)

Figure 3.2: Simple line subsystem

By simplifying the model to assume all agents are identical (as outlined in the preceding
chapter), we can leverage Kronecker products to formulate the state space equation for the
entire interconnected system according to equation (2.6).
Recall that to make all the subsystems identical we need to impose in equation (3.2):

bl,i = bl, br,i = br, bu,i = bu, λi = λ, ∀i. (3.5)

The overall system equation in state space form reads:

Σ :

{

x(t+ 1) = (Ai ⊗ In)x(t) + (Bv,i ⊗ In)v(t) +Buu(t)

y(t) = (Ci ⊗ In)x(t)
(3.6)
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where:
Bu = buB̃u, Bu ∈ R

n×m, v(t) = Ly(t). (3.7)

In order to write the matrix L which describes the interconnections between different subsys-
tems it is convenient to introduce the shift-to-left and shift-to-right matrices of dimension k,
respectively Sk,l ∈ R

k×k and Sk,r ∈ R
k×k, deőned as:

[Sk,l]ij = δi,j+1, [Sk,r]ij = δi+1,j , δij =

{

1 if i = j

0 if i ̸= j
(3.8)

Thanks to the introduced notions the matrix L reads:

L = e1,2e
T
1,2 ⊗ Sn,l + e2,2e

T
2,2 ⊗ Sn,r (3.9)

Up to now, we’ve presented a general model of a controlled line network that enables us to provide
a distinct input from the external environment to each node. However, in the subsequent sections
of this chapter, our focus shifts towards examining how the process of lifting could enhance the
controllability characteristics of the entire system, in particular when only few control inputs are
available.
With this in mind we choose to feed the network with a single input u(t) ∈ R to node 1, the
matrix B̃u should hence be selected in the following manner:

B̃u = e1,n, (3.10)

where e1,n is the őrst canonical vector of dimension n.

Remark 7 The chosen matrix B̃u implies the control inputs of nodes j ∈ {2, . . . , n} to be always
disabled even thought they are present in the single system model. This modelling choice is
necessary to guarantee the homogeneity of all the subsystems.

The explicit expression of the vector v(t) in function of L allows us to formulate the comprehensive
state equation for the simple network as follows:

x(t+ 1) =
[

Ai ⊗ In + (Bv,i ⊗ In)L(Ci ⊗ In)
]

x(t) +Buu(t) = Ax(t) +Bu(t) (3.11)

To conclude this subsection it is convenient to explicitly write the matrices A and Bu to highlight
the structure of the system and the result of Kronecker product operations:

A =

















λ bl 0 . . . 0
br λ bl . . . 0
... br

. . .
. . .

...

0 0
. . .

. . . bl
0 0 0 br λ

















, Bu =















bu
0
0
...
0















. (3.12)

In the next sections we will often consider the symmetric conőguration of the bidirectional line
network which can be obtained by setting the parameters in the following way:

bl = br = b. (3.13)

With this choice of the parameters the state equation of the system can be written according to
equation (3.11) as:

x(t+ 1) = Ax(t) +Bu(t) =

















λ b 0 . . . 0
b λ b . . . 0
... b

. . .
. . .

...

0 0
. . .

. . . b
0 0 0 b λ

















x(t) +















bu
0
0
...
0















u(t). (3.14)
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3.1.2 The lifted line network

We will now delve into the process of performing the lift operation for the line network. As
previously mentioned, lifting involves expanding the internal state of each node by introducing
k additional vertices within the lifted graph for every node in the original, non-lifted graph.
Consequently, to each node in the non-lifted graph it is associated a subsystem composed of
k vertices in the lifted one. Through the lift operation, our objective is to enrich the internal
dynamics of every node of the non-lifted network by introducing a localized memory of the
direction from which the input is received. Our goal is to exploit the memory to transmit this
input in the appropriate direction (possibly in the opposite direction to its point of origin),
facilitating its transfer to distant nodes.

In the speciőc scenario of the line network, each node (excluding nodes 1 and n) can receive
an input from either its left neighbor or its right neighbor. Consequently, the input has the
potential to propagate in both the left and right directions. It is important for us to retain the
information about the direction from which the control input is received.
To incorporate this information in our system, we can envision each subsystem in the lifted
network as consisting of two nodes. The őrst node retains memory of the leftward direction,
thus it receives input from the right neighbor and transmits it to the left neighbor. Conversely,
the second node receives input from the left neighbor and propagates it to the right neighbor.
Drawing inspiration from the Diaconis lift explained in the preliminary section, we also allow for
the exchange of information between the two nodes within the same subsystem.

A different and more practical approach to understand the impact of this speciőc lift is to
think the lifted network as composed by two distinct lines: the őrst line involves solely the nodes
within each subsystem that transmit inputs to the left, thus constituting a left-oriented network;
the second line includes exclusively the nodes within each subsystem that propagate inputs to
the right.

In őgure 3.3 it is depicted the lifted network we would like to build. The nodes on the lower
side of the image constitute the right-oriented line, whereas the nodes on the upper part of the
image are in the left-oriented line. The dotted lines highlight each subsystem composed by two
nodes associated to a single node of the original network.

Figure 3.3: Lifted line network

Once explained the idea we have in mind we proceed to describe the lifted network according
to the model formalized in the previous chapter.
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We consider the lifted graph Ĝ = (V̂, Ê) describing the network in őgure 3.3 where V̂ is the
set of nodes and Ê the set of edges. We design a map ζ : V̂ 7→ V which associates to each node
in V 2 nodes in V̂ = {1, 2 . . . , 2n}. We reorder the nodes in the set V̂ so that ζ−1(i) = {i, n+ i}.

Remark 8 We have deőned a different map ζ−1 with respect to the one presented in the general
procedure for the lift since we want to exploit the alternative formulation of the overall expanded
system.

We can hence think to the lifted network as composed by n subsystems of 2 nodes, the state of
the network at time t ∈ N is described by the vector xe(t) =

[

xe,1 xe,2 . . . xe,n
]

∈ R
2n where

xe,i(t) =
[

xe,i,l(t) xe,i,r(t)
]

, xe,i(t) ∈ R
2, is the state of the i-th subsystem, i ∈ {1, ..., n}.

The structure of each subsystem is depicted in őgure 3.4.
We label the external input as ue,i(t) ∈ R and we consider the same input to enter nodes i and

n+ i with weights respectively b̂u,i,l and b̂u,i,r.

Let ve,i(t) =
[

ve,i,l(t) ve,i,r(t)
]T

be the vector whose entries are the inputs from neighboring

subsystems, b̂i,l and b̂e,i,r are the weights assigned respectively to inputs ve,i,l(t) and ve,i,r(t).

Let ye,i(t) =
[

ye,i,l(t) ye,i,r(t)
]T

be the vector of the outputs from the subsystem, ye,i,l(t) is the
the output from the őrst node, ye,i,r(t) is the output from the second node. The outputs are
exactly equal to the corresponding node state, i.e., ye,i,r(t) = xe,i,r(t) and ye,i,l(t) = xe,i,l(t), ∀t.
We allow each node to have a self-loop, respectively the őrst and second nodes have self-loops
λ̂l,i and λ̂r,i. Furthermore, the őrst node is connected to the second with weight ar,i and the
second to the őrst with weight al,i.

Using the formulation of equation (2.13) the coupled subsystem is described by the system
of equation:

Σe,i :

{

xe,i(t+ 1) = Ae,ixe,i(t) +Be,v,ivi(t) +Be,u,iui(t)

ye,i(t) = Ce,ixe,i(t)
(3.15)

where:

Ae,i =

[

λ̂l,i âl,i
âr,i λ̂r,i

]

, Be,v,i =

[

b̂l,i 0

0 b̂r,i

]

, Be,u,i =

[

b̂u,l,i
b̂u,r,i

]

. Ce,i = I2 (3.16)

Figure 3.4: Lifted line subsystem
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Observation: For the following computations it is useful to notice that the eigenvalues of
Ae are:

γ1 =
λl,i

2
+

λr,i

2
+

((λl,i − λr,i)
2 + 4al,iar,i)

1/2

2

γ2 =
λl,i

2
+

λr,i

2
− ((λl,i − λr,i)

2 + 4al,iar,i)
1/2

2

(3.17)

We now consider the whole system as the interconnection of single coupled systems.

We deőne the output vector for the overall system as

ye(t) =
[

ye,1,l(t) ye,2,l(t) . . . ye,n,l(t) ye,1,r(t) . . . ye,n,r(t)
]T

.

By considering all the subsystems Σe,i identical and by using the alternative notation in equation
(2.20), it is possible to write the overall system state equation. To make all the subsystems
identical we need to impose the matrices in equation (3.16) to be independent on i, hence we set
the parameters:

λ̂l,i = λ̂l, λ̂r,i = λ̂r, âl,i = âl, b̂l,i = b̂l, b̂r,i = b̂r, b̂u,r,i = b̂u,r, b̂u,l,i = b̂u,l, ∀i.
(3.18)

The overall state equation for the expanded system can be written as:

Σe :

{

xe(t+ 1) = (Ae,i ⊗ In)xe(t) + (Be,v,i ⊗ In)ve(t) +Be,u,i ⊗ B̃e,uue(t)

ye(t) = (Ce,i ⊗ In)xe(t)
(3.19)

In order to satisfy the locality constraints typical of lift operation we impose:

B̃e,u = B̃u, Le = L. (3.20)

Coherently with the choices made for the simple system we are hence applying the external
control input u(t) ∈ R only to the őrst subsystem. The overall state equation can be written
according to equation (2.21) as:

xe(t+ 1) =
[

Ae,i ⊗ In + (Bv,i ⊗ In)L(Ce,i ⊗ In)
]

xe(t) +Be,u,i ⊗ B̃e,uue(t) =

= Aexe(t) +Be,uue(t).
(3.21)

It is useful to write explicitly the matrices Ae and Be:

Ae =

[

Ae,ll Ae,lr

Ae,rl Ae,rr

]

=

































λ̂l b̂l 0 . . . âl 0 . . . 0

0 λ̂l
. . .

... 0 âl
. . .

...
...

. . .
. . . b̂l

...
. . .

. . . 0

0 . . . 0 λ̂l 0 . . . 0 âl
âr 0 . . . 0 λ̂r 0 . . . 0

0 âr
. . .

... b̂r
. . .

. . .
...

...
. . .

. . . 0
...

. . .
. . . 0

0 . . . 0 âr 0 . . . b̂r λ̂r

































, Be =









b̂u,l
0

b̂u,r
0









, (3.22)

where 0 is a column vector of all zeros of dimension n− 1.
We better clarify the structure of the matrix Ae:

• the matrix Ae,ll ∈ R
n×n has λ̂l on the diagonal and b̂l on the upper diagonal;

• Ae,lr ∈ R
n×n has âl on the diagonal;

• Ae,rl ∈ R
n×n has âr on the diagonal;
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• Ae,rr ∈ R
n×n has λ̂r on the diagonal and b̂r on the lower diagonal.

A special conőguration which will be considered in the following sections for numerical simula-
tions and proofs is the symmetric one. It can be obtained by setting the variables describing the
internal dynamics of each lifted subsystem in the following way:

b̂l = b̂r = b̂, âl = âr = â, λ̂l = λ̂r = λ, b̂u,l = b̂u,r = b̂u (3.23)

The overall state equation for the symmetric lifted line network can be written according to
(2.16) as:

xe(t+ 1) = Aexe(t) +Be,uue(t) =

[

Ae,ll Ae,lr

Ae,rl Ae,rr

]

xe(t) +









b̂u
0

b̂u
0









ue(t), (3.24)

where:

Ae,ll =

















λ̂ b̂ 0

λ̂ b̂
. . .

. . .

λ̂ b̂

0 λ̂

















, Ae,lr = Ae,rl =















â 0
â

. . .

â
0 â















, Ae,rr =

















λ̂ 0

b̂ λ̂
. . .

. . .

b̂ λ̂

0 b̂ λ̂

















.

(3.25)

Remark 9 We have now a practical example to explain the differences between the two alterna-
tive descriptions of the system obtained by exchanging factors in Kronecker products. We compare
the two equations for the expanded system (2.14) and (2.20). Using the őrst description by look-
ing to the matrix Ae of the overall system the matrices on the diagonal of dimension k reveal the
internal dynamics between the nodes of the same expanded subsystem whereas the other entries
express the interconnection between different subsystems. The focus is hence on the description
of the interaction between different subsystems composed of two nodes. Using the second notation
instead the matrices on the diagonal of Ae of dimension n describe the internal dynamics between
the nodes within the same copy of the line network (the left oriented one and right oriented one),
whereas the off diagonal matrices the interconnections between the two lines. The focus this time
is hence on the representation of the interactions between the two lines.

It remains to describe how to perform the marginalization operation to collapse the state of the
lifted network to that one of the simple network.
The state of node i of the underlying graph G induced by the lifted dynamics will be:

xI(t) = C̃xe(t). (3.26)

We take the matrix C̃ so that xI,i(t) =
∑2

j=1 xe,ij(t), hence:

C̃ = ✶
T
k ⊗ IN ⊗ In =

[

In In
]

. (3.27)

We deőne also the local collapsing map:

C̃e,i =
[

1 1
]

. (3.28)

As done before for the simple node system, due to the constraints discussion we will perform in
the next section, it is convenient to compute the transfer function from the inputs of the single
expanded subsystem to the corresponding collapsed state:

We,i(z) = C̃e,i(zIn −Ae,i)
−1
[

Be,v,i Be,u,i

]

= C̃e,i
adj(zIn −Ae,i)

det(zIn −Ae,i)

[

Be,v,i Be,u,i

]

=

= C̃e,i

[

b̂l,i(z − λ̂r,i) âl,ib̂r,i (z − λ̂r,i)b̂u,l,i + âl,ib̂u,r,i
âr,ib̂l,i (z − λ̂l,i)b̂r,i âr,ib̂u,l,i + (z − λ̂l,i)b̂u,r,i

]

λ̂l,iλ̂r,i − âl,iâr,i − (λ̂l,i + λ̂r,i)z + z2
=

(3.29)
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=

[

b̂l,i(z − λ̂r,i) + âr,ib̂l,i âl,ib̂r,i + (z − λ̂l,i)b̂r,i (z − λ̂r,i)b̂u,l,i + âl,ib̂u,r,i + âr,ib̂u,l,i + (z − λ̂l,i)b̂u,r,i
]

λ̂l,iλ̂r,i − âl,iâr,i − (λ̂l,i + λ̂r,i)z + z2
(3.30)

The asymptotic gain is given by:

K = lim
z→1

We,i(z) = (3.31)

=

[

b̂l,i(1− λ̂r,i) + âr,ib̂l,i âl,ib̂r,i + (1− λ̂l,i)b̂r,i (1− λ̂r,i)b̂u,l,i + âl,ib̂u,r,i + âr,ib̂u,l,i + (1− λ̂l,i)b̂u,r,i
]

λ̂l,iλ̂r,i − âl,iâr,i − (λ̂l,i + λ̂r,i) + 1
(3.32)

3.2 Discussion of the constraints

In this section we describe in detail how the constraints for the allowed dynamics identiőed in
the previous chapter affects the proposed lift for the line network.
The őrst constraint we need to satisfy is on the number of control nodes and signals. The
lifted network needs to have the same number of control inputs of the underlying non-expanded
counterpart. Indeed the proposed lift has been thought already by considering this constraint,
in fact since the non-expanded network has only one input signal we have considered the lifted
network to have just one input.
The second constraint regards the locality of the control nodes and we have identiőed that
a necessary condition for this constraint to be satisőed is to impose the matrix B̃u to be equal
to the matrix B̃e,u, this constraint has already been applied in the formulation of the lifted line.
In particular, since the control input on the non-expanded system enters only the őrst node, we
have imposed the control input of the lifted network to enter the őrst subsystem (which becomes
the input subsystem). Since no constraints are placed on how the input signal enters the node
of the control subsystem we have enabled the input signal to enter each of the two nodes with a
possibly different ampliőcation constant.
Finally an additional constraint which was already outlined in the preliminary section was to
respect the locality of the non-expanded graph and this has been granted by choosing the matrix
Le of the overall expanded system to be equal to L.
Up to now we have not considered any constraints on the internal dynamics of the lifted subsystem
hence we can choose each of the variables deőned in equation (3.18) at our discretion. Of
course we still need to consider the last constraint deőned in the previous chapter, i.e., the non
amplifying behaviour of lifted subsystems.
Each entry of the asymptotic gain matrix We,i for the expanded subsystem needs to have modulus
smaller than the corresponding entry of the asymptotic gain matrix Wi for the simple subsystem
i.e.:

|We,i(1)| ≤ |Wi(1)|. (3.33)

We will consider also the constraint on the stability of subsystems, each eigenvalue of the matrix
Ae,i needs to have modulus smaller than the maximum eigenvalues of the matrix Ai which can
be translated in terms of the spectral radius as:

ρ(Ae,i) ≤ ρ(Ai). (3.34)

To discuss these constraints we simplify the notation and reduce both the simple and lifted
network to the symmetric case. In the rest of this chapter we will hence always consider symmetric
networks. This choice is not only to reduce the degrees of freedom in the proposed model and ease
computations but it is due to the idea that in these networks the control input spreads similarly
in all the directions. By operating the lift we modify the internal dynamics of the nodes such
that the input signal propagates faster in one direction to reach the farther subsystems. In the
symmetric case hence we expect the lifted network to perform better in terms of control energy
than the simple one.
With the symmetric assumption on the parameter choice the transfer function for the lifted
system from the inputs to the collapsed state reads:

We,i(z) =
[ b̂

z − λ̂− â

b̂

z − λ̂− â

2b̂u

z − λ̂− â

]

, (3.35)
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and the asymptotic gain is:

We,i(1) =
[ b̂

1− λ̂− â

b̂

1− λ̂− â

2b̂u

1− λ̂− â

]

. (3.36)

Moreover the eigenvalues of Ae,i are λ̂+ â and λ̂− â.
The transfer function for the simple system from the inputs to the state reads instead:

Wi =
[

b
z−λ

b
z−λ

bu
z−λ

]

, (3.37)

and the asymptotic gain is:

Wi(1) =
[ b

1− λ

b

1− λ

bu
1− λ

]

. (3.38)

The following proposition establishes a relation between the constraints on the modulus of
eigenvalues and on the asymptotic gain and gives us a method to choose the parameters such
that both the constraints are satisőed.
Proposition 2 Consider the symmetric line network with positive self loops described in equation
(3.14) and the symmetric lifted line network of equation (3.24), where we set b̂ = b. Let γ̂j,
j ∈ {1, 2} be the eigenvalues of Ae,i and λ be the positive self loop of the simple network (i.e. the

unique eigenvalue of Ai) where we impose λ < 1, |γj | < 1, ∀j. Let b̂u = bu
2 then:

|γj | ≤ |λ| ∀j =⇒ |We,i(1)| ≤ |Wi(1)|. (3.39)

Proof: We consider the two expressions of the asymptotic gains for the symmetric networks in
equation (3.36) and (3.38). Let γ1=λ̂+ â then

|We,i(1)| ≤ |Wi(1)| ⇐⇒
∣

∣

∣

b

1− γ̂1

∣

∣

∣
≤
∣

∣

∣

b

1− λ

∣

∣

∣
∨
∣

∣

∣

2b̂u
1− γ̂1

∣

∣

∣
≤
∣

∣

∣

bu
1− λ

∣

∣

∣

⇐⇒ 1

|1− γ̂1|
≤ 1

|1− λ|
⇐⇒ |1− γ1| ≥ |1− λ|.

(3.40)

Since |γ1| < 1 and |λ| < 1 then:

1

|1− γ̂1|
≤ 1

|1− λ| ⇐⇒ 1− γ1 ≥ 1− λ ⇐⇒ γ1 ≤ λ. (3.41)

Hence if we impose |γj | ≤ |λ|, ∀j then for sure γ1 ≤ λ and hence |We,i(1)| ≤ |Wi(1)|. ■

If we choose the weights according to the previous proposition then for sure the constraint on
the asymptotic gain is veriőed, moreover since the transfer function in equations (3.35) and (3.37)
are of őrst order systems if we choose positive self-loops in the simple network the non-amplifying
behaviour holds also in the transient (we are consider step signals as input). However, we are
requiring something more, i.e., the expanded system to be farther away from instability than the
simple system. This is a logical requirement to guarantee the stability of the expanded network.
If we impose the simple network to be stable and we apply the constraints on the eigenvalues to
each subsystem of the lifted network we expect the overall expanded network to be stable. In
the section about simulations we verify experimentally that the claim is correct.
In the next sections we will always choose the parameters according to the above proposition,
not only to satisfy the constraints but because by choosing b̂ = b we do not change how different
nodes/subsystems interact with each other, moreover by setting b̂u = bu

2 we equally split the
input between the two nodes composing the expanded subsystem.
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3.3 Analytic derivation of metric values

In the preceding section we have identiőed the set of constraints we need to impose to the lifted
network to make our comparison meaningful. We are now ready to compute analytically the
metrics in order to compare the performance achieved exploiting the lifted dynamics. For the
analytic computation of the metrics we will again constrain to the speciőc case of symmetric
networks. In this section we will only consider the analytic computation of the metric trace of
the inverse of the Gramian for the two systems as the metric minimum eigenvalue can be proved
to be closely related to it as the dimension of the network grows. We recall that the metric of
interest requires the knowledge of the controllability Gramian. We need hence to compute the
controllability Gramian W for the simple network and the output controllability Gramian WO

e

for the expanded network. With reference to the notation of previous sections the two Gramians
are described by the following equations

W =
∞
∑

k=0

AkBBT (Ak)T , WO
e =

∞
∑

k=0

Ak
eBeB

T
e (A

k
e)

T . (3.42)

If the matrix A and Ae are stable to őnd the solution of these inőnite sums we can exploit
discrete-time Lyapunov equations. For the Gramian computation we solve:

AWAT −W = −BBT . (3.43)

For the output controllability Gramian we őrst compute:

AeWeA
T
e −We = −BeB

T
e . (3.44)

The solution is then given by:
WO

e = C̃WeC̃
T . (3.45)

However, this computational approach requires the solution of a system of equation of large
dimension hence it can not be used to őnd explicit analytic expressions of the quantities of
interest. Moreover to compute the metrics:

trace[W−1], trace[(WO
e )−1] (3.46)

we need to perform an inverse of the Gramian matrices which is computationally expensive and
typically ill conditioned. We aim to őnd an alternative explicit solution for the Gramians and the
related matrices which does not require Lyapunov equations. The following proposition provides
an expression to compute the inverse of the Gramian for the simple network.
Proposition 3 Consider the symmetric line network described in equation (3.14) with single
input on the őrst node and positive self-loops. Let matrix A of the system be stable. Consider
the quantities:

γh = λ+ 2|b| cos
(

hπ

n+ 1

)

, dii =
bu sin

(

iπ
n+1

)

√

n+1
2

. (3.47)

Then

trace[W−1] =

n
∑

i=1

(1− γ2i )

d2ii

∏

k ̸=i

∣

∣

∣

1− γiγk
γk − γi

∣

∣

∣

2
. (3.48)

Proof : The adjacency matrix of a bidirectional line network is a tridiagonal Toeplitz matrix.
We consider as a reference [6]. A generic tridiagonal Toeplitz matrix of dimension n reads:

T =

















δ τ 0
σ δ τ

σ · ·
· · ·

· · τ
0 σ δ

















∈ R
n×n (3.49)
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The matrix T has n simple eigenvalues if στ ̸= 0 which can explicitly be computed as:

λh(T ) = δ + 2
√
στ cos

hπ

n+ 1
, h = 1, . . . , n. (3.50)

The adjacency matrix of the network we are considering is a tridiagonal Toeplitz matrix of
dimension n with δ = λ, τ = b, σ = b, namely,

A =















λ b 0 . . . 0
b λ b . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . b
0 0 0 . . . λ















. (3.51)

A has n distinct eigenvalues since b2 ̸= 0 , we label them as γh, h = 1, . . . , n. They can be
explicitly computed as:

γh = λ+ 2|b| cos
(

hπ

n+ 1

)

. (3.52)

The components of the right eigenvector xh =
[

xh,1, xh,2 . . . xh,n
]T

associated with γh are:

xh,k = sin

(

hkπ

n+ 1

)

, k = 1, . . . , n, h = 1, . . . , n, (3.53)

and the corresponding left eigenvector is yh =
[

yh,1, . . . yh,n
]

= xTh since the matrix A is
symmetric. A has n distinct eigenvalues hence it is diagonalizable, moreover if we choose b, λ
such that A is Schur stable we can compute the inőnite-horizon controllability Gramian.

The spectral radius of A is given by:

ρ(A) = max
{∣

∣

∣
λ+ 2|b| cos

(

π

n+ 1

)

∣

∣

∣
,
∣

∣

∣
λ+ 2|b| cos

(

nπ

n+ 1

)

∣

∣

∣

}

. (3.54)

In particular:

ρ(A) =







λ+ 2|b| cos
(

π
n+1

)

λ ≥ 0

−λ− 2|b| cos
(

π
n+1

)

λ < 0
(3.55)

A is stable iff ρ(A) < 1. if we impose positive self loops and őx λ, A is stable iff

|b| < (1− λ)

2 cos(π/(n+ 1))
. (3.56)

Let Λ = diag(γ1, . . . , γn) and V be a change of basis matrix such that A = V ΛV −1, then the
Gramian of the system can be written as:

W =
∞
∑

k=0

AkBBT (Ak)T =
∞
∑

k=0

V ΛkV −1BBT (V −1)T (ΛT )kV T =

= V
[

∞
∑

k=0

V ΛkV −1BBT (V −1)T (ΛT )k
]

V T = VMV T .

(3.57)

Let Mij be the entry in the i-th row and j-th column of the matrix M , then:

Mij =
[

V −1BBT (V −1)T
]

ij

∞
∑

k=0

(γiγj)
k =

[

V −1B
]

i

[

V −1B
]

j

1

1− γiγj
. (3.58)

Note that the existence of the solution to the previous equation is granted by the fact that all
the eigenvalues of A have modulus smaller than 1, hence |γiγj | < 1.
The Gramian can hence be written expanding matrix M as:

W = V diag(V −1B)Cdiag(V −1B)TV T , Cij =
1

1− γiγj
. (3.59)
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The columns of the matrix V are the normalized right eigenvectors of A, whereas the rows of
V −1 are the normalized left eigenvectors and transpose of A hence:

V =
1

α

[

x1 x2 . . . xn
]

V −1 =
1

α







yT1
...
yTn






(3.60)

All the eigenvectors have the same norm α which is equal to:

α =

√

√

√

√

n
∑

k=1

sin

(

kπ

n+ 1

)2

=

√

n+ 1

2
(3.61)

Moreover since we are considering B =
[

bu 0
]

:

D = diag(V −1B) = diag(
1

α







yT1
...
yTn













bu
...
0






) =

bu
α













y11 . . . . . . . . .

. . . y21
. . . . . .

. . . . . .
. . . . . .

. . . . . . . . . yn1













= diag(V −1B)T . (3.62)

The matrix C can be equivalently rewritten as

Cij =
1

1− γiγj
=

1

γi

1
1
γi

− γj
=

x̄i
x̄i + ȳj

with

{

x̄i =
1
γi
,

ȳj = −γj .
(3.63)

This last deőnition of the entries of the matrix C is well-posed since we have set λ ̸= 0, hence no
eigenvalue is in 0 and the quantity 1

γi
is always őnite.

Let x̄ =
[

x̄1 . . . x̄n
]

, exploiting the deőnition in the previous equation the matrix C can be
written as C = ΓC̄ where Γ = diag(x̄) and C̄ is a Cauchy matrix with entries:

C̄ij =
1

x̄i + ȳj
. (3.64)

For Cauchy matrices there exist an explicit formula to compute the inverse which is given entry
wise by:

[C̄]−1
ij = (ȳi + x̄j)

∏

k ̸=i(x̄j + ȳk)
∏

k ̸=j(ȳi + x̄k)
∏

k ̸=j(x̄j − x̄k)
∏

k ̸=i(ȳi − ȳk)
(3.65)

Since we would like to compute the trace of the inverse of the Gramian we are mainly interested
in the diagonal entries of the matrix C̄:

[C̄]−1
ii = (ȳi + x̄i)

∏

k ̸=i(x̄i + ȳk)
∏

k ̸=i(ȳi + x̄k)
∏

k ̸=i(x̄i − x̄k)
∏

k ̸=i(ȳi − ȳk)
= (ȳi + x̄i)

∏

k ̸=i(x̄i + ȳk)(ȳi + x̄k)
∏

k ̸=i(x̄i − x̄k)(ȳi − ȳk)
=

= (
1

γi
− γi)

∏

k ̸=i

1
γi

− γk
1
γi

− 1
γk

1
γk

− γi

γk − γi
= (

1− γiγi
γi

)
∏

k ̸=i

1− γiγk

γi
γk−γi
γiγk

1− γiγk
(γk − γi)γk

=

=
(1− γ2i )

γi

∏

k ̸=i

∣

∣

∣

1− γiγk
γk − γi

∣

∣

∣

2
.

(3.66)

Thanks to the introduced Cauchy matrix we can hence compute explicitly the trace of the inverse
of the Gramian:

trace[W−1] = trace[V −TD−T C̄−1Γ−1D−1V −1] = trace[D−T C̄−1Γ−1D−1V −1V −T ] =

= trace[D−T C̄−1Γ−1D−1] =
n
∑

i=1

γi(1− γ2i )

d2iiγi

∏

k ̸=i

∣

∣

∣

1− γiγk
γk − γi

∣

∣

∣

2
=

=

n
∑

i=1

(1− γ2i )

d2ii

∏

k ̸=i

∣

∣

∣

1− γiγk
γk − γi

∣

∣

∣

2
.

(3.67)
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As a by-product of the previous proposition and proof it is possible to őnd an analytic ex-
pression for the Gramian. This provides us with an alternative method to compute it without
resorting to the discrete Lyapunov equations. This expression is useful in numerical simulations
to compute the Gramian with higher precision with respect to Lyapunov equations.

Corollary 1 Consider the symmetric line network described in equation (3.14) with single input
on the őrst node and positive self loops. Let the matrix A of the system be stable. The entries of
the controllability Gramian for the simple network read:

Wij =

∑n
k

∑n
s b

2
u sin(

siπ
n+1) sin(

kjπ
n+1) sin(

sπ
n+1) sin(

kπ
n+1)

n+1
2b2u

(1− λ2 − 2|b|λ cos( kπ
n+1)− 2|b|λ cos( sπ

n+1)− 4b2 cos( sπ
n+1) cos(

kπ
n+1))

(3.68)

Proof : By following the same reasoning and with the same matrix deőnition of previous proof,
the controllability Gramian can be written as;

W = V diag(V −1B) C diag(V −1B)TV T , Cij =
1

1− γiγj
(3.69)

Let Ĉ = DCDT then

Ĉij = DiiCijDjj =
1

α2

yi1y1j
1− γiγj

=
1

α2

sin( iπ
n+1) sin(

jπ
n+1)

1− (λ+ 2|b| cos( iπ
n+1))(λ+ 2|b| cos( jπ

n+1))

=
1

α2

sin( iπ
n+1) sin(

jπ
n+1)

(1− λ2 − 2|b|λ cos( iπ
n+1)− 2|b|λ cos( jπ

n+1)− 4b2 cos( iπ
n+1) cos(

jπ
n+1))

.

(3.70)

Finally W = V ĈV T , hence:

Wij =

∑n
k

∑n
s b

2
u sin(

siπ
n+1) sin(

kjπ
n+1) sin(

sπ
n+1) sin(

kπ
n+1)

n+1
2b2u

(1− λ2 − 2|b|λ cos( kπ
n+1)− 2|b|λ cos( sπ

n+1)− 4b2 cos( sπ
n+1) cos(

kπ
n+1))

(3.71)

■

In order to prove that the lifted dynamics bring us advantages it is sufficient to prove that
some advantages exists in a speciőc conőguration. We hence decide to compute the Gramian
for the expanded network with λ = 0 and a = 0 as it is the unique conőguration which always
satisőes the condition on the modulus of the eigenvalues for any choice of self-loop of the simple
network.

Remark 10 From a structural controllability perspective, it would not be a natural choice to
decouple the left-oriented line and right-oriented line by setting â = 0. The input enters the lifted
network on both the nodes of the őrst subsystem, however while it propagates through the right-
oriented line, it can not be propagated through the left-oriented line since (1, 2) /∈ Ê. However the
task is to control the output of the system intended as the induced state xI(t) and not the state
of the lifted network, so we can let the left-oriented line act as a drift and control only the right
oriented line. The validity of this approach is proved below, where we őnd the expression of the
Gramian for a line network with â = 0, b̂ ̸= 0, λ̂ = 0, it is always positive deőnite, hence xI(t) is
controllable.

Proposition 4 Consider the symmetric lifted network described by equation (3.24) with â = 0,
λ̂ = 0 then:

trace[(WO
e )−1] =

1

4b2u
+

2n−2
∑

i=1

1

bib2u
. (3.72)
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Proof : The matrix Ae is block triangular with Ae,lr = 0 = Ae,rl. The block Ae,ll is upper
triangular with all the elements on the diagonal equal to zero, all the eigenvalues of Ae,ll are
hence equal to 0. The block Ae,rl is lower triangular with all the elements on the diagonal equal
to zero, similarly as before all the eigenvalues of Ae,ll are hence equal to 0.
Since Ae,lr = 0 = Ae,rl the eigenvalues of the matrix Ae are the union of the eigenvalues of the
blocks on the diagonal and since both the eigenvalues of Ae,ll and Ae,rr are all equal to zero, so
are the eigenvalues of Ae. We have hence proved the matrix to be nilpotent.
It is possible to prove that Ae can be brought to its Jordan form by means of a permutation
matrix T where the n-th column is the canonical vector en and the n + 1 column is en+1; the
column i is ei · b̂n−i for i ∈ 1, . . . , n− 1 and the column n+j is en−j+1 · b̂n−j for j ∈ {1, . . . , n−1}.
For sake of completeness we write below an example of permutation matrix for a lifted network
with 3 subsystems

T =

















b2 0 0 0 0 0
0 b 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 b 0
0 0 0 b2 0 0

















(3.73)

By looking to the Jordan form of Ae there are 2 Jordan blocks of dimension n, hence the
minimum nilpotency index is exactly n. Since the matrix Ae is nilpotent with nilpotency index
n the inőnite-horizon controllability Gramian is equal to the n step controllability Gramian. In
fact considering the expression:

We =

∞
∑

k=0

Ak
eBeB

T
e (A

k
e)

T (3.74)

each term employing Ak with k > n is 0 as Ak = 0.
To compute the Gramian, we őrst compute the n-step controllability matrix:

Cn =
[

B AeB . . . An−1
e B

]

(3.75)

where:

B =





































b̂u
0
0
...
0

b̂u
0
0
...
0





































, AeB =





































b̂u
0
0
...
0
0

b̂b̂u
0
...
0





































, AeAeB =





































b̂u
0
0
...
0
0
0

b̂2b̂u
...
0





































, . . . . (3.76)

The n-step controllability Gramian is given by:

CnCT
n =



























b̂2u 0 0 . . . 0 b̂2u 0 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...

b̂2u 0 0 . . . 0 b̂2u 0 0 . . . 0

0 0 0 . . . 0 0 bb̂2u 0 . . . 0
...

...
...

...
...

...
...

...
...

...

0 0 0 . . . 0 0 0 0 . . . b̂2(n−1)b̂2u



























. (3.77)
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The output controllability Gramian is then given by:

WO
e = C̃CnCT

n C̃
T =

















4b̂2u 0 0 . . . 0

0 b̂2b̂2u 0 . . . 0

0 0 b̂4b̂2u . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . b̂2(n−1)b̂2u

















. (3.78)

Hence by taking the inverse of the Gramian which can be easily computed by replacing each of
the scalar entries on the diagonal with its inverse, the required metric is obtained by summing
the entries on the diagonal:

trace[(WO
e )−1] =

1

4b̂2u
+

2n−2
∑

i=1

1

b̂ib̂2u
. (3.79)

■

3.4 Computation of the Asymptotic rate

As already discussed we are interested in understating the advantages in terms of control energy
the lifted conőguration bring to us with respect to the simple network as the sizes of the two
networks grow. In this section we consider again the trace of the Gramian and we compute
the asymptotic rate which is deőned as the exponential rate of growth of the average control
energy metric as the size of the network tends to inőnity, i.e.,

ρ = lim
n→∞

1

n
log(trace(W−1)) (3.80)

We will compute the asymptotic rates both for the simple network and the expanded network
and compare them in order to prove the advantages of the lifted conőguration. We start by
computing the asymptotic rate for a speciőc lifted network conőguration of interest.

Proposition 5 Consider the symmetric lifted network described by equation (3.24) with â = 0,
λ̂ = 0. Then the asymptotic rate is given by:

ρe = 2 log

(

1

|b̂|

)

. (3.81)

Proof : It is sufficient to compute the limit deőned in equation (3.80) and use the expression of
the Gramian in (3.72). Namely,

ρe = lim
n→∞

1

n
log(trace((WO

e )−1)) = lim
n→∞

1

n
log

(

1

4b̂2u
+

1

b̂2u

n−1
∑

k=1

1

b̂2k

)

.

Since |b| < 1 to satisfy the stability constraint, it holds

log

(

1

4b̂2u
+

1

b̂2ub̂
2(n−1)

)

≤ log

(

1

4b̂2u
+

1

b̂2u

n−1
∑

k=1

1

b̂2k

)

≤ log

(

1

4b̂2u
+

n− 1

b̂2ub̂
2(n−1)

)

.

From the latter inequalities it follows that for large n

1

n
log

(

1

4b̂2u
+

1

b̂2u

n−1
∑

k=1

1

b̂2k

)

≈ 1

n
log

(

1

b̂2(n−1)

)

≈ 2 log

(

1

|b̂|

)

,
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which yields the thesis. ■

As it concerns the computation of the asymptotic rate for the simple line network things gets
more complicated. A őrst attempt to őnd a bound on the asymptotic rate exploited the explicit
formula of the inverse of the Gramian found in Proposition 3, however this did not lead us to
any interesting conclusion.
An alternative path exploits the asymptotic density for the eigenvalues of the symmetric line
network fed with a single input.
In [7] it is shown how for n large the eigenvalues of matrix A of the symmetric network described
by equation (3.14) by choosing bu = 1 take values in the interval [λ− 2|b|, λ+2|b|] with density:

ϕ(µ) =
1

π
√

4b2 − (µ− λ)2
1[λ−2|b|,λ+2|b|](µ). (3.82)

In the literature the above function is called arcsine density.
Remark 11 Thanks to the introduced density it is possible to notice how a constrain on the
stability for the matrix A once őxed λ > 0 as n grows to inőnity is

(λ− 1)

2
< b <

(1− λ)

2
. (3.83)

By adapting the reasoning followed in [8] to the discrete-time case, it is possible to prove that:

lim
n→∞

1

n
log(trace(W−1)) = 2 max

γ∈[λ−2|b|,λ+2|b|]

∫ λ+2|b|

λ−2|b|
log
∣

∣

∣

1− µγ

γ − µ

∣

∣

∣

1

π
√

4b2 − (µ− λ)2
dµ (3.84)

The following proposition gives the explicit analytical expression of the asymptotic rate by solving
the above integral.
Proposition 6 Consider the symmetric line network described in equation (3.14) with single
input on the őrst node and non negative self loops. Let the matrix A of the system be stable,
then:

ρ = max
γ∈[λ−2|b|,λ+2|b|]

2 log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

− 2 log |b|. (3.85)

Proof : We consider the formula for the asymptotic rate in equation (3.84). Let:

f(γ) = 2

∫ λ+2|b|

λ−2|b|
log
∣

∣

∣

1− µγ

γ − µ

∣

∣

∣

1

π
√

4b2 − (µ− λ)2
dµ = 2

∫ λ+2|b|

λ−2|b|
log
∣

∣

∣

1− µγ

γ − µ

∣

∣

∣
p(µ)dµ

=

∫ λ+2|b|

λ−2|b|
log(1− µγ)2p(µ)dµ−

∫ λ+2|b|

λ−2|b|
log(1− µγ)2p(µ)dµ

=

∫ λ+2|b|

λ−2|b|
log(γ2)p(µ)dµ+

∫ λ+2|b|

λ−2|b|
log((

1

γ
− µ)2)p(µ)dµ−

∫ λ+2|b|

λ−2|b|
log((γ − µ)2)p(µ)dµ

= log(γ2) + Ep

[

log((
1

γ
− µ)2)

]

− Ep

[

log((γ − µ)2)
]

.

From [9] corollary 3 we know that given the density:

q(t) =
1

π
√

(t− c)(c− d)
, c < t < d, (3.86)

and ζ a random variable, then:

Eqlog(ζ−z)2 =

{

2log(d− c)− 4log(2) if c ≤ z ≤ d

2log(d− c) + 2log(|xz|+
√

x2z − 1)− 4log(2) if z < c or z > d,
(3.87)

where xz = −1 + 2(z−c)
d−c .

The density p equals q by setting c = λ − 2|b| and d = λ + 2|b|, then by the previous equation
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since µ has density p and λ− 2|b| ≤ µ ≤ λ+ 2|b|:

Ep

[

log((γ − µ)2)
]

= Ep

[

log((µ− γ)2)
]

= 2log(λ+ 2|b| − λ+ 2|b|)− 4log(2) =

= 2log(4|b|)− 4log(2) = 2log(4|b|/4) = 2log(|b|).

Now we consider the quantity:

Ep

[

log((
1

γ
− µ)2)

]

= Ep

[

log((µ− 1

γ
)2)
]

. (3.88)

Since 1
γ is such that 1

γ > λ+2|b| or 1
γ < λ− 2|b| then by exploiting the second equality in (3.87):

Ep

[

log((
1

γ
− µ)2)

]

= 2log(|b|) + 2log
( | 1γ − λ|+

√

( 1γ − λ)2 − 4b2

2b

)

= 2log(|b|) + 2log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2b|γ|
)

= 2log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

− 2log(|γ|)

= 2log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

− log(γ2).

Hence, exploiting the computed quantities:

f(γ) = log(γ2) + Ep

[

log((
1

γ
− µ)2)

]

− Ep

[

log((γ − µ)2)
]

=

= log(γ2) + 2log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

− log(γ2)− 2log(|b|)

= 2log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

− 2log(|b|).

■

Once analytic expressions for the asymptotic rates of the lifted and simple systems have
been derived, it is possible to compare these two quantities.

Proposition 7 Consider the symmetric line network with positive self loops described in equation
(3.14) and the symmetric lifted line network of equation (3.24), where we set b̂ = b, b̂u = bu

2 . Let
|λ± 2b| < 1, γ ∈ [λ− 2|b|, λ+ 2|b|] then:

ρ > ρe ⇐⇒ ∃λ, b, γ s.t. |1− λγ|+
√

(1− λγ)2 − 4b2γ2 > 2. (3.89)

Proof : It is sufficient to exploit the two expressions for the asymptotic gains identiőed in
propositions 5 and 6:

ρ > ρe

⇐⇒ max
γ∈[λ−2|b|,λ+2|b|]

2log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

− 2log|b| > −2log(|b|)

⇐⇒ ∃λ, b, γ s.t. log
( |1− λγ|+

√

(1− λγ)2 − 4b2γ2

2

)

> 0

⇐⇒ |1− λγ|+
√

(1− λγ)2 − 4b2γ2 > 2.

(3.90)

■
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We now provide a couple of examples in which the given equality can be used to prove advan-
tages/disadvantages of the lifted conőguration with respect to the simple one.

Example 6 (Advantages)
Consider the lifted and simple symmetric line networks with parameters: â = 0, λ̂ = 0, bu =

1, b̂u = 0.5, λ = 0.2, b = 0.39.
The stability requirement are satisőed by:

|λ− 2b| = |0.2− 0.78| = 0.58 < 1,

|λ+ 2b| = |0.2 + 0.78| = 0.98 < 1.
(3.91)

The constraints on the non amplifying behaviour are granted by the choice of parameters b̂u =
bu
2 = 0.5, b̂ = b = 0.39, λ = 0.2 > 0 and |λ̂| < |λ| = 0.2.
We set γ ∈ [λ− 2|b|, λ+ 2|b|] = [−0.6, 1].
We choose γ = −0.6 and we exploit the inequality in the previous proposition to check the asymp-
totic advantage of this lifted conőguration:

|1− λγ|+
√

(1− λγ)2 − 4b2γ2 = 1.12 +
√

(1.12)2 − 0.22 ≈ 2.27 > 2. (3.92)

Hence we proved that in this speciőc scenario there are advantages in using the proposed lifted
conőguration.

Example 7 (No advantages)
Consider the lifted and simple symmetric line networks with parameters: â = 0, λ̂ = 0, λ =

0.2, b = 0.05, bu = 1, b̂u = 0.5.
The stability requirement are satisőed by:

|λ− 2b| = |0.2− 0.1| = 0.1 < 1,

|λ+ 2b| = |0.2 + 0.1| = 0.3 < 1.
(3.93)

The constraints on the non amplifying behaviour are granted by the choice of parameters b̂u =
bu
2 = 0.5, b̂ = b = 0.05, λ = 0.2 > 0 and |λ̂| < |λ| = 0.2.
We set γ ∈ [λ− 2|b|, λ+ 2|b|] = [0.1, 0.3].
We choose γ equal to its maximum which can be found to be γ = 0.1 and we compute the
inequality:

|1− λγ|+
√

(1− λγ)2 − 4b2γ2 ≈ 1.9599 < 2. (3.94)

In this conőguration there are no advantages in using the proposed lifted conőguration.

Remark 12 If we choose a simple network with λ, b such that 0 ∈ [λ− 2|b|, λ+ 2|b|] we can set
γ = 0, the left hand side of the inequality of the previous proposition reads:

|1− λγ|+
√

(1− λγ)2 − 4b2γ2 = 1 + 1 = 2 (3.95)

The inequality is not satisőed however we achieve the same asymptotic rate of the simple network,
hence by employing the proposed lifted conőguration whenever there are no advantages at least
we achieve the same performance of the non-lifted network.
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Remark 13 Thanks to the explicit expression for the asymptotic rate of the symmetric network
we can show that if we have two symmetric networks with the same edge weights all equal to
b ̸= 0 but in the őrst network we set the self-loop λ1 = 0 and in the second one we set λ2 > 0
such that 0 ∈ [λ2 + 2|b|, λ2 − 2|b|] then the asymptotic rate of the őrst network is always smaller
or equal to the asymptotic rate of the second network. We formally prove this below.
Let γ2 ∈ [λ2 − 2|b|, λ2 + 2|b|], γ1 ∈ [−2|b|, 2|b|]. Let ρ1 be the asymptotic rate of the őrst network
and ρ2 the asymptotic rate of the second network we solve the inequality ρ2 ≥ ρ1:

ρ2 ≥ ρ1 ⇐⇒

max
γ2

[

|1− λ2γ|+
√

(1− λ2γ2)2 − 4b2γ22

]

≥ max
γ1

[

|1− λ1γ|+
√

(1− λ1γ1)2 − 4b2γ21

]

⇐⇒ max
γ2

[

|1− λ2γ2|+
√

(1− λ2γ2)2 − 4b2γ22

]

≥ max
γ1

[

1 +
√

1− 4b2γ21

]

≥ 2

Since 0 belongs to the allowed interval of values for γ2 then we can set γ2 equal to 0 and it follows:

ρ2 ≥ |1− λ2 · 0|+
√

(1− λ2 · 0)2 − 4b2 · 02 = 2 ≥ 2. (3.96)

To sum up, in this section we have provided the reader with an inequality which can be used to
check whether there are advantages in terms of control energy in using the lifted conőguration.
Thanks to the two examples we know that there are cases in which the advantage exists, however
we do not have advantages for all the possible choices of parameters in the simple network.
Remark 12 highlights the convenience of employing the lifted conőguration: without checking
the inequality we know that if we modify the internal structure of each node of the network
according to the lifted dynamics we may have advantages or at least we perform the same as the
non-lifted network.

3.5 Simulation and numerical results

A set of numerical calculations and simulations have been performed in order to develop the
intuition on the possible behaviors of the metrics and then to test the analytical results we have
obtained. These simulations are reported in the current section.

In the following simulations we will restrict to the case of symmetric lifted and simple networks
described in equation (3.24) and (3.14), respectively. Moreover we will always consider the edges
of the two networks to have the same weights, i.e., b = b̂. All the simulations have been performed
using the software MATLAB R2023a, and the code developed for the main simulations can be
found in the Appendix B.
We start now by describing the main ideas and procedures that have been used to develop the
simulations. We will consider the two metrics:

trace(W−1), λmin(W). (3.97)

Recall that the őrst metric is related to the average control energy over unit-norm random target
states, whereas the second one to the worst-case control energy. In particular in the following
of this section we will compare these metrics computed on the controllability Gramian W for
the simple network and on the output controllability Gramian WO

e for the expanded network,
as described in previous sections. Since we are interested in assessing the behaviour of the
metrics as the number of nodes grows we will often plot them in function of n, where n is the
number of nodes in the simple network. In order to compute the controllability Gramian and
output controllability Gramian we will let Matlab solve discrete-time Lyapunov equations. As
an alternative we would have used the formulas developed in the previous sections, however
the expressions for the lifted network have been computed only in the speciőc conőguration
λ̂ = 0, â = 0 whereas we aim to inspect via simulation other parameter choices. It is a well known
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result that for symmetric networks the aforementioned controllability metrics scale exponentially
with the growth in number of nodes provided that the cardinality of the control nodes set remains
constant.
We start the section by verifying the aforementioned exponential behaviour of the metrics thanks
to a őrst simulation.
Consider the lifted and simple networks with the parameters set as described in table 3.1.

simple network lifted network

λ b bu λ̂ â b̂ b̂u
0.2 0.39 1 0.2 0.01 0.39 0.5

Table 3.1: Network parameter choice

In őgure 3.5 the logarithms of the proposed metrics are plotted in function of the number of
nodes in the simple network.
On the left side of the picture it is possible to őnd the metrics value plot for the simple network,
whereas on the right side are depicted the metrics values for the expanded network. The subplots
on the upper part of the őgure are realized by computing the metric trace of the inverse of the
Gramian, whereas the plots on the lower part of the őgure refer to the minimum eigenvalue of
the Gramian.
It is possible to appreciate from the őgures the exponential behaviour of the metrics (it appears
linear in the plots since we are taking the logarithm). Another observation that can be made is
that while the trace of the Gramian grows exponentially, the metric minimum eigenvalue decays
exponentially.

Figure 3.5: Shape of the metrics as the size of the network grows

We are now interested in comparing the asymptotic behaviour of the metrics for the lifted
and simple line networks to verify the results suggested by the theory.
We have just shown how the metrics grow/decay exponentially with the number of nodes, we
aim to compute the exponential factor of growth/decay, i.e., the asymptotic rate. If we apply
the logarithm to the computed metrics the log-control energy shows a linear trend as depicted
in the previous picture, the growth/decay factor is hence captured by the rate of growth/decay
of the lines, which is their slope.
The simple and intuitive procedure we will follow in order to grasp from a simulation an estimate
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of the asymptotic rate is based on the last reasoning.
We describe now the steps necessary to compute an estimate of the asymptotic rate:

1. We consider a őrst simple network with n1 nodes and a second one with n2 > n1 nodes,
we choose the same parameters λ and b for both the networks. Let Wn1

be the Gramian
of the őrst network and Wn2

the Gramian of the second one. We compute the quantities:

es,1 = log(trace(W−1
n2

))− log(trace(W−1
n1

)),

es,2 = log(λmin(Wn2
))− log(λmin(Wn1

)).
(3.98)

These quantities are related to the exponential growth/decay factors of the metrics for the
simple network, intuitively they are connected to the slope of the lines in the previous
picture.

2. We consider a lifted line network with 2n1 nodes and a second one with 2n2 nodes. Let
WO

e,n1
be the output controllability Gramian of the őrst network and and WO

e,n2
the output

controllability Gramian of the second one, we őx the same parameters λ̂, â, b̂ = b. We
compute the quantities:

ee,1 = log(trace((WO
e,n2

)−1))− log trace(WO
e,n1

)−1)),

ee,2 = log(λmin(WO
e,n2

))− log(λmin(WO
e,n1

)).
(3.99)

This quantities are related to the exponential growth/decay factors of the metrics for the
lifted network.

3. Finally we compute the quantities:

e1 = ee,1 − es,1,

e2 = ee,2 − es,2.
(3.100)

We are subtracting the estimate of the growth/decay rate of the simple line to the estimate
of growth/decay rate of the lifted line.

The quantity e1 give us an idea of the advantages we have in terms of control energy computed
using the metric trace of the Gramian for the lifted network with respect to the simple one. Since
the aforementioned metric grows with the cardinality of the network, in order to have advantages
using the lift, we aim the asymptotic rate estimate for the simple line es,1 to be greater than the
quantity ee,1. If it holds, the control energy of the simple line grows faster than the one of the
lifted line, which implies that as n grows large the lifted conőguration requires less energy to be
controlled than the simple one.
Therefore, the greater the negativity of e1 the more advantage we have, if it is positive the simple
network performs better.
The quantity e2 instead quantiőes the advantages we have in terms of control energy computed
using the metric minimum eigenvalue of the Gramian. By following a reasoning similar as before,
since the metric decays exponentially, the lifted conőguration performs better if e2 is positive.
While in the previous section we have presented analytically the proof of the advantages only
for a speciőc conőguration of the lifted network, i.e., the case where λ̂ = 0, â = 0, we are now
interested in assessing the advantages for different choices of parameters. To this aim we will
őx the λ, b for the simple network and set a grid of possible choices of parameters for the lifted
network. We will then compare the control energy of all the possible expanded networks built
by setting the parameters according to the grid, with the control energy of the simple network.
Since we will perform a grid search within the variables in a certain interval it is important to
discard all the possible choices that does not respect the constraints which makes the comparison
meaningful.
The constraints we will set are the following ones:
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• Constraints on the stability of the network: The matrices A of the simple network
and Ae of the expanded network needs to have all the eigenvalues inside the unit circle. If
this constraint is not veriőed the inőnite-horizon controllability Gramian does not exists.

• Constraints on the controllability of the network: The Gramian of the system needs
to be positive deőnite in order for the system to be controllable.

• Constraints on the allowed dynamics: The parameters needs to be chosen in order
to respect the constraints on the "non amplifying behaviour" of the lifted line network
discussed in section 3.2.

• Constraints on numerical errors: Dealing with networks involves performing operations
on large matrices, it becomes even more problematic when the matrices are close to be
singular. In these cases Matlab is not always capable of performing operations such the
inverse of a matrix (inverse of the Gramian). Some computational errors can be detected
and the parameters which leads to these errors need to be discarded.

In all the simulations we will follow the procedure discussed above to compute the quantities
e1 and e2 which allow us to compare the metrics for the lifted and simple systems. The two
simple networks needed by the procedure are taken with n1 = 12 and n2 = 16 nodes, hence the
corresponding lifted networks will have respectively 2n1=24 and 2n2=32 nodes.

We consider example 6, where we discussed thanks to the inequality in Proposition 7 the
convenience of the lifted conőguration with λ̂ = 0 and â = 0. We aim to assess thanks to
simulations if there are other choices of the parameters for the lifted network that lead us to
an advantage. We set up a search grid by choosing the parameters as in table 3.2, where the
notation c:j:d indicates that the parameters are chosen in the interval [c,d] with step j.

simple network lifted network

λ b bu λ̂ â b̂ b̂u
0.2 0.39 1 -1:0.01:1 -1:0.01:1 0.39 0.5

Table 3.2: Parameters choice for the őrst simulation

The results of the simulation are shown in őgure 3.6. In the őrst subplot it is depicted
the quantity e1 in function of the choices of parameters λ̂ and â. In the second subplot the
quantity e2. The color bar reports the interval of the values taken by e1 and e2 for all the
choices of parameters, all the values are negative for e1 and positive for e2. Hence the metric
based on the trace grows faster for the simple network with respect to the lifted one, the metric
minimum eigenvalue decays faster for the simple network. In particular the most advantageous
conőgurations are the one achieved by setting λ = 0 and a = ±λ. Intuitively this behaviour is
justiőed by remark 13 where we proved that a line network with null self-loops performs better.
By looking closely to the color-map however it is possible to notice that we have advantages also
by setting â = 0 and λ̂ = λ, hence by decoupling the right-oriented line and the left-oriented line
and by choosing the same self-loops of the simple line.
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Figure 3.6: Results of the őrst simulation for the symmetric line

We consider now the second example in the previous section. We have already veriőed, thanks
to the inequality of Proposition 7, there are no advantages in using the lifted conőguration: now
we aim to verify the result numerically. We set the parameters and the search grid according to
table 3.3.

simple network lifted network

λ b bu λ̂ â b̂ b̂u
0.2 0.05 1 -1:0.01:1 -1:0.01:1 0.05 0.5

Table 3.3: Parameters choice for the second simulation

The result of the simulation is shown in őgure 3.7, the values of e1 are all positive whereas
the values of e2 are all negative, highlighting the fact that the simple network performs better
than its lifted counterpart.
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Figure 3.7: Results of the second simulation for the symmetric line

We end this section by providing a comparison between the metric trace of the inverse of the
Gramian for the simple network computed using the analytic expression found in Proposition 3
and the solution computed by solving the discrete Lyapunov equations and by performing the
inverse of the Gramian. The result is shown in őgure 3.8, it is possible to appreciate the fact
that while the discrete Lyapunov equation method starts to exhibit errors for networks with 22
nodes, if we exploit the analytical expression the result is still accurate for 30 nodes.

Figure 3.8: Comparison between different metric computation methods



Chapter 4

The Grid Network Case

4.1 Network description and control placement

In this chapter we apply the lift to an other well-known network topology: the grid network.

4.1.1 Non lifted network and control placement

In this section we describe the model of simple grid network we will use in the next section about
numerical simulations.
We consider the directed grid network of n columns and M rows depicted in őgure 4.1. To the
network it is associated a graph G = (V, E) where V = {1, . . . , nM} is the set of nodes and E is
the set of edges.
As usual the state of the network is described by the vector x(t) ∈ R

nM whose entry xi(t) ∈ R

is the state of node i ∈ V at time t ∈ N, each node is hence considered to have scalar state.
We describe now in detail the topology of a general bidirectional grid network:

• Each node, except the őrst/last node of each row and the őrst/last node of each column,
has four outgoing edges one connecting i with i+ 1, one connecting i with i− 1 as for the
line network, the weights assigned to these edges are respectively br,i+1 and bl,i−1, moreover
there are other two outgoing edges connecting i with n+ i and i− n, the weights assigned
to these edges are respectively bb,n+i and bt,n−i. There are also incoming edges from node
i+ 1, i− 1, n+ i and n− i whose weights are labeled as bl,i, br,i,bt,i and bb,i.

• The first node of each row has three incoming/outgoing edges respectively from/to
nodes i+ 1, n+ i and n− i.

• The last node of each row has three incoming/outgoing edges respectively from/to nodes
i− 1, n+ i and n− i.

• The first node of each column has three incoming/outgoing edges respectively from/to
nodes i+ 1,i− 1 and n+ i.

• The last node of each column has three incoming/outgoing edges respectively from/to
nodes i− 1, i+ 1 and n− i.

• if a node is both the őrst/last of row and őrst/last of column it has only two outgoing/in-
coming edges.

• Each node i ∈ V has a self loop with weight λi.

• The weight associated to the input from the external environment to node i is labeled as
bu,i.

We now shift to describe the network as an interconnection of subsystems made of single
nodes. The prototype single node system we will consider is depicted in őgure 4.2.
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Figure 4.1: Simple grid network

Figure 4.2: Simple grid subsystem

Each node is considered to have the same number of inputs and outputs as the number of in-
coming and outgoing edges described above. We label the inputs from nodes i−1, i+1, n+i, n−i

respectively as vr,i(t), vl,i(t), vt,i(t), vb,i(t). We deőne as vi(t) =
[

vr,i(t) vl,i(t) vt,i(t) vb,i(t)
]T

the vector grouping all the inputs from neighboring nodes. The weight associated to the edge
(j, i) ∈ E is assigned to the corresponding input of node i (i.e., vr,i(t), vl,i(t), vt,i(t), vb,i(t) affect
the system with weights respectively br,i, bl,i,bt,i,bb,i).

Let yi(t) =
[

yr,i(t) yl,i(t) yt,i(t) yb,i(t)
]T

be the vector of the outputs whose entries represent
respectively the outputs to nodes i + 1, i − 1, n − i, n + i, to each outgoing edge it is assigned
as usual unit weight.
We label the external input as ue,i(t) ∈ R, it enters nodes i with weight b̂u,i.

According to the above description, the system can be written in state space form as:

Σi =

{

xi(t+ 1) = Aixi(t) +Bv,ivi(t) +Bu,iui(t)

yi(t) = Cixi(t)
(4.1)

where the matrices describing the system are:

Ai = λi, Bv,i =
[

br,i bl,i bt,i bb,i
]

, Bu,i = bu,i, Cg,i = ✶4. (4.2)
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The open loop transfer function of the single node system considering the state as output is:

Wi(z) = (z −Ai)
−1Ci =

Bi

s− λi
=
[

br,i
z−λ

bl,i
z−λ

bt,i
z−λ

bb,i
z−λ

bu
z−λ ,

]

(4.3)

and the asymptotic gain is given by:

Wi(1) =
[

br,i
1−λ

bl,i
1−λ

bt,i
1−λ

bb,i
1−λ

bu
1−λ .

]

(4.4)

By imposing:

Ai = λ, Bv,i =
[

br bl bt bb
]

, Bu,i = bu, Ci = ✶4, ∀i (4.5)

we assume all the systems to be identical and hence the matrices Ai, Bv,i, Bu,i, Ci to be indepen-
dent of i. Thanks to this assumption we can describe the overall network as the interconnection
of single node systems.
By following the notation of equation (2.2) the state space form of the overall network system
reads:

Σ :

{

x(t+ 1) = (InM ⊗Ai)x(t) + (InM ⊗Bv,i)v(t) +Buu(t)

y(t) = (InM ⊗ Ci)x(t)
(4.6)

where:
Bu = B̃u ⊗Bu,i, Bu ∈ R

n×m, v(t) = Ly(t). (4.7)

It is possible to verify that the required L is

L = Im ⊗ Sn,r ⊗ e2,4e
T
2,4 + Im ⊗ Sn,l ⊗ e1,4e

T
1,4 + Sm,r ⊗ In ⊗ e4,4e

T
4,4 + Sm,l ⊗ In ⊗ e3,4e

T
3,4, (4.8)

where Sk,l and Sk,r are the usual shift matrices introduced in the previous chapter.
This time we choose to feed the network with a different input ui(t) ∈ R

m for each row. The
input enters the őrst node of each row.
The matrix B̃u should hence be selected in the following manner:

B̃u = Im ⊗ e1,n, (4.9)

where e1,n is the őrst canonical vector of dimension n.
The overall state equation for the simple network can be written according to (2.4) as:

x(t+ 1) =
[

Ai ⊗ In + (Bv,i ⊗ In)L(Ci ⊗ In)
]

x(t) +Buu(t) = Ax(t) +Bu(t). (4.10)

In the chapter about simulations we will consider a symmetric grid network, it can be obtained
by setting the parameters br = bl = b.
To better understand the structure of the matrix A we consider the following example:

Example 8 (2 × 3 Grid)
We consider a grid network with 3 columns and 2 rows. The matrices A and B of the system
reads:

A =

















λ bl 0 bt 0 0
br λ bl 0 bt 0
0 br λ 0 0 bt
bb 0 0 λ bl 0
0 bb 0 br λ bl
0 0 bb 0 br λ

















, Bu =

















bu 0
0 0
0 0
0 bu
0 0
0 0

















. (4.11)

If we consider the case of symmetric grid network:

A =

















λ b 0 b 0 0
b λ b 0 b 0
0 b λ 0 0 b
b 0 0 λ b 0
0 b 0 b λ b
0 0 b 0 b λ

















, Bu =

















bu 0
0 0
0 0
0 bu
0 0
0 0

















. (4.12)
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4.1.2 The lifted grid network

As done in the case of the line graph we build now the lifted network starting from the underlying
graph. The way we will perform the lift is similar as before. In the line each node has two
neighbors, hence in the associated lift we introduced two nodes for each vertex in the simple line
in order to ’keep memory’ of the direction from which the signal is received.
In the grid each node has at most 4 neighbors, hence the input can be received from 4 directions.
By following the same idea as for the line we introduce a local memory to each node of the
direction from which the input was received and process this information in order to better
propagate the signal through the network and reduce the effort necessary to control the system.
To this aim we will add 4 nodes in the lifted grid for each node in the simple grid, each of the
nodes will then be connected to a different single input of the subsystem and a different single
output. We are hence building:

• M right-oriented lines

• M left-oriented lines

• n top-oriented lines

• n bottom-oriented lines

We now discuss how the lift can be described by using the formalism introduced in chapter 2.

Figure 4.3: Lifted grid network

We consider the graph Ĝ = (V̂, Ê) describing the network in őgure 3.3 where V̂ is the
set of nodes and Ê the set of edges. We design a map ζ : V̂ 7→ V which associate to each
node in V k = 4 nodes in V̂ = {1, 2 . . . , 4nM}. We reorder the nodes in the set V̂ so that
ζ−1(i) = {(i− 1)4 + 1, (i− 1)4 + 2, (i− 1)4 + 3, . . . i4}.
We can hence think of the lifted network as composed by nM subsystems of 4 nodes, n subsys-
tems for each column of the grid, M subsystems for each row.
The state of the network at time t ∈ N is described by the vector xe(t) =

[

xe,1 xe,2 . . . xe,nM
]

∈
R
4nM where xe,i(t) =

[

xe,i,r(t) xe,i,l(t) xe,i,t(t) xe,i,b(t)
]

, xe,i(t) ∈ R
4, is the state of the i-th
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subsystem, i ∈ {1, ..., n}. The prototype subsystem is shown in őgure 4.4.
As done for the expanded line network we label the external input to subsystem i as ue,i(t) ∈ R

and we consider the same input to enter all the nodes of the subsystem, respectively (i− 1)4 +
1, (i− 1)4 + 2, (i− 1)4 + 3, (i− 1)4 + 4 with weights respectively b̂u,i,r, b̂u,i,l, b̂u,i,t and b̂u,i,b.

Let ve,i(t) =
[

ve,i,r(t) ve,i,l(t) ve,i,t(t) ve,i,b(t)
]T

be the vector whose entries are the inputs
from neighboring subsystems, the components of ve,i enters the subsystem i with weights respec-

tively b̂i,r, b̂i,l, b̂i,t, b̂i,b.

Let ye,i(t) =
[

ye,i,r(t) ye,i,l(t), ye,i,t(t), ye,i,b(t)
]T

be the vector of the outputs, to each outgoing
edge it is assigned as usual a unit weight.
Each node of the subsystem have a self-loop, respectively the őrst and second nodes have self-
loops λ̂r,i and λ̂l,i, the third and the forth λ̂t,i and λ̂b,i.
All the nodes of the subsystem are connected to every other node of the same subsystem, let i
be the őrst node and j the second node, aij is the weight associated to edge (i, j).

Figure 4.4: Lifted grid subsystem

Thanks to the formulation of equation (2.14) the expanded subsystem can be described by
the system of equation:

Σe,i :

{

xe,i(t+ 1) = Ae,ixe,i(t) +Be,v,ivi(t) +Be,u,iui(t)

ye,i(t) = Ce,ixe,i(t)
(4.13)

where:

Ae,i =











λ̂r,i â21,i â31,i â41,i
â12,i λ̂l,i â32,i â42,i
â13,i â23,i λ̂t,i â43,i
â14,i â24,i â34,i λ̂b,i











, Be,i =











b̂r,i 0 0 0

0 b̂l,i 0 0

0 0 b̂t,i 0

0 0 0 b̂b,i











,

Bu,i =











b̂u,i,r 0 0 0

0 b̂u,i,l 0 0

0 0 b̂u,i,t 0

0 0 0 b̂u,i,b











, Ce,i = I4.

(4.14)
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All the subsystems are assumed to be identical by setting:

λ̂r,i = λ̂l,i = λ̂t,i = λ̂b,i = λ̂, âjs,i = â, b̂r,i = b̂l,i = b̂t,i = b̂b,i, ∀i, j, s
b̂u,i,r = b̂u,i,l = b̂u,i,t = b̂u,i,b.

(4.15)

Thanks to this assumption the overall dynamical system can be described by exploiting
Kronecker products as:

Σe :

{

x(t+ 1) = (InM ⊗Ae,i)x(t) + (InM ⊗Be,v,i)v(t) + (Be,u,i ⊗ B̃e,u)u(t)

y(t) = (InM ⊗ Ce,i)x(t)
(4.16)

In order to satisfy the locality constraints we impose:

B̃e,u = B̃u, Le = L. (4.17)

We are hence connecting, as for the simple system, a single input to each row of the grid, the
input enters all the nodes in the őrst subsystem of the row.

The overall state equation for the expanded grid can be written according to equation (2.16)
as:

xe(t+ 1) =
[

InM ⊗Ae,i + (InM ⊗Bv,i)L(InM ⊗ Ce,i)
]

xe(t) +Be,u,i ⊗ B̃e,uu(t) =

= Aexe(t) +Be,uue(t).
(4.18)

In the section about simulations we will consider the ‘symmetric’ grid network, which can be
obtained from (4.14) by setting:

Ae,i =











λ̂ â â â

â λ̂ â â

â â λ̂ â

â â â λ̂











, Be,i =











b̂ 0 0 0

0 b̂ 0 0

0 0 b̂ 0

0 0 0 b̂











,

Bu,i =











b̂u 0 0 0

0 b̂u 0 0

0 0 b̂u 0

0 0 0 b̂u











, Ce,i = I4.

(4.19)

Example 9 (2 × 3 Lifted Grid)
We consider the lift of the grid network with 3 columns and 2 rows described in the previous
example. The matrices Ae and Be,u of the system reads:

Ae =

















Ae,i Bl 0 Bt 0 0
Br Ae,i Bl 0 Bt 0
0 Br Ae,i 0 0 Bt

Bb 0 0 Ae,i Bl 0
0 Bb 0 Br Ae,i Bl

0 0 Bb 0 Br Ae,i

















, Be,u =

















Bu,i 0
0 0
0 0
0 Bu,i

0 0
0 0

















, (4.20)

where:
Br = bte1,4e

T
1,4, Bl = ble2,4e

T
2,4, Bt = bte3,4e

T
3,4, Bb = bbe4,3e

T
4,3, (4.21)

where ej,4 is the j-th canonical vector of dimension 4.
It is possible to appreciate the usefulness of the Kronecker product notation which allow us to

connect the structure of the matrix Ae of the lifted system with the matrix A of the simple system.
We can see each entry of the matrix Ae as a matrix on his own. If the off diagonal entry Ajk,
(j ̸= k) describes the interconnection between nodes i and j in the simple network, Ae,jk describes
the same interconnection between subsystems i and j composed of 4 nodes in the lifted network.
The diagonal entries of the matrix Ae are the Ae,i described in (4.14) (which are assumed to be
all identical) and describe the internal dynamics between nodes of the same subsystem.
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The local collapsing map describing the induced state by the lifted network is according to
equation (2.19):

xI,i(t) = C̃e,ixe,i(t), (4.22)

where C̃e,i = ✶
T
4 .

Instead the state of the underlying network induced by the lift is according to equation (2.18):

xI(t) = In · C̃e,i = In ⊗ ✶
T
4 . (4.23)

4.2 Simulation and Numerical results

In this section we will perform the energy-related controllability comparison between the lifted
grid and the simple grid. Differently form the line network we will limit only to describe the
results of some simulations due to the difficulty to őnd analytic expressions of the metrics for
grid networks.
Before discussing the simulations we need to impose the constraints on the allowed dynamics.
We have already imposed the same matrices L and B̃u for the simple and expanded systems, in
this way the locality constraints required by the lift operation are satisőed.
For the computation of Gramians we will solve the discrete-time Lyapunov equations (as for the
line network) described by equations (3.43) and (3.44), hence as usual we need to impose Schur
stability of the matrices Ae and A.
We will also consider the constraints on the positive-deőniteness of W to impose controllability
of the network and the constraints on numerical errors described in section 3.5.
The last constraint we discuss is about the non-amplifying behaviour of the lifted subsystems
and we will consider both the requirement on the modulus of eigenvalues for the simple and
expanded subsystems and the condition on the asymptotic gains. We compute the eigenvalues
of the expanded system in the symmetric conőguration, they are given by:

γ̂1,2,3 = λ̂− â, γ̂4 = λ̂+ 3â. (4.24)

The only eigenvalue of Ai is λ, hence the constrain on the modulus of eigenvalues reads:

|λ̂− â| ≤ |λ|, |λ̂+ 3â| ≤ |λ|. (4.25)

The asymptotic gain of the transfer function from the inputs to the collapsed state is given by:

We,i(1) =
[

b̂
1−l−3a

b̂
1−l−3a

b̂
1−l−3a

b̂
1−l−3a

b̂
1−l−3a

4b̂u
1−l−3a

]

. (4.26)

It is possible to notice by comparing the previous equation with (4.4) that even for the symmetric
grid if we choose b̂u = bu

4 , b̂ = b and all positive self-loops the constraint on the eigenvalues implies
|We,i(1)| ≤ |Wi(1)|, and the non-amplifying behaviour is granted also in the transient.

Another conőguration we will consider in simulations is ajs = 0 ∀(j, s) /∈
{

(1, 4), (4, 1)
}

, we

will refer to it as partially connected conőguration. In this case the eigenvectors are:

γ̂1,2 = λ̂, γ̂3 = λ̂+ â, γ̂4 = λ̂− â. (4.27)

The asymptotic gain matrix is:

We,i(1) =
[

b̂
1−â−λ̂

b̂
1−λ̂

b̂
1−λ̂

b̂
1−λ̂−â

2bu(2−2λ̂−â)

(1−λ̂)(1−λ̂−â)

]

. (4.28)

Even in this case it is possible to prove that the constraint on the asymptotic gain is granted by
the requirement on the modulus of eigenvalues with the same choice of b̂ and b̂u as above.

The simulations will be performed with the same procedure described in section 3.5. The
grid can be seen in two dimensions as composed by M rows and n columns. To evaluate the
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asymptotic rate for the target networks we need hence to decide how to expand the grid i.e. if
we add new rows or columns as we let the number of nodes in the grid grow.
The analysis we are performing is based on the assumption that the number of controlled sub-
systems remains constant, and since each row of the grid has its own control input we can not
change the number of rows, we have to consider grid with an higher number of columns as Mn
grows. The dimension of the rows (M) will hence remain constant and we will only chance the
number of columns (n).
Before analyzing in detail the results of the simulations it is interesting to point out the reason
why we have chosen to add a control input to each row of the network and not only to a single
node as for the line. We will motivate our choice with a őrst simulation.
We consider the simple symmetric grid with the parameter chosen as λ = 0.325, b = 0.16, we
set M = 2 and we build all the networks with n taken from 2 to 10. The input is imposed to
enter only node 1. For each of these networks we compute the metric λmin(W). The result of
the simulation is depicted in őgure 4.5.

Figure 4.5: Controllability issues with a single input to the grid

From the image above, it is possible to appreciate the behaviour of the metric, it is far from
the exponential behaviour (we are taking the logarithm so in the picture we should appreciate
a linear decay) we would expect from the theory. Even if structural controllability theory sug-
gest us the system to be structurally controllable, a single input is not sufficient to control the
whole grid and hence some controllability problems arises and the metric shows this ‘strange’
behaviour.
For sake of completeness we recall that the major result of structural controllability theory is that
if the system is structurally controllable, it is controllable in the classical sense for almost every
choice of parameters, therefore there may exist cases in which even if the system is structurally
controllable, it is not controllable.
After this short preliminary part we perform some simulations considering the symmetric con-
őguration for simple and expanded grid networks.
As described in the previous section and following the reasoning above, we decide to inject the
input to each őrst node of line in the network. We let n grow, hence we are analyzing the
behavior of the network as the number of columns increases and the cardinality of controlled
subsystems remains constant, in particular we choose M = 2.
As already mentioned, to estimate the asymptotic rate we will follow the same reasoning of
section 3.5, in particular we will compute the quantity es,1, es,2 on networks with n1 = 2M = 4
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nodes and n2 = 4M = 16 nodes. Such networks have been chosen with a relatively small number
of nodes to reduce the possible computational errors.
In the őrst simulation we highlight a case in which the lifted grid network performs better in
terms of energy related controllability than the simple one. We choose the parameters as de-
scribed in table 4.1, as usual -1:0.005:1 means that the parameter has been chosen in a grid-search
fashion.

λ b bu λ̂ â b̂ b̂u
0.325 0.16 1 -1:0.005:1 -1:0.005:1 0.16 0.25

Table 4.1: Choices of the parameters for the őrst symmetric grid simulation

The result of the simulation is depicted in őgure 4.6. For simplicity we plot only the quantity
e2 (which is related to the metric minimum eigenvalue of the Gramian), in fact we know that the
behaviour of this metric and the metric trace of the inverse of the Gramian are closely related
as Mn grows.
It is possible to notice that the colormap is no more diamond-shaped, this is just because the
eigenvalues of the symmetric lifted grid subsystem are different from the ones of the matrix Ae

for the line network.
We know the lifted network performs better than the simple one whenever the quantity e2
assumes positive values. By looking at the color-bar in the őgure, the maximum value is greater
that 0.1 hence in some cases we have advantages in lifting the dynamics. However by comparing
the result with the one achieved for the line, the best parameters for the greed are â = 0 and
λ̂ = λ (we decouple all the line sub-graphs), instead for the line they were â = λ, λ̂ = 0. The
two simulations outcomes are not completely in contrast, in fact even in the line case the lifted
network performs better than the simple one in the conőguration λ̂ = λ, â = 0, however it is not
the best possible choice of parameters.

Figure 4.6: Outcome of the őrst simulation for the symmetric grid

In the second simulation we show there are cases where the asymptotic rate of the lifted
network is always greater than the rate of the simple network. We set the parameters as in table
4.2.
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λ b bu λ̂ â b̂ b̂u
0.035 0.34 1 -1:0.005:1 -1:0.005:1 0.34 0.25

Table 4.2: Choices of parameters for the second symmetric grid simulation

The results of the simulation are shown in őgure 4.7. It is possible to appreciate how the
requirement on the modulus of the eigenvalues shrinks the allowed values for â and λ̂ toward the
origin. By looking at the colorbar the quantity e2 is always negative underlying the faster decay
of the metric for the lifted network that the simple one. In this lifting the dynamics does not
show any advantage in terms of energy related controllability.

Figure 4.7: Outcome of the second simulation for the symmetric grid

For the last two simulations we consider the partially connected conőguration for the lifted
grid network. We want to understand what happens if we prevent the interaction between all the
nodes in the same subsystem except for a couple of them. To this aim we set âjs = 0 ∀(j, s) /∈
{

(1, 4), (4, 1)
}

, we are allowing the interconnection between the nodes in the grid subsystem

which spread the information in the opposite direction with respect to the one from which the
input was received. The simulation is performed with the same parameter as before, i.e., as in
table 4.1, with the difference that we change only the entries â1,4, â4,1 of the matrix Ae according
to the parameter â. The simulation outcome is shown in őgure 4.8. It is possible to notice again
the diamond-shaped color-map due to the eigenvalues of Ad. Even in this case the best result is
achieved by decoupling all the nodes in the same subsystem.
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Figure 4.8: Results of the őrst simulation for the partially connected grid

We end this section by considering the same conőguration for the lifted grid network of
before and we show that even in this case there are parameters choices which does not lead
to any advantage in using the lifted conőguration with respect to the simple one. We set the
parameters according to table 4.2, with the exception that only â1,4, â4,1 of the matrix Ae are set
according to the parameter â, all the other ajs remains 0 for all j, s. The result of the simulation
is shown in őgure 4.9, even if the best results are achieved again for the lifted conőguration
with λ̂ = λ and â = 0, the quantity e2 is always negative highlighting the fact that the metric
minimum eigenvalue of the Gramian for the simple network decays more slowly with respect to
the lifted counterpart.

Figure 4.9: Result of the second simulation for the partially connected grid

It is worth noting that the outcomes of the simulations in the partially connected conőgu-
ration are quite similar (except for the shape of the allowed parameters region imposed by the
eigenvalues of Ae) to the ones obtained with the symmetric conőguration.
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Conclusions

In this thesis, we have discussed the role of structure and memory in reducing the effort neces-
sary to control a networked dynamical system as the number of control inputs remains constant
and the size of the network increases. Each node in the network was embedded with a local
memory on the source direction of incoming control inputs. Furthermore, nodes were endowed
with computational power to process inputs and efficiently propagate them through the network.
The key theoretical tool that allowed us to enrich the internal dynamics of the nodes and add
new control capabilities was graph lifting. In essence, graph lifting consists in expanding (adding
components) to the original node state by generating a novel graph composed of the same num-
ber of subsystems (sub-graphs) as the number of nodes in the original non-lifted network. Each
lifted subsystem can hence be formed by more than one node, and the joint state of all the nodes
in the same lifted subsystem represents the expanded node state.
In the thesis we have described in detail the lifting procedure and how it can be applied to
linear dynamical systems on networks. In particular we focused on homogeneous lifting, where
each sub-graph state has the same dimension and is subjected to identical dynamical equations.
Some key constraints on the allowed lifted dynamics were introduced and discussed, in order to
prevent the expanded dynamics from amplifying input signals more than the original one. These
constraints play a crucial role in the interpretation of the achieved results.
After a general description of the framework the attention was dedicated to some speciőc topolo-
gies, the line and the grid, which are used as case studies. For these topologies we discussed how
to "design" the lifted network to reproduce memory effects.
In the line case, once treated how the simple and lifted lines can be modeled, we computed an-
alytical expressions of the control energy metrics and of the asymptotic rates (rate of growth of
the energy metrics as the number of nodes in the network increases) for both the networks. Fur-
thermore, an inequality has been derived which allows to prove that for a speciőc selection of free
parameters the lifted network outperforms the simple one. The considered choice of parameters
satisőes the most conservative constraints for the expanded system, and alternative parameter
choices are possible, also yielding good control energy performances for the lifted line. However,
it was outlined through some examples how there exist sets of parameters of the initial non-lifted
network that do not allow for any improvement in terms of control energy by employing the pro-
posed lifted dynamics. The analytical results were followed by grid-search simulations in order
to evaluate the best parameters for the lifted network beyond the one leading to the inequality.
As expected, these simulations conőrmed how the set of parameters considered in the inequality
does not yield to the best performances of the lifted line.
The focus subsequently shifted to describe how to embed memory in the grid network. Given
the complexity of analytical computations for control energy metrics, advantages were evaluated
through simulations. The conducted simulations highlighted again the convenience of employing
the lifted dynamics. Nevertheless, it is worth noting that, as for the line, certain conőgurations
for the original non-lifted grid do not allow to improve control energy performances by adding
memory.
Summing up, with this work we proposed a őrst description of the potential of memory effects
for the control of networked dynamics. We managed to prove how these effects can be effec-
tively designed and used to reduce the effort necessary to control a network system. However,
we pointed out that it is not always possible (at least with the imposed constraints) to employ
memory to improve control energy performances.
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A number of issues still remain open for further investigation. For example, numerical simulations
for the grid and the line seem to lead to different conclusions on the best choice of parameters
for the lifted dynamics. This may depend on the structure of the network. However, by suitably
loosening the constraints, the results of the simulations are more similar. As we derived them,
the imposed constraints on the dynamics are meaningful only if we consider as inputs to the
system step signals. Further investigation on the role and the proper form of the constraints
can hence be considered to understand if there exist better conditions capturing the required
non-amplifying behaviour. Another open problem is related to the existence of solutions that
do not lead to any advantage in employing memory effects, the sets of parameters showing this
behaviour were not fully characterized. Finally, analytical expressions of asymptotic rates could
be derived for alternative parameter choices (beyond the considered one), in particular for the
ones resulting in the lowest asymptotic rates. This would provide a more precise quantiőcation
of the beneőts derived from employing the proposed strategy.



Appendix A

Useful tools

A.1 Kronecker Product

The Kronecker product is a useful tool we will exploit for the modeling of network of intercon-
nected homogeneous systems. In this appendix we provide some basic deőnitions which will help
the reader to better understand the content of the thesis work.
Definition 15 (Kronecker Product) Consider two matrices A ∈ R

n×m and B ∈ R
q×r, the

Kronecker product of A and B is the nq ×mr matrix A⊗B given by:

A⊗B =









a11B . . . a1mB
...

. . .
...

an1B
. . . anmB









. (A.1)

If we consider two general vectors v, w ∈ R
n, we have that:

v ⊗ w =







v1w
...

vnw






∈ R

n2

. (A.2)

The Kronecker product enjoys several properties, we list only some of them below:

• bilinearity property: (αA+βB)⊗ (γC+δD) = αγA⊗C+αδA⊗D+βγB⊗C+βγB⊗D

• associativity property: (A⊗B)⊗ C = A⊗ (B ⊗ C)

• the transpose property: (A⊗B)T = AT ⊗BT

• the mixed product property: (A⊗B)(C ⊗D) = (AC)⊗ (BD)

Where A,B,C,D are all matrices with appropriate compatible dimensions.
Some useful consequences of the mixed product property concerns eigenvalues of the product,
let Av = λv and Bw = µ, then:

• the eigen property reads: (A⊗B)(v ⊗ w) = (Av)⊗ (Bw) = (λv)⊗ (µw) = λµ(v ⊗ w)

• the spectrum property reads: σ(A⊗B) = {λµ|λ ∈ σ(A), µ ∈ σ(B)}

The last property we will consider is the inverse property. For square matrices A and B, A⊗B
is invertible if and only if both A and B are inevitable. In this case the inverse property hold:

• inverse property (A⊗B)−1 = (A−1 ⊗B−1)

To better develop the introduced concepts we provide a simple example of use of Kronecker
product.
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Example 10 (Kronecker Product)
Consider the two matrices:

A =

[

3
2

]

, B =

[

1 0
2 7

]

. (A.3)

The Kronecker product is given by:

A⊗B =

[

3B
2B

]

=









3 0
6 21
2 0
4 14









. (A.4)

A.2 Discrete-Time Lyapunov equations

In the thesis we will often perform computations of the inőnite horizon controllability and output
controllability Gramians. They require the solution of the discrete time Lyapunov equation. We
report here the deőnition and the conditions which leads to a unique solution of the equation.
The discrete-time Lyapunov equation is

AXA† −X = −Q (A.5)

where Q is hermitian.

1. There is a unique solution iff no eigenvalue of A is the reciprocal of an eigenvalue of A†. If
this condition is satisőed, the unique X is Hermitian.

2. If A is convergent then X is unique and Hermitian and X =
∑∞

k=0(A
kQ(A†)k).

3. If A is convergent and Q is positive deőnite (or semi-deőnite) then X is unique, Hermitian
and positive deőnite (or semi-deőnite).

We recall that a matrix A is convergent if Ak tends to 0 as k tends to inőnity. In order to establish
if a matrix is convergent it is possible to check its eigenvalues, all the eigenvalues needs to be
inside the unit circle, i.e. let σ(A) be the spectrum of A, A is convergent iff λ ∈ σ(A) =⇒ |λ| < 1.
A matrix whose eigenvalues are all inside the unit circle is said to be Schur stable.
Given a system described by the matrices (A,B) the inőnite-horizon controllability Gramian is
given by the equation:

W =

n
∑

k=1

AkBBT (AT )k. (A.6)

In particular we will always consider real matrices, hence AT = A†, BT = B†.
The Gramian can hence be found using Lyapunov equations by exploiting point 2 above, in
particular it is necessary to set:

X = W, Q = BBT (A.7)

The matrix Q deőned in this way will always be positive semi-deőnite, moreover if we impose
Schur stability of the matrix A (as we will always do in the thesis) the solution of the Lyapunov
equations and hence the Gramian will be positive semideőnite and unique.

A.3 Asymptotic gain of a discrete time transfer function

Consider a system with rational transfer function

W (z) =
a(z)

b(z)
(A.8)



A.3 Asymptotic gain of a discrete time transfer function 63

We assume this function to be BIBO stable and proper.
We consider the discrete step signal:

u(t) = δ−1(t) =

{

1 t ≥ 0

0 t < 0
(A.9)

The corresponding Z-Transform is a geometric series of ratio z−1, therefore we have:

U(z) = Z[δ−1(t)] =
+∞
∑

k=0

z−k =
1

1− z−1
=

z

z − 1
. (A.10)

If we apply the step signal to the system the forced response to this input is:

Y (z) = W (z)
z

z − 1
. (A.11)

Let y(t) = Z−1[Y (z)], we can now compute the asymptotic value of the signal which is given
according to the őnal value theorem for the Z-transform.
Theorem 4 (Final Value theorem) Consider a signal f(t), and let F (z) = Z[f(t)] be its Z-
transform. if lim

t→∞
f(t) exist and is őnite, then:

lim
t→∞

f(t) = lim
z→1

(1− z−1)F (z). (A.12)

By exploiting the őnal value theorem we can compute the asymptotic value for the signal y(t)
which is also called asymptotic gain:

lim
t→∞

y(t) = lim
z→1

(1− z−1)Y (z) = lim
z→1

(1− z−1)
z

z − 1
W (z) = W (1) (A.13)

Hence given a transfer function W (z) the asymptotic gain is simply given by W (1), it represents
the asymptotic value of the forced response to the step signal. If W (1) > 1 it means that the
system ampliőes step input signals, if W (1) < 1 the signal is attenuated.
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Appendix B

Matlab Code

B.1 Simulations for simple and expanded line networks

The following Matlab code implements the procedure for the estimation of the asymptotic rates
described in section 3.5. Given a certain set of parameters for the simple line the code generates
the color-maps used to evaluate the best parameters choices for the associated lifted line.
In the script the parameters λ for the simple line will be denoted as l; the parameters λ̂, â, b̂ for
the expanded line as lh, ah and bh.

1 clc

2 clear all

3 close all

4 %parameters of the simple line for which tehere exists

5 %advantageous configuarations of the associated lift

6 l= 0.2;%self loop weights

7 b= 0.39;% edge weights

8 bu=1 %input weight

9 %parameters of the lifted line for which does not exist

10 % advantageous configurations of the associated lift

11 %l= 0.2;% self loop weights

12 %b= 0.05;% edge weights

13 %bu=1 %input weight

14 %% parameteres for the expanded network

15 bh=b; %edge weights

16 buh =0.5 %interconnection weights

17 %% selection of the contraints to be applied

18 %set contrain = 1 to activate the contrain

19 constr_eigenvalues =1;

20 constr_as_gain =1;

21 %The vector energy [1,2] describes the control enegy using

22 %two different metrics

23 %Let gmin=min(eig(W)); tw=trace(inv(W))

24 %We compute the control energy for two networks

25 %one with 12 nodes (gmin12 and tw12)

26 %and one with 16 nodes (gmin16 and tw16)

27 %We do the same for the associated expanded networks

28 %(gmin12_e and tw12_e , gmin16_e and tw16_e).

29 %Let e1=log10(tw16)-log10(tw12)

30 %Let e2=log10(gmin16)-log10(gmin12)

31 %Let e1_e=log10(tw16_e)-log10(tw12_e)

32 %Let e2_e=log10(gmin16_e)-log10(gmin12_e)

33 %the two vectors energy1 and energy2 are structured as follows
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34 %--------------------------------------------------

35 % Energy1 -Simple network

36 %--------------------------------------------------

37 % |-l-|-b-|-tw12 -|-gmin12 -|-tw16 -|-gmin16 -|-tw16 -|

38 %---------------------------------------------------

39 % Energy2 -Expanded Network

40 %---------------------------------------------------

41 %|-lh -|-ah -|-tw12_e -|-gmin12_e -|-tw16_e -|-gmin16_e -|-tw16_e -|

42 energy1 =[l b];

43 %% computation of the control energy for the simple networks with

12 and 16 nodes

44 for n=[12 ,16]

45 % we build the simple line network

46 A = l*diag(ones(n,1)) + b*diag(ones(n-1,1) ,1) + b*diag(ones

(n-1,1) ,-1);

47 B = zeros(n,1);

48 B(1) = bu;

49 if(max(abs(eig(A))) >1) %we check the stability of matrix A

50 ME = MException('My:unstable ','A is not stable');

51 throw(ME)

52 end

53 %computation of the gramian by solving Lyapunov equations

54 W = dlyap(A,B*B');

55 %We check the positive definitness of the gramian wich combined

56 %with the stability of A implies the network to be controllable

57 if(find(eig(W)) <=0)

58 ME = MException('My:posdef','W is not positive

definite ');

59 throw(ME)

60 end

61 %we add the entries to the vector energy1

62 energy1 = [energy1 trace(inv(W)) min(eig(W))];

63 end

64 %% computation of the control energy for the expanded network

65 energy2 =[];

66 %------------------------------------------------------------------

67 % variables necessary to generate the colormap

68 itl=1;

69 ita=1;

70 s=length ( -1:0.01:1);

71 e1c=-1e10*ones(s,s);

72 e2c=1e10*ones(s,s);

73 max_e1=-1e10;

74 min_e2 =1e10;

75 % -----------------------------------------------------------------

76 % simple subsystem matrices for the comparison of asymptotic gains

77 Ane=l;

78 Bne=[b b 1];

79 % grid search on the parameters for the expanded network

80 for lh = -1:0.01:1

81 for ah= -1:0.01:1

82 stop=false;

83 energy_t =[lh ah];
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84 for n=[12 ,16]

85 %matrices of the expanded subsystem for the

86 %asymptotic gain computation

87 Aei=[lh ah; ah lh];

88 Bevi=[bh 0 buh;

89 0 bh buh];

90 Ctei=ones (1,2);

91 %we check the contraints on the modulus of eigenvalues

92 if(constr_eigenvalues ==1)

93 ee=eig(Aei);

94 for i=1: length(eig(Aei))

95 if(abs(ee(i))>abs(l))

96 stop=true;

97 end

98 end

99 end

100 %asymptotic gain computation for the expanded

101 %and simple systems

102 We=Ctei*inv(Aei -eye(2))*Bevi;

103 Wne=inv(Ane -1)*Bne;

104 %asymptotic gain comparison

105 for j=1:3

106 if(abs(We(1,j))>abs(Wne(1,j)))

107 stop=true;

108 end

109 end

110 % We build the matrix Ae of the overall expanded system

111 Ae = [lh*diag(ones(n,1))+bh*diag(ones(n-1,1) ,1) ah*eye(

n); ah*eye(n) lh*diag(ones(n,1))+bh*diag(ones(n-1,1)

,-1)];

112 %we check the stability of matrix Ae

113 if(max(abs(eig(Ae))) >=1)

114 stop=true;

115 else

116 Be = zeros (2*n,1);

117 Be(1) = buh;

118 Be(n+1) = buh;

119 Ct = [eye(n) eye(n)];

120 %output controllability gramian computation

121 Wdt = Ct*dlyap(Ae,Be*Be ')*Ct ';

122 %we check the positive definitness of the gramian

123 if(find(eig(Wdt)) <=0)

124 ME = MException('My:posdef','W is not positive

definite ');

125 throw(ME)

126 end

127 %we add the entries to a temporary vector

128 energy_t = [energy_t trace(inv(Wdt)) min(eig(Wdt))];

129 end

130 end

131 %if all the contraints are satisfied we add the entries in

132 %energy_t to the vector energy_2

133 if(stop==false)
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134 energy2 =[ energy2;energy_t ];

135 %we create the matrices of the quantities e1 and e2

136 % to generate the colormap

137 ee1=log10(energy_t (:,5))-log10(energy_t (:,3));

138 es1=log10(energy1 (5))-log10(energy1 (3));

139 e1=ee1 -es1;

140 e1c(itl ,ita)=e1;

141 if(imag(e1c(itl ,ita))==0)

142 e1c(itl ,ita)=e1;

143 end

144 ee2=log10(energy_t (:,6))-log10(energy_t (:,4));

145 es2=log10(energy1 (6))-log10(energy1 (4));

146 e2=ee2 -es2;

147 if(imag(e2c(itl ,ita))==0)

148 e2c(itl ,ita)=e2;

149 end

150 end

151 ita=ita+1;

152 end

153 ita=1;

154 itl=itl+1;

155 end

156 %%We plot the log - control energy comparison with both the metrics

in a colormap

157 e1c(find(e1c==-1e10))=max(e1(:,:));

158 e2c(find(e2c==1e10))=min(e2(:,:));

159 max_l=find(max(real(energy2 (:,1))));

160 min_l=find(min(real(energy2 (:,1))));

161 l_limit=max(abs(energy2(max_l ,1)),abs(energy2(min_l ,1)))

162 max_a=find(max(real(energy2 (:,2))));

163 min_a=find(min(real(energy2 (:,2))));

164 a_limit=max(abs(energy2(max_a ,1)),abs(energy2(min_a ,1)))

165 %we generate the colormap for the metric trace of the gramian

166 figure

167 title(sprintf('Metric comparison with parametrs $\ lambda $=%d, b=%d'

,l,b))

168 map1=subplot (2,1,1);

169 im=image ( -1:0.01:1 , -1:0.01:1 , e1c);

170 xlim([-a_limit , a_limit ])

171 ylim([-l_limit , l_limit ])

172 colorbar

173 c=colormap ("bone");

174 colormap(map1 ,c);

175 im.CDataMapping = 'scaled ';

176 title('Metric $Trace(W^{-1})$','Interpreter ','latex')

177 xlabel('$$\hat{a}$$','Interpreter ','latex')

178 ylabel('$$\hat{\ lambda }$$','Interpreter ','latex')

179 %we generate the colormap for the metric minimum eigenvalue of the

gramian

180 map2=subplot (2,1,2);

181 im=image ( -1:0.01:1 , -1:0.01:1 , e2c);

182 colorbar

183 colormap(map2 ,flipud(c))
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184 im.CDataMapping = 'scaled ';

185 xlabel('$$\hat{a}$$','Interpreter ','latex')

186 ylabel('$$\hat{\ lambda }$$','Interpreter ','latex')

187 xlim([-a_limit , a_limit ])

188 ylim([-l_limit , l_limit ])

189 title('Metric $\ lambda_{min}(W)$','Interpreter ','latex')

190 sgtitle(sprintf('Metric comparison with parameters = %.03f, b=

%.02f',l,b))

B.2 Simulations for the grid network

In this section we report the code used for the estimation of the asymptotic rates for the simple and lifted
grid networks in the fully-connected symmetric configuration. The simulations for the partially connected
configuration can be obtained by adapting the code. We exploit Kronecker products to compute the
matrices of the overall systems starting from the matrices of the simple and expanded subsystems. In
order to estimate the asymptotic rates we exploit the procedure outlined in sections 3.5 and 4.2. The last
rows of the script plot the color-map for the evaluation of the best parameters for the lifted grid network.

1 clc

2 clear all

3 close all

4 %parameters of the simple grid for which tehere exists

5 %advantageous configuarations of the associated lifted grid

6 l=0.325; %parameter lambda , selfloop weight

7 b=0.16; %interconnection weight

8 bu=1; %weight associated to the input from external enviroment

9 %parameters of the simple grid for which does not exists

10 %advantageous configuarations of the associated lifted grid

11 % l=0.035;

12 % b=0.34;

13 %paramteres of the lifted grid

14 bh=b %parameter hat b, interconnection weight

15 beu =1/4 %%weight associated to the input from external enviroment

16 % dimesions of the two grid for the rate estimation

17 n1=2; m1=2;

18 n2=4; m2=2;

19 %estimation of the asymptotic rate for the simple grid

20 rate1=compute_sg_rate(n1,m1,n2 ,m2,l,b,bu);

21 %vector containing the difference between asymptotic

22 %rates i.e the quantity e2

23 energy_e =[];

24 etl=1;eta=1;

25 %% grid search for the parameters of the lifted grid

26 for lh = -1:0.005:1

27 eta=1;

28 for ah = -1:0.005:1

29 try

30 %the expanded grid is built

31 [A1 B1 C1]= build_grid_ex(n1,m1,lh,bh,ah,beu);

32 [A2 B2 C2]= build_grid_ex(n2,m2,lh,bh,ah,beu);

33 %computation of the gramians

34 W1=out_gramian(A1 , B1, C1);

35 W2=out_gramian(A2 , B2, C2);

36 %matrices describing the expanded subsystem
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37 Aei=lh*eye(4)+ah*ones (4,4)-ah*eye(4);

38 Bei=[bh*eye(4) beu*ones (4,1)];

39 %matrices describing the simple subsystem

40 Ai=l;

41 Bi=[b*ones (1,4) 1];

42 %check of gramian positive definitness

43 if(min(eig(W1)) <=0 && min(eig(W2)) <=0)

44 ME=MException('W:unct','unct W');

45 throw(ME)

46 end

47 %check of the contraint on eigenvalues

48 ee=eig(Aei);

49 for i=1: length(ee)

50 if(abs(ee(i))>abs(l))

51 ME=MException('A:eigenvals ','constaint on

eigenvalues not satisfied');

52 throw(ME)

53 end

54 end

55 %check of the contrain on asymptotic gain

56 We=ones (1,4)*inv(Aei -eye(4))*Bei;

57 Wne=inv(Ai -1)*Bi;

58 for i=1

59 for j=1:5

60 if(abs(We(i,j))>abs(Wne(i,j)))

61 ME=MException('We:asgain','constraint on

asymptotic value not satisfied');

62 throw(ME)

63 end

64 end

65 end

66 %computation of the as. rate for the expanded grid

67 rate=log10(min(eig(W2)))-log10(min(eig(W1)));

68 %we check for numerical errors

69 if(imag(rate)==0)

70 else

71 ME=MException('We:imag','imag');

72 throw(ME)

73 end

74 %we add the computed rate to the vector energy_e

75 energy_e =[ energy_e; lh ah rate -rate1 etl eta];

76 catch ME

77 end

78 eta=eta+1;

79 end

80 etl=etl+1;

81 end

82 %% colormap genertation

83 s=length ( -1:0.005:1);

84 e=1e10*ones(s,s);

85 max_e=1e10;

86
87 max_l=find(max(real(energy_e (:,1))));
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88 min_l=find(min(real(energy_e (:,1))));

89 l_limit=max(abs(energy_e(max_l ,1)),abs(energy_e(min_l ,1)))

90
91 max_a=find(max(real(energy_e (:,1))));

92 min_a=find(min(real( energy_e (:,1))));

93
94 a_limit=max(abs(energy_e(max_a ,1)),abs(energy_e(min_a ,1)))

95
96 for i=1: size(energy_e)

97 eta=energy_e(i,5);

98 etl=energy_e(i,4);

99 e(etl ,eta)=real(energy_e(i,3));

100 end

101
102 max_e=max(energy_e (:,3));

103 min_e=min(energy_e (:,3));

104 e(find(e==1e10))=min_e;

105 figure

106 title('Metric trace(W^{-1})')

107 im=image ( -1:0.005:1 , -1:0.005:1 ,e);

108 xlim([-a_limit , a_limit ])

109 ylim([-l_limit , l_limit ])

110 colorbar

111 c=colormap ("bone");

112 colormap(flipud(c))

113 im.CDataMapping = 'scaled ';

114 clim([min_e , max_e])

115 xlabel('$\hat{a}$','Interpreter ','latex')

116 ylabel('$\hat{\ lambda }$','Interpreter ','latex')

117 title(sprintf('Metric comparison with parameters = %.03f, b=

%.02f',l,b))

118 function [A,B,C]= build_grid_ex(n,m,lh,bh,a,beu)

119 %function to build the expanded grid given the parameters

120 Aei=lh*eye(4)+a*ones (4,4)-a*eye(4);

121 Bei=bh*eye(4);

122 Cei=eye(4);

123 e=@(k,n) [zeros(k-1,1);1; zeros(n-k,1)];

124 L=(kron(kron(eye(m),diag(ones(n-1,1) ,1)),e(2,4)*e(2,4) ')+kron(

kron(eye(m),diag(ones(n-1,1) ,-1)),e(1,4)*e(1,4) ')+kron(kron(

diag(ones(m-1,1) ,-1),eye(n)),e(4,4)*e(4,4) ')+kron(kron(diag(

ones(m-1,1) ,1),eye(n)),e(3,4)*e(3,4) '));

125 A=kron(eye(n*m),Aei)+kron(eye(n*m),Bei)*L*kron(eye(n*m),Cei);

126 B=beu*kron(kron(eye(m) ,[1;zeros(n-1,1)]),ones (4,1));

127 C=kron(eye(n*m),ones (4,1) ');

128 end

129 function rate= compute_sg_rate(n1,m1 ,n2,m2,l,b,bu)

130 %function which computes the asymptotic rate for the simple line

131 [A1 B1]= build_grid(n1,m1,l,b,bu ,1);

132 W1=dlyap(A1,B1*B1 ');

133 e11=log10(min(eig(W1)));

134 [A2 B2]= build_grid(n2,m2,l,b,bu ,1);

135 W2=dlyap(A2,B2*B2 ');

136 e21=log10(min(eig(W2)));
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137 rate=e21 -e11

138 end

139 function [A,B]= build_grid(n,m,l,b,bu,f)

140 %function that builds the simple grid given the parameters

141 Ai=l;

142 Bi=b*ones (1,4);

143 Ci=ones (4,1);

144 e=@(k,n) [zeros(k-1,1);1; zeros(n-k,1)];

145 L=(kron(kron(eye(m),diag(ones(n-1,1) ,1)),e(2,4)*e(2,4) ')+kron(

kron(eye(m),diag(ones(n-1,1) ,-1)),e(1,4)*e(1,4) ')+kron(kron(

diag(ones(m-1,1) ,-1),eye(n)),e(4,4)*e(4,4) ')+kron(kron(diag(

ones(m-1,1) ,1),eye(n)),e(3,4)*e(3,4) '));

146 A=kron(eye(n*m),Ai)+kron(eye(n*m),Bi)*L*kron(eye(n*m),Ci);

147 B=kron(eye(m),[bu;zeros(n-1,1)]);

148 %if the flag f=1 we check for the stability of A

149 if(f==1)

150 if(round(max(abs(eig(A))) ,15) >=1)

151 ME=MException('A:unst','unstable A');

152 throw(ME)

153 end

154 end

155 end

156 function [W] = out_(A,B,C)

157 %function that computes the output controllability gramian

158 if(max(abs(eig(A))) >=1)%we chek for the stability of Ae

159 ME=MException('Ae:unst','unstable Ae');

160 throw(ME)

161 end

162 W=C*dlyap(A,B*B')*C';

163 end
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