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Abstract

In this thesis we study the dynamics of a gravitationally bound binary system composed of two
spinless compact objects, which could be black holes or neutron stars, in the post-Newtonian (PN)
approximation scheme of general relativity. The predictions obtained within this scheme have al-
ready been fundamental for the observation of gravitational waves by the LIGO-Virgo-KAGRA
collaboration, yet an improvement of their accuracy will be of uttermost importance to match the
precision of future gravitational wave observatories, such as Einstein Telescope, Cosmic Explorer
and LISA.
Specifically in this work we employ an effective field theory approach to the gravitational dynamics,
applying modern diagrammatic techniques to address the computation of the post-Newtonian cor-
rections: these techniques have been first developed in the context of quantum field theory for the
evaluation of elementary particles scattering amplitudes, yet recently they have been successfully
applied also to the study of coalescing binary systems in general relativity.
Using these techniques we thoroughly derive the corrections to the Lagrangian of the binary system
up to the 2.5PN order (v5), i.e. at next-to-next-to-leading order in the conservative sector and at
leading order in the dissipative sector. The former sector includes corrections to the binding energy
of the binary system, whereas the latter encodes radiation-reaction effects. From these results then
we analytically compute the observable gravitational wave.
To evaluate the conservative diagrams we have also developed a Mathematica code, which we apply
as well to evaluate some selected conservative diagrams first contributing at 7PN order (v14), so
N7LO corrections to the Newtonian potential.
Finally, we perform a Fisher matrix forecast on the precision with which the future space-based
LISA gravitational wave observatory will be able to constrain possible deviations from general rel-
ativity during the early inspiral phase of compact binary systems. In particular we introduce a
parametric deformation of the post-Newtonian expression for the phase of the emitted gravitational
waves, finding that it may be possible to constrain relative deviations from the post-Newtonian co-
efficients ranging from O(0.1) for the 2PN coefficients to O(0.001) for the leading order one.
Throughout this thesis we review many of the needed topics and explicitly evaluate most of the
necessary results, with the aim of presenting an accessible and self-contained exposition, spanning
from the derivation of the post-Newtonian corrections to their application in a phenomenological
analysis. The approach presented in this thesis could possibly be extended to modified theories of
gravity as well.
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INTRODUCTION

Ever since Einstein formulated its theory of general relativity in 1915 there has been a steady
interest in the study of the new phenomena predicted by this new theory, the most renowned of
them being gravitational waves. Gravitational waves are perturbations of the spacetime which
can propagate indefinitely: this novel prediction, at first almost controversial, spurred a lot of
interest, both as a way to either confirm or refute the theory of general relativity, and on its own,
since gravitational waves represented a new potential probe to explore the cosmos, similar but
complementary to electromagnetic waves.

In fact the spacetime is so stiff that only the most energetic events in the universe can produce
gravitational waves with an amplitude large enough to possibly be observed; yet once produced they
can travel almost undisturbed, up to us. For this reason gravitational waves may be employed to
observe extreme phenomena which cannot be studied by any other means, such as the coalescence of
compact binary systems which comprise black holes and neutron stars, among many others. These
observations can scrutinize our fundamental physical theories in regimes otherwise unattainable,
looking for possible deviations from them and for hints toward new physics.

This motivated the great experimental effort, which went on for several decades, to build ever
so sensitive detectors capable of detecting gravitational waves. This exceptional endeavor finally
culminated in 2015 with the first direct observation of a gravitational wave signal by the LIGO-Virgo
collaboration [1, 2]: the exquisite sensitivity of the interferometric detectors allowed to measure the
gravitational waves produced by the coalescence of two black holes, an extreme event which took
place more than a billion years ago. Since then more than 90 events have been observed during
three observing runs with ever increasing sensitivity [3–5], and already over 30 candidates have
been observed during the first three months of the currently ongoing fourth (O4) run [6].

Nonetheless such accomplishments are based also on a significant amount of theoretical work. The
theory of general relativity is non-linear and can be solved exactly in very few instances, therefore
suitable approximation schemes are necessary to obtain quantitative predictions for realistic and
physically relevant scenarios: this is also the case for the gravitational waves emitted by coalescing
binary systems.

To study this problem then several different and complementary formalism have been introduced,
each tailored to study a specific phase in the evolution of the binary system. Specifically, among
the several methods used to study the stage prior to the coalescence of the two compact objects,
which is denotes as the inspiral phase, there are the post-Minkowskian formalism [7–11], which
performs a perturbative expansion in the strength of the gravitational field Gm

c2 r
≪ 1, related to

the gravitational constant G; the post-Newtonian formalism [12–23], which performs an expansion

both in Gm
c2 r
≪ 1 and in the velocity v2

c2
≪ 1 of the compact objects; and the gravitational self-force

formalism [24, 25], which is akin to an expansion in the mass ratio m2
m1
≪ 1, since it treats the

second lighter compact object as a perturbation of the exact general relativistic solution for the first
object. Other techniques are able to describe also the merger phase, when the two compact objects

ix
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coalesce; among them numerical relativity [26–29], which solves numerically Einstein’s equations;
and the Effective-One-Body formalism [30, 31], which is a semi-analytical method that employs
the results from the other formalism by properly resumming them. Finally other methods, such
as black-hole perturbation theory [32–35], are used to study the last stage after the coalescence,
which is denoted as the ringdown phase.

In particular in this thesis work we will focus on one of the historically most studied approximation
schemes, the post-Newtonian formalism, which is well suited to describe the dynamics of compact
binary systems during the long inspiral phase which precedes their merger, where the velocities v
of the compact objects are still low enough. In fact this formalism evaluates the general relativistic
dynamics of the binary system as a perturbative expansion in the parameter v2

c2
∼ Gm

c2 r
≪ 1,

obtaining a series of corrections to the classical Newtonian result. The post-Newtonian formalism
has been introduced by Einstein himself, and the next-to-leading order 1PN dynamics have been
computed already 1917 by Droste and Lorentz [13] and in 1938 by Einstein, Infeld and Hoffmann
[12]. Despite this, the evaluation of higher orders corrections proved to be more difficult, presenting
several subtleties and requiring a huge effort over the last century; currently the 4PN order has
been addressed and cross-checked using a variety of approaches [36–39].

Among these methods, recently it has been put forward also an effective field theory approach to
the study of the dynamics of binary systems in general relativity, which since then has allowed for
a great and steady progress in the computation of post-Newtonian corrections, and which will be
the focus of this thesis work. While in the past this problem had already been considered from
a field theoretical and diagrammatic point of view [40–42], this method was formalized in 2004
in the seminal paper [43]. One of its main strengths is that the effective field theory framework
is able to take advantage of the hierarchy of scales which is present in the two body problem to
reduce the complexity of the computations: roughly speaking it handles the gravitational field as if
it was composed of potential gravitons, mediating the gravitational force between the two compact
objects, and radiation gravitons, representing the gravitational waves. Additionally this method
allows for a systematic inclusion also of spin and finite size effects, which are needed to accurately
model realistic binary systems.

The turning point in the application of this method however has been the introduction, a few years
later, of a diagrammatic viewpoint regarding the evaluation of the post-Newtonian perturbative
corrections: in reference [44] it was established a map between diagrams involving potential gravi-
tons and multi-loop Feynman integrals in massless quantum field theories. This allows to employ
multi-loop quantum field theory techniques, such as integration-by-parts identities [45–47] and the
method of difference [48, 49] and differential equations [50–56], which were first developed in the
context of particle physics, to address the computation of the post-Newtonian corrections. Since
then, using these modern techniques, approaches based on Feynman diagrams [44, 57–65] and scat-
tering amplitudes [66–76] have allowed to efficiently evaluate higher order corrections; while still
yielding fully classical results. The synergy between this approaches enabled to achieve partial
results up to 6PN for spinless and featureless systems [59, 64, 65, 77, 78], yet advancing the state of
the art also regarding corrections due to spin [79–82] and finite size effects [83, 84]; still even higher
order corrections will be needed to fully exploit the capabilities of next generation gravitational
wave detectors.

A great effort is in fact underway in order the develop the next third generation of gravitational
wave observatories, such as the ground based Einstein Telescope [85–87] and Cosmic Explorer [88–
90], and the space based LISA [91]: they will greatly improve over the sensitivity of the current
detectors, exploring also new frequencies bands, promising to unveil many scientific discoveries in
the next decades.

Motivated by these future prospects, in the second part of this thesis work we will forecast the
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capabilities of future gravitational wave observatories to constrain possible deviations from general
relativity. In particular we will be interested in assessing the precision with which it will be possible
to measure relative deviations from the predictions of the post-Newtonian theory, based solely on
the observation of the early inspiral phase of compact binary systems; we will find LISA to be the
observatory best suited for this task. We will then proceed by parametrizing the deviations from
general relativity by introducing several deformation parameters in the expression for the phase of
the observed gravitational wave signal, performing a test similar to the one already carried out in
references [92–96].

Outline of the thesis work

The thesis is structured as follows:

• In chapter 1 we overview the theory of general relativity and the standard treatment of
gravitational waves in linearized general relativity. In particular we explore how the linearized
theory can be used to describe the generation of gravitational waves and their propagation,
focusing then on gravitational waves generated by compact binary systems. Next we briefly
introduce some notions about gravitational wave detectors. Finally we discuss the regime of
validity of the linearized theory, and outline other approaches (such as the post-Newtonian
approximation) which are able to overcome these limits, pointing out their complementarity
as well.

• In chapter 2 we overview the frameworks of effective theories and of quantum field theory in
the path integral formalism. We then present some modern evaluation techniques which are
employed to evaluate multi-loop integrals appearing in quantum field theories.

• In chapter 3 we overview the construction of an effective theory which yields the post-
Newtonian corrections to the dynamics of compact binary systems. In particular we first
outline some key concepts using a toy model, presenting then the actual construction of the
effective theory. In the end we explicitly show how the classical Newtonian gravitational
potential follows from this construction.

• In chapter 4 we obtain the post-Newtonian corrections to the binary dynamics. In particular
we start by outlining the evaluation procedure for diagrams which result in conservative
contributions to the binary dynamics; then we explicitly evaluate all the next-to-leading order
(1PN) corrections to the conservative sector; finally we generalize this procedure. We then
present the Mathematica code which we wrote in order to automatize the evaluations of these
conservative diagrams; and proceed by reporting the next-to-next-to-leading order (2PN)
corrections to the conservative sector. Then, to illustrate the flexibility of the aforementioned
code, we evaluate a few contributions which are N7LO (7PN) corrections to the Newtonian
potential, beyond the present state of the art.

• In chapter 5 we evaluate the leading order diagrams entering in the dissipative sector, obtain-
ing the leading order power loss for the compact binary system due to gravitational waves
emission. We conclude by evaluating also the leading order gravitational waveform directly
in the effective theory, using the in-in formalism.

• In chapter 6 we present how to derive observables from the results obtained in chapter 4 and
5: complementing them with other results present in the literature we explicitly obtain the
analytical expression for the gravitational waveform in the post-Newtonian theory.

• In chapter 7 we perform an observational forecast on the precision with which the future
space-based gravitational wave detector LISA will be able to constrain possible deviations
from the theory of general relativity. We discuss the parametrization employed to quantify
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these deviations, estimating also the optimal trade off between statistical and systematic
errors. Then we briefly introduce the modelization of the LISA instrument and the Fisher
matrix formalism. In the end we present and discuss the results obtained for the forecast.

Finally in the Conclusions we summarize the main results of this thesis work, discussing also about
possible extensions.

Furthermore some additional discussions and evaluations are presented in the appendices:

• In appendix A we outline the procedure to derive the Feynman rules for the effective theory
presented in chapter 3, and then proceed to explicitly evaluate the needed expressions.

• In appendix B we report the definitions and properties of some recurring mathematical func-
tions.

• In appendix C we explicitly evaluate the integrals which were needed to obtain the results
presented in chapter 4. Furthermore we also show the application of the evaluation methods
presented in chapter 2.

• In appendix D we report some extracts from the Mathematica code and an example of its
use.



NOTATION

The notation and a list of conventions adopted throughout this thesis are presented hereafter.

Physical constants and units

We define the reduced Planck mass as mPl ≡
√︂

ℏ c
32πG , which is a factor of two smaller than the

more widely used definition.

In chapter 1 the Planck constant ℏ and the speed of light c will be written explicitly, while in the
rest of the thesis we’ll frequently adopt ℏ = c = 1 units; the solar mass is denoted by M⊙.

Space-time, metric, indices and vectors

The dimension of space-time is 3 + 1; nonetheless when needed dimensional regularization will be
adopted, in which case the dimension of space-time will be taken to be d + 1, with d −→ 3 at the
end of calculations.

For most of the work we will adopt a mostly minus metric signature, so for d = 3 it means
ηµν = diag(+,−,−,−). Only in chapter 1, in the end of chapter 6 and in chapter 7 we will employ
the opposite, mostly plus metric signature ηµν = diag(−,+,+,+), as it is customarily used when
dealing with observables.

We employ Einstein summation notation, where summation over contracted indices is understood.
We use letters from the Greek alphabet to denote space and time components, e.g. µ = 0, 1, 2, 3;
while we use letters from the Latin alphabet to denote spatial components only, e.g. i = 1, 2, 3.

The contravariant components of four-vectors are denoted by xµ, their spatial part only by xi; the
latter in vectorial form is denoted by x; therefore the coordinates are xµ = (x0,x), where x0 = ct.
The notation kx understands a contraction between the two four-vectors, as kx ≡ gµνk

µxν =
kµx

µ = +k0x0 − kixi; in particular we define kixi ≡∑︁3
i=1 k

ixi = k · x, that is, two spatial vectors
with same spatial upper index are understood to be summed over that index via the Kronecker
delta δij .

We define the Lagrangian density L via

S =

∫︂
dtd3x

√−gL =
1

c

∫︂
d4x
√−gL , (N1)

with g ≡ det(gµν) < 0 is the determinant of the covariant metric tensor.

Symbols and tensorial quantities

The Christoffel symbol is

Γρµν =
1

2
gρα (∂µgνα + ∂νgµα − ∂αgµν) . (N2)

xiii



xiv Notation

The Riemann tensor is defined as

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµαρΓ

α
νσ − ΓµασΓ

α
νρ , (N3)

the Ricci tensor is
Rµν = Rαµαν , (N4)

while the Ricci scalar is
R = gαβRαβ . (N5)

The Levi-Civita symbol is the totally antisymmetric tensor ϵµνρσ, with ϵ0123 = +1; or when re-
stricting to d = 3 space, the totally antisymmetric tensor ϵijk with ϵ123 = +1.

Tensor (anti)symmetrization

We use round brackets to denote symmetrization of the corresponding indices, and instead square
brackets to denote their anti-symmetrization, for example:

A(µν) =
1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aνµ) . (N6)

If the indices are not contiguous we employ a vertical bar to delimit them, for example:

A(µ|νρ|σ) =
1

2
(Aµνρσ +Aσνρµ) , Aµ[ν|ρ|σ] =

1

2
(Aµνρσ −Aµσρν) . (N7)

Fourier transform

The general d-dimensional Fourier transform conventions, in the mostly minus signature, are:

f(k) =

∫︂
ddx f(x) eikx (N8)

f(x) =

∫︂
ddk

(2π)d
f(k) e−ikx (N9)

(2π)d δ(d)(k) =

∫︂
ddx eikx (N10)

(2π)d δ(d)(x) =

∫︂
ddk e−ikx ; (N11)

while in chapter 1, 6 and 7 the sign in the exponential is opposite, due to the mostly plus signature.
In particular, when we will be working in d + 1 dimensions with the mostly minus Minkowski
background metric, these conventions will explicitly read:

f(k) =

∫︂
dd+1x f(x) eikx =

∫︂
dd+1x f(x) ei(k

0x0−k·x) (N12)

f(x) =

∫︂
dd+1k

(2π)d+1
f(k) e−ikx =

∫︂
dd+1k

(2π)d+1
f(k) e−i(k

0x0−k·x) (N13)

(2π)d+1 δ(d+1)(k) =

∫︂
dd+1x eikx (N14)

(2π)d+1 δ(d+1)(x) =

∫︂
dd+1k e−ikx . (N15)

Integral compact notation

To streamline the calculations in d+1 dimensions we will sometimes employ the shorthand notation
for integrals ∫︂

k,q,...
≡
∫︂

dd+1k

(2π)d+1

dd+1q

(2π)d+1
. . . (N16)



CHAPTER

1 GENERAL RELATIVITY AND
GRAVITATIONAL WAVES

In this chapter we review the theory of general relativity and the mathematical description of
gravitational waves in the linearized theory.

In particular in section 1.1 we briefly present the theory of General Relativity; in section 1.2 we
present gravitational waves and outline some related phenomenology; in section 1.3 we introduce
the mathematical description of gravitational waves in linearized general relativity, specializing it
in section 1.4 to the case of compact binary systems; in section 1.5 we proceed to discuss the
gravitational wave detectors and their response to incoming gravitational waves; finally in section
1.6 we discuss several formalism which go beyond the linearized general relativity, with a particular
focus on the post-Newtonian formalism.

1.1 General relativity

The theory of general relativity was developed by Albert Einstein, who published it in 1915 [97,
98].

General relativity is based on a geometrical interpretation of the theory of gravitation: it posits
that what was previously regarded as the gravitational force is actually just the effect on matter
and energy of the specific geometry of spacetime, and in turn that geometry is dictated by those
same matter and energy components which are present in the spacetime.

This geometrical view also allows general relativity to naturally embody Einstein’s equivalence
principle, which states that for each point of the spacetime it’s possible to find an appropriate
coordinate system for which, in a small enough region around that point, the laws of physics
reduce to those of special relativity, if we neglect gravitational tidal effects [99–102].

To formalize mathematically such ideas, general relativity is formulated in the language of dif-
ferential geometry. Therefore spacetime is a Lorentzian manifold, while physical quantities are
expressed by means of tensor fields defined on it. Such a framework allows us to automatically
satisfy the equivalence principle, as formulae with a proper tensorial structure guarantee general
covariance: that is, those formulae are invariant in form under coordinate transformations specified
by a diffeomorphism, where a diffeomorphism is a function which is differentiable, invertible, and
with a differentiable inverse. In particular, it is always possible to construct local inertial coordi-
nates in which the metric is locally Minkowski, up to tidal effects [101]. This also implies that all
coordinate frames related by a diffeomorphism describe the same physics equivalently, and so that
general relativity has a huge local gauge invariance under the group of arbitrary diffeomorphism
[103].

1
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General relativity can be formulated resorting to the principle of least action: to do so one starts
by assuming the gravitational action to be given by the Einstein-Hilbert action [100, 103]

SEH =
c3

16πG

∫︂
d4x
√−g R , (1.1)

where g ≡ det(gµν) < 0 is the determinant of the covariant metric tensor.

One may also couple gravity to matter fields by introducing the matter action SM , which is usually
obtained starting from a flat space Lagrangian L and employing the minimal coupling principle,
according to which the metric becomes generic ηµν −→ gµν(x), ordinary derivatives are substituted
with covariant derivatives ∂µ −→ ∇µ, while the volume element for the integration over spacetime
is taken to be dV = c−1 d4x

√−g to be consistent with convention (N1); therefore:

SM =
1

c

∫︂
d4x
√−gL . (1.2)

From the last expression follows also the definition of the energy-momentum tensor Tµν [103]

Tµν ≡
2 c√−g

δSM
δgµν

. (1.3)

Finally, varying the full action S = SEH + SM with respect to the inverse metric gµν , we get
Einstein’s equations [99–101, 103, 104]:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.4)

where G = 6.674 30(15)m3 kg−1 s−2 is the Newtonian constant of gravitation [105], Rµν is the Ricci
tensor (N4) and R the Ricci scalar (N5). The left hand side of equation (1.4) is also called the
Einstein tensor Gµν , which identically satisfies the Bianchi identities ∇µGµν = 0 [100, 101].

The vacuum Einstein’s equations, that is, with Tµν(x) = 0, can be cast into a well posed system
of nonlinear hyperbolic partial differential equations [106]. We can also notice that Einstein’s
equations are ten, due to the fact that the tensors in them are symmetric under the exchange of
the µ and ν indices. Actually, due to the Bianchi identities, four equations are constraints on the
initial conditions, while only six are dynamical second order differential equations. Further, this
means that to unambiguously evolve Einstein’s equations, one should provide four conditions which
fix the coordinate system [99]. Nonetheless, as we’ll see in section 1.3.2, in general relativity there
are only two radiative degrees of freedom.

Such differential equations are however generically too difficult to be solved analytically, espe-
cially when general relativity is coupled to matter fields or the physical setting presents few or no
space-time symmetries; this is actually what happens in most realistic scenarios. In fact, few exact
analytical solutions of Einstein’s equations are known. For example, aside from the Minkowski met-
ric, the most known asymptotically flat vacuum stationary solutions are the Schwarzschild metric,
which describes the metric outside a spherically symmetric body which posses only mass; the Kerr
metric, which describes a massive rotating axially symmetric body; the Reissner–Nordström metric,
which describes a spherically symmetric massive charged body, once we add electromagnetism as a
matter field in (1.2); and the Kerr–Newman metric, which describes an axially symmetric rotating
massive charged body [100, 101, 104, 107]. Another widely known solution, of interest in cosmology,
is the Robertson–Walker metric, which describes a spatially homogeneous and isotropic expanding
spacetime, eventually with a non zero spatial curvature [99, 108, 109]. Therefore, apart from the
aforementioned idealized cases, one has to resort to perturbative schemes or numerical methods to
study realistic physical scenarios in general relativity: in fact we’ll do so, starting with linearized
general relativity in section 1.3.1, and later on presenting in section 1.6 some approximation schemes
which go beyond it.



Section 1.2 — Gravitational waves in general relativity 3

1.2 Gravitational waves in general relativity

Gravitational waves may be defined as perturbations of space-time, that propagate through it.
In particular we will make this statement more quantitative in section 1.3 in the framework of
linearized general relativity: there we will see that, given the right assumptions, gravitational
waves can be treated as small perturbations hµν of the background metric gµν , and these small
perturbations satisfy wave equations similar for example to the one electromagnetic waves abide
to. In this framework then gravitational waves are produced by the acceleration of masses (more
precisely by a source with a non vanishing second time derivative of the mass quadrupole moment
at leading order, as we’ll see), and propagate away as a warpage of space-time at the speed of light.

1.2.1 Historical overview

The existence of gravitational waves was inferred by Einstein himself already in 1916, one year
after having postulated the theory of General Relativity [1, 110–113]. Nevertheless, due to the
large gauge group of general relativity, which is invariant under generic space-time diffeomorphism,
the issue of whether gravitational waves were real or just an artifact of the theory was a subject of
debates for a long time: at one point even Einstein himself erroneously asserted the possibility of
their non-existence [112].

Only at the Chapel Hill conference, which took place in January 1957, theoretical consensus was
reached about the reality of gravitational waves [1, 112, 114]. In particular Pirani pointed out that
the components of the Riemann tensor (N3) are related to the relative physical accelerations of
neighboring free particles, which are experimentally measurable quantities, for example employing
a gravity gradiometer [104], and therefore let us overcome the gauge issue [112, 114]. Furthermore,
at the same conference, Feynman presented his famous sticky bead argument : if at each opposite
end of a bar one places a ring of sticky beads, when a gravitational waves passes transversely to the
bar, it will generate tidal forces on the system; especially, it will generate a longitudinal compressive
stress on the bar [112]. This will make the beads and the end of the bar accelerate differently, and
therefore move one with respect to the other: therefore in the sticky point of contact between the
bar and the beads there will be friction, and therefore heat. This means that gravitational waves
must carry energy, as they were the only source of energy in the system that could have produced
that heat in first place [112].

Incidentally, the first attempts to actually detect gravitational waves were carried out by Weber in
the 1960s: the principle was to look for mechanical oscillations induced in large metal cylinders,
called resonant bars, by the passage of a gravitational wave [103, 112, 115]. Over four decades, they
were improved to reach almost useful sensitivity, and a network of them was built; there were also
claims of the discovery of gravitational waves [116], but they turned out to be erroneous due to
an ill-defined statistical treatment of coincidences [112, 117]. The big drawback of resonant-mass
detectors is that they’re high frequency, low bandwidth detectors: this seriously hindered their
ability to detect astrophysical sources [103].

In 1974, Hulse and Taylor detected the PSR B1913+16 binary pulsar [118]. Over the years this
system has been carefully tracked and its orbital dynamics precisely reconstructed: this allowed
for very precise tests of the theory of gravitation [119]. In particular it allowed them to probe the
existence of gravitational radiation, due to the fact that the measured change in the binary orbital
period was in excellent agreement with the one predicted by general relativity [103]. Even though
this observation didn’t directly detect gravitational waves, the fact that accelerated mass radiated
gravitational energy pointed to their existence [112].

Gravitational waves from a binary black hole merger were finally observed by the LIGO and Virgo
collaborations in 2015 [1], using the two LIGO gravitational waves interferometers in the United
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States. This strengthened once again the evidence in favor of the validity of general relativity, and
opened up a new, and sometimes unique, probe to explore the universe and many astro-physical
phenomena. In particular the strength of these interferometric detectors is that they’re sensitive
to gravitational wave signals with frequency from a few tens to few hundreds of Hz: therefore their
bandwidth is quite large and can be made to coincide with the frequencies relevant in the inspiral
and merger of astrophysical compact object binaries, as we will see also in section 1.5.

After two years of upgrades, a new signal was detected in both the Advanced LIGO and also the
european Advanced Virgo detector [120], allowing for more detailed tests about the nature of gravi-
tational waves. Shortly after came also the first joint detection of gravitational and electromagnetic
waves produced by a binary neutron star merger [121], which ushered in the multi-messenger as-
trophysics era. In the next future the ever-increasing sensitivity of these detectors, in combination
with the inclusion in the gravitational wave detectors network of KAGRA in Japan and of LIGO-
India [122, 123], will allow for almost daily detections [124]: this will make more detailed studies
of general relativity and astrophysical phenomena possible, also in a statistical framework due to
the expected large number of events.

Regarding the near future, the third generation of gravitational wave observatories is already under
development, for example with plans to build Einstein Telescope in Europe [85–87] and Cosmic
Explorer in the United States [88–90]. They will be much more sensitive than current detectors,
potentially enabling a new host of discoveries. Nonetheless, ground-based interferometers are in-
trinsically limited to be sensitive only at frequency above about one Hz, due to the Newtonian
and seismic noise: in order to explore the gravitational wave spectrum at lower frequencies there
are several plans for space-based gravitational observatories, to be launched already starting in the
2030s. This is the case for the Laser Interferometer Space Antenna (LISA) [91]: it was proposed
in the 1990s, but only recently it has entered the final mission study stage, which precede mission
adoption that will lead to the spacecraft construction, with an expected launch date in 2037 [125].
These projects have also the potential to study quantities and phenomena of interest in cosmology
[86, 126], such as the presence of a cosmological stochastic gravitational wave background: among
other things they could probe gravitational waves produced in some inflationary scenarios [127,
128] in a complementary way with respect to the usual study of the B modes of the CMB [129].

1.2.2 Gravitational waves phenomenology

In this section we’ll briefly outline some phenomenology related to the field of gravitational waves.

In particular in this work we will be mostly interested in studying binary systems made of two
compact objects orbiting each other under their mutual gravitational attraction. In fact such sys-
tems are one of the main mechanism by virtue of which gravitational waves are copiously produced:
presently we’ve directly detected gravitational waves produced only via this mechanism.

Indeed in such systems, as we will discuss in section 1.4.3, the motion of the bodies in the binary
produces gravitational waves, which carries away energy from the system, forcing the two bodies
to get closer and closer in what’s called the inspiral phase. In particular the amplitude of the
gravitational waves is higher for more massive systems, and the gravitational radiation emitted
increase in amplitude and frequency as the two bodies get closer, in what’s called a chirp signal.
If the bodies are compact enough, which in turn is possible only if they’re heavy enough to start
with, they will eventually get so close that strong general relativistic effects will become domi-
nant, disrupting the orbital motion into a plunge phase, after which the two bodies will undergo
the merger phase. The result of the merger is a single compact body, which will start from an
excited state due to the violent process from which it was created, and hence will lose energy
via gravitational wave emission, during the ringdown phase, until it settles into its ground state.
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Figure 1.1 Plots depicting the time evolution of
the binary black hole (BBH) system which was dis-
covered with event GW150914, the first direct gravita-
tional waves detection [1, 2]. The top panel shows the
expected strain that the gravitational wave induced
in the LIGO Hanford observatory, as reconstructed ei-
ther via an ad hoc numerical relativity simulation (red
line) or template waveforms (grey band), with param-
eters tuned to the most likely ones, as obtained by
the analysis of the recorded signal. In the upper part
we can see also a depiction of the subsequent phases
which the black holes went through: the inspiral which
brought them closer, followed by the merger and the
ringdown, which produced the new, final black hole;
furthermore we can see that the amplitude of the de-
tected signal peaks around the moment of merger. In
the panel below are represented the Keplerian effective
relative distance R

Rs
, in units of Schwarzschild radii Rs,

as defined in equation (1.5), and the Keplerian effec-
tive relative velocity v

c , evaluated using the formulae
that will be presented in section 1.4.3. Figure taken
from [1] under the license conditions.

Nonetheless these systems are usually so far
away from us, hence the gravitational wave am-
plitude so faint, that we may hope to detect
the signal produced in the coalescence of the
bodies only for very massive systems, once they
get really close to each other; that is, towards
the end of the long inspiral phase and in the
subsequent merger and ringdown phases. This
inspiral phase is actually extremely long, and
the initial evolution proceeds really slowly: in
fact, considering binary systems with mass of a
few M⊙, and an age comparable to the one of
their host galaxy, then these system could have
coalesce by today only if their initial orbital pe-
riod was less than a day [103]. In figure 1.1
are depicted the last phases for the evolution of
the first binary black hole system ever observed
coalescing.

The characteristic length at which strong
general-relativistic effect are dominant, and
where roughly happens the transition between
inspiral and plunge phases, is given by

Rs ≡
2Gm

c2
≈ 2.95 km

(︃
m

M⊙

)︃
, (1.5)

which is the Schwarzschild radius associated
to the mass m [100, 101]; here M⊙ =
1.988 41(4)·1030 kg is the solar mass [130]. In
particular Rs is the value of the radial coor-
dinate of the Schwarzschild metric where the
future event horizon of a non-charged, non-
rotating and spherically symmetric black hole
is located [100, 101, 107]; nonetheless its nu-
merical value gives an order of magnitude esti-
mate for the distance at which general relativ-
ity must be taken into account also when used
in the Newtonian mechanics calculations [103].
Let us also recall that a black hole is actually defined as a compact object with a future event
horizon, that is, an hypersurface within which future-directed time-like or null geodesics (read an
observer or a light ray) may enter, but never escape [101, 107].

From this discussion we can see that the binary systems we may hope to detect are made of heavy
and compact objects, where now we can more precisely specify the latter adjective as those objects
with a characteristic length comparable with their Schwarzschild radius: this compactness allows
them get extremely close to each other before merging or being tidally disrupted. The astrophysical
objects which satisfy such conditions are either neutron stars (NS) or black holes (BH), and the
binary system they may form are denoted as Binary Neutron Star (BNS), Binary Black Hole (BBH)
or Neutron Star-Black Hole binary (NSBH) systems.

Still it must be noted that what we’ve just described is not the only mechanism of production of
gravitational waves: among others also rotating neutron stars may produce gravitational waves if
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their shape is asymmetric enough, for example due to small bumps or overdensities on their surface;
similarly also supernovae may produce copious amounts of gravitational waves if the explosion is
asymmetrical enough; furthermore we expect the universe to be permeated by a stochastic gravi-
tational wave background due to the superposition of gravitational waves produced by a plethora
of phenomena. For the latter of great interest is the cosmological stochastic background due to
gravitational waves produced in the early universe, for example by inflation, but possibly also by
phase transitions or more exotic phenomena such as cosmic strings [132, 133].

Regarding this aspect, recently the NANOGrav collaboration, using pulsar-timing arrays, was able
to collect evidence for a stochastic gravitational wave background, probably due to the superposition
of gravitational waves emitted by many supermassive black hole binaries, although it’s possible for
this signal to be of cosmological origin or of even more exotic nature [134].

Furthermore the observation of compact binary system via gravitational waves can give a lot of
astrophysical informations about the evolution of their progenitors: just as an example, if future
gravitational waves observatories were to observe mergers at redshift z ⪆ 30, so before the first
population III stars formed, then this would give a strong evidence for the existence of primordial
black holes. Restricting instead to compact objects of astrophysical origin, and overlooking pos-
sible exotic compact objects, we can study their mass distribution (see also figure 1.2) and their
merger rate. In particular we have that due to the stellar evolution the lower mass expected for
a neutron star is of order MNS,min ≈ 1.2M⊙ [132, 135]; while for stellar black holes it is of order
MBH,min ≈ 3 ∼ 5M⊙ [136–138]. The upper bounds on the mass of a neutron star is instead given
by the Tolman–Oppenheimer–Volkoff limit, and it’s estimated to beMNS,max ≈ 2.2 ∼ 2.6M⊙ [101,

Figure 1.2 Figure depicting the masses of the black holes and the neutron stars known so far, either
through electromagnetic or gravitational wave observations. In particular, regarding the compact objects
discovered thanks gravitational wave events, in the plot are depicted both the initial bodies and the resulting
ones after merger, connected via an arrow. To produce this plots the events up to the end of the O3 run,
with pastro > 0.5, were used; where the pastro statistic quantifies the probability of astrophysical origin of
such events [131]. We can see that as the detector become more sensitive, and so the number of detected
events increases, it becomes possible to perform studies about the compact objects population. Nonetheless
it’s important to recognize that there is a selection bias due to the fact that the detectors are most sensitive
only at certain frequency, and so systems with specific parameters are more readily detected than others:
this explains also why in the plot we have m < O(() 200M⊙). Figure adapted from Masses in the Stellar
Graveyard: GWTC-3, credits of the original image: LIGO-Virgo / Aaron Geller / Northwestern University.
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139]; black holes instead could undergo several mergers and could have masses in a wide range,
depending on several factors. In fact it is expected that the center of the galaxies should host a su-
permassive black hole (SMBH), which may have masses also of the order MSMBH ≈ 106 ∼ 109M⊙
[140]; the observation of gravitational waves produced by the coalescence of (super)massive black
holes binaries, also denoted as (S)MBHBs, are actually a scientific goal of future low-frequency
gravitational wave missions, such as LISA [91].

Since we’ve already observed several compact binary coalescences, we can infer their merger rate
from these observations: in particular the latest LIGO-Virgo data [141] finds the binary neutron
star merger rate to be RBNS = (10 ∼ 1700) Gpc−3 yr−1, the neutron star-black hole merger
rate to be RNSBH = (7.8 ∼ 140) Gpc−3 yr−1, and the binary black hole merger rate to be
RBBH = (17.9 ∼ 44) Gpc−3 yr−1. In particular this merger rate is found to evolve as a function
of redshift, as well as a function of the component masses: there seems to be some mass gaps, i.e.
the merger rate seems to be strongly suppressed in correspondence of specific mass values, and this
could be due to astrophysical phenomena. On the other hand the merger rate strongly decreases
for systems with total mass exceeding 100M⊙. In fact most of the binary systems directly observed
up until now have a total mass m < 100M⊙, and there are astrophysical evidences for the existence
of super massive black holes with masses m > 106M⊙ [37, 142]; instead much less is known for
intermediate mass black holes (IMBHs), with masses in the range 102M⊙ < m < 105M⊙ [37, 143].

1.3 Linearized general relativity and gravitational waves

As outlined in section 1.1, to study general relativity one usually has to resort to some approxi-
mation scheme. In particular in the following we’ll present the linearization of Einstein’s equations
(1.4) around the Minkowski flat metric: this procedure allows to obtain linear partial differential
equations, which are very well understood, and it allows to describe general physical scenarios, un-
der the only assumption of having a weak gravitational field. As we’ll see, this limit in most cases
is not restrictive, and is actually very well suited to study gravitational waves in general relativity.

This section is based mostly on [103]; other references include [99–101, 104].

1.3.1 Linearized general relativity

Linearized general relativity is a theory which approximates general relativity in the regime where
the gravitational field is weak and the spacetime is almost flat. To do so it perturbs the metric
tensor gµν(x) around the flat Minkowski one ηµν , and linearizes Einstein’s equations (1.4) in that
perturbation.

Specifically, one assumes that the metric can be written as:

gµν(x) = ηµν + hµν(x) , with |hµν(x)| ≪ 1 . (1.6)

This is equivalent to requiring the existence of at least one coordinate frame where the metric can
be written as a small perturbation around the flat Minkowski metric [103, 104].

Having done so, it’s now possible to expand the equations of motion (1.4) keeping only terms of
order O(h), while neglecting all terms of higher order. As a consequence, in the linearized theory
the convention is that indices are raised and lowered using only ηµν , and not the full metric gµν ,
as the difference would be of order O(h2) [103]; while the inverse metric at linear order is given by
gµν = ηµν − hµν .
To elaborate further on condition (1.6), let us notice that due to the equivalence principle, and
effectively by constructing the Riemann or Fermi normal coordinates [103], the metric can always
be chosen to be exactly gµν(x̄) = ηµν in a specific spacetime point x and a small perturbation
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of gµν(x) = ηµν + O(∂ρ∂σgµν(x)) around it [101]. Hence we can recognize that the magnitude

of (∂ρ∂σgµν(x))
− 1

2 sets a characteristic length-scale: this gives us the order of magnitude of the
extension of the spacetime region over which we may consider the metric to be flat enough, as
required by (1.6). Moreover, to get a sense of the physical scenarios in which |hµν | ≪ 1 may be
satisfied, let us first recall the Newtonian limit : if we can choose coordinates in which the metric
is stationary, for a weak gravitational field and slowly moving particles it holds g00 =

(︁
1 + 2 Φ

c2

)︁
,

where Φ = −Gm
r is the usual Newtonian gravitational potential [101]. From this last relation

we can then see that h00 c
2 ∼ Φ ∼ −GM

r , and therefore even at the surface of stars it holds
h ∼ 10−5: this means that, as mentioned above, the weak field is an excellent approximation
in many physical situations [101, 104].

It must be noted however that condition (1.6) does not uniquely fix the coordinate frame, or
equivalently the gauge, because we could perform the following gauge transformation (coordinate
frame redefinition):

x′µ = xµ + ξµ(x) (1.7)

with the constraint

|∂νξµ(x)| ∼ O(h)≪ 1 (1.8)

and still fulfill the aforementioned condition, as will be shown below. Let us notice also that (1.8) is
a requirement concerning only on the derivatives of the field ξµ(x), which therefore by itself could
assume also a large value and is only required to be slowly varying, both in space and time.

To show such a redundancy, let us start by recalling that under a generic diffeomorphism the metric,
which is a rank 2 covariant symmetric tensor field, becomes

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gµν(x) =

∂xα

∂x′µ
∂xβ

∂x′ν
(ηαβ + hαβ(x)) , (1.9)

with (1.7) implying
∂xα

∂x′µ
= δαµ −

∂ξα

∂x′µ
, (1.10)

and therefore (1.6) becomes

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
(ηαβ + hαβ(x))

= ηµν −
∂ξµ
∂x′ν

− ∂ξν
∂x′µ

+ hµν(x) +O(h2)

= ηµν + h′µν(x
′)

; (1.11)

where we recalled condition (1.8), while the last line is just the definition of h′µν , as in (1.6). Finally
this implies that the tensor field hµν(x), under the gauge transformation (1.7), transforms as:

h′µν(x
′) = hµν(x)− (∂νξµ + ∂µξν) , (1.12)

where we neglected terms of order O(h2) as by hypothesis we’re working in linearized general
relativity. We can now recognize that, as long as the condition (1.8) on the smallness of ∂µξν
is satisfied, the transformation (1.7) does not spoil condition (1.6), which specified to the new
tensor reads O(h′µν(x

′)) ∼ O(hµν(x))≪ 1; therefore this new coordinate frame is equivalent to the
previous one.

One can also notice that the set of transformations which are a symmetry of linearized general
relativity comprises translations ξµ = aµ with aµ = const, spatial rotations, and generically slowly
varying diffeomorphism, while for example boosts may spoil the hµν ≪ 1 requirement [103].
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To obtain the equations of motion for the field hµν(x) in linearized general relativity, first one has
to linearize the expression of the Riemann curvature tensor. To do so one has to replace the metric
gµν(x) with the expansion (1.6) in the Christoffel symbols (N2) and in the Riemann tensor (N4),
keeping only terms at most linear in hµν . Doing so one obtains [101, 103]:

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) . (1.13)

In particular this expression is invariant under gauge transformations in linearized general relativity,
thanks to the properties of the Riemann tensor under exchange of its indices [103].

It is also customary to define the quantities:

h ≡ ηµνhµν (1.14)

h̄µν ≡ hµν −
1

2
ηµνh , (1.15)

from which follows also
h̄ ≡ ηµν h̄µν = h− 2h = −h . (1.16)

Recalling (1.13) and adopting the previous definitions, it is now possible to compute the lineariza-
tion of equations (1.4), to obtain the linearized Einstein’s equations [101, 103, 104]:

□h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −

16πG

c4
Tµν , (1.17)

where □ = ηµν∂µ∂ν is the usual flat space d’Alembertian.

To further simplify the equations (1.17), we can take advantage of the gauge freedom (1.12). In
particular we may choose the so called harmonic gauge, also know as De Donder gauge, which
generically reads

∂µ(g
µν√−g) = 0 , (1.18)

and that at linear order reduces to the Lorentz gauge [103]:

∂ν h̄
µν

= 0 . (1.19)

Applying a gauge transformation (1.12) to (1.15) we obtain

h̄µν −→ h̄
′
µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ)⏞ ⏟⏟ ⏞

≡ξµν

. (1.20)

Due to the fact that ∂νξµν = □ξµ, the same gauge transformation applied on (1.19) acts as

∂ν h̄
µν −→ (∂ν h̄

µν
)′ = ∂ν h̄

µν −□ξµ . (1.21)

This means that, even if we start from in generic coordinate frame, we can go to the one in which the
Lorentz gauge is satisfied by means of a slowly varying diffeomorphism ξµ(x) given by □ξµ = ∂ν h̄µν .
In particular this is always possible because, denoting with G(x) the Green’s function of the flat
d’Alembertian operator, such that □xG(x − y) = δ(4)(x − y), such a diffeomorphism is explicitly
given by [103]

ξµ(x) =

∫︂
d4y G(x− y) (∂ν h̄µν)(y) . (1.22)

Evaluating (1.17) in Lorentz gauge we obtain the much simpler expression

□h̄µν = −16πG

c4
Tµν , (1.23)
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which with the same Lorentz condition (1.19) implies the conservation of the energy-momentum
tensor in the linearized theory:

∂νTµν = 0 . (1.24)

Equation (1.23) is the formula which generically describes the generation of gravitational waves in
linearized general relativity, as we’ll see in section 1.3.4, and their propagation and interaction with
test masses: however, as explained in section 1.3.2 and 1.5.1 these last two scenarios can be more
easily studied in the transverse-traceless gauge.

1.3.2 Propagation of gravitational waves

It is customary to study the propagation of gravitational waves in linearized general relativity,
due to the small amplitude expected, and in vacuum, defined as the regions of spacetime where
Tµν(x) = 0: in this case, requiring also to be in Lorentz gauge (1.19), the linearized Einstein’s
equations (1.23) reduce to the usual flat space wave equation

□h̄µν = 0 . (1.25)

In this scenario which we chose, outside the source where Tµν(x) = 0, there is a residual gauge
freedom, because the Lorentz gauge condition (1.19) doesn’t fix completely the coordinate frame. In
particular, starting from a frame which is in Lorentz gauge, we can perform an additional coordinate
transformation given by x′µ −→ x′′µ = x′µ+ξ′µ(x′). Therefore, recalling the transformation property
(1.21) of the h̄µν tensor, we have that if we choose the gauge transformation ξ′µ(x′) such that
□ξ′µ(x′) = 0, then the new gauge will still satisfy the Lorentz gauge condition ∂ν h̄

′′µν
= 0. The

tensor h̄
′
µν transforms accordingly, as in (1.20); and due to the fact that □ξ′µ = 0 implies □ξ′µν = 0,

we have that the linearized Einstein’s equations (1.25) in this new gauge still read □h̄′µν = 0.

This gauge fixing procedure let us single out the real radiative degrees of freedom of general rela-
tivity. In fact, starting from a generic frame, we can choose four ξµ(x) functions, explicitly given
in (1.22), to move to the Lorentz gauge. Its gauge condition (1.19), which we’re imposing, is a
constraint on four components of h̄µν(x); therefore the number of independent components of h̄µν
is lowered from ten to six [103]. Where the energy-momentum tensor is also vanishing Tµν(x) = 0,
we have an additional residual gauge freedom, that we can fix choosing four additional functions
ξ′µ(x′) which satisfy □ξ′µ = 0, as explained above. Specifically, we can choose the four functions
ξ′µ(x′) to impose four additional conditions on the h̄µν tensor, or equivalently on hµν . This shows
that the real propagating degrees of freedom of general relativity are only two [103].

We may apply the previous procedure to simplify the generic redundant expression of hµν , in
particular we may choose ξ′µ such as to fix h̄ = 0, obtaining h̄µν = hµν , and imposing h0i = 0 [103].
Finally the µ = 0 Lorentz gauge condition implies that h00 is constant in time, which corresponds
to the static part of the gravitational interaction, and we may set it to zero if we’re concerned
only with propagating time-varying gravitational waves; while the µ = i spatial Lorentz gauge
constraints read ∂ihij = 0 [103].

Such choices define the transverse-traceless gauge, or TT gauge, in which the conditions

h0µ = 0 Vanishing-non spatial components (1.26a)

∂ihij = 0 Transverse (1.26b)

δijhij = 0 Traceless (1.26c)

hold [103], and we recognize that these conditions require the hµν tensor to be transverse and
traceless, with vanishing non-spatial components. In particular the perturbation of the metric
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tensor in TT gauge is usually denoted as hTTij , where it suffices now to specify only its spatial (i, j)
components.

We underline that we can choose the TT gauge only outside the sources. This is because if
Tµν ̸= 0, we have □h̄µν ̸= 0; and even though we may still perform a gauge transformation with
□ξµ = □ξµν = 0, we cannot use such a transformation to set the components of h̄µν to zero [103].
To see this, for definiteness let us choose µ = ν = 0: recalling (1.20) we have that h̄

′
00 = h̄00 − ξ00,

nonetheless □h̄′00 = □h̄00 −□ξ00 = □h̄00 ̸= 0, therefore h̄
′
00 cannot be identically constant.

After having imposed the TT gauge in vacuum, plane waves hTTij (x) = eij(k)e
ikx are solutions of

the linearized Einstein’s equation (1.25), where kµ = (ωc ,k) with |k| = ω
c = (2πf)

c , and eij(k) is
called the polarization tensor ; still one need to take care of taking the real part only at the end
of calculations. If we denote with n̂ the direction of propagation of the plane wave, such that
kµ = |k|(1, n̂) and δijninj = 1, the condition (1.26b) becomes nihij = 0, so that we recognize the
condition of transversality with respect to the direction of propagation n̂.

The expression of a generic solution hTTij (x) of (1.25) in TT gauge can be written as [103]

hTTij (x) =

∫︂
d3k

(2π)3

(︂
Aij(k) e

ikx +A∗
ij(k) e

−ikx
)︂
, (1.27)

where the addition of the complex conjugate assures us that hTTij (x) will be a real quantity.

We may also introduce a generic orthonormal frame with axes (û, v̂, n̂), and consider a wave
propagating along the third spatial axis, so in direction of n̂, to obtain the explicit expression [103]

hTTij (t, z) =

⎛⎝h+ h× 0
h× −h+ 0
0 0 0

⎞⎠
ij

cos
(︂
ω
(︂
t− z

c

)︂)︂
; (1.28)

where we made explicit the amplitude h+ of the plus polarization, and the amplitude h× of the
cross polarization, which are the two polarization of the gravitational waves defined respectively
with respect to the plus and cross polarization tensors [103]:

e+ij(n̂) = ûiûj − v̂iv̂j , (1.29a)

e×ij(n̂) = ûiv̂j + v̂iûj . (1.29b)

Due to the fact that gravitational waves are described by a rank 2 tensor, we have that under
spatial rotations of angle ψ around the propagation axis n̂, the amplitudes h+ and h× mix into
each other with a rotation matrix of angle 2ψ [103]; so for example they get swapped, up to a sign,
by a rotation of π4 radians.

With these definitions we may also specialize the generic solution (1.27) to a gravitational wave, once
produced by a far away localized source, and now propagating along a well defined n̂ direction. In

particular, defining h̃+(f) and h̃×(f) via
(︂
h̃+(f) e

+
ij(n̂) + h̃×(f) e

×
ij(n̂)

)︂
δ(2)

(︂
k
|k| − n

)︂
≡ f2

c3
Aij(k),

we obtain:

hTTij (x)n̂ =

∫︂ +∞

−∞
df
(︂
h̃+(f) e

+
ij(n̂) + h̃×(f) e

×
ij(n̂)

)︂
e−i2πf(t−

1
c
n̂·x) . (1.30)

On the other hand, starting from a plane wave solution h̄µν(x) in Lorentz gauge of the linearized
Einstein’s (1.23), in the vacuum regions it’s possible to find the components of the corresponding
tensor in TT gauge hTTµν (x) without the need to find explicitly the required coordinate transfor-
mation. To do so for a plane wave propagating in direction n̂, one defines the symmetric and
transverse projector [103]:

Pij(n̂) = δij − ninj . (1.31)
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From this we can define the so called Lambda tensor [103]

Λij,kl(n̂) = Pik(n̂)Pjl(n̂)−
1

2
Pij(n̂)Pkl(n̂) ; (1.32)

which transverse on each index (e.g. niΛij,kl(n̂) = 0), traceless (Λii,kl(n̂) = Λij,kk(n̂) = 0) and
symmetric under the exchange of (i, j) ↔ (k, l). Thanks to these properties, the Lambda tensor
can be used to extract the transverse (with respect to n̂) and traceless part of any symmetric
tensor Skl, as S

TT
ij = Λij,kl(n̂)Skl. Therefore, given a plane wave h̄µν(x) ∼ eikx in Lorentz gauge

propagating along n̂ = k
|k| , the corresponding spatial components in TT gauge are given by [103]

hTTij = Λij,kl(n̂) h̄kl = Λij,kl(n̂)hkl , (1.33)

whereas the non spatial components are set to zero. If we have a generic solution h̄µν(x) in Lorentz
gauge, to obtain the corresponding expression in TT gauge we’d have to apply the aforementioned
procedure in Fourier space to each mode h̄ij(k) individually, with n̂ = k

|k| [104].

The properties under rotation of the h+ and h× amplitudes, as in (1.28), which are consequences of
the fact that hµν is a rank 2 tensor, carry over to the characteristics of the quanta of the gravitational
field, the graviton. Indeed, the fact that it has spin 2 is related to the fact that the combinations
h×∓ih+ acquire the phase e∓2iψ after a spatial rotation by an angle ψ around the propagation axis,
and therefore those combinations are helicity eigenstates with helicities ±2 [99, 103]. Furthermore
the graviton is massless, as could be seen for example by the fact that classical equation of motion
□hTTij = 0 is a Klein-Gordon equation with m2

g = 0; which also tells us that the gravitons, or

equivalently gravitational waves, travel at the speed of light, as □ = ηµν∂µ∂ν = 1
c2
∂2t − ∇2 [103].

Experimentally these properties have never been falsified yet: actually stringent upper bounds
exist on the mass as mg ⪅ 10−22 eV [144], while the speed of gravitational waves has been directly

measured to be equal to the one of light, up to a relative difference |∆v|
vEM

⪅ 3 · 10−15 [145].

1.3.3 Energy-momentum tensor of gravitational waves

As we heuristically outlined in section 1.2.1, gravitational waves carry energy and momentum.

We should hence be able to associate an energy momentum tensor to gravitational waves, but
this is not as straightforward as it may seem: to say that gravitational waves carry energy and
momentum means that they can curve the spacetime, but therefore to study this phenomenon
we should allow the background metric to be generic and spacetime dependent as ḡµν(x), with
gµν(x) = ḡµν(x) + hµν(x), |hµν(x)| ≪ 1 [103]. However this now leads to an ambiguity in our
definition of what are gravitational waves: we could move any perturbation from ḡµν(x) to hµν(x)
and viceversa, as only the total gµν(x) has a physical meaning.

This issue actually cannot be solved in general, as the separation of the metric we performed is
artificial, and can be considered to be well defined only when there is a clear separation between
the scales on which the background metric ḡµν(x) and the gravitational waves perturbation hµν(x)
vary: for example we can single out gravitational waves if the spatial scale over which ḡµν(x) varies
is much larger than the wavelength of the gravitational wave hµν(x), or if, at a given position, the
Fourier transform of ḡµν(f) comprises a set of frequency which is lower and does not overlap with
the frequencies which make up the gravitational waves hµν(f) [103]. Let us observe that the latter
condition is what actually is fulfilled for gravitational wave detectors [103].

This shows us as well that it’s not meaningful to talk about gravitational waves of arbitrary am-
plitude, as it would become impossible to distinguish the gravitational waves from the background
[103]. To be precise, actually, there exist exact wave solutions in general relativity [104], but it
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would be too cumbersome to use them to describe gravitational waves emitted by generic bodies
[103]. On the other hand, strictly speaking the gravitational wave solution of the linearized theory
are not solutions of the full theory, as the non linearities in Einstein’s equations will produce back-
scattering and tails due to the interaction of the gravitational waves with the curvature produced
by themselves [104]; moreover it’s not possible to systematize linearized general relativity to higher
orders, as we’d need to allow for a generic non-flat background metric just to accommodate for the
curvature due to the perturbation hµν itself [103].

Having analyzed the limits of validity of our approximations, to find the explicit expression for
the gravitational waves energy tensor, which we denoted by tµν(x), we’ll actually resort to the
field-theoretical approach of treating linearized gravity, so hµν(x), as a classical field theory over
Minkowski spacetime, where one can apply Noether’s theorem to obtain tµν(x) thanks to the
symmetry of the theory under space-time translations [103].

This procedure still cannot overcome the intrinsic issues outlined above, which manifest themselves
by the fact that the energy-momentum tensor obtained via Noether’s theorem is not well defined
per se, but has as a physically meaningful interpretation only once integrated over a finite spacetime
region, if the field configuration vanish sufficiently fast on the boundaries [103]. In fact we may
add a total four-divergence L′ = L + ∂µK

µ(h) to the original Lagrangian without modifying the
equations of motion, but this would instead modify the mathematical expression of the Noether
currents, and could affect also the Noether charges if boundary terms could not be neglected [103].

Furthermore in general relativity it’s not even meaningful to try to find an expression of tµν(x),
which is a Noether current, such that for example in each spacetime point t00(x) could have the
physical interpretation of the energy density of gravitational waves: this is because at a given
point, resorting to Einstein’s equivalence principle as seen in section 1.3.1, we could always make
the gravitational field vanish with a suitable coordinate transformation. Therefore the local energy
density of gravitational waves is not gauge invariant, hence is not a physical quantity that could
be measured [103].

Thus, in a similar way with respect to the separation of scales outlined above, the solution is to
define the energy-momentum tensor of gravitational waves as a spatial average over several reduced
wavelengths, which is denoted by ⟨. . . ⟩; for plane waves equivalently one could take the temporal
average over several periods [103]. Actually this procedure is required not only in general relativity,
as the energy density of a wave-packet cannot be exactly localized neither classically, due to the
Fourier transform properties, neither quantum-mechanically, due to the uncertainty principle [103].

Thus, the energy momentum tensor of a wave-packet will be given by [103]

tµν = ⟨− ∂L

∂(∂µhαβ)
∂νhαβ + ηµνL⟩ , (1.34)

where the spatial or temporal average ⟨. . . ⟩ in understood to be taken in a region large enough
such that value of hµν on the boundary in negligible; such an expression is conserved as ∂µt

µν = 0
for the field configurations hµν(x) which satisfies the classical equations of motion.

In such an approach, the Lagrangian which governs the dynamic of the field hµν(x) can be obtained
by expanding the Einstein-Hilbert action (1.1) to quadratic order in hµν(x) = gµν(x) − ηµν . By
evaluating the algebra and integrating some terms by parts one obtains [103]

L = − c4

64πG
(∂µhνρ∂

µhνρ − ∂µh∂µh+ 2∂µh
µν∂νh− 2∂µh

µν∂ρh
ρ
ν) +O(h3) (1.35)

where h = ηµνhµν is the usual trace of hµν . Such a Lagrangian is related to the Pauli-Fierz one by
an appropriate rescaling of hµν [103].
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We are now able to evaluate the explicit expression of the energy-momentum tensor tµν associated
to gravitational waves, by specializing formula (1.34) to (1.35). To simplify calculations we choose
the gauge [103]

∂µhµν = 0 , h = 0 , (1.36)

and we perform an integration by parts, possible thanks to the average ⟨. . . ⟩ [103], of a remaining
term ∂γhαβ∂

γhαβ ∼ −hαβ□hαβ, which vanishes on the equation of motion □hµν = 0 which we
assume to be fulfilled by our field configuration. In this way we obtain the expression of tµν we
where looking for [103]:

tµν =
c4

32πG
⟨∂µhαβ∂νhαβ⟩ . (1.37)

From this expression we can evaluate the energy emitted via gravitational waves by a source local-
ized inside a volume V . Recalling that tµν is a Noether current, which therefore is conserved as
∂µt

µν = 0 for on-shell hµν configurations, we define the gravitational wave energy inside the volume
as

EV =

∫︂
V
d3x t00 , (1.38)

therefore, assuming all functions to be well behaved and applying Stokes’ theorem, this translates
into

dEV
dt

= −c
∫︂

d3x ∂it
0i = −c

∫︂
∂V

dAnit
0i , (1.39)

with dA surface element on the boundary ∂V of the integration volume V , and ni normal vector to
the surface [103].

To simplify such an expression, we take ∂V to be a sphere centered on the source, such that
dA = r2dΩ and n̂ = r̂ the radial direction; hence (1.39) becomes

dEV
dt

= − c5r2

32πG

∫︂
dΩ ⟨∂0hTTij ∂rhTTij ⟩ = +

c4r2

32πG

∫︂
dΩ ⟨∂thTTij ∂rhTTij ⟩ . (1.40)

Assuming the gravitational waves, at a large distance, to be propagating out radially outward in
the void, we can impose the TT gauge and the metric tensor perturbation takes the form [103]

hTTij (t, r) =
1

r
fij

(︂
t− r

c

)︂
. (1.41)

with fij a function of the retarded time tret = t− r
c , as in electromagnetism. From this last fact it

also holds that we exchange the radial partial derivative with the temporal one via the chain rule,
therefore expression (1.40) becomes [103]

dEV
dt

= − c3r2

32πG

∫︂
dΩ ⟨ḣTTij ḣ

TT
ij ⟩+O

(︃
1

r

)︃
(1.42)

where we have denoted the temporal derivative with the dot, as ḣ
TT
ij ≡ ∂thTTij .

Finally, the fact that the energy EV associated with the gravitational waves inside the volume V
decreases, means that there is a flux of gravitational waves which are propagating outward from that
volume. In particular the energy carried away by gravitational waves per unit time, as measured
at the volume surface, is approximately given by

dE

dt
=

c3r2

32πG

∫︂
dΩ ⟨ḣTTij ḣ

TT
ij ⟩ . (1.43)



Section 1.3 — Linearized general relativity and gravitational waves 15

A similar expression can be found for the momentum carried away by gravitational waves [103]:

dP k

dt
= − c3r2

32πG

∫︂
dΩ ⟨ḣTTij ∂khTTij ⟩ . (1.44)

Furthermore, because the theory is also invariant under spatial rotations, we can define the angular
momentum conserved current and charge. As shown in [103], one finds that gravitational waves
carry angular momentum too, with contributions both from the orbital angular momentum and
from the spin operator: this was to be expected, as gravitons are massless quanta with helicities
±2.

1.3.4 Generation of gravitational waves

In this section we discuss the generation of gravitational waves in the linearized theory: this means
we’ll consider the gravitational field due to the source to be weak enough, such that the spacetime
can still be approximated as flat.

First we’ll present the weak-field expansion, which actually doesn’t impose any requirements on the
velocities into play. Nonetheless later we would like to introduce a low-velocity expansion in powers
of vc to describe the dynamics of non relativistic systems, in order to simplify the setup. Yet the case
we’re ultimately interested in is of self-gravitating binary systems: that is, of bound systems of two
bodies evolving under the reciprocal gravitational force. In such cases from Newtonian dynamics
it follows [103]

v2

c2
=
Gm

c2r
, (1.45)

with m total mass of the system and v the reciprocal velocity between the two bodies. Therefore
for such systems the low-velocity expansion in powers of vc is not independent with respect to the
expansion of in powers of G, and so it’s not possible to consistently compute corrections beyond
the lowest order in v

c while working in the flat space of the linearized theory. This point will be
discussed further in section 1.6.

Weak-field expansion

In this approximation scheme one assumes that the gravitational field produced by the source is
sufficiently weak, such that the background metric can be taken to be flat [103].

To study the generation of gravitational waves in this setting we put ourselves in Lorentz gauge
(1.19), where we recall that that the energy-momentum tensor is conserved in the flat space-time
sense (1.24), and look for solutions of the linearized Einstein’s equations (1.23). Such differential
equations are linear in h̄µν and therefore also in hµν , therefore we can employ the Green’s function
method to solve them.

The Green’s function G(x) is formally the inverse of the differential operator □, in the sense that
it is the solution of

□xG(x− y) = δ(4)(x− y) . (1.46)

From this follows that

h̄µν(x) = −
16πG

c4

∫︂
d4y G(x− y)Tµν(y) (1.47)

is a solution of (1.23) [103]. The specific expression of G(x−y) depends on the boundary conditions
we wish to impose on the solution, which in turn are related to the physical setting we’re trying to
describe. In particular, because we want to evaluate the radiation produced by a localized source at
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a specific time, we’ll impose the Kirchoff-Sommerfeld no-incoming-radiation boundary conditions,
which single out the so called retarded Green’s function [103]

G(x− y) = − 1

4π|x− y|δ(x
0
ret − y0) ; (1.48)

where we have defined the retarded time as

tret(x,y) = t− |x− y|
c

, (1.49)

which in flat space time, once chosen a specific reference frame, can be seen as the time at which
a light-like signal has to be produced in (tret,y) to be seen by an observer in (t,x).

As usually one is interested in evaluating the produced radiation in a point outside and far away
from the source, that is, in the void, we can simplify the solution (1.47) by putting ourselves in
TT gauge (1.26). If furthermore we’re far enough with respect to the characteristic length scale of
the source, we may also approximate the incoming waterfronts as plane waves, and therefore the
components of hµν after such a gauge transformation are easily obtained via projection with the
Lambda tensor (1.32), as explained before in section 1.3.2. Therefore we obtain

hTTij (t,x) =
4G

c4
Λij,kl(n̂)

∫︂
d3y

1

|x− y|Tkl
(︃
t− |x− y|

c
,y

)︃
(1.50)

where we recall (1.33), and that the direction of propagation of the gravitational plane wave is
n̂ = x

r , with r = |x|, as can be seen from figure 1.3 once we choose the origin of our reference frame
to be localized inside the source. The fact that only the spatial components of Tµν are needed
to find the general solution is due to the energy-momentum tensor conservation (1.24), which is
actually a constraint on four components [103].

Multipole expansion

O

y

x = rn̂

d

x− y

y · n̂

Figure 1.3 A scheme of the quantities employed
in the multipole expansion. The origin of the refer-
ence frame is denoted with the letter O, the typical
length scale of the source with d, the position of the
observer with x, the position, inside the source, over
which we’re integrating with y. Figure based on [103].

The multipole expansion lets us express the ra-
diation seen far away from the source as a func-
tion of moments of the mass-energy distribu-
tion of the source, in such a way to significantly
simplify the previous (1.50) expression in the
low-velocity limit.

To do so, it breaks down the generally com-
plicated integral (1.50) into a sum of sim-
pler terms, each of which encode information
about the radial and angular distribution of
the source, with higher order moments describ-
ing finer details. Nonetheless, for gravitational
waves emitted by non relativistic compact bi-
naries, the radiation has a wavelength which
is longer than the size of the binary systems,
therefore its emission doesn’t depend on the
finest details of the source internal structure
[103]: hence only the first few moments of the
multipole expansion, which describe the coarse-
grained source distribution, are needed to de-
scribe the emission of radiation. This fact lets
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us simplify some calculations, but from observational point of view it means that using gravita-
tional waves as a probe we may resolve only few internal details of the system, also because the
gravitational wave signal at present cannot be measured with a signal-to-noise ratio much higher
than a few dozen at most [5]. In the following therefore we’ll retain only the first multipoles needed
to obtain the desired accuracy.

As we’ll see shortly, given a localized source with a typical length scale d, that we could take to
be its maximum length, the multipole expansion converges if the source is localized near the origin
O of the reference frame, that is |y| ⪅ d; while simultaneously the observer is located far away
from it, e.g. at a distance r = |x| ≫ d. Furthermore, it is customary to assume that the source is
slowly varying, so for example that the compact objects of a binary system are moving at a non
relativistic speed v

c ≪ 1: in such a way the the typical frequency of the emitted radiation will be
of order ω ∼ v

d , and corresponding wavelength λ = 2π c
ω ∼ c

vd ≫ d, as discussed before. In the
following we’ll assume such conditions to hold, as outlined in figure 1.3.

The first condition restricts the integration in (1.50) only to the region |y| ⪅ d, as outside the
integrand vanishes due to Tkl(y) = 0 in the void; the second condition instead is needed to let us
expand the distance |x− y| in Taylor series:

|x− y| = r

√︃
1− 2

n̂ · y
r

+
y · y
r2

= r − n̂ · y +O

(︃
d2

r

)︃
, (1.51)

with x = rn̂ the position of the observer in this reference frame. Substituting the previous expansion
in the retarded time definition (1.49), for large distance |x| = r ≫ 1 we obtain

tret(x,y) = t− |x− y|
c

= t− r

c
+

n̂ · y
c

+O

(︃
d2

c r

)︃
. (1.52)

The condition of non relativistic source v ≪ c, that is, of a energy-momentum tensor Tkl (tret,y)
slowly varying in time, let us perform an expansion of the Fourier transformed energy-momentum
tensor in (1.50) [103], which is equivalent to Taylor expanding the time argument of Tkl (tret,y)
around s = 0, as:

Tkl (tret,y) = Tkl

(︂
t− r

c
+
s

c
,y
)︂
=

+∞∑︂
p=0

1

p!

(︂s
c

)︂p
(∂pt Tkl)

(︂
t− r

c
,y
)︂

(1.53)

where we defined s = r − |x− y| = n̂ · y +O
(︂
d2

r

)︂
, which is of order s ∼ d, and therefore s

r ≪ 1.

Substituting all of these expressions in (1.50), keeping only terms up to o
(︁
1
r

)︁
, we finally obtain:

hTTij (t,x) =
4G

c4
Λij,kl(n̂)

∫︂
d3y

1

r − s
+∞∑︂
p=0

1

p!

(︂s
c

)︂p
(∂pt Tkl)

(︂
t− r

c
,y
)︂

=
4G

c4
Λij,kl(n̂)

∫︂
d3y

1

r

(︄
+∞∑︂
m=0

(︂s
r

)︂m)︄⎛⎝+∞∑︂
p=0

1

p!

(︂s
c

)︂p
(∂pt Tkl)

(︂
t− r

c
,y
)︂⎞⎠

=
4G

c4
1

r
Λij,kl(n̂)

+∞∑︂
p=0

1

p! cp
ni1 · · ·nip

∫︂
d3y yi1 · · · yip(∂pt Tkl)

(︂
t− r

c
,y
)︂
+O

(︃
1

r2

)︃
(1.54)

where in the last line we kept only the term with m = 0, as m > 0 would give terms of order

O(r−1−m); we traded s for n̂ · y = niyi, as the term O
(︂
d2

r

)︂
produces in the end terms of order at
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least O( 1
r2
), due to the leading 1

r factor out of the integral; and we assumed the integrand function to
be well behaved as to allow the integral and the series to be swapped. Finally it is understood that
ni1 · · ·nip = Πpq=1n

iq , to let us explicitly show the contractions in (n̂ ·y)p = (niyi)p = Πpq=1n
iqyiq =

ni1 · · ·nipyi1 · · · yip .
Starting from the spatial components of the energy-momentum tensor Tij , also called the stress
tensor, it is useful to define its momenta Sij,q1...qp as [103]:

Sij,q1...qp(t) ≡
∫︂

d3y yq1 · · · yqp T ij(t,y) (1.55)

where we can notice that they are position independent, depending only on time, and that they’re
symmetric in the (i, j) indices, and symmetric under the exchange of any pair of q1 . . . qp indices.
Therefore, assuming the observer distance r to not depend on time, equation (1.54) becomes:

hTTij (t,x) =
4G

c4
1

r
Λij

kl(n̂)
+∞∑︂
p=0

1

p! cp
ni1 · · ·nip ∂pt Slk,i1···ip

(︂
t− r

c
,y
)︂

=
4G

c4
1

r
Λij

kl(n̂)

(︃
Skl
(︂
t− r

c
,y
)︂
+

1

c
nqṠ

kl,q
(︂
t− r

c
,y
)︂
+

1

2c2
nqnrS̈

kl,qr
(︂
t− r

c
,y
)︂
+ . . .

)︃
,

(1.56)
where each dot over the Skl tensor denotes a temporal derivative, and from now on we’ll understand
the O

(︁
1
r2

)︁
subleading term. From this expression we can notice that each additional q index in

(1.55) bring an additional O(d) factor, while each time derivative acting on Skl in Fourier space can
be seen as a ωs ∼ v

d factor, which is the characteristic time over which the source varies significantly.
Therefore the term of order p in (1.56) is of order O

(︁(︁
v
c

)︁p)︁
with respect the leading Skl term [103].

For actual calculations it is easier to employ the momenta of the energy density T 00, defined as
[103]:

M q1...qp(t) ≡ 1

c2

∫︂
d3y yq1 · · · yqp T 00(t,y) (1.57)

where the factor c−2 actually gives M the dimension of a mass. Let us notice that the energy
density in T 00 comprises all types of energy: for example the one due to the mass of the source
components, due to their kinetic and potential energy, due to the gravitational binding energy
[103]. In a similar fashion it’s customary to introduce also the momenta of the momentum density
T 0ic−1 as [103]

P i,q1...qp(t) ≡ 1

c

∫︂
d3y yq1 · · · yqp T 0i(t,y) . (1.58)

Starting from the flat space energy-momentum tensor conservation (1.24) valid in the weak-field
linearized theory, assuming the source distribution to be well behaved and localized in space inside
a spatial volume V , and employing Stokes’ theorem, we obtain the relations:∫︂

V
d3y yq1 · · · yqp ∂0T 0µ(t,y) = −

∫︂
V
d3y yq1 · · · yqp ∂iT iµ(t,y)

= −
∫︂
V
d3y ∂i

(︁
yq1 · · · yqp T iµ(t,y)

)︁
+

∫︂
V
d3y ∂i (y

q1 · · · yqp) T iµ(t,y)

= −
∫︂
∂V

dSi yq1 · · · yqp T iµ(t,y)⏞ ⏟⏟ ⏞
=0

+

∫︂
V
d3y (δq1i y

q2 · · · yqp + yq1δq2i y
q3 · · · yqp + . . . ) T iµ(t,y) ,

(1.59)
where we used the fact that T iµ(y) = 0 on the surface boundary by hypothesis. From these
explicitly we get:

Ṁ = 0 , (1.60a)
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Ṗ
i
= 0 , (1.60b)

Ṁ
i
= P i , Ṁ

ij
= P i,j + P j,i , Ṁ

ijk
= P i,jk + P j,ki + P k,ij , . . . , (1.60c)

Ṗ
i,j

= Sij , Ṗ
i,jk

= Sij,k + Sik,j , Ṗ
i,jkl

= Sij,kl + Sik,lj + Sil,jk , . . . . (1.60d)

The physical meaning of (1.60a) and (1.60b) is respectively that of total mass and total momentum
conservation of the system. This actually holds only in the weak-field linearized theory, as such
identities are valid only as long as we’re neglecting the back-action of gravitational waves on the
source [103], which are present in the non-linear full theory and we’d need to take into account at

higher order. Similarly Ṗ
i,j − Ṗ j,i = 0 gives the conservation of the total angular momentum of

the source [103].

Finally we can employ relations (1.60c) and (1.60d) between the moments of the energy M , mo-
mentum P and stress S tensors to express the solution (1.56) as a function of the mass M and
momentum P moments only [103]:

hTTij (t,x) =
4G

c4
1

r
Λij

kl(n̂)

[︃
1

2
M̈

kl
(︂
t− r

c
,y
)︂

+
nq

6 c

(︂ ...
M

klq
+ 2

(︂
P̈
k,lq

+ P̈
l,qk − 2P̈

q,kl
)︂)︂(︂

t− r

c
,y
)︂
+ . . .

]︃
.

(1.61)

This last expression can be evaluated more easily with respect to (1.56), and actually for a set of

gravitationally bound point masses it allows to neglect, at order O
(︂
v2

c2

)︂
, the contributions of the

gravitational potential and relativistic corrections [103].

From the expression (1.61) we can see that to produce gravitational waves in the weak-field lin-
earized theory we need non vanishing second order or higher time derivatives of the moments of
the energy M or momentum P density; also no monopole nor dipole moments of M or P enter in
the solution: we can conclude that in the linearized theory there is neither monopole nor dipole
radiation for gravitational waves.

These properties show some features which are actually valid beyond the approximations we em-
ployed. For example, due to Birkhoff’s theorem, if the geometry of a given region of spacetime is
spherically symmetric and satisfies the full Einstein’s equation (1.4) in vacuum, then the geometry
must be a piece of the Schwarzschild metric [101, 104]. It follows that a source distribution that
changes over time, but does so preserving its spherical symmetry, will not emit any gravitational
waves; in particular this result is exact in the full theory, and so for example an exactly spheri-
cally symmetric star that pulses radially cannot emit any gravitational signal into the surrounding
void spacetime [101]. Besides, even in a more general setting, no source distribution can produce
monopole or dipole radiation, even in the full theory: this follows from analysis of the non linear
theory, but can be understood equivalently by the fact that gravitons are massless particles with
helicities ±2, hence they cannot be put in states with total angular momentum j < 2; therefore we
cannot have monopole nor dipole radiation, since they are respectively a collection of quanta with
j = 0 and j = 1 [103].

Mass quadrupole radiation

The leading term in (1.61) gives the so called mass quadrupole radiation, as

hTTij (t,x) =
2G

c4
1

r
Λij

kl(n̂) M̈
kl
(︂
t− r

c
,y
)︂

; (1.62)

with the mass quadrupole term given by (1.57), so explicitly

Mkl(t) =
1

c2

∫︂
d3y ykyl T 00(t,y) . (1.63)
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û

v̂

n̂

ϕ

θ

Figure 1.4 A scheme of the coordinate systems
employed for the evaluation of mass quadrupole radi-
ation. Notice that the û vector lies in the xy plane,
which has been outlined, while the v̂ vector points
downwards. Also, to be consistent with [103], we de-
fined the angle ϕ as starting from the y axis and not
the x. To obtain the opposite, customary definition,
one should substitute ϕ −→ π

2 − ϕ. Figure based on
[103].

To lowest order in v
c we may neglect kinetic,

potential and alike contributions to the energy-
momentum tensor: in such a case we can equate
T 00 ≈ ρc2, where ρ is the mass density [103].

To simplify further expression (1.63) one may
notice that the symmetric tensor Mkl, under
the group of spatial rotations, decomposes into
irreducible representations as [103]:

Mkl =

(︃
Mkl − 1

3
δklM ii

)︃
⏞ ⏟⏟ ⏞

≡Qkl

+
1

3
δklM ii , (1.64)

where M ii is the trace of Mkl, which is a
scalar under rotations, whereas Qkl is called the
quadrupole moment, which is a traceless pure
spin-2 operator [103]. Therefore in equation

(1.62) we may substitute the M̈
kl

tensor with

Q̈
kl
, as after the contraction with the Λij,kl ten-

sor only the traceless contribution will be non
vanishing.

To explicitly evaluate equation (1.62), let us fix a coordinate frame (x, y, z) and consider a gravi-
tational waves propagating in a generic direction n̂, with components

ni = (sin(θ) sin(ϕ), sin(θ) cos(ϕ), cos(θ)) . (1.65)

One could then directly compute the Λij,kl tensor, but it’s actually easier to go to a reference frame
where the gravitational wave is propagating along a definite axis, to evaluate the quantities and
to transform back the tensors via the appropriate rotation matrix, as shown in reference [103]. In
particular, introducing such an auxiliary frame with coordinate axis parallel to the orthonormal
basis (û, v̂, n̂), as shown in figure 1.4, while evaluating the Mkl tensor in our initial (x, y, z) frame,
the amplitudes h+ and h× of the gravitational wave propagating in direction n̂ read [103]

h+(t, θ, ϕ) =
1

r

G

c4

[︂
M̈11

(︁
cos2(ϕ)− sin2(ϕ) cos2(θ)

)︁
+ M̈22

(︁
sin2(ϕ)− cos2(ϕ) cos2(θ)

)︁
− M̈33 sin

2(θ)− M̈12 sin(2ϕ)
(︁
1 + cos2(θ)

)︁
(1.66a)

+M̈13 sin(ϕ) sin(2θ) + M̈23 cos(ϕ) sin(2θ)
]︂⃓⃓
tret

,

h×(t, θ, ϕ) =
1

r

G

c4

[︂(︂
M̈11 − M̈22

)︂
(sin(2ϕ) cos(θ)) + 2M̈12 cos(2ϕ) cos(θ) (1.66b)

−2M̈13 cos(ϕ) sin(θ) + 2M̈23 sin(ϕ) sin(θ)
]︂⃓⃓
tret

,

where the right-hand side is computed at retarded time tret = t− r
c , and where we recall that such

amplitudes are defined with respect to the plane transverse to the propagation of the gravitational
waves. In particular, aside from being a superposition of plane waves, they take a form analogous
to (1.28) in the frame with axes parallel to (û, v̂, n̂) [103].

By recalling equation (1.43) it’s also possible to evaluate the power emitted by the source via
gravitational waves. In particular, as shown in reference [103], the only angular dependence is due



Section 1.4 — Compact binaries evolution and radiation in linearized theory 21

to Λij,kl(n̂), and it holds

Λij,kl Λkl,mn = Λij,mn ,

∫︂
dΩΛij,kl(n̂) =

2π

15
(11δikδjl − 4δijδkl + δilδjk) ; (1.67)

therefore the total power radiated, also known as total gravitational luminosity of the source, in
the quadrupole radiation approximation, is given by [103]

Pquad =
G

5c5
⟨
...
Q
ij ...
Q
ij⟩⃓⃓

tret
, (1.68)

where the right hand side is evaluated at retarded time tret = t− r
c as usual.

We can see that, even thought the linearized theory predicts the total energy and the total momen-
tum of the source to be conserved, due to (1.60a) and (1.60b), this cannot be true, as the emission
of gravitational waves will produce a radiation reaction force on the source itself, as explained in
[103], and in particular the energy of the source will decrease per unit time as given by (1.68). Still
the previous statement presents a couple of subtleties which makes it valid only for low velocities
v
c ≪ 1 inside the source: equation (1.68) refers only to the quadrupole radiation, which is dominant
only in the low-velocity limit; and more importantly, as will be outlined in section 1.6, due to the
non linearities of general relativity, at higher orders in perturbation theory it won’t be possible
anymore to equate the energy carried away by gravitational waves, as measured at infinity at time
t, with the energy lost by the source at time tret.

1.4 Compact binaries evolution and radiation in linearized theory

In this section, based mostly on [103], we’ll apply the concepts developed so far to study the
amplitude of gravitational waves emitted by binary systems; finally we discuss also the effects that
such an emission has on the evolution of the binary itself.

1.4.1 Gravitational radiation from non-relativistic point particles

The energy-momentum tensor of a system of n free point particles, labelled by the index A =
1, . . . , n, moving in flat spacetime along trajectories xµA(t), is given by [103]

Tµν =

n∑︂
A=1

pµAp
ν
A

γAmA
δ(3)(x− xA(t)) , (1.69)

where mA is the mass of particle A, γA =
(︂
1− v2A

c2

)︂− 1
2
its Lorentz factor, and pµA = γAmA

dxµA
dt =(︁

E
c ,p

)︁
its four momentum.

Notice that the requirements of free particles moving along flat space geodesics, that is, ṗµA =
0, is mandatory for the tensor (1.69) to be exactly conserved. Nonetheless we may use the
energy-momentum tensor (1.69) to evaluate the gravitational waves at leading order, in the mass
quadrupole radiation approximation (1.66), along generic trajectories xA(t) for non relativistic
point particles, as for a self-gravitating system the gravitational potential energy which should be
considered in Tµν is of higher order, because −GmAmB

rAB
∼ O

(︁
v
c

)︁2
, due to the virial theorem [103].

Non-relativistic self-gravitating binary point particle system

For definiteness we’ll consider, from now on, the case of a system of two particles, A = 1, 2. In the
non-relativistic limit vA ≪ c equation (1.69) reads

Tµν =
∑︂
A=1,2

mA
dxµA
dt

dxνA
dt

δ(3)(x− xA(t)) +O

(︃
v2

c2

)︃
. (1.70)
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We can notice that the hierarchy T 00 = O(v0), T 0i = O
(︁
v
c

)︁
and T ij = O

(︂
v2

c2

)︂
holds; therefore,

as already pointed out in the multipole expansion section 1.3.4, if we trade the stress momenta
S for the mass M and momentum P ones, we can work at leading order (and actually also next-
to-leading order [103]) without considering interaction terms. Furthermore it holds ∂µT

0µ = 0 at
lowest order even along trajectories which do not satisfy the equation of motions [103], which at
this order would read ṗµA = 0, and therefore the derivation done in the multipole expansion section
still goes through, at lowest order, even along generic trajectories.

Working in the non-relativistic case, specifically up to O
(︂
v2

c2

)︂
order, we can use the classical

definition of center-of-mass frame [103]. Therefore we define the relative coordinate as x0 = x1−x2,
the center-of-mass coordinate as

xCM =
m1x1 +m2x2

m
, (1.71)

with m = m1+m2 the total mass, and µ = m1m2
m the reduced mass. For an isolated system xCM is

not accelerated, therefore such a term won’t produce gravitational waves, and hence we can choose
the frame where xCM = 0. Such a choice lets us single out, as usual in classical mechanics, only
a single degree of freedom, therefore in the center-of-mass frame we can work with just a single
effective particle of mass µ and coordinates x0(t) [103].

We can now easily evaluate equation (1.63), with ρ(t,x) = µδ(3)(x − x0(t)), which results in a
second mass moment and its second time derivative

M ij(t) = µxi0(t)x
j
0(t) , M̈

ij
(t) = µ

(︂
ẍi0(t)x

j
0(t) + 2 ẋi0(t)ẋ

j
0(t) + xi0(t)ẍ

j
0(t)
)︂
. (1.72)

where we assumed µ̇ = 0. Substituting these results in equations (1.66) we can finally evaluate the
gravitational waves produced by such a system in the mass quadrupole radiation approximation.
Furthermore, recalling definition (1.64) and defining r20(t) ≡ x2

0(t) = δijx
i
0(t)x

j
0(t), the quadrupole

moment reads

Qij(t) = µ

(︃
xi0(t)x

j
0(t)−

1

3
δijr20(t)

)︃
, (1.73)

from which we may obtain the power emitted in the quadrupole radiation approximation employing
expression (1.68).

1.4.2 Quadrupole radiation from a circular binary system

To specify the formulae shown in the previous section to a prototypical scenario of physical interest,
even if an idealized one, we will consider a binary system composed of two massive bodies, orbiting
each other at non-relativistic speeds, along circular orbits.

Adopting definitions from section 1.4.1, and constructing the center-of-mass frame as described
therein, we rotate such a frame so that the orbit lies in the xy plane. Denoting with R the distance
between the two bodies, which we still treat as point particles, the relative separation x0(t) reads

x0(t) ≡ x10(t) = R cos
(︂
ωst+

π

2

)︂
,

y0(t) ≡ x20(t) = R sin
(︂
ωst+

π

2

)︂
, (1.74)

z0(t) ≡ x30(t) = 0 ;

where we translated the origin of time to be consistent with [103], and we defined the orbital angular
frequency as ωs ≡ 2πfs, with fs the orbital frequency.
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Specializing formula (1.72) to this case we obtain that the only non vanishing second time derivatives
of the second mass moment are:

M̈
11

= −M̈22
= 2µR2ω2

s cos (2ωst) , (1.75a)

M̈
12

= M̈
21

= 2µR2ω2
s sin (2ωst) . (1.75b)

We may now substitute such expressions into formulae (1.66), using the same coordinate frame
shown in figure 1.4. In particular we may consider a distant observer who is in position r = rn̂
with respect to the source, and who therefore observes plane waves propagating along direction n̂.
In the quadrupole radiation approximation, the amplitudes of the gravitational waves observed at
time t, which were therefore produced by the binary system at retarded time tret, read:

h+(t, θ, ϕ) =
1

r

G

c4

[︂
M̈11 cos(2ϕ)

(︁
1 + cos2(θ)

)︁
− M̈12 sin(2ϕ)

(︁
1 + cos2(θ)

)︁]︂⃓⃓
tret

=
4

r

G

c4
µR2ω2

s

(︃
1 + cos2(θ)

2

)︃
cos(2ωstret + 2ϕ) , (1.76a)

h×(t, θ, ϕ) =
1

r

G

c4

[︂
2M̈11 sin(2ϕ) cos(θ) + 2M̈12 cos(2ϕ) cos(θ)

]︂⃓⃓
tret

=
4

r

G

c4
µR2ω2

s cos(θ) sin(2ωstret + 2ϕ) . (1.76b)

We can see that for such a system, the frequency of gravitational waves, in the quadrupole radiation
approximation, is twice the orbital frequency ωs; actually in such an approximation we may define
the gravitational wave frequency ω as ω ≡ 2ωs. This also means that such an harmonic will
dominate the spectrum of gravitational radiation of most binary system; at least until the orbital
velocity remains low and the orbital eccentricity negligible; in fact in real, non idealized cases,
gravitational waves of different harmonics are also produced [103].

Moreover, as pointed out in reference [103], in the application of formulae (1.76), the angle θ is
equivalently denoted as ι, which is the angle between the normal to the orbit and the line of sight
of the distant observer. Furthermore, as can be seen from the first equality in each equation of
(1.76), the angular dependence h+ ∼ (1 + cos2(ι)) and h× ∼ cos(ι) is due to the general structure
expression (1.66), hence it’s present for all systems with M̈ i3 = 0 and M̈22 = −M̈11. Also, care
should be taken if the observation time is long (of the order of months), as the distance from
the observer to the source r may vary due to the Earth motion with respect to the Solar System
Baricenter; and also if the source undergoes proper motion, as that could make the angle ϕ vary.
Otherwise we may take r and ϕ to be constant; in such cases the angle ϕ cannot be observed and
therefore is usually dropped by a redefinition of the origin of time.

Similarly from equation (1.73), noticing that r20(t) = R2, we have

...
Q

11
= −

...
Q

22
= −4µR2ω3

s sin (2ωst) , (1.77a)
...
Q

12
=

...
Q

21
= 4µR2ω3

s cos (2ωst) ; (1.77b)

therefore, recalling formula (1.68), the power emitted via gravitational waves by the binary system,
in the quadrupole radiation limit, is given by:

Pcirc,quad =
Gµ2

10 c5
R4ω6⃓⃓

tret
, (1.78)

where we the right hand side is to be evaluated at retarded time tret.
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1.4.3 Evolution of self-gravitating binary systems

We can now discuss how the back-reaction due to the emission of gravitational waves modifies the
dynamics of a binary system. In particular, this discussion is valid only at leading order, in the
linearized theory, but the key concepts we’ll find are actually there in the full theory.

Quasi-circular orbit approximation

As we found previously in equation (1.78), the non relativistic binary system will lose energy (and
angular momentum too, as pointed out in section 1.3.3) via emission of gravitational waves. Such
energy must necessarily come from within the isolated binary system itself; furthermore, because
we’re assuming it to be composed of point particles, there are no additional internal degrees of
freedom which could release energy. Remarkably, also in a realistic system the internal structure
of astrophysical bodies has normal frequencies much higher than the orbital one, at least in the
non relativistic regime: hence such internal degrees of freedom effectively do not contribute to the
power balance [103].

Taking into account these considerations, we have that we can estimate the total energy of the
system, at leading order, by

Etot =
1

2
m1v

2
1 +

1

2
m2v

2
2 −G

m1m2

r0
=

1

2
µv20 −G

µm

r0
, (1.79)

where v0 ≡ v1 − v2. By the virial theorem it follows, as an average over time, that v20 = Gm
r0

; this
relation is actually exact in the case of circular orbits. Assuming a circular orbit, and accordingly
adopting the same notation R = r0 used previously, we take the time derivative of the total energy
of the system, obtaining:

Ėtot,circ =
1

2
G
µm

R2
Ṙ , (1.80)

where we assumed ṁ1 = ṁ2 = 0. Hence we see that, to satisfy the leading order energy balance
Ėtot,circ = −Pcirc,quad < 0, we must allow the relative distance between the two bodies to decrease
Ṙ < 0.

We should now perform calculations akin to the ones presented previously for a system in a decaying
orbit. Nonetheless, to simplify the matter, we can recognize that if in the derivation of section 1.4.2
we let the relative distance R between the two bodies vary as a function of time, aside from the
R −→ R(t) substitution, the key differences arise is in formulae (1.75) and (1.77), where the time
derivative now acts also on R(t), therefore giving Ṙ(t) and R̈(t) terms. Actually if the system is
self-gravitating, in our limit where Newtonian dynamics can be applied, a time dependent R(t) will
induce a time dependent orbital angular frequency ωs −→ ωs(t), as can be seen by Kepler’s third
law ω2

s =
Gm
R3 . Therefore we should also perform the ωst −→ ϕs(t) substitution in (1.75a), with ϕs(t)

the orbital phase, and hence we’d expect expects also ω̇s and ω̈s terms to appear in the subsequent
derivation.

Nevertheless, if the variation of the orbital radius is much slower than the other velocity into play,
which is the relative orbital velocity v0 = ωsR, these new terms are subleading and may therefore
be neglected as a first approximation. This is the so called quasi-circular motion approximation:
the formulae (1.76) and (1.78) can be applied as a first approximation, even thought the relative
distance R is not constant anymore, as long as it varies slowly, in the sense that Ṙ≪ ωsR = v and
R̈≪ ωsv must hold.

Inspiral of a binary system in the linearized theory

From the analysis just presented, we may employ the quasi-circular orbit approximation to evaluate
how a binary system, with bodies moving along circular orbits, evolves over time.
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First, as we’re working in a non-relativistic regime, we have to demand the initial relative distance

R to be large enough, so that v = ωsR =
√︂

Gm
R ≪ c can be satisfied. We may the proceed to

evaluate the orbital decay rate Ṙ by resorting to the energy balance, therefore by equaling formula
(1.80) to the opposite of formula (1.78), obtaining:

Ṙ = −64G3

5 c5
µm2

R3
. (1.81)

Nonetheless, because we can measure only the time-varying amplitude and frequency of a gravi-
tational signal, it’s better to express all quantities as a function of the gravitational wave angular
frequency ω = 2ωs, or of its frequency fgw ≡ ω

2π = ωs
π . In such a way equation (1.81) becomes

ḟgw =
96

5
π

8
3
G

5
3

c5
M

5
3
c f

11
3
gw ; (1.82)

where we defined the chirp mass as [103]

Mc ≡ µ
3
5m

2
5 =

(m1m2)
3
5

(m1 +m2)
1
5

. (1.83)

Such quantity has the dimension of a mass and it is usually present in most formula regarding
the emission of gravitational waves from binary systems: this is due to the fact that, at least at
leading order, the total mass m and the reduced mass µ enter in the observables a distant observer
may measure only through the combination (1.83). Therefore such a degenerancy prevents us from
estimating the former parameters separately; hence it’s better to work only with Mc as it can be
measured more precisely.

The solution to these differential equations can be found by employing the method of the separation
of variables; e.g. equation (1.81) can be integrated to obtain

R(t) = Rin

(︃
1− 256G3

5 c5
µm2

R4
in

(t− tin)
)︃ 1

4

. (1.84)

It’s actually useful to change the time variable, analogously to reference [103], adopting the time
to coalescence:

τ ≡ tcoal − t ; (1.85)

where tcoal is the moment of coalescence. In our leading order approximation we may estimate the
latter as the instant when the relative separation becomes zero, that is R(t = tcoal) = 0; its value
is then given by

tcoal = tin +
5 c5R4

in

256G3 µm2
. (1.86)

Let us also remember that in general the formulae concerning the source as seen by the distant
observer must be evaluated at retarded time tret; however, using this time variable we can also
overlook the usage of the retarded time, as it holds τ = tcoal − t = tcoal − r

c − t+ r
c = tcoal,ret− tret.

Expressing the radial separation as a function of the time of coalescence we obtain

R(τ) =

(︃
256G3

5 c5
µm2

)︃ 1
4

τ
1
4 ≈ 83.8 km

(︃
µm2

M3
⊙

)︃ 1
4 (︂ τ

1 s

)︂ 1
4
; (1.87)

it also holds R(τ) = R(τin)
(︂

τ
τin

)︂ 1
4
. In equation (1.87), as we’ll do again in the following, we

explicitly computed the numerical value of such an expression normalizing the parameters to some
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typical values, to get a sense of the quantities we’re working with. Still let us notice, as pointed
out in section 1.2.2, that the compact bodies of astrophysical origin we’re most interested in, such
as black holes or neutron stars, have masses of at least M ⪆ 1.2M⊙: actually for most black holes
detected so far we have M ≈ 10 ∼ 100M⊙, and for supermassive black holes the mass could get as
high as M ≈ O(109M⊙).

Even more useful is the expression for the gravitational wave frequency as a function of time
to coalesce fgw(τ), in the non-relativistic quadrupole radiation approximation, which, integrating
(1.82) or equivalently employing Kepler’s third law in (1.87), reads:

fgw(τ) =

(︄
256G

5
3

5 c5
π

8
3M

5
3
c

)︄− 3
8

τ−
3
8 ≈ 151Hz

(︃
M⊙
Mc

)︃ 5
8
(︃
1 s

τ

)︃ 3
8

. (1.88)

Finally we can also evaluate the amplitude of the gravitational waves as seen by an observer at a
distance r. To do so we can employ equations (1.76), with the substitution 2ωst = ωgwt −→ Φ(t),
where Φ(t) is the phase of the emitted gravitational waves, or twice the orbital phase, and is given
by integrating the time-dependent frequency as [103]:

Φ(t) = Φ(tin) +

∫︂ t

tin

dt′ ωgw(t′) . (1.89)

In our case we can directly integrate (1.88) to obtain

Φ(τ) = Φ0 −
8

5
2πfgw(τ) τ , (1.90)

with Φ0 an integration constant, equal to the phase of the gravitational wave signal at the time of
coalescence.

Performing this substitution in equations (1.76), in the non relativistic quadrupole radiation ap-
proximation, for the amplitudes of the gravitational waves we obtain:

h+(t) =
4π

2
3

r

G
5
3

c4
M

5
3
c f

2
3
gw(tret)

(︃
1 + cos2(ι)

2

)︃
cos(Φ(tret)) , (1.91a)

h×(t) =
4π

2
3

r

G
5
3

c4
M

5
3
c f

2
3
gw(tret) cos(ι) sin(Φ(tret)) , (1.91b)

where we dropped the 2ϕ term with respect to the generic formula, as it amounts to a shift of
the origin of time, or equivalently to a shift of Φ(tin); and where ι is the angle between the
normal to the orbital plane and the observer direction, and is equal to what was denoted as θ in
figure 1.4. A numerical estimate of the expected amplitude for gravitational waves, e.g. such that
h×(t) = A(t) cos(ι) cos(Φ(tret)), for a prototypical astrophysical source is given by:

A(t) ≡ 4π
2
3

r

G
5
3

c4
M

5
3
c f

2
3
gw(t) = 3.4 · 10−23

(︃
100Mpc

r

)︃(︃
Mc

M⊙

)︃ 5
4
(︃
1 s

τ

)︃ 1
4

. (1.92)

From such an estimate we can notice that the more massive a systems is, the more likely it is to
be detected, because the amplitude of the signal it produces is higher. Nonetheless as we’ll see
in section 1.5, interferometric detectors are most sensitive only in a certain range of frequency,
therefore the systems we may detect are limited by both constraints, as a too heavy binary will
emit frequencies lower than the ones to which present day interferometers are sensitive.

Fortunately, thanks to the matched filtering technique used in the data analysis of the time series
recorded by gravitational wave interferometers, as long as we know the shape, or template, of the
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signal we’re looking for, it’s not strictly necessary for the signal to have an amplitude higher than
the noise at any given moment for it to be detected: it suffices that the integrated signal-to-noise
ratio, or some similar statistic, is high enough; therefore also the number of cycles spent in the
detector bandwidth plays an important role.

From the previous analysis we can then estimate the number of cycles of the waveform in the time
interval [tin, tfin] as

Ncyc =
1

2π
(Φ(tfin)− Φ(tin)) =

∫︂ tfin

tin

dt′ fgw(t′) =
∫︂ fgw,max

fgw,min

dfgw
fgw

ḟgw
. (1.93)

We can evaluate the last integral recalling (1.82), to obtain

Ncyc =
π−

8
3

32

(︃
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3
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3
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3
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)︃
≈ 2.2 · 104
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1M⊙
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)︃ 5
3
(︃

10Hz

fgw,min

)︃ 5
3

, (1.94)

where we assumed fgw,min ≪ fgw,max, as this is usually the case [103].

For example in the analysis of the signal from the first observed binary neutron star system,
up to 4200 waveform cycles were used, thereby greatly increasing the accuracy of the estimated
parameters [146]. For next generations detectors, such as LISA, it’s actually expected that in
particular cases, e.g. for an extreme mass ratio inspiral (EMRI), as could be the inspiral of a black
hole of mass m2 = O(10M⊙) into a supermassive black hole of mass m1 = O(106M⊙), up to
Ncyc = O(104 ∼ 105) of waveforms cycles could lie in the detector’s sensitive frequency range [147].

To exemplify what we’ve seen so far, in figure 1.5 we plotted the most relevant quantities derived
in this section for a prototypical system which may be detected by present date gravitational wave
observatories. From the plots we can explicitly see that initially the radius decreases slowly, as
the power lost via gravitational waves is relatively small; as times goes on the system inspirals
ever so fast, as the rate of orbital decay increases, until we approach the plunge phase: now
the orbital separation is really small and decreases very rapidly due to strong gravitational wave
emission. Simultaneously the frequency of the gravitational waves progressively increases, as does
the amplitude, resulting in the so called chirp signal. Still, as we’ll see in section 1.4.4, the accuracy
of our approximations degrades as we get closer to the merger: in the last seconds we may trust
the plots in figure 1.5 only to understand the trend of the evolution of the binary system, as the
evaluation of those quantities would by then require different approximation schemes, as will be
outlined in section 1.6.

Corrections due to cosmological redshift and orbital eccentricity

The analysis we have presented so far assumed a static flat spacetime, in addition to the fact that the
source frame and the observer frame where not moving relative to each other. Such assumptions
apply only if the source is close enough and its center of mass is moving relatively slowly with
respect to the observer, so that the cosmological and the doppler redshifts can be neglected: hence
the time as measured in both the source and the observer frame is equivalent; and so is also the
time to coalescence as measured in the source frame, τsource, with respect to the one measured
by the observer, τobs. Quite the opposite, most of the binary systems which have been currently
detected are quite far away, at cosmological redshift of z = O(0.1 ∼ 1) [5], which therefore cannot
be neglected if we aim for accurate estimates.

Nonetheless, if we assume a spatially flat Friedmann-Robertson-Walker universe, the formulae
reported in this section still hold once we perform the following replacements: τ −→ τobs, as we
work with the observer time; r −→ dL(z), where dL is the luminosity distance of the source; and
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Figure 1.5 Plots of several quantities regarding the evolution of a prototypical binary system and the
gravitational waves it emits during the last stage of the inspiral phase. They were evaluated using the
formulae presented in this section, in the context of the quadrupole approximation in the linearized theory,
for quasi-circular orbits.
In the top panel we show the relative separation between the two bodies R(τ), in the middle panel the
frequency of the emitted gravitational waves fgw(τ), while in the bottom panel we show the amplitude
h+(τ) of the gravitational wave signal as it would have been measured by the distant observer; all of these as
a function of the time to coalescence τ . In particular for the top we consider the last 900 s before coalescence;
whereas in the middle panel and in the bottom panel we zoom into two short time intervals: on the left we
consider τ ∈ [100, 98.5] s, while on the right we consider τ ∈ [2, 0] s, just before coalescence.
For the binary system we assumed as parameters m1 = 35M⊙, m2 = 30M⊙, r = 400 Mpc, Φ0 = 0 rad
and ι = 0 rad; therefore we assume to be observing the system along the normal to the orbital plane. The
parameters where thus chosen so as to allow a comparison with a system similar to the one discovered with
the first gravitational wave signal detection [1, 2], for example shown also in figure 1.1.
To be precise at such a distance the cosmological redshift is z ∼ 0.1, therefore we would have needed to
apply the corrections which will be discussed in the following; nonetheless for clarity of exposition we simply
plotted the non-redshifted formulae with the aforementioned parameters.
Let us notice that the closer we are to coalescence, the less accurate our approximations and therefore our
estimates will be: in particular we cut off the frequency and amplitude plot in the right panels at τ = 3 ms,
as otherwise they would have diverged. Physically this is not the case, hence this signal the breakdown of
our formulae: this actually happens even before, for example when the system reaches the Innermost Stable
Circular Orbit (ISCO), as discussed in section 1.4.4. For reference we plotted the moment when such point
is reached: in the top panel the horizontal red line shows the value of RISCO = 576 km, while in the middle
and bottom panels the vertical red lines indicate the time τISCO = 33 ms.
Still, although our formulae aren’t so accurate, the plot can be useful to understand the trend of the
evolution of the binary system: in particular we can see that, due to the ever increasing power lost via
gravitational waves, the relative distance decays increasingly fast, while the frequency and the amplitude of
the gravitational waves become increasingly higher and louder, in what’s called a chirp signal. This is the
behaviour to be expected for the inspiral phase of the system, while for the evolution in its last moments
we may refer to figure 1.1, which reports results from an accurate numerical relativity simulation. Finally it
will be interesting to compare these plots with figure 6.1, which shows the effect of the 2PN corrections on
this systems.
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Mc −→ Mc ≡ (1 + z)Mc, with Mc the redshifted chirp mass. In fact from the detection of a
gravitational wave signal one can extract the redshifted masses, hence with chirp mass one refers
to Mc; also the masses of each compact object m1, m2, the total mass m and the reduced mass µ
have to be redshifthed, i.e. multiplied the a (1 + z) factor. Still, once one assumes a cosmological
model, it’s possible to evaluate the quantities as they would have been measured in a frame near
the source; for example the masses so corrected are denoted as source masses [5].

We may also expect most binary system to start in an eccentric orbit, and therefore we would
like to gather to what extent the analysis of the quasi-circular motion carries over: it’s in fact
possible to derive quantitative results, as shown in [103], by following a procedure analogous to the
circular orbits case. Doing so we would find that an eccentric orbit increases the power emitted via
gravitational waves, as near the periastron the accelerations that come into play are now larger, and
that the frequency sprectrum of the emitted gravitational radiation now comprises all harmonics
of the orbital frequency.

Still the most interesting fact is that, because gravitational waves carry away energy and angular
momentum, as we’ve seen in section 1.3.3, the eccentricity of the orbit decreases substantially over
time. Hence the effect of gravitational waves is to circularize the orbit, up to the point that,
if not other mechanism counteract such an effect, the eccentricity of the orbit at the end of the
inspiral phase will be almost vanishing to an high accuracy [103]: therefore in the last inspiral
stage, where the amplitude is higher and so is our chance to detect such systems, the circular orbit
approximation may be well satisfied by many astrophysical systems. At last, given two systems
which initially have the same orbital periods, one in a circular and one in an elliptic orbit, the time
to coalescence for the elliptic system is lower compared to the former one.

1.4.4 Regime of validity of the approximations employed

We’d like finally to discuss the extent to which we may trust the formulae presented up until now,
in the last sections, to make explicit the need of higher order corrections or different approximations
schemes altogether, which will be outlined in section 1.6.

To summarize, the assumptions we made are the ones of be working in a weak-field and low-velocity
regime, with quasi-circular orbits; hence to hope for our estimates to be accurate we must check
when we satisfy such conditions.

The weak-field and low velocity assumptions require, for a self-gravitating system, v
c = ωs

R
c =

0.025
(︂
fgw
1Hz

m
M⊙

)︂ 1
3 ≪ 1, which therefore reads fgw ≪ 65 kHz

(︂
M⊙
m

)︂
, or τ ≫ 0.1 µs

(︂
m
µ

m
M⊙

)︂
. This

can be cast equivalently into v
c = 1√

2

√︂
Rs
R ≪ 1, so R ≫ Rs

2 , where Rs is the Schwarzschild radius

associated to the total mass m of the system as in equation (1.5); hence we can see that the farther
apart are the bodies, the more accurate our estimates will be, as we were expecting.

The quasi-circular motion approximation holds instead as long as Ṙ≪ Rωs, or equivalently ω̇s ≪
ω2
s , which numerically reads τ ≫ 0.01ms

(︂
Mc
M⊙

)︂
or fgw ≪ 10 kHz

(︂
M⊙
Mc

)︂
. These conditions are hence

satisfied until the last stages of the binary evolution for most astrophysical system of interest, and
formally the breakdown happens when R ∼ O(Rs), as found before. Nonetheless we must point
out that, especially for events that will stay in the detector bandwidth for many cycles, the really
high accuracy needed for the waveforms requires higher order corrections even well before the end
of the inspiral phase.

We can further study the regime of validity of our expansion by comparing the results we found with
similar ones obtained in the full theory, in which we can exactly probe also the strong field regime.
For example, consider the Schwarzschild solution for non rotating and non charged spherically
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symmetric compact objects: it exhibits a value of the radial coordinate r below which no massive
test body can continue to orbit the bigger compact object. Such last possible orbit is called
Innermost Stable Circular Orbit, or ISCO, and the value for the radial coordinate is given by

RISCO =
6Gm

c2
≈ 8.86 km

(︃
m

M⊙

)︃
. (1.95)

with m the total mass of the binary; it is three times the associated Schwarzschild radius, RISCO =
3Rs. Actually expression (1.95) is exact only in the test mass limit, e.g. m2 −→ 0 [103], and
for bodies with vanishing spin, otherwise corrections are due. Let us also notice that the radial
coordinate r of the Schwarzschild metric does not correspond per se to the the radial coordinate
we adopted in the linearized theory; nonetheless if we equate their numerical values and compute
observables, the results we may obtain are of the same order of magnitude of the results one can
obtain evaluating the same observables in the exact Schwarzschild metric [103].

By employing Kepler’s third law we obtain that, when the system relative distance is R = RISCO,
the frequency of the emitted gravitational waves is

fgw,ISCO =
6−

3
2

π

c3

G

1

m
≈ 4.4 kHz

(︃
M⊙
m

)︃
; (1.96)

while correspondingly the time left to coalescence, in our approximation, reads

τISCO =
405

16

G

c3
m2

µ
≈ 0.125ms

(︃
m

µ

m

M⊙

)︃
; (1.97)

for reference we also reported such quantities in figure 1.5, for the system under consideration
therein.

Therefore after this limit we can consider our approximations to no longer be accurate, as for
sure no circular orbit can be sustained any longer, contrary to what Newtonian dynamics would
predict. In fact when the compact objects are so close to each other the flat space approximation
cannot hold anymore, as the respective gravitational field is too strong, and general relativistic
effect become dominant, marking the transition to the plunge phase. Moreover in section 1.6 we’ll
see that the physics which characterize the following phases is so drastically different from the one
we described so far that it’s necessary to adopt different approximation schemes altogether.

1.5 Gravitational waves detectors

As outlined in section 1.2.1, historically there have been several attempts to create instruments
capable of detecting gravitational waves: nonetheless their amplitude is so faint that only inter-
ferometric detectors, which offer an exquisite sensitivity over a quite large frequency band (about
two-three frequency decades), are capable of detecting them. Actually there are exceptions to the
above statement: the pulsar timing arrays work in a similar way to the interferometers, looking for
the perturbation which gravitational waves add on the arrival time of signal emitted with a known,
constant frequency, in this case by millisecond pulsars (neutron stars rotating with an incredible
steadiness) [134]; and also by observing CMB data we may be able to directly infer the energy
density and power spectrum of primordial tensor perturbations (for example gravitational waves
created during inflation) [129].

Focusing on the interferometer detectors, their working principle is that a gravitational wave passing
in the instrument will modify the relative phase between two laser beams, which had been traveling
along the two perpendicular arms [103, 113]. Therefore, when the two laser beam recombine at
the beam splitter, the relative phase acquired will create an interference pattern, modulating the
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power which is seen at the antisymmetric port of the interferometer, which otherwise is adjusted to
be (almost) dark [103]. By analyzing this output therefore it’s possible to reconstruct the temporal
evolution of the amplitude and the phase of gravitational wave signals with frequency from a few
tens to few hundreds of Hz (in ground based interferometers). We can notice that the bandwidth
of interferometers is quite large, and that they can be built to be sensitive to frequencies relevant
in the inspiral and merger of astrophysical compact object binaries.

Noise sources

The limits to the sensitivity of these detectors are due to several noise sources [103]: at low frequency
the limiting factors are the radiation pressure noise, due to the fluctuating radiation pressure
exerted by the photons of the laser beam (as their number fluctuactes according to the Poisson
distribution); several sources of thermal noise, which induce vibrations in key components of the
detector; the seismic noise, due to the motion of the Earth’s ground, which can be attenuated by
a suitable suspension system; the Newtonian noise, which is due to the time-varying gravitational
force exerted on the instrument by moving masses which are surrounding the detectors (as could be
also the atmospheric turbulence) and physically cannot be screened, as it couples to the detector
just like a gravitational wave would. At high frequency instead the limiting factor is the laser
shot noise: to measure the signal at high frequency we need to count the number of photons
impinging on the photodetector in a short time frame; then also in this case we’re limited by the
Poissonian error due to the finite number of photons. Let us notice that if we were to increase the
power of the circulating laser to attenuate the shot noise, we would increase the radiation pressure
noise (and actually also the mirror thermal noise): then both noise sources are collectively denoted
as quantum noise, and this trade-off imply the standard quantum limit on the sensitivity of the
instrument (which however may be circumvented using frequency dependent quantum squeezing).

Mathematically the total amount of noise in a gravitational wave detector is quantified, in frequency
space, by the noise power spectral density Sn(f), or by its square root, the amplitude spectral
density

√︁
Sn(f) [103, 148]. In particular, if n(t) is the irreducible noise recorded as output of the

detector, assuming it to be stationary, we define the single sided noise power spectral density as

⟨ñ∗(f) ñ(f ′)⟩ ≡ 1

2
δ(f − f ′)Sn(f) ; (1.98)

where ñ(f) is the Fourier transform of n(t), and ⟨·⟩ denotes the ensemble average. Then lower
is the value of this quantity at a given frequency f , the more sensitive the instrument will be to
signals of that frequency.

To suitably deal with the aforementioned noise sources, in order to actually reach the exquisite
sensitivity required for detecting gravitational waves, present-day detectors use a much more com-
plex design than what we’ve previously sketched, and which is called the Dual-recycled Fabry-Perot
Michelson interferometer [103, 149]. In particular Fabry-Perot arm cavities are employed to increase
the laser power circulating in the arms, while other cavities and laser mode filters are employed
to enhance the signal even more, which is actually encoded in sidebands of the carrier laser signal
[103]. Most recently frequency-dependent quantum squeezing is being implemented in the advanced
stage [149, 150] of current (second generation) interferometers to reduce shot noise and quantum
radiation pressure [151]. Newtonian noise mitigation is in the study as well for third generation
detectors, such as Einstein Telescope in Europe [152]: to reduce this source of noise, some next
generation detectors will probably be built underground. Detectors of gravitational waves at even
lower frequencies, below the Hz, are planned, but due to seismic noise they’re feasible only in
space: this is the concept of the Laser Interferometer Space Antenna (LISA) [91]. Such a mission
has also the potential to study quantities and phenomena of interest in cosmology [126], such as the
presence of a cosmological stochastic gravitational wave background: among other things it could
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probe gravitational waves produced in some inflationary scenarios [127, 128] in a complementary
way with respect to the usual study of the B modes of the CMB [129].

Matched filtering technique

A quite remarkable point is that, at any given moment in time, the amount of noise in a detector
is in practice always higher than the signal which we expect from typical binary sources. What
allows us to actually spot a real signal in the noise is the matched filtering technique.

This technique is based on the fact that time series which is output of the detector o(t) (which we
take to be the dimensionless strain), at any moment in time, will be given by the sum of the noise
in the detector n(t), and eventually by the signal h(t) due to an impinging gravitational wave (this
latter signal is actually modulated by the transfer function of the detector); so o(t) = n(t) + h(t).
Then if we have a template h̄(t) for the waveform of the signal we’re looking for and that we expect
to find in the detector, we can multiply together the output of the detector by the template and
average over time, to obtain [103]:

1

T

∫︂ T

0
dt o(t) h̄(t) =

1

T

∫︂ T

0
dt n(t) h̄(t)⏞ ⏟⏟ ⏞

∝T− 1
2−→0

+
1

T

∫︂ T

0
dt h(t) h̄(t)⏞ ⏟⏟ ⏞
∝const

; (1.99)

where the first integral in the right hand side oscillates asymptotically to zero, since the noise and
the waveform are uncorrelated (i.e.

∫︁
dt n(t) h̄(t) ∝ T 1

2 due to its random walk behavior), while the
second term will average to a constant value (the average value of h2(t)).

It can be shown that the matched filtering is an optimal technique for extracting a known signal

from a noisy output when we adopt as Wiener filter K(f) ∝ h̃(f)
Sn(f)

, i.e. the signal h itself weighted

by the power spectral density (1.98). As a consequence of this, one introduces the corresponding
whitened quantities, such as the whitened strain: this is defined as the output of the detector
weighted by the amplitude spectral density õ(f)√

Sn(f)
; and so gives more relevance to the frequencies

of the signal which we can better observe. In fact this is the quantity that it’s routinely employed
during the analysis (to which other filters are also applied) [153], and the template that’s used in
the research is the whitened template.

Let us now better formalize these concepts, extending them also to the case of signals collected by
N detectors (as seeing the same signal in coincidence between different detector greatly increase our
confidence about its astrophysical origin) [154, 155]. Then let us denote with g = {gα(t))}α=1,...,N

the vector containing the N signals, on for each of the detectors. Then we can introduce the scalar
product between two such vectors g and k as:

(g |k) ≡ 2

∫︂ +∞

0
df [Sn(f)

−1]αβ
(︂
g̃∗α(f)k̃β(f) + g̃α(f)k̃

∗
β(f)

)︂
; (1.100)

where for example g̃α(f) represents the Fourier transform of the corresponding gα(t) signal, and
[Sn(f)

−1]αβ is the matrix of the power spectral noise density for the noise (auto)correlation between
several detectors, which generalizes equation (1.98):

⟨ñ∗α(f)ñβ(f ′)⟩ ≡
1

2
δ(f − f ′)Sn(f)αβ . (1.101)

With these definitions we can evaluate the ideal signal-to-noise ratio for a given gravitational
waveform h as [103, 155]:

S

N
[h] ≡

√︁
(h |h) . (1.102)
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In this case the signal-to-noise ratio (SNR) quantifies the strength of the signal with respect to
the background noise; roughly speaking, during gravitational wave searches, candidate events are
recognized as such when their signal-to-noise ratio is above SNR > 8.

Finally let us point out that in practice, in order to achieve this optimal signal-to-noise ratio, and so
a high probability of detecting a candidate signal, the template must closely match the actual signal
due to the real gravitational wave (i.e. h̄ = h). This is one of the several reasons why more accurate
waveform models are needed for next generation gravitational wave observatories (and hence why
post-Newtonian corrections are important). Furthermore, regarding the online search analysis of
gravitational events, to perform the aforementioned matched filtering analysis, a large template
bank has been created: in this way the signal recorded by gravitational wave observatories is
almost instantaneously compared with millions of precomputed waveform templates, which sample
densely enough the parameter space.

1.5.1 Interaction of gravitational waves in linearized theory

Here we will briefly outline which is the response of an idealized interferometric detector to a
gravitational wave passing by.

To do so it useful to move in TT gauge: in this frame any test-mass with constant spatial coordinates
(xi = const) will actually be moving along its geodesic (so it may describe a test mass which is not
under the influence of any external force) [103]. Then the perturbations due to the gravitational
wave is actually encoded in the varying spacetime interval ∆s2 between two spacetime events: we
see that in order to detect this perturbation of the spacetime we actually need to compare the
invariant distance of at least two objects (as dictated by the Einstein’s equivalence principle and
the geodesic deviation equation); whereas the value of the coordinates xµ by themselves are not
physically meaningful in general relativity.

Let us point out that for ground-based interferometers the approximation of considering the sus-
pended mirrors as test masses is quite good: in fact these mirrors do not move along the geodesics
as the suspension system, which keeps them from falling into the ground, exert on them an external
force; yet when working in Fourier space, for the frequencies of interest, they behave as if they were
freely falling test masses. On the other hand space-based observatories, such as LISA, will actually
provide an almost exact realization of freely falling test masses, as the spacecraft will actually follow
the geodesic of an almost unperturbed cubic test mass inside of it; used as the reference point to
perform interferometric measurement.

We may then consider a coordinate frame in which one of the two ends (e.g. the mirror or the
beam splitter) of one of the arms of the interferometer is placed at the origin, xµ1 = (t,0) (in fact
up to higher order corrections the proper time of a still test mass in TT gauge is equivalent to the
coordinate time t [103]), while the other one is placed in position l, so xµ2 = (t, l). Then we have
to consider the electromagnetic wave (i.e. the laser light) travelling between these two end points,
along a null geodesic ds2 = 0. In TT-gauge, i.e. under the constraints (1.26), the definition (1.6)
becomes:

ds2 = gµνdx
µdxν = −c2dt2 + (δij + hTTij (t,x))dxidxj ; (1.103)

and therefore along the null geodesic it holds c2dt2 = (δij + hTTij (t,x))dxidxj . We define with

L = |l| =
√︁
δijlilj the spatial distance between the two end points x1 and x2, and expand at linear

order in hµν ≪ 1 the previous relation along dxi = l̂
i
Ldu, with l̂ ≡ l

|l| and 0 ≤ u ≤ 1, obtaining:

dt = du
L

c

(︃
1 +

1

2
h
(TT )
ij (t,x) l̂

i
l̂
j
+O

(︁
h2
)︁)︃

. (1.104)
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We now define as T ≡ L
c the propagation time from x1 to x2 for a light signal in the unperturbed

spacetime (so in absence of gravitational waves), denoting instead with ∆T the delay or speed up
due to the presence of a gravitational wave perturbation. Then, assuming the electromagnetic wave
to start in x1 at time t, we can integrate (1.104) to find:

T +∆T (t) =

∫︂ T+∆T (t)

0
dt̃ =

L

c

∫︂ 1

0
du

(︃
1 +

1

2
h
(TT )
ij (t(u),x(u)) l̂

i
l̂
j
)︃
+O

(︁
h2
)︁

=
L

c⏞⏟⏟⏞
=T

+
L

2c

∫︂ 1

0
duh

(TT )
ij (t(u),x(u)) l̂

i
l̂
j
+O

(︁
h2
)︁
,

(1.105)

where we evaluate h
(TT )
ij at position (t(u),x(u)) assuming the propagation of the light beam in the

absence of gravitational waves, up to higher order corrections; i.e. t(u) = t+ T u and x(u) = l̂Lu.

We may now restrict ourselves to useful case of a far away localized source of gravitational waves,
which then propagate in direction n̂ towards us (hence the system is located in direction −n̂ for
the observer). Then we may recall equation (1.30) and the (û, v̂, n̂) orthonormal frame defined in
that section; from relation (1.105) we find:

∆T (t, l̂) =
L

2c
l̂
i
l̂
j
∫︂ +∞

−∞
df

∫︂ 1

0
du
(︂
h̃+(f) e

+
ij(n̂) + h̃×(f) e

×
ij(n̂)

)︂
e−i2πft e−i2πfu(T−

L
c
n̂·l) +O

(︁
h2
)︁

=
L

2c
l̂
i
l̂
j
∫︂ +∞

−∞
df
(︂
h̃+(f) e

+
ij(n̂) + h̃×(f) e

×
ij(n̂)

)︂
e−i2πf(t+

T
2
(1−n̂·l))sinc

(︃
πf

L

c
(1− n̂ · l)

)︃
,

(1.106)

where we used the identity
∫︁ 1
0 du eiCu = 1

iC (e
iC − 1) = e

i
2C

iC (e
i
2
C − e−

i
2
C) = e

i
2
Csinc(C2 ), with

sinc(x) ≡ sin(x)
x and sinc(0) = 1.

Then in a simplified setup of an idealized Michelson interferometer, to observe gravitational waves
we compare the round trip time for the laser light along two perpendicular arms of (almost) equal
length L, which we may denote as a and b. For definiteness we may assume arm a to lie on
the x̂ axis, such that l̂a = x̂, and arm b to lie on the ŷ axis, such that l̂a = ŷ. Then, using
equation (1.106) we find the round trip for the light in the first arm to be given by ∆Ta(t) =
∆T (t− 2L

c , x̂) + ∆T (t− L
c ,−x̂), and similarly for other arm ∆Tb(t). Finally, taking the difference

between these round trip times ∆Ta(t)−∆Tb(t) we can evaluate (multiplying by the laser frequency)
the observable shift in the phase of the two laser beams as they join at the beam splitter. In
particular, dividing instead this time difference ∆Ta(t) −∆Tb(t) by the total round trip time 2T ,
we can recast this observable as the dimensionless strain h(t) measured in the detector, that is:

h(t) =
c

2L

(︃
∆T

(︃
t− 2L

c
, x̂

)︃
+∆T

(︃
t− L

c
,−x̂

)︃
− T

(︃
t− 2L

c
, ŷ

)︃
−∆T

(︃
t− L

c
,−ŷ

)︃)︃
.

(1.107)

In the regime of low frequency gravitational waves, so f ≪ c
L , which is the case for the sensitivity

band of the ground based detectors ( c
3 km ∼ 105 Hz) we can approximate the sinc(x) function as

sinc(f Lc ) ≈ 1, therefore (1.106) and (1.107) yield:

h(t) =
1

2
(x̂ix̂j − ŷiŷj)⏞ ⏟⏟ ⏞

≡Dij

∫︂ +∞

−∞
df
(︂
h̃+(f) e

+
ij(n̂) + h̃×(f) e

×
ij(n̂)

)︂
e−i2πft⏞ ⏟⏟ ⏞

=hTT
ij (t)

= Dij hTTij (t);

(1.108)
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with the gravitational waves hTTij (t) evaluated at the position of the beam splitter, and with Dij

being called the detector tensor [103]. We can further simplify the above equation by parametrizing
the direction of propagation of the gravitational wave with n̂ = (cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ))
in the detector frame, to obtain:

h(t) = F+(ϕ, θ)h+(t) + F×(ϕ, θ)h×(t) , (1.109)

with h+ and h× the polarizations as in (1.28) (which numerically for example could be given by
results (1.91)), and where F+ and F× are the pattern functions of the interferometer. To obtain
the explicit expression for the pattern functions of this Michelson interferometer we can apply the
relevant rotation matrix, to obtain [103]:

F+(ϕ, θ) =
1

2
(1 + cos2(θ)) cos(2ϕ) , (1.110a)

F×(ϕ, θ) = cos(θ) sin(2ϕ) . (1.110b)

From these expression we understand that interferometers are all-sky instruments, capable of de-
tecting gravitational waves coming from almost any direction; yet the angular dependence implies
that some direction are still observed better than others.

1.6 Beyond the linearized theory

The results we’ve obtained up to this point have been worked out in the linearized general relativity
theory. Nonetheless, if we wanted to insist on trying to describe the dynamics of a self gravitating
system assuming a flat background spacetime, we’d be using Newtonian gravity instead of general
relativity [103]; in fact the dynamics we’ve obtained in section 1.4 for a non relativistic binary
system are essentially ascribable to the Newtonian gravity theory, with only the addition of the
quadrupole power loss formula (1.68) due to gravitational waves emission.

Nevertheless these results were only the leading order ones, whereas the non linear Einstein’s
equations in general predict much more complex behaviors and dynamics, which must be taken
into account once the gravitational field becomes strong if we aim for accurate estimates. But this
isn’t an easy endeavour: as already pointed out, aside from few idealized settings in which exact
analytical solutions can be found, some of which have been presented in section 1.1, to obtain
generic solutions in general relativity one has to resort to some kind of approximation scheme.
Furthermore it’s usually necessary to tailor the approximation scheme to the problem at hand:
to be as effective as possible, and to make the calculations manageable, each formalism relies on
different assumptions or expands in a different parameter, being then valid only in a specific regime.
Hereafter, and in figure 1.6, we outline some of the most widely used approximation schemes in the
study of binary coalescence [37, 103, 132]:

• Linearized general relativity, which is the first order expansion about flat spacetime we’ve
studied in the previous sections: it’s a quite useful approximation because the equations
become easier to deal with, and because the intrinsic weak field assumption is actually well
satisfied in many physical settings, as outlined in section 1.3.1. Therein we’ve also seen that
the linearized theory can describe the Newtonian limit; but, at the same time, it can deal as
well with systems moving and being accelerated at relativistic speeds: in fact, for a system
not too massive, such that the curvature it produces on the background spacetime is little
to none, and which is also not governed by gravitational forces, one may use formula (1.50)
to compute the gravitational waves emitted in such scenario [103]. Furthermore, as long as
we’re studying non-relativistic stationary sources, the linearized theory can also be cast in the
gravitoelectromagnetism formulation, which presents equations analogous to the Maxwell ones
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in the absence of time-varying fields [101]; in such a representation some general relativistic
effects, such as the Lense-Thirring precession, become evident.

• The post-Minkowskian expansion (PM), which is a perturbative expansion in the Newton
constant G, understood as the strength of the gravitational field Gm

r c2
≪ 1. This expansion

imposes no constraints on the velocities v at play, which hence could be relativistic. Therefore
such a formalism is particularly useful when dealing with unbound motion of bodies with
a large relative separation, e.g. two body gravitational scatterings; but also bound binary
systems in highly elliptic orbits. However, thanks to suitable procedures, it’s actually possible
to extract information about the dynamics of bound systems even by studying their unbound
motion in the post-Minkowskian framework [71–73]. Currently results up to the fourth post-
Minkowskian order (4PM, so G4) are known [158–161].

• The post-Newtonian (PN) systematic expansion, which is applied to bound systems and

therefore expands in the parameter v2

c2
∼ Gm

r c2
≪ 1: it is meant to describe the general

relativistic corrections to the Newton gravitational potential for bound systems, as well as

+∞

+∞

0

R R
s
∼
(︁ v c)︁ −2

1 m1
m2

Numerical Relativity
Perturbation theory

Gravitational Self Force

Post-Newtonian

Effective One-Body

Figure 1.6 Domain of the two body problem in general relativity, during the inspiral phase, for self-

gravitating binary systems, for which hence holds R
Rs
∼
(︁
v
c

)︁−2
, represented in a plane with the mass ratio

m1

m2
on the horizontal axis and the relative distance, in Schwarzschild radii units, R

Rs
on the vertical axis. In

reality the domains are not sharply separated as shown in figure, also because the accuracy of the several
approximations degrades smoothly over the plane. The purpose of such an illustration is instead to depict the
qualitative behavior and the strengths of each formalism. As such the Post-Newtonian expansion perturbs
the metric and other quantities around a flat spacetime, and it’s accurate when velocities are small, or
equivalently the relative separation is large. The gravitational self-force formalism instead starts from the
exact curved metric solution for a massive body, and evaluates the perturbation and the dynamics of the
system in presence of a much lighter body. Numerical Relativity allows to compute numerical solutions of
the full non-linear Einstein’s equations; nonetheless it’s extremely resource and time demanding, therefore
it’s applied where it’s most useful: to compute dynamics in the strong field regime which is not covered
by the other schemes. Finally the effective one-body formalism, to which the top right sub-picture refers,
encompasses elements from all the other ones, translating the two body problem into the one of a single
effective body moving in a suitably deformed effective curved spacetime; its validity region spans over the
whole parameter space, and it’s goal is to describe the full waveform. Figure based on [37, 156, 157].
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the power lost by the system due gravitational wave emission. Such a formalism therefore is
accurate only in the low-velocity and weak field regime, which is the case for example when
the relative separation between the two compact objects is large: therefore this framework
is suitable to describe the inspiral phase of compact binary systems [37]. We’ll explore more
thoroughly this formalism in section 1.6.1.

• Numerical relativity (NR), which solves the full non linear Einstein’s equations resorting
to numerical methods. The biggest advantage of this method is that it is the only one
which can accurately deal with the non-linear, strong gravity, regime of general relativity,
which is reached during the merger phase; and further it can take into account many widely
different physical processes which are actually expected to be important during a binary
coalescence. Then numerical relativity both allows to better study or constraint these several
phenomena and also let us produce the possibly most accurate waveforms: in fact numerical
relativity waveforms are usually taken as a benchmark to compare the ones obtained via
other methods, and some formalisms and waveform models are actually calibrated against
the numerical relativity results, in a synergistic approach. Yet the solution obtained with
numerical relativity will still be an approximation because spacetime, and all other relevant
quantities, have to be discretized; moreover the treatment of the singularities and the gauge
redundancy intrinsic to general relativity must appropriately be dealt with; and numerical
errors will be a limiting factor to the accuracy of any simulation. All of these issues were the
reason why the first accurate direct numerical simulations of the merger of black holes have
been obtained only recently, since 2005 [26–29]; and still today one of the main drawbacks
of numerical relativity is the fact that it is quite resource demanding: the computation
of hundreds of gravitational wave cycles, which may cover only the last stages of a binary
evolution, take on the order of O(105 ∼ 106) CPU-hours, which means the results may require
months of computations even on a large computer cluster [162]. On top of this, neutron star
mergers present an even more complicated environment to study: it’s necessary to take into
account also nuclear reactions and neutrino transport phenomena, to model the still unknown
equation of state of neutron stars, and to perform magnetohydrodynamic studies to reckon
with the strong magnetic fields [132, 163]. These complications are the reason why presently
there are still only a few thousands numerical relativity waveforms, despite the great effort
behind it [29]: this implies that by themselves they cannot cover densely enough the binary
system paramater space, so numerical relativity is complemented by semi-analytical models;
yet also surrogate numerical relativity models have been built, which for example use reduced
order modeling techniques to extract and interpolate the relevant information from the full
simulation, providing fast and almost as accurate new waveforms [164–166].

• The Gravitational self-force (GSF) approach, which uses perturbation theory to describe
the motion of a small body in the stationary spacetime of a larger body, but taking into
account also the back reaction due to the smaller body, from early to late inspiral [37, 132,
156, 167]. The natural expansion parameter hence is the mass ratio m1

m2
(more precisely the

symmetric mass ratio ν ≡ m1m2
(m1+m2)2

), and there are no formal requirements on the velocity

or the separation between the two bodies; in particular the stationary spacetime could for
example be the Kerr one if the larger body is a spinning black hole. This expansion then is
suitable to describe the dynamics of the extreme mass ratio inspiral (EMRI) events, where a
lighter object orbits for up to tens of thousand of times a much larger objects (as could be
a supermassive black hole) before merging. The expansion has been evaluated to first order
in ν, even though recently there has been progress toward the evaluation of the second order
ν2 [168].

• Black-hole perturbation theory, which can be used to study the behavior of black holes slightly
displaced from their relaxed state [32–35]. This happens for example when the external
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environment presents perturbations instead of the perfect vacuum assumed by the few known
exact black hole solutions in general relativity; or when the black holes starts in an excited
states and relaxes back to its equilibrium configuration. In particular the latter case is of
interest for the study of the ringdown phase: after the merger of two compact objects, the new
compact object (generically a black hole) will be in an excited state; then it will quickly radiate
away this excess energy via gravitational waves. In particular to describe this system one
perturbs the exact general relativistic solution, usually taking advantage of the symmetries
of the system (so employing the spherical harmonics when spherical symmetry is present),
obtaining for example the Regge–Wheeler–Zerilli equations in the case of a Schwarzschild
black hole. From these equations, formally similar to the Schrödinger equation, one can
evaluate the quasi-Normal modes (QNM) of the system, which describe the oscillations of
space time produced by the excited black hole: to each of these modes is associated a specific
frequency and a different decay rate; asymptotically the decay rate is given a power-law tail
[37, 132, 169, 170].

• The Effective-One-Body (EOB) formalism, which is an analytic approach that combines ele-
ments from many of the ones presented above. Introduced in 1998 [30, 31] with the goal of
describing the whole waveform from inspiral to ringdown, it is based on the assumption that
a system composed of comparable mass compact objects is a smooth deformation of known,
exact, single body solutions of general relativity [37, 169]. In practice the two body problem
is mapped into the one with an effective one body, that is, the problem of a test particle
moving through a properly deformed effective external metric. The effective metric may be
constructed for example by starting from the Schwarzschild metric associated to the total
mass m, or better the Kerr metric, and deforming it using as a deformation parameter the
symmetric mass ratio ν ≡ µ

m [30]; therefore in the test mass limit ν −→ 0 one recovers the exact
result, which for example would not be the case when using the post-Newtonian expansion.
Then when the test particle reaches the light ring (at 3

2Rs) of the effective metric, there is
the transition to the plunge phase: the system is now mapped to an excited black hole with
its associated quasi-normal modes; in fact from black hole perturbation theory one finds that
the effective potential for the quasi normal modes potential has a maximum at the light ring,
which then acts as a high-pass filter for the gravitational waves emitted by any infalling body.
This formalism therefore leverages also information from the previously presented methods,
as the post-Newtonian, post-Minkowskian and black hole perturbation theory, and actually
resums them appropriately, in such a way to capture also non-perturbative and strong-field
effects [30, 37, 169]. Furthermore, since the first numerical relativity simulations, free co-
efficients in the effective metric were further calibrated by comparing and fitting the EOB
waveforms against the numerical relativity ones, obtaining a really good accuracy throughout
the evolution of the system. In fact the effective one body formalism was used to generate
most of the waveforms in the template bank used by LIGO-Virgo for its compact binary
searches [171]; yet being still a semi-analytical model, the evaluation time of each of its wave-
form isn’t the fastest, therefore when performing the Bayesian analysis of candidate events
faster phenomenological waveform models may still be employed [172].

1.6.1 The post-Newtonian formalism

The post-Newtonian formalism is an approximation scheme of general relativity, which can be
applied to the study of systems in which the gravitational field is weak, Gm

c2r
≪ 1, and the velocities

are low, v
2

c2
≪ 1 [36, 103]. In this formalism in fact the complicated non-linear structure of general

relativity is simplified by expanding the relevant quantities in the expansion parameter ϵ ≪ 1,
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where the previous assumption are quantified as:

ϵ ∼ v2

c2
∼ Gm

c2r
≪ 1 ; (1.111)

that is, we also demand the square of the velocity to be of the same order of magnitude of the value
of the gravitational field.

We can then see that this formalism is particularly well suited to describe the dynamics of gravita-
tionally bound compact binary systems during their inspiral phase, when the relative velocity is low
enough. In fact systems which are tightly bound together by the gravitational force are denoted as
self-gravitating systems, and for them it holds the virial theorem, according to which the relation
v2

c2
∼ Rs

d is satisfied as an average over time, where v is the typical velocity of the system, d its
typical size, Rs the Schwarzschild radius (1.5) associated to its total mass m [103]. Applying such
a relation to the case of a binary system made of compact objects, which is self-gravitating, we
obtain more precisely

v2

c2
∼ Gm

c2r
=
Rs
2r

; (1.112)

hence we see that for such systems relation (1.111) is actually fulfilled, and so the post-Newtonian
expansion applies to them.

Furthermore the customary notation in the post-Newtonian formalism is to denote with v2 (or with
c−2), instead of ϵ, the expansion parameter. Then the expansion is organized as an infinite series
of corrections in v2 to the leading order quantities: the terms of order v2n are denoted as nPN
corrections. Still, due to the relation (1.111), the corrections at order nPN are actually given by

a series of terms of the kind
(︂
v2

c2

)︂n−m (︁
Gm
c2 r

)︁1+m
, with m = 0, . . . , n, as depicted also in figure 1.7.

The underlying physical idea is that we’re evaluating both corrections due to the non-vanishing
velocity, but also due to deviations of the background from flat spacetime; this also justifies the
statement we made in section 1.3.4: to perform a consistent expansion in v2 we must also consider
terms with varying powers of G, which is related to the strength of the gravitational field and so
to the curvature of the spacetime.

In fact the name post-Newtonian of this scheme is due to the fact that the leading order (0PN)
term in the expansion is the Newtonian potential: therefore this formalism correctly reproduces the
classical Newtonian theory of gravitation when the expansion parameter ϵ ∼ v2 vanishes; whereas
all the higher order corrections take into account the contributions due to general relativity.

Additionally, to include the emission of gravitational waves in the dynamics of the system we
have to break the time-reversal symmetry, as we need to impose no-incoming radiation boundary
conditions [36, 103]. Then this causes the appearance of terms with odd powers in the velocity v
as well: for example the leading radiation-reaction effects are of order O

(︁
v5
)︁
with respect to the

leading order Newtonian equations of motions, therefore they represent a 2.5PN correction. In fact
radiation effects first enter at the 2.5PN order, and from there on they may contribute to both
integer and half-integer PN orders.

On top of this, as already mentioned, the non linear structure of general relativity will affect also
the propagation of gravitational waves, such that they will back-scatter on the curved background
spacetime or will scatter with themselves. Therefore, for example, at higher orders in the post-
Newtonian expansion part of the gravitational radiation is delayed, in such a way that a distant
observer will measure a wavefront, travelling at the speed of light, followed by a tail, which arrives
later [103]. At these higher orders then the behavior of the theory also becomes more complicated:
the aforementioned tail effect is one of the many hereditary effects which arise, and physically they
imply that the dynamics of the system depend not only on its current configuration, but also on
its whole past history [175].
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From an historical point of view, the post-Newtonian formalism has been one of the most studied,
because it is suitable to evaluate many observables in the theory of general relativity in physically
relevant scenarios. In fact the post-Newtonian (and also the similar post-Minkowskian) expansion
has been introduced by Einstein himself [171], as it posed to be well suited for solar system calcu-
lations: the assumption of non-relativistic velocities makes the time derivative of higher order with
respect to the spatial derivatives, 1

c
∂
∂t ≪ ∂

∂xi
, thereby simplifying considerably the calculations, and

eventually allowing to obtain also the Newtonian limit while working in general relativity [171].
The next-to-leading order (1PN) corrections are given in the Einstein-Infeld-Hoffmann Lagrangian,
after who derived it in 1938 [171]; nonetheless the 1PN dynamics of a two-body system had been
computed already in 1917, by Droste and Lorentz [13, 36]. The computation of higher order PN
corrections instead required much more time, because it presented several subtleties [103, 171];
actually this is still an active area of research.

In fact these complications and inconsistencies led to the creation of several different methods
with which one could evaluate the same post-Newtonian corrections to the binary dynamics: for
example the Blanchet–Damour approach, which performs a post-Newtonian expansion in the near
region and a post-Minkowskian one outside the source, matching them in the intermediate region
[37, 103, 176]; the direct integration of the relaxed einstein equations which regularizes integrals
by restricting their integration domain [37, 103]; the ADM Hamiltonian formalism, particularly
efficient for computing conservative corrections to the binary dynamics [37, 177]; the effective field
theory approach (NRGR, non relativistic general relativity), which has been formalized by [43], and
which is the main focus of this thesis, see chapter 3. Furthermore there are also other approaches,
such as the Tutti Frutti method [20, 23], which employ analyical information obtained from a
variety of formalism to evaluate post-Newtonian corrections.

Currently it has been possible to evaluate the post-Newtonian corrections up to 4PN order in
several of these approaches [36–39]. Nonetheless several partial results are known at higher order,
or have been computed in only one formalism: presently the conservative potential for non spinning

0PN 1PN 2PN 3PN 4PN 5PN 6PN · · ·
1PM G + Gv2 + Gv4 + Gv6 + Gv8 + Gv10 + Gv12 + . . .

2PM G2 + G2 v2 + G2 v4 + G2 v6 + G2 v8 + G2 v10 + . . .

3PM G3 + G3 v2 + G3 v4 + G3 v6 + G3 v8 + . . .

4PM G4 + G4 v2 + G4 v4 + G4 v6 + . . .

5PM G5 + G5 v2 + G5 v4 + . . .

6PM G6 + G6 v2 + . . .

7PM G7 + . . .
...

. . .

Figure 1.7 Scheme depicting how the post-Newtonian (PN) expansion is organized as a series of correc-
tions in powers of v2 and G (see text). In particular all the terms in a given column enter in the corresponding
PN order. Furthermore let us recall that the post-Minkowskian (PM) formalism is an expansion in G only,
where the expressions are exact in the velocities: then all the terms along the same row belong to the same
PM order; in fact expanding the corrections of a given PM order we obtain corrections which contribute
to infinite PN orders. In particular the contributions up to the 4PN order, which have been evaluated in
several formalisms [36–38], are shaded in dark blue; the contributions up to 6PN, which are partially known
[20–23, 59, 64, 65, 77, 78, 173, 174] and necessary for next generation gravitational wave observatories, are
shaded in light blue; whereas the contributions up to the 4PM order, which have been recently evaluated
[158–161], are contained in the red box. Figure based on [39, 167].
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binaries is known up to the 5PN order [20, 22, 173, 174], also in the EFT framework [59, 64, 65]; and
progress is being made toward evaluating the 6PN conservative contributions, see references [21,
23] and [77, 78], and toward resolving discrepancies involving radiative contributions [178–181]. On
top of this, as we’ll explain below, at higher order it’s also necessary to evaluate others corrections
due to spin and finite size effects: then the conservative contributions due to spin corrections, which
are organized in several sub-sectors depending on the power of the spin, have been evaluated up
to 5PN order [182], with some contributions evaluated only via the effective field theory approach
[79–82]; furthermore much work is being carried out in the evaluation of higher-order finite size
corrections [83, 84].

Some of the most important applications of the post-Newtonian formalism have been to evaluate
the orbital dynamics in the solar system to the required accuracy (1PN, also for N -bodies), to com-
pute the orbital decay rate of the Hulse-Taylor binary pulsar due to gravitational wave emission
(2.5PN), and to evaluate the dynamics of compact binary system prior to their coalescence (requir-
ing possibly up to order 6PN-7PN for next generation gravitational wave observatories) [36]. Only
the latter system can produce gravitational waves with an amplitude high enough to be detected
by gravitational wave observatories, and this is the biggest reason why our investigation will focus
on them.

The reason why we need to compute corrections to such an high accuracy is that interferometric
observatories employ the matched filtering technique to find gravitational waves signal in the output
of the detectors, as explained in section 1.5. As a rough estimate, e.g. following [103], to apply
this procedure it’s then necessary to be able to evaluate the absolute phase ϕ of the gravitational
waveform within O(1); that is, the number of cycles N , which we computed in equation (1.94),

within order unity (as ϕ = 2πN). Then we see that N ∝ f−
5
3 , and approximating f ∼ v

r ∼ v3

c2Rs

using also relation (1.112), we find the scalingN ∼ O
(︁
v−5
)︁
with respect to the expansion parameter.

Then we have to consider all the post-Newtonian corrections up to O
(︁
v5
)︁
(so 2.5PN) to be able

to obtain a precision of order δN ∼ O(1); actually also many higher PN corrections are needed to
accurately reconstruct the gravitational wave signal.

Regarding the theoretical setup, the post-Newtonian expansion is usually carried out in harmonic
coordinates, where the harmonic gauge, or De Donder gauge, is imposed by means of the harmonic
gauge condition [103, 183]:

∂µ
(︁√−ggµν)︁ = 0 . (1.113)

One also requires the matter energy-momentum tensor to have a spatially compact support, so
for example that it can be enclosed in a time-like world tube with r ≤ D for some finite D [103].
Additionally the condition of low velocity is understood to be valid for all velocities inside the
binary system, also inside each individual body: therefore we require also the sources themselves
to be weakly stressed [103].

A general point of the Newtonian expansion is that it exploits the hierarchies and separation of
scales that arise in the limit of non relativistic velocities v ≪ 1: for example in the region near
the compact bodies we can approximate the retardation effects in the interactions as a series of
correction. It is also customary the treat separately the far away region where gravitational waves
propagate; then any corresponding quantities in the near and far regions are connected by matching
them in an intermediate buffer region, and this is possible only as long as v ≪ 1 holds [36]. We will
take advantage of these hierarchies also in the effective field theory approach to the post-Newtonian
formalism, which will be discussed in chapter 3.

Nonetheless mathematically the post-Newtonian expansion is not a convergent series, but actually
an asymptotic expansion [103, 184]: this means that even if we were to evaluate all the PN correc-
tions, the series would not converge for finite values of v2; instead in practice above a certain PN
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order the corrections will start to make the evaluated quantities oscillate and diverge in an non-
physical manner. This is what happens when the compact objects reach relativistic speed v ∼ O(1)
just before the coalescence, and so there the post-Newtonian expansion breaks down; yet prior to
that point the higher order corrections are accurate and necessary.

Let us notice as well that, despite the fact that formally the post-Newtonian expansion does not
requires the masses of the two compact objects to be comparable, in practice systems with a large
mass ratio m1

m2
will perform many orbits at highly relativistic speed before merging; this is the

reason why the post-Newtonian expansion is not best suited to describe the last stages of these
systems, as opposed to the gravitational self-force formalism.

Finite size effects and spin

An interesting feature of the post-Newtonian expansion is that the specific details of the internal
structure of the compact bodies become relevant only starting from the quite high 5PN order: this
is known as the effacement principle [103]. The corrections that arises from that order onward
are due to the fact that the first body creates a non homogeneous gravitational field, which exerts
tidal forces on the second body, making it bulge (more precisely inducing in it a quadrupole
moment); then it’s this deviation from the spherical symmetry of the second body that exerts a
force on the first body, modifying its trajectory [103]. In practice this means that we can treat
the compact objects just as point particle, regardless if they are black hole or neutron stars: as
we just said the difference can be probed only starting from the 5PN order, where its encoded by
the Λ tidal deformability parameter. Nonetheless these corrections are extremely interesting from
a phenomenological point of view, since they allow us to assess if the compact objects are black
holes (as non-rotating black holes have vanishing Love numbers [185], i.e. tidal deformability) or
neutron stars. In the latter case measuring the tidal deformability also reveals information about
their equation of state [186], providing clues about the behavior of QCD in extreme, high density,
environments, which could not be probed otherwise [187].

The post-Newtonian expansion allows to take into account as well the spin of the compact objects,
that is, the intrinsic rotation of each object. In particular the spin first contributes at 1.5PN order
with the spin-orbit coupling, and at 2PN with the spin-spin coupling, contributing from there
at any half-integer post-Newtonian order [182]. From the phenomenological point of view, these
corrections induce a modulation of the observed waveform. Furthermore also the spin may induce a
deformation of the compact object, which can be described by a series of multipoles; then, similarly
to what we’ve discussed above, these multipoles induce post-Newtonian corrections [188].

Both spin and finite size effect corrections have to be included in order to obtain accurate results
for the waveform. In fact for next generation gravitational wave observatories the corrections up
to 6PN order will be needed in order to keep the systematic error at an acceptable level, and we
may expect to observe compact binary systems also with an high spin [39, 189].



CHAPTER

2 EFFECTIVE THEORIES AND
MULTI-LOOP TECHNIQUES IN
QUANTUM FIELD THEORY

In this chapter we present some concepts and techniques that are used in the rest of this thesis work.
In particular in section 2.1 we will recall some concepts from quantum field theory and effective
field theories that will prove to be useful in the following, such as the path integral formalism, the
procedure to integrate out fields, and the in-in formalism. In section 2.2 instead we will present
the modern computational techniques that are currently employed to evaluate multi-loop integrals
arising in quantum field theory, and that will be extensively used in this thesis: this is due to the
fact that the diagrams that we will have to evaluate will result in integrals that can equivalently
be mapped to multi-loop diagrams appearing in massless quantum field theories.

From this chapter onward we will often adopt ℏ = c = 1 units, see Notation for further details.

2.1 Quantum field theory and effective theories

2.1.1 Partition function and generating functionals in quantum field theory

In the path integral formulation of quantum field theory, given the fields {ϕr} and the corresponding
fictitious source currents {Jr(x)} in d̃ dimensions (e.g. d̃ = 4), the partition function of the theory
is defined as [190, 191]:

Z[{Jr}] =
∫︂
Dϕr e

iS[{ϕr}]+i
∑︁

r

∫︁
dd̃x Jr(x)Φr(x) , (2.1)

which is a functional integration, with a measure of integration given by Dϕr. It is particularly
useful because it is the generating functional for correlation functions of fields, and hence is also
denoted as functional generator of disconnected n-points functions; in fact the n-point function can
be obtained by taking functional derivatives of the partition function as [190, 191]:

Gn,{r1,...,rn}(x1, . . . , xn) = ⟨T (ϕr1(x1) . . . ϕrn(xn))⟩ = (−i)n 1

Z[0]

δnZ[J ]

δJr1(x1) . . . δJrn(xn)

⃓⃓⃓⃓
J=0

, (2.2)

where T (O) is the time ordered product of operator O.

Usually the partition function cannot be computed exactly, therefore perturbative methods are
employed. In particular the partition function is the vacuum-to-vacuum transition amplitude in
quantum field theory [191], so we can evaluate it by summing over all vacuum Feynman diagrams,
both connected and disconnected; instead the n-point correlation function, given in (2.2), may be

43
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evaluted as the sum of all Feynman diagram with corresponding n external legs without vacuum
bubble diagrams, i.e. excluding diagrams that contain a part not connected to any external line
[191].

It is also useful to define another related generating functional, the functional generator of connected
n-points functions W [J ], which is related to the logarithm of the partition function by

W [J ] = −i ln(Z[J ]) . (2.3)

While the partition function generates both the connected and disconnected amplitudes, W [J ] can
be used to obtain only the connected n-point functions as [191]:

Gcn,{r1,...,rn}(x1, . . . , xn) = ⟨T (ϕr1(x1) . . . ϕrn(xn))⟩c = (−i)n−1 δnW [J ]

δJr1(x1) . . . δJrn(xn)

⃓⃓⃓⃓
J=0

. (2.4)

In particular by summing only over connected diagrams, one obtains the logarithm of the partition
function, that is, ln(Z[J ]) = iW [J ].

2.1.2 Integrating out fields and effective action

In the following chapter 3 we’ll be interested in finding equivalent descriptions of a system while
not taking into account all of its degrees of freedom. In quantum field theory this is possible by
integrating out a field, to find an effective action which describes the exact dynamics of all other
fields, without ever referencing the now removed degree of freedom.

Assuming for definiteness to have two field ϕ and χ, we can integrate out the field χ by noticing
that we can formally rewrite the partition function as:

Z =

∫︂
DϕDχeiS[ϕ,χ] =

∫︂
DϕeiSeff [ϕ] , (2.5)

where we have defined the effective action

Seff [ϕ] ≡ −i ln
(︃∫︂

DχeiS[ϕ,χ]
)︃
. (2.6)

We can see that the operation of integrating out a degree of freedom, which may be a field or also
just its high energy modes, is formally exact as it has been presented in formulae (2.5) and (2.6);
nonetheless, analogously to the previous cases, their actual computation may not be feasible. We
can notice however that the expression for effective action (2.6) is formally equivalent to the one
for the connected functional W [J ] as in (2.3); therefore we can obtain the expression for iSeff by
summing over all connected vacuum diagrams which have only the χ field propagating, i.e. where
the other field are taken as constant.

To be more precise about this last claim, let use consider the general case where {ϕ} and {χ} each
possibly represent a set of fields, with the {χ} fields to be integrated out, and let use express the
total initial action in (2.5) as S[{ϕ}, {χ}] = Sϕ[{ϕ}] + Sχ[{χ}] + Smixed[{ϕ}, {χ}], where Sϕ, Sχ,
Smixed refer to the terms of the action which respectivelly include only {ϕ}, {χ} or both type of
fields. In this case the effective action for the fields {ϕ} is given by Seff [ϕ] = Sϕ[{ϕ}] + Sinteff [{ϕ}],
with:

i Sinteff [{ϕ}] = ln

(︃∫︂
Dχei(Sχ[{χ}]+Smixed[{ϕ},{χ}])

)︃
. (2.7)

Then the analytic expression for iSinteff can be obtained by summing the connected diagrams ob-
tained in a theory with action Sχ[χ] + Smixed[ϕ, χ], and in which we consider only the fields {χ}
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that we want to integrate out: that is, the other fields {ϕ} are to be understood as constants which
will enter only in the coefficients of the Feynman rules of the vertices of this theory; in particular
the only propagators will be those of the {χ} fields, and in the diagrams there can be only lines of
the fields {χ} we’re integrating out.

After this procedure we expect the new effective action Seff [{ϕ}] to contain all possible operators
allowed by the symmetries of the system, and actually possibly also non-local terms, in which case
a suitable expansion has to be performed in order to find an equivalent local Lagrangian. Hence in
general we have [192]:

Seff [{ϕ}] =
∫︂

dd̃x
∑︂
i

ciOi({ϕ}(x)) , (2.8)

where ci are the Wilson coefficients of the corresponding local operators Oi({ϕ}(x)). The net
result of integrating out fields is therefore to either modify the Wilson coefficients of the operators
of the {ϕ} fields already present in the original theory, or to generate new operators of these fields
altogether.

Let us notice that the Wilson coefficients ci encode the information about the degrees of freedom
we integrated out, and in particular, due to the renormalization group flow, this implies that their
value will depend on the physical scale we’re probing. In the Wilsonian view of the renormalization
group, if we take a theory with a cutoff at an energy scale Λ and lower it down to the energy scale
Λ′, the Wilsonian coefficient associated to an operator with mass dimension [Oi] = ∆i scales as:

ci(λ) = λ∆i−d̃ci(1) (2.9)

where we have defined λ = Λ′

Λ < 1. In particular operators which have a mass dimension ∆i < d̃
are denoted as relevant operators, and we expect them to dominate the dynamics of the system
at lower energy [38, 190]. This will be a key point for the next section 2.1.3, as we’ll see that at
low energy, to reach a finite accuracy for the physical observables, it should suffice to consider only
the relevant and at most a few additional operators, selecting them in order of increasing mass
dimension, as all the other ones become increasingly suppressed.

Finally let us also point out that truncating the sum only at tree level diagrams, so integrating
the functional integral at the classical level, corresponds to solving the equation of motions for the
fields we’re integrating out, eventually neglecting the kinetic term, and substituting the solution in
the original action, as may be shown by performing a saddle point approximation of path integral
[193].

We’ll exemplify some of the concepts presented so far in section 3.1.

2.1.3 Effective field theories

An effective field theory may be regarded as an approximate theory, which captures only the relevant
degrees of freedom needed to describe, to the desired accuracy, the dynamics of the system in a
selected and limited range of validity.

The effective field theory approach is a paradigm which is used a lot in physics and related fields,
sometimes more or less consciously: to describe the dynamics of a macroscopic object here on Earth
one employs classical mechanics, without performing complicated quantum mechanical or general
relativistic calculations, and such an approach suffices for most applications.

In fact, even if we have at our disposal a more complete and therefore more accurate theory, in some
regimes one may find simpler theories which provide an equivalent description of the dynamics of
the system: the range of validity and the accuracy of such predictions may be limited, but under
the right circumstances these effective theories may be preferable, because, given the same finite
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computational effort, one may evaluate more higher order corrections thanks to the simplified setup,
possibly obtaining more precise theoretical predictions.

The idea underlying effective field theories is that dynamics at low energy, or equivalently large
distances, does not depend on the details of the dynamics at high energy, or short distances. This
allows us to employ a simplified theory, for example a Lagrangian with fewer degrees of freedom,
to describe the same phenomena [194]; under suitable conditions this is for example proven by the
decoupling theorem [195–197]. In particular, the viewpoint according to which the Standard Model
of particle physics and general relativity are just the leading terms of some effective field theory,
and not complete theories per se, is becoming increasingly widespread [198].

Actually EFTs are well suited also when widely different scales appear in the problem being tack-
led, as they can connect those different scales via renormalization group flow, resumming large
logarithms which otherwise could have spoiled the perturbative expansion [193, 199].

As will be explained in the following, in the context of quantum field theories, an effective field
theory may be constructed either by following the top-down or the bottom-up approach, or also a
mix of the two.

Top-down approach

The top-down approach is a procedure that can be employed to construct an effective field theory,
but requires the knowledge of a more complete theory, also called UV (ultraviolet, in the sense of
high energy) theory.

This approach is based on the assumption that the high energy degrees of freedom will be off-shell,
and therefore cannot be excited or directly produced by the phenomena we’re studying. Nonetheless
they exist and play a role in the dynamics of the complete theory, so we expect their presence to still
be in the effective theory: this happens via modification of the values of the Wilson coefficients for
the effective theory, and via scale-dependent renormalization group flow of those same coefficients,
akin to what we’ve seen in section 2.1.2.

In particular the procedure can be so summarized:

• Identify the scale Λ, which for definiteness could be an energy scale, below which the effective
field theory is meant to be applied;

• Identify the high energy degrees of freedom, which for example have an energy E > Λ, and
the low energy degrees of freedom of the theory, with E < Λ, eventually by splitting the fields
into two components if needed;

• Find a power counting scheme that allows to organize the calculations; for example expand
the Lagrangian and the relevant quantities as a function of the scale Λ, in such way to be
able to easily recognize the finite subset of terms that must be evaluated in order to achieve
the required accuracy in a given calculation;

• Integrate out the high energy (or heavy) degrees of freedom; that is, obtain an equivalent ef-
fective field theory with only the low energy (or light) degrees of freedom, but which describes
the same dynamics of the UV theory in its regime of validity, e.g. for E < Λ;

• If the theory presents several physical scales, one should perform this steps at the boundary
of each scale, while in between evaluating the running of the coefficients of the operators via
renormalization group techniques.

The physical scales we’re mentioning could be the masses of the high energy degrees of freedom. For
definiteness, considering the UV theory, we may start our procedure from a really high renormaliza-
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tion scale µ, e.g. such that µ is larger than all the other masses or such that all nonrenormalizable
operators may be neglected, and we may lower the scale using renormalization group techniques,
which imply a running of the couplings. When the renormalization scale reaches a physical scale,
for example µ = M , with M the mass of a heavy degree of freedom, we should integrate out such
field by matching the initial theory to a new effective theory, which now doesn’t include that heavy
degree of freedom anymore. One then applies again the renormalization group techniques to lower
the renormalization scale, and this procedure is to be repeated until we arrive at the scale Λ we’re
interested in [192, 200]; this also allows the resummation of large logarithmic factors which other-
wise may spoil the perturbative expansion [193, 199]. In practice, this matching of the theories is
performed by imposing that observables, or also S-matrix elements, as evaluated in both theories
are the same [192, 194, 200], e.g. by comparing both quantities after having expanded them in the
same parameter.

One may also integrate out the heavy degrees of freedom as explained in section 2.1.2 [193]. Fur-
thermore, as we pointed out there, due to the operation of integrating out fields, and due to the
renormalization group flow, we expect the action of the effective field theory to contain all operators
permitted by the symmetries of the system.

Bottom-up approach

This is the alternative approach to the construction of an effective field theory. The key steps here
are [193, 194]:

• Identify the relevant degrees of freedom of the theory, at the energy scale of interest;

• Identify the symmetries of the system;

• Identify the correct expansion parameters, which will let us organize systematically the per-
turbative expansion;

• Write down all the possible operators which are consistent with the aforementioned symme-
tries;

• Perform a matching procedure to find the values of the Wilson coefficients of the operators,
either by computing observables and comparing them with physical measurements, or by
matching them with the ones computed from a known UV theory.

As the number of operators may be infinite, one usually performs the last matching operation up
to some finite accuracy, considering only the subset of operators which are the most relevant for
the calculation, as suggested by the expansion parameter [197]; also to compare different physical
scales the couplings of the theory should be evolved via renormalization group equations [196, 199].

This bottom-up approach is justified on the basis that, at least at low energy, we expect physics to
be described by quantum field theory, therefore writing down the most general possible Lagrangian
will yield the most general possible theory [201]. Furthermore this approach is necessary when we
don’t have a more complete (UV) theory to start with, as in this case we may only perform the
matching with the experiments; still the resulting EFT may actually give insights useful for finding
such an UV theory [193].

2.1.4 In-in formalism

The action principle, and the framework of quantum and effective theories, have proven to be really
successful in describing physical phenomena, yet their usual formulation, where we evaluate tran-
sition amplitudes between an in-state and an out-state, is not suited when dissipative phenomena
are involved. In fact, in order to correctly account for dissipative effects that arise when dealing
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with systems whose evolution is non-time symmetric, it is necessary to employ the in-in formalism,
also known as Schwinger-Keldysh formalism, or CTP (closed time path) formalism [202–204] (see
also [197, 205, 206] for further details and applications).

In fact the in-in formalism has been applied in many context that are concerned with non-
equilibrium processes [202–204], and also for example in Cosmology [207, 208]. Regarding the
two-body problem in General Relativity, the in-out formalism actually suffices for evaluating con-
servative contributions to the dynamics of the system; instead when evaluating dissipative contri-
bution, where radiation gravitons are involved, the symmetric nature of the Feynman propagator
may lead to wrong and non-causal results, therefore the in-in formalism becomes necessary [202].
Furthermore at higher perturbative orders it may not even be possible to clearly distinguish all
conservative and dissipative contributions: one solution may be to directly evaluate the equation
of motions for the system to automatically incorporate both effects [180].

The in-in framework, first introduce by Schwinger [209], allows, once defined the initial in-state, to
compute the expectation value of an operator with respect to these fields at a later time [210]. To
do so one doubles the degrees of freedom: one consider the evolution of two generic in-states toward
the same, arbitrary, out-state; integrates over all possible future states, and finally sets both initial
in-states to be the same, actual, in-state that one is concerned with.

For example, if the initial theory contains a field ϕ, coupled to a source current J , with an action
S[ϕ, J ], then to implement the in-in formalism we have to double the degrees of freedom: first we
introduce the fields ϕ1 and ϕ2, which are involved respectively in the forward evolution and the
backward evolution to and from the same arbitrary out-state (this condition is enforced imposing
ϕ1(t = ∞) = ϕ2(t = ∞)), and then we introduce the sources currents J1 and J2, which couple
respectively to ϕ1 and ϕ2 [202, 206]. It can be shown that, given the path integral [202]

eiW [J1,J2] =

∫︂
Dϕ1Dϕ2 e

iS[ϕ1]−iS[ϕ2]+i
∫︁
dd+1xJ1(x)ϕ1(x)−i

∫︁
dd+1xJ2(x)ϕ2(x) (2.10)

where we enforce ϕ1 = ϕ2 at t =∞, by evaluating the one-point functions for the ϕ1 and ϕ2 fields
in the in-in formalism

⟨ϕ1(t,x)⟩in−in ≡
δW

δJ1(t,x)J1=J2=0

, ⟨ϕ2(t,x)⟩in−in ≡ −
δW

δJ2(t,x)J1=J2=0

, (2.11)

we obtain the correct and causal expressions for the expectation value of the original field ϕ eval-
uated in the vacuum state, ⟨ϕ1(t,x)⟩in−in = ⟨ϕ2(t,x)⟩in−in = ⟨0|ϕ(t,x)|0⟩ [202].
Usually it is more convenient to work in the so called Keldysh representation, in which every
quantity F1 and F2 is redefined into the quantities F+ and F− according to:

F+ ≡
1

2
(F1 + F2) , (2.12a)

F− ≡ F1 − F2 ; (2.12b)

in particular this transformation has to be applied to both the fields ϕ1, ϕ2 → ϕ+, ϕ− and the
sources J1, J2 → J+, J−.

If the action S[ϕ, J ] for a massive (or also massless) scalar field ϕ has only a linear interaction
term, so S[ϕ, J ] = 1

2∂µϕ∂
µϕ− 1

2m
2ϕ2 + J(x)ϕ(x), then, after doubling the degrees of freedom and

employing the Keldysh representation (2.12), one finds that the path integral (2.10) can be exactly
solved to yield [202]:

W [J+, J−] =
i

2

∫︂
dd+1x

∫︂
dd+1y JA(x)D

AB(x− y) JB(y) , (2.13)



Section 2.2 — Multi-loop techniques in quantum field theory 49

with A,B = ± indices related to the Keldysh representation and DAB the matrix of two-point
functions given by [202]

DAB(x− y) =
(︃

0 −iDadv(x− y)
−iDret(x− y) 1

2DH(x− y)

)︃
, (2.14)

where, defined the Wightman functions [202, 205]

∆±(t,x) =
∫︂

dd+1k

(2π)d+1

e∓ik
0t+ik·x

2k0
=

∫︂
dd+1k

(2π)d+1
θ(±k0) δ((k0)2 − k2) e−ik

0t+ik·x , (2.15)

we have that [202, 205, 206]

Dadv(t,x) = −iθ(−t) (∆+(t,x)−∆−(t,x)) (2.16a)

Dret(t,x) = iθ(t) (∆+(t,x)−∆−(t,x)) (2.16b)

DH(t,x) = ∆+(t,x) + ∆−(t,x) (2.16c)

are respectively the advanced propagator, the retarded propagator, and the Hadamard propagator.

Finally in the Keldysh basis the vacuum expectation value for the scalar field ϕ can be evalauted
via [202]:

⟨0|ϕ(t,x)|0⟩ = ⟨ϕ+(t,x)⟩in,in
⃓⃓⃓
J±=0

=
δW

δJ−(t,x)

⃓⃓⃓
J±=0

. (2.17)

For a practical application, we’ll employ this formalism in section 5.2.

2.2 Multi-loop techniques in quantum field theory

2.2.1 Dimensional regularization

When working in perturbative quantum field theory, often ones encounters divergences. The di-
vergent integrals can be regularized by appropriate regularization schemes, one of the most used
being dimensional regularization. The basic idea is that in loop integrals one formally replaces the
dimension of space-time (3+1 = 4) with a real, or possibly complex, parameter d [211]. In this
way ultraviolet or infrared divergences show up as poles in the complex d-plane; the final result
can then be Laurent expanded around d = 4 + 2ϵ with ϵ −→ 0, and the result so obtained properly
renormalized. In general one requires the d-dimensional integral to satisfy all the usual properties
of integrals, like linearity, translation invariance and scaling behaviour [211].

Furthermore, when we encounter some integrals that are divergent in d = 4, we may work around
this by instead keeping the dimension d of space-time arbitrary in order to obtain convergent results
for some values of d. If this is the case one can then define the initial integral as the convergent result
just obtained, and analytically continue this new definition to the other values of d, eventually also
d = 4 [194]. As we’ll see later, this is the case for scaleless integrals; similarly, keeping d arbitrary
allows for integration-by-parts identities to vanish on the boundary, as wanted.

Direct evaluation of spherically symmetric integrals in dimensional regularization

While working in dimensional regularization, the loop integrals that one may be able to directly
evaluate usually present a spherical symmetry; in such cases then it’s useful to perform a change of
variables, from the cartesian k system to the hyperspherical d-dimensional coordinates. This allow
for a clear treatment of a continuous number d ∈ R of variables of integration: the aforementioned
change of variables is a reparametrization of the d components {k1, . . . , kd} as a function of a single
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radial variable, i.e. K ≡ |k| with K ∈ [0,+∞), and of d− 1 ∈ R angular variables, which for d ∈ N
(d ≥ 2) can be interpreted as the usual d−2 angles ϕ1, . . . , ϕd−2 with domain [0, π] radians and the
last angle ϕd−1 with domain [0, 2π) radians. Under this change of variables the integration measure
factorizes as

ddk = Kd−1 dK dΩd−1 (2.18)

where dΩd−1 is the area element of a unit (d− 1)-sphere.

If the integrand then enjoys spherical symmetry, i.e. is a function of the radial component K only,
we may directly factor out the angular integration, obtaining the total area Ωd−1 ≡

∫︁
dΩd−1 of

the unit (d − 1)-sphere. Such a factor can be evaluated in arbitrary d-dimension via the gaussian
integral trick:

(︁√
π
)︁d

=

(︃∫︂ +∞

−∞
dx e−x

2

)︃d
=

∫︂
ddx e−((x

1)2+···+(xn)2) =

∫︂
dΩd−1⏞ ⏟⏟ ⏞

=Ωd−1

∫︂ +∞

0
dr rd−1e−r

2

⏞ ⏟⏟ ⏞
= 1

2
Γ( d

2 )

, (2.19)

where we recalled the definition of gamma function (B.2), to obtain

Ωd−1 =
2π

d
2

Γ
(︁
d
2

)︁ . (2.20)

Scaleless integrals

A property of dimensional regularization is that integrals which do not depend on external quantities
may vanish identically. In fact, by dimensional arguments, if the integrand has mass dimension
[f(k)] = a, then given a mass scale µ the integral must scale like∫︂

ddk

(2π)d
f(k) ∼ µd+a . (2.21)

Nonetheless, if a ̸= −d and the integrand f(k) is a function of the integral variable k only, i.e. the
integrand does not depend on any other external dimensional quantity, then there is no scale µ to
which the integral may be proportional to; therefore it must be equal to zero [211]. More formally
each integral in dimensional regularization is defined by analytical continuation from the set of
values of the parameters where such integral is convergent [212]. This means for example that in
dimensional regularization we can define [212]∫︂

ddk

(2π)d
1

(k2)α
= 0 (2.22)

where we employed also the result (C.4). Let us point out that according to reference [211] for
the specific value α = d

2 the above integral actually is proportional (up to normalization of the

measure) to Γ(1 − d); in fact if we evaluate (C.4) in d = 4 + 2ϵ dimensions, and with α = d
2 , the

above integral is still divergent even if we regolate it with a mass, the final results having a pole of
the kind 1

ϵ + ln(m) +O(ϵ). In practice, when both UV and IR divergences are present, it may not
be possible to set scaleless integral to zero, see references [213, 214].

2.2.2 Tensor decomposition

When evaluating a diagram it is customary to break it apart into its tensorial (and Dirac) structure
and its scalar part: this allows to simplify the problem, since these structures can be solved for
separately.
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To be more specific, restricting ourselves to the case with no Dirac structures, let us assume to have
a term Iµ...ρ(p1, . . . , pE), which carries tensor indices µ . . . ρ and depends on E external momenta
p1, . . . , pE , and that can be cast into (a sum over terms of) the form

Iµ...ρ(p1, . . . , pE) =

∫︂ L∏︂
i=1

(︃
ddki
(2π)d

)︃ N µ...ρ({kj}, {pj})
D({kj}, {pj})

, (2.23)

so these terms for example may be some complicated integration over L loop momenta k1, . . . , kL,
with D({kj}, {pj}) the scalar denominator and N µ...ρ({kj}, {pj}) the numerator which carries the
tensor indices. In particular let use notice that such a numerator, i.e. its tensor quantities, may
depend on both the loop momenta {kj} and on the external momenta {pj}, nonetheless once we
perform the integration, the result Iµ...ρ({pj}) cannot depend anymore on the loop momenta, but
still must carry a tensorial structure compatible with the one which was present in the numerator.
This means that the most general form of the result Iµ...ρ({pj}) is given by a sum over all such
possible tensorial structures, each multiplied by a scalar coefficient which is called form factor.

Therefore the tensor decomposition procedure, aimed at solving integral (2.23), involves writing
Iµ...ρ(p1, . . . , pE) as a sum over all the possible tensors {tµ...ρq } with the correct tensor structure,
each multiplied by their scalar form factor {Fq}, i.e.

Iµ...ρ(p1, . . . , pE) =
∑︂
q

Fq(p1, . . . , pE) t
µ...ρ
q (p1, . . . , pE) . (2.24)

In particular the set {tµ...ρq } of all possible tensors is obtained by multiplying all the tensorial
quantities on which Iµ...ρ may depend upon, in all the possible ways, until the number of indices
is saturated, and then by considering all the possible permutations of the indices. Such tensorial
quantities are for example given by the metric gµν (which is the Kronecker delta δij in Euclidean
flat space) and by all the external momenta pµ1 , . . . , p

µ
E , while no loop momenta may appear. Let

us also notice that in principle one should consider also the Levi-Civita symbol, e.g. ϵijk in three
dimensions and ϵµνρσ in four dimensions, but while working in dimensional regularization this
tensor isn’t well defined and instead must be treated appropriately, just like Dirac structures; this
may be accomplished by treating differently the 3 (or 4) space-time dimensions with respect to the
remaining d− 3 (or d− 4) dimensional space [211, 215].

The problems now has been reduced to the one of finding the explicit expression of the form factors.
To do so we can project the tensor expression (2.24) by applying an appropriate set of projectors
{Pr,µ...ρ}, to obtain a set of scalar expressions, one for each projector we applied. If we can obtain
as many independent scalar expressions as the number of the form factors (i.e. of different tensors
{tµ...ρq (p1, . . . , pE)}), which we assume to be Q, then we can solve the system of linear equations
we just found, to obtain the explicit expression of the form factors. In particular, keeping only
the set of projectors which give independent scalar conditions for the system, so {Pr,µ...ρ} with
r = 1, . . . , Q, then:

Pr,µ...ρI
µ...ρ(p1, . . . , pE)⏞ ⏟⏟ ⏞
≡ (I⃗)r

=
∑︂
q

Pr,µ...ρ t
µ...ρ
q (p1, . . . , pE)⏞ ⏟⏟ ⏞

(T )rq

Fq(p1, . . . , pE)⏞ ⏟⏟ ⏞
(F⃗ )q

←→ I⃗ = T F⃗

=⇒ F⃗ = T−1 I⃗ ←→ Fq(p1, . . . , pE) =

Q∑︂
s=1

(T−1)qs Ps,µ...ρI
µ...ρ(p1, . . . , pE) .

(2.25)

To find the set of projectors needed to accomplish this feat, one usually just makes the ansatz of
simply choosing as the set of projectors {Pr,µ...ρ} the set of the tensors {tµ...ρr } themselves, raising
or lowering the indices as needed in order to be able to correctly contract these quantities.
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At last let us also notice that in general, starting from an expression (2.23) which foresees an
integration over the loop momenta {kj}, then the tensor decomposition procedure will yield a set
of scalar form factors whose expression will still present the integration over loop momenta, but now
with a modified integrand, still dependent on both the loop {kj} and the external {pj} momenta,
but which in particular will be now be scalar quantity, so without any tensor index. Therefore the
tensor decomposition procedure lets us reduce the complicated problem of integrating an expression
of the kind (2.23) to the more common problem of solving a scalar integral.

An explicit application of this procedure will be shown in section 4.3.2.

2.2.3 Scalar integrals algebraic manipulation

Once one has applied the tensor decomposition procedure just outlined to the relevant diagram
expression, one will be left with a scalar integral. Such integrals can then be further manipulated
to cast them into Feynman integrals. In particular, let us consider again a generic Feynman diagram
with k1, . . . , kL internal loop momenta and p1, . . . , pE external momenta. Now the general structure
of the scalar integrals associated to such a diagram will be given by:

M(p1, . . . , pE) =

∫︂ L∏︂
i=1

(︃
ddki
(2π)d

)︃ N ({k}, {p})
Dα1

1 ({k}, {p}) · · ·Dαm
m ({k}, {p}) ; (2.26)

where D1, . . . , Dm are the m denominators, in general associated to the propagators and each
raised to the respective power α1, . . . , αm, while N is the numerator; all of these terms are scalars,
and therefore depend on the scalar product between the momenta, possibly both internal {ki} and
external {pi}. Let us also notice that in a diagram with n > 0 external legs, due to momentum
conservation there are only n − 1 independent external momenta; therefore in the following we
assume all the E external momenta to be independent.

Reduction to scalar Feynman integrals

To proceed further, we’d like to rewrite the integrand in equation (2.26) as a sum of terms, each
of which is a product of denominators only. To do so we can notice that, because both the
denominators are functions of scalar products, we may invert these relations to express a generic
scalar product as a function of the denominators {Di}; we may then employ such relation to
re-express the scalar products appearing in the numerator as a function of the denominators only.

This operation requires the invertion of a system of equations; therefore is possible as long as
the number m of denominators is greater or equal than the number of k-dependent scalar products
appearing in the numerator; in fact scalar products between external momenta only are constants for
what concerns the loop integration. Recalling that the scalar product is symmetric, the maximum
number of scalar products with at least one loop momenta which may appear in the numerator is

N =
L(L+ 1)

2⏞ ⏟⏟ ⏞
ki·kj

+ LE⏞⏟⏟⏞
ki·pj

=
L

2
(L+ 2E + 1) . (2.27)

While for 1-loop calculations (L = 1) there are no issues, as it holds m = n = E + 1 = N , in
general for L > 1 it may be needed to artificially enlarge the set of denominators in order to be
able to invert the system of equations. The scalar products which can be written as a function of
the original denominators are called reducible scalar products (RSPs), while the ones which cannot
are called irreducible scalar products (IRSPs); the new denominators which we choose in order to
satisfy m′ = N are called auxiliary denominators: we may choose some irreducible scalar products
as auxiliary denominators in order to obtain a complete basis of denominators, i.e. the constraint
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on our arbitrary choice is the one of obtaining an invertible system of equations with an unique
solution [216, 217].

At the end of this whole procedure, the integrand will be a function of the denominators only, up to
k-independent factors; we also assume that such a function can be expressed as a sum over products
of powers of denominators only; for example this is possible if the initial numerator N ({k}, {p}) is
a polynomial in the scalar products. This procedure let us cast equation (2.26) into the form

M(p1, . . . , pE) =
∑︂
j

cj Ij (2.28a)

Ij(p1, . . . , pE) ≡
∫︂ L∏︂

i=1

(︃
ddki
(2π)d

)︃
1

D
α1,j

1 ({k}, {p}) · · ·Dαm,j
m ({k}, {p}) , (2.28b)

with cj constants in the loop momenta; in particular we may denote the integrals Ij(p1, . . . , pE)
as scalar Feynman integrals [218]. It is customary to denote as integral family the set of integrals,
written in form (2.28b), which have the same set of independent denominators {Di} and powers
αi ∈ Z (with i = 1, . . . , N). Furthermore, given an integral family, one defines a topology (or sector)
as the set of integrals in which all the non-auxiliary denominators are raised to some positive power,
therefore to a topology we may directly associate a diagram where momentum conservation holds
at each vertex. Additionally a subtopology of given a topology is defined as the set of integrals
in which some non-auxiliary denominators are raised to zero power, hence the diagram associated
to such a subtopology can be obtained by taking the one of the parent topology and pinching,
i.e. removing, the propagators corresponding to the missing denominators; in such a diagram
momentum conservation still holds at each vertex [55, 219, 220].

An application of this procedure of reduction to scalar Feynman integrals will be shown in section
4.3.2.

2.2.4 Reduction to Master Integrals

Our goal is now to further simplify the problem of evaluating the {I} scalar Feynman integrals
given by expression (2.28b); in particular we want to rewrite each of them in terms of a smaller
set of independent integrals, known as master integrals {IMI}, which form a basis of integrals in
dimensional regularization [205, 211]: this means that the amplitude can be fully decomposed as a
linear combinations of master integrals [211], i.e.

M(p1, . . . , pE) =
∑︂
i

βi(p1, . . . , pE) I
MI
i (p1, . . . , pE) ; (2.29)

in practice, if we express each of the Feynman scalar integrals {I} in equation (2.28) as a function

of the master integrals as Ij =
∑︁

i d
(j)
i IMI

i , then the coefficient explicitly read βi =
∑︁

j cj d
(j)
i .

The reduction of the amplitude as a linear combination of master integrals therefore is equivalent to

the reduction of each scalar integral Ij =
∑︁

i d
(j)
i IMI

i , that is, to finding the coefficients d
(j)
i . This

can be accomplished by employing relations between scalar integrals, in order to reduce the number
of integrals down to the minimal set given by the master integrals; such relations for example are
given by symmetry relations, integration-by-parts identities (IBPs), Lorentz invariance identities
and dimensional recurrence relations [221].

On a side note let us point out that since any Feynman integral can be expressed as a linear
combination of master integrals, then one may look for an inner product to equip the vector space
of integrals with: in such a way the coefficients in front of the master integrals can be directly
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computed via the inner product, instead of having to solve the large system of linear equations
produced by IBPs and similar relations. This approach is studied by intersection theory [211, 222,
223].

An explicit application of this procedure of reduction to master integrals is shown in appendix
C.5.1.

Symmetry relations

The first set of identities which relate integrals in the same integral family can be obtained by
changing the integration variables, i.e. performing a redefinition of the the loop momenta, in a way
that doesn’t modify the result of the integration [205, 224].

This may be accomplished by looking for a transformation of the loop momenta which has a trivial
Jacobian, but which modifies the integrand in such a way to relate two different integrals belonging
to the same family; for example such a transformation may be given by the shift of some loop
momenta by some external momenta.

The identities so obtained may either map two different topologies into each other, decreasing the
number of independent topologies; or else may map a topology into itself, thereby yielding relations
between integrals in that topology [205, 224].

Integration-by-parts identities

The integration-by-parts identities, first introduced in [45, 46], relate scalar Feynman integrals
of the same family, as defined in formula (2.28b), which differ by values of the powers of the
denominators (α1,j , . . . , αm,j) [211].

They are based on the fact that, while working in dimensional regularization, the integral of a total
derivative vanishes [211]:∫︂ L∏︂

r=1

(︃
ddkr
(2π)d

)︃
∂

∂kµs

(︄
wµ({k}) 1

D
α1({k})
1 · · ·Dαm

m ({k})

)︄
= 0 (s = 1, . . . , L) , (2.30)

which is a consequence of the generalized Stokes’ theorem if we assume the quantity inside brackets
to vanish sufficiently fast on the boundary of the integration domain, otherwise it follows from the
assumption of translation invariance of integrals in dimensional regularization [211]. We may then
take this generic vector to be any linear combination of loop and external momenta, so

wµ =

L∑︂
j=1

ajk
µ
j +

E∑︂
j=1

bjp
µ
j , (2.31)

and by employing Leibniz rule on equation (2.30), noticing that
∂kµj
∂kµs

= δµµδjs = d δjs, we obtain for
s = 1, . . . , L:

d as

∫︂ L∏︂
r=1

(︃
ddkr
(2π)d

)︃
1

Dα1
1 ({k}) · · ·Dαm

m ({k})

= −
∫︂ L∏︂

r=1

(︃
ddkr
(2π)d

)︃
wµ({k}) ∂

∂kµs

(︃
1

Dα1
1 ({k}) · · ·Dαm

m ({k})

)︃
.

(2.32)

We can see these equations provide a set of relations between scalar Feynman integrals belonging
to the same family, i.e. of the same form of (2.28b), up to different powers of the denominators:
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in fact the action of the derivative on the right hand side of formula (2.32) is to create a series of
terms, each with different powers of the denominators and possibily with scalar products at the
numerator. Nonetheless the numerator can be rewritten as a sum over scalar Feynman integrand
of the kind (2.28b) using the same method outlined in section 2.2.3. This means that if we start
with a complete basis of denominators, the integration-by-parts identities provide a set of relations
between scalar Feynman integrals belonging to the same integral family: even thought this means
that they cannot lower the number of loop integration [224, 225], these identities let us reduce the
initial set of scalar integrals into a smaller one, the set of the master integrals. This procedure
may be implemented through Laporta algorithm [47], and it’s been widely used in multi-loop
calculations, for example in works like [226, 227].

Lorentz invariance identities

Similarly to integration-by-parts identities, one can obtain relations between scalar Feynman inte-
grals by noticing that such integrals are Lorentz scalars (or invariant under d-dimensional rotations
if we’re in an Euclidean metric) which are invariant under Lorentz transformations (or d-dimensional
rotations) of the external momenta {pi} [54].
To derive the Lorentz invariance identities, one may consider an infinitesimal Lorentz transforma-
tion acting on the external momenta

pµi −→ (p′)µi = pµi + ωµνpi,ν (2.33)

with ωµν = −ωνµ, under which, as pointed out, the scalar integrals (2.28b) must be invariant:
expanding at linear order one then obtains

I(p1, . . . , pE) −→ I(p′1, . . . , p
′
E) = I(p1, . . . , pE)

=

⎛⎝1 +
E∑︂
q=1

ωµνpq,ν
∂

∂pµq

⎞⎠ I(p1, . . . , pE) .
(2.34)

Since the last equality must hold for any generic infinitesimal Lorentz transformation ωµν we obtain

the relation
(︂∑︁E

q=1 pq,ν
∂
∂pµq

)︂
I = 0, which, once contracted with all the possible antisymmetric

combinations of pµi p
ν
j , yields the Lorentz invariance identities (LI):

(︁
pµi p

ν
j

)︁ E∑︂
q=1

(︃
pq,ν

∂

∂pµq
− pq,µ

∂

∂pνq

)︃
I(p1, . . . , pE) = 0 . (2.35)

Once again the presence of the derivative will generate relations between elements of the same
integral family, with different powers of the denominators [205]. Let us also notice that in principle
any Lorentz invariance identity can be expressed as a linear combination of integration-by-parts
identities [228].

2.2.5 Master integrals evaluation

The last step in the evaluation of a diagram, once we have reduced it to a linear combination of
master integrals, is given by the explicit evaluation of such master integrals.

This can be accomplished either by the direct evaluation of the associated integrals, in which case
some useful parametrization, which will be presented in section 2.2.5, may be useful; or otherwise
by employing the methods of differential equations or difference equations [48, 49, 205].

The master integrals needed for the work carried out in this thesis have been explicitly derived in
appendix C; furthermore an application of the method of differential equations is shown in appendix
C.5.2.
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Method of differential equations

The method of differential equations, first presented in [50–54], allows us to evaluate master integrals
without requiring their direct integration: such a method rests on the fact that a given master
integrals depends on external momenta {p1, . . . , pE} and possibly on other external quantities,
such as masses of the particles running in the loop; we may then differentiate the master integral
with respect such external quantities, obtaining in general a sum over a series of terms in which
some denominator gets raised to a higher power, and a new numerator is created.

We can then build upon the method previously presented: we can apply the methods presented in
section 2.2.4 to reduce such an expression to a linear combination of scalar integrals, and employ the
identities therein introduced to reduce the scalar integrals to the minimal set of master integral.
In the end, considering eventually all the master integrals belonging to a given topology, and
differentiating with respect to all the kinematic quantities at our disposal, we’ll obtain a coupled
system of differential equations, whose solution will give the explicit expression of the master
integrals we were looking for [55].

Let us notice that to uniquely solve such a system of differential equations one must impose the
right boundary conditions: this for example may be done by imposing that the resulting master
integrals have the correct analytical behavior at some known kinematic point [55]. In general it
may not be possible to exactly solve the system of differential equations; but in most cases one can
work around this issue by expanding around the needed space(-time) dimension d, e.g. d = 3 + ϵ
with ϵ≪ 1, and solving the differential equations in a perturbative manner [56, 211].

Useful parametrizations for direct integration

To solve some integrals appearing in multi-loop calculations sometimes it may be useful to rewrite
some terms in a different (integral) representations; below we outline two such tricks that will be
used.

Feynman parameters

One may rewrite the product of two denominators by introducing auxiliary variables, known as
Feynman parameters, using the identity [190]:

1

AB
=

∫︂ 1

0
dx

1

(xA+ (1− x)B)2
=

∫︂ 1

0
dx

∫︂ 1

0
dy δ(x+ y − 1)

1

(xA+ yB)2
; (2.36)

which can be generalized by taking derivatives of the previous formula with respect to A or B;
obtaining:

1

AmBn
=

Γ(m+ n)

Γ(m)Γ(n)

∫︂ 1

0
dx

xm−1 (1− x)n−1

(xA+ (1− x)B)m+n ; (2.37)

where we introduced the gamma function (B.1), see also appendix B.

The Feynman parameters are particularly useful when we’re dealing with a denominator which is
a function of the integration variable, but shifted by another vector, as they let us transform the
denominator in a more manageable form; for example, working with spatial components:∫︂

ddk

(2π)d
1

|k|2 |k− p|2
=

∫︂ 1

0
dx

∫︂
ddk

(2π)d
1

(|k− xp|2 + x(1− x)|p|2)2

=

∫︂ 1

0
dx

∫︂
ddk′

(2π)d
1

(|k′|2 +∆)2

, (2.38)
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where we recognized A = |k − p|2 = |k|2 + |p|2 − 2k · p and B = |k|2, so x(A − B) + B =
x(|p|2− 2k ·p)+ |k|2 = |k−xp|2+x|p|2−x2|p|2, and where we performed the change of variables
k′ = k− xp, which is just a shift and therefore doesn’t modify the integration measure, and where
finally we denoted ∆ = x(1− x)|p|2.

Schwinger parameters

The Schwinger parametrization is similar to the previous one, but it is instead used to convert
a multiplication of denominators into a sum inside an exponential. In fact, let us consider the
following integral, with A ∈ R+:∫︂ +∞

0
dt tm−1e−At =

1

Am

∫︂ +∞

0
duum−1e−u⏞ ⏟⏟ ⏞
=Γ(m)

=
Γ(m)

Am
, (2.39)

where we performed the change of variables u = At, and we recalled the definition of the gamma
function (B.1). From the formula just obtained follow also the needed relations, for example:

1

A
=

∫︂ +∞

0
dx e−Ax (2.40a)

1

Am
=

1

Γ(m)

∫︂ +∞

0
dxxm−1e−Ax (2.40b)

1

AmBn
=

1

Γ(m)Γ(n)

∫︂ +∞

0
dxxm−1

∫︂ +∞

0
dy yn−1e−(Ax+By) . (2.40c)
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CHAPTER

3 EFFECTIVE FIELD THEORY FOR
THE INSPIRAL OF A COMPACT
BINARY SYSTEM

In this chapter we’ll present how the effective and quantum field theory frameworks we summarized
in chapter 2 can be used to build an effective theory which describes the inspiral of a compact binary
system, more specifically the post-Newtonian corrections to the binary dynamics.

This approach, first employed in [42], was clearly framed in the seminal paper [43] (see [38, 192,
213, 229] for reviews), which built upon effective field theories built to tackle non relativistic bound
states in QED and QCD [230, 231], such as heavy quark effective theory, HQET [232–234]. Since
then this method has proven to be really efficient when combined with multi-loop quantum field

Figure 3.1 Schematic idea behind the construction of an effective theory for the inspiral of a compact
binary system: while the binary dynamics are prescribed by the full theory, given by general relativity
coupled to the compact objects, we would like to work in a simpler effective theory in which we only have
to deal with the positions of the two compact objects. Then it’s possible, under certain assumptions, to
integrate out the nuisance gravitational degrees of freedom in order to obtain the post-Newtonian corrections
to the dynamics of the compact binary system. Then in this effective theory, which still formally encodes all
the details of the full starting theory (restricting to the inspiral phase, and up to non-perturbative effects),
we can evaluate more easily the observables for the system, such as the gravitational waveform: this will be
the focus of chapter 6.

59
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theory techniques, allowing for a steady advancement in the post-Newtonian calculations, especially
in the conservative sector: the 1PN was computed already in reference [43], the 2PN in [235], the
3PN in [57], the 4PN in [44, 58], the 5PN in [59, 64, 65], and partial results have been obtained at
6PN [77, 78]. Furthermore this formalism is well suited to incorporate also corrections due to spin
[79–82] and finite size effects [83, 84].

The basic idea at the basis of this approach is outlined in figure 3.1: in particular the post-
Newtonian assumptions of weak field and slow velocities Gm

r ∼ v2 ≪ 1 imply that the size of each
compact object is much smaller than the orbital separation between the two bodies, which in turn
is much smaller than the wavelength of the emitted gravitational waves. This allows to clearly
single out three spatial regions, and to build a different effective theory for each of them: this let
us deal with fewer degrees of freedom at a time, greatly simplifying the treatment of the two-body
problem, both from a conceptual and a computational point of view. Furthermore the fact that
we’re working in a quantum field theory framework let us exploit the modern multi-loop evaluation
techniques, which we introduced in section 2.2; yet remarkably the results that we will obtain will
be fully classical. On top of this, other advantages of the effective field theory approach is that
it allows for a systematic treatment of the spins and the finite size effects of the compact objects;
and it may also be possible to obtain predictions in modified gravity theories, as any modification
at the level of the original action will be connected to the change in physical observables.

In this chapter we’ll adopt ℏ = c = 1 units and we’ll often work in d spatial dimension to employ
dimensional regularization, sending d −→ 3 only at the end of the calculations; see Notation for
further details. In section 3.1 we’ll introduce a toy model to present some key concepts; in section
3.2 we’ll introduce the actual effective theory for compact binary systems; finally in section 3.3
we’ll use these framework to compute the Newtonian potential.

3.1 Scalar gravity toy model

To better understand some key points presented in chapter 2, which will be used to construct the
effective theory for a binary system, we’ll first start working with a simpler toy model, following
reference [192] (see also [205, 225, 236] for further discussions). In particular we’ll explicitly present
the procedure of integrating out fields, showing how it yields an effective action, and then how this
result may be accomplished in a perturbative way using a diagrammatic approach.

The building blocks of this toy model, which may be called scalar gravity, are:

• the 3+1 space-time, which is assumed to be exactly Minkowski flat, gµν = ηµν ;

• a non self-interacting massless real scalar field ϕ(x);

• n point particles, with worldlines xµa(λ), a = 1, . . . , n;

• a linear interaction term between the scalar field ϕ and the point particles.

The action of this toy model, as in [192], therefore is:

S[ϕ, xµa ] =

∫︂
d4x

(︃
1

2
∂µϕ∂

µϕ

)︃
−

n∑︂
a=1

ma

∫︂
dτa

(︃
1 +

ϕ(xa(τa))

2
√
2mPl

)︃
, (3.1)

with dτa =
√︁
ηµν dxµ dxν the proper time along the a-th particle worldline [236].

In the following we’ll take n = 2 point particles to obtain the case of a binary system.

To obtain the dynamics of the system one needs to integrate out the scalar field ϕ, which represents
the gravitational degree of freedom, to obtain an effective action Seff [xa] which is a functional of the
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worldlines {xa} only. As we have seen in the previous section 2.1, in the path integral formulation
of quantum field theory this is given by:

ei Seff [xa] =

∫︂
Dϕ ei S[ϕ,xa] . (3.2)

Actually in this simplified model the path integral evaluation (3.2) can be carried out analytically
[192], by noticing that the action (3.1) can be rewritten as

S[ϕ, xµa ] =

∫︂
d4x

⎛⎜⎜⎜⎜⎝1

2
∂µϕ∂

µϕ−
n∑︂
a=1

∫︂
dτa

ma

2
√
2mPl

δ(4)(x− xa(τa))⏞ ⏟⏟ ⏞
≡−J(x)

ϕ(x)

⎞⎟⎟⎟⎟⎠−
n∑︂
a=1

∫︂
dτa ma

=

∫︂
d4x

(︃
1

2
∂µϕ∂

µϕ+ J(x)ϕ(x)

)︃
−

n∑︂
a=1

∫︂
dτa ma

,

(3.3)

where we defined

J(x) ≡ −
n∑︂
a=1

ma

2
√
2mPl

∫︂
dτa δ

(4)(x− xa(τa)) (3.4)

as an appropriate source function. Therefore equation (3.2) reduces to:

Seff [xa] = −i ln
(︃∫︂

Dϕ ei S[ϕ,xa]
)︃

= −
n∑︂
a=1

∫︂
dτa ma − i ln (Z[J(x)]) , (3.5)

with

Z[J ] =

∫︂
Dϕ exp

(︃
i

∫︂
d4x

(︃
1

2
∂µϕ∂

µϕ+ J(x)ϕ(x)

)︃)︃
(3.6)

the partition function of a massless scalar field linearly coupled to an external source J(x).

The analytic expression of the partition function is exactly known, as it is a gaussian integral in
quantum field theory [190, 191]:

Z[J ] =

∫︂
Dϕ exp

(︃
i

∫︂
d4x

(︃
1

2
∂µϕ∂

µϕ+ J(x)ϕ(x)

)︃)︃
= exp

(︃
−1

2

∫︂
d4x d4y J(x)G2(x− y)J(y)

)︃ (3.7)

which is normalized such that Z[0] = 1, and with

G2(x− y) =
∫︂

d4k

(2π)4
i

k2 + iϵ
e−ik(x−y) (3.8)

the two-point correlation function of the free theory, where k2 ≡ ηµνk
µkν . Notice that this is

related to the Feynman propagator ∆F (x− y) by G2(x− y) = i∆F (x− y).

3.1.1 Evaluation via the diagrammatic approach

As opposed to what we’ve just obtained, in the more complex NRGR case, it won’t be possible
to evaluate the result of path integral in a closed-form; instead it will be necessary to resort to
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a perturbative expansion. Therefore, to get a grasp of the whole procedure, we’ll compute the
effective action (3.5) via the diagrammatic approach, as described in section 2.1.

We may apply these concepts to evaluate the (second term) of the effective action (3.5). The
Feynman rules in momentum space for the field ϕ to be integrated out can be obtained from the
action as re-written in equation (3.3):

k
=

i

k2 + iϵ
(3.9)

k = i

∫︂
d4xJ(x)eikx = −i

n∑︂
a=1

ma

2
√
2mPl

∫︂
dτa eikxa(τa) . (3.10)

To draw all the relevant Feynman diagrams, we can notice that the linear coupling Jϕ, in equation
(3.10), gives a free point for one end of the scalar propagator (3.9) to attach to. Therefore, to
obtain the expression of the partition function, we have to draw an even number 2m of couplings
to the source, and connect them with m scalar propagators in all possible ways, taking care of
symmetry factors.

Still it’s important to notice that, due to the fact that the source are static, they do not propagate
in the Feynman diagrams [213]; therefore we could strip away the thick lines altogether. So we
have that, fixed the order of Feynman diagram with m scalar propagators, all the possible ways
( (2m)!
2mm! combinatorial factor) to connect the 2m identical sources, lead to the same result: this is
represented by a diagram in which all scalar propagator are parallel, and the worldlines of the
sources are joined one by another (even thought we stress that there is no source propagator). The
symmetry factor of a diagram with m scalar propagators is given by the inverse of the number of
permutations of the sources, so 1

(2m)! .

So for example, the diagram with a single scalar propagator (m = 1) is given by, noticing that we
have to flip the sign of the momenta in the J(y) source Feynman rule:

M1(k) ≡ k

=

(︃
2!

2

)︃(︃
1

2!

)︃(︃
i

∫︂
d4xJ(x)e−ikx

)︃(︃
i

k2 + iϵ

)︃(︃
i

∫︂
d4y J(y)e+iky

)︃
= − i

2

∫︂
d4x

∫︂
d4y J(x)

1

k2 + iϵ
e−ik(x−y)J(y) .

(3.11)

Summing instead all diagrams with m scalar propagators, we get:

Mm({kj}) ≡ k1 km... (m−2) ...

=

(︃
(2m)!

2mm!

)︃(︃
1

(2m)!

)︃ m∏︂
j

(︃
i

∫︂
d4xj J(xj)e

−ikjxj
)︃(︄

i

k2j + iϵ

)︄(︃
i

∫︂
d4yj J(yj)e

+ikjyj

)︃

=
1

m!

m∏︂
j

(︄
− i
2

∫︂
d4x d4y J(x)

1

k2j + iϵ
e−ikj(x−y)J(y)

)︄
.

(3.12)
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After integrating over all the free momenta kj via
∏︁m
j

∫︁ d4kj
(2π)4

, we can notice that the sum of all

diagrams obtained with these procedure gives the exact result (3.7) for the partition function. To
see this, notice that at a given order m

∫︂ ⎛⎝ m∏︂
j

d4kj
(2π)4

⎞⎠Mm({kj}) =
1

m!

(︃∫︂
d4k

(2π)4
M1(k)

)︃m
(3.13)

holds, and therefore we have that the sum of all diagrams, with free momenta integrated over:

Mtot ≡ + + + . . .

=
+∞∑︂
m=0

⎛⎝∫︂ m∏︂
j

(︃
d4kj
(2π)4

)︃
Mm(kl)

⎞⎠
=

+∞∑︂
m=0

1

m!

(︃∫︂
d4k

(2π)4
M1(k)

)︃m
= exp

(︃∫︂
d4k

(2π)4
M1(k)

)︃
= exp

(︄ )︄

= exp

(︃
−1

2

∫︂
d4x d4y J(x)G2(x− y)J(y)

)︃
= Z[J ]

(3.14)

where in the last lines we recalled the relations (3.11), (3.8) and (3.7).

From these relations we can also check that the logarithm of the partition function is actually
given by the sum over connected diagrams only: in our case the only connected diagram is the one
with two sources, J(x) and J(y), connected by a single (m = 1) propagator ∆F (x− y); this single
diagram is M1 (3.11). This is what we were expecting from (3.14), as it holds

ln(Z[J ]) =

∫︂
d4k

(2π)4
M1(k) = . (3.15)

The logarithm of the partition function is related to the effective action of the theory, and the notion
that the diagrams contributing to the effective action are only the ones which remain connected
after we strip away the thick worldlines, holds true also in the more complex NRGR case [192].

We can finally obtain the expression we were interested in for the effective gravitational action after
having integrated the ϕ field out. From (3.5) we obtain:

Seff [xa] = −
n∑︂
a=1

∫︂
dτa ma − i ln (Z[J(x)])

= −
n∑︂
a=1

∫︂
dτa ma − i

∫︂
d4k

(2π)4
M1(k)

= −
n∑︂
a=1

∫︂
dτa ma −

1

2

∫︂
d4x d4y

d4k

(2π)4
J(x)

1

k2 + iϵ
e−ik(x−y)J(y) .

(3.16)
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Recalling the definition of the source J(x) from (3.4), we obtain:

Seff [xa] = −
n∑︂
a=1

∫︂
dτa ma −

1

2

a̸=b∑︂
a,b

mamb

8m2
Pl

∫︂
dτa dτb

d4k

(2π)4
1

k2 + iϵ
e−ik(xa(τa)−xb(τb))

= −
n∑︂
a=1

∫︂
dτa ma +

i

2

a̸=b∑︂
a,b

mamb

8m2
Pl

∫︂
dτa dτb G2(xa(τa)− xb(τb)) ,

(3.17)

where we have neglected the a = b unphysical case [192]. This unphysical case eventually will not
be of concern in the real theory, as it will generally result in vanishing scaleless integrals.

This analysis could have been performed also including higher order operators, as in [236], such
as λn ϕ

n higher order interactions, which would have made unavoidable the need of perturbation
theory, and so of the diagrammatic approach hitherto shown.

3.2 Effective theory for a compact binary system

We’ll now apply what we’ve seen so far to construct the effective theory for a compact binary
system. In particular let us point out that we’ll employ a somewhat different notation for the
conservative diagrams with respect to what is usually used in the literature; furthermore also the
approach we adopt to the radiation effective theory is slightly different.

3.2.1 Key ideas and outline of the construction procedure of the effective theory

Worldlines as non-dynamical degrees of freedom

The first point that must be addressed in order to correctly construct the effective field theory for a
compact binary system which correctly yields the post-Newtonian corrections, is to notice that the
evolution of the system is dictated by the interaction of each compact object with the gravitational
field, which, simplifying the setup, mediates the gravitational force and dissipate energy and angular
momentum via the emission of gravitational waves.

In particular, adopting a quantum field theory approach, we can think of all of this as taking place
via the constant interaction of each compact objects with a huge number of gravitons, which are the
quantized particles associated to the gravitational field. Nonetheless, as pointed out by reference
[43], these gravitons have a momentum of order the inverse orbital separation or less, |k| ⪅ ℏ

r ;
whereas the compact objects, even if assumed to be non relativistic, have a momentum |p| ∼ mv.
This means that when each graviton interacts with a compact object, it induces a fractional recoil
of order |k|

|p| ∼ ℏ
r

1
mv = ℏ

L ≪ 1, where L = mvr is the modulus of the classical orbital angular

momentum associated to the compact object. In particular, using the virial theorem v2 ∼ Gm
r ∼ Rs

2 r ,

so L ∼ mRs
2v already for a neutron star of m ∼M⊙, we can estimate L

ℏ ∼ 1.7 · 1077
(︂

m
M⊙

)︂2 (︁
v

0.1 c

)︁−1
.

We may then assume that each compact objects is practically undisturbed by the interaction with
each graviton, and therefore, for what concerns the latter, we can treat the positions of the compact
objects (denoted as worldlines {xµa}) as non-dynamical, background, degrees of freedom; with which
the dynamical gravitational degrees of freedom interact.

This means that there will be no propagator associated to the worldlines, similarly to the static
sources J(x) we encountered in the toy model of section 3.1, and instead the degrees of freedom
that we’ll have to integrate out will be the ones associated to the gravitational field. This remark,
pointed out by reference [43], is the one which allows to correctly construct the EFT; it builds upon
the similar treatment employed in the heavy quark effective theory [232–234].
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Rs r≪ λ≪

Rs r λ

Figure 3.2 Figure depicting the separation of scales which is present in the non-relativistic two
body problem. From the left to the right we first have the internal zone, with characteristic length the
Schwarzschild radius Rs, then the near zone, with characteristic length the orbital separation r, and finally
the far zone, in which the typical length is given by the wavelength λ of the gravitational waves produced by
the compact binary. Let us point out that this figure is meant only to illustrate this feature of the problem
at hand, for example in reality we require the separation of these scales to be larger than what it has been
depicted above.

Furthermore the huge number of gravitons involved assures us that this quantum-mechanical view-
point in practice will be equivalent to the classical description, since quantum corrections will be
subleading.

Separation of scales

Another key point which is exploited to construct the effective theory for a binary system is the
separation of scales which is present in the non-relativistic two body problem, for gravitationally
bound systems. In fact the dynamics of a binary system can be divided into [213, 237]:

• The internal zone, which has a length scale comparable to the size of each body; for the
compact bodies we’re considering therefore it can be estimated by their Schwarzschild radius
Rs = 2Gm, see section 1.2.2. This is the scale which finite size effects extend over, as could be
the spin of each body, or their deviations from spherical symmetry due to tidal deformations.

• The near zone, or potential zone, where the orbital dynamics play out; the length scale for
example is given by the relative separation r between the bodies.

• The far zone, or radiation zone, which is the characteristic scale associated to gravitational
waves propagation, and is given by their wavelength λ.

In particular under our assumptions of small velocities, v2 ≪ 1, and assuming comparable masses
m1 ∼ m2 ∼ m, recalling section 1.6.1 we find that r ∼ Gm

v2
∼ Rs

v2
≫ Rs, while as seen in section

1.4.2 we also expect λ ∼ r
v ≫ r. Then we see that under the condition of small velocities v2 ≪ 1 a

hierarchy of scales becomes evident:

Rs ≪ r ≪ λ , (3.18)

as depicted also in figure 3.2.

Let us point out that this separation of scales is used more or less implicitly also in other different
approaches to the post-Newtonian theory, e.g. when matching post-Newtonian and multipolar-
post-Minkowskian solutions in an intermediate buffer zone between the near and the far zone [36].



66 Chapter 3 — Effective field theory for the inspiral of a compact binary system

Tower of effective field theories

The separation of scales just presented above suggests the
introduction of a tower of effective field theories, so one ef-
fective theory for each region, each specifically tailored to
capture the dynamics of the relevant degrees of freedom
therein [43, 192, 213, 238]. We can then match the several
effective theories so introduced at the boundaries of their re-
gions: in this way the details of the innermost regions, such
as the internal dynamics of each compact object and their
orbital evolution, will affect also the observables which are
evaluated in the outermost region, such as the gravitational
waveform seen by a far away observer.

In practice this procedure is (ideally) implemented by start-
ing from the fundamental theory, such as general relativity
coupled to the compact objects, and progressively integrat-
ing out the high-energy (so short distance) degrees of free-
dom as discussed in section 2.1.2, until we obtain an ef-
fective action which depends only on the positions of the
compact objects; this is also sketched in figure 3.3. The
procedure that we’ll have to follow then is, denoting with
k−1 = 1

|k| the length scale at which we’re progressively prob-
ing the system:

1. Introduce the fundamental theory; in particular the
one which describes also the dynamics in the internal
zone, so for the degrees of freedom with wavelength
k−1 < Rs. In practice considering all the details of
each compact objects is both too complicated and
not even necessary for the precision we’re aiming for.
Therefore in section 3.2.2 we’ll actually introduce an
effective theory, known as Worldline Effective The-
ory, in a bottom-up approach, resorting to symmetry
arguments: this theory will actually provide a coarse
grained description of the internal dynamics at the
level k−1 ∼ Rs, so in practice will be useful to de-
scribe how the internal zone interacts with the near
and the far zone [213, 238].

2. Integrate out the internal zone degrees of freedom,
so the modes with wavelength k−1 < Rs, to obtain
an effective theory which describes the dynamics in
the internal zone, so of the degrees of freedom with
k−1 ∼ r. In practice this will be accomplished by
considering one distinct worldline effective theory for
each compact object.

Internal zone EFT
Relevant dofs: single
compact objects d.o.f.

Near zone/potential EFT
Relevant d.o.f.: potential
gravitons, which mediate
conservative interactions,
so the gravitational force
between the two bodies

Far zone EFT
Relevant d.o.f.: radiation
gravitons, which repre-
sent gravitational waves

Effective action Seff

for the worldlines (positions
of compact bodies) only

Integrate out d.o.f.
with k−1 < Rs

Integrate out d.o.f.
with k−1 < r

Integrate out any
dynamical d.o.f. left

Figure 3.3 A diagram outlining
the key steps in the construction of
the effective theory for a binary sys-
tem. In particular we have to start
from the shortest distances, and inte-
grate out the relevant degrees of free-
dom (d.o.f.) in each intermediate effec-
tive theory until we obtain an effective
action Seff , which is a function of the
position of the compact objects {xµa}
only. Let us point out that at higher
PN order the distinction between con-
servative (potential gravitons) and dis-
sipative (radiation gravitons) contribu-
tions isn’t as simple as presented due
to hereditary effects.

3. Integrate out the near zone degrees of freedom, so the modes with wavelength k−1 < r, to
obtain an effective theory which describes the dynamics in the far zone, so of the degrees of
freedom with k−1 ∼ λ. This will be accomplished by integrating out the potential modes of
the gravitational field, and the needed setup will be developed in section 3.2.3.

4. Integrate out all of the remaining degrees of freedom, to obtain an effective theory, i.e. an



Section 3.2 — Effective theory for a compact binary system 67

effective action Seff [{xµa}], which depends only on the positions {xµa} of the compact objects
(their worldlines): the coefficients of the post-Newtonian corrections therein will implicitly
encode the corrections due to the full gravitational interactions, so due to general relativity,
that we integrated out. In practice this step will be accomplished by integrating out also
the remaining radiation modes of the gravitational field, as will be explained in section 3.2.4;
nonetheless, before integrating out these d.o.f., we can evaluate also observables in the far
zone, such as the gravitational waveform, as will be presented in section 3.2.5.

In particular, at higher PN order, we expect to also have renormalization group flow for certain
observables as we probe them at different length (so energy) scales; which we have to evolve between
the several matching procedures [43, 84, 192, 213].

3.2.2 Worldline effective theory

In this initial stage we consider the dynamics of a single compact body coupled to general relativity.
Therefore the complete dynamics are governed by the Einstein-Hilbert action SEH and possibly
also by the action SM for the matter fields, which may be the matter that make up a neutron star;
these actions are respectively given by formulae (1.1) and (1.2).

We’re now interested in finding the effective field theory which describes the dynamics of the
gravitational field gµν on scales larger than the Schwarzschild radius Rs; therefore the degrees of
freedom to integrate out are the ones which reside inside the internal zone, so with k−1 ⪅ Rs. To
single them out we may separate the metric gµν as

gµν = g(S)µν + g(L)µν (3.19)

where g
(S)
µν are the short distance modes, i.e. with k−1 < Rs, and g

(L)
µν the complementary long

distance modes. In this way the degrees of freedom to integrate out in this first step are the short

modes of the gravitational field g
(S)
µν and the matter fields [213].

This step ideally would be accomplished by integrating out the relevant degrees of freedom from
the detailed UV description of the dynamics of each body, e.g. of the black holes or the neutron
stars, in a top-down approach: nonetheless this description of any realistic compact body is in
general extremely complicated and still not exactly known; for example the action for the matter
fields may be interpreted as the one which describes all the particles which constitutes the compact
body and their interactions. In practice therefore we have to resort to a bottom-up approach to
build this effective field theory, denoted as worldline effective theory [43, 213]: we parametrize our
ignorance about the internal dynamics of the compact objects by approximating them as point
particles plus a series of higher order operators [213].

To do this methodically we have to proceed as presented in section 2.1.3: we start by noticing that
after integrating out the modes with k−1 < Rs, the remaining low energy degrees of freedom, which
are explicit in this effective theory, are given by [38, 192, 197, 213]:

1. the long wavelength modes of the gravitational field, so by g
(L)
µν ;

2. by the particle worldline coordinate xµ(σ), which is a function of the arbitrary affine parameter
σ, and may be interpreted as parametrizing the position of the center of mass of the compact
object;

3. by an orthonormal frame eµ(σ) localized on the particle worldline, which described the ori-
entation of the compact bodies and also its possibly non vanishing spin.

Actually neutron stars may contain additional low frequency modes which should be kept in the
construction of this effective field theory, see [192]. Furthermore in this work we’ll neglect the
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spin of the compact objects (whose corrections first contribute at 1.5PN order) even though it is
phenomenologically relevant and hence should be considered, see references [38, 80, 81, 182, 213,
229, 239–241] for more details about its treatment.

As already discussed, now we have to recognize the symmetries of the systems, which constraint
the ways the previous degrees of freedom may couple, thereby reducing the number of operators
we have to consider in the effective Lagrangian. The symmetries of the system we’re considering
are given by [192]:

1. diffeomorphism invariance for xµ −→ x′µ(x);

2. worldline reparametrization invariance, σ −→ σ′(σ).

To simplify calculations we’ll make the additional assumption that the compact object is perfectly
spherical, i.e. that it doesn’t have any permanent moments relative to its own rest frame when in
isolation [192, 213]. Therefore we have an additional symmetry given by [192]:

3. SO(3) invariance.

The assumptions we’ve made so far therefore imply that the worldline effective theory we’re con-
structing we’ll be adequate to describe non-spinning, spherically symmetric black holes, that is,
Schwarzschild black holes interacting with the external gravitational field [192].

To construct an effective Lagrangian that is compatible with the aforementioned symmetry, we can
notice that diffeomorphism invariance can be satisfied by simply constructing scalars from gµν and
dxµ

dσ , while to ensure invariance under worldline reparametrization we may simply use the proper
time variable

dτ2 = g(L)µν (x(σ))dx
µdxν , (3.20)

which is an observable, physical, quantity, and hence must be invariant [192, 242].

Then the effective action will finally be given by [192, 213]:

Seff,worldline[x
µ, g(L)µν ] = SEH [g

(L)
µν ] + Spp[x

µ, g(L)µν ] (3.21)

where SEH [g
(L)
µν ] is the usual Einstein-Hilbert action (1.1), but restricted to long wavelengths only,

while

Spp[x
µ, g(L)µν ] = S(PP )

pp [xµ, g(L)µν ] + S(FS)
pp [xµ, g(L)µν ] (3.22)

is the so called point particle action, which contains both the usual, leading order, point particle

term S
(PP )
pp ; but also all other higher order local operators allowed by symmetries in the expression

S
(FS)
pp , which encodes finite size effects, such as the tidal deformability of the compact body due to

the interaction with the non-homogeneous external gravitational field (eventually produced by the
other compact object). Below we’ll briefly outline both of these terms.

Furthermore, leveraging the separation of scales and the effective field theory approach, it’s possible
to take into account also additional phenomena, like the absorption of gravitational waves by the
horizons of the black holes, which affects their masses and spins. In particular it’s possible to more
easily evaluate the cross section of such processes for isolated black holes, evaluating so the relevant
Wilson coefficients of the effective theory, which can then be translated to the two body problem
[43, 243].
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Point particle term

The simplest coupling between the worldline xµ(σ) and the long modes of the gravitational field

g
(L)
µν is given by the point particle action:

S(PP )
pp [xµ, g(L)µν ] = −m

∫︂
dτ

= −m
∫︂

dσdd+1x

√︃
g
(L)
µν (x)

dxµ

dσ

dxν

dσ
δ(d+1)(xµ − xµ(σ))

. (3.23)

In particular this action describes the motion of a test point particle of mass m, with coordinates

xµ(σ), along the geodesics given by the background metric g
(L)
µν , and therefore this action neglects

the back reaction which the point particle exert on the spacetime itself [192, 197, 213].

Finite size effects and higher order operators

This expression contains all the others operators allowed by symmetries: in particular the first
higher orders operators which encode finite size effects are given by [43, 206, 213]:

SFSpp = cR

∫︂
dτR(L)(x(τ)) + cV

∫︂
dτR(L)

µν (x(τ))
dxµ

dτ
(τ)

dxν

dτ
(τ)

+

∫︂
dτ (QµνE (x(τ))Eµν(x(τ)) +QµνB (x(τ))Bµν(x(τ))) . . . ,

(3.24)

where it is understood for example
∫︁
dτR(x(τ)) =

∫︁
dσd4xR(x)

√︂
gµν(x)

dxµ

dσ
dxν

dσ δ
(d+1)(xµ−xµ(σ)),

and the R(L)(x), R
(L)
µν (x) are respectively the Ricci scalar and tensor, which have been defined

in the Notation, but built using g
(L)
µν . Similarly QµνE(B) are the symmetric trace-free quadrupole

moments of the compact object, and, introduced the Weyl tensor Cµνρσ, we have that Eµν ≡
Cµρνσ

dxρ

dτ (τ) dxσ

dτ (τ) is the electric part of the Weyl tensor, while Bµν ≡ 1
2ϵµρσλC

ρσ
νω

dxλ

dτ (τ) dxω

dτ (τ)
is the magnetic part of the Weyl tensor [206, 213].

Actually the operators linear in the curvature, presented in the first line of formula (3.24), are
redundant and do not contribute to the dynamics of the system: the cR and cV coefficients can be
set to zero as as a consequence of Birkhoff’s theorem, and also because they vanish by lower-order
equation of motion, and so they may be redefined to be vanishing [43, 213].

Instead higher order operators encode information about finite size effects and absorption phenom-
ena [43, 197, 206, 213, 242], for example they encode information about the Love number of the
compact objects, which is vanishing for black holes but not for neutron stars: this implies also
that from the observation of gravitational waves we can study the equation of state and the tidal
deformability of the compact objects. About this point we can also recall the discussion oultined
in section 1.6.1: due to the effacement principle, neglecting spin-induced tidal deformability, we
actually expect such higher order operators, encoding finite size effects, to first contribute only
form the 5PN order onward.

Then we find once again that, up to this really high perturbative order, the internal structure of
each compact object isn’t observable: therefore in the following it will suffice to model them using
just the point particle term (3.23) [43, 206, 213].

3.2.3 Near zone potential effective theory

The next step is the construction of the effective field theory which describes the dynamics of the
near zone, i.e. at scale of the binary orbital separation r, hence the goal is to integrate out all
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degrees of freedom with modes shorter than k−1 < r. At the orbital scale then these high energy
degrees of freedom are:

1. what we denoted as long wavelengths mode of the gravitational field g
(L)
µν in the previous

section 3.2.2, so the modes of the gravitational fields with characteristic length k−1 > Rs;

2. two worldlines degrees of freedom xµa with a = 1, 2, which encode the coarse-grained behavior
of the two compact objects which compose the binary system; let us stress again nonetheless
that this degrees of freedom are not dynamical.

The action which governs the dynamics of these degrees of freedom follows from (3.21), in particular
we’ll have the Einstein-Hilbert action SEH for the gravitational field, and one point particle action
Spp, given by equation (3.22), for each worldline degree of freedom which appears in our effective
field theory.

As previously pointed out, in this high-energy action we keep only the leading term in the point-

particle action, given by (3.23), so Spp = S
(PP )
pp . Furthermore we recall from section 2.2 that we’ll

be employing dimensional regularization to make sense of divergent quantities, so we’re working
in d + 1 dimensions, with d −→ 3 spatial dimension. This implies a change of the mass dimension
of the coupling constants, which we factor out as usual by introducing the renormalization scale
µ, which can also be interpreted as the inverse of an arbitrary length scale l0, so µ ∼ l−1

0 . In

particular, for what concerns the gravitational action, the coupling constant mPl = (32πG)−
1
2 in

the Einstein-Hilbert 1.1 action becomes [36, 62, 80, 183]

Λ ≡ mPl µ
d−3
2 , (3.25)

in such a way to obtain mass dimensions of [mPl] = 1 and [Λ] = d−1
2 ; let us point out that different

normalization are also used in the literature [80, 81, 83, 84]. Hence the Einstein-Hilbert action, in
dimensional regularization, now reads

SEH = −2Λ2

∫︂
dd+1x

√−g R . (3.26)

Additionally we have to take care of the gauge redundancy which general relativity enjoys due to
its diffeomorphism invariance: hence, to remove the associated spurious degrees of freedom, we’ll
fix the harmonic gauge, whose condition is given by (1.113). In particular this can be accomplished
by adding the harmonic gauge fixing term [38, 80, 205, 206, 225, 229, 235]

SGF = Λ2

∫︂
dd+1x

√−g gµνΓµΓν (3.27)

to the Einstein-Hilbert action, where [206, 229, 244]

Γµ ≡ Γµαβ g
αβ = − 1√−g∂ν

(︁√−ggµν)︁ (3.28)

and Γµαβ is the Christoffel symbol, defined in Notation; in such a way the harmonic gauge condition
(1.113) reads Γµ = 0 [205]. The choice of the harmonic gauge is especially useful since it introduces
into the definition of our coordinate system a preferred Minkowskian structure, hence being well
suited the post-Newtonian approximation [183].

Finally we can read off the full form of the action which governs the dynamics of the high energy
degrees of freedom of the near zone, so at binary scale:

Snear,UV [{xµa}, g(L)µν ] = SEH [g
(L)
µν ] + SGF [g

(L)
µν ] +

2∑︂
a=1

S(PP )
pp,a [xµ, g(L)µν ] . (3.29)
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Our goal now is to obtain the effective action Snear,IR which governs the dynamics of the lower
energy degrees of freedom, i.e. those which have modes with wavelength k−1 > r larger than the
orbital scale; hence to do so we’ll have to integrate out the high energy modes of the gravitational

field g
(L)
µν with Rs < k−1 < r.

Kaluza-Klein decomposition of the metric via Kol-Smolkin variables

The operation of integrating out these modes of the gravitational field g
(L)
µν actually entails working

with the specific components of the metric tensor: in fact the physical setup of a non relativistic
binary naturally singles out the preferred coordinate frame in which the velocities of the system
are small, and actually we’re implicitly choosing such a frame for our computations. One of the

consequences is that for example, in the point-particle action S
(PP )
pp , the gravitational field couples

to the worldline in a non-homogeneous way, and in particular the spatial components of the metric
are suppressed in powers of v ≪ 1 with respect to the leading time component g00 of the metric.

We may actually exploit this fact at our advantage by performing a temporal Kaluza-Klein decom-
position of the metric, by employing the Kol-Smolkin variables [245–248]; that is, we’ll parametrize
the metric in such a way that each of these variables will scale homogeneously in the expansion
parameter of our theory, kind of singling out the g00, g0i and gij metric components; let us also no-
tice that this parametrization resembles the Arnowitt-Deser-Misner (ADM) formalism [177]. These
Kol-Smolkin variables, also known as Non-Relativistic Gravity (NRG) fields, are ϕ̂(x), Âi(x) and
σ̂ij(x); using them we can parametrize the components of the long wavelengths modes of the metric

g
(L)
µν (x) in d-dimension as [57]:

g(L)µν = e2
ϕ̂
Λ

(︄
1 − Âj

Λ

− Âi
Λ

Âi
Λ
Âj

Λ − e−cd
ϕ̂
Λγij

)︄
, γij ≡ δij +

σ̂ij
Λ

, (3.30)

with

cd ≡ 2
(d− 1)

(d− 2)

d−→3−−−→ 4 . (3.31)

Let us notice that we already normalized the Kol-Smolkin fields to the renormalized Planck mass
Λ defined in equation (3.25), in order to recover the canonical mass dimension for the fields.
Furthermore if the Kol-Smolkin fields are vanishing, i.e. ϕ̂ = Âi = σ̂ij = 0, we get back the flat
metric gµν −→ ηµν = diag (+,−,−,−), as one would have desired. This also means that in our weak
field regime assumption, so gµν = ηµν + hµν with |hµν | ≪ 1, also the Kol-Smolkin field will assume
small values.

From now on then we’ll trade the long wavelength modes of the gravitational field g
(L)
µν (x) for the

Kol-Smolkin fields ϕ̂(x), Âi(x) and σ̂ij(x), which will therefore be the degrees of freedom related
to the gravitational fields which we’ll have to integrate out. In particular we may identify the field
ϕ̂(x) as the Newtonian scalar, Âi(x) as the gravito-magnetic vector, and σ̂ij(x) as the symmetric
spatial tensor [38].

This decomposition procedure proves to significantly simplify the evaluation of the conservative
sector (actually of the diagrams that will arise in this near zone EFT) at higher PN orders [206,
213, 235]. In fact, when working in harmonic gauge with gµν = ηµν + hµν , the two-point function
of the metric perturbation hµν implies a mixing of the different components, ⟨T (hµνhρτ )⟩ ̸= 0

also for µν ̸= ρτ ; instead the ϕ̂, Âi, σ̂ij fields do not mix, as the two-point functions ⟨T
(︂
ϕ̂Âi

)︂
⟩ =

⟨T
(︂
ϕ̂σ̂ij

)︂
⟩ = ⟨T

(︂
Âiσ̂jk

)︂
⟩ = 0 are vanishing, in turn simplifying the diagram evaluation [235].
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Explicit power counting in the point-particle action

Up until this point we have actually still made no assumptions about the relative typical velocity
v between the two bodies, which could also be relativistic v ∼ 1; in fact the Kaluza-Klein decom-
position (3.30) is only a parametrization of the metric per se. The assumptions we implicitly used
instead is the requirement of the gravitational field to be weak, for example in the scale separation
requirement Rs ≪ r of having the typical scale of the bodies be much smaller than their rela-
tive distance. Hence the current description would be appropriate also for the post-Minkowskian
approximation, for example to describe gravitational scattering events, once we’d perform an ex-
pansion of the full action in powers of Λ, see references [192, 205, 242].

Instead, as already explained in section 2.1.3, in order to more easily tackle the problem of in-
tegrating out the high energy modes we need to find a power counting scheme that allows us to
evaluate the wanted results at the desired accuracy evaluating only a finite number of terms. Then,
recognizing as the expansion parameter of the post-Newtonian approximation the typical velocity
v of the system, we may explicitly enforce such a power counting already at the level of the action,
such that we’ll be able to determine which diagrams are needed to be taken into account to evaluate
quantities at any finite PN order [43].

To do so we’re required to explicitly choose the preferred coordinate frame in which the typical
velocity v of the system is small v ≪ 1, explicitly breaking diffeomorphism invariance also due to
the gauge fixing, in a similar manner to what was done in the derivation of section 1.3. We can then
exploit the reparametrization invariance of the particle worldlines (section 3.2.2) to use the time
t = x0 of a static, far away observer, as the affine parameter of the two point particle worldlines,
so σa = t for a = 1, 2. In such a way we obtain:

dxµa
dt

= (1,va) , with (va)
i = via ≡

dxia
dt

, (3.32)

where via therefore is the three-velocity of the particle a as measured by such far away observer,

and furthermore we define the modulus of the velocity of particle a as va ≡
√
va · va =

√︂
δijviav

j
a.

With such a choice of affine parameter, employing the Kol-Smolkin parametrization of the metric
as defined in (3.30), the point particle action (3.23) associated to the worldline a with mass ma

reads:

S(PP )
pp,a [xµa , ϕ̂, Âi, σ̂ij ] = −ma

∫︂
dtdd+1x

√︃
g
(L)
µν (x)

dxµ

dt

dxν

dt
δ(4)(xµ − xµa(t))

⃓⃓⃓
gµν=gµν(Ŵa)

= −ma

∫︂
dt e

ϕ̂
Λ

[︄
1− e−cd ϕ̂

Λ v2a − 2
Âi
Λ
via +

(︄
Âi
Λ

Âj
Λ
− e−cd ϕ̂

Λ
σ̂ij
Λ

)︄
viav

j
a

]︄ 1
2 ⃓⃓⃓
x=x(t)

.

(3.33)

In particular, as it’s explicitly derived in appendix A.2.1, the above expression of the point particle
action for each worldline a factorizes into:

S(PP )
pp,a [xµa , ϕ̂, Âi, σ̂ij ] = S(kin)

pp,a [xµa ] + S(coupl)
pp,a [xµa , ϕ̂, Âi, σ̂ij ] ; (3.34a)

S(kin)
pp,a [xµa ] = −ma

∫︂
dt
√︁

1− v2a(t) ; (3.34b)
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S(coupl)
pp,a [xµa , ϕ̂, Âi, σ̂ij ] = −ma

∫︂
dt

(︄(︁
2 + (cd − 2) v2a

)︁
2
√︁

1− v2a
ϕ̂− 1√︁

1− v2a
Âi v

i
a

− 1

2
√︁

1− v2a
σ̂ij v

i vj +

(︁
(2 + cd) v

2
a − 2

)︁
2 (1− v2a) 3/2

ϕ̂ Âi v
i + . . .

)︄
⃓⃓
x=x(t)

;

(3.34c)
so into a kinetic term only for the worldline, given by equation (3.34b), which is actually the special
relativistic point particle action, i.e. in absence of gravitational field perturbations, specialized to
the chosen reference frame; and the action (3.34c), which contains infinitely many operators that
couple the worldline xµa to the gravitational fields ϕ̂, Â, σ̂. From expression (3.34c) we can already
check the claim according to which the Kol-Smolkin field scale homogeneously in the v expansion
parameter, in fact the ϕ̂ field is not contracted with any velocity vector, the Â field is contracted
with one vi vector, whereas the σ̂ij with two vivj vectors.

In particular from the action (3.34c) follow also the Feynman rules for the interaction between the
a-th particle and the gravitational degrees of freedom, ϕ̂, Âi, σ̂ij ; as we will see in appendix A.

Gauge fixed Einstein-Hilbert action in terms of Kol-Smolkin variables

We have also to rewrite the pure gravitational action, given by the sum of the Einstein-Hilbert
action (3.26) and the gauge fixing term (3.27), as a function of the parametrization (3.30). Such
action is also denoted as bulk action, Sbulk = SEH + SGF .

In order to derive the relevant term up to 2PN, we employed the FeynRul.mmodule of the EFTofPNG
package [249], which yields:

Sbulk[ϕ̂, Âi, σ̂ij ] = SEH [ϕ̂, Âi, σ̂ij ] + SGF [ϕ̂, Âi, σ̂ij ]

⊃
∫︂
dd+1x

[︃(︃
cd

̇
ϕ̂
2 − cd ∂iϕ̂∂iϕ̂

)︃
+

(︃
∂jÂi∂

jÂ
i − ∂iÂj∂jÂ

i
+ (∂iÂ

i
)2 − ̇

Âi
̇
Â
i
)︃

+
1

4

(︂
∂j σ̂ii∂j σ̂

k
k + 4(∂iσ̂

ij∂kσ̂
k
j − ∂j σ̂ik∂kσ̂ij)− 2 ∂kσ̂ij∂

kσ̂ij + ( σ̂̇ii)
2 − 2 σ̂̇ij σ̂̇

ij
)︂

+ 4

(︃
̇
ϕ̂∂iÂ

i − ∂iϕ̂ ̇
Âi

)︃
+

(︃
2 (

̇
Â
i
∂j σ̂

j
i − ∂jÂ

i
σ̂̇ij) + (∂iÂ

i
σ̂̇jj −

̇
Â
i
∂iσ̂

j
j)

)︃
+

1

2Λ

(︂
cd(2 σ̂ij∂

iϕ̂∂jϕ̂− σ̂jj∂iϕ̂∂iϕ̂) + 2 cd (ϕ̂ ∂jÂi∂
jÂ

i − ϕ̂ ∂iÂj∂jÂ
i
)

+2 cd (ϕ̂(∂iÂ
i
)2 − 2

̇
ϕ̂Â

i
∂iϕ̂)− 2 c2d ϕ̂(

̇
ϕ̂)2
)︃]︃

,

(3.35)
where the spatial indices are now raised, lowered and contracted with the d-dimensional kronecker
delta δij and δij .

Potential and radiative fields modes separation in the non-relativistic regime

In the position where we’re at, the Kol-Smolkin fields, which we may generically denote as Ŵ a(x),
with Ŵ a = ϕ̂, Âi, σ̂ij , encode the long wavelengths modes of the gravitational field with k−1 > Rs:
this means that they include also modes with a wavelength larger than the orbital scale k−1 > r,
and so we’ll need to separate these field further in order to single out the modes with Rs < k−1 < r.
As will see, this step is actually necessary in order to obtain an explicit power counting in the typical
velocity v for our effective theory, and it’s possible thanks to the remarkable separation of scales
between near and far zone which happens once we impose the constraint for the typical velocities
to be non-relativistic, v ≪ 1, as discussed in section 3.2.1.
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Requiring v ≪ 1, we can then split of the degrees of freedom associated with the gravitational field
Ŵ a into potential modes Wa and radiative modes W̄ a, as [192, 213, 242]

Ŵ a(k) =Wa(k) + W̄ a(k) (3.36)

where the distinction, which should more precisely be cast as (3.39), is based on to which momentum
region the wavevector kµ of the modes belongs to:

• the potential modes Wa = ϕ,A, σ have a wavevector which scales as kµ = (k0,k) ≈ (vr ,
1
r ),

where v is the modulus of the typical three velocity of the system; they represent off-shell
space-like (k2 ̸= 0) potential gravitons, thus they can be thought of as the mediators of the
gravitational force between the two compact bodies;

• the radiative modes W̄ = ϕ̄, Ā, σ̄ which have a wavevector that scales as kµ = (k0,k) ≈ (vr ,
v
r );

they may be either on-shell modes (k2 = 0), and hence they can be interpreted as the
observable radiation gravitons, or they can be off-shell, in which case they generate both
dissipative and conservative radiation reaction forces on the system [242].

Thanks to this separation we can now clearly single out the degrees of freedom to integrate out,
i.e. the potential ones with k−1 ⪅ r. In fact the radiative modes satisfy

∂αW̄ a ∼
v

r
W̄ a , (3.37)

so they can be regarded as a slowly varying field with characteristic length r
v ∼ λ, which is the

wavelength of the emitted gravitational radiation, as we could have expected [192]. Instead the
potential modes satisfy

∂0Wa ∼
v

r
Wa , ∂iWa ∼

1

r
Wa , (3.38)

and they can be thought of as potential gravitons. In particular this non-homogeneous scaling of
the time and spatial components of the potential modes will require us to expand their propagator

∝ 1
k2+iϵ

= 1
(k0)2−|k|2 as − 1

|k|2
∑︁+∞

n=0

(︂
(k0)2

|k|2
)︂n

, in order to obtain a series of term, each one with a

definite scaling
(︂
(k0)2

|k|2
)︂n
∼ v2n, more and more suppressed in v ≪ 1: this will restore a definite

scaling v for each diagram, and physically will be equivalent to considering the leading order
interaction between the two bodies as instantaneous, plus an infinite series of retardation correction
suppressed by powers of v2n; we’ll return on this point later in this section.

Let us point out that references which do not employ the Kol-Smolkin parametrization expand

instead the long wavelength modes as g
(L)
µν = ηµν + ĥµν = ηµν +

(︁
hµν + h̄µν

)︁
, with hµν the potential

modes of the gravitational fields and h̄µν its radiative modes. Then, because the Kol-Smolkin
parametrization of the metric, defined by formula (3.30), is non linear, we expect it to not be
equivalent to employ such parametrization in position with respect to momentum space. In practice
in order to obtain the Feynman rules, as will be done in appendix A, we will substitute the Kol-
Smolkin parametrization in position space, gµν(x) → Ŵ a(x) ∼ ϕ̂(x), Â(x), σ̂(x), subsequently
expanding the action terms in order to obtain a polynomial expression in the fields Ŵ a(x); then

we will perform the Fourier transform Ŵ a(x) →
∫︁

dd+1k
(2π)d+1 Ŵ a(k) e

−ikx, and finally split the modes

into potential and radiative ones, Ŵ a →Wa+ W̄ a. This will also assures us that potential Wa and
radiation W̄ a modes will not mix during propagation: we will see in appendix A.1 that, thanks to
the overlapping support of their Fourier modes by definition, Wa(k)W̄ b(k) = 0, mixed quadratic
terms will vanish.
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Discussion about the splitting of the gravitational modes

Nevertheless let us also point out that to be more precise equation (3.36) should be cast as:

Ŵ a(k) = f(k)Wa(k) + (1− f(k)) W̄ a(k) (3.39)

where f(k) is a window function, which eventually could allow for a smooth transition between
the potential and the radiation modes. In practice nonetheless we’ll choose such window function
to be a step function, as could be f(k) ∼ θ(K2 − k2), where k2 = ηµνk

µkν while K is a specific
threshold for the cutoff: the step function then forces the potential and radiation modes to have
non-overlapping domain, and this assures us that the mixed quadratic term WaW̄ a will vanish
when we’ll evaluate the expressions for the propagators of these fields, as we will explicitly see in
appendix A.1, and hence potential and radiation modes will not mix during the free propagation.

Nonetheless, apart from this last point, the exact definition of the cutoff is never employed in the
calculations: this is because, when evaluating integrals over the momentum d4k, we’ll promote
them to live in (d + 1) dimension, d4k → dd+1k, as we’re using dimensional regularization; and
we’ll extend the domain of integration over the whole Rd+1 space, indifferently if the k momenta
were associated to a potential or a radiation modes; and this is the reason why we’re not sensitive
to the aforementioned cutoff.

Such a procedure however introduces some subtleties: while it allows us to easily employ all the
multi-loop quantum field theory techniques which we introduced in section 2.2; formally with each
integral we’re evaluating some contributions which we demanded to be discarded. In particular
whenever we perform a momentum integral concerning potential or radiaton modes, we should
restrict the integration domain over either the corresponding hard or soft set of momenta. However
the procedure of extending the integration over the whole momentum space, disregarding the cutoff,
is somehow justified within the so called method of regions [60, 213, 214, 250, 251]. Furthermore
the splitting into potential and radiation modes is somewhat arbitrary, even thought it allows to
greatly simplify calculations: on the other hand this splitting sometimes actually introduces spuri-
ous divergences, both in the near zone (IR divergences) and in the far zone EFT (UV divergences),
which nonetheless may be shown to cancel each other out once one employs suitable techniques,
such as the zero-bin subtraction [60].

Integrating out the near zone scale

We can finally integrate out the scales of the near zone, that is, the degrees of freedom with modes
which satisfy Rs < k−1 < r, hence whose characteristic length is of order of the orbital scale: such
degrees of freedom are then given by the potential gravitational fields ϕ,A, σ.

The total action of the high energy theory was given by (3.29) as a function of the gµν(L) field,
which we rewrote in terms of Kol-Smolkin variables Ŵ a in equations (3.33) and (3.35): performing
the further aforementioned steps, in order to exchange the Ŵ a fields for the potential Wa and
radiation W̄ a modes, we obtain:

Snear,UV [{xµa}, ϕ,Ai, σij , ϕ̄, Āi, σ̄ij ] = Sbulk[ϕ,Ai, σij , ϕ̄, Āi, σ̄ij ] +

2∑︂
a=1

S(PP )
pp,a [xµa , ϕ,Ai, σij , ϕ̄, Āi, σ̄ij ] .

(3.40)

To obtain the effective action Snear,IR which describes the dynamics of the system, as seen from
the far zone, we have to integrate out the potential modes ϕ,A, σ from the complete high energy
action (3.40), as explained in section 2.1.2:

eiSnear,IR[{xµa},ϕ̄,Āi,σ̄ij ] =

∫︂
DϕDAiDσij e

iSnear,UV [{xµa},ϕ,Ai,σij ,ϕ̄,Āi,σ̄ij ] . (3.41)
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From what has been discussed so far, we can already recognize that some terms of the Snear,UV do
not depend on the potential fields, therefore those term can be directly extracted out of the path

integration. In particular from equation (3.34a) we found that the S
(kin)
pp,a [xµa ] term doesn’t depend

on the gravitational fields at all; whereas in the bulk action (3.35) and in the worldline-gravity
action (3.34c) some terms depend only on the radiation fields and possibly the worldlines, hence
they need not to undergo the path integration.

The other terms which instead depend on the potential fields ϕ,Ai, σij will instead be integrated
out using a diagrammatic perturbative approach: such operation will yield a series of new terms,
which may either depend only on the worldlines, and we will denote their sum as the conservative
action Scons[{xµa}] for the binary, or they may depend also on the radiation fields (and possibly
the worldlines too); this latter series of terms will yield operators which describe the effective self-
interactions of the radiation fields (and respectively corrections to their couplings to the worldlines).
All in all, the part of the low energy effective action Snear,IR which depends on the radiation fields
ϕ̄, Āi, σ̄ij , and hence describe their effective dynamics and how they couple to the worldlines {xµa},
is called the effective action for the radiation theory and is denoted as Sradeff [{x

µ
a}, ϕ̄, Āi, σ̄ij ]; such

action will be key for the final far zone effective theory [213]. To summarize all of this in a schematic
way, equation (3.41) can be recast as:

Snear,IR[{xµa}, ϕ̄, Āi, σ̄ij ] =
2∑︂

a=1

S(kin)
pp,a [xµa ] −i log

(︃∫︂
DϕDAiDσij e

iS̃near,UV [{xµa},ϕ,Ai,σij ,ϕ̄,Āi,σ̄ij ]

)︃
⏞ ⏟⏟ ⏞

≡Scons[{xµa}]+Srad
eff [{x

µ
a},ϕ̄,Āi,σ̄ij ]

,

(3.42)
where S̃near,UV is Snear,UV with the terms that depend on the worldlines {xaµ} only removed. Let
us point out that this effective action Snear,IR[{xµa}, ϕ̄, Āi, σ̄ij ] it’s also denoted as NRGR action
SNRGR[{xµa}, ϕ̄, Āi, σ̄ij ], which stands for non-relativistic general relativity [43].

Conservative sector and radiation dissipative contributions

The division we performed in formula (3.42) reflects the way that the dynamics of the binary
are usually treated: it is in fact customary to consider separately the conservative sector and the
dissipative or radiation contributions. The former in practice gives the post-Newtonian corrections
to the binding potential of the binary, while the latter mostly describes the dissipative effects due to
the gravitational waves radiated by the system. It must however be noted that also the radiation
effective theory does contribute to the conservative dynamics of the binary, for example due to
the time non-local tail effects, in which gravitational waves back-scatter on the static curvature
produced by the binary system, and are later reabsorbed by the system [213, 252].

To evaluate the conservative action Scons[{xµa}] one usually sets the radiation fields ϕ̄ = Ā = σ̄ to
zero and integrates out the potential modes; whereas the contribution from the radiation action
Sradeff [{x

µ
a}, ϕ̄, Āi, σ̄ij ] is considered separately. Furthermore, whereas the leading order conservative

contribution is the Newtonian potential (so 0PN order), the first dissipative contributions enters
only at 2.5PN order [36]. Yet this latter contribution is sometimes denoted also as 0PN relative
order, since it is the leading order contribution to the dissipative sector, and hence it must be
accounted to obtain the leading order expression for the gravitational waveform.

Notation employed in the thesis for Feynman diagrams and fields

As already discussed, we’ll perform the needed functional integrations by summing over the relevant
Feynman diagrams. In particular the derivation and the expressions of the relevant Feynman rules
are presented in appendix A.
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To this end, in the Feynman diagrams we’ll represent the potential and radiative modes of these
Kol-Smolkin fields using the notation shown in figure 3.4.

Potential fields Radiation fields

ϕ ϕ̄

A Ā

σ σ̄

Figure 3.4 The diagrammatic representation of
the propagators of the potential and radiative Kol-
Smolkin gravitational fields.

Furthermore the action (3.34c) prescribes the
coupling between the gravitational fields ϕ̂, Â, σ̂
with the worldlines {xµa}, i.e. the (positions, ve-
locity and higher derivatives, of the) compact
objects. To represent this coupling we’ll em-
ploy a notation different with respect to what
is usually utilized in the literature: we do not
draw any line for the worldlines degrees of free-
dom, since they’re not propagating, as they’re
non dynamical d.o.f. in our effective theory. In-
stead we represent the coupling of gravitational
fields (ϕ̂, Â, σ̂) to the worldline xµa , with generic worldline index a (eventually a = 1, 2), with a circle
(left of equation (3.43a)) if we’re working in the near zone effective theory, and with a square (left
of equation (3.43)) if we’re working in the far zone effective theory (which we’ll present in section
3.2.4). The distinction between near (circle) and far zone (square) worldline-gravity vertices is that
in the far zone the vertex is an effective vertex, obtained after integrating out all the potential
fields.

To be more clear, we represent with a circle what in the literature, e.g. [43, 213], is usually
represented with a single thick line, and with a square what in the literature is usually represented
with a double thick line; hence for example (on the left the notation employed in our thesis, on the
right the one customary in the literature):

a

ϕ ∼ ϕ , (3.43a)

ϕ̄ ∼ ϕ̄ . (3.43b)

Another difference, presented visually in equation (3.44), is that in the literature for the conservative
diagrams it is customary to draw two thick lines, one running horizontally in the top and one in
the bottom, which represent either one of the two compact object; and then to consider as different
diagrams the ones in which the gravitational fields couple differently to this worldlines (the thick
lines). In our notation instead, on the left of that same equation, we make clear the fact that
we’re summing over vacuum diagrams (as in fact the worldlines can always be stripped away in
these post-Newtonian effective theories, as they don’t propagate), and we keep generic the index
of each worldline vertex (i.e. the letter inside the circle): then with our notation we understand
the fact that when write down the expression corresponding to the diagram, we have to keep
generic the worldline index in the expression of the corresponding worldline-gravity Feynman rule;
summing over them in the end (e.g a = 1, 2, b = 1, 2, . . .). To be more precise actually the vacuum
diagram already understand this last summation, and therefore these indices are in reality muted,
nonetheless we find it useful to still show them sometimes for comprehensibility, so that when we
write down the corresponding expression for the Feynman rules it will be easier to distinguish which
expression is associated to which vertex.
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So for example, a conservative diagram with 4 worldline vertices, which first contributes at 2PN
and that we’ll evaluate in equation (4.55c), actually understand three different diagrams in the
notation that is customary in the literature (which may also have varying symmetry factors) [57,
235]:

a b

d c

ϕ

ϕ
ϕ

ϕ

σ = + + + (1↔ 2) . (3.44)

Somewhat similarly happens also for the radiation diagrams: there in the literature it is customary
to draw just one horizontal double line to represent the binary system as seen from far away, instead
in our notation we will still use a vacuum diagram representation (albeit with the square, far zone,
worldline-gravity vertices; and without worldline labels, as there is just a single multipole source in
the radiation effective theory). Only to obtain the Feynman rules for the far zone, a procedure that
will be carried out in appendix A.3, we’ll have an arbitrary number of radiation fields represented
as external legs in the diagram, yet the evaluation procedure will be similar to the one of a vacuum
conservative diagram.

Power counting rules for the near zone effective field theory

As already pointed out in section 2.1.3, one of the important feature of effective field theories is the
fact that calculations should be organized in a series of terms about some expansion parameter, in
order to be able to evaluate only a finite number of terms, up to the desired accuracy.

Quantity Scaling

k0 G− 1
2 L− 1

2 v
5
2

|k| G− 1
2 L− 1

2 v
3
2

∂0 G− 1
2 L− 1

2 v
5
2

∂i G− 1
2 L− 1

2 v
3
2

t G
1
2 L

1
2 v−

5
2

r G
1
2 L

1
2 v−

3
2

m G− 1
2 L

1
2 v

1
2

Λ G− 1
2

Table 3.1 Scaling of the quan-
tities which are encountered during
calculations.

In practice the construction of our effective field theory requires
integrating out some fields by summing over an infinite series of
diagrams, either vacuum ones or with external radiation lines,
and our approximation scheme is the post-Newtonian expansion,
hence it is natural to organize the diagrams in the infinite series
by their respective scaling with regard to the post-Newtonian
expansion parameters, and afterwards to truncate the sum at
the PN desired order.

The goal of this section is then to find how each diagram scales
with respect to the PN expansion parameters, which are the
Newton gravitational constant G and the typical velocity v of
the system. To do so we’ll have to evaluate the scaling behavior
of each propagator and each Feynman rule which compose a full
diagram in the limit d −→ 3.

Before proceeding, we point out explicitly the scaling behavior of
the physical quantities which may appear in any diagram: let us
recall from section 1.6.1 that in the post-Newtonian expansion
it holds:

v2 ∼ Gm

r
(3.45)

and that, by construction, for the momenta of our potential modes it holds

k0 ≈ v

r
, |k| ≈ 1

r
. (3.46)
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It is customary to introduce also the orbital angular momentum L = mvr as an explicit scaling
parameter [192, 197]: in such a way we can express both m and r as a function of G, v and L only:

r ∝
√︃
GL

v3
, m ∝

√︃
Lv

G
. (3.47)

Finally let us notice that the former expansion parameter is implicit in the gravitational coupling

Λ
d=3∼ G− 1

2 . We summarized all of this in table 3.1.

Propagator expansion in order to recover definite scaling

To find the PN order at which each diagram contribute, first we need the power counting rules for
the propagators and the vertices which compose it. We can obtain the scaling of each Kol-Smolkin
field by looking at their two point functions [192, 253], for definiteness let us consider the one for
the potential ϕ field, as it has been derived in appendix A.1:

⟨T (ϕ(x)ϕ(y))⟩ = 1

2cd

∫︂
dd+1k

(2π)(d+1)

i

k2 + iϵ
e−ik(x−y) . (3.48)

From this expression at first glance we may not easily recognize any definite scaling behavior: this
is because, as already pointed out, the time component k0 of the momentum scales differently with
respect to its spatial part k, hence it is necessary to single out each of them. We can do so noticing
that because ϕ is a potential mode, it is always off-shell, which means that k2 ̸= 0 and so that the
iϵ prescription can be neglected; hence we can employ the expansion

1

k2
=

1

(k0)2 − |k|2
= − 1

|k|2
1

1− (k0)2

|k|2
= − 1

|k|2
+∞∑︂
n=0

(︃
(k0)2

|k|2
)︃n

, (3.49)

which holds for k0 ≪ |k|, as in this case.

Inserting this expansion in the (3.48) two point function we obtain:

⟨T (ϕ(x)ϕ(y))⟩ = − i

2cd

∫︂
dd+1k

(2π)(d+1)
e−ik(x−y)

1

|k|2
+∞∑︂
n=0

(︃
(k0)2

|k|2
)︃n

. (3.50)

Physically this actually amounts to expanding the non-instantaneous exact propagator (3.48) of
the ϕ potential field about its instantaneous action, given by the leading n = 0 term

⟨T (ϕ(x)ϕ(y))⟩ = − i

2cd

∫︂
dk0

2π
e−ik

0(x0−y0)⏞ ⏟⏟ ⏞
δ(x0−y0)

∫︂
ddk

(2π)d
eik·(x−y) 1

|k|2 + . . . (3.51)

and by then considering in a perturbative manner the higher order corrections, as the one at order
n is subleading due to an additional scaling factor given by(︃

(k0)2
1

|k|2
)︃n
≈
(︃
v2

r2
r2
)︃n

= (v2)n , (3.52)

which means that it enters n PN orders higher than the leading one [206].

The Feynman rule in momentum space associated to the propagator of the potential ϕ field, which
has been derived in appendix A.1, equation (A.18), is:

k

ϕ
=

1

2cd

i

k2 + iϵ
, (3.53)
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but, performing the aforementioned expansion needed to obtain definite power counting rules, we
actually find that the Feynman rule associated to the leading order instantaneous contribution
(3.51) is given by

k

ϕ
= − 1

2cd

i

|k|2 , (3.54)

while the higher order corrections are denoted as insertions of a cross in the propagator

n

k

= − 1

2cd

i

|k|2
(︃
(k0)2

|k|2
)︃n

. (3.55)

Finally we can estimate the scaling of the ϕ field from its leading order instantaneous contribution
(3.51), to obtain:

ϕ2 ∝
(︂v
r

)︂(︃1

r

)︃3

r2 ∼ v

r2
∼ v4

GL
; (3.56)

where we assumed d = 3 as we’re interested in the PN scaling of the final result.

Scaling of the Feynman rules involving potential gravitons

Comparing the expression (3.53) for the momentum-space representation of the propagator for the
ϕ potential field, with the explicit expressions of the propagators for the A potential field, given by
equation (A.22), and for the σ potential field, given by equation (A.29), we can notice they differ
by constants and tensorial structures which are dimensionless and not proportional to G, L or v;
therefore we can conclude that any potential field W = ϕ,A, σ scales as:

W ∝ G− 1
2L− 1

2 v2 . (3.57)

The next step is to obtain the scaling behavior of the interaction vertices which involve potential
gravitons: they can either be interaction vertices between the worldline and the fields, or bulk
interaction vertices which involve gravitational fields only; we’ll explicitly derive their expression
in appendix A.

Restricting now our focus on conservative diagrams, i.e. connected vacuum diagrams involving
only potential gravitons, hence with no external legs, we have that each of the two end point of any
potential field propagator must necessarily connect to a leg of an interaction vertex. Therefore we’ll
adopt the convention according to which one incorporates the scaling due to the propagators and
the corresponding integrations over the free momenta inside the interaction vertices: in practice
this means that, once we multiply each interaction vertex by a factor (3.57) for each one of the
potential field legs that it has, then we can simply neglect the propagators when we evaluate
the scaling behavior, and so consider only the interaction vertices which appear in the diagram.
One still must be careful that any propagator insertion instead still increases the PN order of the
diagram.

We can then derive the scaling behavior of a generic interaction vertex starting from the corre-
sponding term the action; in particular, as explained in appendix A, to obtain the Feynman rules
ones considers the Fourier transformed fields and applies the needed functional derivatives. The net
result of these actions on a potential field W , for what concerns the power scaling, is the substitu-
tion ∂p0∂

q
iWA(x) −→ CA

∫︁
dd+1k (k0)p (ki)q δ(d+1)(k − . . .) eikx ∝ (k0)p |k|q, up to some constant and

tensorial structures. Furthermore, recognizing that any potential field appearing in the action will
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be a potential field leg in the final Feynman rule, we directly add the scaling (3.57), according to
the aforementioned convention. At last, considering that any potential field W = ϕ,A, σ is always
divided by a Λ factor, due to the field normalization we employed; recalling the scaling rules from
table 3.1, we can draw the conclusion that a term of the following kind, in the position space action,
will scale like:

1

Λ
∂p0 ∂

q
i W (x) ∝ G− (p+q)

2 L− (p+q+1)
2 v

(5p+3q+4)
2 . (3.58)

To proceed further we have also to evaluate the contribution to the final scaling of a diagram
due to the integrations which appear in the position-space action by considering that, for what
concerns the near zone EFT we’re considering, the typical scales which come into play are r and
t ∼ O

(︁
r
v

)︁
; therefore to any factor

∫︁
dd+1x or

∫︁
dt we’ll associate the scaling

∫︁
dd+1x ∝ t r3 and∫︁

dt ∝ t. One must also consider the power scaling of the Wilson coefficient ci which multiplies
the field operator in the Lagrangian: as explicitly worked out in appendix A.2.1, in the case of the
point-particle action they’re functions of v2a, hence they may further suppress the corresponding
Feynman rule by increasing its v ≪ 1 scaling. We’ll denote then with r the leading order scaling, in
v2 units, of the Wilson coefficient ci associated to a Feynman rule. For example, looking at equation
(A.35), we see that the Wilson coefficient of the operator which couples A2 to the worldline reads

cA2 = − v2a
2(1−v2a)3/2

∼ O(v2), so r = 1; nonetheless most of the time the operators are not suppressed

and therefore c ∼ O(1), from which follows r = 0.

Now that we have all the necessary ingredients, we can evaluate the power scaling of a generic
worldline-interaction vertex. Looking at the point particle action (3.23), and in particular its
expanded form for the conservative sector that we report in appendix, see formulae (A.32) and
(A.35), we see that there are no derivatives acting on the fields, so p = q = 0; that there is always
a prefactor m

∫︁
dt ∝ mt = Lv−2; and that any Ai field is contracted with a velocity spatial vector

via ∝ v, whereas any σij is contracted with two velocities viav
j
a ∝ v2. We may also obtain r directly

from the scaling of the factor which multiplies the W fields in formula (A.35). Therefore the power
scaling a worldline-gravity interaction vertex with Nϕ ϕ fields, NA Ai fields and Nσ σij fields is
given by:

ϕNϕ ANA σNσ

∝ L1− 1
2
(Nϕ+NA+Nσ) v2Nϕ+3NA+4Nσ+2r−2 . (3.59)

We can then proceed to evaluate also the scaling behavior of the bulk gravity self-interaction
vertices, which involve only graviton fields, whose action is given by the sum of the regularized
Einstein-Hilbert action (3.26) and the gauge fixing term (3.27), which up to 2PN reads (3.35) in
the Kol-Smolkin parametrization. We can notice that such an action has a Λ2 ∝ G−1 prefactor
and an integration over

∫︁
dd+1x ∝ G2L2v−7. Therefore the power scaling a bulk interaction vertex

with Nϕ ϕ fields, NA Ai fields, Nσ σij fields, p temporal derivatives ∂0 and q spatial derivatives ∂i

in total acting on the fields, is given by G1− 1
2
(p+q) L2− 1

2
(Nϕ+NA+Nσ+p+q) v2(Nϕ+NA+Nσ)+

1
2
(5p+3q)−7.

However, since any bulk vertex is derived from the regularized Einstein-Hilbert action (3.26) with
the addition of the gauge fixing term (3.27), which recalling Notation, schematically read SEH ∼
R ∼ g ∂2g2 and SGH ∼ g Γ2 ∼ g ∂2g2; then all the terms in the bulk action will have exactly 2
derivatives, i.e. it holds p + q = 2 for any bulk vertex. We can use this constraint to simplify the
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expression of the former power scaling of a generic bulk vertex down to:

ϕNϕ

ANA

σNσ ∝ L1− 1
2
(Nϕ+NA+Nσ) v2(Nϕ+NA+Nσ)+p−4 ; (3.60)

let us notice that the scaling with respect to G dropped out; and that in this case r = 0 because
the Wilson coefficients of the operators in the bulk action cannot be proportional to the velocity
of the compact objects (as it’s the purely gravitational action).

3.2.4 Far zone radiation effective theory

The last effective theory we have to consider is the one related to the far zone, so the radiation
zone, which has as characteristic scale the wavelength λ of the gravitational waves produced by the
binary. The high-energy degrees of freedom which are now present at this scale are

1. the gravitational radiation fields ϕ̄, Āi, σ̄ij ;

2. the two worldlines degrees of freedom {xµa}, which still are non dynamical.

The high-energy action which governs their dynamics in this region, Sfar,UV [{xµa}, ϕ̄, Āi, σ̄ij ], is
given by the near zone low-energy effective theory Snear,IR[{xµa}, ϕ̄, Āi, σ̄ij ], that we derived in
equation (3.42) in the previous section 3.2.3.

Then the final effective theory will be obtained by integrating out the high energy degrees of
freedom, i.e. the the gravitational radiation fields, which in general have a wavelength k−1 > r by
construction; so:

eiSfar,IR[{xµa}] =
∫︂
Dϕ̄DĀiDσ̄ij e

iSfar,UV [{xµa},ϕ̄,Āi,σ̄ij ] ; (3.61)

in particular the terms that will undergo functional integration are the ones comprising what we
denoted as Sradeff [{x

µ
a}, ϕ̄, Āi, σ̄ij ] in the equation (3.42). Once we will have done so we’ll obtain the

effective action

Seff [{xµa}] = Sfar,IR[{xµa}] , (3.62)

which describes the full dynamics for the two worldlines {xµa} evolving under the influence of the
gravitational fields, while making no reference to the dynamics of the latter.

To recap, recalling the expansion (3.42), factoring out the terms taht won’t undergo the functional
integration, we find that the final effective action reads:

Seff [{xµa}] =
2∑︂

a=1

S(kin)
pp,a [xµa ] + Scons[{xµa}]− i log

(︃∫︂
Dϕ̄DĀiDσ̄ij e

iSrad
eff [{x

µ
a},ϕ̄,Āi,σ̄ij ]

)︃
. (3.63)

Let us notice however that to correctly compute the above action we would need to employ the in-in
formalism [202, 203, 205, 206], which we introduced in section 2.1. In fact the far zone effective
theory introduces dissipative phenomena, which then must be dealt with the in-in approach, since
the classical Lagrangian formalism can account only for conservative dynamics.
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Matching procedure and multipole expansion

In the literature it is now customary to build the far zone effective theory in more of a bottom-up
approach, by introducing the action starting from symmetry arguments [213, 254, 255]; in practice
at this scale the binary system is effectively treated as composite particle, i.e. a single point-like
object equipped with a series of multipole moments, the latter giving a coarse-grained description
of the dynamics taking place in the near and internal zone. Let us notice that this treatment is
similar to the multipole expansion of a generic source that we performed in section 1.3.

As previously stated, for the construction of the far zone effective theory we’ll proceed instead
somewhat differently with respect to what is customary in the literature; more akin to a top-down
approach, and along the lines of the original paper [43] and reference [206]. In practice we’ll simply
integrate out the radiation fields as in (3.61) via a diagrammatic approach, similarly to what we
did for the near zone effective theory.

This procedure will nonetheless require a kind-of intermediate matching procedure, that we’ll ex-
plictly carry out in appendix A.3, which will yield the Feynman rules for the far zone. In fact these
Feynman rules follow from the radiation effective action Sradeff [{x

µ
a}, ϕ̄, Āi, σ̄ij ] that we defined in

equation (3.42); but such an action is the result of a path integral operation: then, as we discussed
in section 2.1, to obtain each Feynman rule (each associated to a term of Sradeff ) of the far zone
theory (so with a given number of radiation gravitons lines) we’ll have to evaluate an infinite series
of diagrams involving also potential gravitons. Here the radiation gravitons will be treated as ex-
ternal particles with given momentum, whereas we’ll have to integrate out the potential gravitons
in a similar way to what we’ll do for the conservative diagrams.

Nonetheless also at this step we need to have power counting rules, in order to be able to obtain a
finite precision considering only a finite number of diagrams. It then become necessary to perform
a multipole expansion of the radiation fields inside the Feynman rules. As an example, the Fourier
transformed Feynman rule for the worldline-radiation vertex will have a Fourier exponential as
e−ikx = e−ik

0t eik·x, nonetheless recalling the discussion previously presented in section 3.2.3, the
momentum of radiation scales like |k| ∝ v

r , whereas |x| ∼ 1
r considering the characteristic length

scale of the binary system. Therefore to obtain a well defined scaling in v it becomes necessary to
Taylor expand the exponential in k ·x ∝ v. The physical meaning of this Fourier expansion is that
we’re performing a multipole expansion of the radiation fields ϕ̄, Āi, σ̄ij .

Then we recall that the multipole expansion of a generic function f(t,xa) around around an arbi-
trary point X, introducing δxa ≡ xa −X, is given by:

f(t,xa) = f(t,X) + δxia (∂if(t,x))⃓⃓x=X
+

1

2
δxia δx

j
a (∂i∂jf(t,x))⃓⃓x=X

+ . . . ; (3.64)

we also recall that in order to not spoil the convergence of the series it is advisable to chose the
origin of the multipole expansion near the center of the binary system, for example we may choose
X to be the center of mass of the binary, and usually one also chooses the coordinate system
such that it holds X = 0. When we actually apply such an expansion to the Fourier transformed
expression, the derivatives act on the Fourier exponential, yielding:

eik·xa(t1) = eik·X + i δxiakie
ik·X − 1

2
δxiaδx

j
a kikj e

ik·X + . . .

= eik·X
(︃
1 + i(δxa · k) +

i2

2
(δxa · k)2 + . . .

)︃
;

(3.65)

here we can see that each additional term is further suppressed by a power of (δx · k) ∝ v.
In practice then, integrating by parts, we’ll exchange the multipole expansion of the radiation fields
(which we’ll integrate out in the end), with a multipole expansion of the binary system, which will
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come follow from combinations and sums over the δxia terms: in fact if we chose X = 0, we find
exactly δxa = xa, and for example the combination

∑︁
a=1,2ma x

i
ax

j
a = M ij will be equal to the

mass multipole that we already encountered in equations (1.63) and (1.72).

In some diagrams it may also be necessary to perform the aforementioned expansion in the spatial
propagators, when e.g. due to the spatial momentum Dirac delta present in bulk vertices, potential
k1 and radiation k momenta may mix, for example as 1

|k1−k|2 ; we’ll see an example of this in

diagram (A.104), and expression (A.106). We can then notice that |k1 − k| does not scale in
a definite post-Newtonian manner, because as usual the spatial momenta of the potential mode
k1 scales like |k1| ∝ 1

r , while the spatial momenta of the radiation mode k scales like |k| ∝ v
r .

Nonetheless we can restore a definite power counting by noticing that then it holds |k|
|k1| ∝ v ≪ 1,

and hence, using the fact that |k1 − k|2 = |k1|2 − 2(k1 · k) + |k|2, we can perform the expansion of
the propagator as

1

|k1 − k|2 =
1

|k1|2

⎛⎜⎜⎜⎜⎝1 + 2

(︃
k1

|k1|
· k

|k1|

)︃
⏞ ⏟⏟ ⏞

O(v)

+

(︄
4

(︃
k1

|k1|
· k

|k1|

)︃2

− |k|
2

|k1|2

)︄
⏞ ⏟⏟ ⏞

O(v2)

+O
(︁
v3
)︁
⎞⎟⎟⎟⎟⎠ ; (3.66)

where we single out the leading order contribution, and an infinite series of ever more suppressed
corrections.

Multipole moments and coupling to conserved quantities

We’ll evaluate the corrections due to the far zone effective theory in chapter 5; nonetheless for the
present work we’ll restrict to the evaluation of the leading order corrections only.

In particular we’ll derive the relevant Feynman rules in appendix A.3, where we’ll employ the
following definitions for the multipole moments [103, 206]:

m ≡
∑︂
a=1,2

ma , (3.67a)

EN ≡
1

2

2∑︂
a=1

mav
2
a −

Gm1m2

r
, (3.67b)

xCM ≡
1

m

∑︂
a=1,2

ma xa , (3.67c)

pCM ≡
∑︂
a=1,2

mava , (3.67d)

M ij ≡
∑︂
a=1,2

ma x
i
ax

j
a , (3.67e)

M ≡ δijM ij , (3.67f)

L ≡
∑︂
a=1,2

ma(xa × va) . (3.67g)

which are respectively the total mass of the system, the Newtonian energy of the system, the
position of the center of mass for the system, the total linear momentum of the system, the mass
quadrupole moment of the system, the trace of the mass quadrupole moment of the system, and
the total orbital angular momentum of the system. The angular momentum is assumed to be
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computed in the center of mass frame, about its origin; furthermore the k-th spatial component of
the total orbital angular momentum can also be expressed as Lk ≡

∑︁
a=1,2maϵkijx

i
av
j
a, where ϵkij

is the three dimensional Levi-Civita symbol which we defined in Notation.

Let us notice that the above definitions only hold at leading order: at higher post-Newtonian order
they may receive corrections. For example the O

(︁
v2
)︁
correction to the expression for the center

of mass xCM of the binary system will actually be the inclusion of the leading order interaction
potential and kinetic energy: this makes clear the fact we actually should be considering the center
of energy of the binary instead of its center of mass [103, 254]. This must be the case since in
general relativity not only mass but any form of energy gravitates, hence also the gravitational
binding energy contained in the gravitational field must be taken into account. This is further
corroborated by the fact that, as discussed also in [43], in order to assure gauge invariance, and to
obtain the correct Feynman rules and final results, we have to consider also diagrams which involve
bulk vertices, for example (A.104) in appendix A.3.2. The bulk vertices encode the non-linear
interactions between gravitons, both potential and radiation, due to the non-linear (non-Abelian)
structure of general relativity; in practice they’re equivalent to the contributions coming from the
stress-energy pseudotensor τµν , which is otherwise introduced in order to take into account these
contributions due to the gravitational field. Then we see that not only the compact objects, but
also the gravitational field itself, contribute to the dynamics of the composite point particle and to
the emitted gravitational waves.

We’re also interested in simplifying the expression that we’ll obtain: in order to do so, restricting
to the leading order precision which we’re aiming for, we will choose the arbitrary point X around
which we’ll perform the multipole expansion to be the position of the center of mass xCM of the
binary system, furthermore demanding also the origin of the frame of reference to coincide with
the position of the the center of mass, hence obtaining X = xCM = 0. Still let us notice that at
higher PN order one may have to generalize this condition in order to account for PN corrections,
for example to impose the condition for the origin to coincide with the center of mass it may be
needed to impose the dipole moment of the binary to be vanishing [36, 256, 257].

The fact that we’re restricting to the leading order only also leads to additional simplifications in
the evaluation: in fact, as pointed out also by references [43, 206], at the leading order the several
multipole moments defined above in equations (3.67) are conserved, that is, their derivative with
respect to time is vanishing. In fact for example the mass of the compact objects comprising the
binary system may vary over time, for example due to gravitational waves absorption, but this
effect enters at higher order [43, 243]. As we’ll find, radiation diagrams will be proportional to
the integral (C.50) (which we will evaluate in appendix C.4); from this will follow that in the final
results there will be time derivatives acting the multipole moments, and therefore we can already
neglect diagrams which at leading order only provide coupling to the (approximately) conserved
quantities, which are the total mass m, the Newtonian energy of the system EN , the position of
the center of mass xCM and the orbital angular momentum L.

Employing the equations of motion

Finally, when deriving the Feynman rules in appendix A.3, sometimes we will have to use the
equations of motion of the system in order to recast the expressions into the usual multipole
expansion; an example of this is given in appendix in expressions (A.89) and (A.90). This step is
also performed in references [206]; and it is somewhat akin to what we have done in linearized general
relativity (in section 1.3.4), where we employed the conservation of the stress-energy momentum
tensor of the source (1.24) in order to recast the expressions in a well defined multipole expansion.
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Power counting rules for the radiation effective theory

As we already said, also in this effective field theory we have to enforce a definite power counting,
which allows us to obtain the wanted precision considering only a finite number of diagrams: to do
so we need to know the scaling behavior of each radiation legs and radiation fields.

In particular we’ll be able to evaluate the scaling of diagrams comprising radiation gravitons, in the
near zone effective theory: this is needed in order to recognize which diagrams must be evaluated
in order to obtain the Feynman rules for the far zone effective theory. Then the real (leading
order) scaling of the specific Feynman rules in this far zone effective theory will instead depend on
the expression resulting from this matching procedure, as for example conserved quantities may
increase the order at which a given Feynman rule first contributes, see also appendix A.3.2.

Then the power counting procedure is similar to the one presented in section 3.2.3 for the near zone
effective theory, but in this case we have to consider that the temporal and the spatial components
of the momenta of a radiation field W̄ a(k), by virtue of the separation into potential and radiation
gravitational modes we performed in the previous subsection, scale both like k ∼ v

r , see equation
(3.37). Then we can employ table 3.1 to evaluate the power scaling behavior of a Feynman rule in
the PN expansion parameters, taking care only of the fact that for a radiation mode it holds

k0 ∝ v

r
=⇒ k0 ∝ G− 1

2 L− 1
2 v

5
2 , (3.68a)

|k| ∝ v

r
=⇒ |k| ∝ G− 1

2 L− 1
2 v

5
2 . (3.68b)

Let us recall again for clarity that we’re adopting the convention according to which we include
in our scaling rules half of the scaling of the propagator and of the associated integral over the
momentum, for each leg which is present in a Feynman rule. Because the radiation modes can be
on-shell, we cannot perform the expansion of the propagators we performed for the potential modes
(see 3.2.3); and therefore the propagator associated to the radiation modes scales differently, like∫︂

dd+1k

(2π)d+1

1

k2 + iϵ

d=3∝ k2 ∝
(︂v
r

)︂2
∝ G−1 L−1 v5 ; (3.69)

therefore for each radiation leg in a Feynman rule we’ll add a factor equal to

W̄ ∝ G− 1
2 L− 1

2 v
5
2 . (3.70)

In practice this means that we can evaluate the leading order scaling of a Feynman rule of the near
zone effective theory simply by recalling formulae (3.59) and (3.60), and multiplying it for a factor

v
1
2 for each leg which is a radiation field W̄ a instead of a potential field Wa, in order to compensate

the different scaling for the two field, which are given respectively by equations (3.70) and (3.57).

3.2.5 Physical observables in the EFT for a binary system

Performing the whole procedure which we just outlined in sections 3.2.2, 3.2.3 and 3.2.4, so by
summing over the relevant vacuum diagrams, we will be left with equation (3.63).

In the following we will describe how to obtain observables from this result: this will be useful for
chapter 6, where we will apply in practice these methods to obtain the analytical expression for
the gravitational waveform. In particular to do so we will need the energy associated to the binary

system, the power loss of the system and the gravitational field h
(TT )
ij as evaluated by a far away

observer in TT gauge. Then we may derive the energy of the binary system from the Hamiltonian
associated to its conservative action (which is the result of the near zone EFT), the power loss from
the dissipative part of the far zone action, and we’ll see that we’ll be able to directly evaluate the

gravitational field h
(TT )
ij as well in the far zone effective theory.
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Selecting only the classical contributions to the compact binary dynamics

At this point however one may be concerned that, with the construction outlined above, we may
be including also quantum corrections to the binary dynamics: in fact, as we’ve seen in chapter 2,
we’re employing exactly the same techniques used in quantum field theory.

Figure 3.5 tree
level connected vacuum
diagram, which therefore
yields classical contri-
butions and must be
considered. In fact this di-
agram first contributes at
2PN and will be evaluated
in chapter 4.

To be more precise the whole procedure outlined above does actually
yield also the quantum corrections to the binary dynamics: in fact it
requires us to sum over all the vacuum connected diagrams, including
also diagrams which yield genuine quantum loop contributions. More-
over, to be fair, if we had a fully consistent theory of quantum gravity,
these corrections should be accounted, since they would be related to
real physical effects due to quantum mechanics.

Nevertheless, as already pointed out in section 3.2.1, from a physical
point of view we can expect the quantum contributions that we’re dis-
regarding to be subleading: in fact the scales (e.g. masses, distances,
and so on) involved in a compact binary system are huge with respect
to the quantum ones. As an example we have already seen that the
ratio of the orbital angular momentum to the reduced Planck constant

is ℏ
L ∼ 10−77

(︂
m
M⊙

)︂−2 (︁
v

0.1 c

)︁
, hence we may expect any quantum correc-

tion, expressed as a series in ℏ powers, to be extremely suppressed.

Figure 3.6 1-loop
connected vacuum dia-
gram, which therefore
yields quantum contri-
butions and must be
discarded.

Furthermore in this case we’re not interested in computing the perturba-
tive quantum corrections to general relativity, being instead interested
in obtaining solely the classical contributions to the binary dynamics.
To do so then we can straightforwardly restrict our summation over the
tree level connected vacuum diagrams when integrating out the relevant
fields. Then in practice we have to sum only over diagrams akin to the
one represented in figure 3.5; whereas we have to discard loop diagrams,
as is the case with the one in figure 3.6: the latter diagram in fact yields
a genuine 1-loop quantum contribution due to the massless scalar field
running in the loop. Additionally, since we’re purposefully discarding
diagrams involving quantum loops, there is no need to consider ghosts
fields for the gravitational fields [43].

Finally, on a side note, let us show that in this setup the orbital angular momentum L actually is
a loop counting parameter for the conservative diagrams. To do so let us the consider a generic
Feynman diagram M, where for simplicity we don’t keep track of the specific potential field ϕ,A
or σ, but consider any of them just as a generic potential gravity field W . We denote then with Vw
worldline-gravity vertices and NW

w gravity legs connected in total to such worldline vertices, with
Vb bulk vertices and NW

b gravity legs connected in total to such bulk vertices. From the power
counting rules (3.59) and (3.60) we find that the power scaling of such a diagram, up to v factors,
is given by:

M∝ LVw+Vb− 1
2(N

W
w +NW

b ) v(...) . (3.71)

We can then recall the Euler-Poincaré characteristic formula, according to which the number of
loops l in a connected diagrams is given by l = p− v + 1, where p is the number of propagators in
the diagram and v the number of vertices. Recognizing that any propagators connects two gravity
legs, so p = 1

2

(︁
NW
w +NW

b

)︁
, and that v = Vw + Vb, it follows:

M∝ L1−l v(...) . (3.72)
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Therefore we found the result pointed out by references [43, 192], according to which the loop
counting parameter for any diagram in the conservative sector is given by one minus the power of L.

Obtaining the classical dynamics of the compact bodies

Once we’ve constructed the effective theory for the compact binary and we’ve completed the pro-
cedure of integrating out all the gravitational degrees of freedom, we’ll be left with the effective
action Seff , formally given in equation (3.63), in which the only degrees of freedom are the posi-
tions of the worldlines {xµa}, i.e. of the two compact bodies in the binary system. Generally the
conservative contributions will explicitly depend on the positions of the two bodies in harmonic
coordinates, whereas the dissipative contributions will depend on such position via the definition
of the multipoles of the binary as in (3.67), usually evaluated in the center of mass (or energy) of
the binary.

At this point the Seff effective action can be interpreted as classical Lagrangian for a system of
two point particles, evolving under the influence of the gravitational interaction; with the addition
of an infinite series of post-Newtonian corrections: we can then employ the Lagrangian formulation
of classical mechanics to study the dynamics of these two bodies. We only have to be careful about
correctly studying the dissipative contributions (since the usual Lagrangian formulation isn’t suited
for dissipative systems): we’ll discuss this point in the following.

Lagrangian formulation of classical mechanics

Given the generalized coordinates q = {qi} and the generalized velocities q̇ = {q̇i} of a system of
N particles, then action S is given by the integral of the Lagrangian L(q, q̇, t) [258]:

S =

∫︂ t2

t1

dt L(q, q̇, t) ; (3.73)

and in particular we can interpret the Lagrangian as the sum of a kinetic term T (q, q̇, t) for the
particles, minus the potential V (q, q̇, t) which governs the interaction between the particles:

L(q, q̇, t) = T (q, q̇, t)− V (q, q̇, t) . (3.74)

Once we have the Lagrangian, the dynamics of the system can be obtained by employing the
principle of least action: the motion of the system, parametrized by the coordinates {q, q̇}, is such
that to extremize the action, i.e. to make the variation of the action vanishing δS = 0. This
condition can be recast into the form [258]

d

dt

(︃
∂L

∂q̇i

)︃
− ∂L

∂qi
= 0 (i = 1, . . . , N) (3.75)

which are called the Euler-Lagrange equations and represent the equations of motion of the system.

Let us anticipate the fact that, as we will see in chapter 4 and 6, higher order post-Newtonian
corrections introduce in the Lagrangian terms which are higher time derivatives of the positions q,
such as the acceleration q̈, so L = L(q, q̇, q̈, . . .). Then it is useful to generalize the Euler-Lagrange
equations (3.75) as [256, 259]:

. . .− d2

dt2

(︃
∂L

∂q̈i

)︃
+

d

dt

(︃
∂L

∂q̇i

)︃
− ∂L

∂qi
= 0 (i = 1, . . . , N) . (3.76)

Furthermore the Lagrangian, and the action, are not physical observables per se: in fact two
Lagrangians which differ by terms that do not modify the equations of motions are equivalent,
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because they describe the same dynamics. This implies that we can add constants and total time
derivatives to the Lagrangian, and so to the potential, without modifying the physical observables
[258]:

L′(q, q̇, t) ∼ L(q, q̇, t) + d

dt
(f(q, q̇, t)) + C ; (3.77)

we’ll exploit this fact to manipulate these quantities in the rest of this work.

Dynamics of the compact bodies of the binary system

The connection of the effective action Seff with the Lagrangian formulation of classical mechanics
comes by considering Seff , the effective theory we find after integrating out all the gravitational
degrees of freedom, to the definition (3.73).

To be more specific let us recall once again from section 2.1.2 that the sum over all the relevant
connected diagrams {A(i)}, up to the desired PN order, gives exactly i Seff , i.e. the logarithm of
equation (3.61); hence ∑︂

i

A(i) = i Seff [{xµa}] , (3.78)

and therefore, separating the several terms in the action as in equation (3.63), such a sum over the
relevant vacuum diagrams will yield, up to the desired PN order:

Seff [{xµa}] = −i
(︄∑︂

i

A(i)

)︄

=

2∑︂
a=1

S(kin)
pp,a [xµa ] + Scons[{xµa}]− i log

(︃∫︂
Dϕ̄DĀiDσ̄ij e

iSrad
eff [{x

µ
a},ϕ̄,Āi,σ̄ij ]

)︃
.

(3.79)

From this result we can see that the final effective theory will correctly contain the full relativistic

kinetic terms T (q, q̇) for the two bodies, thanks to the
∑︁2

a=1 S
(kin)
pp,a [xµa ] term whose expression

is (3.34b). The Scons[{xµa}] instead will give the conservative contributions to the Lagrangian,
so to the potential V (q, q̇, . . .); whereas the contributions due to integrating out the radiation

modes, −i log
(︂∫︁
Dϕ̄DĀiDσ̄ij e

iSrad
eff [{x

µ
a},ϕ̄,Āi,σ̄ij ]

)︂
, will generally produce both real and imaginary

contributions to the Lagrangian: the real contribution could be included in the potential V (q, q̇, . . .),
whereas the imaginary contributions represent the power loss of the system, i.e. the dissipative
contributons, and may then be evaluated resorting to the optical theorem, presented in equation
(3.82).

Let us also point out that, since we’ll be working in dimensional regularization, it will be necessary
to expand the results around d = 3 spatial dimensions in order to recover the classical quantities.
Doing so nonetheless poles, for example of the kind 1

ϵ may arise, and will have to be subtracted via
a redefinition of the worldline parameters.

Energy of the system

Regarding the conservative sector, we’ll be interested in obtaining the binding energy of the system,
as this will be a key observable in the evolution of the binary system.

Generically, given a Lagrangian, we can obtain the energy of the system by performing a Legendre
transformation on such Lagrangian, in order to obtain the Hamiltonian: since when restricting
only to the conservative sector there is no explicit time dependence and no power loss, then the
Hamiltonian is a first integral and represent the total mechanical energy associated to the system,
as it’s the conserved Noether charge associated to invariance under time translations.
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Introducing the conjugate momenta p = ∂L
∂q̇ , we define the Hamiltonian as:

H(q, p, t) ≡
(︄∑︂

i

piq̇i − L(q, q̇, t)
)︄
⃓⃓⃓
q̇=q̇(p)

; (3.80)

from which we could also derive the Hamilton’s equation of motion as:

q̇i =
∂H

∂pi
(q, p, t) , pi̇ = −

∂H

∂qi
(q, p, t) . (3.81)

Optical theorem and power loss of the system

Regarding instead the dissipative sector, the other key quantity for the evolution of the binary
system is the power loss due to gravitational waves emission, which we’ll evaluate in section 5.1.

A formally correct evaluation of dissipative phenomena requires the introduction of the in-in for-
malism, nonetheless for the precision we’re aiming for, we can evaluate also the power loss of the
system from the imaginary part of the Lagrangian via the optical theorem: this is reminiscent of
how in particle physics the imaginary part of the two point function is related to the decay width
of an unstable particle.

In practice, denoting as in [213] with dΓ the differential rate of radiation, which is similar to a
decay width, and with T an arbitrary long time, it holds [213]:

1

T
Im(Seff [{xµa}]) =

1

2

∫︂
dEdΩ

d2Γ

dΩdE
; (3.82)

and this is related to the radiated power via [213]:

P ≡ dP =

∫︂
dΓE =

∫︂
dEdΩE

d2Γ

dΩdE
. (3.83)

In practice the in-in formalism amounts to imposing the correct retarded boundaries condition
for the propagators; yet applying the optical theorem to the result obtained using the Feynman
propagator still may give the correct result, since such result comprise half contributions from the
advanced and half from the retarded propagators [205, 213].

Far away gravitational field and gravitational waveform

The final observable we’re interested in is the value of the gravitational field hµν far away from the
binary the gravitational waveform: this tensor encodes the exact expression of the gravitational
waves produces by the system, i.e. the tensor perturbation that we can detect using gravitational
wave detectors.

In the customary treatment of the radiation effective theory present in the literature, it’s possible
to obtain a closed form expression which gives the value of the hij tensor at infinity, as a function
of the source multipoles, see for example references [197, 255, 260].

Nonetheless also in the formalism we constructed up until now it’s possible to directly obtain
the expression for the gravitational field as seen from a distant observer: in order to do so we
have to notice that such a field must be of the radiative kind, as it has to be able to propagate
indefinitely, and so, recalling also the discussion about gravitational waves in linearized general
relativity which we presented in section 1.3, the gravitational waveform can be obtained by studying
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the on-shell radiation gravitons that propagate towards infinity in the previous effective field theory
construction.

We also have to recall the discussion we carried out in section 1.3.2: to extract the physical
information from the waveform we have to remove any residual gauge freedom, and this is usually
accomplished by choosing the TT gauge, defined by the conditions (1.26). In practice this is done
by projecting each Fourier mode of the spatial components of the hµν(k) field via the Λij,kl(k̂)
tensor, defined in equation (1.32).

Then, working in d = 3 dimensions, and assuming the observer to be far away from the source, for
a gravitational wave propagating in direction n̂ = k

|k| , we can write:

hTTij (t,x) = Λij,kl (n̂) ⟨hkl(t,x)⟩ . (3.84)

where ⟨hkl(t,x)⟩ is the expectation value for the metric perturbation, far away from the source.

From the construction of our effective field theory, and the above discussion, we conclude that in this

zone the relevant gravitational degrees of freedom are the radiation modes ⟨hkl(t,x)⟩ ∼ ⟨h̄kl(t,x)⟩;
and we can draw the connection with the ϕ̄, Ā and σ̄ fields we used in the radiative effective field
theory by recalling the Kol-Smolkin parametrization (3.30) and expanding it at linear order in the
fields (under the weak field approximation |hµν | ≪ 1) reads:

gµν = ηµν + hµν =

(︄
1 + 2 ϕ̂Λ − Âj

Λ

− Âi
Λ −δij + (cd − 2) ϕ̂Λδij −

σ̂ij

Λ

)︄
+O

(︁
h2
)︁
; (3.85)

Then, recalling that in TT gauge only the spatial components of the hµν tensor are non vanishing

we obtain hij = (cd − 2) ϕ̂Λδij −
σ̂ij

Λ , and further recalling that the Λij,kl selects only the traceless
components of the hij field, from equation (3.84) we finally obtain the expression we were looking
for:

hTTij (t,x) = −Λij,kl (n̂) ⟨
σ̄kl

Λ
(t,x)⟩ . (3.86)

To avoid confusion, Λij,kl is the Lambda tensor projector defined in (1.32), whereas 1
Λ is the inverse

of the renormalized Planck mass defined in (3.25).

This means that we can evaluate the gravitational field, produced by the binary system, at a large
distance from it, by evaluating the vacuum expectation value of the σ̄ij radiation field in the same
spacetime point. To evaluate this expectation value we have to work in the far zone effective field,
considering the connected vacuum diagrams with one σ̄ij leg. We’ll explictly do this at leading
order in section 5.2, where it will prove to be necessary to employ the in-in formalism in order to
obtain causal results, see also references [202, 206, 242].

3.3 Newtonian potential in the effective theory for binary systems

We’ll now exemplify the concept described so far by explicitly obtaining the leading order (0PN)
conservative contribution to the binary dynamics: that is, the classical Newtonian potential.

Summarizing the previous points, after integrating out the internal zone, we’re left worldline effec-
tive theory we’re with the near zone effective action (3.29). We recall from 3.2.2 that we consider
only the point particle term for the worldline, since finite size effects are higher order contributions.
Therefore in practice we have to perform the path integral (3.42) in a perturbative way: in particu-
lar, as already discussed, the Newtonian potential is a purely conservative contributions, therefore
will be included in Scons[{xµa}]. Then this contribution won’t be affected by the last path integral
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which concerns the far zone effective theory, (3.63), since when deriving the Newtonian potential
no radiation gravitons are involved. Instead the leading order contributions will be formally of
order 2.5PN, and we’ll derive them in section 5.1.

Diagram contributing to the Newtonian potential

ϕ

Figure 3.7
the only diagram
contributing at
leading order in the
conservative sector.

This means that to obtain the Newtonian potential we can focus only on per-
forming the path integral (3.42): as discussed in section 2.1 and in this whole
chapter, to do it we have to sum over all the connected vacuum diagrams in-
volving only potential fields. We then have to select only the leading order
contribution, since all others diagrams will yield post-Newtonian corrections
to the Newtonian potential, and will be the topic of interest of chapter 4. In
particular in section 4.1 we’ll study how to methodically draw all the required
diagrams and evaluate the corresponding symmetry factors. Nonetheless em-
ploying the power counting rules (3.59) and (3.60) we can already see that there
is only a single connected diagram that we can construct and which contributes
at order Lv0 (which is the expected scaling of the Newtonian potential, since
S =

∫︁
dtGm1m2

r ∝ Lv0 using table 3.1): this diagram is the one involving only two worldline-ϕ
vertices, connected by a ϕ propagator, which is represented in figure 3.7. In section 4.1.2 we will
explain of to evaluate the symmetry factor of this diagram; nonetheless we can conclude that it is
1
2 already by drawing an analogy with the diagram (3.11) of the toy model, see section 3.1.1.

Diagram evaluation

In order to write down the expression corresponding to the diagram in figure 3.7 we need the
expression for the ϕ propagator and for the worldline-ϕ interaction vertex. The explicit derivation
of the relevant Feynman rules is presented in appendix A; in particular the aforementioned Feynman
rules are respectively given by equation (A.18) and equation (A.39); and therefore, integrating also
over the k free momenta, we obtain:

A(Newton) ≡

a

b

k ϕ

=
1

2

∫︂
dd+1k

(2π)d+1

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt

(︄
2 + (−2 + cd) v

2
a

2
√︁

1− v2a

)︄
e−ikxa(t)

)︄(︃
1

2cd

i

k2 + iϵ

)︃

×

⎛⎝−i 2∑︂
b=1

mb

Λ

∫︂
dt′

⎛⎝2 + (−2 + cd) v
2
b

2
√︂
1− v2b

⎞⎠ eikxb(t
′)

⎞⎠ .

(3.87)

The above expression nonetheless still doesn’t have a well defined scaling in the post-Newtonian
parameters: both because the expression worldline-ϕ vertex is a function of v2, and therefore entails
an infinite series of corrections in v2; and also because we need to expand the potential propagator as
described in section 3.2.3. In particular we can expand the off-shell potential propagator employing
formula (3.49), which results in (3.54). Then we can also expand in Taylor series each of the two
expand worldline-ϕ vertices around v2 ∼ 0, keeping the leading order term only: the leading order
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contribution due to the vertex is given by (A.41a). Doing all of this, diagram (3.87) results in:

A(Newton) =
1

2

∫︂
dd+1k

(2π)d+1

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt e−ikxa(t)

)︄(︃
− 1

2cd

i

|k|2
)︃(︄
−i

2∑︂
b=1

mb

Λ

∫︂
dt′ eikxb(t

′)

)︄
+O

(︁
Lv2

)︁
=

i

4 cd Λ2

2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt dt′

∫︂
dd+1k

(2π)d+1
e−ik(xa(t)−xb(t

′)) 1

|k|2 +O
(︁
Lv2

)︁
(3.88)

where the O
(︁
Lv2

)︁
understand that in the above expression we’re neglecting higher order terms due

to the aforementioned expansion we truncated. This fact, according to which any post-Newtonian
diagram contributes also at higher post-Newtonian order beyond its leading order, is quite general;
we’ll return on this point in chapter 4.

To proceed with the evaluation of (3.88) we can perform the dk0 integral, recalling the Notation
for the conventions about the Dirac deltas. Therefore, noticing also that x(t) = (t,x(t)) and that
we’re working in mostly minus metric, so kx(t) = k0t− k · x(t):

A(Newton) =
i

4 cd Λ2

2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dtdt′

∫︂
dk0

2π
e−ik

0(t−t′)⏞ ⏟⏟ ⏞
=δ(t−t′)

∫︂
ddk

(2π)d
eik(̇xa(t)−xb(t

′)) 1

|k|2 +O
(︁
Lv2

)︁

=
i

4 cd Λ2

2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt

∫︂
ddk

(2π)d
eik(̇xa(t)−xb(t))

1

|k|2 +O
(︁
Lv2

)︁
.

(3.89)

Now we need to evaluate the integral in the spatial components k of the momenta: we explicitly
evaluated all the integrals needed in this thesis in appendix C. For the case at hand we evaluated
this class of Fourier integrals, which we denoted as IF (d, a)[x], in appendix C.3, in particular the
result is given by (C.31). We can then recognize the function IF (d, 1) in expression (3.89), to obtain
the final result for the diagram:

A(Newton) =
i

4 cd Λ2

2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt

∫︂
ddk

(2π)d
eik(̇xa(t)−xb(t))

1

|k|2⏞ ⏟⏟ ⏞
=IF (d,1)[xa(t)−xb(t)]

+O
(︁
Lv2

)︁

=
i

4 cd Λ2

2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt

(︄
2−2 π−

d
2
Γ
(︁
d
2 − 1

)︁
Γ(1)

|xa(t)− xb(t)|2−d
)︄

+O
(︁
Lv2

)︁
=

i π−
d
2

16 cd Λ2
Γ

(︃
d

2
− 1

)︃ 2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt |xa(t)− xb(t)|2−d +O

(︁
Lv2

)︁
;

(3.90)

where Γ(z) is the gamma function which we present in appendix B.1; in particular we see from
table B.1 that Γ(1) = 1.

Obtaining the potential from the diagram expression

In order to extract the classical potential from the above expression (3.90), we’ll recall the concepts
we introduced in section 3.2.5. In particular equation (3.78) gives the exact relation between the
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sum of connected vacuum diagrams and the effective action Seff ;

Seff [{xµa}] = −i
∑︂
j

A(j) = −iA(Newton) +O
(︁
Lv2

)︁
=

π−
d
2

16 cd Λ2
Γ

(︃
d

2
− 1

)︃ 2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt |xa(t)− xb(t)|2−d +O

(︁
Lv2

)︁
.

(3.91)

We can then expand around d = 3, recalling also the definitions (3.25) of Λ and (3.31) of cd, to
obtain the expression of a classical action:

Seff [{xµa}] =
G

2

2∑︂
a=1

2∑︂
b=1

mamb

∫︂
dt

1

|xa(t)− xb(t)|
+O(d− 3) +O

(︁
Lv2

)︁
. (3.92)

At this point the above expression would seem to imply a divergence when the summation runs
over a = b: nonetheless, as we’ll see in section 4.3, this is not the case when performing a more
thoughtful derivation, because the a = b contributions will in general be proportional to a scaleless
integral, and therefore be vanishing, as already discussed in section 2.2.1. For the moment we can
nonetheless simply restrict the summation

∑︁2
a=1

∑︁2
b=1 to run over

∑︁2
a=1

∑︁
b ̸=a; doing so expression

(3.92) finally reduces to:

Seff [{xµa}] =
∫︂
dt

Gm1m2

|x1(t)− x2(t)|
+O(d− 3) +O

(︁
Lv2

)︁
. (3.93)

Recalling the definitions (3.73) and (3.74), that is, Seff =
∫︁
dt L(t) =

∫︁
dt (T (t)− V (t)), and

comparing this with expression (3.93), we can then directly recognize the classical Newtonian
potential :

V (t) = − Gm1m2

|x1(t)− x2(t)|
; (3.94)

this is in fact the classical Newtonian gravitational interaction potential between two point particles,
of mass m1 and m2, at a distance |x1(t)− x2(t)|.
We can also see that this potential (3.94) prescribes an instantaneous interaction between the two
far away bodies, as both the two different positions x1 and x2 are evaluated at the same time
t: this would seem to imply a violation of the speed of light, when framed in the theories of
special relativity and general relativity. Nonetheless this is not the case: in fact this potential is
the result of considering only the leading order expansion of the propagator (3.49); but at higher
post-Newtonian order we have to consider an infinite series of corrections, given by the same
diagrams with propagator insertions (3.55). These corrections take into account perturbatively the
retardation effects due to the finite speed of propagation of any interaction, as prescribed by special
and general relativity, where there can be no causal connection between two events separated by a
space-like interval.

Leading order classical conservative Lagrangian

Furthermore, let us also recall, as shown in equation (3.79), that the effective action Seff also
contains the kinetic term for the two point particles, given by expression (3.34b). We can then
expand it up to order O

(︁
Lv0

)︁
S(kin)
pp [xµa ] =

2∑︂
a=1

(︃
−ma

∫︂
dt
√︁
1− v2a(t)

)︃
= −ma +

ma

2
v2a +O

(︁
Lv2

)︁
; (3.95)
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in particular, if we were to take the Legendre transform (3.80) to obtain the Hamiltonian, then we
would recognize the −ma term to be the rest energy of the two compact objects, i.e. E = mc2.

Finally, neglecting this rest energy term, we can obtain the full leading order (O
(︁
Lv0

)︁
) conservative

Lagrangian for compact binary system:

L(t) =

2∑︂
a=1

1

2
mav

2
a(t) +

Gm1m2

r(t)
; (3.96)

where we introduced the spatial relative separation r between the two compact objects (in harmonic
gauge)

r(t) ≡ x1(t)− x2(t) (3.97)

and its modulus r = |r|, so:
r(t) ≡ |x1(t)− x2(t)| . (3.98)

Leading order equations of motion

As a last result, that will be useful in the following, we can apply the Euler-Lagrange equations
(3.75) on the Lagrangian (3.96), recognizing the coordinates qa = xa and generalized velocities
q̇a = va, a = 1, 2, to obtain:

ẍ1 = −
Gm2

|x1 − x2|3
(x1 − x2) , (3.99)

which is the acceleration due to the classical Newtonian gravitational force. The corresponding
equation of motion for the worldline x2 is obtained by considering the (1↔ 2) version of (3.99), so

ẍ2 =
Gm1

|x1 − x2|3
(x1 − x2) . (3.100)
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CHAPTER

4 POST-NEWTONIAN CONSERVA-
TIVE CORRECTIONS

In this chapter we proceed to evaluate the conservative diagrams related to the procedure of inte-
grating out the potential gravitational modes in the near zone effective theory, which we presented
in section 3.2.3. Doing so we will obtain the post-Newtonian correction to the binary dynamics up
to 2PN order, so up to the next-to-next-to-leading order corrections to the Newtonian potential
that we obtained in section 3.3.

In particular in section 4.1 we outline the procedure needed to evaluate these diagrams; proceeding
then in section 4.2 with the explicit evaluation of all the diagrams contributing at 1PN order. In
section 4.3 we discuss how to generalize this evaluation procedure to higher post-Newtonian order,
also relying on the multi-loop quantum field theory techniques which we introduced in section
2.2. In section 4.4 we outline the Mathematica code which we developed, based on the previous
procedure, in order to evaluate higher order post-Newtonian correction; in appendix D we also
show some extract from the code. In section 4.5 then we present the results so obtained for
the conservative corrections at 2PN order. Finally in section 4.6 we present the results obtained
regarding the evaluation of a few selected diagrams which first contribute at 7PN order.

4.1 Evaluation procedure for the conservative sector

4.1.1 Relevant diagrams generation

The first step in the evaluation of the post-Newtonian corrections up to n-PN order is the generation
of all the diagrams which scale like v2n or less. To evaluate the scaling of these diagrams we can
employ the power scaling rules for the conservative sector which we obtained in section 3.2.3, in
particular formula (3.59) for a generic worldline-gravity interaction vertex and (3.60) for a generic
bulk interaction vertex.

In particular let us recall that in the conservative sector the corrections at order nPN are considered
with respect to the Newtonian potential result: we already evaluated it with the diagram (3.87)
obtaining (3.94); schematically:

Seff ∝ ϕ ∝
∫︂
dt
Gm1m2

r
∝ G0 L1 v0 ; (4.1)

as could be expected since the action Seff has the same physical dimensions of the angular momen-
tum L; this also agrees with what we were expecting from the power counting rule (3.59) for the

97
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worldline-gravity vertex. Then with these power counting rules, we expect any diagram entering
at nPN order to scale like G0 L1 v2n.

The customary procedure to generate all the relevant diagrams up to the wanted PN order is to
first organize them according to the post-Minkowskian (PM) expansion: this means that we first
perform the power counting in the gravitational constant G only [205, 225, 229, 235], defining as
Gm topology the equivalence relation of all connected diagrams that scale like Gm [224, 225]. This
proves to be useful since this power counting is easier to perform; and so only later one specializes
to the post-Newtonian approximation, keeping at order n-PN only those diagrams which actually
scale with the wanted powers of the velocity v2n.

To gauge up to which PM order one has to first build diagrams we can use the PN relation (1.111),
so G ∼ v2, and notice that, whereas the order 0PN is given by the Newtonian potential, which scales
like Gv0, at order n-PN we’ll have contributions from terms like Gn+1, Gn v2, Gn−1 v4 . . . , G v2n,
i.e. Gavb with a + b

2 = n + 1 and a ≥ 1, b ≥ 0, see also figure 1.7. Therefore all the relevant
diagrams at order n-PN are just a subset of the diagrams which scale like Gn+1 or less, so the ones
entering the (n+ 1)-PM expansion.

To evaluate explicitly the G-scaling of a diagram we can notice that any Kol-Smolkin field is
normalized to Λ ∼ G− 1

2 , while the only other place where a G factor may come out from is from
the bulk action, i.e. the regularized Einstein-Hilbert action (3.26) plus the gauge fixing term (3.27),
which both carry a Λ2 ∼ G−1 prefactor; on the other hand we can see from the explicit expression
of the propagators, given in appendix A.1, that they carry no explicit G factors. Hence we can
notice that any of the ϕ,A, σ potential fields scales in the same way with respect to G, so we may
consider the generic potential gravity field W in place of its three specific realizations; additionally
we’ll denote this W field with a black dotted line in the Feynman diagrams.

From this premises, adopting the same notation which we used in equation (3.71), we come to the

conclusion that any worldline-gravity vertex scales like G
1
2
nW , while any bulk interaction vertex

scales like G
1
2
nW−1, with nW the number of legs attached to the vertex. Therefore a diagram with

NW
w legs attached to worldline-gravity vertices, with Vb bulk vertices and NW

b legs attached to bulk

vertices will scale like G
1
2(N

W
w +NW

b )−Vb = Gp−Vb , where used again the fact that the number of
propagators in a diagram is given by p = 1

2

(︁
NW
w +NW

b

)︁
, because each propagator must connect

two legs.

We can then draw all the diagrams that belong to the Gm topology, i.e. that scale with Gm

and so contribute to the m post-Minkowskian order, by considering all the possible diagrams
with m = p − Vb which we can build from the Feynman rules of the theory. As we want to
consider only diagrams without loops, l = 0, the Euler-Poincaré characteristic formula reduces to
p = v − 1 = Vw + Vb − 1, therefore any loop-less diagram belonging to the Gm topology will have
exactly and only Vw = m+ 1 worldline-gravity vertices and p = m+ Vb propagators. Additionally,
since any bulk vertex has at least three legs, whereas any worldline-gravity vertex has at least one,
it holds p = 1

2

(︁
NW
w +NW

b

)︁
≥ 1

2 (3Vb + Vw) from which follows the inequality Vb ≤ m − 1. This
implies that to build all the diagrams at order Gm we can first draw the m + 1 worldline-gravity
vertices, and then iterate over the number of bulk vertices Vb = 0, 1, . . . ,m − 1: for any of these
values of Vb we keep all the connected diagrams we can build using exactly p = m+Vb propagators.

Then in figures 4.1, 4.2 and 4.3 we draw all the diagrams belonging respectively to the G1, G2 and
G3 topologies; these results will be useful to obtain the diagrams contributing up to 2PN order. In
particular in these figures we denote a generic gravitational field Wa with a gluon-like propagator.
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(a)

Figure 4.1 Diagram belonging to the G1 topology (m = 1, Vw = 2, Vb ≤ 0).

(a) (b)

Figure 4.2 Diagrams belonging to the G2 topology (m = 2, Vw = 3, Vb ≤ 1).

(a) (b) (c) (d) (e)

Figure 4.3 Diagrams belonging to the G3 topology (m = 3, Vw = 4, Vb ≤ 2).

Diagrams contributing up to 2PN order

We can now find all the diagrams which contribute up to 2PN order, using the method just outlined.
We therefore specialize the generic potential field W to any of the three ϕ, A or σ potential fields
in all of the diagrams belonging to the Gm topologies with m < 3 which we just found, and then
evaluate their leading order PN scaling using the power scaling rules (3.59) and (3.60), keeping
only the diagrams which scale like v4 or less. We still have to keep track of propagator insertions as
explained in section 3.2.3, each of which adds a v2 factor to the diagram; furthermore any diagrams
first appearing at a given PN order will contribute also at higher PN orders because, in order to
evaluate fewer diagrams, instead of considering vertex-velocity insertions as we present in appendix
A.2 (in particular relations (A.41b) and (A.41c)), we simply chose to keep the worldline-gravity
couplings exact, expanding in series their generic dependence on the velocity v only at the end of
calculations.

Performing the aforementioned steps we found that at 0PN contributes a single diagram, depicted
in figure 4.4, which as expected is exactly the Newtonian diagram which we evaluated in section
3.3. We find then that the three diagrams represented in figure 4.5 first contribute at 1PN order,
whereas the twelve diagrams shown in figure 4.6 first contribute at 2PN order. Then we find that
not all the Gm topologies which we found previously, e.g. in figure 4.3, contribute at a given PN
order: this is due to the velocity suppression of the related vertices. Let us stress again however
that at any given PN order we have to consider also the higher-order contributions due to all the
diagrams of lower PN order.

All the relevant Feynman rules, for the propagators and the interaction vertices, which are needed
to evaluate these diagrams, up to 2PN order, have been explicitly derived in appendix A.
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ϕ

(0a) – G1 v0

Figure 4.4 Diagram contributing at 0PN at leading order. We stress again that this diagram, like any
other, will contribute also at higher PN orders, as in the end we’ll have to expand the Wilson coefficient of
the worldline-gravity vertex in powers of v.

ϕ ϕ
A

ϕ

(1a) – G2 v0 (1b) – G1 v2 (1c) – G1 v2

Figure 4.5 Diagrams contributing at 1PN at leading order.

ϕ
ϕ ϕ

ϕ

ϕ ϕ

ϕ

ϕ
ϕ

ϕ

σ
ϕ A ϕ ϕ

ϕ
ϕ

ϕ

(2a) – G3 v0 (2b) – G3 v0 (2c) – G3 v0 (2d) – G2 v2 (2e) – G2 v2 (2f) – G2 v2

A
ϕ ϕ

ϕ
A A

σ
ϕ ϕ σ 2

ϕ A

(2g) – G2 v2 (2h) – G2 v2 (2i) – G2 v2 (2j) – G1 v4 (2k) – G1 v4 (2l) – G1 v4

Figure 4.6 Diagrams contributing at 2PN at leading order.

4.1.2 Symmetry factor of a diagram

Before proceeding with the explicit evaluation of the diagrams, first we have to recognize that to
each diagram is associated a symmetry factor, by which the expression of the diagram must by
multiplied in order to recover the correct result. In particular the symmetry factor of a diagram
is given by the ratio between the positive multiplicity and the inverse multiplicity of the diagram
itself.

The positive multiplicity of a diagram is given by the number of different ways in which we can
connect the several field legs entering the vertices with the given propagators. In practice to
evaluate the positive multiplicity of a diagram we have to first assign a different label to each
vertex which belongs to the diagram, and then we have to uniquely label also each leg entering
any of these vertices; this is needed in order to make them distinguishable for the counting. With
this construction we can directly evaluate the positive multiplicity of the diagram by counting the
number of different connected labelled diagrams that we can correctly construct by joining the
labelled legs with the given propagators. To be more precise, given a diagram we can regard it as
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Diagram (0a) (1a) (1b) (1c) (2a) (2b) (2c) (2d)

Symmetry factor 1
2!

2
2! 2!

1
2!

1
2!

4·2
(2!)2 2! 2!

3·2
3! 3!

4·3·2
(2!)2 4! 2!

1
1

Diagram (2e) (2f) (2g) (2h) (2i) (2j) (2k) (2l)

Symmetry factor 2·2
2! 2!

3·2
3! 3!

2
2! 2!

2
2! 2!

2
2! 2!

1
2!

1
2!

1
2!

Table 4.1 Symmetry factors associated to the diagrams listed in figures 4.4, figure 4.5 and figure 4.6,
i.e. the ones contributing to the conservative sector up to 2PN order. The numerator of each symmetry
factor represents its positive multiplicity, while the denominator its inverse multiplicity.

the non-ordered set of non-ordered pairs of leg-labels to which any propagator is attached to. Then,
given two diagrams, we consider them as equivalent if their associated sets of pairs of leg-labels are
the same, with no concern about the order of the pairs. Then the positive multiplicity is given by
the number of nonequivalent connected diagrams we can construct with the given propagators.

Furthermore one has to be careful about evaluating the positive multiplicity symmetry factor of any
diagram in which propagators with insertions are present: one could evaluate it by considering the
corresponding diagram with only exact relativistic propagators, expanding then their expressions in
the non-relativistic regime via the geometric sum over propagator insertions, and finally selecting
the terms of the expansion with the wanted number of insertions; from these one can recover
the symmetry factor of the wanted diagram. Equivalently this procedure can be streamlined by
instead evaluating the positive multiplicity of the given diagram with propagators with insertions
as explained generically before, but taking care of considering a propagator with n insertions not
equivalent to any other: more precisely we do not consider two diagrams as equivalent if the same
two labelled legs are connected by propagators which carry a different number of insertions.

Generically we may have to discard also the diagrams which give rise to quantum loops, as discussed
in section 3.2.5, but in this case the diagram construction procedure outlined above, and the Euler-
Poincaré formula, assure us that any connected diagrams will have no quantum loops.

The inverse multiplicity of a diagram instead is related to its symmetry group, and is given by the
product of the inverse multiplicities of each of its vertices, multiplied by the inverse multiplicity
of the diagram itself. The inverse multiplicity of a given vertex can be evaluated by counting how
many identical field legs enter in the vertex, separately for each field, afterwards by taking the
factorial of each of these number, and then by multiplying these factorials together; similarly the
inverse multiplicity of the diagram can be obtained by counting how many identical vertices are
there in the diagram, separately for each type of vertex, then by taking the factorial of each of
these numbers, and finally by multiplying these factorials together.

In table 4.1 we report the symmetry factors associated to the diagrams which will be evaluated in
the following.

4.2 Einstein–Infeld–Hoffmann Lagrangian - 1 PN order

In this section we’ll compute the next-to-leading corrections to the Newtonian potential, which we
evaluated in section 3.3. In particular these contributions of order O

(︁
Lv2

)︁
, so the 1PN Lagrangian,

is denoted as the Einstein–Infeld–Hoffmann Lagrangian [12], as in 1938 they jointly derived these
new predictions for the theory of General Relativity, with respect to the classical Newtonian gravity.

In this derivation we’ll present the application of some of the ideas we introduced in chapter 3; this
will also be useful in order to streamline the derivation of the conservative diagrams: in particular
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in section 4.3 we’ll outline the generic procedure to evaluate conservative diagrams, which will then
be implemented in the Mathematica code discussed in section 4.4.

In the following then we will proceed with the explicit evaluation of the diagrams relavant up to
1PN, so the ones depicted in figure 4.5, and the 1PN correction coming from the 0PN diagram in
figure 4.4. All the relevant Feynman rules have been derived and are presented in appendix A.

In particular in this section, for simplicity and compactness, we will evaluate only the leading order
contribution associated to the relevant diagram: in fact by expanding the intermediate expressions
in v2 and keeping only the leading order term, the evaluation simplifies significantly. However
this also means that at higher PN order we will have to compute these corrections which we are
momentarily neglecting; we’ll do so in section 4.5.

Diagram with two wordline-ϕ vertices and one worldline-ϕ2 vertex

The relevant Feynman rules needed to evaluate this diagram are presented in table A.1 in appendix
A.2; in particular we recall the rules (A.49a) and (A.49d), in addition to the ϕ potential propagator
(A.18).

To exemplify the evaluation of symmetry factors, we can compute the symmetry factor of this
diagram by considering that we have one worldline-ϕ2 vertex, and two worldline-ϕ vertices, and
we fix them by labeling each vertex differently. Then, to obtain the positive multiplicity, we
have to consider in how many different ways we can connect the labelled legs of the vertices with
propagators, with the constraint of obtaining a connected diagram. Then we have 2 ·1 = 2 different
ways in which we may connect these vertices. The inverse multiplicity is instead given by the
symmetry group of the diagram: we have that we could swap the two identical worldline-ϕ vertices,
so the number of ways we could permute them is (2!); furthermore we could also swap the two
identical ϕ legs in the worldline-ϕ2 vertex, therefore obtaining another additional (2!) permutation
factor; in total the inverse multiplicity factor is (2!)(2!) = 4. Finally the total symmetry factor
is obtained by multiplying the positive multiplicity of the diagram by the inverse of its inverse
multiplicity, therefore obtaining (2·1)

(2!)(2!) =
2
4 = 1

2 .

Then we can construct the expression associated to this diagram by multiplying together the
relevant Feynman rules, taking care of relabeling differently the variables which are repeated, and
integrating over the free momenta:

A(1a) =

b

a c

k1

ϕ

k2

ϕ
=

1

2

∫︂
k1,k2

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt1

(︄
2 + (−2 + cd) v

2
a

2
√︁

1− v2a

)︄
eik1xa(t1)

)︄
(︃

1

2cd

i

k21 + iϵ

)︃(︄
−i

2∑︂
b=1

mb

Λ2

∫︂
dt2 e

−i(k1+k2)xb(t2)

×
[︄(︁

4 + v2b
(︁
−8− 2 (−2 + cd) cd + (−2 + cd)

2v2b
)︁)︁

4
(︁
1− v2b

)︁
3/2

]︄)︄
(︃

1

2cd

i

k22 + iϵ

)︃(︄
−i

2∑︂
c=1

mc

Λ

∫︂
dt3

(︄
2 + (−2 + cd) v

2
c

2
√︁
1− v2c

)︄
eik2xc(t3)

)︄
.

(4.2)
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Defining then, for compactness, the function of the velocities only

f(va, vb, vc) ≡
(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄[︄(︁
4 + v2b

(︁
−8− 2 (−2 + cd) cd + (−2 + cd)

2v2b
)︁)︁

4
(︁
1− v2b

)︁
3/2

]︄

×
(︄
2 + (−2 + cd) v

2
c

2
√︁

1− v2c

)︄
= 1 +

1

2
(−1 + cd)

(︁
v2a + v2b − cdv2b + v2c

)︁
+O

(︁
v4
)︁

d=3
= 1 +O

(︁
v2
)︁
+O(d− 3) .

(4.3)

we obtain:

A(1a) = −
1

2

i

4c2d

2∑︂
a,b,c=1

mambmc

Λ4

∫︂
dt1dt2dt3 f(va, vb, vc)

∫︂
k1,k2

[︃
1

k21 + iϵ

1

k22 + iϵ

e−i[k1(xb(t2)−xa(t1))+k2(xb(t2)−xc(t3))]
]︂
.

(4.4)

We can now perform the expansion of both the propagators at leading order

1

k21 + iϵ

1

k22 + iϵ
=

(︄
− 1

|k1|2
+∞∑︂
m=0

(︃
(k01)

2

|k1|2
)︃m)︄(︄

− 1

|k2|2
+∞∑︂
n=0

(︃
(k02)

2

|k2|2
)︃n)︄

=
1

|k1|2
1

|k2|2
(︃
1 +O

(︃
(k0)2

|k|2
)︃)︃

,

(4.5)

to obtain, neglecting terms at order O
(︂
(k0)2

|k|2
)︂
:

A(1a) = −
1

2

i

4c2d

2∑︂
a,b,c=1

mambmc

Λ4

∫︂
dt1dt2dt3f(va, vb, vc)

⎡⎢⎢⎢⎣
∫︂

dk01
2π

e−ik
0
1(t2−t1)⏞ ⏟⏟ ⏞

=δ(t2−t1)

∫︂
dk02
2π

e−ik
0
2(t2−t3)⏞ ⏟⏟ ⏞

=δ(t2−t3)

∫︂
ddk1

(2π)d
1

|k1|2
eik1·(xb(t2)−xa(t1))⏞ ⏟⏟ ⏞

=IF (d,1)[xb(t2)−xa(t1)]

∫︂
ddk2

(2π)d
1

|k2|2
eik2(xb(t2)−xc(t3))⏞ ⏟⏟ ⏞

=IF (d,1)[xb(t2)−xc(t3)]

⎤⎥⎥⎥⎦
= −1

2

i

4c2d

2∑︂
a,b,c=1

mambmc

Λ4

∫︂
dt [f(va, vb, vc)

Γ
(︁
d
2 − 1

)︁
(4π)

d
2Γ(1)

(︃ |xb(t)− xa(t)|
2

)︃2−d Γ
(︁
d
2 − 1

)︁
(4π)

d
2Γ(1)

(︃ |xb(t)− xc(t)|
2

)︃2−d]︄
d−→3
= −1

2

i

4 · 16
2∑︂

a,b,c=1

mambmc

(32πG)−2

∫︂
dt

[︄
f(va, vb, vc)

Γ
(︁
1
2

)︁2
(4π)3

(︃
2

|xb(t)− xa(t)|
2

|xb(t)− xc(t)|

)︃]︄

d=3
= −1

2
iG2

2∑︂
a,b,c=1

mambmc

∫︂
dt

[︃
f(va, vb, vc)

(︃
1

|xb(t)− xa(t)|
1

|xb(t)− xc(t)|

)︃]︃
d=3
= −1

2
iG2

2∑︂
b=1

∑︂
a̸=b

∑︂
c ̸=b

mambmc

∫︂
dt

(︃
1

|xb(t)− xa(t)|
1

|xb(t)− xc(t)|

)︃
+O

(︁
Lv4

)︁
,

(4.6)
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where in the last line we recalled the expansion of f(va, vb, vc) as shown in formula (4.3), and
we kept only the leading order term f(va, vb, vc) = 1 + O(v2). In this case we also neglected the
terms b = a or b = c in the sum: in fact, as already pointed out in section 3.3, when generalizing
this procedure in section 4.3, we’ll find the corresponding contributions to vanish in dimensional
regularization, as they will be proportional to scaleless integrals. Finally, specializing the previous
expression to N = 2 bodies in d = 3, and recalling the relations

∫︁
dt V (t) = −Seff = +iA(1a), we

obtain:

A(1a) = −i
∫︂

dt

[︃
G2

2

(︁
m1m

2
2 +m2m

2
1

)︁ 1

|x1(t)− x2(t)|2
+O

(︁
Lv4

)︁]︃
=⇒ V(1a)(t) =

G2

2

mm1m2

|x1(t)− x2(t)|2
+O

(︁
Lv4

)︁
;

(4.7)

where we have already singled out the contribution to the potential V of the Lagrangian.

Diagram with two worldline-A vertices

In this case we need the Ai propagator, given in equation (A.22), and the worldline-A interaction
vertex, given by formula (A.49b). The symmetry factor is 1

2 , as we have only one way to connect
the labelled vertices with the propagator, while the symmetry group of the diagram entails the
permutation of the two identical vertices, so a (2!) inverse multiplicity.

A(1b) =

a i

b j

kA =
1

2

∫︂
k

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt1 e

ikxa(t1)

(︄
− 1√︁

1− v2a

)︄
via

)︄(︃
−δij

2

i

k2 + iϵ

)︃
⎛⎝−i 2∑︂

b=1

mb

Λ

∫︂
dt2 e

−ikxb(t2)

⎛⎝− 1√︂
1− v2b

⎞⎠ vjb

⎞⎠ .

(4.8)
In this diagram we define, analogously as before, the scalar function f(va, vb) given by the product
of the vertex coefficients; but in this case we also include the contraction of the tensorial structure
viaδijv

j
b , as it doesn’t contain any dependence on the momentum k and hence can be taken out of

the corresponding momentum integral:

f(va,vb) ≡
(︄
− 1√︁

1− v2a

)︄⎛⎝− 1√︂
1− v2b

⎞⎠(︂viaδijvjb)︂⏞ ⏟⏟ ⏞
=va·vb

= va · vb +O(v4) , (4.9)
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A(1b) =
1

2

(︃
+
i

2

)︃ 2∑︂
a,b=1

mamb

Λ2

∫︂
dt1dt2 f(va, vb)

∫︂
k
e−ik(xb(t2)−xa(t1))

(︃
1

k2 + iϵ

)︃

=
1

2

(︃
+
i

2

)︃ 2∑︂
a,b=1

mamb

Λ2

∫︂
dt1dt2 f(va, vb)

∫︂
k
e−ik(xb(t2)−xa(t1))

(︃
− 1

|k|2
)︃
+O(Lv4)

=
1

2

(︃
− i
2

)︃ 2∑︂
a,b=1

mamb

Λ2

∫︂
dt1dt2 f(va, vb)

∫︂
dk0

2π
e−ik

0(t2−t1)⏞ ⏟⏟ ⏞
=δ(t2−t1)

×
∫︂

ddk

(2π)d
eik·(xb(t2)−xa(t1)) 1

|k|2⏞ ⏟⏟ ⏞
=IF (d,1)[xb(t2)−xa(t1)]

+O(Lv4)

=
1

2

(︃
− i
2

)︃ 2∑︂
a,b=1

mamb

Λ2

∫︂
dt f(va, vb)

Γ
(︁
d
2 − 1

)︁
(4π)

d
2Γ(1)

(︃
2

|xb(t)− xa(t)|

)︃d−2

+O(Lv4)

d−→3
=

1

2

(︃
− i
2

)︃ 2∑︂
a,b=1

mamb

(32πG)−1

∫︂
dt f(va, vb)

√
π

8π
3
2

2

|xb(t)− xa(t)|
+O(Lv4)

d=3
=

1

2
(−4iG)

2∑︂
a̸=b

mamb

∫︂
dt

(va · vb)
|xb(t)− xa(t)|

+O(Lv4)

d=3
= −i

∫︂
dt

[︃
4G

m1m2 (v1 · v2)

|x1(t)− x2(t)|

]︃
+O(Lv4) .

(4.10)

Diagram with two worldline-ϕ vertices, with one ϕ propagator insertion

We recognize that this diagram, first contributing at 1PN, is a next-to-leading order correction to
the Newtonian potential, which arises from the expansion of the potential ϕ propagator. We recall
then the expression (3.55) for the ϕ propagator insertion; whereas the Feynman rule for the vertex
is still given by (A.49a). Then we find the associated expression to be:

A(1c) =

a

b

kϕ =
1

2

∫︂
k

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt1 e

ikxa(t1)

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄)︄

×
(︃
− 1

2cd

i

|k|2
(︃
(k0)2

|k|2
)︃)︃⎛⎝−i 2∑︂

b=1

mb

Λ

∫︂
dt2 e

−ikxb(t2)

⎛⎝2 + (−2 + cd) v
2
b

2
√︂
1− v2b

⎞⎠⎞⎠.
(4.11)

We define then the function

f(va,vb) =

(︄
2 + (−2 + cd) v

2
a

2
√︁

1− v2a

)︄⎛⎝2 + (−2 + cd) v
2
b

2
√︂
1− v2b

⎞⎠
d−→3
= 1 +O(v2) +O(d− 3)

(4.12)

recalling that we understand the time dependence of velocities, so for example explicitly va = va(t);
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and therefore we obtain:

A(1c) =
1

2

(︃
i

2cd

)︃ 2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2f(va(t1),vb(t2))

∫︂
k

(︃
(k0)2

|k|4 e
−ik(xb(t2)−xa(t1))

)︃

=
1

2

(︃
i

2cd

)︃ 2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2

dk0

2π
(k0)2e−ik

0(t2−t1)f(va(t1),vb(t2))
∫︂

ddk

(2π)d
eik·(xb(t2)−xa(t1))

|k|4⏞ ⏟⏟ ⏞
=IF (d,2)[xb(t2)−xa(t1)]

.

(4.13)
We can now recognize an expression with a structure analogous to the following one, with g(t1, t2)
a generic well-behaved function of the two time variables, and D1, D2 their respective integration
domains which we display explicitly:∫︂

D1,D2

dk0

2π
dt1dt2 (k0)2e−ik

0(t2−t1)g(t1, t2)

=

∫︂
D1,D2

dk0

2π
dt1dt2

1

(−i)i
∂2e−ik

0(t2−t1)

∂t2 ∂t1
g(t1, t2)

=

∫︂
D1,D2

dk0

2π
dt1dt2

[︄
∂

∂t2

(︄
∂e−ik

0(t2−t1)

∂t1
g(t1, t2)

)︄
− ∂e−ik

0(t2−t1)

∂t1

∂g(t1, t2)

∂t2

]︄

=

∫︂
D1

dk0

2π
dt1

[︄
∂e−ik

0(t2−t1)

∂t1
g(t1, t2)

]︄
⃓⃓
∂D2⏞ ⏟⏟ ⏞

=0

−
∫︂
D1,D2

dk0

2π
dt1dt2

[︄
∂e−ik

0(t2−t1)

∂t1

∂g(t1, t2)

∂t2

]︄

= −
∫︂
D1,D2

dk0

2π
dt2dt1

[︃
∂

∂t1

(︃
e−ik

0(t2−t1)∂g(t1, t2)
∂t2

)︃
− e−ik0(t2−t1)∂

2g(t1, t2)

∂t1 ∂t2

]︃
= −

∫︂
D2

dk0

2π
dt2

[︃
e−ik

0(t2−t1)∂g(t1, t2)
∂t2

]︃⃓⃓
∂D1⏞ ⏟⏟ ⏞

=0

+

∫︂
D1,D2

dk0

2π
dt2dt1

[︃
e−ik

0(t2−t1)∂
2g(t1, t2)

∂t1 ∂t2

]︃

=

∫︂
D1,D2

dt1dt2
dk0

2π
e−ik

0(t2−t1)⏞ ⏟⏟ ⏞
=δ(t2−t1)

∂2g(t1, t2)

∂t1 ∂t2

=

∫︂
D1,D2

dt1dt2 δ(t2 − t1)
∂2g(t1, t2)

∂t1 ∂t2

(4.14)

where we choose to take one derivative for each temporal variable in order to obtain a symmetric
expression and with no second derivative for the same time variable in g(t1, t2); and where we
assumed the function g(t1, t2) and its time derivatives to vanish on the boundary of the integration
domain.

Therefore the diagram expression (4.13) can be recast as:

A(1c) =
1

2

(︃
i

2cd

)︃ 2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2 δ(t2 − t1)

× ∂2

∂t1∂t2

(︄
f(va(t1),vb(t2))

Γ
(︁
d
2 − 2

)︁
(4π)

d
2Γ(2)

(︃ |xb(t2)− xa(t1)|
2

)︃4−d)︄
.

(4.15)

In practice such an expression, when the time derivatives are applied to the f(va(t1),vb(t2)) func-
tion, imply the appearance of the accelerations: nonetheless this is not the case at this order, since
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the leading order contribution is given by truncating f = 1 +O
(︁
v2
)︁
; the acceleration will instead

appear when we’ll evaluate the 2PN contributions due to this diagram, see equation (4.55p).

Therefore we find:

∂

∂t

(︁
|xa(t)− xb(t

′)|p
)︁
=

∂

∂t

[︂(︁(︁
xa(t)− xb(t

′)
)︁
·
(︁
xa(t)− xb(t

′)
)︁)︁ p

2

]︂
=
p

2
|xa(t)− xb(t

′)|p−2 ∂

∂t

[︁(︁
xa(t)− xb(t

′)
)︁
·
(︁
xa(t)− xb(t

′)
)︁]︁

= p |xa(t)− xb(t
′)|p−2

(︁
va(t) ·

(︁
xa(t)− xb(t

′)
)︁)︁

,

(4.16)

and so the expression for the Feynman diagram becomes:

A(1c) =
1

2

(︃
i

2cd

)︃
Γ
(︁
d
2 − 2

)︁
2d−4

(4π)
d
2Γ(2)

2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2 δ(t2 − t1)

∂2

∂t1∂t2

(︂
|xb(t2)− xa(t1)|4−d

)︂

=
1

2

(︃
i

2cd

)︃
Γ
(︁
d
2 − 2

)︁
2d−4

(4π)
d
2Γ(2)

2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2 δ(t2 − t1)

∂

∂t1

(︂
(4− d)|xb(t2)− xa(t1)|2−d (vb(t2) · (xb(t2)− xa(t1)))

)︂
=

1

2

(︃
− i

2cd

)︃
Γ
(︁
d
2 − 2

)︁
2d−4

(4π)
d
2Γ(2)

(4− d)
2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2 δ(t2 − t1)[︂

(2− d)|xb(t2)− xa(t1)|−d (va(t1) · (xb(t2)− xa(t1))) (vb(t2) · (xb(t2)− xa(t1)))

+|xb(t2)− xa(t1)|2−d (vb(t2) · va(t1))
]︂

=
1

2

(︃
− i

2cd

)︃
Γ
(︁
d
2 − 2

)︁
2d−4

(4π)
d
2Γ(2)

(4− d)
2∑︂
a,b

mamb

Λ2

∫︂
dt |xb(t)− xa(t)|2−d [(vb(t) · va(t))

+(2− d)|xb(t)− xa(t)|−2 (va(t) · (xb(t)− xa(t))) (vb(t) · (xb(t)− xa(t)))
]︁

d−→3
=

1

2

(︃
− i
8

)︃
Γ
(︁
−1

2

)︁
2−1

(4π)
3
2Γ(2)

2∑︂
a̸=b

mamb

(32πG)−1

∫︂
dt

1

|xb(t)− xa(t)|
[(vb(t) · va(t))

−
(︃
va(t) ·

(︃
xb(t)− xa(t)

|xb(t)− xa(t)|

)︃)︃(︃
vb(t) ·

(︃
xb(t)− xa(t)

|xb(t)− xa(t)|

)︃)︃]︃
d=3
=

1

2

(︃
− i
8

)︃
(−2√π)
8π

3
2

1

2
(32πG)2m1m2

∫︂
dt

1

|x1 − x2|
[(v1 · v2)

−
(︃
v2 ·

(︃
x1 − x2

|x1 − x2|

)︃)︃(︃
v1 ·

(︃
x1 − x2

|x1 − x2|

)︃)︃]︃
d=3
= −i

∫︂
dt

[︃
−G

2

m1m2

|x1 − x2|

(︃
(v1 · v2)−

(︃
v2 ·

(︃
x1 − x2

|x1 − x2|

)︃)︃(︃
v1 ·

(︃
x1 − x2

|x1 − x2|

)︃)︃)︃]︃
(4.17)

Diagram with two worldine-ϕ vertices, with one worldline-ϕ vertex insertion

We also need to consider the O(v2) correction to the Newtonian diagram, which we computed in
section 3.3. Usually one would simply compute the diagram once, with vertex coefficients exact to
all orders in v, and then expand the resulting expression up to the needed PN order. Nonetheless
in this case we’ll show explicitly how to derive the same result by the diagrammatic representation
of such an expansion via vertex velocity insertion, so by considering the O(v2) correction to the
worldline-ϕ vertex, whose expression is reported in the appendix, see formula (A.41b).
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Even in this case we could proceed in two ways: we may either consider the original diagram
expression, as reported in formula (3.87), and perform two insertion separately, one in the upper
vertex and one in the lower one, and then sum the result; otherwise equivalently we may consider
this diagram as a new one altogether, independent of the original O(v0) Newtonian one, therefore
we’d be working with one leading-order worldline-ϕ vertex and with one O(v2) worldline-ϕ vertex,
so with a single velocity insertion. The former procedure can be seen as expanding each vertex
coefficient separately in the original diagram, while the latter one implies to be working with
a different diagram altogether: in fact the latter procedure requires re-evaluating the symmetry
factor, and in fact, differently with respect to the Newtonian diagram, the vertices are not identical
anymore, therefore the symmetry factor of the diagram would be 1 instead of the original 1

2 .
Because the first procedure could create misunderstandings, as it requires the modification of the
expression of a diagram, and does not correspond to the usual evaluation of the corresponding
pictorial representations, we’ll proceed with the second procedure.

Therefore the diagram to evaluate in this case is:

A(1PN)
(0a) =

a

b

kϕ = 1 ·
∫︂
k

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt1 e

ikxa(t1)

(︃
cd − 1

2

)︃
v2a

)︄(︃
1

2cd

i

k2 + iϵ

)︃
(︄
−i

2∑︂
a=1

mb

Λ

∫︂
dt2 e

−ikxb(t2)
)︄
,

(4.18)
where we used the already expanded expression (A.41a) for the leading order vertex and (A.41b)
for the one with a single velocity insertion. Considering now only the leading order expansion of
the propagator, as we’re already working at O(Lv2), we obtain:

A(1PN)
(0a) = i

(︃
cd − 1

4cd

)︃ 2∑︂
a,b

mamb

Λ2

∫︂
dt1dt2 v

2
a

∫︂
dk0

2π
e−ik

0(t2−t1)⏞ ⏟⏟ ⏞
=δ(t2−t1)

∫︂
ddk

(2π)d
1

|k|2 e
ik·(xb(t2)−xa(t1))⏞ ⏟⏟ ⏞

=IF (d,1)[xb(t2)−xa(t1)]

= i

(︃
cd − 1

4cd

)︃
Γ
(︁
d
2 − 1

)︁
(4π)

d
2Γ(1)

2∑︂
a̸=b

mamb

Λ2

∫︂
dt v2a

(︃
2

|xb(t)− xa(t)|

)︃d−2

d−→3
= −i

∫︂
dt

[︃
−3

2
G

m1m2

|x1 − x2|
(︁
v21 + v22

)︁]︃
(4.19)

4.2.1 Corrections to the two-body potential at 1PN order

Finally, recalling what we have presented in chapter 3 and in particular equation (3.79), and
proceeding analogously to what we have seen in section 3.3, we can recognize that the sum of all
the diagrams we computed above gives the 1PN conservative corrections (i.e. of order O(Lv2)) to
the Lagrangian of the two body system. To be more precise, by factoring out the −i

∫︁
dt factors

previously we have already singled out the corrections to the potential V , which enters in the
Lagrangian as L = T − V .

Therefore, summing the results (4.7), (4.10), (4.17) and (4.19), the next-to-leading order (1PN)
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contribution to the potential explicitly reads:

∆V1PN =
G2

2

mm1m2

|x1(t)− x2(t)|2
+ 4G

m1m2 (v1 · v2)

|x1(t)− x2(t)|
− 3

2
G

m1m2

|x1 − x2|
(︁
v21 + v22

)︁
− G

2

m1m2

|x1 − x2|

(︃
(v1 · v2)−

(︃
v2 ·

(︃
x1 − x2

|x1 − x2|

)︃)︃(︃
v1 ·

(︃
x1 − x2

|x1 − x2|

)︃)︃)︃
= −Gm1m2

2r

(︃
−G(m1 +m2)

r
− 7 (v1 · v2) + 3

(︁
v21 + v22

)︁
− (v1 · r̂) (v2 · r̂)

)︃ (4.20)

where we understand the dependence of the quantities on the time t; recalling as well the definition
of the relative separation r from equation (3.97) to introduce its corresponding versor:

r̂ ≡ x1 − x2

|x1 − x2|
. (4.21)

Let us notice that above expression (4.20) is the first correction to the Newtonian potential, which
we had found in equation (3.94).

Furthermore we have also to consider the corrections to the kinetic term K, which arise from the
point particle relativistic action (3.34b), and at 1PN read:

∆T1PN =
1

8
m1v

4
1 +

1

8
m1v

4
1 . (4.22)

Finally the algebraic sum of (4.22) and (4.20) gives the full 1PN Lagrangian:

L1PN = ∆T1PN −∆V1PN ; (4.23)

which is also called the Einstein–Infeld–Hoffmann Lagrangian [12]. Such a Lagrangian actually
describes the dynamics also of N bodies; yet, up to this order, also the results we derived above
could have been extended to N > 2 compact objects simply by extending the summations to
a, b, c = 1, . . . , N .

4.3 General procedure to evaluate a conservative diagram

Building upon the explicit evaluation which we have just seen, we can now generalize and system-
atize the procedure for the evaluation of any given conservative diagram. Actually in the following
we will slightly deviate from what we have done before, employing instead the multi-loop quan-
tum field theory techniques which we have presented in section 2.2: they are actually needed in
order to address the evaluation of higher order post-Newtonian corrections. In fact in the follow-
ing procedure we will find that the expressions corresponding to post-Newtonian corrections can
be interpreted as Feynman integral arising in a massless quantum field theory. This realization,
and the application of the aforementioned techniques, has allowed for the steady progress in the
computations of post-Newtonian corrections [44, 57–65].

In particular the evaluation procedure can be made algorithmic:

1. Write down the specific expression related to the diagram by multiplying together the cor-
responding Feynman rules and its symmetry factor. Let us point out that one has to take
care of assigning a unique worldline index and a unique dummy integration variable to each
worldline-gravity vertex, and to flip the sign of the momenta which are outgoing from the
vertices. Additionally, for each propagator one has to add one dd+1ki momenta integration
over the momenta ki running inside the propagator; also if the diagram presents propagators
with insertions one should use the corresponding corrected expressions for the propagators.
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2. In order to simplify the following calculations, one may single out the momenta {kj} running
in the diagram by extracting the scalar and vector quantities which do not depend on them,
i.e. by defining a time-dependent coefficient Ci1,...,in({va, . . . ,vl}) which may carry spatial
indices i1, . . . , in.

3. Enforce momentum conservation at each bulk vertex, if any, by integrating the corresponding
d+ 1 dimensional momenta Dirac delta.

4. Split the integration over the remaining momenta {k1, . . . , km} into an integration over the
temporal components {k01, . . . , k0m} and one over the d-dimensional spatial ones {k1, . . . ,km};
in the exponential this decomposition will read e−ikx = e−ik

0x0e+ik·x, see Notation.

5. Trade all of the momenta temporal components {k01, . . . , k0m} for time derivatives: if the dia-
gram expression presents a temporal momenta component at the numerator k0j , rewrite it as

a time derivative acting on the related exponential k0j e
−ik0j t = i ddt (e

−ik0j t), and then integrate
by parts to move the derivative on the rest of the expression. The integration by parts, which
acts also on the time-dependent coefficient Ci1,...,in({va, . . . ,vl}), may yield higher derivatives
of the positions; furthermore it will act also on the exponential term e+ikj ·x(t) resulting in
terms like kij vi at the numerator of the expression.

6. Perform the integration over the momenta temporal components {k01, . . . , k0m}, which will yield

a series of Dirac deltas in the time components {t1, . . . tl} via
∫︁
dk0

(2π) e
−ik0(t1−t2) = δ(t1 − t2).

7. Enforce the temporal Dirac deltas in the time variables just obtained by integrating over all
but one of the time variables {t1, . . . tl}. After this operation all the time-dependent quantities
should depend on a single time variable which we may denote as t, and there should be only
a single

∫︁
dt time integration in front of the expression.

8. Perform the summation over the worldline indices a, b, . . . = 1, 2: in full generality, to stream-
line the diagram evaluation, one can fix a = 1 and perform the summation over all the other
worldline indices, adding the symmetric (1↔ 2) term at the end of calculations.

9. Considering the argument of the exponential, for the terms in which it’s not vanishing, denote
the difference of the worldline positions as r(t) = x1(t)−x2(t), and then the linear combination
of spatial momenta which are in the dot product with the r vector as the Fourier momenta
p. In particular perform a change of variable in the integration over the spatial momenta, in
order to single out this single inverse Fourier transform integral, as opposed to all the other
integrals which we’ll denote as loop integrals.

10. Evaluate what we denoted in the previous point as loop integrals: in fact we can recognize
these integrals to be equivalent to massless loop integrals, and to evaluate them we may resort
to the techniques presented in section 2.2. In particular if at the numerator of the integrand
the loop momenta are contracted with some other quantities, we have to write these scalar
products as contraction of two vectors, and then include in the numerator of the integrand
the tensorial structure which depends on the loop momenta only. Afterwards, if the integrand
presents a tensorial structure, we’ll have to perform the tensor decomposition procedure, as
already explained in section 2.2.2, recognizing that the Fourier momentum vector, if present
in some scalar product of the integrand, will be the external vector to which the tensor
decomposition may be proportional to. Furthermore we may find some loop integrals to be
scaleless integrals, which hence will be vanishing in dimensional regularization, see section
2.2.1; in particular this happens for sure when the whole loop integrand doesn’t depend on
any external quantity, like p.

11. Evaluate the remaining Fourier integral. Analogously to the previous point, if the numerator



Section 4.3 — General procedure to evaluate a conservative diagram 111

of the integrand presents some scalar products between the Fourier momenta and any external
vector, then we should break apart such contractions and include only the Fourier momenta
vector in the integrand. Then, if the integrand presents a tensorial structure at the numerator,
we’ll need to perform once again the tensor decomposition, recognizing that the r vector is
the external vector to which the tensor decomposition may be proportional to, as it appears
in the integrand, inside the argument of the exponential. Finally, in full generality, we can
use formula (C.39), which we derived in section C.3, to evaluate the resulting integral.

12. Add the (1 ↔ 2) symmetric term, noticing that r
(1↔2)−−−−→ −r, to obtain the final, exact

expression of the diagram.

Finally, in order to obtain the contribution of the diagram to the conservative potential at a given
nPN order, one has to expand in Taylor series the expression just obtained above, both around the
dimension of space d = 3 (at higher orders this may also lead to poles of the kind 1

d−3), and then in
the PN expansion parameter. To perform the latter expansion one can use the scaling rules outlined
in table 3.1, multiplying any quantity in the expression of the diagram by its corresponding scaling:
doing so one should find that the common scaling G0 L1 factorizes in front of the expression, while
the dependence on the velocity parameter v is instead non-polynomial in general; then one has to
Taylor expand this function in the parameter v, up to order v2n included, in order to obtain the
contribution at nPN order.

Let us also point out that it is advisable to first evaluate all the loop integrals in the whole diagram
expression, then to collect common terms that may arise in order to simplify the expression, and
only then to evaluate the so resulting Fourier integrals: in this way the number of terms to evaluate
will be lower, and furthermore some terms may simplify altogether already after the loop integral
evaluation.

4.3.1 Example of the evaluation procedure

We will now apply the general procedure presented above to the specific case of diagram (2g), as
denoted in figure 4.6. The leading order scaling of this diagram is G2 v2, so it first contributes at
order 2PN.

Expression associated to the diagram

The Feynman rules associated to this diagram have been derived in appendix A; in particular
the Feynman rule for the ϕ2A bulk vertex is given by formula (A.70), the Feynman rules for
the worldline-A and worldline-ϕ vertices are given respectively by formulae (A.49b) and (A.49a),
whereas the Feynman rules associated to the propagators are given by equations (A.31a) and
(A.31b), both with n = 0 insertions. Finally we can read the symmetry factor from table 4.1.
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A(2g) =

a j

c b

i
k1

A

k3

ϕ
k2

ϕ

=
2

2! 2!

∫︂
k1,k2,k3

(︃
−i (2π)d+1δ(d+1)(k1 + k2 + k3)

2 cd
Λ

(︁
k02k

i
3 + k03k

i
2

)︁)︃

×
(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt1 e

ik1xa(t1)

(︄
− 1√︁

1− v2a

)︄
vja

)︄(︃
δij
2

i

|k1|2
)︃

×

⎛⎝−i 2∑︂
b=1

mb

Λ

∫︂
dt2 e

ik2xb(t2)

⎛⎝2 + (−2 + cd) v
2
b

2
√︂
1− v2b

⎞⎠⎞⎠(︃− 1

2cd

i

|k2|2
)︃

×
(︄
−i

2∑︂
c=1

mc

Λ

∫︂
dt3 e

ik3xc(t3)

(︄
2 + (−2 + cd) v

2
c

2
√︁
1− v2c

)︄)︄(︃
− 1

2cd

i

|k3|2
)︃
.

(4.24)

Once we enforce the bulk momentum conservation by integrating over the k1 momenta, such an
expression simplifies to:

A(2g) = −
i

8cd

2∑︂
a,b,c=1

mambmc

Λ4

∫︂
dt1dt2dt3

(︄
− va,i√︁

1− v2a

)︄⎛⎝2 + (−2 + cd) v
2
b

2
√︂
1− v2b

⎞⎠(︄2 + (−2 + cd) v
2
c

2
√︁
1− v2c

)︄

×
∫︂
k2,k3

(︁
k02k

i
3 + k03k

i
2

)︁ (︂
e−ik2(xa(t1)−xb(t2))−ik3(xa(t1)−xc(t3))

)︂(︃ 1

|k2 + k3|2
1

|k2|2
1

|k3|2
)︃
.

(4.25)

Evaluation of the integrals of the temporal components of the momenta

As already explained, to evaluate the integrals of the temporal components k02 and k03 of the
momenta we may rewrite any factors of them at the numerator of the expression as a time derivative
acting on the exponential, and then integrate by parts. After this all of the integrals will act only
on the exponential, hence yielding Dirac deltas in time variables. These steps in general can be
performed using a formula similar to equation (4.14): assuming the g(t, . . . ) function to be well
behaved and to vanish on the boundary of the integration domain D, it holds

∫︂
D

dk0

2π
dt k0 e−ik

0(t′−t)g(t, . . . ) =
∫︂
D

dk0

2π
dt

1

i

∂
(︂
e−ik

0(t′−t)
)︂

∂t
g(t, . . . )

= −i
∫︂
D
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dt

[︃
∂
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e−ik

0(t′−t)g(t, . . . )
)︂
− e−ik0(t′−t)∂g(t, . . . )

∂t

]︃

= −i

⎛⎜⎜⎜⎝
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∂D⏞ ⏟⏟ ⏞

=0

−
∫︂
D

dk0

2π
dt

[︃
e−ik

0(t′−t)∂g(t, . . . )
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dte−ik

0(t′−t)∂g(t, . . . )
∂t

= i

∫︂
dt δ(t′ − t)∂g(t, . . . )

∂t
.

(4.26)

Then we can summarize these results as:∫︂
dk0

(2π)
e−ik

0(t−t′) g(t, . . .) = δ(t− t′) g(t, . . .) , (4.27a)
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∫︂
dk0

2π
dt k0 e−ik

0(t′−t) g(t, . . . ) = i

∫︂
dt δ(t′ − t) ∂g(t, . . . )

∂t
. (4.27b)

which we may apply to our expression (4.25) to obtain:
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We can now perform explicitly the integration over the time integrals
∫︁
dt2dt3, and rename t1 −→ t,

to obtain:
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where we defined the coefficients

C
(α,β)
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in which all the quantities are now evaluated at the time t. In particular we also introduced the
acceleration of body a as:

aa(t) ≡
dva(t)

dt
, (4.31)

and its scaling in the PN parameters is |a| ∝ k0v ∝ v 7
2G− 1

2L− 1
2 .

Summation over the worldline indices

We can now perform the summation over the worldline indices a, b, c = 1, 2. In particular, as
already pointed out, in full generality we’ll fix a = 1, and perform the summation over b and c only,
taking care of adding the (1 ↔ 2) terms at the end of the calculations. Therefore, understanding
the time dependence of the worldline positions x and of the C1 and C2 coefficients, we obtain:
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C

(1,2)
1,j ki3 k

j
2 + C

(1,2)
2 ki3 + C

(2,1)
1,j ki2 k

j
3 + C

(2,1)
2 ki2

)︂
+m2m1 e

ik2·(x1−x2)
(︂
C

(2,1)
1,j ki3 k

j
2 + C

(2,1)
2 ki3 + C

(1,2)
1,j ki2 k

j
3 + C

(1,2)
2 ki2

)︂
+ m2m2 e

i(k2+k3)·(x1−x2)
(︂
C

(2,2)
1,j ki3 k

j
2 + C

(2,2)
2 ki3 + C

(2,2)
1,j ki2 k

j
3 + C

(2,2)
2 ki2

)︂]︂
+ (1↔ 2) .

(4.32)

Recognizing loop and Fourier integrals

We can notice that the summation over the worldline indices, which we just performed above in
equation (4.32), produces a series of terms with different exponential: for example the argument of

the exponential of the first term is vanishing, as it comes from eik2·(xa−xb)+ik3·(xa−xc) a=1,b=1,c=1−−−−−−−−→ e0,
while the other terms have different combination of momenta k2 or k3 which multiplies the difference
of the worldline positions (x1 − x2).

It is then useful to denote such a difference between the positions of the worldlines with the spatial
vector r, as:

r(t) ≡ x1(t)− x2(t) ; (4.33)

and to recognize the spatial momenta k which multiplies the vector r in the argument of the
exponential, or the linear combination of spatial momenta, as the Fourier momenta p. In practice
this amounts to performing a change of variables, but as long as we trade just one k integration
momenta which appears in the exponential for the p vector, the Jacobian of the transformation
will be equal to one.
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Performing explicitly the aforementioned steps to formula (4.32) we obtain:

A(2g) =
1

8cd

m1

Λ4

∫︂
dt

(︄
− v1,i√︁

1− v21

)︄

×

⎡⎣m1m1

∫︂
ddk2

(2π)d
ddk3

(2π)d

⎛⎝
(︂
C

(1,1)
1,j (ki3 k

j
2 + ki2 k

j
3) + C

(1,1)
2 (ki2 + ki3)

)︂
|k2 + k3|2 |k2|2 |k3|2

⎞⎠
+m1m2

∫︂
ddk2

(2π)d
ddp

(2π)d
eip·r

(︂
C

(1,2)
1,j pi kj2 + C

(1,2)
2 pi + C

(2,1)
1,j ki2 p

j + C
(2,1)
2 ki2

)︂
|k2 + p|2 |k2|2 |p|2

+m2m1

∫︂
ddp

(2π)d
ddk3

(2π)d
eip·r

(︂
C

(2,1)
1,j ki3 p

j + C
(2,1)
2 ki3 + C

(1,2)
1,j pi kj3 + C

(1,2)
2 pi

)︂
|p+ k3|2 |p|2 |k3|2

+m2m2

∫︂
ddk2

(2π)d
ddp

(2π)d
eip·r

1

|p|2 |k2|2 |p− k2|2
(︂
C

(2,2)
1,j (pi − ki2) kj2

+C
(2,2)
2 (pi − ki2) + C

(2,2)
1,j ki2 (p

j − kj2) + C
(2,2)
2 ki2

)︂]︂
+ (1↔ 2).

(4.34)

4.3.2 Evaluation of the integrals in the spatial components of the momenta

To continue we have to evaluate the integrals in the spatial components of the momenta. Let us
recall from section 4.3 that at this point it would be better to first evaluate all the loop integrals in
expression (4.34), then to collect common terms, and only after to independently evaluate all the
Fourier integrals; this is actually the procedure we implemented in the Mathematica code which
will be presented in the next section 4.4. However, in order to not clutter this pages too much, we
find it useful to single out the several integrals in the spatial momenta which appear in expression
(4.34): let us then define

Iij1 (r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

ki kj

|k|2 |p|2 |k− p|2 ; (4.35a)

Iij2 (r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

ki pj

|k|2 |p|2 |k− p|2 ; (4.35b)

Ii3(r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

ki

|k|2 |p|2 |k− p|2 ; (4.35c)

Ii4(r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

pi

|k|2 |p|2 |k− p|2 ; (4.35d)

Iij5 ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
ki1 k

j
2

|k1|2 |k2|2 |k1 + k2|2
; (4.35e)

Ii6 ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
ki1

|k1|2 |k2|2 |k1 + k2|2
. (4.35f)

With these definitions, up to some spatial momenta redefinition and k −→ −k change of variable,



116 Chapter 4 — Post-Newtonian conservative corrections

which are transformations with unit Jacobian, equation (4.34) can be cast into:

A(2g) =
1

8cd

m1

Λ4

∫︂
dt

(︄
− v1,i√︁

1− v21

)︄[︂
m1m1

(︂
C

(1,1)
1,j (Iji5 + Iij5 ) + C

(1,1)
2 (2 Ii6)

)︂
+m1m2

(︂
C

(1,2)
1,j (−Iji2 (r)) + C

(1,2)
2 Ii4(r) + C

(2,1)
1,j (−Iij2 (r)) + C

(2,1)
2 (−Ii3(r))

)︂
+m2m1

(︂
C

(2,1)
1,j (−Iij2 (r)) + C

(2,1)
2 (−Ii3(r)) + C

(1,2)
1,j (−Iji2 (r)) + C

(1,2)
2 (Ii4(r))

)︂
+m2m2

(︂
C

(2,2)
1,j (Iji2 (r) + Iij2 (r)) + C

(2,2)
2 Ii4(r)− 2C

(2,2)
1,j Iij1 (r)

)︂]︂
+ (1↔ 2)

=
1

8cd

m1

Λ4

∫︂
dt

(︄
− v1,i√︁

1− v21

)︄[︂
m1m1

(︂
C

(1,1)
1,j (Iji5 + Iij5 ) + C

(1,1)
2 (2 Ii6)

)︂
+ 2m1m2

(︂
C

(1,2)
1,j (−Iji2 (r)) + C

(1,2)
2 Ii4(r) + C

(2,1)
1,j (−Iij2 (r)) + C

(2,1)
2 (−Ii3(r))

)︂
+m2m2

(︂
C

(2,2)
1,j (Iji2 (r) + Iij2 (r)− 2 Iij1 (r)) + C

(2,2)
2 Ii4(r)

)︂]︂
+ (1↔ 2).

(4.36)

We’ll now show explicitly the full evaluation of the integral Iij1 (r), given by formula (4.35a); the
evaluation of the other integrals, defined in formulae (4.35), proceeds in a similar way, hence we’ll
directly present the related results at the end of the section.

In order to evaluate the integral Iij1 (r), we’ll first have to evaluate the innermost loop integral, in
the k spatial momenta, and only at the end the Fourier integral in p. Hence we’ll recast formula
(4.35a) as:

Iij1 (r) ≡
∫︂

ddp

(2π)d
eip·r

1

|p|2
∫︂

ddk

(2π)d
ki kj

|k|2 |k− p|2⏞ ⏟⏟ ⏞
≡Iij(p)

. (4.37)

We’ll now proceed with the evaluation, starting from the integral Iij(p), and to do so we’ll resort
to the multi-loop techniques which have been presented in section 2.2.

Tensor decomposition

Because the integral Iij(r) carries tensorial quantities at the numerator, the first step in its evalua-
tion involves the tensor decomposition of the integral, a procedure which has already been explained
in section 2.2.2. To recall it briefly, such a procedure has the goal of disentangling the tensorial
structure from the integral calculation, in order to simplify the evaluation of the latter: the integral
in the end will yield scalar form factors, which will be multiplied by tensorial quantities.

In this particular case, as the integrand depend on the external vector p, the tensor decomposition
yields:

Iij(p) = F1(p) δ
ij + F2(p) p

ipj (4.38)

with form factors

F1(p) =
1

(d− 1)

1

|p|2
∫︂

ddk

(2π)d

(︁
|k|2|p|2 − (k · p)2

)︁
|k|2 |k− p|2 , (4.39a)

F2(p) =
1

(d− 1)

1

|p|4
∫︂

ddk

(2π)d

(︁
d (k · p)2 − |k|2|p|2

)︁
|k|2 |k− p|2 . (4.39b)
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Integrand manipulation

The next step in the evaluation procedure of the loop integral Iij(p) requires the expression of the
integrands which are present in the previous form factors (4.39) as a function of the denominators
only: this step has been presented in section 2.2.3, and can be accomplished by employing relations
between the scalar products of the several vector quantities.

In both form factors the denominator of the integrated in this particular case is the product of D1

and D2, both to the power of 1, where we defined

D1 ≡ |k|2 , (4.40a)

D2 ≡ |k− p|2 ; (4.40b)

with this convention we can then rewrite the only other k-dependent quantity which appears in
the numerator, which is (k ·p), as a function of D1 and D2; in fact |k−p|2 = |k|2− 2(k ·p)+ |p|2,
hence:

(k · p) = 1

2

(︁
D1 −D2 + |p|2

)︁
. (4.41)

In this way we may rewrite also the numerator of the integrand as a sum over a series of terms
involving only powers of D1 and D2, and possibly constants in k like the term |p|2; doing so we
may rewrite formulae (4.39a) and (4.39b) as:

F1(p) =
1

(d− 1)

1

|p|2
∫︂

ddk

(2π)d

[︃
1

4

4D1|p|2 − (D1 −D2 + |p|2)2
D1D2

]︃
=

1

4 (d− 1)

1

|p|2
∫︂

ddk

(2π)d

[︃
4
|p|2
D2
− D1

D2
− D2

D1
− |p|4
D1D2

+ 2− 2
|p|2
D2

+ 2
|p|2
D1

]︃
,

(4.42a)

F2(p) =
1

(d− 1)

1

|p|4
∫︂

ddk

(2π)d

[︃
1

4

d (D1 −D2 + |p|2)2 − 4D1|p|2
D1D2

]︃
=

d

4 (d− 1)

1

|p|4
∫︂

ddk

(2π)d

[︃
D1

D2
+
D2

D1
+
|p|4
D1D2

− 2 + 2
|p|2
D2
− 2
|p|2
D1
− 4

d

|p|2
D2

]︃
.

(4.42b)

Scalar integral evaluation

The last step in the solution of the loop integral Iij(p) is the explicit evaluation of the integrals
which appear in the form factors cast in the form (4.42), which are denoted as scalar integrals.
In full generality this procedure is usually accomplished by first reducing the scalar integrals to
a smaller set of master integrals, as explained in section 2.2.4, and then by explicitly evaluating
only these master integrals, for example as explained in section 2.2.5: we perform explicitly these
computation in appendix C.5.

Nonetheless, for the case at hand, the solution of the integrals which appear in formulae (4.42) can
be obtained in full generality for arbitrary values of the exponents of the denominators, as it’s been
explicitly derived in appendix C. Therefore we may directly evaluate formulae (4.42a) and (4.42b)
by recognizing that in this particular case it holds∫︂

ddk

(2π)d
1

Da
1 D

b
2(p)

= IS,1L(d, a, b)[p] , (4.43)

where IS,1L is the scalar integral (C.7) which has been explicitly evaluated in section C.2.1. Per-
forming the computations, one finds that in formulae (4.42) only the scalar integral IS,1L(d, 1, 1)[p]
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is non vanishing and instead yields IS,1L(d, 1, 1)[p] = 2−dπ−
d
2
Γ(2− d

2 )(Γ(
d
2
−1))

2

Γ(d−2) |p|d−4; hence the form
factors read:

F1(p) = −
2−d−2π−

d
2

(d− 1)

Γ
(︁
2− d

2

)︁ (︁
Γ
(︁
d
2 − 1

)︁)︁2
Γ(d− 2)

|p|d−2 =
2−2d π

(3−d)
2

sin(dπ2 ) Γ(
d+1
2 )
|p|d−2 , (4.44a)

F2(p) = 2−d−2π−
d
2

d

(d− 1)

Γ
(︁
2− d

2

)︁ (︁
Γ
(︁
d
2 − 1

)︁)︁2
Γ(d− 2)

|p|d−4 = −d 2−2d π
(3−d)

2

sin(dπ2 ) Γ(
d+1
2 )
|p|d−4 ; (4.44b)

where we used the properties of the Γ function presented in appendix B.1. Therefore, recalling the
decomposition (4.38) for the loop integral Iij(p), the full initial integral Iij1 (r), given by expression
(4.37), now reads

Iij1 (r) =

∫︂
ddp

(2π)d
eip·r

1

|p|2

(︄(︄
2−2d π

(3−d)
2

sin(dπ2 ) Γ(
d+1
2 )

)︄(︂
|p|d−2δij − d |p|d−4 pi pj

)︂)︄
. (4.45)

Fourier integral evaluation

The last step now requires us to perform the inverse Fourier transform integral which are left in
equation (4.45). In general, as pointed out in appendix C.5.3, we would proceed in a similar way to
what’s has just been done, so by first performing a further tensor decomposition on the integrand
in order to obtain scalar integrals only, with r the external vector quantity which may enter in the
tensor decomposition, and then evaluate the scalar Fourier transformations: this procedure is what
has been implemented in the Mathematica code.

Nonetheless for simplicity in this section we’ll directly use the results for the Fourier transform
which have been obtained in appendix C.3, and in particular formulae (C.31) and its tensorial
generalization (C.33). Doing so equation (4.45) reads:

Iij1 (r) =

(︄
2−2d π

(3−d)
2

sin(dπ2 ) Γ(
d+1
2 )

)︄ (︄(︄
2d−4 π−

d
2
Γ (d− 2)

Γ(2− d
2)
|r|4−2dδij

)︄

−d
(︄
2d−5 π−

d
2
Γ (d− 2)

Γ(3− d
2)
|r|4−2d

(︃
δij + (4− 2d)

rirj

|r|2
)︃)︄)︄

=

(︄
− 2−4−d π

3
2
−d

sin(dπ2 ) Γ(
d+1
2 )

Γ (d− 1)

Γ(3− d
2)
|r|4−2d

)︄(︃
δij − d r

irj

|r|2
)︃

;

(4.46)

which is the result of the integral (4.35a) we were looking for.

Evaluation of the other integrals

The evaluation of the other integrals defined in equation (4.35) goes along in a similar way; therefore
in equations (4.47) below we present directly the final results, by using the formulae derived in
appendix C, for example also equation (C.32).

Iij1 (r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

ki kj

|k|2 |p|2 |k− p|2 = − 2−4−d π
3
2
−d

sin(dπ2 ) Γ(
d+1
2 )

Γ (d− 1)

Γ(3− d
2)
|r|4−2d

(︃
δij − d r

irj

|r|2
)︃
;

(4.47a)

Iij2 (r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

ki pj

|k|2 |p|2 |k− p|2 = −2−6 π1−d Γ
(︁
d
2 − 1

)︁
sin
(︁
dπ2
)︁
Γ
(︁
3− d

2

)︁ |r|4−2d

(︃
δij − 2(d− 2)

rirj

|r|2
)︃
;

(4.47b)
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Ii3(r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

ki

|k|2 |p|2 |k− p|2 = −i2
−6 π1−d Γ

(︁
d
2 − 1

)︁
sin
(︁
dπ2
)︁
Γ
(︁
3− d

2

)︁ |r|4−2d ri ; (4.47c)

Ii4(r) ≡
∫︂

ddp

(2π)d
ddk

(2π)d
eip·r

pi

|k|2 |p|2 |k− p|2 = −i2
−5 π1−d Γ

(︁
d
2 − 1

)︁
sin
(︁
dπ2
)︁
Γ
(︁
3− d

2

)︁ |r|4−2d ri ; (4.47d)

Iij5 ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
ki1 k

j
2

|k1|2 |k2|2 |k1 + k2|2
= 0 ; (4.47e)

Ii6 ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
ki1

|k1|2 |k2|2 |k1 + k2|2
= 0 . (4.47f)

In particular we can notice that it holds Ii4(r) = 2 Ii3(r), where the factor of two is due to the tensor
decomposition and relation (4.41). Furthermore we find that integrals Iij5 and Ii6, given by equations
(4.47e) and (4.47f), are identically vanishing: the integral Ii6 is vanishing already at the level of the
tensor decomposition, because the integrand doesn’t depend on any external vector quantity which
has only one free spatial index (like r), and therefore must be vanishing. The integral Iij5 instead

could be proportional to the Kronecker delta, Iij5 ∝ δij , but the resulting scalar integral is scaleless
(as it was also in the case of the Ii6 integral), i.e. it depends on no external quantities: as explained
in section 2.2.1 these scalar integrals are actually vanishing.

Final result of the diagram

Having evaluated the integrals, we can now use these results in equation (4.36). In particular, from
(4.47b), we can notice that Iij2 (r) is symmetric, Iij2 (r) = Iji2 (r). Therefore we obtain:

A(2g) =
2−8 π1−d Γ

(︁
d
2 − 1

)︁
cd sin

(︁
dπ2
)︁
Γ
(︁
3− d

2

)︁m1m2

Λ4

∫︂
dt
|r|4−2d√︁
1− v21

×
[︃(︃

(m2C
(2,2)
1,j )

(︃
1

(d− 1)

(︃
vj1 − (d− 2)2

(r · v1)

|r|2 rj
)︃)︃)︃

+

(︃
(−m1C

(1,2)
1,j − m1C

(2,1)
1,j )

(︃(︃
vj1 − 2(d− 2)

(r · v1)

|r|2 rj
)︃)︃)︃

+
(︂
(2m1C

(1,2)
2 − m1C

(2,1)
2 +m2C

(2,2)
2 ) (i (r · v1))

)︂]︂
+ (1↔ 2) ,

(4.48)
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and we can then substitute the explicit expression of the C coefficients, defined in equation (4.30),
to obtain the final, full expression for the diagram (2g):

A(2g) = i
2−8 π1−d Γ

(︁
d
2 − 1

)︁
cd sin

(︁
dπ2
)︁
Γ
(︁
3− d

2

)︁m1m2

Λ4

∫︂
dt
|r|4−2d√︁
1− v21

(︄
2 + (cd − 2) v22

2
√︁
1− v22

)︄

×
[︄(︄
−m2

(︄
2 + (−2 + cd) v

2
2

2
√︁
1− v22

)︄ (︃
1

(d− 1)
(v1 · v2)−

(d− 2)2

(d− 1)
(r̂ · v1)(r̂ · v2)

)︃)︄

+

(︄
m1

(︄
2 + (−2 + cd) v

2
1

2
√︁
1− v21

)︄ (︁
v21 + (v1 · v2)− 2(d− 2)(r̂ · v1) ((r̂ · v1) + (r̂ · v2))

)︁)︄

+

(︄
2m1

(︄
(r · v1)(v1 · a1)
2(1− v21)

3
2

(︁
2cd − 2 + v21(2− cd)

)︁)︄

− m1

(︄
2 + (−2 + cd) v

2
1

2
√︁

1− v21

)︄(︄
(r · v1)(v2 · a2)

(1− v22)

(︁
2cd − 2 + v22(2− cd)

)︁
2 + (−2 + cd) v

2
2

)︄

+m2

(︄
(r · v1)(v2 · a2)
2(1− v22)

3
2

(︁
2cd − 2 + v22(2− cd)

)︁)︄)︄]︄
+ (1↔ 2) .

(4.49)

To evaluate the potential, we can then expand the above result around d = 3, obtaining:

A(2g)
d−→3
= −i 2G2m1m2

∫︂
dt

1

|r|2
1√︁

1− v21

(︄
1 + v22√︁
1− v22

)︄

×
[︄(︄
−m2

(︄
1 + v22√︁
1− v22

)︄ (︃
1

2
(v1 · v2)−

1

2
(r̂ · v1)(r̂ · v2)

)︃)︄

+

(︄
m1

(︄
1 + v21√︁
1− v21

)︄ (︁
v21 + (v1 · v2)− 2(r̂ · v1) ((r̂ · v1) + (r̂ · v2))

)︁)︄

+

(︄
2m1

(︄
(r · v1)(v1 · a1)

(1− v21)
3
2

(︁
3− v21

)︁)︄

− m1

(︄
1 + v21√︁
1− v21

)︄(︄
(r · v1)(v2 · a2)

(1− v22)

(︁
3− v22

)︁
1 + v22

)︄

+m2

(︄
(r · v1)(v2 · a2)

(1− v22)
3
2

(︁
3− v22

)︁)︄)︄]︄
+ (1↔ 2) +O(d− 3) ;

(4.50)

and finally expanding up to 2PN order we obtain:

A(2g) = −i
∫︂
dt

[︃
G2m1m2

|r|2
(︁
2m1v

2
1 + (2m1 −m2) (v1 · v2)− 4m1 (r̂ · v1)

2

+(−4m1 +m2) (r̂ · v1)(r̂ · v2))] + (1↔ 2) +O(d− 3) +O
(︁
Lv6

)︁
.

(4.51)

From equation (4.51) we can then read the contribution of diagram (2g) to the 2PN potential, i.e.

by explicitly adding the (1↔ 2) term, recalling also that in general r
(1↔2)−−−−→ −r, we obtain:

V(2g)(t) =
G2m1m2

r2
(︁
2m1v

2
1 + 2m2v

2
2 − (m1 +m2) (3 (r̂ · v1)(r̂ · v2)− v1 · v2)

−4m1 (r̂ · v1)
2 − 4m2 (r̂ · v2)

2
)︁
+O

(︁
Lv6

)︁
;

(4.52)



Section 4.4 — Mathematica code for the automatic evaluation of conservative diagrams 121

which exactly agrees with the result reported in reference [235], in which the corresponding contri-
bution is the sum of diagrams (m) and (n).

4.4 Mathematica code for the automatic evaluation of conservative di-
agrams

We implemented the general procedure for the evaluation of generic conservative diagrams, which
we discussed in the above section 4.3, in a Mathematica code.

In particular this code is able to evaluate the generic expression of a conservative diagram, exact
in the velocity v (up to propagator insertions) and in the space dimension d, once one specifies
the action terms for the bulk actions, which for example we reported in equation (3.35), and the
results for the master integrals that are left after the integration-by-parts procedure. In particular
we obtained the expression for the bulk action, up to 2PN, by using the FeynRul.m module of the
EFTofPNG package [249]; instead we explicitly evaluated the master integrals needed up to 2PN
(which where up to 2-loop Feynman integrals) in appendix C.2.

Therefore, once initialized the code (loading quantities precomputed by the code itself to speed up
the subsequent evaluation), and created the diagram (by specifying the relevant Feynman rules, the
propagators and the symmetry factor), the code automatically evaluates its expression, exactly in v
and in d. Eventually such expression can also be expanded around d = 3 and in the PN expansion
parameters to obtain the expression for the corresponding conservative potential.

In fact we employed this code to evaluate the diagrams contributing to the 2PN order, as we report
in section 4.5, finding exact agreement with the results of reference [235]. Then in section 4.6 we
also employed this same code to evaluate a few selected conservative diagrams contributing at 7PN
order.

The actual Mathematica package, written as a separate .wl package with 2000+ lines of code,
implements the functions needed for the actual evaluation of the diagrams. In particular each
diagrams is represented via a structure, which contains the several mathematical expressions asso-
ciated to such diagram: these expression are actually are kept split in homogeneous sub-expression,
which are processed separately in order to simplify their evaluation. The package then implements
routines to perform the necessary manipulations and simplifications of these expressions, the tensor
decomposition procedure, to solve the temporal sector (for example by exchanging the temporal
components of the momenta for time derivatives, performing the relevant integrations and enforcing
the temporal Dirac deltas), to evaluate the multi-loop Feynman integrals and the Fourier transform.
In particular the needed tensor algebra is performed using the xTensor package [261], whereas the
evaluation of the loop integrals is performed by interfacing with the LiteRed package [216, 217,
262] for integral reduction via integration-by-parts identities; the resulting expression, which is a
function of only a few master integrals, is then separately evaluated using the results reported in
appendix C. Finally we also implemented a routine to expand the exact diagram expression so
obtained around d = 3 and in the PN expansion parameters, to obtain the corresponding contribu-
tions to the potential. Furthermore the worldline Feynman rules can be computed to any arbitrary
order directly in the library.

The procedure which we implemented in the code is also schematically represented in the flowchart
in figure 4.7.

Furthermore in appendix D we report some extracts of the code, also showing as an example how it
can be used to compute diagram A(2g), which is the one we just evaluated explicitly in section 4.3.
Even though the library isn’t particularly optimized (if not for the precomputation of the tensor
decompositions and the integration-by-parts basis), the evaluation of the diagram A(2g) reported in
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Generate the Feynman diagram
by combining the relevant Feynman rules

Precompute the Feynman rules,
the IBP basis relations, and
the tensor decompositions

Optimize the algebraic manipulations:

• Separate scalar and tensor quantities

• Enforce momenta conservation Dirac deltas

• Split temporal and spatial components

Solve the temporal sector:

• Trade powers of temporal momenta {k0} for temporal
derivatives

• Integrate over the temporal momenta {k0} to obtain
temporal Dirac deltas δ(ti − tj)

• Integrate Dirac deltas over the time variables {ti}

Prepare the spatial integrations:

• Sum over the worldline indices

• Recognize the loop and Fourier momenta

Evaluate the loop integrals:

• Perform tensor decomposition to obtain scalar Feynman
integrals

• Recognize the IBP basis

• Perform IBP reduction to master integrals via LiteRed

and Mint packages

• Solve the master integrals

Evaluate the Fourier integrals:

• Perform tensor decomposition

• Recognize the Fourier integrals

• Solve the Fourier integrals

Expand the exact diagram result to obtain the potential:

• Perform a Laurent expansion around d = 3

• Expand up to the desired n-PN order, O
(︁
v2n
)︁

• Sum (1↔ 2) terms

Tensor algebra evaluation
via xTensor

Figure 4.7 Flowchart of the Mathematica code developed for the evaluation of a generic conservative
diagram.
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appendix D (which is performed by the automaticEvaluateDiagram function) runs in about half
a minute on a standard laptop computer, and the potential is obtained in a few more seconds from
that exact relation. In particular a great portion of the time is being spent on the simplifications
of the intermediate and final results of the evaluation, via the standard Simplify command of
Mathematica.

4.5 Conservative contributions to the potential at 2PN order

In this section then we report the results for the conservative sector up to 2PN, which represent
a next-to-next-to-leading order correction to the Newtonian potential. In particular we computed
these results using the Mathematica code just outlined above in section 4.4.

These results we found are in exact agreement with the results of reference [235]; yet to explicitly
show this we have to perform some integration by parts, using in particular the following relations:

dr

dt
= v ≡ v1 − v2 (4.53a)

dr

dt
= v · r̂ = (v1 · r̂)− (v2 · r̂) (4.53b)

dr̂

dt
=

1

r
(v − r̂ (v · r̂)) = 1

r
(v1 − v2 − r̂ (v1 · r̂) + r̂ (v2 · r̂)) (4.53c)

∫︂
dt

(a1 · r̂)
r

=

∫︂
dt

d

dt

(︃
(v1 · r̂)
r

)︃
⏞ ⏟⏟ ⏞

≃0

+

∫︂
dt

1

r2
(︁
2 (v1 · r̂) ((v1 · r̂)− (v2 · r̂))− v21 + (v1 · v2)

)︁
(4.54a)

∫︂
dt

(a2 · r̂)
r

=

∫︂
dt

d

dt

(︃
(v2 · r̂)
r

)︃
⏞ ⏟⏟ ⏞

≃0

+

∫︂
dt

1

r2
(︁
2 (v2 · r̂) ((v1 · r̂)− (v2 · r̂)) + v22 − (v1 · v2)

)︁
(4.54b)

Additionally the computation of this diagrams resulted in new master integrals, up to 2-loop level,
which we explicitly evaluated in appendix C.2.

Then below we report the expression for the relevant diagrams, already expanded to the 2PN order
and around d = 3; in particular we already singled out the contribution to the potential inside the
square bracket; and already summed the (1↔ 2) terms.

Diagram (2a)

A(2a) =
ϕ

ϕ ϕ =

∫︂
dt

[︄
im2

1m
2
2π

−3d/2r6−3d

65536c3d
(︁
−1 + v21

)︁2 (︁−1 + v22
)︁2

Λ6

(︁
2 + (−2 + cd)v

2
1

)︁
×
(︁
4− 2

(︁
4− 2cd + c2d

)︁
v21 + (−2 + cd)

2v41
)︁ (︁

2 + (−2 + cd)v
2
2

)︁
×
(︁
4− 2

(︁
4− 2cd + c2d

)︁
v22 + (−2 + cd)

2v42
)︁
Γ

(︃
−1 + d

2

)︃3
]︄
+ (1↔ 2)

= −i
∫︂
dt

[︃
−G

3m2
1m

2
2

r3

]︃
+O

(︁
Lv6

)︁
(4.55a)
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This result agrees with the corresponding (s) diagram of reference [235].

Diagram (2b)

A(2b) = ϕ

ϕ ϕ
= −i

∫︂
dt

[︄
−G

3m1m2

(︁
m2

1 +m2
2

)︁
6r3

]︄
+O

(︁
Lv6

)︁
(4.55b)

This result agrees with the corresponding (q) diagram of reference [235].

Diagram (2c)

A(2c) =

ϕ

ϕ
ϕ

ϕ

σ = −i
∫︂
dt

[︄
−G

3m1m2

(︁
m2

1 + 6m1m2 +m2
2

)︁
3r3

]︄
+O

(︁
Lv6

)︁
(4.55c)

This result agrees with the corresponding (r) + (t) + (u) diagrams of reference [235].

Diagram (2d)

A(2d) =
ϕ A

= −i
∫︂
dt

[︃
−4G2m1m2

r2
(m1 +m2)(v1 · v2)

]︃
+O

(︁
Lv6

)︁
(4.55d)

This result agrees with the corresponding (h) diagram of reference [235].

Diagram (2e)

A(2e) =
ϕ ϕ

= −i
∫︂
dt

[︃
G2m1m2

2r2
(︁
m1v

2
1 +m2v

2
2 +m1r(a1 · r̂)−m1(v1 · r̂)2

−m2

(︁
r(a2 · r̂) + (v2 · r̂)2

)︁)︁]︁
+O

(︁
Lv6

)︁
= −i

∫︂
dt

[︃
G2m1m2

2r2
(︁
(m1 +m2)(v1 · v2) +m1(v1 · r̂)2 +m2(v2 · r̂)2

−2(m1 +m2)(v1 · r̂)(v2 · r̂))] +O
(︁
Lv6

)︁
(4.55e)

In the last equality we employed formulae (4.54a) and (4.54b) to recast the result in the form of
reference [235] (diagram (i)), by adding total time derivatives to the Lagrangian.
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Diagram (2f)

A(2f) = ϕ
ϕ

ϕ = −i
∫︂
dt

[︃
G2m1m2

6r2
(︁
−
(︁
(5m1 + 8m2)v

2
1

)︁
− (8m1 + 5m2)v

2
2

−8(m1 +m2)r(a1 · r̂) + 8(m1 +m2)r(a2 · r̂) + 4m1(v1 · v2)

+4m2(v1 · v2) + 13m1(v1 · r̂)2 + 16m2(v1 · r̂)2

−8(m1 +m2)(v1 · r̂)(v2 · r̂) + (16m1 + 13m2)(v2 · r̂)2
)︁]︁

+O
(︁
Lv6

)︁
= −i

∫︂
dt

[︃
G2m1m2

2r2
(︁
−4(m1 +m2)(v1 · v2)−m1(v1 · r̂)2 −m2(v2 · r̂)2

+8(m1 +m2)(v1 · r̂)(v2 · r̂) +m1v
2
1 +m2v

2
2

)︁]︁
+O

(︁
Lv6

)︁
(4.55f)

In the last equality we employed formulae (4.54a) and (4.54b) to recast the result in the form of
reference [235] (diagram (j)), by adding total time derivatives to the Lagrangian.

Diagram (2g)

A(2g) =
A

ϕ ϕ = −i
∫︂
dt

[︃
G2m1m2

r2
(︁
2m1v

2
1 + 2m2v

2
2 − 3(m1 +m2)(v1 · r̂)(v2 · r̂)

+(m1 +m2)(v1 · v2)− 4m1(v1 · r̂)2 − 4m2(v2 · r̂)2
)︁]︁

+O
(︁
Lv6

)︁
(4.55g)

This result, which we also evaluated thoroughly in section 4.3.1, agrees with the corresponding (q)
diagram of reference [235].

Diagram (2h)

A(2h) =
ϕ

A A = −i
∫︂
dt

[︃
−4G2m1m2

r2
(︁
m1v

2
1 +m2v

2
2 − 2(m1 +m2)(v1 · v2)

)︁]︃
+O

(︁
Lv6

)︁
(4.55h)

This result agrees with the corresponding (k) + (l) diagrams of reference [235].

Diagram (2i)

A(2i) =
σ

ϕ ϕ = −i
∫︂
dt

[︃
−G

2m1m2

2r2
(︁
(4m1 −m2)v

2
1 − (m1 − 4m2)v

2
2

+(−8m1 +m2)(v1 · r̂)2 + (m1 − 8m2)(v2 · r̂)2
)︁]︁

+O
(︁
Lv6

)︁
(4.55i)

This result agrees with the corresponding (o) + (p) diagram of reference [235].
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Diagram (2j)

A(2j) = σ = −i
∫︂

dt

[︃
2Gm1m2

r

(︁
v21v

2
2 − (v1 · v2)

2
)︁]︃

+O
(︁
Lv6

)︁
(4.55j)

This result agrees with the corresponding (f) diagram of reference [235].

Diagram (2k)

A(2k) = 2
ϕ

= −i
∫︂
dt

[︃
Gm1m2

8r

(︁
r2(a1 · a2) + r2(a1 · r̂)(a2 · r̂)

+ rv21(a2 · r̂)− rv22(a1 · r̂)− 2r(a1 · v2)(v2 · r̂) + 2r(a2 · v1)(v1 · r̂)
+ r(a1 · r̂)(v2 · r̂)2 − r(a2 · r̂)(v1 · r̂)2

−v21v22 − 2(v1 · v2)
2 + v21(v2 · r̂)2 + v22(v1 · r̂)2

+4(v1 · v2)(v1 · r̂)(v2 · r̂)− 3(v1 · r̂)2(v2 · r̂)2
)︁]︁

+O
(︁
Lv6

)︁
(4.55k)

This result agrees with the corresponding (c) diagram of reference [235].

Diagram (2l)

A(2l) =
A

= −i
∫︂

dt

[︃
−2Gm1m2

r

(︁
r2(a1 · a2) + r(a2 · v1)(v1 · r̂)− r(a1 · v2)(v2 · r̂)

+(v1 · v2)(v1 · r̂)(v2 · r̂)− (v1 · v2)
2
)︁]︁

+O
(︁
Lv6

)︁
(4.55l)

This result agrees with the corresponding (e) diagram of reference [235].

Diagram (0a) at 2PN

A(0a)

⃓⃓
2PN

= ϕ
⃓⃓⃓
2PN

= −i
∫︂
dt

[︃
−Gm1m2

8r

(︁
7v41 + 18v21v

2
2 + 7v42

)︁]︃
+O

(︁
Lv6

)︁
(4.55m)

This result agrees with the corresponding (a) diagram of reference [235].
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Diagram (1a) at 2PN

A(1a)

⃓⃓
2PN

=
ϕ ϕ ⃓⃓⃓

2PN
= −i

∫︂
dt

[︃
3G2m1m2

4r2
(︁
2m1v

2
1 − 3m2v

2
1 − 3m1v

2
2 + 2m2v

2
2

)︁]︃
+O

(︁
Lv6

)︁
(4.55n)

This result agrees with the corresponding (g) diagram of reference [235].

Diagram (1b) at 2PN

A(1b)

⃓⃓
2PN

= A
⃓⃓⃓
2PN

= −i
∫︂
dt

[︃
2Gm1m2

r

(︁
v21 + v22

)︁
(v1 · v2)

]︃
+O

(︁
Lv6

)︁
(4.55o)

This result agrees with the corresponding (d) diagram of reference [235].

Diagram (1c) at 2PN

A(1c)

⃓⃓
2PN

=
ϕ ⃓⃓⃓

2PN
= −i

∫︂
dt

[︃
3Gm1m2

4r
(2r ((a2 · v2)(v1 · r̂)− (a1 · v1)(v2 · r̂))

−
(︁
v21 + v22

)︁
((v1 · v2)− (v1 · r̂)(v2 · r̂))

)︁]︁
+O

(︁
Lv6

)︁
(4.55p)

This result agrees with the corresponding (b) diagram of reference [235].

4.5.1 Contribution of order 2PN to the conservative two-body Lagrangian

The full 2PN potential, in harmonic gauge, is given by the sum of the contributions (4.55a) through
(4.55p), which reads:

∆V2PN =− G3m1m2

2r3
(︁
m2

1 + 6m1m2 +m2
2

)︁
− G2m1m2

4r2
(︁
8m1v

2
1 + 7m2v

2
1 + 7m1v

2
2 + 8m2v

2
2 − 14(m1 +m2)(v1 · v2)

+2m2(v1 · r̂)2 + 2m1(v2 · r̂)2
)︁

− Gm1m2

8r

(︁
7v41 + 3v21v

2
2 + 7v42 + 15r2(a1 · a2)− rv21(a2 · r̂)− 10v21(v1 · v2)

− 10v22(v1 · v2) + 2(v1 · v2)
2 + 14r(a2 · v1)(v1 · r̂)− 12r(a2 · v2)(v1 · r̂)

− v22(v1 · r̂)2 + r(a2 · r̂)(v1 · r̂)2 + 12r(a1 · v1)(v2 · r̂)− 14r(a1 · v2)(v2 · r̂)
− 6v21(v1 · r̂)(v2 · r̂)− 6v22(v1 · r̂)(v2 · r̂) + 12(v1 · v2)(v1 · r̂)(v2 · r̂)
−v21(v2 · r̂)2 + 3(v1 · r̂)2(v2 · r̂)2 − r(a1 · r̂)

(︁
−v22 + r(a2 · r̂) + (v2 · r̂)2

)︁)︁
+O

(︁
Lv6

)︁
.

(4.56)
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Let us recall that the dynamics of the system are prescribed by the full Lagrangian L = T − V ,
and so we have also to consider the corrections from the expansion of the relativistic kinetic term
(3.34b), which at 2PN gives the contributions:

∆T2PN =
1

16
m1v

6
1 +

1

16
m1v

6
1 ; (4.57)

and therefore the 2PN contributions to the Lagrangian are given by (4.57) minus (4.56):

L2PN = ∆T2PN −∆V2PN . (4.58)

4.6 Subset of conservative contributions at 7PN

In order to show the flexibility of the Mathematica code that we wrote in order to evaluate conser-
vative diagrams, which we outlined in section 4.4, we’ll present the results regarding a small subset
of diagrams which contribute at 7PN (v14) in the conservative sector.

These results are some of the N7LO corrections to the Newtonian potential: to the best of our
knowledge they are not present in the literature, which explicitly discuss post-Newtonian corrections
up to the 6PN order; with some results eventually obtained also by complementing information
from other approximation schemes, such as post-Minkowskian and self-force, as in the Tutti-Frutti
method [20–23, 63–65, 77, 78, 173, 263]. However, since below we’re considering only diagrams
with at most 4 worldline vertices, it means that we’re evaluating conservative contributions that are
contained in up to the third conservative post-Minkowskian (3PM) order, which has been derived
recently [69, 74, 158, 264–270]; in fact the diagrams that we’re considering are also somewhat
trivial, since they don’t require the evaluation of any new master integral. Nonetheless the post-
Minkowskian results are related to the results obtained by summing over all the corresponding
post-Newtonian diagrams, while here instead we’re explicitly and independently evaluating each
diagram in the post-Newtonian framework.

Therefore, as an example, let us consider the contribution coming from all the diagrams we’ve
computed so far: having evaluated diagrams A(0a) to A(2l) exactly in v (whose contributions at
2PN are given in equations (4.55a) to (4.55p)), we can directly evaluate their contribution at the
7PN level (so their contributions of order O

(︁
Lv14

)︁
).

In particular, we will define r̃ ≡
√
4π µ r, with the µ parameter coming from the renormalization

of the Planck mass via the definition (3.25) of the d-dimensional Λ coupling constant; γ is the
Euler-Mascheroni constant (B.9). Then in this result we will also find logarithmic terms log(r̃),
which depend on the arbitrary scale µ: they arise starting from the 3PN order, nonetheless they’re
expected to cancel out once we evaluate any physical observable [57].

We have also to point out that this result won’t be complete: in fact for some bulk vertices, which we
derived in appendix A.2, we’re considering only the lowest order contribution for their expression.
Yet in the Einstein-Hilbert Lagrangian there could be terms with more temporal derivatives, instead
of spatial derivatives: these terms contribute at higher PN order, as we evaluated in the power-
counting formula (3.60). Then in the following formulae ((4.59) and (4.60)) we will omit these
terms, which nonetheless must be considered in order to obtain the full 7PN result corresponding
to the aforementioned subset of diagrams, also regarding the divergent 1

ϵ part.

Given this premises, the evaluated expression reads (here the ellipses understand the fact that we
actually dropped most of the terms of order G1 and G2 since the full expression was too long, yet
we show the full result for the G3 terms):
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∆V7PN,subset =

− G3m1m2

512r3

(︁
m2

1

(︁
4743v101 + 22737v22v

8
1 + 50694v42v

6
1 + 67650v62v

4
1 + 51075v82v

2
1 + 16093v102

)︁
− 2048m2m1

(︁
7v101 − 27v22v

8
1 − 68v42v

6
1 − 68v62v

4
1 − 27v82v

2
1 + 7v102

)︁
+m2

2

(︁
16093v101 + 51075v22v

8
1 + 67650v42v

6
1 + 50694v62v

4
1 + 22737v82v

2
1 + 4743v102

)︁)︁
− G2m1m2

6144r2

(︁
20480m1v

12
1 + 36827m2v

12
1 + 198656m1v

2
2v

10
1 + 148604m2v

2
2v

10
1 − 40960m1(v1 · r̂)2v101 − 7756m2(v1 · r̂)2v101

− 53248m1(v2 · r̂)2v101 − 37240m2(v2 · r̂)2v101 − 32768m1r(a2 · r̂)v101 − 34580m2r(a2 · r̂)v101
− 65536m1(v1 · v2)v

10
1 − 134008m2(v1 · v2)v

10
1 + 57344m1(v1 · r̂)(v2 · r̂)v101 + 15512m2(v1 · r̂)(v2 · r̂)v101

+ 232960m1v
4
2v

8
1 + 231088m2v

4
2v

8
1 − 143360a21m1r

2v81 + 8192a22m1r
2v81 + 163840a21γm1r

2v81 + 49152a22γm1r
2v81

− 20720a21m2r
2v81 + 76680a22m2r

2v81 + 21280a21γm2r
2v81 + 14400a22γm2r

2v81 − 135168m1v
2
2(v1 · r̂)2v81

− 26280m2v
2
2(v1 · r̂)2v81 − 92160m1v

2
2(v2 · r̂)2v81 − 104400m2v

2
2(v2 · r̂)2v81 + 327680a21m1r

2 log(r̃)v81

+ 98304a22m1r
2 log(r̃)v81 + 42560a21m2r

2 log(r̃)v81 + 28800a22m2r
2 log(r̃)v81 − 49152m1rv

2
2(a2 · r̂)v81

− 95400m2rv
2
2(a2 · r̂)v81 + 163840γm1r

2(j1 · v1)v
8
1 − 143360m1r

2(j1 · v1)v
8
1 + 21280γm2r

2(j1 · v1)v
8
1

− 20720m2r
2(j1 · v1)v

8
1 + 327680m1r

2 log(r̃)(j1 · v1)v
8
1 + 42560m2r

2 log(r̃)(j1 · v1)v
8
1 + 49152γm1r

2(j2 · v2)v
8
1

+ 8192m1r
2(j2 · v2)v

8
1 + 14400γm2r

2(j2 · v2)v
8
1 + 76680m2r

2(j2 · v2)v
8
1 + 98304m1r

2 log(r̃)(j2 · v2)v
8
1

+ 28800m2r
2 log(r̃)(j2 · v2)v

8
1 − 172032m1v

2
2(v1 · v2)v

8
1 − 245040m2v

2
2(v1 · v2)v

8
1 + 122880m1r(a2 · v2)(v1 · r̂)v81

+ 4320m2r(a2 · v2)(v1 · r̂)v81 − 196608m1r(a2 · v2)(v2 · r̂)v81 − 154800m2r(a2 · v2)(v2 · r̂)v81
+ 110592m1v

2
2(v1 · r̂)(v2 · r̂)v81 + 38160m2v

2
2(v1 · r̂)(v2 · r̂)v81 + 240896m1v

6
2v

6
1 + 240896m2v

6
2v

6
1

+ 253952a21m1r
2v22v

6
1 + 4096a22m1r

2v22v
6
1 + 196608a21γm1r

2v22v
6
1 + 57344a22γm1r

2v22v
6
1 − 17280a21m2r

2v22v
6
1

+ 187904a22m2r
2v22v

6
1 + 57600a21γm2r

2v22v
6
1 + 45056a22γm2r

2v22v
6
1 + 114688γm1r

2(a2 · v2)
2v61

+ 8192m1r
2(a2 · v2)

2v61 + 52096γm2r
2(a2 · v2)

2v61 + 152320m2r
2(a2 · v2)

2v61 + 229376m1r
2 log(r̃)(a2 · v2)

2v61

+ 104192m2r
2 log(r̃)(a2 · v2)

2v61 − 121856m1v
4
2(v1 · r̂)2v61 − 41216m2v

4
2(v1 · r̂)2v61 − 52736m1v

4
2(v2 · r̂)2v61

− 129536m2v
4
2(v2 · r̂)2v61 + 393216a21m1r

2v22 log(r̃)v61 + 114688a22m1r
2v22 log(r̃)v61 + 115200a21m2r

2v22 log(r̃)v61

+ 90112a22m2r
2v22 log(r̃)v61 − 28672m1rv

4
2(a2 · r̂)v61 − 115456m2rv

4
2(a2 · r̂)v61 + 196608γm1r

2v22(j1 · v1)v
6
1

+ . . .)

− Gm1m2

2048r

(︁
891v141 + 574v22v

12
1 − 133(v2 · r̂)2v121 − 133r(a2 · r̂)v121 − 1365(v1 · v2)v

12
1 − 483(v1 · r̂)(v2 · r̂)v121 + 596v42v

10
1

+ 450a22r
2v101 + 266(v1 · v2)

2v101 − 133v22(v1 · r̂)2v101 + 133r(a2 · r̂)(v1 · r̂)2v101 − 225v22(v2 · r̂)2v101
+ 399(v1 · r̂)2(v2 · r̂)2v101 − 133r(a1 · r̂)(v2 · r̂)2v101 + 133rv22(a1 · r̂)v101 − 225rv22(a2 · r̂)v101
− 133r2(a1 · r̂)(a2 · r̂)v101 + 450r2(j2 · v2)v

10
1 − 210v22(v1 · v2)v

10
1 + 742r(a2 · v1)(v1 · r̂)v101

− 1596r(a2 · v2)(v1 · r̂)v101 − 742r(a1 · v2)(v2 · r̂)v101 − 900r(a2 · v2)(v2 · r̂)v101 − 798v22(v1 · r̂)(v2 · r̂)v101
+ 476(v1 · v2)(v1 · r̂)(v2 · r̂)v101 + 499v62v

8
1 + 1330a21r

2v22v
8
1 + 616a22r

2v22v
8
1 + 1232r2(a2 · v2)

2v81

+ . . .)

+O
(︁
Lv16

)︁
;

(4.59)

Furthermore the 7PN contributions also comprise the 1
ϵ (d = 3 + ϵ) divergent piece:

∆V7PN,subset,div =

G2m1m2

192

1

ϵ

(︁
24(a1 · v1)(a2 · v2)

(︁
m1

(︁
256v61 + 224v41v

2
2 + 176v21v

4
2 + 75v62

)︁
+m2

(︁
75v61 + 176v41v

2
2 + 224v21v

4
2 + 256v62

)︁)︁
+ 4(a1 · v1)

2
(︁
m1

(︁
7504v61 + 6552v41v

2
2 + 1806v21v

4
2 + 407v62

)︁
+ 2m2

(︁
665v61 + 1350v41v

2
2 + 1056v21v

4
2 + 448v62

)︁)︁
+ 4(a2 · v2)

2
(︁
2m1

(︁
448v61 + 1056v41v

2
2 + 1350v21v

4
2 + 665v62

)︁
+m2

(︁
407v61 + 1806v41v

2
2 + 6552v21v

4
2 + 7504v62

)︁)︁
+ 5120m1v

8
1(j1 · v1) + 6144m1v

6
1v

2
2(j1 · v1) + 2688m1v

4
1v

4
2(j1 · v1) + 1408m1v

2
1v

6
2(j1 · v1) + 450m1v

8
2(j1 · v1)

+ 665m2v
8
1(j1 · v1) + 1800m2v

6
1v

2
2(j1 · v1) + 2112m2v

4
1v

4
2(j1 · v1) + 1792m2v

2
1v

6
2(j1 · v1) + 1536m2v

8
2(j1 · v1)

+ 1536m1v
8
1(j2 · v2) + 1792m1v

6
1v

2
2(j2 · v2) + 2112m1v

4
1v

4
2(j2 · v2) + 1800m1v

2
1v

6
2(j2 · v2) + 665m1v

8
2(j2 · v2)

+ 450m2v
8
1(j2 · v2) + 1408m2v

6
1v

2
2(j2 · v2) + 2688m2v

4
1v

4
2(j2 · v2) + 6144m2v

2
1v

6
2(j2 · v2) + 5120m2v

8
2(j2 · v2)

+ 5120a21m1v
8
1 + 6144a21m1v

6
1v

2
2 + 2688a21m1v

4
1v

4
2 + 1408a21m1v

2
1v

6
2 + 450a21m1v

8
2 + 665a21m2v

8
1 + 1800a21m2v

6
1v

2
2

+ 2112a21m2v
4
1v

4
2 + 1792a21m2v

2
1v

6
2 + 1536a21m2v

8
2 + 1536a22m1v

8
1 + 1792a22m1v

6
1v

2
2 + 2112a22m1v

4
1v

4
2

+1800a22m1v
2
1v

6
2 + 665a22m1v

8
2 + 450a22m2v

8
1 + 1408a22m2v

6
1v

2
2 + 2688a22m2v

4
1v

4
2 + 6144a22m2v

2
1v

6
2 + 5120a22m2v

8
2

)︁
+O

(︁
Lv16

)︁
(4.60)
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which must be properly renormalized via a redefinition or shift of the worldline parameters [43, 57,
213, 271].

Furthermore below, as an example, we present the contributions of three diagrams which actually
first contribute at 7PN. In these results appear also higher derivatives of the position, hence we
introduced: the jerk j, which is the time derivative of the acceleration, so the third time derivative
of the position ja(t) ≡ d3xa

dt3
(t); the snap s, which is the time derivative of the jerk, so the fourth time

derivative of the position sa(t) ≡ d4xa
dt4

(t); and finally the crackle c, which is the time derivative of

the snap, so the fifth time derivative of the position ca(t) ≡ d5xa
dt5

(t). Additionally, recalling section
4.1.2, we evaluated the symmetry factor of diagram (4.61a) to be 2·2

2! 2! , of diagram (4.61b) to be
2

2! 2! , of diagram (4.61c) to be 2
2! 2! . Then the explicit expressions of these diagrams are:

A(7a) = 2
σ σ

= −i
∫︂

dt

[︃
−G

2m1m2

6r2

(︁
v21v

2
2 − (v1 · v2)

2
)︁ (︁

9m1v
2
2v

6
1 − 9m1(v1 · v2)

2v41 − 18m1v
2
2(v1 · r̂)2v41 + 18m1rv

2
2(a1 · r̂)v41

+ 9m2v
6
2v

2
1 + 6j22m2r

4v21 + 9m1v
2
2(v1 · r̂)4v21 + 9m2v

2
2(v2 · r̂)4v21 + 24m2r(a2 · v2)(v2 · r̂)3v21 + 45a21m1r

2v22v
2
1

+ 45a22m2r
2v22v

2
1 − 36m1r

2(a1 · v2)
2v21 + 9m1r

2v22(a1 · r̂)2v21 + 72m2r
2(a2 · v2)

2v21 + 9m2r
2v22(a2 · r̂)2v21

− 18m1r(a1 · r̂)(v1 · v2)
2v21 + 18m1(v1 · v2)

2(v1 · r̂)2v21 − 18m1rv
2
2(a1 · r̂)(v1 · r̂)2v21 − 18m2v

4
2(v2 · r̂)2v21

+ 36a22m2r
2(v2 · r̂)2v21 + 18m2rv

2
2(a2 · r̂)(v2 · r̂)2v21 + 36m2r

2(j2 · v2)(v2 · r̂)2v21 + 8m2r
4(a2 · s2)v21

− 18m2rv
4
2(a2 · r̂)v21 − 36a22m2r

3(a2 · r̂)v21 + 2m2r
4(c2 · v2)v

2
1 + 48m1r

2v22(j1 · v1)v
2
1 + 48m2r

2v22(j2 · v2)v
2
1

− 36m2r
3(a2 · r̂)(j2 · v2)v

2
1 − 24m2r

3(a2 · v2)(j2 · r̂)v21 + 3m1r
3v22(s1 · r̂)v21 − 3m2r

3v22(s2 · r̂)v21
− 36m1r

2(j1 · v2)(v1 · v2)v
2
1 + 12m1r

2v22(j1 · r̂)(v1 · r̂)v21 − 72m1r(a1 · v2)(v1 · v2)(v1 · r̂)v21
− 72m2r

3(a2 · j2)(v2 · r̂)v21 − 108m2rv
2
2(a2 · v2)(v2 · r̂)v21 + 72m2r

2(a2 · v2)(a2 · r̂)(v2 · r̂)v21
+ 12m2r

2v22(j2 · r̂)(v2 · r̂)v21 − 24m2r
3(s2 · v2)(v2 · r̂)v21 − 9m1(v1 · v2)

2(v1 · r̂)4 − 9m2(v1 · v2)
2(v2 · r̂)4

+ 24m1r(a1 · v2)(v1 · v2)(v1 · r̂)3 − 24m2r(a2 · v1)(v1 · v2)(v2 · r̂)3 + 6j21m1r
4v22 + 72m1r

2v22(a1 · v1)
2

− 36m2r
2v22(a2 · v1)

2 − 6m1r
4(j1 · v2)

2 − 6m2r
4(j2 · v1)

2 − 9m2v
4
2(v1 · v2)

2 − 9a21m1r
2(v1 · v2)

2

− 9a22m2r
2(v1 · v2)

2 − 9m1r
2(a1 · r̂)2(v1 · v2)

2 − 9m2r
2(a2 · r̂)2(v1 · v2)

2 + 18m2rv
2
2(a2 · r̂)(v1 · v2)

2

− 12m1r
2(j1 · v1)(v1 · v2)

2 − 12m2r
2(j2 · v2)(v1 · v2)

2 − 3m1r
3(s1 · r̂)(v1 · v2)

2 + 3m2r
3(s2 · r̂)(v1 · v2)

2

+ 36a21m1r
2v22(v1 · r̂)2 − 36m1r

2(a1 · v2)
2(v1 · r̂)2 + 18m1r(a1 · r̂)(v1 · v2)

2(v1 · r̂)2

+ 36m1r
2v22(j1 · v1)(v1 · r̂)2 − 36m1r

2(j1 · v2)(v1 · v2)(v1 · r̂)2 − 36m2r
2(a2 · v1)

2(v2 · r̂)2

+ 18m2v
2
2(v1 · v2)

2(v2 · r̂)2 − 18m2r(a2 · r̂)(v1 · v2)
2(v2 · r̂)2 − 36m2r

2(j2 · v1)(v1 · v2)(v2 · r̂)2

+ 8m1r
4v22(a1 · s1) + 36a21m1r

3v22(a1 · r̂)− 36m1r
3(a1 · v2)

2(a1 · r̂) + 36m2r
3(a2 · v1)

2(a2 · r̂)
+ 2m1r

4v22(c1 · v1) + 36m1r
3v22(a1 · r̂)(j1 · v1)− 8m1r

4(a1 · v2)(s1 · v2)− 8m2r
4(a2 · v1)(s2 · v1)

− 72m2r
2(a2 · v1)(a2 · v2)(v1 · v2)− 2m1r

4(c1 · v2)(v1 · v2)− 2m2r
4(c2 · v1)(v1 · v2)

− 36m1r
3(a1 · r̂)(j1 · v2)(v1 · v2)− 24m1r

3(a1 · v2)(j1 · r̂)(v1 · v2)− 36m2r
2v22(j2 · v1)(v1 · v2)

+ 36m2r
3(a2 · r̂)(j2 · v1)(v1 · v2) + 24m2r

3(a2 · v1)(j2 · r̂)(v1 · v2)− 12m1r
2(j1 · r̂)(v1 · v2)

2(v1 · r̂)
+ 72m1r

3v22(a1 · j1)(v1 · r̂)− 72m1r
3(a1 · v2)(j1 · v2)(v1 · r̂) + 24m1r

3v22(s1 · v1)(v1 · r̂)
− 72m1r

2(a1 · v2)(a1 · r̂)(v1 · v2)(v1 · r̂)− 24m1r
3(s1 · v2)(v1 · v2)(v1 · r̂)

+ 12m1r(a1 · v1)
(︁
2r2(j1 · r̂)v22 − 6r(a1 · v2)(v1 · v2)+(v1 · r̂)

(︁
6r(a1 · r̂)v22 +

(︁
9v21 − 2(v1 · r̂)2

)︁
v22−3(v1 · v2)

2
)︁)︁

+ 36m2r(a2 · v2)(v1 · v2)
2(v2 · r̂)− 12m2r

2(j2 · r̂)(v1 · v2)
2(v2 · r̂) + 72m2r

3(a2 · v1)(j2 · v1)(v2 · r̂)
+ 72m2rv

2
2(a2 · v1)(v1 · v2)(v2 · r̂)− 72m2r

2(a2 · v1)(a2 · r̂)(v1 · v2)(v2 · r̂)
+24m2r

3(s2 · v1)(v1 · v2)(v2 · r̂)
)︁]︁

+O
(︁
Lv16

)︁
(4.61a)
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A(7b) =

σ σ

= −i
∫︂

dt

[︃
−G

2m1m2

2r2

(︁
m1v

4
2v

8
1 − 2m1v

2
2(v1 · v2)

2v61 − 2m1v
4
2(v1 · r̂)2v61 +m2v

8
2v

4
1 + 4a42m2r

4v41 + 4a21m1r
2v42v

4
1

+ 4a22m2r
2v42v

4
1 +m1(v1 · v2)

4v41 +m1v
4
2(v1 · r̂)4v41 +m2v

4
2(v2 · r̂)4v41 + 8m2rv

2
2(a2 · v2)(v2 · r̂)3v41

+m2r
2v42(a2 · r̂)2v41 + 4m2r

4(j2 · v2)
2v41 + 4m1v

2
2(v1 · v2)

2(v1 · r̂)2v41 − 2m2v
6
2(v2 · r̂)2v41

− 4a22m2r
2v22(v2 · r̂)2v41 + 16m2r

2(a2 · v2)
2(v2 · r̂)2v41 + 2m2rv

4
2(a2 · r̂)(v2 · r̂)2v41 − 4m2r

2v22(j2 · v2)(v2 · r̂)2v41
− 2m2rv

6
2(a2 · r̂)v41 − 4a22m2r

3v22(a2 · r̂)v41 + 4m1r
2v42(j1 · v1)v

4
1 + 8a22m2r

4(j2 · v2)v
4
1 + 4m2r

2v42(j2 · v2)v
4
1

− 4m2r
3v22(a2 · r̂)(j2 · v2)v

4
1 − 4m1r

2v22(j1 · v2)(v1 · v2)v
4
1 + 8m1rv

4
2(a1 · v1)(v1 · r̂)v41

− 8m2rv
4
2(a2 · v2)(v2 · r̂)v41 − 16a22m2r

3(a2 · v2)(v2 · r̂)v41 + 8m2r
2v22(a2 · v2)(a2 · r̂)(v2 · r̂)v41

− 16m2r
3(a2 · v2)(j2 · v2)(v2 · r̂)v41 − 2m1v

2
2(v1 · v2)

2(v1 · r̂)4v21 − 2m2v
2
2(v1 · v2)

2(v2 · r̂)4v21
+ 4m1r

2(j1 · v2)(v1 · v2)
3v21 − 8m1rv

4
2(a1 · v1)(v1 · r̂)3v21 − 8m2r(a2 · v2)(v1 · v2)

2(v2 · r̂)3v21
− 8m2rv

2
2(a2 · v1)(v1 · v2)(v2 · r̂)3v21 − 8a22m2r

4(a2 · v1)
2v21 − 4m2r

2v42(a2 · v1)
2v21 − 2m2v

6
2(v1 · v2)

2v21

− 4a21m1r
2v22(v1 · v2)

2v21 − 4a22m2r
2v22(v1 · v2)

2v21 − 2m2r
2v22(a2 · r̂)2(v1 · v2)

2v21 + 4m2rv
4
2(a2 · r̂)(v1 · v2)

2v21

+ 4a22m2r
3(a2 · r̂)(v1 · v2)

2v21 − 4m1r
2v22(j1 · v1)(v1 · v2)

2v21 − 4m2r
2v22(j2 · v2)(v1 · v2)

2v21

+ 4m2r
3(a2 · r̂)(j2 · v2)(v1 · v2)

2v21 − 4a21m1r
2v42(v1 · r̂)2v21 − 2m1(v1 · v2)

4(v1 · r̂)2v21
− 4m1r

2v42(j1 · v1)(v1 · r̂)2v21 + 4m1r
2v22(j1 · v2)(v1 · v2)(v1 · r̂)2v21 + 4m2r

2v22(a2 · v1)
2(v2 · r̂)2v21

+ 4m2v
4
2(v1 · v2)

2(v2 · r̂)2v21 + 4a22m2r
2(v1 · v2)

2(v2 · r̂)2v21 − 4m2rv
2
2(a2 · r̂)(v1 · v2)

2(v2 · r̂)2v21
+ 4m2r

2(j2 · v2)(v1 · v2)
2(v2 · r̂)2v21 − 32m2r

2(a2 · v1)(a2 · v2)(v1 · v2)(v2 · r̂)2v21
+ 4m2r

2v22(j2 · v1)(v1 · v2)(v2 · r̂)2v21 + 4m2r
3v22(a2 · v1)

2(a2 · r̂)v21 − 8m2r
4(a2 · v1)

2(j2 · v2)v
2
1

− 8a22m2r
4(j2 · v1)(v1 · v2)v

2
1 − 4m2r

2v42(j2 · v1)(v1 · v2)v
2
1 + 4m2r

3v22(a2 · r̂)(j2 · v1)(v1 · v2)v
2
1

− 8m2r
4(j2 · v1)(j2 · v2)(v1 · v2)v

2
1 − 8m1rv

2
2(a1 · v1)(v1 · v2)

2(v1 · r̂)v21 + 8m2rv
2
2(a2 · v2)(v1 · v2)

2(v2 · r̂)v21
− 8m2r

2(a2 · v2)(a2 · r̂)(v1 · v2)
2(v2 · r̂)v21 + 16m2r

3(a2 · v1)
2(a2 · v2)(v2 · r̂)v21

+ 8m2rv
4
2(a2 · v1)(v1 · v2)(v2 · r̂)v21 + 16a22m2r

3(a2 · v1)(v1 · v2)(v2 · r̂)v21
− 8m2r

2v22(a2 · v1)(a2 · r̂)(v1 · v2)(v2 · r̂)v21 + 16m2r
3(a2 · v2)(j2 · v1)(v1 · v2)(v2 · r̂)v21

+ 16m2r
3(a2 · v1)(j2 · v2)(v1 · v2)(v2 · r̂)v21+4a41m1r

4v42 + 4m1r
4(a1 · v2)

4+4m2r
4(a2 · v1)

4+m2v
4
2(v1 · v2)

4

+m2r
2(a2 · r̂)2(v1 · v2)

4 − 2m2rv
2
2(a2 · r̂)(v1 · v2)

4 +m1(v1 · v2)
4(v1 · r̂)4 +m2(v1 · v2)

4(v2 · r̂)4

+ 4m2r
2v22(j2 · v1)(v1 · v2)

3 − 4m2r
3(a2 · r̂)(j2 · v1)(v1 · v2)

3 + 8m1rv
2
2(a1 · v1)(v1 · v2)

2(v1 · r̂)3

+ 8m2r(a2 · v1)(v1 · v2)
3(v2 · r̂)3 + 4m1r

4v42(j1 · v1)
2 + 4m2r

2v22(a2 · v1)
2(v1 · v2)

2

+ 4m1r
4(j1 · v2)

2(v1 · v2)
2 + 4m2r

4(j2 · v1)
2(v1 · v2)

2 − 4m2r
3(a2 · v1)

2(a2 · r̂)(v1 · v2)
2

+m1r
2(a1 · r̂)2

(︁
(v1 · v2)

2 − v21v
2
2

)︁2 − 4m1r
2(j1 · v2)(v1 · v2)

3(v1 · r̂)2 + 16m1r
2v42(a1 · v1)

2(v1 · r̂)2

+ 4a21m1r
2v22(v1 · v2)

2(v1 · r̂)2 + 4m1r
2v22(j1 · v1)(v1 · v2)

2(v1 · r̂)2 − 2m2v
2
2(v1 · v2)

4(v2 · r̂)2

+ 2m2r(a2 · r̂)(v1 · v2)
4(v2 · r̂)2 − 4m2r

2(j2 · v1)(v1 · v2)
3(v2 · r̂)2 + 12m2r

2(a2 · v1)
2(v1 · v2)

2(v2 · r̂)2

+ 8a21m1r
4v42(j1 · v1)− 8a21m1r

4v22(j1 · v2)(v1 · v2)− 8m1r
4v22(j1 · v1)(j1 · v2)(v1 · v2)

+ 8m2r
4(a2 · v1)

2(j2 · v1)(v1 · v2) + 16a21m1r
3v42(a1 · v1)(v1 · r̂) + 16m1r

3v42(a1 · v1)(j1 · v1)(v1 · r̂)
+ 16m1r

3(a1 · v2)
3(v1 · v2)(v1 · r̂)− 16m1r

3v22(a1 · v1)(j1 · v2)(v1 · v2)(v1 · r̂)
+ 2m1r(a1 · r̂)

(︁
v21v

2
2 − (v1 · v2)

2
)︁ (︁
v22v

4
1 − (v1 · v2)

2v21 − v22(v1 · r̂)2v21 + 2a21r
2v22 + (v1 · v2)

2(v1 · r̂)2

+2r2v22(j1 · v1)− 2r2(j1 · v2)(v1 · v2) + 4rv22(a1 · v1)(v1 · r̂)
)︁

− 8m1r(a1 · v2)(v1 · v2)(v1 · r̂)
(︁
v22v

4
1 − (v1 · v2)

2v21 − v22(v1 · r̂)2v21 + 2a21r
2v22 + (v1 · v2)

2(v1 · r̂)2

+2r2v22(j1 · v1)− 2r2(j1 · v2)(v1 · v2) + r(a1 · r̂)
(︁
v21v

2
2 − (v1 · v2)

2
)︁
+ 4rv22(a1 · v1)(v1 · r̂)

)︁
− 4m1r

2(a1 · v2)
2
(︁
v22v

4
1 − (v1 · v2)

2v21 − v22(v1 · r̂)2v21 + 2a21r
2v22 − 3(v1 · v2)

2(v1 · r̂)2 + 2r2v22(j1 · v1)

−2r2(j1 · v2)(v1 · v2) + r(a1 · r̂)
(︁
v21v

2
2 − (v1 · v2)

2
)︁
+ 4rv22(a1 · v1)(v1 · r̂)

)︁
− 8m2rv

2
2(a2 · v1)(v1 · v2)

3(v2 · r̂) + 8m2r
2(a2 · v1)(a2 · r̂)(v1 · v2)

3(v2 · r̂)
−16m2r

3(a2 · v1)(j2 · v1)(v1 · v2)
2(v2 · r̂)− 16m2r

3(a2 · v1)
3(v1 · v2)(v2 · r̂)

)︁]︁
+O

(︁
Lv16

)︁
(4.61b)
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A(7c) = σ

A σ
= −i

∫︂
dt

[︃
24G3m1m2

r3
(︁
m2

1 +m2
2

)︁
(v1 · v2)

(︁
(v1 · v2)

2 − v21v22
)︁2]︃

+O
(︁
Lv16

)︁
(4.61c)

These results, while being extremely partial (since for example reference [65] evaluated about
190000 diagrams already at 5PN order) corroborate the strength of this effective field theory and
diagrammatic approach to the computation of the post-Newtonian corrections: the possibility to
build upon many advanced multi-loop techniques (and computational packages) developed first in
particle physics, and the way these computations can be made systematic, allow to obtain results
at really high perturbative order.



CHAPTER

5 DISSIPATIVE RADIATION COR-
RECTIONS

In this chapter we’re interested in computing the leading order dissipative contributions to the
binary dynamics, so in practice the leading order contributions due to the far zone effective theory,
which we presented in section 3.2.4; see also references [43, 202, 203, 206].

Let us notice that this leading order dissipative contribution is actually of order 2.5PN with re-
spect to the Newtonian potential in the equation of motion [36]: therefore sometimes the order
of the dissipative contributions is evaluated with respect to this leading (2.5PN) order dissipative
contribution; this is then their relative post-Newtonian order. With this notation then the radi-
ation contributions that we’ll evaluate in this chapter are a 0PN relative correction, and in fact
they’re needed to evaluate the leading order expression for observables. This is because, as we’ll
see in chapter 6, the evolution of the binary is effectively dictated by the ratio of conservative over
dissipative contributions, i.e. the ratio of the binding energy over the power loss: we can then see
that to evaluate the observables at v2n precision we need both the n-PN conservative corrections
and the n-PN relative (so (2.5 + n)-PN) dissipative corrections.

In particular in section 5.1 we will evaluate the leading order expression for the power loss of the
system; whereas in section 5.2 we will evaluate the gravitational field far away from the source
employing the in-in formalism.

5.1 Power loss in the far zone effective theory

In order to evaluate the power loss of the binary system via gravitational waves we recall section
3.2.5 where we presented the optical theorem: then using equation (3.83) it’s possible to connect
the power loss of the system to the imaginary part of the effective action Seff [{xµa}]. The latter
is then obtained by integrating out all the radiative degrees of freedom in the far zone action, as
discussed in section 3.2.4.

Since, as we’ve just pointed out above, the leading order dissipative contribution is of order 2.5PN,
i.e. O

(︁
Lv5

)︁
; recalling the scaling rules for the far zone theory from section 3.2.4 and proceeding

almost analogously to the discussion of section 4.1, we find that to obtain the leading order expres-
sion for the power loss of the system via gravitational waves we have evaluate the vacuum diagrams
shown in figure 5.1.

In appendix A.3 we have evaluated the Feynman rules for the far zone theory performing the
matching procedure which we outlined in section 3.2.4, up to the accuracy needed to obtain all the
contributions up to leading order (O

(︁
Lv5

)︁
) in the final diagram. In appendix A.1 we also obtained

the expression for the propagators of the radiative modes.
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ϕ̄
ϕ̄ ϕ̄

Ā σ̄

(R1) (R2) (R3) (R4)

Figure 5.1 Diagrams contributing to the power loss of the system at leading order.

In particular let us notice that in the far zone theory the radiation modes can be on-shell, k2 ∼ 0,
therefore we cannot perform the perturbative expansion of the propagators which we employed in
the conservative sector (chapter 4) to simplify their evaluation. Finally also the results regarding
the power loss should be obtained using the in-in formalism, especially when computing higher
order hereditary effects, yet for the precision which we’re aiming for it will suffice to use the optical
theorem [43, 213].

Diagram (R1)

To obtain the expression for the first diagram in figure 5.1 we recall the Feynman rule (A.91), which
we obtained through a matching procedure, as explained in section 3.2.4. The propagator instead
is given by (A.19). Furthermore the symmetry factor can be computed similarly to what we have
presented in section 4.1. Then we find:

A(R1) = ϕ̄ k =
1

2

∫︂
dd+1k

(2π)d+1

(︃
i
1

Λ

∫︂
dt1 e

−ik0t1
(︃
−m+

1

2
kikjMij(t1)− EN

+
1

2
(k0)2M(t1)

)︃
+O

(︂
G

1
2 Lv

)︂)︃(︃ 1

2 cd

i

k2 + iϵ

)︃(︃
i
1

Λ

∫︂
dt2 e

ik0t2 (−m

+
1

2
kkklMkl(t2)− EN +

1

2
(k0)2M(t2)

)︃
+O

(︂
G

1
2 Lv

)︂)︃
+O(d− 3) ,

(5.1)
which also reads:

A(R1) = −i
1

2

1

2 cd Λ2

∫︂
dt1dt2

∫︂
dk0

(2π)
e−ik

0(t1−t2)
∫︂

ddk

(2π)d

(︃
−m+

1

2
kikjMij(t1)− EN

+
1

2
(k0)2M(t1)

)︃(︃
1

k2 + iϵ

)︃
×
(︃
−m+

1

2
kkklMkl(t2)− EN +

1

2
(k0)2M(t2)

)︃
+O

(︁
Lv6

)︁
+O(d− 3) .

(5.2)

We can then perform the change of variables t = t1 and s = t2 − t1, with unit Jacobian, to obtain:

A(R1) = −
i

4 cd Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

(2π)
eik

0s 1

k2 + iϵ

∫︂
ddk

(2π)d

(︃
−m+

1

2
kikjMij(t)− EN +

1

2
(k0)2M(t)

)︃
×
(︃
−m+

1

2
kkklMkl(t+ s)− EN +

1

2
(k0)2M(t+ s)

)︃
+O

(︁
Lv6

)︁
+O(d− 3) .

(5.3)

In particular we can simplify this expression by noticing that it is proportional to the integrals
(5.5) and (C.50): in particular this latter integral in practice exchanges the k0 and ki factors for



Section 5.1 — Power loss in the far zone effective theory 135

time derivatives acting on the source multipoles, which we defined in equations (3.67). Then, as
discussed also therein in section 3.2.4, at the leading order in which we’re working, some multipoles
are conserved, i.e. their time derivative will be vanishing; in practice such multipoles (like the mass
monopole) will not radiate and so will not contribute to the dynamics of the binary system. Then
we can already drop such constant multipoles, such as the mass m and the Newtonian energy EN
of the system, to obtain:

A(R1) = −
i

16 cd Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

(2π)
eik

0s 1

k2 + iϵ

∫︂
ddk

(2π)d
(︁
kikjMij(t) + (k0)2M(t)

)︁
×
(︂
kkklMkl(t+ s) + (k0)2M(t+ s)

)︂
+O

(︁
Lv6

)︁
+O(d− 3) .

(5.4)

Let us then define the generic integral

IR(d, a, b)
i1...in [f ](t) =

∫︂
ds f(t+ s)

∫︂
dk0

2π
eik

0s

∫︂
ddk

(2π)d
ki1 · · · kin
k2 + iϵ

(k0)b

|k|2a . (5.5)

The first step in its evaluation requires the tensor decomposition of the integrand: nonetheless,
because this integrand doesn’t depend on any external vector, then the result of the integral can
be proportional only to a (symmetrized) product of Kronecker delta δij . From this fact it follows
that if n is odd then the integral (5.5) vanishes identically, otherwise it’s can be recast as:

∫︂
ddk

(2π)d
1

k2 + iϵ

ki1 · · · kin
|k|2a = C(d, n)

(︁
δi1i2 · · · δin−1in + [other pairings]

)︁∫︂ ddk

(2π)d
1

k2 + iϵ

1

|k|2a−n
(5.6)

where with [other pairings] we mean the sum over the series of inequivalent terms given by product
of n

2 Kronecker deltas; in practice this series can be obtained by considering as spatial indices of
the Kronecker deltas all the possible unordered pairings one can construct from the set {i1, . . . , in}
of spatial indices, i.e. for n = 4 it’s given by (δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3). The constant C(d, n)
instead follows from the tensor decomposition, and in particular by explicitly evaluating it we find
that:

C(d, n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if n is odd

1 if n = 0
1
d if n = 2

1
d(d+2) if n = 4

1
d(d+2)(d+4) if n = 6 .

(5.7)

Recognizing integral (5.5) in equation (5.4), we can recast the latter as:

A(R1) = −
i

16 cd Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

(2π)
eik

0s 1

k2 + iϵ

∫︂
ddk

(2π)d

(︃
Mij(t)

δijδkl + δikδjl + δilδkj

15|k|−4
Mkl(t+ s)

+
2

3
|k|2(k0)2M(t)M(t+ s) + (k0)4M(t)M(t+ s)

)︃
+O

(︁
Lv6

)︁
+O(d− 3) .

(5.8)

Let us now also introduce the traceless mass quadrupole moment Qij(t), defined in d = 3 dimensions
as:

Qij(t) ≡M ij − 1

3
Mδij =M ij − 1

3
(δklM

kl)δij , (5.9)
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for which indeed holds δijQ
ij = 0. Doing so we obtain the result:

A(R1) = −
i

16 cd Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

(2π)
eik

0s 1

k2 + iϵ

∫︂
ddk

(2π)d

(︃
2 |k|4
15

Qij(t)Q
ij(t+ s)

+
|k|4
9
M(t)M(t+ s) +

2

3
|k|2(k0)2M(t)M(t+ s) + (k0)4M(t)M(t+ s)

)︃
+O

(︁
Lv6

)︁
+O(d− 3) .

(5.10)

Second ϕ̄ diagram

To evaluate the second diagram in figure 5.1 we have to recall the worldline-ϕ̄ radiation field
Feynman rule (A.91) and the worldline-ϕ̄

2
Feynman rule (A.93). The expression reads:

A(R2) =
ϕ̄

k1

ϕ̄

k2

=
2

2! 2!

∫︂
k1,k2

(︃
−i 1

Λ2

∫︂
dt1 e

−i(k01+k02)t1 m+O
(︁
GLv0

)︁)︃
×
(︃
i
1

Λ

∫︂
dt2 e

ik01t2 (−m) +O
(︂
G

1
2 Lv0

)︂)︃(︃ 1

2 cd

i

k21 + iϵ

)︃
×
(︃
i
1

Λ

∫︂
dt3 e

ik02t3 (−m) +O
(︂
G

1
2 Lv0

)︂)︃(︃ 1

2 cd

i

k22 + iϵ

)︃
(5.11)

If we perform the redefinition t = t1, s = t2 − t1 and u = t3 − t1 we obtain:

A(R2) = −i
1

8 c2d

1

Λ4

∫︂
dtm(t)

∫︂
dsm(t+ s)

∫︂
dk01
2π

eik
0
1s

∫︂
ddk1

(2π)d
1

k22 + iϵ⏞ ⏟⏟ ⏞
=IR(d,0,0)[m](t)

×
∫︂
dum(t+ u)

∫︂
dk02
2π

eik
0
2u

∫︂
ddk2

(2π)d
1

k21 + iϵ⏞ ⏟⏟ ⏞
=IR(d,0,0)[m](t)

+O
(︁
Lv6

)︁

= 0 +O
(︁
Lv6

)︁
;

(5.12)

where we recalled result (C.50), and we used again the fact that at leading order, in d = 3 dimension,
the total mass of the binary system is constant in time, i.e. dm

dt = 0.

Ā diagram

Using the worldline-Ā Feynman rule, derived in equation (A.101), and the propagator given by
(A.23), we obtain:

A(R3) =

i

j

Ā k =
1

2

∫︂
dd+1k

(2π)d+1

(︃
i

Λ

∫︂
dt1 e

−ik0t1
(︃
i

2
ϵiklkkLl(t1) +

1

2
k0M ik(t1)kk

)︃
+O

(︂
G

1
2 Lv

)︂)︂(︃
−δij

2

i

k2 + iϵ

)︃
×
(︃
i

Λ

∫︂
dt2 e

ik0t2

(︃
− i
2
ϵjmnkmLn(t2) +

1

2
k0M jm(t2)km

)︃
+O

(︂
G

1
2 Lv

)︂)︃
;

(5.13)
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where we point out that the Levi-Civita symbol ϵijk defined, as in Notation, is taken to be in d = 3
spatial dimension; just like the source multipole we’ve using here.

We can perform the change of variables t = t1 and s = t2 − t1, and as discussed before, drop the
angular momentum Lm, since it is a conserved quantity as well at the leading order, to obtain:

A(R3) = i
δij

16

1

Λ2

∫︂
dt1dt2

∫︂
dk0

2π
e−ik

0(t1−t2)
∫︂

ddk

(2π)d

(︂
k0Mik(t1)k

k
)︂

×
(︁
k0Mjm(t2)k

m
)︁(︃ 1

k2 + iϵ

)︃
+O

(︁
Lv6

)︁
= i

δij

16

1

Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

2π
eik

0sMik(t)Mjm(t+ s)

∫︂
ddk

(2π)d
(k0)2kkkm

k2 + iϵ
+O

(︁
Lv6

)︁
(5.14)

Performing the tensor decomposition, and then substituting Qij =Mij − 1
3δijM :

A(R3) = i
δij

16

1

Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

2π
eik

0sMik(t)Mjm(t+ s)
δkm

3

∫︂
ddk

(2π)d
(k0)2|k|2
k2 + iϵ

+O
(︁
Lv6

)︁
= i

1

16

1

Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

2π
eik

0s

∫︂
ddk

(2π)d

×
(︃
1

3
Qij(t)Qij(t+ s) +

1

9
M(t)M(t+ s)

)︃
(k0)2|k|2
k2 + iϵ

+O
(︁
Lv6

)︁
(5.15)

σ̄ diagram

In this case the Feynman rule for the worldline-σ̄ interaction vertex that we need is given by (A.112),
while the propagator is given by (A.30).

A(R4) =

ij

kl

σ̄ k =
1

2

∫︂
dd+1k

(2π)d+1

(︃
−i 1

4Λ

∫︂
dt1 e

−ik0t1(k0)2M ij(t1) +O
(︂
G

1
2 Lv

)︂)︃
×
(︃
1

2

i

k2 + iϵ

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃)︃
×
(︃
−i 1

4Λ

∫︂
dt2 e

ik0t2(−k0)2Mkl(t2) +O
(︂
G

1
2 Lv

)︂)︃
+O(d− 3) .

(5.16)
which also reads

A(R4) = −i
1

64Λ2

∫︂
dt1

∫︂
dt2

∫︂
dk0

2π
e−ik

0(t1−t2)
∫︂

ddk

(2π)d

(︃
(k0)4

1

k2 + iϵ

× M ij(t1) (−2δijδkl + δikδjl + δilδjk)M
kl(t2)

)︂
+O

(︁
Lv6

)︁
O(d− 3) .

(5.17)

Performing again the substitution Mij = Qij +
1
3δijM , and the needed tensor algebra, we find:

A(R4) = −i
1

16Λ2

∫︂
dt

∫︂
ds

∫︂
dk0

2π
eik

0s

∫︂
ddk

(2π)d
(k0)4

k2 + iϵ

×
(︃
1

2
Qij(t)Qij(t+ s)− 1

3
M(t)M(t+ s)

)︃
+O

(︁
Lv6

)︁
O(d− 3) .

(5.18)
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Sum of the leading order diagrams

We can now sum the result obtained in equations (5.10), (5.12), (5.15), (5.18) to obtain their
contribution to the final effective action Seff ({xµa}). At leading order then we find:

A(R,LO) = A(R1) +A(R2) +A(R3) +A(R4)

= −i 1

16Λ2

∫︂
dt

[︃(︃
1

30
Qij(t)IR(d,−2, 0)[Qij ] +

1

36
M(t)IR(d,−2, 0)[M ]

)︃
+

(︃
−1

3
Qij(t)IR(d,−1, 2)[Qij ] +

1

18
M(t)IR(d,−1, 2)[M ]

)︃
+

(︃
1

2
Qij(t)IR(d, 0, 4)[Qij ]−

1

12
M(t)IR(d, 0, 4)[M ]

)︃]︃
+O

(︁
Lv6

)︁
+O(d− 3) .

(5.19)

We can notice that all the terms proportional to the trace M(t) of the mass quadrupole moment
cancel each other, as we were expecting due to the results found in section 1.3.4.

We can then recall the IR(d, a, b)[f ](t) scalar integral (C.50), which we evaluated in appendix C.4,
to find:

A(R,LO) = A(R1) +A(R2) +A(R3) +A(R4)

= −i 1

16Λ2

∫︂
dt

[︃(︃
− 1

20π
Qij(t)

d5

dt5
Qij(t)

)︃
− i 1

20

∫︂
ddk

(2π)d
|k|3

×
(︂
e−i(|k|+k

0)tQij(k0)Qij(|k|) + ei(|k|−k
0)tQij(k0)Q∗

ij(|k|)
)︂]︂

+O
(︁
Lv6

)︁
+O(d− 3)

= −i
(︃
−G
10

∫︂
dtQij(t)

d5

dt5
(Qij(t))− i

π G

10

∫︂
ddk

(2π)d
|k|3

×
(︁
Qij(−|k|)Qij(|k|) + Qij(|k|)Q∗

ij(|k|)
)︁)︁

+O
(︁
Lv6

)︁
+O(d− 3)

= −i
(︃
−G
10

∫︂
dtQij(t)

d5

dt5
(Qij(t))− i

π G

5

∫︂
ddk

(2π)d
|k|3|Qij(|k|)|2

)︃
+O

(︁
Lv6

)︁
+O(d− 3)

(5.20)
where we used the fact that Qij(−k0) = Q∗ ij(k0) thanks to the the fact that Qij(t) is a real
quantity, and we defined |Qij(|k|)|2 ≡ Qij(|k|)Q∗

ij(|k|).
We can also notice that the real part of this expression is actually vanishing, since integrat-

ing by parts it holds
∫︁
dt dmf

dtm
dng
dtn = (−1)p

∫︁
dt d(m+p)f

dt(m+p)
d(n−p)g
dt(n−p) , and therefore

∫︁
dtQij(t)

d5Qij

dt5
(t) =

−
∫︁
dt d5Qij

dt5
(t)Qij(t) = 0. Since to compute the power loss we’re interested only in the imaginary

part, this isn’t a problem; yet at higher order one may have to employ the in-in formalism also in
these computations.

Power loss of the system

We’re now in the position to evaluate the power loss of the system, by recalling the optical theorem
(3.82) from section 3.2.4. In particular we can recognize the expression for differential decay width
Γ from the immaginary part of Seff , which we just found at leading order in (5.20):

Im(Seff [{xµa}]) = Im
(︁
−iA(R,LO)

)︁
=
πG

5

∫︂
ddk

(2π)d
|k|3|Qij(|k|)|2

=
G

40π2

∫︂
dΩ2

∫︂ +∞

0
dKK5|Qij(K)|2 .

(5.21)

To do so we first notice that K is the Fourier variable of the Q quantities, which we can equivalently
denote K = k0 = ω = E, where the last identity is due to the relation E = ωℏ which relates the
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angular frequency of the modes of the massless on-shell graviton to their energy, with ℏ = 1. Then
comparing equation (3.82) and (5.21) we can recognize the differential decay width to be:

d2Γ

dΩdω
=

1

T

G

20π2
ω5 |Qij(ω)|2 . (5.22)

We can then use the above result (5.22) in the formula (3.83) for the power loss of the system, to
finally find:

P =
1

T

G

20π2

∫︂
dΩ2⏞ ⏟⏟ ⏞
4π

∫︂ +∞

0
dω ω6 |Qij(ω)|2 = 1

T

G

5π

∫︂ +∞

0
dω ω6Qij(ω)Q∗

ij(ω)

=
1

T

G

5π

∫︂ +∞

0
dω

∫︂
dt

∫︂
dt′ ω6Qij(t)Qij(t

′) eiω(t−t
′)

=
1

T

G

5π

∫︂
dt

∫︂
dt′

...
Q
ij
(t)

...
Qij(t

′)
1

2

∫︂ +∞

−∞
dω eiω(t−t

′)⏞ ⏟⏟ ⏞
2π δ(t−t′)

=
G

5

1

T

∫︂
dt

...
Q
ij
(t)

...
Qij(t)⏞ ⏟⏟ ⏞

⟨
...
Q

ij
(t)

...
Q ij(t)⟩

=
G

5
⟨
...
Q
ij
(t)

...
Qij(t)⟩ ;

(5.23)

where we recognized the temporal average. We can see that this result agrees with the expression
(1.68) we found in linearized general relativity, as expected. The only exception is that here the
quantities are not explicitly evaluated at retarded time, but we may include this information ad
hoc since we would not expect otherwise. However in the computation of hereditary effects it may
be necessary to employ the in-in formalism all along to obtain the correct results.

5.2 Far away gravitational field and gravitational waveform

In order to evaluate the gravitational waveform, we can recall equation (3.86), which therefore
requires us to evaluate the vacuum expectation value of σ̄ij .

However, as we already pointed out in section 2.1.4, because we’re dealing with radiation gravitons,
and hence dissipative phenomena, in order to obtain correct and causal results we need to employ
the in-in formalism, similarly to references [202, 205, 206]. Yet in this section we’ll try to proceed
still in a kind of top-down approach, akin to [206], without resorting to symmetry argument to
build the radiation effective action; yet, contrary to [206], we’ll explicitly perform the evaluation in
the Kol-Smolkin parametrization.

In particular we’re interested in the vacuum-expectation value for the radiative σ̄ij mode, and in
the Keldysh representation of the in-in formalism it can be obtained via:

⟨σ̄ij(k0,k)⟩ =
δW

δJ ij− (k0,k) ⃓⃓
xa−=0,xa+=x,Ja±=0,Jij

±=0

. (5.24)

Then we have to compute the expression for the functional generator of the connected n-point
functions, W : to do so we can generalize equation (2.10). First of all we have to recognize that
the action that governs the dynamics of the σ̄ij field is given by (3.42), so S = Scons[{xµa}] +
Sradeff [{x

µ
a}, ϕ̄, Āi, σ̄ij ]; in the following with Scons we’ll actually understand the piece of the action

Scons =
∑︁

a S
kin
pp,a[x

µ
a ] + Scons[{xµa}] which is independent of the radiation modes.
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From such an expression for the action then we expect the generalization of the path integral (2.10)
to be

eiW = ei(Scons[{xµa,1}]−Scons[{xµa,2}])

× exp

(︄
i

(︄
Sint

[︄
{xµa,1},−

i δ

δJ ij1

]︄
− Sint

[︄
{xµa,2},

i δ

δJ ij2

]︄)︄)︄
Z0[J

ij
1 , J

ij
2 ] .

(5.25)

where Sint = Sradeff−S0 is the effective radiation action without the quadratic terms, and furthermore

we stress that there is a difference for the sign between σ̄1 ∼ − iδ
δJ1

and σ̄2 ∼ + iδ
δJ2

, as prescribed
by equation (2.11).

First of all we’re interested in computing the value of the free partition function Z0 in the in-in
formalism, such an quantity will be related to the generalization of theW functional restricted to the
free part of the action S0, which for a free scalar field was given by (2.13). To proceed we recognize
that the free term S0, quadratic in the σ̄ij field and which therefore prescribes its propagation, is
contained in the action Sradeff : this follows directly from the separation of the potential and radiative
modes σ̂ij → σij + σ̄ij that we performed in the gauge fixed Einstein-Hilbert action (3.35) using
the procedure explained in section 3.2.3.

Then, to find the free partition function Z0 for the tensor field σ̄ij , we’ll first evaluate it in the
usual in-out formalism: the explicit expression of the quadratic terms in the σ̄ij field, which give
the free action S0, following the discussion in appendix A.1 are given by formula (A.25):

S0[σ̄ij ] =
1

2

∫︂
dd+1k

(2π)(d+1)
σ̄kl(k)

⎛⎜⎜⎝−1

2
(δklδmn − 2δkmδln) k2⏞ ⏟⏟ ⏞

≡Dklmn
σ (k)

⎞⎟⎟⎠ σ̄mn(−k) ; (5.26)

from which follows that free generating functional Z0 is given by, similarly to the procedure carried
out in section 3.1:

Z0[J
ij ] ≡

∫︂
Dσ̄ij exp

(︃
iS0[σ̄] + i

∫︂
dd+1xJ ij(x)σ̄ij(x)

)︃
= exp

(︃
−1

2

∫︂
dd+1xdd+1y J ij(x)Dijkl(x− y) Jkl(y)

)︃ (5.27)

with, analogously to equation (A.29):

Dijkl(x− y) ≡
∫︂

dd+1k

(2π)d+1

1

2

i

k2 + iϵ

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃
. (5.28)

Then, in order to evaluate this same quantity in the in-in framework, we follow the procedure
outlined in section 2.1.4: we double the degrees of freedom σ̄ij → σ̄1,ij , σ̄2,ij and write the corre-
sponding path integral functional, analogously to (2.10), to obtain

Z0[J
ij
+ , J

ij
− ] ≡

∫︂
Dσ̄ij exp

(︃
i (S0[σ1̄]− S0[σ2̄]) + i

∫︂
dd+1x

(︂
J ij1 (x)σ̄1,ij(x)− J ij2 (x)σ̄2,ij(x)

)︂)︃
=

∫︂
Dσ̄ij exp

(︃
i (S0[σ1̄]− S0[σ2̄]) + i

∫︂
dd+1x

(︂
J ij+ (x)σ̄−,ij(x) + J ij− (x)σ̄+,ij(x)

)︂)︃
(5.29)

where in the second equality we switched to the Keldysh representation, according to equations
(2.12). Here the explicit expression for the difference of the actions is given by

S0[σ1̄]− S0[σ2̄] =
1

2

∫︂
dd+1k

(2π)(d+1)

(︂
σ−,kl(k)D

klmn
σ (k)σ+,mn(−k) + σ+,kl(k)D

klmn
σ (k)σ−,mn(−k)

)︂
(5.30)
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still with Dklmn
σ (k) ≡ −1

2(δ
klδmn − 2δkmδln) k2.

The free partition function (5.29) can then be evaluated proceeding by analogy with the result we
found for the scalar field (2.13), so employing the Keldysh indices A,B = ± we find [202]:

Z0[J
ij
+ , J

ij
− ] = exp

(︃
−1

2

∫︂
dd+1xdd+1y J ija (x)Dab

ijkl(x− y) Jklb (y)

)︃
(5.31)

where, comparing with equation (2.14), the matrix of two-point functions generalizes to [202]

DAB
ijkl(x− y) =

(︃
D++ D+−

D−+ D−−

)︃
=

(︃
0 −iDadv

−iDret
1
2 DH

)︃(︃
1

2

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃)︃
.

(5.32)

Then, in order to proceed with the evaluation of the path integral (5.25), we need also the expression
for the interaction terms Sint[{xµa}, ϕ̄, Āi, σ̄ij ] which are contained in the Sradeff [{x

µ
a}, ϕ̄, Āi, σ̄ij ] action;

actually we’ll need only the term linear in σ̄ij . To find it we proceed in a top-down manner, turning
at the matching procedure that we performed in appendix A.3: the far zone Feynman rule (A.112),
which reads

ij

σ̄ k
= i

1

4Λ

∫︂
dt e−ik

0t d
2M ij

dt2
(t) +O

(︂
G

1
2 Lv

)︂
+O(d− 3) , (5.33)

implies that the action for the far zone effective action contains a term, which produces the above
Feynman rule, of the kind:

Sint ⊃
1

4

∫︂
dt

d2M ij

dt2
σ̄ij(t,X)

Λ
(5.34)

where the radiation field doesn’t depend on the position x because we multipole expanded it about
the X point, which we actually took to be X = xCM = 0. In the following we’ll formally reinstate
the dependence of the σ̄ field on the position x, nonetheless in the end we’ll impose such position
to be equal to the position of the center of mass, so x = 0. Manipulating further the expression:

Sint =
1

4Λ

∫︂
dt

d2M ij

dt2
σ̄ij(t,x) =

1

4Λ

∫︂
dt

d2

dt2

(︃
Qij +

1

3
δijM

)︃
σ̄ij(t,x) (5.35)

where we exchanged the mass multipoleM ij for its traceless counterpart Qij , since the Λii,kl tensor
will project away the trace.

Returning to the expression of the path integral (5.25), we can switch to the Keldysh basis using
the fact that δ

δJij
1

= 1
2

δ

δJij
+

+ δ

δJij
−

and δ

δJij
2

= 1
2

δ

δJij
+

− δ

δJij
−
, to obtain:

Sint

[︄
{xµa,1},−

i δ

δJ ij1

]︄
− Sint

[︄
{xµa,2},

i δ

δJ ij2

]︄

= − i

4Λ

∫︂
dt

(︄
Q̈
ij
1 (t)

δ

δJ ij1
+ Q̈

ij
2 (t)

δ

δJ ij2
+
δij

3

(︄
M̈1(t)

δ

δJ ij1
+ M̈2(t)

δ

δJ ij2

)︄)︄

= − i

4Λ

∫︂
dt

(︄
Q̈
ij
+(t)

δ

δJ ij+
+ Q̈

ij
−(t)

δ

δJ ij−
+
δij

3

(︄
M̈+(t)

δ

δJ ij+
+ M̈−(t)

δ

δJ ij−

)︄)︄
,

(5.36)
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where we used the results

Qij+(t) ≡
1

2

(︂
Qij1 (t) +Qij2 (t)

)︂
=
∑︂
a

ma

⎛⎜⎜⎜⎜⎝xia+xja+ − 1

3
δij |xa+|2 +

1

4

(︃
xia−x

j
a− −

1

3
δij |xa−|2

)︃
⏞ ⏟⏟ ⏞

O(x2−)

⎞⎟⎟⎟⎟⎠
(5.37a)

Qij−(t) ≡ Qij1 (t)−Qij2 (t) =
∑︂
a

ma

(︃
xia−x

j
a+ + xia+x

j
a− −

2

3
δij(xa− · xa+)

)︃
, (5.37b)

which are consistent with the one reported in reference [202], and as they argue, we’ll neglect the
O
(︁
x2−
)︁
terms because they represent the perturbation of the trajectories of the compact objects

due to quantum fluctuations of the radiation graviton field. Furthermore, even thought we expect
the trace M to not contribute to the gravitational waveform, for completeness we defined:

M+(t) ≡
1

2
(M1(t) +M2(t)) =

∑︂
a

ma

(︃
|xa+|2 +

1

4
|xa−|2

)︃
, (5.38a)

M−(t) ≡M1(t)−M2(t) = 2
∑︂
a

ma (xa,− · xa,+) . (5.38b)

We’re now in a position where we can evaluate the sought-after expectation value (5.24) for the
σ̄ij field. In particular, since W = −i log

(︁
eiW

)︁
, the piece depending only on Scons[{xµa}] doesn’t

give any contribution once we perform the function derivative with respect to J−, while it suffices
to consider the linear O(σ̄) part for the exponential of expression (5.36). In fact, quadratic terms

or higher in σ̄, that originate from the exp

(︃
i

(︃
Sint

[︃
{xµa,1},− i δ

δJij
1

]︃
− Sint

[︃
{xµa,2}, i δ

δJij
2

]︃)︃)︃
term of

the path integral (5.25), we’ll give a vanishing contribution once we take the needed functional
derivatives with respect to the J− source and set the sources to zero. Therefore from (5.36) follows:

eiW [...] = ei(Scons[{xµa,1}]−Scons[{xµa,2}])

×
(︄
1 +

1

4Λ

∫︂
dt

(︄(︃
Q̈
ij
+(t) +

δij

3
M̈+(t)

)︃
δ

δJ ij+
+

(︃
Q̈
ij
−(t) +

δij

3
M̈−(t)

)︃
δ

δJ ij−

)︄)︄
Z0[J

ij
+ , J

ij
− ] .

(5.39)
and finally

⟨σ̄ij(x)⟩ =
δW

δJ ij− (x) ⃓⃓
xa−=0,xa+=x,Ja±=0,Jij

±=0

=

(︄
−i e−iW [...] δe

iW [...]

δJ ij− (x)

)︄
⃓⃓
xa−=0,xa+=x,Ja±=0,Jij

±=0

= − i

4Λ

∫︂
dt′
(︃(︃

Q̈
kl
+(t

′) +
δkl

3
M̈+(t

′)
)︃

δ

δJkl+ (w)
+

(︃
Q̈
kl
−(t

′) +
δkl

3
M̈−(t′)

)︃
δ

δJkl− (w)

)︃
× δ

δJ ij− (x)
exp

(︃
−1

2

∫︂
dd+1ydd+1z JmnA (y)DAB

mnop(y − z) JopB (z)

)︃
.

(5.40)

Recalling the two-point function matrix (5.32), we can see that in this computation the δ2

δ2Jij
−

term will yield a term D−−, which is proportional to the Hadamard two-point function (2.16c);

nonetheless this term is coupled to Q̈
kl
− + δkl

3 M̈− (quantities defined in expressions (5.37b) and
(5.38b)): we can see that in the end such term will vanish due to the xa− = 0 Schwinger-Keldysh
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condition. Therefore we find:

⟨σ̄ij(x)⟩ =
i

8Λ

∫︂
dt′
(︃(︃

Q̈
kl
+(t

′) +
δkl

3
M̈+(t

′)
)︃

δ

δJkl+ (w)

)︃
×
∫︂
dd+1y

(︂
D−+
ijmn(x− y) Jmn+ (y) + Jmn+ (y)D+−

mnij(y − x)
)︂
+O(x−)

= − 1

8Λ

∫︂
dt′
(︃
Q̈
kl
+(t

′) +
δkl

3
M̈+(t

′)
)︃

× (Dret(x− w) +Dadv(w − x))
(︃
1

2

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃)︃
+O(x−)

= − 1

8Λ

∫︂
dt′
(︃
2 Q̈+,ij(t

′)− 4 δij
3(d− 2)

M̈+(t
′)
)︃
Dret(x− w) +O(x−) ;

(5.41)

where we used the fact that Dadv(x− y) = Dret(y − x) and that 1
2

(︂
− 2
d−2δijδkl + δikδjl + δilδjk

)︂
is

symmetric under the ij ↔ kl exchange.

Finally we impose the Schwinger-Keldysh conditions, setting to zero x− and all the sources. Then,
we make explicit x = (t,x) for the position of the observer, and w = (t′,0) for the position
of the center of the multipole expansion we performed in the radiation effective theory; doing
so, and recalling from reference [202] that for the retarded propagator it holds Dret(t − t′,x) =

−θ(t− t′) δ(t−t′−|x|)
4π|x| , in d = 3 we obtain:

⟨ σ̄ij
Λ

(t,x)⟩ = 2G

|x|

(︃
Q̈ij(t− |x|)−

2 δij
3
M̈+(t− |x|)

)︃
(5.42)

Finally, recalling formula (3.86), and from section section 1.3.2 the property according to which
the Λij,kl tensor projects away the trace of any spatial symmetric tensor, we can find the waveform
as seen from a far away observer in position x (and so with n = x

|x| the direction of propagation of

the gravitational wave, approximated as a plane wave):

hTTij (t,x) = −2GΛij,kl (n̂)
Q̈
kl
(t− |x|)
|x| . (5.43)

We may notice that this result is consistent with formula (1.62) we found in linearized general
relativity, once we reinstate the c factors, we recognize that |x| = r and take into account the
opposite sign of the metric, which requires considering the opposite of hµν tensor, hµν ↔ −hµν .
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CHAPTER

6 POST-NEWTONIAN COR-
RECTIONS TO OBSERVABLES

The goal of this chapter is to evaluate the post-Newtonian corrections to the physical observables,
such as the gravitational waveform potentially observable by gravitational wave detectors, starting
from the results we obtained in chapter 4 and 5, and complementing them with known results from
the literature; see also references [36, 103, 260, 272].

In particular in section 6.1 we evaluate several observables, such as the energy of the binary sys-
tem and its power loss, and its orbital phase. This quantities will be useful to evaluate the full
gravitational waveform: then in section 6.2 we will summarize the results, reporting the analytical
expression for the gravitational waveform, both in time and frequency domain.

Let us recall from the Notation that in this chapter we’ll switch back again to the mostly plus
metric, as it is customary in the literature about gravitational waves observations; moreover in
some expression we’ll reinstate the factors of c to aid their numerical evaluation.

6.1 Post-Newtonian corrections to the binary dynamics

We’re now interested in understanding how we can employ the results we obtained in chapters 4 and
5 in order to evaluate the gravitational waveform, as seen by a far away observer. In particular we

are interested in obtaining the explicit expression for the h
(TT )
ij perturbation of the metric tensor,

since this is what in the end is measured by gravitational wave observatories (opportunely projected
onto the detector tensor, see section 1.5.1 and equation (1.108)).

We recall so that in section 3.2.5 we have already shown how we may directly evaluate the h
(TT )
ij

perturbation of the metric tensor in our EFT formalism; and in fact we obtained its leading order
expression in section 5.2, i.e. equation (5.43). However that expression is still an explicit function
of the multipole moments of the source, since Qij is the traceless part (5.9) of the mass quadrupole

moment which we defined in (3.67e). Then to evaluate the waveform h
(TT )
ij we need the explicit

expressions for the positions xa(t) of both compact objects a = 1, 2 as a function of the time
variable t of the asymptotic observer.

In principle in section 3.2.5 we have already outlined how one would go on to evaluate the positions
xa(t), so equivalently the dynamics of the binary: once we integrate out all the gravitational degrees
of freedom, performing the whole procedure outlined in chapter 3, we’re left with the effective action
Seff [{xµa}] (formally given in equation (3.63)) which is a function only of the worldline of the
compact bodies, so of their positions xa(t). Then we can employ the (generalized) Euler-Lagrange
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146 Chapter 6 — Post-Newtonian corrections to observables

equation of motions (3.76) to obtain the differential equations which prescribe the motion of the
two compact objects; the solution of these differential equation will be exactly the positions xa(t)
that we needed, explicitly expressed as a function of time. With this result finally we can directly
evaluate the mass quadrupole moment (3.67e) and any other higher multipole moments, obtaining

the explicit sought-after expression for h
(TT )
ij (t), as a function of time. Let us notice that to apply

the previous construction we would have to employ the in-in formalism when evaluating diagrams
in the radiation effective theory, otherwise we would obtain non-causal dynamics, as we’ve discussed
in chapter 5.

6.1.1 Quasi-circular orbit approximation and energy balance equation

The above construction, while being completely general, is however quite involved: in fact the
resulting differential equations may be too complicated to be solved analytically, and so we would
have to resort to numerical methods.

Nonetheless, recalling also the discussion of section 1.4.3, it is expected that compact binary sys-
tems will have circularized to a really high degree by the time their signal will be detectable in
gravitational wave observatories [36, 103, 273]. We can then employ the adiabatic, quasi-circular
orbits approximation. Doing so in fact the dynamics of the system will be completely determined
by the energy balance equation:

dE

dt
= −F , (6.1)

where E is the invariant energy of the compact binary, and F the total energy flux, also denoted as
gravitational wave luminosity [273]. In particular the former follows form the conservative dynamics
of the system, while the latter is related to the dissipative effects; we’ll evaluate these quantities
below. The above relation is based on the assumption that any amount of energy lost by the system
per unit time is simply radiated away as gravitational waves; in particular we will employ this first
order differential equation to compute the evolution of the orbital frequency of the binary system,
for example as a function of time.

Let us notice that at higher post-Newtonian orders the radiation effective theory will produce also
conservative corrections, so will modify also the expression of the binding energy E of the binary
system. Actually, as pointed by references [65, 180], at higher order it may not be possible to
clearly distinguish conservative contributions from dissipative ones, for example when considering
the non-linear memory terms which are due to self-interactions between gravitational waves [180]:
then to obtain unambiguous results it may be necessary to evaluate the actual full equations of
motion, accounting directly for radiation-reaction effects [180, 257].

Furthermore let us notice that gravitational waves carry away also angular momentum and linear
momentum from the binary systems. In fact, after the coalescence, the newly formed compact
object may get a quite strong kick due to the recoil induced by an asymmetrical emission of
gravitational waves; despite this being an higher post-Newtonian correction [256, 274]. Therefore
also the angular and linear momentum, which are first integrals of the conservative Lagrangian,
evolve in time when one accounts for dissipative effects.

Definition of customary parameters

In order to obtain more compact expression, and also to improve the numerical stability when
evaluating them, it’s useful and customary to introduce some dimensionless variables [36, 103].

First of all we’ll trade the masses m1 and m2 of the binary for the reduced mass µ ≡ m1m2
(m1+m2)

and
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for the dimensionless symmetric mass ratio

ν ≡ µ

m
=

m1m2

(m1 +m2)2
: (6.2)

with m = m1+m2 the total mass of the system. The symmetric mass ratio ν is particularly useful
as it assumes values only in the range ν ∈ (0, 14 ], and in particular ν = 1

4 for equal mass systems
(m1 = m2), and ν → 0 in the test particle limit.

Then we introduce the customary post-Newtonian dimensionless parameter [36, 103]

x ≡
(︃
Gmω

c3

)︃ 2
3

=

(︃
Gµω

νc3

)︃ 2
3

, (6.3)

where ω is the orbital frequency, and x = O
(︁
v2
)︁
according to the post-Newtonian scaling; fur-

thermore this frequency-dependent x parameter is invariant in the coordinate systems which are
asymptotically flat at infinity [275]. Furthermore in the following, to avoid ambiguities, we’ll define

ϵ = O
(︁
v2
)︁
≪ 1 as the PN expansion parameter, so v = O

(︂
ϵ
1
2

)︂
and G = O(ϵ).

Adopting these definitions then the energy balance equation (6.1) can be recast as:

dx

dt

dE(x)

dx
= −F(x) =⇒ dx

dt
= − F(x)(︂

dE(x)
dx

)︂ . (6.4)

Hence we see that in the approximation of quasi-circular orbits the knowledge of the expression
E(x) and F(x) are enough to determine the dynamics of the system (i.e. the evolution of the
dimensionless orbital frequency x as a function of time).

Next we introduce as well the dimensionless time variable [36, 103]

Θ ≡ νc3

5Gm
(tc − t) =

ν2c3

5Gµ
(tc − t) , (6.5)

where tc denotes the time of coalescence, at which the frequency will tend toward infinity.

Sometimes then energy balance equation (6.4) is recast also as a function of this dimensionless time
variable Θ, by noticing that from equation (6.5) follows dt

dΘ = −5Gµ
ν2

. Therefore:

dx

dΘ
=

dt

dΘ

dx

dt
=

(︃
−5Gµ

ν2

)︃(︄
− F(Θ)(︁

dE
dx

)︁
(Θ)

)︄
. (6.6)

In the following then we’ll be first concerned with obtaining the expression for the center-of-mass
energy E(x) and the flux F(x) of the binary system as a function of the dimensionless frequency
x; and only in the end we’ll obtain also the time-domain evolution for the system.

6.1.2 Binding energy of the binary system

We’re now interested in evaluating the center-of-mass energy E of the binary system, which we
take to include both the kinetic energy and potential energy of the system: this would then be
equivalent to the total energy of the system once we add the rest energy of the two compact bodies,
and the energy contained in their excited modes and spin degrees of freedom, if any.

To find E then we’ll use the procedure outlined in section 3.2.5, and in particular we will evaluate the
center-of-mass Hamiltonian for the system as given by relation (3.80). Actually strictly speaking
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the Lagrangian and the Hamiltonian are not gauge invariant quantities per se: nonetheless the
Hamiltomian is related to the total energy of the binary system, and this is a gauge invariant
quantity when written as a function of the orbital frequency [259].

To perform the Legendre transform then we need the conservative Lagrangian of the binary system:
this is exactly the quantity which we evaluated in section 3.3 and chapter 4, up to 2PN order. Its
expression in harmonic gauge, given by the kinetic minus the potential contributions L = T −V , is
therefore given by the algebraic sum of the 0PN contribution (3.96), the 1PN contributions (4.22)
and (4.20), and the 2PN contributions (4.56) and (4.57). Explicitly we find:

L =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

8
m1v

4
1 +

1

8
m2v

4
2 +

1

16
m1v

6
1 +

1

16
m2v

6
2

+
G3m1m2

2r3
(︁
m2

1 + 6m1m2 +m2
2

)︁
+
G2m1m2

4r2
(︁
−2m1 − 2m2 + 8m1v

2
1 + 7m2v

2
1 + 7m1v

2
2 + 8m2v

2
2

−14(m1 +m2)(v1 · v2) + 2m2(v1 · r̂)2 + 2m1(v2 · r̂)2
)︁

+
Gm1m2

8r

(︁
8 + 12v21 + 7v41 + 12v22 + 3v21v

2
2 + 7v42 + 15r2(a1 · a2)− rv21(a2 · r̂)

− 28(v1 · v2)− 10v21(v1 · v2)− 10v22(v1 · v2) + 2(v1 · v2)
2

+ 14r(a2 · v1)(v1 · r̂)− 12r(a2 · v2)(v1 · r̂)− v22(v1 · r̂)2 + r(a2 · r̂)(v1 · r̂)2
+ 12r(a1 · v1)(v2 · r̂)− 14r(a1 · v2)(v2 · r̂)− 4(v1 · r̂)(v2 · r̂)
− 6v21(v1 · r̂)(v2 · r̂)− 6v22(v1 · r̂)(v2 · r̂) + 12(v1 · v2)(v1 · r̂)(v2 · r̂)
−v21(v2 · r̂)2 + 3(v1 · r̂)2(v2 · r̂)2 − r(a1 · r̂)

(︁
−v22 + r(a2 · r̂) + (v2 · r̂)2

)︁)︁
+O

(︁
Lv6

)︁
.

(6.7)

As already discussed in the above expression there should be also the term δL = −m1−m2, coming
from the expansion of the action (3.34b), however we neglected it since it represents the rest mass
energy of the two compact objects, as can be seen by taking the Legendre transform to obtain the
Hamiltonian.

Higher order time derivatives

As we can notice from result (4.56), starting from the 2PN order the Lagrangian presents time
derivatives of the position of the compact objects higher than the velocities, as for example the
accelerations a1 and a2 are explicitly present in the Lagrangian 6.7.

A workaround could be to reduce the order of these time derivatives by substituting them with their
corresponding expression as prescribed by the equations of motion: for definiteness, by evaluating
the Euler-Lagrange equations from the 0PN or 1PN Lagrangian, we would find a relation of the
kind a1 = f(v,x), which we could then substitute in (6.7) to remove the accelerations. Nonetheless
doing so would entail a redefinition of the variables, which means a change in gauge [235, 259, 276,
277]. In fact it has been shown that in harmonic coordinates (which we’re employing), starting
from 2PN, it’s not possible anymore to have a Lagrangian L which doesn’t contain accelerations
[256]; therefore using the equation of motions or performing a coordinate shift to perform an order
reduction will be equivalent to changing gauge, for example going into ADM-like coordinates [256,
276, 277].

What we can do instead is to employ the generalized Euler-Lagrange equations that we already
introduced in equation (3.76), and a generalization of the Legendre transform. The only caveat is
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that, in order to do so, the Lagrangian must be at most linear in the higher derivatives. When this
is not the case, we can proceed by adding suitable terms to the Lagrangian: such terms must not
contribute to the equations of motions (so to not modify the observable), yet they can remove the
problematic dependence of the Lagrangian on the higher order time derivatives.

This is in fact the case with our expression (6.7): here we have to recast in a different form the
term +15r2(a1 · a2), which is quadratic in the acceleration, in order to recover a Lagrangian linear
in the acceleration. This can be accomplished with the addition of double-zero terms, which are
terms that vanish at the current PN order when using the lower PN equations of motions: adding
them modifies the expression of the Lagrangian, but does not change the equation of motion nor
the gauge [235]. In particular we can add

δL = −15

8
Gm1m2r

(︃(︃
a1 +

Gm2

r3
r

)︃
·
(︃
a2 −

Gm1

r3
r

)︃)︃
(6.8)

to the Lagrangian (6.7) to remove the aforementioned term quadratic in the acceleration.

Before proceeding further with the evaluation of the Hamiltonian, it is however useful to simplify
the problem by exploiting its symmetry, so by moving to the center of mass frame and using polar
coordinates. Actually it should already be possible to obtain the binding energy of the system also
by evaluating the Noether charge of the conservative Lagrangian associated to the time translations;
for example this procedure is performed in reference [257].

Center of mass frame and polar coordinates

To simplify the problem it is useful to first move to the center of mass frame. Next, since we consider
spinless compact objects, and so the normal to the orbital plane does not undergo precession, then it
will be useful to parametrize the motion of the bodies in that plane by employing a polar coordinate
system.

In the following then we will perform a change of the dynamical coordinates, going to the center
of mass frame, so (x1,x2) −→ (xCM , r). In particular we employ the usual definition (3.97) for the
orbital separation r = x1 − x2 in harmonic gauge, and we define the position of the center of mass
to be:

xCM =
m1x1 +m2x2

m
. (6.9)

Additionally, to further simplify the problem, we will take the center of mass to coincide with the
origin of the coordinate frame, so xCM = 0.

We have to point out however that we may expect the condition (6.9), which singles out the center
of mass frame from all the generic harmonic coordinate frames, to be modified at higher PN orders
[257]. In fact when dealing with generic motion one should define the position of the center-of-mass
frame by evaluating the linear momentum of the system as a Noether charge, and then imposing

such linear momentum to vanish. So for example the quantity Gi (actually G̃
i
) of references [257,

275] is the expression for the position of the center-of-mass as evaluated in a generic frame in
harmonic coordinates: then imposing Gi = 0 perturbatively produces a series of corrections to
expression (6.9). In practice for example, only under the assumptions of quasi-circular orbits, the
expressions for the position x1 of the first compact body, as evaluated in the center of mass frame,
simplifies to [36, 256] x1 =

µ
m1

r
(︁
1 +O

(︁
v4
)︁)︁
. Observing the Lagrangian (6.7) we would expect this

O
(︁
v4
)︁
correction to enter via the leading order kinetic term from the Newtonian Lagrangian (3.93):

yet to obtain the 2PN result for the binding energy, using the procedure outlined in the following,
we found that imposing the constraint (6.9) was sufficient. Given this discrepancy we may cast
a doubt on our intermediate steps, in particular when we’re not imposing the quasi-circular orbit
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approximation. Hence following the procedure presented in references [36, 256, 257, 275] would be
advisable.

Nonetheless proceeding with the procedure we outlined in this chapter, since we’re considering
spinless compact objects, there will be no precession of the orbital plane [278]: therefore we can
parametrize the relative separation r between the two compact objects with a spherical coordinate
system r = r(r, ϕ, θ); as shown in figure 1.4, with r = rn̂, but the with the ϕ angle redefined as
ϕ −→ π

2 − ϕ, such that now ϕ is vanishing when r points along the x axis. Doing so we find the
angle θ to be a cyclical coordinate, to which is associated a Noether charge and which does not
contribute to the dynamics of the system, so in practice we can neglect it.

We can therefore simply parametrize the two dimensional orbital plane in polar coordinates (r,
ϕ) and using the orthonormal vectors (r̂, ϕ̂), whose three dimensional cartesian coordinates read
r̂ = (cos(ϕ), sin(ϕ), 0) and ϕ̂ = (− sin(ϕ), cos(ϕ), 0). Then, taking r to be the relative separation
between the two compact objects, and defined

ω ≡ dϕ

dt
, α ≡ dω

dt
, (6.10)

it holds:

r = r r̂ , v = ṙ r̂+ ωr ϕ̂ , a = (r̈ − ω2r) r̂+ (2ωṙ + αr) ϕ̂ ; (6.11)

and also the following identities hold:

(v · r̂) = ṙ , (a · r̂) = r̈ − ω2r , (a · v) = ṙ(r̈ − ω2r) + ωr(2ωṙ + αr) . (6.12)

Finally, applying all of the aforementioned procedure to Lagrangian (6.7) we find:

L =
µ

16ν3r3
(︁
2G3µ3(31ν + 4) + 4G2µ2νr

(︁
7(1− 2ν)r2ω2 + 15νrr̈ + (9− 5ν)ṙ2 − 2

)︁
+ 2Gµν2r2

(︁
−26ανr3ṙω + 2ṙ2

(︁
4ν + (7− 2ν(ν + 14))r2ω2 − 13νrr̈ + 6

)︁
+ r2

(︁
(ν(ν + 18)− 7)

(︁
−r2

)︁
ω4 + ω2(4ν + ν(−r)r̈ + 12) + νr̈2

)︁
+ (7− 12ν)ṙ4 + 8

)︁
+ ν3r3

(︁
r2ω2 + ṙ2

)︁ (︁
(5(ν − 1)ν + 1)r4ω4 + 2(1− 3ν)r2ω2

+2ṙ2
(︁
−3ν + (5(ν − 1)ν + 1)r2ω2 + 1

)︁
+ (5(ν − 1)ν + 1)ṙ4 + 8

)︁)︁
.

(6.13)

Legendre transform and energy of the binary system

We may now obtain the expression for the energy of the binary system by evaluating the Hamilto-
nian corresponding to the Lagrangian (6.13).

To do so we have to generalize the definition of the Legendre transform (3.80). In particular,
following refernce [257], we may define the generalized conjugate momenta:

p =
δL

δv
≡ ∂L

∂v
− d

dt

(︃
∂L

∂a

)︃
, (6.14a)

q =
δL

δa
≡ ∂L

∂a
. (6.14b)

From them it is possible to derive the generalized Hamiltonian, i.e. the conserved energy E, via
[257]:

E = (p · v) + (q · a)− L (6.15)
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In our case, recalling equation (6.11), since we’ve employing a polar coordinate frame, the general-
ized coordinates now are (r, ϕ); therefore the generalized velocity is v = (ṙ, ω), and the generalized
acceleration a = (r̈, α). Hence specializing equation (6.14) to our case we have:

pr =
∂L

∂ṙ
− d

dt

(︃
∂L

∂r̈

)︃
, (6.16a)

qr =
∂L

∂r̈
. (6.16b)

pϕ =
∂L

∂ω
− d

dt

(︃
∂L

∂α

)︃
, (6.16c)

qϕ =
∂L

∂α
. (6.16d)

where the explicit expression of L is given by (6.13). Then the Hamiltonian, so the energy of the
system, is given by:

E = pr ṙ + qr r̈ + pϕ ω + qϕ α− L . (6.17)

Perfoming the evaluation, explicitly we find:

E =
µ

16ν3r3
(︁
−2G3µ3(31ν + 4) + 4G2µ2νr

(︁
7(1− 2ν)r2ω2 + (10ν + 9)ṙ2 + 2

)︁
+ 2Gµν2r2

(︁
2ṙ2
(︁
4ν − 3(ν(2ν + 19)− 7)r2ω2 − νrr̈ + 6

)︁
− 2νr2ṙ(12αrω +

...
r )

+r2
(︁
−3(ν(ν + 18)− 7)r2ω4 + 4ω2(ν + 6νrr̈ + 3) + νr̈2

)︁
+ (21− 36ν)ṙ4 − 8

)︁
+ ν3r3

(︁
r2ω2 + ṙ2

)︁ (︁
5(5(ν − 1)ν + 1)r4ω4 + 6(1− 3ν)r2ω2

+2ṙ2
(︁
−9ν + 5(5(ν − 1)ν + 1)r2ω2 + 3

)︁
+ 5(5(ν − 1)ν + 1)ṙ4 + 8

)︁)︁
.

(6.18)

Nevertheless, since we’re assuming circular orbits, the orbital decay ṙ would be vanishing if not
for the power loss due to gravitational wave emission, which however, as we’ve seen, first enters at
2.5PN contributions. This implies that ṙ = O

(︁
v5
)︁
, and from this follows as well that the velocity

in (6.11) reduces to v =
√︁
ṙ2 + ω2r2 = ωr +O

(︁
v9
)︁
[275].

Then, for the precision we’re aiming for, we can restrict the result (6.18) to the case of circular
orbits only, hence imposing ṙ = 0 + O

(︁
v5
)︁
, and also any higher time derivative of r to vanish.

Doing so we find the simplified expression for the energy:

E =
µ

16ν3r3
(︁
4G2µ2νr

(︁
7(1− 2ν)r2ω2 + 2

)︁
− 2G3µ3(31ν + 4) + 2Gµν2r2

(︁
−3(ν(ν + 18)− 7)r4ω4

+4(ν + 3)r2ω2 − 8
)︁
+ ν3r5ω2

(︁
5(5(ν − 1)ν + 1)r4ω4 + 6(1− 3ν)r2ω2 + 8

)︁)︁
.
(6.19)

Energy as a function of the post-Newtonian parameters

Since as we’ve already said we’re interested in the energy E(x), so written as a function of x,
the last step we have to perform is to rewrite both the modulus of the relative separation r and
the orbital frequency ω as a function of the dimensionless post-Newtonian x parameter, which we
defined in (6.3).

In particular to obtain the expression for ω(x) it suffices to invert that relation, so

ω(x) =
ν c3

Gµ
x

3
2 . (6.20)
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Then we could use such a relation to obtain r(x), if we could find an expression which relates r
and ω. This in fact can be done, for example by proceeding as in reference [260], so by evaluating
the equation of motion for the r variable under the circular orbit condition.

To obtain this equation of motion for the r variable we can apply the generalized Euler-Lagrange
equations, which we introduced in equation (3.76), on the Lagrangian (6.13) with q = r:

− d2

dt2

(︃
∂L

∂r̈

)︃
+

d

dt

(︃
∂L

∂ṙ

)︃
− ∂L

∂r
= 0 . (6.21)

Imposing then the conditions of circular orbit, so ṙ and higher derivative to be vanishing, and also
α = 0 and higher derivative of ω to be vanishing, we find:

0 = µ

(︃
−3G3µ3(31ν + 4)

νr
+ 8G2µ2 +Gµνr

(︁
3r4
(︁
−
(︁
(ν(ν + 18)− 7)ω4

)︁)︁
+4(ν + 3)r2ω2 − 8

)︁
+ ν2r4ω2

(︁
3(5(ν − 1)ν + 1)r4ω4 + 4(1− 3ν)r2ω2 + 8

)︁)︁
.

(6.22)

At this point we can substitute the ω(x) relation we found in (6.20) into expression (6.22), and
solve the equality iteratively to obtain r(x), order by order in x.

So to solve iteratively equation (6.22) (where we already replaced ω → ω(x)), recalling the dis-
cussion written below equation (6.3), we introduce an auxiliary ϵ ∼ O

(︁
v2
)︁
parameter to keep

track of the PN order of each term. In particular it holds x = O(ϵ), and due to the PN scal-
ing rules, also G = O(ϵ); therefore in the expression we’ll send x → ϵ x and G → ϵG. We can
then expand the expression so obtained in Taylor series around ϵ = 0, finding at leading order
ϵ(G4µ4νr − c6Gµν4r4x3) = 0; which we can solve keeping the only non vanishing real solution

r(x) =
Gµ

c2ν

1

x
. (6.23)

This result is consistent with what we were expecting: in fact from relation (6.20), from the virial
theorem v2 = Gm

r and from the quasi-circular orbit relation v = ωr+O
(︁
v9
)︁
we could have concluded

that at leading order it must hold r ∼
(︂
Gµ
νc2

)︂
1
x .

We proceed then by looking for the 1PN correction (i.e. order O(ϵ)) to such an expression, by
making the ansatz

r =
Gµ

c2ν

1

x
(1 + a1 ϵ) (6.24)

and substituting it into the previous expression. We can perform once again the Taylor expansion
around ϵ = 0, keeping the leading order term, and solving for the placeholder coefficient a1, to find
a1 = (ν3 − 1)x. Finally making the ansatz

r =
Gµ

c2ν

1

x

(︂
1 +

(︂ν
3
− 1
)︂
x ϵ+ a2 ϵ

2
)︂
, (6.25)

and proceeding analogously to before, we find a2 = 1
36ν(4ν + 171)x2, which scales like x2, as

expected. Since the expression we’re using is valid only at 2PN, we cannot proceed further. To
finish instead we can just set the auxiliary parameter to ϵ = 1 to obtain:

r(x) =
Gµ

c2ν

1

x

(︂
1 +

(︂ν
3
− 1
)︂
x+

ν

36
(4ν + 171)x2 +O

(︁
x3
)︁)︂

. (6.26)

Om a side note, if instead of replacing ω → ω(x) at the start of the previous procedure we went on
by expanding in ω2, then we would have found also the following relation:

ω2(r) =
Gµ

νr3

(︃
1 +

Gµ

νrc2
(ν − 3) +

G2µ2

4ν2r2c4
(ν(4ν + 41) + 24) +O

(︃
G3µ3

r3

)︃)︃
. (6.27)
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Returning to the main topic, having found relation (6.26), and recalling equation (6.20) as well, we
can now substitute them into the expression (6.19) for the energy, Taylor expanding then in the
parameter x around x = 0, and keeping all the contributions up to 2PN, to find:

E(x) = −c
2 µx

2

(︃
1− 1

12
(9 + ν)x− 1

24
(81− 57ν + ν2)x2 +O

(︁
x3
)︁)︃

. (6.28)

This is exactly the result for the energy of the binary system, written as a function of the di-
mensionless frequency x, which we were looking for. Moreover this result (6.28) is in complete
agreement with the one reported in references [36, 103]; let us also notice that in the literature this
result is currently known to a much higher PN order, as already discussed.

6.1.3 Power loss of the binary system

Similarly to what we have just done for the energy of the binary system, we can express the energy
flux F as a function of the dimensionless frequency x.

As already discussed in chapter 3, we can directly evaluate the flux F in our EFT construction. In
fact we did so in section 5.1, finding the leading order result (5.23):

F =
G

5 c5
⟨
...
Q
ij
(t)

...
Qij(t)⟩ , (6.29)

where the angled brackets denote a temporal average.

Let us also notice again that this is the same result (1.68) which we found also in linearized general
relativity. Therefore, since in practice in section 1.4.2 we performed same procedure, albeit only at
leading order, which we have just performed in section 6.1.2, then we can directly recall result (1.78),
taking care of redefining ω −→ 2ω, since there it was the quadrupole frequency of the gravitational
wave instead of the source. Therefore, using also relations (6.20) and (6.26), at leading order we
find:

F =
32

5

c5 ν2

G
x5 +O

(︁
x6
)︁
. (6.30)

Let us also notice that we chose the center of mass frame when we evaluated the multipoles entering
in the computation of the power loss: then to be consistent this center of mass frame should coincide
with the one we employed in the previous section 6.1.2. In practice then one may define the center
of mass by actually imposing the dipole multipole to be vanishing. Nevertheless also in this case, at
higher PN order, we expect the expressions for the multipoles to be corrected: as an example the
mass should be substituted by the total energy, which takes into account also the binding energy
of the system.

Another point is that in this work we have evaluated the Lagrangian for the binary system up to
2.5PN order: this means that we have evaluated the conservative sector (so the binding energy
(6.28)) up to 2PN, but the dissipative sector only to 0PN relative order (so the power loss (6.30)
only to leading order). Then, since the energy balance equation (6.6) requires a ratio of these two
quantities, in order to be able to obtain the 2PN accurate expression for the phase of the binary
system, and so for the phase of the waveform, then we’ll need also the PN corrections to the power
loss up to 2PN. In reality these results are known to even higher order in the literature; still we
will report the expression up to 2PN order for the emitted flux, so the power lost from the binary
system due to gravitational waves emission, as given in references [36, 103]:

F(x) =
(︃
32ν2

5G

)︃
x5+

(︃
32ν2

5G

(︃
−35ν

12
− 1247

336

)︃)︃
x6 +

(︃
128πν2

5G

)︃
x

13
2

+

(︃
32ν2

5G

(︃
65ν2

18
+

9271ν

504
− 44711

9072

)︃)︃
x7 +O

(︂
x

15
2

)︂
;

(6.31)
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the terms highlighted in red are exactly these higher order corrections which we didn’t compute in
this thesis work. Nevertheless let us notice that we could have obtained them also by working in the
EFT framework, but to do so we would have had to evaluate additional diagrams in the radiation
effective theory; furthermore at higher PN order hereditary effects complicate these calculations,
as already discussed.

6.1.4 Power balance equation and time evolution of the orbital phase

Having obtained the expressions for both the energy of the binary system and its power loss due
to gravitational wave emission, we can then turn back to the energy balance equation (6.1), which
we discussed in section 6.1.1.

Let us however point out that there are several ways to manipulate the analytical information we’ve
found, in order to study the dynamics of the binary system. In particular in the following we will
use the Taylor approximants (T-approximants) method for evaluating the corrections to phase of
the binary; yet there exist more refined methods, such as Padé resummation (P-approximants),
which may yield better result once the velocity v of the system becomes high, so toward the end
of the inspiral phase [272, 279, 280]. Furthermore, even when using T-approximants, there are
different ways in which one could express the post-Newtonian corrections to the observables: since
we’re interested in finding the orbital frequency as a function of time, we will obtain what is denoted
as TaylorT3 approximant. Nonetheless let us notice that there are other T-approximants which do
not make explicit the time dependence, and doing so actually they may be able provide a better
accuracy; see also reference [272].

Given this premise, since we have obtained both the energy E(x) (in equation (6.28)) and the
flux F(x) (in equation (6.31)) as a function of the dimensionless PN parameter x, we can evaluate
directly equation (6.6). In particular, expanding the ratio therein as a Taylor approximation in x
around x = 0 up to 2PN order, we find:

dx

dΘ
= (−64)x5 +

(︃
176ν +

2972

21

)︃
x6+(−256π)x 13

2 +

(︃
−1888ν2

9
− 27322ν

63
− 68206

567

)︃
x7+O

(︂
x

15
2

)︂
.

(6.32)
Solving the above differential equation then we will obtain the formula for the (dimensionless)
orbital frequency x as a function of (dimensionless) time Θ.

To proceed then, we can first solve the above differential equation at leading order by employing the
separation of variable methods, such that dx

x5
= −64 dΘ+O

(︁
ϵ−3
)︁
, which implies x(Θ) = 1

4(Θ+c)−
1
4 .

We set the integration constant c = 0 because we expect the frequency x to diverge at coalescence
time Θ = 0; doing so we find the leading Newtonian result:

x(Θ) =
1

4
Θ− 1

4 +O
(︁
x2
)︁
; (6.33)

from this result we see that Θ = O
(︁
ϵ−4
)︁
.

We can then compute the post-Newtonian corrections to this result by starting from the ansatz,
where we make explicit all the ϵ the dependence:

x(Θ) =
ϵ

4
Θ− 1

4

(︄∑︂
n∈N

ϵ
n
2 an

2
Θ−n

8

)︄
; (6.34)

and deriving it with respect to Θ to obtain

dx

dΘ
(Θ) =

ϵ5

4
Θ− 5

4

(︄∑︂
n∈N

(︃
−1

4
− n

8

)︃
ϵ
n
2 an

2
Θ−n

8

)︄
. (6.35)
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We can then equate this equation (6.35) with the result (6.32), substituting x with the ansatz (6.34)

in the latter, expanding in ϵ
1
2 , and solving for the coefficients an

2
by working order by order in the

expansion parameter. Doing so, and then setting ϵ = 1, we find:

x(Θ) =
1

4
Θ− 1

4

(︃
1 +

(︃
11ν

48
+

743

4032

)︃
Θ− 1

4 +
(︂
−π
5

)︂
Θ− 3

8

+

(︃
31ν2

288
+

24401ν

193536
+

19583

254016

)︃
Θ− 1

2 +O
(︂
Θ− 5

8

)︂)︃
;

(6.36)

which exactly agrees with references [36, 103]. This is the analytic expression which relates the
invariant orbital frequency x of the binary with the dimensionless time variable Θ, up to 2PN
accuracy. Proceeding similarly to what has just been done we may also invert this relation, by

substituting the ansatz Θ(x) = x−4ϵ−4

4

(︂∑︁
n∈N ϵ

n
2 bn

2
x

n
2

)︂
in equation (6.36), and imposing that

x(Θ(x)) = x+O
(︂
ϵ
7
2

)︂
. Doing so we find:

Θ(x) =
x−4

256

(︃
1 +

(︃
11ν

3
+

743

252

)︃
x+

(︃
−32π

5

)︃
x

3
2 +

(︃
617ν2

72
+

5429ν

504
+

3058673

508032

)︃
x2 +O

(︂
x

5
2

)︂)︃
.

(6.37)

In particular equation (6.36) let us also evaluate the orbital phase of the binary as a function of the

dimensionless time: in fact, inverting the definition (6.3) of x to obtain ω = x
3
2
ν
Gµ , and recalling

that ω ≡ dϕ
dt = dΘ

dt
dϕ
dΘ is the orbital angular frequency of the binary, it follows that:

ϕ(Θ) =

∫︂ Θ

Θ0

dΘ′
(︃

dt

dΘ
ω(Θ′)

)︃
=

∫︂ Θ

Θ0

dΘ′
(︃(︃
−5Gµ

ν2

)︃(︃(︁
x(Θ′)

)︁ 3
2
ν

Gµ

)︃)︃
; (6.38)

which we can evaluate by employing result (6.36) in x
3
2 , expanding in ϵ

1
2 up to 2PN accuracy with

Θ = O
(︁
ϵ−4
)︁
, and then integrating in the Θ′ variable. Doing so we find that the orbital phase of

the binary system is given by:

ϕ(Θ) = ϕ0 −
Θ

5
8

ν

(︃
1 +

(︃
55ν

96
+

3715

8064

)︃
Θ− 1

4 +

(︃
−3π

4

)︃
Θ− 3

8

+

(︃
1855ν2

2048
+

284875ν

258048
+

9275495

14450688

)︃
Θ− 1

2 +O
(︂
Θ− 5

8

)︂)︃
,

(6.39)

where ϕ0 is an integration constant, that at this PN order has the meaning of the phase of the
binary at coalescence time Θ = 0 [103]. This result once again exactly agrees with the one of
references [36, 103].

From equations (6.26) and (6.36) we can also evaluate the orbital separation r (which is not a gauge
invariant quantity) in the harmonic gauge that we adopted in the calculations of the conservative
contributions, as a function of dimensionless time variable, finding

r(Θ) =
4Gµ

ν
Θ

1
4

(︃
1 +

(︃
−7ν

48
− 1751

4032

)︃
Θ− 1

4 +
(︂π
5

)︂
Θ− 3

8

+

(︃
−37ν2

768
+

5489ν

21504
− 701263

16257024

)︃
Θ− 1

2 +O
(︂
Θ− 5

8

)︂)︃
.

(6.40)

This last relation starts to diverge as we approach the merger for Θ −→ 0: despite being gauge-
dependent and therefore unobservable, it is a manifestation of the breakdown of the PN expansion,
since the latter is not a convergent series.
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6.2 Analytic expression of the gravitational waveform

6.2.1 Gravitational waveform in the time domain

Recalling the discussion of sections 1.3.2, 1.3.4 and 1.4, in order to evaluate the waveform, as could
be measured by a far away observer, we need to evaluate there the spatial perturbation of the
metric in TT-gauge hTTij . In particular this is the result that we obtained, at leading order, in
formula (5.43), evaluating it directly from the effective field theory construction we presented in
section 3.2.4.

Still this is the same (leading order) result that we obtained in linearized general relativity, as we
would have expected, see equation (5.43) and (1.62), up to the different notation between the two
chapters, as already pointed out in section 5.2. Then expression (1.91) gives us the expression
for the gravitational waveform of the gravitational signal as seen by a far away observer, under
the quasi-circular orbit approximations. Then, neglecting corrections to the amplitude, the post-
Newtonian corrections to the phase (6.39) we evaluated above enter in the waveform just as a
modification of the leading order expression (1.90) for the phase.

The approximation of keeping the leading order approximation for the amplitude of the gravita-
tional wave signal (i.e. (1.92)) while considering only the corrections to the phase of the signal
(i.e. (6.39)), which we suggested above, is denoted as restricted PN approximation and is quite
common. In fact the corrections to the phase of the gravitational signal (the one we evaluated) are
of uttermost importance for gravitational waves observations, since the matched filtering technique
requires the analytical template to not go out of phase with the observed signal, otherwise the de-
tection probability will become drastically lower. On the other hand instead the precise evolution
in time of amplitude of the signal isn’t so crucial for this technique; it is nevertheless considered
in data analysis: it introduces several harmonics of the source frequency, inducing a modulation of
the signal.

Nonetheless, for completeness, below we report from references [36, 103] also the next-to-leading
order correction to the amplitude, which we’ll employ when evaluating and plotting the 2PN-
phase corrected waveform in figure 6.1: we do this in order to give corroborate the validity of the
restricted post-Newtonian approximation. In particular, we point out again that in this chapter
we’re adapting our notations in order to be consistent with the literature about gravitational waves
observations, where it is customary to employ the mostly plus ηµν = diag(−,+,+,+) metric.
Furthermore we’ll use also the common choice for the orientation of the polarization tensors, which
we defined in (1.29): using the definitions already introduced in chapter 1, referring in particular
to figure 1.4, we choose the û axis to lie along the projections on the sky of the major axis of the
orbit, oriented toward the ascending node [103].

Then using these same convention of reference [103], complementing our results with those of [36,
103], the time-domain gravitational waveform is given by, with A = +,×:

hA(t) =
2Gµx

c2r

(︃
H

(0)
A +x

1
2H

( 1
2
)

A +O
(︃
v2

c2

)︃)︃
(6.41)

with
H

(0)
+ (t) = −(1 + cos2(ι)) cos(2ϕ(t)) , (6.42a)

H
(0)
× (t) = −2 cos(ι) sin(2ϕ(t)) , (6.42b)

H
( 1
2
)

+ (t) = −1

8
sin(ι)

√
1− 4ν

(︁
(5 + cos2(ι)) cos(ϕ(t))− 9(1 + cos2(ι)) cos(3ϕ(t))

)︁
, (6.42c)

H
( 1
2
)

× (t) = −3

8
sin(2ι)

√
1− 4ν (sin(ϕ(t))− 3 sin(3ϕ(t))) , (6.42d)



Section 6.2 — Analytic expression of the gravitational waveform 157

120 100 80 60 40 20 0
Time to coalescence τ (s)

0 0

1000 1000

2000 2000

3000 3000

4000 4000

D
is

ta
n

ce
r(
τ
)

(k
m

)

0

20

40

60

.
O

rb
it

a
l

fr
eq

u
en

cy
f

(τ
)

(H
z)

Newtonian result

2PN result

0

20

40

60

100.00 99.75 99.50 99.25 99.00 98.75 98.50

Time to coalescence τ (s)

−1

0

1

A
m

p
li

tu
d

e
h

+
(τ

)

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00

Time to coalescence τ (s)

−1

0

1
×10−21 ×10−21

Figure 6.1 Plots to be compared with figure 1.5: here we show in orange the 2PN corrections to
the phase and next-to-leading order corrections to the amplitude (orange) with respect to the Newtonian
quantities (blue), evaluated for that same system (non-redshifted source-frame m1 = 35M⊙, m2 = 30M⊙,
r = 400 Mpc, ϕ0 = 0), as a function of the time to coalesce τ ≡ tc − t as measured by a distant (non-
redshifted, and in asymptotically flat spacetime) observer; with the only difference that ι = π

4 rad in this
plot, in order to show the (small) effect of higher harmonics on the waveform.
We can clearly see that while the PN corrections bring small adjustments to the distance r(τ) and to the
amplitude of the waveform h+(τ), they induce a significant change in the orbital frequency, especially toward
the end of the inspiral τ −→ 0 (as expected, since the expansion parameter v becomes larger and so the PN
correction more relevant), and even more so to the phase of the gravitational waveform h+(τ). In practice
this is what justifies the restricted post-Newtonian approximation that’s often employed: the amplitude of
the waveform is evaluated at leading order, while only its phase is evaluated to the highest possible PN order.
In fact the correction to the phase are the most important ones: the optimal method of matched filtering
employed to find gravitational waves signal in the output recorded by gravitational detectors requires a
precise knowledge of the waveform to look for, and any de-phasing of the waveform template with respect
to the real signal (as for example happens between the Newtonian and the 2PN corrections in the bottom
plot, where for most of the time the two waveform do not overlap) will significantly reduce the SNR of
the faint signal, eventually making its detection outright impossible. Now we can also be more precise
about our (gauge-dependent) definition of distance r(τ): it is the relative distance between the two bodies,
as evaluated in harmonic gauge (1.113). Furthermore let us notice that in this plot we show the orbital
frequency f(τ) ≡ ω

2π , which is related to the dominant quadrupole frequency of the gravitational waves
fgw(τ) by fgw(τ) = 2f(τ); yet the PN corrections to the amplitude introduce several harmonics of the
orbital angular frequency ω, in this case also ω and 3ω, in addition to the leading order quadrupole 2ω.
Additionally the horizontal red line still represents the (Newtonian) value of the innermost stable circular
orbit RISCO = 576 km, while in the middle and bottom panels the vertical red lines indicate the time
τISCO = 33 ms, as discussed in figure 1.5 and section 1.4.4. Now we cut off the frequency and amplitude
plot in the right panels at τ = 5 ms as otherwise these quantities would diverge. Nonetheless let us notice
that the 2PN corrections in this region (when we’ve almost approached the merger) are ill-behaved, as the
expansion parameter v2 becomes too large and the PN asymptotic series doesn’t converge anymore: in fact
the radial distance r(τ) actually starts to diverge as Θ ∼ τ −→ 0, as expected from expression (6.40).
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where ϕ(t) = ϕ(Θ(t)) and is given by equation (6.39); in particular Θ(t) is the linear redefinition
of the time which is defined as (6.5).

In the above expression we highlight in red the next-to-leading order term which we stress we didn’t
derive explicitly in this thesis: yet we could have obtained it by evaluating the next order multipoles
in linearized general relativity in section 1.3.4 or by considering the next order corrections to the
diagrams (and eventually higher PN radiation diagrams) in section 5.2. Furthermore at higher PN
order logarithmic terms, e.g. due to hereditary effects, may appear [36, 103].

6.2.2 Fourier transform of the gravitational waveform

In the analysis of gravitational wave signal, for example when employing the matched filtering
technique, usually one actually employs the Fourier transform of the waveform. To obtain it,
it is customary to resort to the stationary phase approximation, according to which the Fourier
transform of the function F (t) = A(t) cos(ϕ(t)), for f > 0, may be approximated, under the

conditions 1
A

dA
dt ≪

dϕ
dt (t),

d2ϕ
dt2
≪
(︂
dϕ
dt

)︂2
as [155, 281, 282]:

F̃ (f) =
1

2
A(t(f))

(︃
df

dt

)︃− 1
2

ei(2πft(f)−ϕ(t(f))−
π
4
) ; (6.43)

where in particular t(f) is defined as the time at which dϕ
dt (t) = 2πf holds.

Such procedure can then be applied to the time domain, restricted (so with the amplitude truncated

at the leading order H
(0)
A (t) only), post-Newtonian waveform (6.41). We report the result of such

procedure (which yields the TaylorF2 approximant [272]) from references [103, 281]: considering
f as the quadrupolar frequency of the emitted gravitational wave, i.e. twice the source orbital
frequency, then the expressions for the Fourier-transform of the plus and cross polarizations of the
restricted waveforms up to 2PN are:

h̃+(f) =

(︃
1 + cos2(ι)

2

)︃
A(f) eiΨ(f) (6.44a)

h̃×(f) = cos(ι)A(f) ei(Ψ(f)+π
2 ) ; (6.44b)

where amplitude is found to be
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and the phase

Ψ(f) = 2π
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)︃− 1
3

)︄
(6.46)

with tc the moment of coalescence in retarded time, f∗ a reference frequency (which could be the
frequency when the quadrupolar gravitational signal enters in the detector bandwidth, or when the
observation starts). The coefficients are given in [103]:

τ0 =
5

256π
f−1
∗

(︃
πGm

c3
f∗

)︃− 5
3

ν−1 , (6.47a)
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, (6.47b)
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τ2 =
5

128π
f−1
∗

(︃
πGm

c3
f∗

)︃− 1
3

ν−1

(︃
3058673

1016064
+

5429

1008
ν +

617

144
ν2
)︃
. (6.47d)



160 Chapter 6 — Post-Newtonian corrections to observables



CHAPTER

7 OBSERVATIONAL CON-
STRAINTS FROM FUTURE
GW OBSERVATORIES

The goal of this chapter is to assess whether it will be possible to look for possible deviations from
general relativity, performing a generic test of the post-Newtonian theory, in a regime complemen-
tary to the tests that are currently being carried out.

In section 7.1 we introduce the parametrized test that we will perform, and discuss how we may
deal with systematic errors. In section 7.2 we introduce the LISA gravitational observatory, and
how we may mathematically model it. In section 7.3 we introduce the Fisher matrix formalism,
useful to perform analytical forecasts. Finally in section 7.4 we present and discuss the results of
the forecast.

7.1 Parametrizing deviations from the post-Newtonian predictions

The spirit of this test is to be as general and agnostic as possible about the underlying reasons for
any possible deviation from general relativity.

First of all we assume general relativity and also its post-Newtonian expansion to provide a pretty
accurate description of the dynamics of compact binary systems, and of the gravitational waves
they emit, in the regimes we can currently probe. In fact many tests of general relativity have been
performed [283, 284], also employing the quite general parametrized post-Newtonian formalism, and
no significant deviations from general relativity have been found, to a really high precision. Such
test span over different length scales and different regimes, as could be solar system tests, binary
pulsar tests, and strong gravity tests. In particular the recent direct observation of gravitational
waves allowed to perform new tests of general relativity [92–96], also in the strong field regime
during the merger and ringdown phases, all of which found no deviations from Einsteins’ theory.

We will then perform a test similar to the one denoted as parametrized tests of gravitational waves
generation in references [92–96]: in particular we’ll allow for generic deviations from general rela-
tivity which modify the phase of the gravitational wave signal, as this is the observable to which
gravitational wave observatories are most sensitive.

In particular we’ll deform the 2PN expression (6.46) of the phase Ψ(f) of the Fourier transformed
waveforms (6.44), by introducing seven arbitrary parameters δmn:

{δ00, δ20, δ21, δ30, δ40, δ41, δ42} , (7.1)
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which will deform the expression of such a phase, so

Ψ(f) −−→ Ψ(f, δ00, δ20, δ21, δ30, δ40, δ41, δ42) . (7.2)

More quantitatively these δmn coefficients are applied as fractional corrections to the τ coefficients
(schematically τ → τ̃ = τ(1 + δ)) defined in equations (6.47): in particular for each δmn the
subscripts m and n specify that the correction affects the coefficient at m

2 PN order which is
multiplied by the n-th power of ν. Explicitly this deformation amounts to redefining the coefficients
(6.47) as:
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(7.3d)
In the limit in which all the δmn −→ 0, then we recover the standard post-Newtonian result, i.e. we
recover general relativity. Actually, to be more precise actually, the τ coefficient may enter also in
the function t(f), which gives the time as a function of the frequency of the gravitational waves,
see for example reference [103]: nevertheless we do not modify such expression of t(f), so we do
not modify the τ coefficients entering in it; instead we deform only the expression for the orbital
phase as a function of the quadrupole frequency, Ψ(f)→ Ψ(f, {δ00, δ20, δ21, δ30, δ40, δ41, δ42}).

Let us notice that the parametrization we just introduced is not exactly the same as the one adopted
for example in reference [96]: there they consider corrections up the 3.5PN order to the phase of the
Fourier transformed waveform, and multiply the whole expression of each post-Newtonian order
by a single deformation parameter (denoted as δϕi instead of instead of δ, eventually with an
auxiliary δϕil for terms logarithmic in the frequency); therefore they neglect the ν-structure of the
post-Newtonian correction to the phase; on the other hand they also allow for -1PN dipolar and
0.5PN terms, which are not predicted by general relativity. The fact that they’re neglecting the ν-
dependence could somehow reduce the sensitivity of their test if the possible deviation from general
relativity in the phase depends on the power of ν at a given PN order: this may be the case if the
deviation affects differently the terms with different powers of G at the same PN order (looking

at the 2PN conservative Lagrangian (6.7), for example if a 2PN term like G3m1m2
2r3

(︁
m2

1 +m2
2

)︁
is

modified differently with respect to another 2PN term like Gm1m2
8r

(︁
7v41 + 7v42

)︁
).

Furthermore reference [96] performs the test employing the observed waveform in its entirety, from
the inspiral phase to the ringdown; nevertheless, since the parametrized modification affects only
the post-Newtonian phase for the inspiral, in practice they taper off these corrections to zero once
a certain threshold frequency is reached, falling back to standard hybrid waveform model (such as
effective-one-body or phenomenological waveforms) to model the consequent merger and ringdown
phases. However, actually as pointed out also in [96], we may expect any modification of general
relativity to modify also the merger and the ringdown phases, possibly even more markedly than
the inspiral phase; then to be fully consistent the test should somehow allow for a continuous
deformation also in those regime; yet without assuming an underlying theoretical model for the
expected modification of the theory of gravity, this doesn’t seem feasible.
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Therefore in this work we’re instead concerned with the possibility of performing a similar test,
looking for deviations from general relativity, but working solely in the post-Newtonian framework.
In practice this means that this test looks for deviations from the post-Newtonian predictions for
the dynamics of a binary system, yet deviations from the post-Newtonian theory would imply
deviations from standard general relativity as well. However, in order to perform such a test using
only the post-Newtonian predictions, we have to carefully assess which is the regime of validity of
the such an approximation: in fact, in order to not spoil the validity of our results, the systematic
error due to the fact that we’re neglecting higher PN order corrections must be smaller than the
statistical error due to the limited precision of any observation.

7.1.1 Observation cut-off to limit the systematic error

To summarize, we’re interested in assessing how well we may directly constraint the post-Newtonian
coefficients with gravitational waves detectors. With directly we mean performing a test on the
non-resummed post-Newtonian theory: this should allow us to disentangle this weak-field test of
general relativity from other possible effects, either due to real phenomena possibly arising in the
strong gravity regime near the merger, or due to systematical effects possibly introduced by the
resummation procedures employed in some waveform models, which include informations also from
other analytical and numerical methods.

Nevertheless to perform this test of the post-Newtonian theory, we must recognize that such theory
is valid only in the weak field and slow velocities regime, therefore we have to restrict ourselves
only the early inspiral phase of the compact binary systems, when they compact objects are still
pretty far away from each others and their relative velocity v is small enough.

Then we need to quantify the magnitude of the systematic error which we inevitably introduce
anytime we neglect the infinite series of higher order post-Newtonian corrections to the observables.
Once we will have found such an estimate, then we may introduce a quantitative threshold after
which we should stop using observational data, in order to limit such a systematic error from
spoiling the validity of our test.

To do so we may turn to result (6.39) for the 2PN corrections to the orbital phase in time domain:

ϕ(Θ) = ϕ0 −
Θ
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(7.4)

If we neglect logarithmic corrections that arise at higher PN order [36, 103], we may notice that these

corrections to the phase are roughly of the form ϕ(Θ) ∼ Θ
5
8
∑︁

n cnΘ
−n

8 , with cn the coefficient
related to the n

2 PN order, and we recognize that such coefficients are all of order cn ∼ O(1).
Therefore, assuming such behavior to hold approximately true also at higher unknown orders, we
may estimate the contribution from all the terms due to the post-Newtonian corrections beyond

2PN by using the geometric sum ∆Θ>2PN ≡
∑︁+∞

n=5Θ
−n

8 = Θ− 5
8

1−Θ− 1
8
, which is valid in the early

inspiral phase with Θ ≫ 1. Therefore we’ll consider our 2PN approximation to have reached the
break down point when the contribution due to all the higher order terms becomes greater than
the contribution of the smallest 2PN term in our expansion, so:

Θlim ⇐⇒ ∆Θ>2PN ≥ ∆Θ2PN ⇐⇒
Θ− 5

8

1−Θ− 1
8

≥ Θ− 1
2 ; (7.5)

whose solution is Θlim = 256. Recalling the definition (6.5) of the variable Θ we then find that the
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corresponding time to coalescence τlim is:

τlim =
5Gµ

ν2c3
Θlim = 100.9ms

(︃
µ

M⊙

)︃(︂ ν

0.25

)︂−2
; (7.6)

and using the Newtonian estimate for the relative separation (1.87) we find:

Rlim =
4mG

c2
Θ

1
4
lim = 2RsΘ

1
4
lim = 8Rs . (7.7)

where the Schwarzschild radius Rs is associated to the total mass m of the two compact objects.
From this line of reasoning, as a rough estimate, we expect the 2.5PN (and higher order) post-
Newtonian corrections to be for sure non negligible when the relative separation is 8

3 ∼ 2.6 times
the innermost stable circular orbit of a Schwarzschild black hole with mass m = m1 +m2.

On the other hand, if we want to measure deviations of the highest 2PN coefficients from the value
predicted by general relativity with at least a relative precision ϵ, then correspondingly also the
systematic error must be at least ϵ time smaller than the absolute value of the 2PN coefficients;
hence in this case we have to stop the analysis of our data at:

Θlim,ϵ ⇐⇒
∆Θ>2PN

∆Θ2PN
≥ ϵ ⇐⇒ Θ− 1

8

1−Θ− 1
8

≥ ϵ =⇒ Θlim,ϵ =
(1 + ϵ)8

ϵ8
ϵ≪1≈ ϵ−8 , (7.8)

which translates into

τlim,ϵ =
5Gµ

ν2c3
ϵ−8 = 3.94 · 104 s

(︃
µ

M⊙

)︃(︂ ν

0.25

)︂−2 (︂ ϵ

0.1

)︂−8
, Rlim,ϵ = 2 ϵ−2Rs ; (7.9)

where 3.94·104 seconds are almost 11 hours, and choosing ϵ = 0.1 implies cutting off the observation
when the relative separations is about 65 times the innermost stable circular orbit. Let us notice
that for finite values of ϵ we should actually use the exact formula (7.8), so starting from formula
(7.9) and below, we should substitute ϵ −→ f(ϵ) ≡ ϵ

1+ϵ . Nonetheless for simplicity we’ll neglect this
point, treating ϵ as an effective parameter: in practice choosing ϵ = 0.1 here below means imposing
the cutoff threshold for ∆Θ>2PN

∆Θ2PN
≥ 0.111, instead of 0.1 (for higher values of ϵ the difference is

larger, but then the PN approximation itself starts to breakdown; furthermore our estimate of the
quantity ∆Θ>2PN may not even be accurate at O(1), let alone the order O(0.1) relative difference
discussed above). Such an approximation proves to be useful also because, using equation (7.9) and
the virial theorem (1.45), at the threshold we’re considering we may expect the relative velocity

of the two compact objects to be
(︁
vlim ϵ
c

)︁2
= Rs

2
1

Rlim,ϵ
=
(︁
ϵ
2

)︁2
, so in practice ϵ2 ∼ v2 is the PN

expansion parameter, and we may expect any half-PN (∝ v) higher order contribution to be ϵ
times lower than the preceding one.

One should be careful of assessing the impact that the choice of the ϵ parameter could have on the
forecast: in fact the quantity τlim,ϵ is highly sensitivity to the value of ϵ, since τlim,ϵ ∝ ϵ−8. This
may be explained by the fact that the relative distance Rlim,ϵ itself depends on ϵ via Rlim,ϵ ∝ ϵ−2,
and the more distant the two compact object, the slower it’s their orbital decay due to gravitational
wave emission: this result could have been expected also from equation (1.84). Therefore the result
which we will obtain may present a strong dependence on the ϵ parameter, and so we need to
balance the tradeoff between the accuracy of the result (as increasing the ϵ value increases the
systematic error due to the theoretical uncertainties, as we approach the merger phase) and the
precision of the results (as lowering the ϵ parameter restricts our observation window to only the
earliest part of the inspiral phase, where the amplitude of the signal is lower, and so the signal-to-
noise ratio to be expected for the observation is lower, and so the precision of any measurement
that can be performed on the collected signal).
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In practice we will chose, even if somewhat arbitrarily, the threshold

ϵ = 0.1 . (7.10)

We argue that this should prove to be a good choice for the cutoff, possibly not too conservative,
as it should still allow for signals to be observable in gravitational wave detectors. A justification
instead for not choosing an higher value for it is that otherwise both the slow velocity v

c ∝ ϵ≪ 1 and
the weak field Gm

r ∝ ϵ2 ≪ 1 assumptions would start to break down, as we expect strong gravity
effects to be important when r −→ Rs. Furthermore this choice for the threshold will be consistent
if the forecast predicts an error bar on the 2PN parameters at least bigger than |δ4n| > ϵ = 0.1, i.e.
if the expected statistical error is larger than this estimated systematic error.

7.1.2 Suitability of gravitational wave observatories to perform the test

It is now clear that, in order to directly constraint the post-Newtonian theory, we need a gravita-
tional wave detector sensitive at low frequencies. This follows from the need to accurately measure
many cycles of the gravitational signal, with an high enough signal-to-noise ratio (SNR), when the
binary is still in its early inspiral phase: in this stage in fact the frequency of the gravitational
signal is lower, as well as its amplitude. To be more quantitative about this point, the Newtonian
estimate for the frequency of the gravitational wave at the time τlim,ϵ, using equation (1.88) is given
by:

fgw,lim,ϵ =
c3

8πG

1

m
ϵ3 ≈ 8.08Hz

(︃
m

M⊙

)︃−1 (︂ ϵ

0.1

)︂3
. (7.11)

We can then see that to perform such a test ground-based gravitational wave detector are not
optimal, be they present (LIGO-Virgo-KAGRA) or future (Einstein Telescope, Cosmic Explorer)
ones: below about 10 Hz the seismic noise (and also the Newtonian noise) becomes dominant and
therefore the detectors sensitivity curve rises quickly. So, apart from compact systems with a sub-
solar total mass, or extremely loud (so near) events, we don’t expect to be able to observe enough
waveform cycles in the low frequency region of interest (⪅ 5 Hz for solar mass systems, ⪅ 0.1 Hz
for binary black holes systems with m = 80M⊙ total mass) to allow for a powerful and accurate
test. Loosening the requirement of ϵ ⪅ 0.1 would increase the value of the cutoff frequency fgw,lim,ϵ,
and so would allow to employ also data observed with ground-based gravitational waves detector
to perform this test, nonetheless this would also increase the systematic error: first because higher
order PN corrections become important, and also due to the breakdown of the post-Newtonian
asymptotic series itself (adding higher order PN corrections may actually lead to a worsening of
the convergence of the series when the relative velocity becomes high enough).

Therefore (future) space-based detectors (like LISA and DECIGO) seem to be better suited to
explore this low-frequency region of the signal. In particular in the following we will focus on the
LISA detector, performing the forecast on its ability to constraint the {δmn} parameters.

Initial frequency for the observation

To perform the forecast it will be necessary also to estimate the initial and the final frequencies
of the observation: in practice we’ll assume the observation to always reach the fgw,lim,ϵ threshold
frequency given by (7.11). Therefore we’ll have the freedom to choose the observation time ∆τ ,
and this instead will fix the initial frequency of the binary, at the start of the observation.

To evaluate this initial frequency we recall once again equation (1.88), and once defined
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it holds:

fgw(τ) = (B τ)−
3
8 . (7.13)

From this we can obtain:

fin(∆τ) =
(︂
(ffin)

− 8
3 +B∆τ

)︂− 3
8
. (7.14)

where ∆τ ≡ τin− τfin = tfin− tin is the time elapsed between the moment in which the frequency
of the gravitational wave was fin and the moment in which it reached ffin. Then, imposing the
cutoff frequency to be (7.11), so ffin = fgw,lim,ϵ, and the observation time to be ∆τ , the initial
frequency fin of the gravitational wave signal is given by:
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(7.15)
This estimate actually is valid only at leading order, since it receives post-Newtonian corrections at
higher order. Yet the precision of the estimates of the forecast probably won’t be high enough to
require the inclusion of such corrections, since there will be many other approximations involved.

In the following we will denote as early inspiral phase the period in which the binary system is
inspiraling while emitting gravitational waves with a (quadrupole) frequency below the threshold
given by (7.11); then in practice, given the observation time ∆τ the observational window relevant
for the test will go from frequency (7.15) to the cutoff frequency (7.11).

Synergy with future ground-based detectors

In order to perform the forecast we have also to recognize that, in order to perform the test,
one has first to confidently detect the relevant binary system. Regarding this point, we’ll base
our considerations on the fact that in current observations the threshold needed to declare event
detection confidently enough is for it to have an SNR⪆ 8 [5].

Nevertheless when multiple detectors observe the same event, the data can be combined in order to
increase the SNR and obtain more precise estimates, as we have already seen in equation (1.102).
Therefore in the following we’ll consider also the possible scenario where a binary system may not
accumulate enough SNR in the LISA detector alone (e.g. SNR < 8 for definiteness), but after
some time, under suitable conditions, its chirping signal may sweep (possibly quite loudly) through
the sensitivity band of ground-based detectors, such as the future Einstein Telescope and Cosmic
Explorer, and be detected by them (since they should all come online in the same years). This
should be the case of binary systems with total mass of about 1M⊙ ⪅ m ⪅ 103M⊙: after their
detection by ET and CE it would be possible to search in the previous data recorded by LISA to
possibly spot such a signal, which before was recorded only with an signal-to-noise ratio of 1 <
SNR < 8, and hence not promptly detected. At this point one could join these dataset a posteriori
to greatly increase the precision of the estimates; and in particular, for what concerns the test we’re
describing in this chapter, once identified the signal it would be possible to perform the test we’re
describing here on the LISA stretch of data alone, as it contains all the information about the early
inspiral phase.

On the other hand we do not expect systems with total massm < M⊙ orm > 105M⊙ to accumulate
enough SNR in the LISA detector to perform meaningful a test. That is, barring the possibility of
an extremely near event, these binary systems should accumulate less than SNR < 1 in the LISA
detector: the binaries with sub-solar masses produce a signal too high in frequency; on the other
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hand instead the binary systems with m > 105M⊙ may actually be detected with a quite high SNR
by LISA; but then the SNR evaluated only on the early inspiral phase, as defined above, would be
SNR < 1 (since we also expect these systems to be detected only at quite high redshifts); in fact in
the early inspiral phase their frequency is below the frequencies to which LISA is most sensitive.

Let us also add that, recalling definition (7.11) for the cutoff frequency, sub-solar systems may
actually be good candidates if we were to employ next-generation ground based interferometers to
perform this test. However in that case we’d be most sensitive to the signal in proximity of its
cutoff frequency, instead of its earliest inspiral phase; and furthermore probably we may not be
able to observe the binary systems for as many cycles as LISA could.

7.2 The LISA observatory

The Laser Interferometer Space Antenna (LISA) [91, 285] is a future space-based gravitational
wave observatory. It was first proposed in the 1990s; in 2017 it was selected by the European Space
Agency (ESA) as a large class mission in the Cosmic Vision 2015-2025 Programme, and recently
the project has advanced into the refinement phase B1 [125]; currently its planned launch date is
2037 [286]. The nominal duration of the mission will be 4 years, but it could possibly be extended
up to 10 years. Most of the technology necessary for this mission has already been tested by the
LISA Pathfinder mission [287, 288].

Figure 7.1 Figure depicting the coor-
dinate frames used in this work: the LISA
Constellation Baricenter (LCB), which is
the local coordinate frame of the instru-
ment, and the Solar System Baricenter
global reference frame. Furthermore the or-
bital motion of LISA is also depicted, with
the Sun in orange and the Earth in blue.

LISA will be composed of three separate spacecrafts, each
orbiting along heliocentric orbits, trailing Earth by about
50 million kilometers, as depicted in figure 7.1. The orbits
are arranged in such a way that the combined motion of
the three spacecraft will keep each of them at one vertex
of an equilateral triangle shape, with side of length ap-
proximately 2.5 million kilometers. Each of the sides of
this triangle will represent the arm of an interferometer.

In fact inside each of the three spacecrafts there will be
two test masses, one for each of the two sides ending in
that spacecraft. These test masses will be in almost per-
fect free fall, and a suitable interferometric apparatus will
allow to measure the distances between these test masses
[91]. Then by synthetically combining the data in a suit-
able way, employing for example also the technique of the
time delay interferometry to limit the laser phase noise, it
will be possible to measure the perturbations to the arms’
length due to the passage of gravitational waves. This
will allows LISA to measure gravitational waves with ex-
cellent sensitivity in the frequency band between 10−4 Hz
and 0.1 Hz [91].

7.2.1 Modeling of the LISA interferometer

In order to be able to estimate the precision with which LISA will be able to constraint the δmn
deformation parameters, first of all we need to evaluate its response to the metric perturbation

h
(TT )
ij : in fact, via relations (6.44), it reflects the modifications to the phase (7.2). In this section

then we’ll briefly outline how we modelize the LISA observatory in order to obtain the expression
for its response function. Our treatment is based on the one of reference [154], updated with the
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latest specifications [91, 285, 289], and while making several approximations, it captures most of
the relevant effects which have to be taken into account to obtain accurate estimates.

Let us then recall the discussion in section 1.5 about gravitational detectors; and in particular the
mathematical treatment presented in section 1.5.1. Space born gravitational detectors however
require additional care: usually they composed of a constellation of several spacecraft orbiting in
the solar system, and the signals they’re expected to observe may sweep through the sensitivity
band of the instrument over months or even years; the this means that we cannot assume the
local coordinate frame of the detector to be approximately inertial, and instead we have to take
into account the orbital motion. Furthermore the arms are extremely long, to the points that
these detectors are able to observe signals also at frequencies f ∼ L

c , hence the low frequency
approximation employed in relation (1.108) strictly speaking doesn’t hold anymore, and so the
exact response function should be taken into account.

Relevant coordinate frames

The proceed it is useful to define two coordinate frame in which we will work: the LCB (LISA
Constellation Barycenter) frame and the SSB (Solar System Barycenter) frame, which are repre-
sented in figure 7.1. In the following vector components evaluated in the LCB frame {ûx, ûy, ûz}
are denoted as x; whereas the ones evaluated in the SSB frame {ûx, ûy, ûz} are overlined, so x. In
particular, up to higher order corrections, we can assume the SSB to be an inertial frame in the
Newtonian sense. Therefore, up to a (almost) fixed relative velocity that would induce a Doppler
shift correction, we can assume the relative distance between the compact binary system emitting
gravitational wave and the barycenter of the solar system (which lies just outside the surface of the
sun) to be constant.

Approximating then the orbit of the center of the constellation to be circular (i.e. the origin of the
LCB frame, which is the center of the triangular constellation), up to a shift of the time variable
and a rotation of the SSB frame, we can parametrize its position xB(t) in the SSB frame as

xB(t) = R

(︃
cos

(︃
2π

To
t

)︃
ûx + sin

(︃
2π

To
t

)︃
ûy + 0 ûz

)︃
, (7.16)

where To ≈ 1 year is the orbital period, and R ≈ 1AU ≈ 1.5·1011m the radius of the orbit.

Switching to the LCB frame, here we parametrize the position xa of the spacecraft a, with a = 1, 2, 3,
as depicted in figure 7.1, so with:

xa =
L√
3
(cos(ϕa) ûx + sin(ϕa) ûy + 0 ûz) (7.17)

with ϕa = (a− 1) 2π
3 − 3

4π, where L ≈ 2.5·109m is the length of the side of the triangle.

Now we have to take into account the orbital motion of the spacecraft, which can be done by finding
a suitable, time dependent, rotation matrix Rij(t) which relates the vector components between
the SSB frame and the (rotating) LCB frame, taking also into account the 60 degree offset between
the ûz and ûz versors (see figure 7.1) . Perfoming this procedure we find the position of the a-th
spacecraft in the SSB frame to be:

xa(t) = xB(t) +
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(7.18)
where ϕ0 is a constant phase which encodes the orientation of the constellation at t = 0.
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Pattern function of the interferometers

With all of the above definitions, we can now work in the (rotating) LCB frame to evaluate the
pattern function of the LISA interferometer: we’ll recall then what we’ve already seen in section
1.5.1. Moreover we assume the motion of the LCB frame to be negligible instant by instant: this
approximation may break down for signals with a frequency comparable or below the (inverse of
the) timescale of the orbital motion; nevertheless this shouldn’t be the case for LISA, since it
sensitive to frequencies above f > 105 Hz whereas the timescale of the orbital motion is of the
order of the year (f ∼ 10−8 Hz).

The other difference with respect to section 1.5.1 is that LISA triangular interferometric detector,
hence composed of three arms which subtend a 60 degrees angle. Consistently with figure 7.1,
in the LCB frame we denote the versors aligned with each of the three arms as l̂1 ≡ (x2−x1)

L ,

l̂2 ≡ (x3−x1)
L and l̂3 ≡ (x3−x2)

L . Then we can similarly to section 1.5.1; yet in this case the three
Michelson interferometer which we may build (one for each vertex of the triangle, using the two
arms entering in the vertex) are not independent: that is, the strain which we may collect from this
configuration would contain redundant information. Then what is customarily done, assuming the
noise to be equal in all of these three Michelson interferometers, we can diagonalize such the noise
matrix (i.e. the matrix of the power spectral density (1.101)). This procedure, while taking into
account other technical details, leads to the A, E and T channels: two of them are sensitive to the
gravitational wave signal, whereas the third is much less sentitive: yet it is useful as a null channel,
to characterize the noise in the detector. Nonetheless we’ll proceed with the simplified setup of
reference [154], which considers only the two channels sensitive to gravitational waves, denoting
them as I and II. The result is that, under the approximation of low frequency f ⪅ c

L ≈ 0.12Hz,
the equivalent of equation (1.108) for the dimensionless strain is now given by

hI(t) =
1

2
hTTij (t) (li1l

j
1 − li2lj2) , (7.19a)

hII(t) =
1

2
√
3
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j
2 − 2 li3l

j
3) . (7.19b)

From these expression we can then obtain the corresponding pattern functions, similarly to equa-
tions (1.110), such that it holds (1.109).

To do so we have to specify precisely the frame for the polarization tensors e+ij and e
×
ij . In particular,

working still in the LCB frame, for what will follow we choose n̂ to be the versor which points toward
the source of gravitational waves starting for the detector (and so it’s the opposite of the n̂ versor
which we employed in chapter 1), which we parametrize by introducing the spherical angles θs and
ϕs, via

n̂ = (sin(θs) cos(ϕs), sin(θs) sin(ϕs), cos(θs)) . (7.20)

Then we define the e+ij and e
×
ij polarization tensors in the orthonormal frame with {û, v̂,−n̂}, which

is the same one depicted in figure 1.4 once we just relabel n̂→ −n̂ in that figure. Furthermore we
also have to be consistent with the choice we performed in section 6.2.1, hence we chose again the
û axis to lie along the projections on the sky of the major axis of the orbit, oriented toward the
ascending node.

In the LCB frame instead, uning a spherical coordinate frame, we introduce the auxiliary versors
û′ = (− cos(θs) cos(ϕs),− cos(θs) sin(ϕs), sin(θs)), which points along the meridian in direction of
increasing θs, and v̂′ = (− sin(ϕs), cos(ϕs), 0), which points along the parallel toward increasing ϕs.
Then to superimpose the {û′, v̂′,−n̂} orthonormal frame onto the {û, v̂,−n̂} one we can perform
a clockwise rotation of the û′ and v̂′ axes around the −n̂ axis, by an angle ψs = arctan( ẑ·v̂ẑ·û), which
is called the polarization angle.
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With all of these definitions we can finally evaluate the pattern functions for the α = I, II inter-
ferometric channels: since in practice both configurations are related by a rotation of an angle π

4
in the ûxûy plane, we can define the constant ϕα, such that ϕI = 0 and ϕII = −π

2 . Then the
expression for the pattern function is given by:

F+
α (θs, ϕs, ψs) =

√
3

2

(︃
(1 + cos2(θs))

2
cos(2ϕs + ϕα) cos(2ψs)− cos(θs) sin(2ϕs + ϕα) sin(2ψs)

)︃
,

(7.21a)

F×
α (θs, ϕs, ψs) =

√
3

2

(︃
(1 + cos2(θs))

2
cos(2ϕs + ϕα) sin(2ψs) + cos(θs) sin(2ϕs + ϕα) cos(2ψs)

)︃
;

(7.21b)
in this way the dimensionless strain is given by

hα(t) = F+
α (θs, ϕs, ψs)h+(t) + F×

α (θs, ϕs, ψs)h×(t) , (7.22)

where h+(t) and h×(t) are evaluated at the barycenter of the LISA constellation.

Modulation of the signal due to the orbital motion

We derived the above results, i.e. equations (7.21) and (7.22), in the LCB rotating frame: the last
step that we have to perform is now to recast these results as evaluated in the SSB inertial frame.
For example the components of the versor n̂, which are given by (7.20), are a function of time,
θs = θs(t) and ϕs = ϕs(t): this is because the constellation is rotating on itself, and therefore in
the LCB frame a far away fixed star will appear to be moving.

Switching to the inertial SSB frame we now parametrize the versor n̂, which points toward the
distant binary system, in spherical coordinates as n̂ = (sin(θs) cos(ϕs), sin(θs) sin(ϕs), cos(θs)); let
us recall that the overlined quantities θs and ϕs are in fact evaluated in the SSB frame. This means
that these last angles are constant during the whole observational period, since the SSB frame is
taken to be non-rotating with respect to the distant stars. Furthermore we assume the plane of
the distant compact binary system to not be precessing, therefore also the polarization angle ψs,
evaluated in the SSB frame with a procedure analogous to before, is quantity constant in time.

The relations between the angles ϕs(t), θs(t) and ψs(t) in the LCB frame and the corresponding
(constant) quantities ϕs, θs and ψs in the SSB frame can be found by applying the relevant rotation
matrix Rij(t) which connects the two coordinate systems. In practice it’s possible also to find
these relations by evaluating suitable spatial scalar products (which are invariant under rotations)
between the several versors we defined until now, to obtain:

ϕs(t) = arctan

(︄
tan(θs)(cos(ϕs + ϕ0 − 22π

To
t)− 3 cos(ϕs − ϕ0))− 2

√
3 cos(2πTo t− ϕ0)

tan(θs)(sin(ϕs + ϕ0 − 22π
To
t) + 3 sin(ϕs − ϕ0)) + 2

√
3 sin(2πTo t− ϕ0)

)︄
, (7.23a)

θs(t) = arccos

(︄
cos(θs)

2
−
√
3

2
cos

(︃
ϕs −

2π

To
t

)︃
sin(θs)

)︄
, (7.23b)

ψs(t) = arctan

(︄
sin(ψs)(

√
3 cos(θs) cos(

2π
To
t− ϕs) + sin(θs))−

√
3 cos(ψs) sin(

2π
To
t− ϕs)

cos(ψs)(
√
3 cos(θs) cos(

2π
To
t− ϕs) + sin(θs)) +

√
3 sin(ψs) sin(

2π
To
t− ϕs)

)︄
.

(7.23c)

Since we’ll be using the restricted PN waveform, we can recall the expression for the its amplitude
from equation (6.41), and in particular (6.42a) and (6.42a). With those definitions, understanding
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the replacement ϕs → ϕs(t, ϕs, θs, ψs) via (7.23), and similarly for θs and ψs; we can recast (7.22)
as:

hα(t, θs, ϕs, ψs) = Aα(t, θs, ϕs, ψs) cos(Φ(t) + φp,α(t, θs, ϕs, ψs)) (7.24)

with

Aα =
2Gµx

c2r

√︂
((1 + cos2(ι))F+

α )2 + (2 cos(ι)F×
α )2 , (7.25a)

φp,α = arctan

(︃
2 cos(ι)F×

α

(1 + cos2(ι))F+
α

)︃
; (7.25b)

and where we defined Φ(t) ≡ 2ϕ(t), with ϕ(t) the orbital phase of the binary system, which we
found at 2PN in equation (6.39).

Furthermore, as we’ve pointed out above, the h+(t) and h×(t) quantities which enter in equation
(7.22) are evaluated in the barycenter of the constellation; nevertheless this point is actually orbiting
around the sun, as parametrized by (7.16). Then as a first approximation, we can evaluate the
values of h+(t) and h×(t) in the barycenter of the solar system, adding the phase φD(t, θs, ϕs) =

−2πf(t)−n̂·x⃗Bc = 2πf(t)Rc sin(θs) cos(
2π
To
t − ϕs) to the phase Φ(t) in equation (7.24), with f(t) the

instantaneous frequency of the gravitational waves at time t; this correction is needed to account
for the difference in the phase of the gravitational signal between the barycenter of the LISA
constellation and the barycenter of the solar system [154].

Fourier transform of the measured strain

As we will see, to perform the Fisher forecast we will need the Fourier transform of the above
expression (7.24). To find it we can employ the stationary phase approximation, which we already
introduced in equation (6.43). In this case we case use such an approximation since the frequency
of the gravitational wave is much higher than the orbital motion, which then induce only a slow
modulation of the carrier signal. In practice, following reference [154, 155], simplifying further given
the slow evolution of the orbital modulation, we apply the stationary phase approximation only to
the gravitational wave phase, adding afterwards the orbital modulation total phase (φp,α + φD).
Doing so we find:

h̃α(f) =

√︄(︃
1 + cos2(ι)

2
F+
α (t(f))

)︃2

+
(︁
cos(ι)F×

α (t(f))
)︁2
e−i(φp,α(t(f))+φD(t(f)))A(f) eiΨ(f) , (7.26)

where A(f) is given in (6.45) Ψ(f) is given in (6.46). Furthermore t(f) gives the time as a function
of the gravitational wave frequency, taking into account higher order PN corrections; the explicit
expression for example is reported in [103].

Let us still recall that this modelization of the response function of LISA, while including all the
essential features, is valid only as a first approximation; to perform a more detailed study one may
have to consider a more accurate, potentially numerical, model.

7.2.2 Noise power spectral density

As we will see in the next section 7.3, to perform the forecast we will also need to know how
sensitive is each of the two I, II channels of LISA; i.e. we will need to know their joint noise power
spectral density Sn(f), which we defined in (1.101). In practice, since we already diagonalized such
matrix with the previous construction, we assume such metric to be diagonal, with equal noise
power spectral density Sn(f) for both channels. For its analytical expression, which we also plot
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Figure 7.2 The noise power spectral density Sn(f) assumed for the I and II configurations of LISA.

in figure 7.2, we employ the sky and polarization averaged estimates of references [289, 290]:

Sn(f) =
10

3

(︄
1

(2πf)4

(︄
5.76·10−48Hz3

(︄
1 +

(︃
0.4mHz

f

)︃2
)︄)︄

+ 3.6·10−41 1

Hz

)︄(︄
1 +

(︃
f

25mHz

)︃2
)︄
.

(7.27)
However let us point out that here we’re neglecting the confusion noise at low frequencies due to
the superposition of the gravitational waves coming many non-resolvable binaries [154]; whereas
at higher frequencies it may be needed to take into account the implementation of the virtual
interferometry [291].

7.3 Fisher matrix for observational forecasts

In order to assess the observational capabilities of future gravitational wave detectors it is customary
to employ the Fisher information matrix technique. In practice, once the design and the sensitivity
of a detector are specified, this analytical method allows one to evaluate the smallest error bars
that such an experiment could ever achieve when observing the quantities of interest, once specified
the fiducial value that one assumes for those quantities.

For the specific forecast that we are trying to perform, this means that once we specify how the
{δmn} deformation parameters modify the waveform that could be observed by LISA, once we
specify the sensitivity of the LISA instrument, and once we assume a fiducial value for the {δmn}
parameters; then we can evaluate the minimum error bars associated to the measurement of the
{δmn} parameters that we will possibly achieve. In particular, since general relativity still is our
best model, we will chose as fiducial value δmn = 0 for every m and n; in fact in this case we recover
the standard general relativity results.

Let us recall the notation we employed for the matched filtering technique in section 1.5, and the
definition of the scalar product (1.100). Then the signal we measure in the several instruments is
given by o = n+ h, with n the noise contribution to the measured output, and h the contribution
due to the real gravitational wave. Then, assuming gaussian noise, the probability for a specific
realization n0 of the noise is given by

p(n = n0) ∝ e−
1
2
(n0 |n0) = e−

1
2
(o−h |o−h) , (7.28)

which is the likelihood for observing such signal [103, 154]. Let us notice that in this notation
(1.100) for the scalar product enters the power spectral density Sn(f) of the detector, and hence
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the information about the sensitivity of the detector. Let us then assume the gravitational waveform
h to depend on some parameter {λ}, so h = h({λ}), which could be for example the masses of
the compact objects, or specifically the {δmn} deformation parameters in our case. Next, given the
prior p({λ}) for these parameters, from the likelihood (7.28) we obtain the posterior

p({λ}|o) ∝ p({λ}) e(h |o)− 1
2
(h |h) , (7.29)

which gives the probability for the true value of the {λ} parameters given the observed detector
output o [103]. Then, in the limit of high SNR for the observation, we can assume the value {λ̄}
that we will measure from the observation (e.g. the maximum a posteriori value obtained from a
Bayesian analysis of the data) to be near the true value {θ} of these parameters; so we can define

the error bar ∆λi on parameter i as θi ≡ λ̄i +∆λi. Finally, assuming these errors to be small, the
prior p({λ}) to be (almost) uniform around the true value ({λ}) [281], and expanding the posterior
(7.29), we obtain [103, 154]

p({λ}|o) ∝ e− 1
2
Γij∆θ

i∆θj ; (7.30)

where, recalling that h = h({λ}), and neglecting higher order terms,

Γij =

(︃
∂h

∂λi

⃓⃓⃓ ∂h
∂λj

)︃
(7.31)

is called the Fisher information matrix. We find that the inverse of this matrix gives an estimate
for the expected covariance matrix of the estimates of the {λ} parameters, as could be measured
by the experiment. In fact the expectation value of the errors ∆λi is [103, 154]:

⟨∆λi∆λj⟩ = (Γ−1)ij +O
(︄(︃

S

N

)︃−1
)︄
. (7.32)

with these quantities evaluated in λi = λ̄
i
.

Let us point out that this method is still an approximation, even if quite good, and gives better
results when the expected SNR for the observation is higher; in reality, especially when the SNR
is low or the associated likelihood complicated, only a full numerical Markov Chain Monte Carlo
(MCMC) analysis of the exact likelihood can give the most accurate results [292].

Expressions specialized to the case of the LISA detector

Recalling from section 7.2.1 that the observed signal is equivalent to two independent time series
hI(t) and hII(t), we can employ the formalism which we developed in section 1.5 and here above,
considering N = 2 detectors and assuming an optimal matched filtering.

In particular, given the parameters of a system, we can evaluate the SNR of a given observation
employing formula (1.102). Furthermore, specializing the generic definition (7.31) of the Fisher
matrix to this specific scenario we find:

Γij = 4

∫︂ +∞

0
df

1

Sn(f)
Re

(︄
∂(h̃

∗
I(f))

∂λi
∂(h̃I(f))

∂λj
+
∂(h̃

∗
II(f))

∂λi
∂(h̃II(f))

∂λj

)︄
, (7.33)

where Re(z) = z+z∗

2 is the real part of the complex number, h̃α(f) are given by equation (7.26)
with α = I, II, and Sn(f) by expression (7.27).

In general relativity the waveform h̃α(f) normally depends on 9 parameters, which for example are
given by (dL, ν,m, µs, ι, ϕs, ψs, ϕ0, tc). They are associated to the spinless compact binary system
(such as its masses, via m and ν), to its distance (dL), and to the geometry of the observation
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(through the inclination angle ι, the direction in the sky for the observer via µs and ϕs, the
polarization angle ψs, and so on). Furthermore tc is the time of coalescence for the observer, while
ϕ0 enters in equation (7.18) to encode the initial orientation of the constellation at time t = 0; we
also defined µs ≡ cos(θs).

Generically then, to perform a Fisher forecast, we have to assume the {λ} parameters to be (at
least) all of the 9 aforementioned quantities. This has to be done since in a real analysis of the
data, in order to detect a binary system, we have to estimate all of the above quantities. Then
we must simulate the procedure of estimating all of these quantities simultaneously as well: in fact
the covariance matrix (7.32) that we find with this method takes into account also the covariances
between all the parameters. Trying instead to not estimate one of these parameters, so by not
including it in the set of {λ} parameters, amounts to conditioning over such a parameter: then we
would find smaller error bars on all of the other parameters, since we’ve fixed the value of one of
them, and so we’re extracting less information from the data; nonetheless this would simply lead
to an underestimation of the real error bars that the experiment could achieve.

Regarding the test that we want to perform instead, we’re trying to estimate the δmn on top of all
of the other 9 parameters: in fact to be able to perform the test we have also to correctly fit the
real waveform with our analytical expression, so we still need to estimate all of the aforementioned
parameters.

7.4 Analysis and results

In this section we perform the analysis which we discussed above and report the results. To obtain
the latter we wrote a Mathematica code, which we run on the CloudVeneto computing facilities
[293] for a faster evaluation.

7.4.1 Details of the analysis

To evaluate the forecast on the upper bound on a given δmn we proceeded similarly to the procedure
of reference [96]: in particular therein it’s pointed out that the parametrization (similar to) (7.2)
presents correlations among different parameters; in light of this they vary only one parameter at
a time, keeping fixed all the others, when performing the analysis. This allows to avoid having a
multimodal or degenerate posterior probability density function for the values of the deformation
parameters {δmn}; yet the test so performed is still sensitive to generic deviations from general
relativity which modify simultaneously more than one of such δmn parameters [294–296].

Therefore also in our code we proceeded analogously: to evaluate the upper bound on a chosen δmn
parameters we fixed all others to be equally vanishing. More precisely then, recalling the discussion
of section 7.3, the parameters {λ} over which we performed the Fisher matrix evaluation are the 9
parameters associated to the spinless binary in general relativity (dL, ν,m, µs, ι, ϕs, ψs, ϕ0, tc), plus
the single additional δmn parameter.

With this procedure for each of the 7 deformation parameters {δmn} we evaluated a different
10×10 Fisher matrix Γij as given in expression (7.33); next we took the inverse of each matrix;
and from each of these inverse matrices then we obtained the expected 90% upper bound that data
from LISA could provide in that scenario: we did so by properly rescaling the standard deviation
which is given by the square root of the corresponding diagonal entry. Let us notice that trying to
consider more than one δmn parameter at a time instead results in singular Fisher matrix due to
the degenerancies present in that parameter space. Furthermore in the Fisher analysis we actually

worked with log
(︂

dL
Mpc

)︂
instead of dL, with log

(︂
mz
M⊙

)︂
instead of mz and with log

(︁
tc
s

)︁
instead of
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tc: in fact these dimensionful quantities usually span over several orders of magnitudes, and so by
taking the logarithm then we were able to increase the numerical precision of the results.

To compute the relevant quantities in our analysis we chose the initial and final time of observation
as we discussed in section 7.1.1, choosing ϵ = 0.1. In particular, to simplify the analysis, we always
stop the observation exactly at the cut-off frequency (7.11); then, when we modify the observation
time ∆τ of the system, in practice we only change the initial frequency of the system at the start
of the observation using equation (7.15). For the analysis we’ll chose ∆τ = 4 years, which is the
nominal duration of the mission; nonetheless we do not expect any loud binary system to reach
the cut-off frequency exactly at the end of the observation time: then this choice of ∆τ actually
reflects the typical observation time of a system we may expect during the extended 10 year LISA
mission, accounting also for the 11% technical downtime.

Furthermore the systems relevant in this analysis are far away enough that cosmological corrections
become important: then we implement them as outlined in section 1.4.3, assuming the customary
flat ΛCDM Planck cosmology [297] to evaluate the luminosity distance dL given the redshift z of
the binary.

Regarding the limitations of this analysis, let us notice that the bounds obtained by Fisher infor-
mation matrix are most optimistic estimates (since they’re based on the Cramér-Rao bound for
estimators), therefore this method may underestimate the actual error bars that an experiment
may achieve [155, 292, 298]. Also to obtain accurate results we should make the setup as realistic
as possible; in particular real gravitational wave data analyses include higher order PN corrections,
and actually estimate the spin parameters {χ} (and possibly the tidal deformability Λ̃) from the
observed signal: then we should do to same in our analysis, by forecasting the expected error
bars on these additional parameters. This is in fact necessary to obtain accurate results, because
as already discussed the addition of new parameters to be estimated decreases the precision with
which we can measure the other ones; in fact now the parameter space is bigger, while the amount
of information is the same. Finally, especially if we find the Fisher matrix to not be reliable, a full
Monte Carlo analysis of the full non-linear likelihood may be needed to obtain accurate forecasts
[292]. Yet, when the SNR is high enough, the underlying likelihood becomes more gaussian: in this
case we may expect the Fisher matrix approximation to become more accurate, and so to do also
for the experimental forecast [292].

7.4.2 Results and discussion

In table 7.1 we report the main results of this analysis, showing the signal-to-noise ratio and the 90%
upper bound on the deformation parameters {δmn} that are to be expected given the observation
of the corresponding compact binary system with LISA, after an observation period of ∆τ = 4
years; see also the caption for further details. We focused on the binary system which may yield
the best bounds on the deformation parameters, which we found to be the systems with a total
mass between 102M⊙ < m < 104M⊙; and we also sampled the parameter space at typical redshifts
z = 0.1, 0.3, 1, 3, fixing or averaging over the other relevant parameter, as explained in the caption.

Furthermore, to better asses which binary system could yield the best constraints on the {δmn}
parameters, we chose a system similar to the first event GW150914 observed by the LIGO-Virgo
collaboration [1, 2]: despite being one of the nearest binary black holes merger ever observed, it
serves as a realistic benchmark for what we may expect to observe during the 4 planned years of the
LISA mission. In particular for our similar system we chose the redshift z = 0.087 (corresponding
to a luminosity distance dL ∼ 410 Mpc assuming a flat ΛCDM Planck cosmology [297]), source-
frame masses m1 = 36M⊙ and m2 = 29M⊙, inclination angle between the normal to the orbital
plane and our line of sight ι = 0.5, and an observation time ∆τ = 4 years.
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System parameters Frequencies and SNR Bounds on deformation parameters

m1 (M⊙) m2 (M⊙) z fin (Hz) ffin (Hz) SNR δ00 δ20 δ21 δ30 δ40 δ41 δ42

35 30 0.1 0.0161 0.113 3.1 0.0023 0.0029 0.0095 0.0081 0.56 1.27 6.5
35 30 0.3 0.0145 0.0956 1.2 0.0053 0.0071 0.022 0.019 1.3 3.0 15
35 30 1 0.0111 0.0621 0.5 0.013 0.011 0.037 0.032 2.2 5.0 25
35 30 3 0.0072 0.0311 0.4 0.026 0.019 0.063 0.054 3.8 8.5 43

80 20 0.1 0.0145 0.0734 4.0 0.0022 0.0063 0.031 0.013 0.74 2.5 20
80 20 0.3 0.0131 0.0621 1.5 0.0062 0.017 0.087 0.036 2.0 7.0 55
80 20 1 0.0099 0.0404 0.7 0.016 0.043 0.21 0.09 5.0 17 130
80 20 3 0.0064 0.0202 0.4 0.046 0.082 0.41 0.17 9.3 32 250

102 102 0.1 0.0079 0.0367 16 0.00054 0.00037 0.0012 0.0010 0.072 0.16 0.81
102 102 0.3 0.0072 0.0311 5.9 0.0017 0.0013 0.0041 0.0035 0.25 0.56 2.8
102 102 1 0.0054 0.0202 2.5 0.0072 0.0069 0.022 0.019 1.3 3.0 15
102 102 3 0.0035 0.0101 1.4 0.024 0.038 0.12 0.10 7.6 17 86

8·102 2·102 0.1 0.0033 0.0073 75 0.00052 0.00075 0.0038 0.0016 0.085 0.29 2.3
8·102 2·102 0.3 0.0029 0.0062 26 0.0017 0.0023 0.011 0.0048 0.25 0.89 7.0
8·102 2·102 1 0.0022 0.0040 7.8 0.0079 0.0087 0.044 0.018 0.98 3.4 26
8·102 2·102 3 0.0013 0.0020 1.8 0.044 0.033 0.16 0.070 3.7 13 100

103 103 0.1 0.0018 0.0037 150 0.00054 0.0020 0.0066 0.0057 0.43 0.96 4.8
103 103 0.3 0.0016 0.0031 44 0.0024 0.0090 0.029 0.025 1.9 4.2 21
103 103 1 0.0012 0.0020 9.0 0.015 0.097 0.31 0.27 21 47 240
103 103 3 0.00070 0.0010 1.4 0.10 2.2 7.1 6.1 500 1100 5500

8·103 2·103 0.1 0.00059 0.00073 42 0.0045 0.035 0.18 0.075 4.0 14 110
8·103 2·103 0.3 0.00051 0.00072 10 0.017 0.23 1.1 0.49 26 93 730
8·103 2·103 1 0.00035 0.00040 1.5 0.12 5.8 29 12 680 2300 104

8 ·10 3 2 ·10 3 3 0.00018 0.00020 0.1 1.4 230 1200 720 10 4 10 5 10 6

104 104 0.1 0.00031 0.00037 26 0.0065 0.88 2.8 2.7 230 520 2600
104 104 0.3 0.00026 0.00031 6 0.033 4.8 15 15 1300 2900 104

10 4 10 4 1 0.00016 0.00020 0.7 0.28 51 160 180 10 4 10 4 10 5

10 4 10 4 3 0.000096 0.00010 0.1 3.3 620 2000 2200 10 5 10 5 10 6

Table 7.1 Results of the Fisher forecast analysis for the LISA interferometer. We report here the 90%
upper bounds on the (absolute value) of the deformation coefficients |δmn| that it may be possible to obtain,
as a function of varying redshift z and source-frame masses m1 and m2 of the binary system. Since these
results show a quite strong dependence also on the ι inclination of the binary system, and the duration
of the observation ∆τ , in order to obtain consistent results we fix the inclination to be ι = 0.5 rad and
observation time to be ∆τ = 4 years. Furthermore we also show the initial fin and final frequencies ffin for
the observation (evaluated as the frequency of the leading quadrupolar mode as measured in the detector
frame): in particular the final frequency is given by the cutoff frequency (7.11) with ϵ = 0.1, whereas the
initial frequency is given by (7.15) with ∆τ = 4 years. Still each of the result above is actually the average
over 40 realizations of the same system, as we vary other relevant parameter characterizing the system (we
sampled ϕs and ϕ0 uniformly in [0, 2π), ψs uniformly in (−π

2 ,
π
2 ] and µs uniformly in (−1, 1)). The variability

in these samples is about 5% for the SNR, and about 15% for the bounds on the δ parameters.
Finally, recalling the discussion from section 7.1.2, we report in boldface the signal-to-noise ratio above
8: for such system the data acquired by LISA alone should be enough to confidently detect such systems
(yet extending the observation above the cutoff fgw,lim,ϵ may increase the total SNR for the more massive
systems). Conversely we italicize the rows which have an SNR < 1, as for these systems the detection may
not be confident even when complementing data with the observation of other detectors; furthermore also
the results of the Fisher matrix analysis become less accurate for low values of the signal-to-noise ratio.
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Figure 7.3 Plot of the expected SNR and 90% upper bounds on the δmn deviation coefficients, as a
function of the redshift z of the binary system. The system source-frame masses are taken to be m1 = 36M⊙
and m2 = 29M⊙, the inclination angle ι = 0.5 rad, and the duration of the observation ∆τ = 4 years.
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Figure 7.4 Plot of the expected SNR and 90% upper bounds on the δmn deviation coefficients, as a
function of the total mass m of the binary system, assuming equal mass components (so m1 = m2 = m

2 ,
and ν = 0.25). The system is assumed to be at a redshift z = 0.087 (corresponding to a luminosity distance
dL ∼ 410 Mpc), its inclination angle to be ι = 0.5 rad, and the duration of the observation ∆τ = 4 years.
We applied a smoothing filter to the data in order to reduce oscillations due to limited numerical precision.
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Figure 7.5 Plot of the expected SNR and 90% upper bounds on the δmn deviation coefficients, as a
function of the orbital inclination parameter iota. The system is assumed to be at a redshift z = 0.087, its
source-frame masses to be m1 = 36M⊙ and m2 = 29M⊙ and the duration of the observation ∆τ = 4 years.
We applied a smoothing filter to the data in order to reduce oscillations due to limited numerical precision.
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Figure 7.6 Plot of the expected SNR and 90% upper bounds on the δmn deviation coefficients, as a
function of the orbital inclination parameter iota. The system is assumed to be at a redshift z = 0.087, its
source-frame masses to be m1 = 36M⊙ and m2 = 29M⊙ and the duration of the observation ∆τ = 4 years.

Then in figure 7.3 we look at how the SNR and the bounds on the {δmn} parameters behave as a
function of the redshift z of the binary (so of its luminosity distance dL), keeping fixed all other
parameters; in figure 7.4 we vary instead the total mass of the system (assuming here an equal
mass binary m1 = m2 = m

2 ); in figure 7.5 we vary the observation time; finally in figure 7.6 we
vary the inclination angle ι.

Inclination angle ι

Let us first of all discuss the dependence on the angle ι: from figure 7.6 we can see that if we vary
the inclination angle between the normal to orbital plane and our line of sight, then the signal-to-
noise ratio is highest for ι = 0, π and lowest for ι = π

2 ; and similarly the upper bounds which we
may impose on the δ deformation parameters are better constrained (i.e. lower) when ι = 0, π and
less constrained (i.e. highest) when ι = π

2 . In particular the relative difference between the best
and the worst scenario is of about O(2.5) times: being lucky enough to observe a face-on system
yields better results. This behavior can be directly linked to the dependence of the amplitude of
the gravitational wave signal on the ι angle, see for example equations (6.44); furthermore let us
recall that here we’re employing only the restricted PN waveform; higher order corrections to the
amplitude (see (6.42)) introduce a different functional relation on this angle, yet we don’t expect
much of a difference when taking them into account.

Observation time ∆τ

Refering to figure 7.5, increasing the observation time, the bounds we can impose on the deformation
parameters δ become correspondingly better, as expected. In this case we expect the oscillations
presents in the plot, for observational periods lower than a year, to be a consequence of the orbital
modulation of the signal due to the orbital motion of LISA (which follows an orbit comparable to
the Earth). An observational period of a few months (so e.g. a binary entering in LISA sensitivity
band towards the really end of its mission) will provide only mild bounds δ ∼ O(0.1) on the lower
PN coefficients (δ00, δ20, δ21 and δ30), whereas extending the observation period to ∆τ to about
1 to 2 years yields the greatest improvement to LISA constraining power, with δ ∼ O(0.005) for
the lowest order coefficients and δ ∼ O(1) for the 2PN ones. Still let us notice that the timescale
of this improvement depends on the total mass of the system: in fact we may expect that systems
with m = 100M⊙ or less (such as GW150914) that are more than 2 years away from the cutoff
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frequency (7.11) may produce a signal almost too faint to be detected by LISA; hence increasing
the observation time (into the earliest inspiral phase) doesn’t improve much more the bounds that
we may be able to impose. On the other hand more massive systems evolve more slowly, therefore
for them the bounds may improve further by extending the observation time.

Redshift z

From both table 7.1 and figure 7.3 we can see that the higher the redshift z, the lower will be the
SNR, and consequently the bounds we’ll be able to impose will become worse. This is in line with
what we were expecting, since a farther the system will produce a fainter signal, with the amplitude
decreasing with h ∝ 1

dL
. In particular if we were to observe again a system like GW150914, so at

a redshift of z ∼ 0.1, we could obtain fair bounds on the lowest PN parameters (δ ∼ O(0.005) up
to 1.5PN), and only mediocre bounds on the 2PN parameters (δ ∼ O(1)).

Yet the most valuable information is to estimate which is the lowest value of the redshift at which
we may expect to observe a system of a given mass: in fact by doubling the distance the probability
of finding a coalescing system increases roughly by eight times, being proportional to the search
volume; yet as we’ve seen the bounds consequently deteriorate. We’ll elaborate on this point in the
following.

Total mass m

Figure 7.4 shows a quite interesting dependence of the several quantities of interest as a function of
the total massm: in fact the SNR peaks for systems with aboutm ∼ 103M⊙; yet the best bounds on
the deformation parameters can be obtained by observing systems with m ∼ 102M⊙, in particular
for the higher order coefficients. The peak in the SNR is because systems with m ∼ 103M⊙ are
the ones which spend more time at the frequency at which LISA is most sensitive, as we can see
comparing table 7.1 with figure 7.2 for the power spectral noise density Sn(f). On the other hand,
to explain the fact that the systems which yield the best bounds are lighter than the ones with
the highest SNR, we can recognize that, fixed the observation time of 4 years, a more massive
systems will perform less orbits: hence we will observe fewer waveform cycles in the detector,
accumulating less phase (∆ϕ = 2πNcyc). Then, assuming a definite precision in the measurement
of absolute variations of the phase, having accumulated a lower total phase means that we will be
less sensitive to any relative modification of the phase, which is exactly what we’re probing with
our δmn parameters.

From table 7.1 we also realize that a system with total mass m ∼ 200M⊙ could provide bounds 1
order of magnitude better than a GW150914-like could, if it were to coalesce at the same distance
z ∼ 0.1; and could instead provide comparable bounds if coalescing at a higher redshift, up to
z ∼ 0.3.

From the figure and the table we also understand that systems with total mass larger than m ⪆
104M⊙ do not yield competitive bounds, because the frequency of the gravitational waves emitted
during their early inspiral is too low for LISA; furthermore we may not even expect to observe
them as close as z = 0.1. Similarly also systems with less than a few solar masses, such as binary
neutron stars, do not yet the best results: in this case actually we may expect a coalescence to take
place at a redshift as low as z ∼ 0.01, as for example was the case for GW170817 [121, 299]; yet
also in this case the signal to noise ratio is below unity, as these lighter system emit gravitational
waves with frequencies higher than the sensitivity band of LISA. Furthermore we don’t report the
results for systems with a mass ratio higher than m1

m2
= 4, focusing instead on systems with similar

mass in order to keep the systematic error as low as possible: in fact systems with higher mass
ratios can reach higher velocities during the inspiral phase, as we pointed out in section 1.6.1.
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Best bounds from realistic observations

As we have already pointed out, in order to assess which upper bounds we may realistically obtain
from the LISA detector, we need to estimate the lowest redshift z at which any system of a given
total mass m is expected to be observed during the 4 nominal years of observations. In this regard
we would have to perform a throughout analysis of the expected merger rate density, also as a
function of the redshift, taking into account the selection bias due to the fact that the detector is
able to observe some system better than others, depending on their intrinsic parameters. Yet we
expect LISA to observe only a handful of this kind of systems, therefore we’ll proceed by considering
estimates already present in the literature; in particular here we assume that the bounds will be
mostly set by the single best observed golden event, i.e. by the closest system with the suitable total
mass. Nonetheless in this case we may predict a considerable variability on the exact realization
of this system, and so on the consequent {δmn} parameter estimation. On the other hand we also
expect that the real analysis of LISA data will include a full Bayesian analysis taking into account
all the suitable systems observed during the whole mission duration, similarly to what is already
carried out in reference [96]: then the bounds on the {δmn} will be actually be better than the ones
provided by the single best observed event (though of the same order of magnitude), yet providing
more consistent results.

Let us then recall the discussion which we carried out in section 1.2.2 about the population of
black hole binaries: while the merger rate of black holes with total mass m < 100M⊙ is by now
understood quite well [141], the merger rate of systems comprising intermediate mass black holes,
with a total mass 102M⊙ < m < 105M⊙, is still quite elusive.

In particular it is expected that LISA will observe several binary systems with total mass m <
100M⊙ and SNR ⪆ 8 during its extended mission [300, 301]: actually only O(1) of such system
will reach the end of the inspiral phase (so our cutoff frequency (7.11)) providing possibly the
most constraining bounds on the 2PN coefficients. Despite this LISA will observe as well about
O(10) systems which will remain in their earliest inspiral phase for the full duration of the mission.
These latter systems will therefore be further away from coalescence, so the relative velocity of
their components will be lower, and so correspondingly the bounds on the 2PN coefficients should
be worse; nonetheless since we can observe many more systems in this earliest inspiral phase (since
that’s where they spend most of their final evolution), some of them may be near enough to have
a quite high SNR, and therefore may provide good bounds on the lower PN coefficients.

Regarding the expected rates for observations of intermediate mass black holes, instead, there aren’t
solid estimates: they may vary between tens to hundreds observed events per year (but probably
at high redshift), especially when LISA would be observing in synergy with Einstein Telescope [37,
86, 302, 303]; yet there are still many uncertainties in the underlying evolution models, and only
actual observations will finally shed light on this topic.

As a benchmark for systems with about O(100− 200)M⊙ we can nonetheless consider the case of
the most massive system observed so far by LIGO-Virgo, which was event GW190521 [304, 305].
It’s total mass was m ∼ 150M⊙, and it took place at redshift z ∼ 0.8; from this the collaboration
estimated a merger rate for similar systems of about R ∼ 0.1 Gpc−3 yr−1. In this case then we
may expect to observe O(1) events of this kind (∼ 102 total solar masses) at a redshift of z ∼ 0.3
during the extended mission duration.

With this premises we may then expect that LISA, during its extended mission, will observe
about O(1) events similar to GW150914, so with total mass m ∼ 60M⊙ at a redshift z ∼ 1; and
approximately O(1) events similar to GW190521, so with a total mass m ∼ (100 − 200)M⊙ at
a redshift z ∼ 0.3. Referring then to table 7.1 we understand that this class of systems should
be observed by LISA with an SNR between 2 and 6 already in their early inspiral phase (let us
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recall that we cut off the observation frequency using the conservative threshold given by equation
(7.11)): then, as discussed in section 7.1.2, the SNR should further increase when including also
the observation of the late inspiral phase; and could also be additionally augmented by the joint
observation of this systems with Einstein Telescope and Cosmic Explorer (the coalescence happens
about a week to a month later after they reach our cutoff frequency). Regarding the bounds on the
{δmn} parameters, both classes of systems will yield comparable constraint, with the actual value
depending on the specific realization of these system that will observed. Nevertheless, restricting
to order of magnitude estimates, in table 7.2 we report the forecast for the 90% upper bounds on
the deformation coefficients that LISA will be able to achieve.

Deformation coefficient |δ00| |δ20| |δ21| |δ30| |δ40| |δ41| |δ42|

90% upper bounds O(0.001) O(0.001) O(0.005) O(0.005) O(0.1) O(1) O(5)

Table 7.2 Forecast for the 90% upper bounds on the post-Newtonian deformation coefficients δmn that
will be possible to obtain from the data of the LISA mission, in a realistic scenario. Here we report only the
order of magnitude of these estimates, since their specific value depends on the particular realizations of the
systems that will be observed, and therefore presents a considerable variability.

We can notice that the expected constraints on the lower PN parameters (for example δ00) are
much stronger with respect to the ones on the higher PN parameters (for example δ42); this is
expected since the higher order PN parameters are suppressed by increasing powers of v2 ≪ 1.

Additionally let us point out that if intermediate mass black holes, specifically with a total mass
m ∼ (102 − 103)M⊙, will be found to have a much higher merger rate than anticipated, they may
provide better bounds than what is reported above. Furthermore we can notice that the choice
ϵ = 0.1 for the threshold which we performed in section 7.1.1 is consistent, since the statistical
errors that we expect on the 2PN parameters (e.g δ40) are at least of the same order of magnitude
of the ϵ systematic error.

Comparison with respect to current bounds

Finally we may try to compare our results with the ones of reference [96]: nonetheless first let us
recall that in this work we have employed a somewhat different parametrization and a much more
conservative cutoff for the observation, since we were aiming to perform a different test, as already
discussed in the introduction of this capter.

In fact, whereas we consider only the early inspiral phase by completely cutting off the observation
at the threshold frequency fgw,lim,ϵ given by (7.11), in order to limit systematic errors; reference [96]
considers the deformation parameters up to a much higher threshold frequency (aboutO

(︁
102 ∼ 103

)︁
times larger), after which they taper off these additional coefficients to analyse also the merger and
ringdown phases in pure general relativity. Furthermore reference [96] implements deformations to
the phase up to the 3.5PN order, but disregards their ν structure, differently with respect to this
work.

Nonetheless we may extrapolate the results obtained above to conclude that in the quite likely case
in which LISA were to observe even just a single event similar to GW150914 or to GW190521, it
could improve the current upper bounds of reference [96] on the 0PN, 1PN and 1.5PN coefficients
by about 1 to 2 orders of magnitude; obtaining instead at least a similar precision on the 2PN
coefficients.

However let us stress again that we cannot directly compare these two tests. To make the com-
parison more fair we should be less conservative, increasing the value of our ϵ threshold in order
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to have a cut off frequency (equation (7.11)) along the lines of reference [96]. Doing so we may
expect great improvements on all the bounds, and in particular on the ones related to the 2PN
coefficients (δ40, δ41 and δ42), especially when observing binary systems with a higher total mass.
In fact increasing the ϵ threshold implies observing a system also at velocities higher than v

c > 0.1,
and in this regime the contributions due to the 2PN coefficients become less suppressed: therefore
also so any deviations from their predicted value will become more important, and hence could be
better constrained.



CONCLUSIONS

In this thesis we have studied the dynamics of compact binary systems in general relativity, also
in light of the recent developments in this well-established field. In particular we have discussed
a broad range of topics, spanning from the theoretical computation of post-Newtonian corrections
to a phenomenological analysis regarding future gravitational wave observatories, giving a unified
overview of the whole procedure and of many of the techniques involved.

Specifically we focused on the post-Newtonian formalism, which is an approximation scheme useful
to describe the inspiral phase of compact binary systems. In this analytical framework the general
relativistic dynamics of binary systems, comprising black holes and neutron stars, are studied as a
series of (post-Newtonian) corrections to the classical Newtonian result. This formalism historically
has been one of the most studied, and its results are routinely employed (eventually in synergy
with others techniques) by present-day gravitational wave observatories, such as LIGO and Virgo,
to model the waveform of the gravitational waves emitted by a binary system in the stage prior to
its coalescence.

Despite the immense amount of effort and the many developments which have been involved in the
evaluation of these post-Newtonian corrections over the last century, this is still a current field of
research: one of the main reasons is that the extremely sensitive next generation gravitational wave
observatories (such as Einstein Telescope, Cosmic Explorer and LISA), which will come online in
the next decade, will require a substantial improvement of the accuracy of the theoretical models
for the gravitational waveform. Luckily, in the last years there has been a steady progress toward
reaching this goal: a renewed momentum in this direction has been imparted by the application of
modern effective field theory and quantum field theory techniques to the study of this problem.

In this approach to the post-Newtonian formalism, employed also in this thesis, the study of
compact binary systems is framed and systematized in the effective field theory framework, and
the evaluation of higher order corrections is addressed using advanced multi-loop quantum field
theory techniques. This approach has proven to be really effective, allowing to advance the state of
the art in the computation of post-Newtonian corrections. As a matter of fact these methods have
allowed us to evaluate in this thesis also a few selected conservative diagrams, first contributing
at the 7PN order, which are beyond the present state of the art: while being an extremely partial
result, it highlights the strength of these techniques.

Among these strengths there is the fact that computations can be made systematic: by evaluating
the post-Newtonian corrections as a sum over a series of diagrams, it’s possible to take advantage of
the many techniques developed for the evaluation of scattering amplitudes in particle physics, most
of them being also implemented in software packages. In this way it is possible to streamline the
evaluation of these contributions, eventually implementing the computation in a computer algebra
software: this has been done in this thesis as well, and actually it becomes a necessity at higher
post-Newtonian orders given the sheer number of diagrams. At the same time, these techniques also
allow to actually evaluate these higher order corrections, whose complexity cannot be addressed by
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many other approaches; and also to systematically account for spin and finite size effects, which
are needed to obtain accurate predictions.

Regarding the phenomenological analysis, we have assessed the precision with which the future
LISA gravitational wave detector will be able to constrain possible deviations from general relativity,
and more precisely from the predictions of the post-Newtonian theory. In particular to parametrize
these deviations we introduced seven deformation coefficients in the expression for the phase of the
gravitational waveform which included post-Newtonian corrections up to 2PN, also leveraging the
structure of the expression, differently with what is customary in the literature. Furthermore, since
we were interested in performing a test restricted only to the post-Newtonian theory, we focused
solely on the early inspiral phase of the binary system, in order to limit the expected systematic
error due to the truncation of the post-Newtonian expansion.

The result of our forecast is that LISA will be able to constrain relative deviations of order O(0.1)
from the values of the 2PN coefficients, and down to O(0.001) for the lower order 0PN and 1PN
coefficients. Additionally, by extrapolating these results to the so called parametrized tests of grav-
itational waves generation of references [92–96], we may expect LISA to be able to improve the
current bounds on that test by at least a factor O

(︁
102
)︁
for the lower order post-Newtonian defor-

mation coefficients. These results suggest that LISA should be well suited to measure deviations
from general relativity, using gravitational wave observations, during the early inspiral phase of
compact binary systems: this will allow to perform these tests in a regime complementary to what
is accessible to present day gravitational wave observatories.

Summary of the main results

In the following we summarize the most relevant results of this thesis work.

In chapter 1 and 2 we recalled several topics and techniques which proved useful for the thesis
work.

In chapter 3 we thoroughly presented the construction of the effective theory for compact binary
systems, developing the formalism somewhat differently with respect to what is customary in the
literature: in particular our notation emphasizes the vacuum nature of the diagrams, incidentally
grouping together several related contributions and so resulting in a lower number of diagrams.

In chapter 4 we evaluated all the diagrams which contribute up to next-to-next-to-leading order
(2PN) in the conservative sector. In particular we derived explicitly all the Feynman rules and
the master integrals needed to perform these calculations in appendices A and C, streamlining
as well the derivation of a generic conservative Feynman rule given the action term, and the
Fourier transform of tensorial expressions via tensor decomposition. This allowed us to develop
in a systematic way the computation of the conservative diagrams, and to implement their full
evaluation in a novel Mathematica code. Using it, in section 4.6 we also obtained the expressions
of a few conservative diagrams first contributing at 7PN order, beyond the state of the art.

In chapter 5 we evaluated the leading order contribution to the dissipative sector, so the power
loss, in the specific effective theory formalism which we presented; as well as the leading order
gravitational field at infinity, employing the in-in formalism.

In chapter 6, complementing these results with others reported in the literature, we explicitly
evaluated the observable gravitational waveform with up to 2PN corrections to the phase.

In chapter 7 we performed a forecast, employing the Fisher matrix formalism, to assess the pre-
cision with which the future LISA gravitational wave detector will be able to constrain possible
generic deviations from the prediction of the post-Newtonian theory, so also deviations from general
relativity. In particular we envisaged the test to be performed only on the early inspiral phase,
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in order to limit systematic errors; additionally we introduced a different parametrization for the
deformation coefficients with respect to what is customary in the literature, taking advantage of the
structure of the post-Newtonian corrections; this may improve the sensitivity to specific deviations
from general relativity. Specifically in section 7.4 we report the results of the forecast, summarized
in table 7.2, and the corresponding discussion.

Possible future developments

Since this thesis work encompassed several topics, there are many possibilities to develop it further.

Among them, regarding the first part of the thesis, there would be the possibility of evaluating
higher order post-Newtonian corrections, both concerning conservative and radiation diagrams. In
particular it would be interesting to check if the specific variant of the formalism used in this work
can be extended also to the evaluation of diagrams representing hereditary effects. For example
tail effects are usually associated to diagrams involving simultaneously both potential and radiation
modes; yet, when working in the far zone radiation theory as derived in a top-down approach, we
expect only diagrams with no potential modes, and hence their effect should instead show up
during the matching procedure. However working in this top-down approach, without introducing
the source multipole expansion at the level of the action as customary in the literature, could make
the computations too cumbersome. Another interesting extension could be the evaluation of higher
order post-Newtonian corrections including the spin and finite size effects of the compact objects,
which are relevant to obtain accurate predictions: in both case this can be done, in the formalism
which we already developed, by systematically taking into account higher order operators in the
point particle action for the internal zone, see also references [38, 80–84, 182, 213, 239, 241].

Regarding the derivation of physical observables from the post-Newtonian corrections, one could
extend the work by considering higher order corrections; as well as the eccentricity of the binary
system. Furthermore it would be interesting to explore the synergy with the Effective-One-Body
formalism [30, 31], which builds upon the results obtained with the post-Newtonian and other
formalism, augmenting them.

Regarding the phenomenological analysis, it would be interesting to increase the accuracy of the
forecast, for example by relying on more advanced population studies for the binary systems or
using mock catalogues of expected events, and performing a complete Markov Chain Monte Carlo
analysis in lieu of the Fisher matrix one. It would be important as well to extend the forecast to
take into account the whole network of several gravitational wave observatories. On a different
note one could also perform a Bayesian analysis employing the data from already observed events.

Finally a really interesting development of this work would be its extension to specific models of
modified gravity, and in principle the effective field theory approach which we employed should
be well suited to this task. In fact in this work we obtained the expression for the observable
gravitational waveform starting from the Einstein-Hilbert action associated to general relativity.
Then to study the dynamics of a compact binary system, and the corresponding gravitational
wave signal, in modified theories of gravity, it should suffice to introduce the suitable modification
directly in the fundamental initial action; proceeding then more or less analogously to what has
been presented. We expect modified (and possibly new) Feynman rules and diagrams to arise, yet
these should not present novel issue per se: in fact similar modifications to the standard action are
already routinely included when accounting for spin and finite size effects. This approach, actually,
has already been employed to account for the presence of an electromagnetic field in addition to
standard general relativity [197, 306] and has also been applied to some modified theories of gravity
[206, 307–311]. From the results of such procedure then it should be possible to obtain observables
in specific models of modified gravity; additionally the possibility of constraining the additional
parameters would provide a much more specific and powerful test to look for possible deviations
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from general relativity. However, let us notice that this field has already been extensively studied,
also using several different formalism, and that the perturbative approach we outlined cannot
take into account non-perturbative effects, which actually may be important for the dynamics
derived from some specific classes of theories. On the other hand many observations have already
constrained deviations from general relativity to be small, therefore in order to obtain accurate
predictions it may be necessary to account also for higher order effects, such as spin and finite size
effects of the compact objects, when evaluating observables in these theories: the systematic nature
of the approach employed in this work could be suitable to include these phenomena.
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APPENDIX

A DERIVATION OF THE FEYN-
MAN RULES

In this appendix we derive the Feynman rules which have been necessary for the evaluation of the
diagrams presented in chapters 4 and 5.

In section A.1 we derive the expression for the propagators, both of the potential and the radiation
fields. In section A.2 we derive the Feynman rules related to the near zone effective action which we
presented in section 3.2.3, and which are needed to evaluate the conservative diagrams presented in
chapter 4. In section A.3 we derive the Feynman rules related to the far zone effective action, which
we presented in section 3.2.4: in particular we explicitly perform the matching procedure discussed
therein, obtaining in the end the Feynman rules which are needed to evaluate the dissipative
diagrams and the gravitational waveform in chapter 5.

Let us now discuss how to obtain these Feynman rules: to obtain the Feynman rules of a theory
in momentum space, we start from the action S of the theory, and we substitute each field WA(x)
with its d+ 1 dimensional Fourier transform

WA(x) =

∫︂
dd+1k

(2π)d+1
WA(k) e

−ikx , (A.1)

consistently with what we defined in the Notation, where A denotes a possible series of indices, e.g.
A = i or A = jk, or none for scalar fields.

Next we treat the resulting theory as a quantum field theory over a flat background, that is, with
metric ηµν = diag(+,−,−,−). Therefore we have that the free particle propagator of each field
is the inverse of its quadratic term in the action, as written in momentum space; instead the
Feynman rules for the interactions between fields can be obtained by taking the corresponding
functional derivatives of the other terms in the action and by then setting the fields to zero: this
singles out the sought-after interaction term. Finally in both cases we add the usual i factor to the
so obtained expressions to get the corresponding Feynman rules.

Let us notice that in order to obtain a local Lagrangian it may be needed to expand the initial
action about the point where the field are vanishing, in such a way to obtain a well defined series,
where the operators of the Lagrangian are just powers of the fields evaluated at the same spacetime
point. We may then consider, in our perturbative approach, only the lowest order terms, up to the
required accuracy.

We also define the functional derivation as the operation fulfilling the following rules, for definiteness
specialized to the momentum space and only to the case of bosonic fields (as we’re not dealing with
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any fermionic field or Grassmann variable) [191, 225]:

δWA(k)

δWB(k′)
= (2π)d+1δ(d+1)(k − k′)δAB , (A.2a)

δ(WA(k)WB(k
′))

δWC(k′′)
= (2π)d+1

(︂
δ(d+1)(k − k′′)δACWB(k

′) +WA(k)δ
(d+1)(k′ − k′′)δBC

)︂
, (A.2b)

where with δAB we understand the product of Kronecker deltas which enforce the two series of
indices A and B to be equal. For example, for the case WA = Ai:

δAi(k)

δAj(k′)
= (2π)d+1 δ(d+1)(k − k′) δij . (A.3)

Furthermore let us point out that if the field has some particularly symmetry in its indices, it would
be better to explicitly enforce it; hence, if instead we considerWA = σij , with the σ field symmetric
in its two indices, i.e. σij = σji = σ(ij), then its functional derivatives should also preserve this
symmetry:

δσij(k)

δσkl(k′)
= (2π)d+1 δ(d+1)(k − k′) 1

2
(δikδjl + δjkδil)⏞ ⏟⏟ ⏞

=δ(i|kδ|j)l

. (A.4)

Functional derivatives between different fields are vanishing, and let us notice that due to our
normalization convention it holds: ∫︂

dd+1k

(2π)d+1

δW (k)

δW (k′)
= 1 . (A.5)

A.1 Propagators of the gravitational fields

From the bulk action, written as a function of the Kol-Smolkin variables, as reported in expression
(3.35), we can read off the propagators for the gravitational ϕ̂, Âi and σ̂ij fields; in particular we’re
interested in the quadratic parts in each field.

To introduce the procedure in a less cumbersome way, in the following we will restrict ourselves to
the case of potential fields only, so by assuming the radiation fields ϕ̄ = Āi = σ̄ij = 0, in practice
then we also drop the hat from the field variables. We will instead introduce back these radiation
field in section A.3, when we will be concerned with the Feynman rules for the far zone effective
theory.

On a side note, let us also introduce some useful identities, which for example would have been useful
if we were to obtain the Feynman rule from the non-expanded expression of the bulk action, as in
reference [229]. To do so let us recall that indices are raised and contracted using the d-dimensional
metric tensor γij or its inverse γ

ij , for which it holds (see also formula (3.30)):

γij ≡ δij +
σij
Λ

, (A.6)

thereby, using the Neumann series, we can approximate

γij = δij +

+∞∑︂
n=1

(−1)n
Λn

∑︂
m1,...,m(n+1)

δim1σm1m2σm2m3 · · ·σmnm(n+1)
δm(n+1)j

= δij − 1

Λ

∑︂
m1,m2

δim1σm1m2δ
m2j +

1

Λ2

∑︂
m1,m2,m3

δim1σm1m2σm2m3δ
m3j +O(σ3) .

(A.7)
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Furthermore, assuming all the following operations to be well behaved, we can approximate the
square root of the determinant of the spatial part of the metric,

√
γ, via the usual formal identity

for a matrix M with eigenvalues {λi}:

det(M) =
∏︂
i

λi = elog(
∏︁

i λi) = e
∑︁

i log(λi) = etr(log(M)) , (A.8)

and assuming to be near the identity matrix M = 1+A we can expand:

log(M) =
+∞∑︂
n=1

(−1)n+1A
n

n
. (A.9)

Therefore, recalling the linearity of the trace tr(aA+bB) = atr(A)+btr(B), we have, for γ = 1+σ:

√
γ = e

1
2
tr(log(1+σ)) = exp

(︄
1

2

+∞∑︂
n=1

(−1)n+1

n
tr(σn)

)︄
=

+∞∑︂
p=0

1

p!

(︄
+∞∑︂
n=1

(−1)n+1

2n
tr(σn)

)︄p
(A.10)

where explicitly the trace of the power n of σ is given by:

tr(σn) =
∑︂

i,m1,...,m(n−1)

σim1σm1m2 · · ·σm(n−1)i . (A.11)

The first terms in the expansion hence read:

√
γ = 1 +

1

2
tr(σ) +

1

8

(︂
(tr(σ))2 − 2 tr(σ2)

)︂
+

1

48

(︂
(tr(σ))3 − 6 tr(σ)tr(σ2) + 8 tr(σ3)

)︂
+O(σ4) .

(A.12)
In particular now we understand all indices to be contracted via Kronecker deltas, as instead we
make explicit all γ ∼ δ dependencies, so for example therefore tr(σ) = δijσij .

Moreover we point out that for example, if we were to use the bulk action as reported in reference
[229], some field interactions are implicit due to the simplified notation, for example:

(∇ϕ)2 = γij∂iϕ∂jϕ = δij∂iϕ∂jϕ− δikδjlσkl∂iϕ∂jϕ+O(σ2ϕ2) , (A.13)

while the expansion of the determinant (A.12) implies that for any term explicitly written inside
curly brackets in the action (3.35), there are also higher order interaction terms with the σij field
due to the expansion in powers of tr(σ). Hence it would be necessary to keep track of these terms
when considering interaction vertices, as we will do later on; but as long as we’re interested only
in the free propagators for the potential field, we would need only the terms of the bulk action
(3.35) quadratic in the fields: therefore, only in this case, we could truncate the series expansions
at
√
γ = 1 +O(σ) and γij = δij +O(σ).

Propagators for the potential ϕ and radiation ϕ̄ fields

Only in this section we’ll actually show the full procedure to obtain the propagator for both the
potential ϕ and radiation ϕ̄ modes, by reintroducing back the ϕ̄ radiation field.

In general we recall as well the discussion we presented in section 3.2.3, in particular below equation
(3.36), on how to separate the potential and radiation modes, and also on the subtleties related to
the extension of the Fourier integration domain over all the wavenumbers.

Returning to the computation of the ϕ and ϕ̄ propagators, first of all we have to find the propagator
for the full ϕ̂ field in Fourier space. To do so we have to consider the relevant quadratic term in
the bulk action (3.35), which are given by:

Sbulk ⊃ −cd
∫︂

dd+1x

[︃
δij∂iϕ̂∂jϕ̂− ̇

ϕ̂
2
]︃
+O(ϕ̂

3
, σϕ̂

2
) . (A.14)
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We can then perform the Fourier transform and read off the propagator, see also [224, 225]:

Sbulk ⊃ −cd
∫︂

dd+1x

(︃
δij∂iϕ̂∂jϕ̂− ̇

ϕ̂
2
)︃

= (2cd)
1

2

∫︂
dd+1x ηµν∂µϕ̂∂ν ϕ̂

= −(2cd)
1

2

∫︂
dd+1x ηµν ϕ̂ ∂µ∂ν ϕ̂

= −(2cd)
1

2

∫︂
dd+1x

dd+1k

(2π)(d+1)

dd+1k′

(2π)(d+1)
ϕ̂(k) e−ikx

(︁
−ηµνk′µk′ν

)︁
ϕ̂(k′) e−ik

′x

= +(2cd)
1

2

∫︂
dd+1k

(2π)(d+1)

dd+1k′

(2π)(d+1)
dd+1x e−i(k+k

′)x⏞ ⏟⏟ ⏞
=(2π)d+1δ(d+1)(−k−k′)

(k′)2ϕ̂(k)ϕ̂(k′)

= +
1

2

∫︂
dd+1k

(2π)(d+1)
(2 cd k

2)⏞ ⏟⏟ ⏞
=Dϕ̂(k)

ϕ̂(k)ϕ̂(−k)

(A.15)

with k2 ≡ ηµkµkν , furthermore in second line we integrated by parts and assumed the field and its

derivatives to vanish on the boundary of the integration domain. The propagator for the ϕ̂ field is
now given by the inverse of the Dϕ̂(k) function with the addition of the +iϵ prescription, and the
corresponding Feynman rule can then be obtained by adding an additional i factor, compare with
section 3.1.

However, since we’re interested in the propagators for the ϕ and ϕ̄ fields, we have to apply the
separation between potential ϕ and radiation ϕ̄ modes, as in relation (3.36), so:

ϕ̂(k) = ϕ(k) + ϕ̄(k) , (A.16)

recalling as well that these modes have non overlapping support by construction (i.e. we assume
a step function as the window function in equation (3.39), such that ϕ(k)ϕ̄(k) = 0 for any Fourier
mode k, which we take to hold also as ϕ(k)ϕ̄(−k) = 0 since we perform the separation on the
basis of the values of the modulus of k0 and |k|). This also assures us that there will be no mixing
between the potential and the radiative modes during propagation.

Therefore, since in this case the mixed term ϕϕ̄ vanish (this won’t be the case in interaction terms,
as they will be evaluated in different k1 and k2 momenta), the expression (A.15) becomes:

Sbulk ⊃
1

2

∫︂
dd+1k

(2π)(d+1)
(2 cd k

2)
(︁
ϕ(k)ϕ(−k) + ϕ̄(k)ϕ̄(−k)

)︁
. (A.17)

Then from the first term we can read off the propagator for the potential ϕ field. In particular,
by taking the inverse of the Dϕ̂(k) function, adding the +iϵ prescription, and multiplying by the i

factor (as discussed in section 3.1) we find:

k

ϕ
=

1

2cd

i

k2 + iϵ
(A.18)

Applying this same procedure on the second term of expression (A.17) instead we obtain the
propagator for the ϕ̄ radiation field:

ϕ̄

k

=
1

2cd

i

k2 + iϵ
(A.19)
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Then we can see that both propagator formally have the same expression, and therefore in the
following we will obtain simply the propagator for the potential modes; then the corresponding
propagator for the radiation modes will present the same expression.

Propagator of the Ai potential field

To relevant quadratic term in the harmonic gauge fixed bulk action (3.35) is:

Sbulk ⊃
∫︂

dd+1x

[︃
1

2
δikδjlFijFkl +

(︁
δij∂iAj

)︁2 − δijȦiȦj]︃+O(σA2, ϕA2) ; (A.20)

it can be rewritten as, by performing suitable integration by parts and Fourier transforms:

Sbulk ⊃
∫︂

dd+1x
[︂(︂
δikδjl − δilδjk

)︂
(∂iAj∂kAl) +

(︁
δij∂iAj

)︁2 − δijȦiȦj]︂
=

∫︂
dd+1x

[︂(︂
δikδjl − δilδjk + δijδkl

)︂
(∂iAj∂kAl)− δij∂0Ai∂0Aj

]︂
=

∫︂
dd+1x

⎡⎣−
⎛⎝δikδjl−δilδjk + δklδji⏞ ⏟⏟ ⏞

=−2δ[i|lδj|k]

⎞⎠ (Aj∂i∂kAl) + δijAi∂0∂0Aj

⎤⎦
=

∫︂
dd+1x

⎡⎢⎣δijAi
⎛⎜⎝−δkl∂k∂l + ∂0∂0⏞ ⏟⏟ ⏞

=ηµν∂µ∂ν

⎞⎟⎠Aj

⎤⎥⎦
=

∫︂
dd+1k

(2π)(d+1)

dd+1k′

(2π)(d+1)
dd+1x e−i(k+k

′)x⏞ ⏟⏟ ⏞
=(2π)d+1δ(d+1)(−k−k′)

[︁
δijAi(k)

(︁
−(k′)2

)︁
Aj(k

′)
]︁

=
1

2

∫︂
dd+1k

(2π)(d+1)
Ai(k) (−2δijk2)⏞ ⏟⏟ ⏞

≡D
ij
A (k)

Aj(−k) ,

(A.21)

where in the third line we used the fact that ∂[i∂k] =
1
2(∂i∂k−∂k∂i) = 0, so (−δilδjk+δklδji)∂i∂k = 0.

To obtain the propagator we need to invert Dij
A(k): regarding the tensorial structure, the identity

matrix δij is its own inverse; therefore the propagator for the Ai potential field is given by:

i j

k

A
= −δij

2

i

k2 + iϵ
. (A.22)

From this expression, as discussed before, we can directly evaluate the propagator for the radiative
field Ā as well, which reads:

i j
Ā

k

= −δij
2

i

k2 + iϵ
. (A.23)

Propagator of the σij potential field

The relevant terms needed to extract the quadratic term in the σij field are:

Sbulk ⊃
1

4

∫︂
dd+1x

(︂
δij∂iσ∂jσ − 2δijδkmδln∂iσkl∂jσmn − σ̇2 + 2δkmδlnσ̇klσ̇mn

)︂
+O(σ3, σ2ϕ) ,

(A.24)
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Proceeding analogously as before we obtain:

Sbulk ⊃
1

4

∫︂
dd+1x

(︂
δij(δklδmn − 2δkmδln)∂iσkl∂jσmn − (δklδmn − 2δkmδln)σ̇klσ̇mn

)︂

=
1

4

∫︂
dd+1x

⎛⎜⎝(δklδmn − 2δkmδln) σkl

⎛⎜⎝−δij∂i∂j + ∂0∂0⏞ ⏟⏟ ⏞
=ηµν∂µ∂ν

⎞⎟⎠σmn

⎞⎟⎠
=

1

4

∫︂
dd+1k

(2π)(d+1)

dd+1k′

(2π)(d+1)
dd+1x e−i(k+k

′)x⏞ ⏟⏟ ⏞
=(2π)d+1δ(d+1)(−k−k′)

(︂
(δklδmn − 2δkmδln) σkl(k)

(︁
−(k′)2

)︁
σmn(k

′)
)︂

=
1

2

∫︂
dd+1k

(2π)(d+1)
σkl(k)

⎛⎜⎜⎝−1

2
(δklδmn − 2δkmδln) k2⏞ ⏟⏟ ⏞

≡Dklmn
σ (k)

⎞⎟⎟⎠σmn(−k) .

(A.25)
To obtain the propagator we need to invert the tensorial structure of Dklmn

σ (k); in particular we
need also to preserve the symmetry of the indices σkl = σlk and σmn = σnm of the fields; therefore
we have to find a tensor P klmn(k) which satisfies [224]:

Dklmn
σ (k)Pmnpq(k) =

1

2

(︂
δkpδ

l
q + δkq δ

l
p

)︂
. (A.26)

To do so we can start from the general ansatz

Pmnpq(k) = A(k)δmnδpq +B(k)δmpδnq + C(k)δmqδnp , (A.27)

and, recalling that in d spatial dimension the trace of the spatial identity is δijδij = d, we obtain:

Dklmn
σ (k)Pmnpq(k) = −

k2

2

(︂
A(k)(d− 2)δklδpq +B(k)(δklδpq − 2δkpδ

l
q) + C(k)(δklδpq − 2δkq δ

l
p)
)︂
.

(A.28)
By comparing equations (A.26) and (A.28) we see that the coefficients are B(k) = C(k) = 1

2k2
and

A(k) = − 1
2k2

2
(d−2) . We conclude that equation (A.27) gives us the propagator, modulo the i factor;

hence the Feynman rule for the propagator of the σij field is given by:

ij kl

k

σ
=

1

2

i

k2 + iϵ

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃
. (A.29)

Also in this case we can generalize the previous formula to obtain the expression for the propagator
of the radiation σ̄ field as well, which reads:

ij kl
σ̄

k

=
1

2

i

k2 + iϵ

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃
. (A.30)

A.1.1 Non-relativistic expansion of the propagators

From the above expression for the potential propagators, we can directly apply the non-relativistic
expansion (3.49) which we described in section 3.2.3: this expansion allows to recover the definite
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PN scaling when evaluating the relevant diagrams. Then the explicit expression for a propagator
with n insertions is given by:

n

k

= − 1

2cd

i

|k|2
(︃
(k0)2

|k|2
)︃n

, (A.31a)

i j
n

k

=
δij
2

i

|k|2
(︃
(k0)2

|k|2
)︃n

, (A.31b)

ij kl
n

k

= −1

2

(︃
− 2

d− 2
δijδkl + δikδjl + δilδjk

)︃
i

|k|2
(︃
(k0)2

|k|2
)︃n

. (A.31c)

A.2 Near zone Feynman rules for the conservative sector

A.2.1 Worldline-gravitational fields interaction vertices

Expansion of the worldline point particle action

To evaluate the Feynman rules we need to expand the non linear action terms in order to obtain
a polynomial expression in fields. Therefore, by considering the worldline point particle action
written as a function of the Kol-Smolkin fields (3.33), and notice that it can be rewritten as

S(PP )
pp [xµa , ϕ̂, Âi, σ̂ij ] = −

2∑︂
a=1

ma

∫︂
dtdd+1x δ(d+1)(x− xa(t)) f(Φ, A,Σ) (A.32)

with

f(Φ, A,Σ) = eΦ
[︁
(1−A)2 − e−cdΦv2a − e−cdΦΣ

]︁ 1
2 (A.33)

where we have defined Φ ≡ ϕ̂
Λ , A ≡ Âi

Λ v
i
a and Σ ≡ σ̂ij

Λ viav
j
a.

Now we may obtain the coupling between the worldline, and Nϕ̂ ϕ̂ fields, NÂ Âi fields and Nσ̂

σ̂jk fields by looking for the ΦNϕ̂ ANÂ ΣNσ̂ term in the Taylor expansion of the f(Φ, A,Σ) function

about Φ = Âi = σ̂jk = 0. In fact we obtain:

f(Φ, A,Σ) =

∞∑︂
Nϕ̂,NÂ,Nσ̂=0

1

Nϕ̂!NÂ!Nσ̂!

∂(Nϕ̂+NÂ+Nσ̂)f(0, 0, 0)

∂Nϕ̂Φ ∂NÂA∂Nσ̂Σ
ΦNϕ̂ ANÂ ΣNσ̂

= f(0) +
∂f(0)

∂Φ
Φ+

∂f(0)

∂A
A+

∂f(0)

∂Σ
Σ+

∂2f(0)

∂Φ∂A
ΦA+

∂2f(0)

∂Φ∂Σ
ΦΣ+

∂2f(0)

∂A∂Σ
AΣ

+
1

2

∂2f(0)

∂2Φ
Φ2 +

1

2

∂2f(0)

∂2A
A2 +

1

2

∂2f(0)

∂2Σ
Σ2 +

∂3f(0)

∂Φ∂A∂Σ
ΦAΣ+

1

2

∂2f(0)

∂2Φ∂A
Φ2A+ . . . .

(A.34)
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The explicit result can be promptly obtained in a software like Mathematica, and it reads:

f(Φ, A,Σ) =
√︁
1− v2a +

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄
Φ+

(︄
− 1√︁

1− v2a

)︄
A+

(︄
− 1

2
√︁

1− v2a

)︄
Σ

+

(︃−2 + (2 + cd) v
2
a

2 (1− v2a) 3/2
)︃
ΦA+

(︄
−2 + cd

(︁
−2 + v2a

)︁
− 2v2a

4 (1− v2a) 3/2

)︄
ΦΣ+

(︃
− 1

2 (1− v2a) 3/2
)︃
AΣ

+
1

2

(︄
4 + v2a

(︁
−8− 2 (−2 + cd) cd + (−2 + cd)

2v2a
)︁

4 (1− v2a) 3/2

)︄
Φ2 +

1

2

(︃
− v2a
(1− v2a) 3/2

)︃
A2

+
1

2

(︃
− 1

4 (1− v2a) 3/2
)︃
Σ2 +

(︄
2
(︁
−1 + v2a

)︁
+ cd

(︁
2 + v2a

)︁
4 (1− v2a) 5/2

)︄
ΦAΣ

+
1

2

(︄
−4 + v2a

(︁
8− 2 (−2 + cd) cd − (2 + cd)

2v2a
)︁

4 (1− v2a) 5/2

)︄
Φ2A+ . . .

(A.35)

From this action the we can derive the interaction vertices between a worldline and gravitational
fields, both potential and radiative ones: this still follows from the expansion Ŵ a = Wa + W̄ a

which we have already presented.

In the following we will present some explicit derivations of the Feynman rules corresponding to
the interaction terms encoded in action (A.35); still for now we will restrict ourselves to the case
of potential fields only.

Example: interaction vertex between worldline and potential ϕ field

As explained at the beginning of this appendix A, to obtain the momentum space Feynman rules for
the interaction vertex between the worldline and a single potential ϕ field, we have to take a single
functional derivative with respect to the ϕ(k) field in the (Fourier transformed) Spp[x

µ
a , ϕ,Ai, σij ]

action, set all fields to zero, and finally add an i factor. We can directly start with the only relevant
term in the expanded action (A.35) which will give a non vanishing contribution, which is given
by:

S(PP )
pp [xµa , ϕ,A

i, σij ] ⊃ −
2∑︂

a=1

ma

∫︂
dtdd+1x δ(d+1)(x− xa(t))

(︄
2 + (−2 + cd) v

2
a

2
√︁

1− v2a

)︄
ϕ(x)

Λ
. (A.36)

Inserting the Fourier transformed field ϕ(k) field we obtain:

S(PP )
pp ⊃ −

2∑︂
a=1

ma

Λ

∫︂
dtdd+1x

dd+1k

(2π)d+1
δ(d+1)(x− xa(t))

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄
ϕ(k)e−ikx

= −
2∑︂

a=1

ma

Λ

∫︂
dt

dd+1k

(2π)d+1

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄
ϕ(k) e−ikxa(t)

(A.37)

Taking the functional derivatives, and setting all fields to zero, we obtain:

δS
(PP )
pp

δϕ(k′)
= −

2∑︂
a=1

ma

Λ

∫︂
dt

dd+1k

(2π)d+1

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄
(2π)d+1δ(d+1)(k − k′)e−ikxa(t)

= −
2∑︂

a=1

ma

Λ

∫︂
dt

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄
e−ik

′xa(t)

, (A.38)
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from which we can read the Feynman rules once we add the i factor, with the momentum incoming:

a

kϕ = −i
2∑︂

a=1

ma

Λ

∫︂
dt

(︄
2 + (−2 + cd) v

2
a

2
√︁

1− v2a

)︄
e−ikxa(t) . (A.39)

Definite post-Newtonian scaling of the interaction vertex

Let us notice that the coefficient in front of ϕ depends on the velocities v2a of the compact bodies,
therefore to have a definite scaling in the post-Newtonian expansion, we have to expand it to the
desired order:(︄

2 + (−2 + cd) v
2
a

2
√︁
1− v2a

)︄
= 1 +

1

2
(cd − 1) v2a +

1

8
(2cd − 1) v4a +

1

16
(3cd − 1) v6a +O

(︁
v8a
)︁
. (A.40)

This can be done also diagrammatically, in which case the expression (A.39) is expanded as a
leading term and a series of velocity insertion in the vertex, denoted with a crossed dot, so for
example:

a

kϕ = −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ikxa(t) , (A.41a)

a

kϕ = −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︃
cd − 1

2

)︃
v2a , (A.41b)

a
2

kϕ
= −i

2∑︂
a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︃
2cd − 1

8

)︃
v4a ; (A.41c)

in particular if the diagram (A.41a) enters at order n-PN, (A.41b) and (A.41c) are corrections
which enter respectively at order (n + 1)-PN and (n + 2)-PN. Nonetheless it is customary to use
the vertex expression exact to all orders in v, i.e. the Feynman rule (A.39), and then expand the
final result to the desired PN order only at the end of calculations; or at least after having joined
all the Feynman rules [235].

Example: interaction vertex between worldline, one Ai and two σjk fields

To show how to generalize the previous result, let us consider the more general case of the interaction
between a worldline, one Ai potential field and two σjk potential fields. The relevant term in the
point particle action is given by:

S(PP )
pp ⊃−

2∑︂
a=1

ma

∫︂
dtdd+1xδ(d+1)(x− xa(t))

[︃
1

2Λ3

(︃
− 3

4 (1− v2a) 5/2
)︃
(Anv

n
a )(σpqv

p
av
q
a)(σrsv

r
av
s
a)

]︃
.

(A.42)
We replace the usual Fourier transform of the fields to obtain, recalling our compact integral
notation (see Notation), and we take the needed functional derivatives, recalling also the rule
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(A.2b) for the functional derivation of product of fields:

S(PP )
pp ⊃ −

2∑︂
a=1

ma

∫︂
q1,q2,q3

∫︂
dt e−i(q1+q2+q3)xa(t)

[︃
1

2Λ3

(︃
− 3

4 (1− v2a) 5/2
)︃

An(q1)σpq(q2)σrs(q3)(v
n
av

p
av
q
av
r
av
s
a)]

δS
(PP )
pp

δAi(k1)
⊃ −

2∑︂
a=1

ma

∫︂
q2,q3

∫︂
dt e−i(k1+q2+q3)xa(t)

[︃
1

2Λ3

(︃
− 3

4 (1− v2a) 5/2
)︃

δinv
n
a⏞ ⏟⏟ ⏞

=via

σpq(q2)σrs(q3)(v
p
av
q
av
r
av
s
a)

⎤⎥⎦
δ2S

(PP )
pp

δσjk(k2)δAi(k1)
⊃ −

2∑︂
a=1

ma

∫︂
q2,q3

∫︂
dt e−i(k1+q2+q3)xa(t)

[︃
1

2Λ3

(︃
− 3

4 (1− v2a) 5/2
)︃
via(v

p
av
q
av
r
av
s
a)

(2π)(d+1)
(︂
δ(2d+1)(q2 − k2)δjpδkqσrs(q3) + σpq(q2)δ

(2d+1)(q3 − k2)δjrδks
)︂]︂
.

(A.43)
Taking the final functional derivative and setting all fields to zero we obtain:

δ3S
(PP )
pp

δσlm(k3)δσjk(k2)δAi(k1)
= −

2∑︂
a=1

ma

∫︂
q2,q3

∫︂
dt e−i(k1+q2+q3)xa(t)

[︃
1

2Λ3

(︃
− 3

4 (1− v2a) 5/2
)︃
via

(vpav
q
av
r
av
s
a)(2π)

2(d+1)
(︂
δ(2d+1)(q2 − k2)δjpδkqδ(2d+1)(q3 − k3)δlrδms

+ δ(2d+1)(q2 − k3)δlpδmqδ(2d+1)(q3 − k2)δjrδks
)︂]︂

= −
2∑︂

a=1

ma

Λ3

∫︂
dt e−i(k1+k2+k3)xa(t)

[︃(︃
− 3

4 (1− v2a) 5/2
)︃
via

(vpav
q
av
r
av
s
a)
1

2

(︂
δjpδ

k
qδ
l
rδ
m
s + δlpδ

m
qδ
j
rδ
k
s

)︂]︃
= −

2∑︂
a=1

ma

Λ3

∫︂
dt e−i(k1+k2+k3)xa(t)

[︃
−3

4

(︁
1− v2a

)︁− 5
2 viav

j
av
k
av

l
av
m
a

]︃
.

(A.44)
Therefore the Feynman rule for the worldline-Aσ2 interaction vertex, assuming all momenta to be
incoming, is given by:

a

i jk lm

k1

A

k2

σ

k3

σ

= −i
2∑︂

a=1

ma

Λ3

∫︂
dt e−i(k1+k2+k3)xa(t)

(︃
−3

4

(︁
1− v2a

)︁− 5
2

)︃(︂
viav

j
av
k
av

l
av
m
a

)︂
.

(A.45)

Generic interaction vertex between worldline and potential fields

We can generalize the derivation of the Feynman rules for the interaction between the worldline
and potential fields by drawing on the examples we have seen so far.

Let us consider the interaction between Nϕ ϕ fields, NA Ai fields, Nσ σjk potential fields and a
worldline. Recalling the expansion (A.34), the relevant term for the ΦNϕANAΣNσ interaction in
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the point particle action is given by:

S(PP )
pp [xµa , ϕ,A

i, σij ] ⊃ −
2∑︂

a=1

ma

∫︂
dtdd+1x δ(d+1)(x− xa(t))

× 1

Nϕ!NA!Nσ!

∂(Nϕ+NA+Nσ)f(0, 0, 0)

∂NϕΦ ∂NAA∂NσΣ
ΦNϕANAΣNσ

= − 1

Nϕ!NA!Nσ!

1

ΛNϕ+NA+Nσ

2∑︂
a=1

ma

∫︂
dtdd+1x δ(d+1)(x− xa(t))(︄

∂(Nϕ+NA+Nσ)f(0, 0, 0)

∂NϕΦ ∂NAA∂NσΣ
ϕNϕ(Aiv

i
a)
NA(σjkv

j
av
k
a)
Nσ

)︄
.

(A.46)
We then Fourier transform all the fields:

S(PP )
pp ⊃ − 1

Nϕ!NA!Nσ!

1

ΛNϕ+NA+Nσ

2∑︂
a=1

ma

∫︂
p1,...,pNϕ

,q1,...,qNA
,r1,...,rNσ

∫︂
dtdd+1x

[︂
δ(d+1)(x− xa(t))

× e−i(p1+···+pNϕ
+q1+···+qNA

+r1+···+rNσ )x∂
(Nϕ+NA+Nσ)f(0, 0, 0)

∂NϕΦ ∂NAA∂NσΣ
ϕ(p1) · · ·ϕ(pNϕ

)

× (As1(q1)v
s1
a ) · · · (AsNA

(qNA
)v
sNA
a )(σt1u1(r1)v

t1
a v

u1
a ) · · · (σtNσuNσ

(rNσ)v
tNσ
a v

uNσ
a )

]︂
.

(A.47)
We then start performing the required functional derivatives. In particular, applying the general-
ization of the rule (A.2b) for the functional derivation of products of the same fields, we’ll obtain
the symmetrization of the Dirac delta over the momenta and of the Kronecker delta over the spatial
indices. By performing the integrals and the sums over these delta functions, we’ll obtain exactly
the same factors Nϕ! times for the ϕ fields, NA! for the Ai and Nσ! for the σjk: in fact the momenta
of each field appear only in the sum inside the exponential, therefore they can simply be reordered.
Instead the Kronecker delta from the functional derivatives of the Ai and σij fields are all contracted
with the product of the same quantity, the three-velocity via of the body a; hence also in this case
we can reorder the terms to obtain exactly the same factor each time. This means that we can
simply evaluate a single term and multiply it by (Nϕ!NA!Nσ!), which therefore will exactly cancel
with the 1

Nϕ!NA!Nσ !
factor which came from the expansion of the action; and identify the external

momenta directly with the momenta in the exponential, as long as they become to the same type
of field. Finally, adding the i factor, we obtain the Feynman rule for the worldline-ΦNϕANAΣNσ

interaction vertex:

a

. . . i1 . . .iNA j1k1 . . .jNσkNσ

p1

ϕ
pNϕ

q1

A

qNA

r1

rNσ

σ

= −i
2∑︂

a=1

ma

∫︂
dt e

−i(p1+···+pNϕ
+q1+···+qNA

+r1+···+rNσ )x(t)

[︄
1

ΛNϕ+NA+Nσ

∂(Nϕ+NA+Nσ)f(0, 0, 0)

∂NϕΦ ∂NAA∂NσΣ(︂
(vi1a · · · v

iNA
a )(vj1a v

k1
a · · · v

jNσ
a v

kNσ
a )

)︂]︂
.

(A.48)
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Furthermore the symmetry factor associated to the above vertex (A.48) is given by Nϕ!NA!Nσ!.

Explicit expression for the necessary worldline-potential field interaction vertices

We can obtain the sought-after Feynman rules for the necessary interaction vertices by specializing
formula (A.48) to the corresponding case. In the following table A.1 we show the Feynman rules for
the interaction vertices which have been used in this thesis work, and their leading order scaling.

Vertex Corresponding expression LO scaling

a

kϕ
= −i

2∑︂
a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄
(A.49a)

L
1
2 v0

a

i

kA = −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︄
− 1√︁

1− v2a

)︄
via (A.49b)

L
1
2 v1

a

ij

kσ = −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︄
− 1

2
√︁

1− v2a

)︄
viav

j
a (A.49c)

L
1
2 v2

a

k1

ϕ

k2
= −i

2∑︂
a=1

ma

Λ2

∫︂
dt e−i(k1+k2)xa(t)

[︃
1

4 (1− v2a) 3/2
·

·
(︁
4 + v2a

(︁
−8− 2 (−2 + cd) cd + (−2 + cd)

2v2a
)︁)︁]︁ (A.49d)

L0v2

a

i

k1

ϕ

k2

A
= −i

2∑︂
a=1

ma

Λ2

∫︂
dt e−i(k1+k2)xa(t)

(︃−2 + (2 + cd) v
2
a

2 (1− v2a) 3/2
)︃
via (A.49e)

L0v3

a

ij

k1

ϕ

k2

σ
= −i

2∑︂
a=1

ma

Λ2

∫︂
dt e−i(k1+k2)xa(t)

[︃
− 1

4 (1− v2a) 3/2

·
(︁
2 + cd

(︁
−2 + v2a

)︁
− 2v2a

)︁
viav

j
a

]︁ (A.49f)
L0v4

a

k1

k2

k3

= −i
2∑︂

a=1

ma

Λ3

∫︂
dt e−i(k1+k2+k3)xa(t)

[︃
1

8 (1− v2a) 5/2
·

·
(︁
8 + v2a

(︁
−24 + 4cd (3 + (−3 + cd) cd) + 24v2a

−2cd (12 + (−9 + cd) cd) v
2
a + (−2 + cd)

3
(︁
v2a
)︁
2
)︁)︁]︁ (A.49g)

L− 1
2 v4

Table A.1 Feynman rules for the interaction vertices, between a worldline and potential fields, most of
which have been used in this thesis. The last column reports the leading order scaling of the corresponding
vertex, as evaluated by the power counting rules (3.59); in particular all of these vertices have p = 0, as for
example the worldline-A2 vertex has been neglected as it has r = 2, thereby scaling as L0v6 instead of L0v4.
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A.2.2 Gravitational potential fields self-interaction vertices

We now turn to the Feynman rules for the self-interaction vertices which are encoded in the bulk
action (3.35). In this case we have already reported the expanded form of this non-linear action,
therefore we can directly read the relevant terms from the expression of the action. If instead we
had started with the action as reported in reference [229], then we would have needed to expand
it as explained in section A.1. Let us also notice that in the bulk action (3.35) we report only
the terms relevant up to 2PN: the same Feynman rules which we will derive in this section may
actually receive corrections from terms in the bulk action with the exact same number of fields,
but different number or time and spatial derivatives.

Let us recall once again that such action prescribes the interactions for the Ŵ =W + W̄ fields, so
self-interaction vertices containing both potential and radiation fields; in the following instead for
simplicity we will restrict ourselves to the case with only potential fields; we’ll take into account
also radiation fields in section A.3.

Example: ϕ3 interaction vertex

To obtain the interaction vertex between three ϕ fields we can directly read the relevant term,
proportional only to ϕ3, from the expanded bulk action (3.35), as this is the only one which is
going to survive after the application of the relevant functional derivatives and setting the fields to
zero. This term reads:

Sbulk ⊃ −
c2d
Λ

∫︂
dd+1x ϕ̇

2
ϕ . (A.50)

We can then Fourier transform the ϕ fields and then take the functional derivatives, using the
generalization of the rule (A.2b) for the functional derivative of the product of fields:

Sbulk ⊃ −
c2d
Λ

∫︂
q1,q2,q3

∫︂
dd+1x e−i(q1+q2+q3)xϕ(q1)(−iq02)ϕ(q2)(−iq03)ϕ(q3)

δSbulk
δϕ(k1)

⊃ (2π)d+1 c
2
d

Λ

∫︂
q1,q2,q3

∫︂
dd+1x e−i(q1+q2+q3)xq02q

0
3

(︂
δ(d+1)(q1 − k1)ϕ(q2)ϕ(q3)

+ϕ(q1)δ
(d+1)(q2 − k1)ϕ(q3) + ϕ(q1)ϕ(q2)δ

(d+1)(q3 − k1)
)︂

δ2Sbulk
δϕ(k2)δϕ(k1)

⊃ (2π)2(d+1) c
2
d

Λ

∫︂
q1,q2,q3

∫︂
dd+1x

[︂
e−i(q1+q2+q3)xq02q

0
3(︂

δ(d+1)(q1 − k1)δ(d+1)(q2 − k2)ϕ(q3) + δ(d+1)(q1 − k1)ϕ(q2)δ(d+1)(q3 − k2)

+ δ(d+1)(q1 − k2)δ(d+1)(q2 − k1)ϕ(q3) + ϕ(q1)δ
(d+1)(q2 − k1)δ(d+1)(q3 − k2)

+δ(d+1)(q1 − k2)ϕ(q2)δ(d+1)(q3 − k1) + ϕ(q1)δ
(d+1)(q2 − k2)δ(d+1)(q3 − k1)

)︂]︂
δ3Sbulk

δϕ(k3)δϕ(k2)δϕ(k1)
⊃ (2π)3(d+1) c

2
d

Λ

∫︂
q1,q2,q3

∫︂
dd+1x

[︂
e−i(q1+q2+q3)xq02q

0
3·

·
(︂
δ(d+1)(q1 − k1)δ(d+1)(q2 − k2)δ(d+1)(q3 − k3) + δ(d+1)(q1 − k1)δ(d+1)(q2 − k3)δ(d+1)(q3 − k2)

+ δ(d+1)(q1 − k2)δ(d+1)(q2 − k1)δ(d+1)(q3 − k3) + δ(d+1)(q1 − k3)δ(d+1)(q2 − k1)δ(d+1)(q3 − k2)
+δ(d+1)(q1 − k2)δ(d+1)(q2 − k3)δ(d+1)(q3 − k1) + δ(d+1)(q1 − k3)δ(d+1)(q2 − k2)δ(d+1)(q3 − k1)

)︂]︂
.

(A.51)
We can therefore see that the functional derivatives symmetrize the initial expression with respect
to the momenta; in fact, performing the integration over the Fourier momenta q1, q2, q3, the Fourier
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exponential evaluates always to the same expression e−i(k1+k2+k3)x, while the only difference be-
tween the 3! terms is due to the q02q

0
3 factor inside the integrand, thus this factor gets symmetrized.

In fact, setting all fields to zero, the only term of the derived action that remains is the one we’ve
been working on, and now it reads:

δ3Sbulk
δϕ(k3)δϕ(k2)δϕ(k1)

=
c2d
Λ

∫︂
dd+1x e−i(k1+k2+k3)x

(︁
k02k

0
3 + k03k

0
2 + k01k

0
3 + k01k

0
2 + k03k

0
1 + k02k

0
1

)︁
.

(A.52)

We can now perform the integration over the spatial variable:

δ3Sbulk
δϕ(k3)δϕ(k2)δϕ(k1)

=
2c2d
Λ

(︁
k02k

0
3 + k01k

0
3 + k01k

0
2

)︁ ∫︂
dd+1x e−i(k1+k2+k3)x⏞ ⏟⏟ ⏞

=(2π)d+1δ(d+1)(−k1−k2−k3)

.
(A.53)

Finally, adding the i factor, we have that the Feynman rule for the ϕ3 self-interaction vertex, with
all momenta incoming, reads:

k3

ϕ

k2

ϕ

k1

ϕ

= i (2π)d+1δ(d+1)(k1 + k2 + k3)
2c2d
Λ

(︁
k02k

0
3 + k01k

0
3 + k01k

0
2

)︁
. (A.54)

We can notice the presence of the d+ 1 dimensional Dirac delta in the k momenta, which enforces
momentum conservation in this vertex.

Example: ϕ2σ interaction vertex

To obtain the ϕ2σ interaction vertex we read the relevant terms from the expanded bulk action
(3.35) up to 2PN:

Sbulk ⊃ −
cd
2Λ

∫︂
dd+1x

[︁
σii∂jϕ∂

jϕ− 2
(︁
σij∂

iϕ∂jϕ
)︁]︁

(A.55)

Let us now Fourier transform the expression and take the needed functional derivatives, enforcing
the symmetry of the indices of the σkl field:

Sbulk⊃−
cd
2Λ

∫︂
q1,q2,q3

∫︂
dd+1x e−i(q1+q2+q3)x

[︂
δklδmn(iq

m
2 )(iqn3 )− 2

(︂
(iqk2 )(iq

l
3)
)︂]︂
σkl(q1)ϕ(q2)ϕ(q3)
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2Λ

∫︂
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∫︂
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(︂
qk2q

l
3

)︂]︂ 1
2
(δikδ

j
l + δilδ

j
k)ϕ(q2)ϕ(q3)

δ2Sbulk
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(2π)d+1

∫︂
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∫︂
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qi2q

j
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i
3

)︂]︂
×
(︂
δ(d+1)(q2 − k2)ϕ(q3) + ϕ(q2)δ

(d+1)(q3 − k2)
)︂
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(︂
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3 + qj2q

i
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×
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)︂
.

(A.56)
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Evaluating the integrals and setting the fields to zero we obtain:

δ3Sbulk
δϕ(k3)δϕ(k2)δσij(k1)

=
cd
Λ

[︂
δij(k2 · k3)−

(︂
ki2k

j
3 + kj2k

i
3

)︂]︂ ∫︂
dd+1x e−i(k1+k2+k3)x⏞ ⏟⏟ ⏞

=(2π)d+1δ(d+1)(−k1−k2−k3)

(A.57)

Finally adding the i factor we obtain the corresponding Feynman rule:

ij

k1

σ

k3

ϕ

k2

ϕ

= i (2π)d+1δ(d+1)(k1+k2+k3)
cd
Λ

(︂
δij(k2 · k3)−

(︂
ki2k

j
3 + kj2k

i
3

)︂)︂
. (A.58)

Feynman rules for generic potential bulk self-interaction vertices

The first step in the derivation of the Feynman rule is to substitute to each field its Fourier transform
(A.1); after having done so, any temporal or spatial derivative is applied to the exponential, e.g.
ẆA(x) −→

∫︁
q e

−iqx(−iq0)WA(q), and ∂jWA(x) −→
∫︁
q e

−iqx(+iqj)WA(q) and so forth for higher

derivatives, for example ∂j∂kWA(x) −→ −
∫︁
q e

−iqx qjqkWA(q); let us remember that we take all the
momenta as incoming.

The next step, as outlined at the start of this chapter, is to perform the functional derivatives with
respect to the all the fields which appear in the action term. This step also tell us which is the
diagrammatic representation that corresponds to the Feynman rule we’re computing: considering
for definiteness the Feynman rule (A.58), in its derivation (A.56) we obtain the Fourier transformed
fields ϕ(q1)ϕ(q2)σkl(q3); then we’ll have to take the functional derivative with respect to all of them.
For this particular example we may do so by parametrizing these fields as σij(k1), ϕ(k2) and ϕ(k3)

and taking the functional derivative with respect to δ3

δϕ(k3) δϕ(k2) δσij(k1)
: doing so we will obtain a

diagram like the one depicted in (A.58), with the given k1, k2 and k3 momenta and ij indices.

Let us notice that if there is more than one field of the same type, e.g. ϕn with n ≥ 2, then
when applying the functional derivative we’ll have to resort to the rule (A.2b) for the functional
derivation of the product of fields: the net action of this procedure, once we integrate the Dirac
delta in the momenta with the Fourier momenta integrals, is to kind-of symmetrize (as we’re
dealing with bosonic fields only) both the spatial indices and the momenta factor which appear
in our expression. To make this point more clear, and point out the subtleties in the previous
statement, let us assume to have a Lagrangian term of the following kind

L = c Aj1(x) ∂j4Aj2(x) Äj3(x)

= −i c
∫︂
q1,q2,q3

(qj42 )(q03)
2Aj1(q1) Aj2(q2) Aj3(q3) e

−i(q1+q2+q3)x (A.59)

and, once defined for convenience δ
(q−k)
rs ≡ δ(d+1)(q − k) δrs such that

δAj1
(q1)

δAi2
(k2)

= (2π)d+1 δ
(q1−k2)
j1i2

,

let us perform the aforementioned functional derivatives:

δL

δAi1(k1)
= −i(2π)d+1 c

∫︂
q1,q2,q3

(qj42 )(q03)
2e−i(q1+q2+q3)x

(︂
δ
(q1−k1)
i1j1

Aj2(q2) Aj3(q3)

+Aj1(q1) δ
(q2−k1)
i1j2

Aj3(q3) +Aj1(q1) Aj2(q2) δ
(q3−k1)
i1j3

)︂
;

(A.60a)
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δ2L

δAi2(k2)δAi1(k1)
= −i(2π)2(d+1) c

∫︂
q1,q2,q3

(qj42 )(q03)
2e−i(q1+q2+q3)x

×
(︂
δ
(q1−k1)
i1j1

δ
(q2−k2)
i2j2

Aj3(q3) + δ
(q1−k1)
i1j1

Aj2(q2) δ
(q3−k2)
i2j3

+ δ
(q1−k2)
i2j1

δ
(q2−k1)
i1j2

Aj3(q3) +Aj1(q1) δ
(q2−k1)
i1j2

δ
(q3−k2)
i2j3

+δ
(q1−k2)
i2j1

Aj2(q2) δ
(q3−k1)
i1j3

+Aj1(q1) δ
(q2−k2)
i2j2

δ
(q3−k1)
i1j3

)︂
;

(A.60b)

δ3L

δAi3(k3)δAi2(k2)δAi1(k1)
= −i(2π)3(d+1) c

∫︂
q1,q2,q3

(qj42 )(q03)
2e−i(q1+q2+q3)x

×
(︂
δ
(q1−k1)
i1j1

δ
(q2−k2)
i2j2

δ
(q3−k3)
i3j3

+ δ
(q1−k1)
i1j1

δ
(q2−k3)
i3j2

δ
(q3−k2)
i2j3

+ δ
(q1−k2)
i2j1

δ
(q2−k1)
i1j2

δ
(q3−k3)
i3j3

+ δ
(q1−k3)
i3j1

δ
(q2−k1)
i1j2

δ
(q3−k2)
i2j3

+δ
(q1−k2)
i2j1

δ
(q2−k3)
i3j2

δ
(q3−k1)
i1j3

+ δ
(q1−k3)
i3j1

δ
(q2−k2)
i2j2

δ
(q3−k1)
i1j3

)︂
= −i(2π)3(d+1) c

∫︂
q1,q2,q3

(qj42 )(q03)
2e−i(q1+q2+q3)x

×

⎛⎝∑︂
π∈S3

δ
(q1−kπ(1))
iπ(1)j1

δ
(q2−kπ(2))
iπ(2)j2

δ
(q3−kπ(3))
iπ(3)j3

⎞⎠ ;

(A.60c)

where in formula (A.60c) we introduced Sn, which is the symmetric group formed out of n elements,
and π ∈ Sn, which represents one out of the n! permutations of n elements: therefore with the
notation

∑︁
π∈S3

we understand the sum over all the permutations of the numbers 1, 2, 3; e.g.∑︁
π∈S3

f(π(1), π(2), π(3)) = f(1, 2, 3) + f(1, 3, 2) + f(2, 1, 3) + f(2, 3, 1) + f(3, 1, 2) + f(3, 2, 1).
Performing the integration over the Fourier momenta in equation (A.60c) we find

δ3L

δAi3(k3)δAi2(k2)δAi1(k1)
= −i c

∑︂
π∈S3

(︂
(kj4π(2))(k

0
π(3))

2 e−i(kπ(1)+kπ(2)+kπ(3))x δiπ(1)j1 δiπ(2)j2 δiπ(3)j3

)︂
= −i c e−i(k1+k2+k3)x

∑︂
π∈S3

(︂
(kj4π(2))(k

0
π(3))

2 δiπ(1)j1 δiπ(2)j2 δiπ(3)j3

)︂
= −i c e−i(k1+k2+k3)x

(︂
(kj42 )(k03)

2δi1j1δi2j2δi3j3 + (kj43 )(k02)
2δi1j1δi3j2δi2j3

+ (kj41 )(k03)
2 δi2j1δi1j2δi3j3 + (kj43 )(k01)

2 δi2j1δi3j2δi1j3

+(kj41 )(k02)
2 δi3j1δi1j2δi2j3 + (kj42 )(k01)

2 δi3j1δi2j2δi1j3

)︂
,

(A.61)
where in the second line we used the fact that the sum of momenta in the exponential takes the
same form for each of the permutation π thanks to the commutative property of addition. We can
notice that if there were no spatial or temporal derivatives acting on the fields in the original action
term, then we would have achieved a complete symmetrization of the indices, hence obtaining
3! δ(i1|j1δ|i2|j2δ|i3)j3 ; instead the presence of derivatives create k terms, which then require us to sum
appropriately over the permutations of the indices in order to get the correct result. Let us also
recall that if we’re dealing with the symmetric σij field, then to preserve the symmetry of its indices
we should use the symmetric formula (A.4) for its functional derivative.

Finally at the end of these steps, in the action the only integration left is the one over dd+1x, which
multiplies the Fourier exponential; in this exponential the position x is contracted with the sum of
over all the field momenta, which we assumed to be incoming, therefore, recalling notation (N14)
and that the Dirac delta is an even function, this terms yields:∫︂

dd+1x e−i(
∑︁

i ki)x = (2π)d+1 δ(d+1)(
∑︁

i ki) ; (A.62)
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hence we can see that this Dirac delta enforces the momentum conservation for each bulk interaction
vertex.

To parametrize the most general action term then we use the following compact notation

S ⊃ T I
∫︂

dd+1x
∏︂

W=ϕ,A,σ

⎡⎣NW∏︂
b=1

⎛⎝⎛⎝sWb∏︂
c=1

∂
jW,b
c

⎞⎠(︂∂(tWb )
0

)︂
WJW

{b}

⎞⎠⎤⎦ . (A.63)

In this expression W is the usual placeholder variable for the several potential fields, W = ϕ,A, σ,
and the outer product has the goal of considering each of these fields. We also introduced the
general index JW by which we understand the several indices that are carried by each W field,
so ϕ

Jϕ
{b}

= ϕ, AJA
{b}

= AjAb
, σJσ

{b}
= σjσ

(2b−1)
jσ
(2b)

; for example σJσ
{1}

= σjσ1 jσ2 . We then have to

consider that each field can appear multiple times in each action term, and we denote with NW

the number of times the field W appears in the action term; hence the
∏︁NW
b=1 product iterates over

them. Furthermore each of the fields, which this latter product is iterating over via the b variable,
may possibly have several time derivatives and spatial derivatives acting on it; in fact, for the term
identified by a given W and b variables, we denote with tWr the order of the temporal derivative
acting on it, and with sWb the number of spatial derivatives acting on it; additionally we denote

the index of the c-th spatial derivative as jW,rc . Finally T I is a position independent tensor which
contracts all the free indices which appear inside the spacetime integral, so in particular I is the

ordered list of these indices, schematically I =
(︂
jA1 j

A
2 . . . j

σ
1 . . . jϕ,11 jϕ,12 . . . jϕ,21 . . . jA,11 . . . jσ,11 . . .

)︂
.

Let us now evaluate the Feynman rule corresponding to such an action term like (A.63): first we
denote via kWb the incoming momentum of the b-th field of type W , and to it we also associate the
generic spatial indices IW{b}, with the same convention presented above. Therefore the diagrammatic
representation of this Feynman rule R and its corresponding expression are:

R =

iA1 . . . iANA

iσ1 i
σ
2

.

.

.

iσ(2Nσ−1)i
σ
(2Nσ)

kϕ
1

kϕ
Nϕ

kA
1

kA
NA

kσ
1

kσ
Nσ

R =
(︂
i (2π)d+1δ(d+1)(

∑︁
i ki)

)︂
T I

×
∏︂

W=ϕ,A,σ

⎡⎣ ∑︂
π∈SNW

⎛⎝NW∏︂
b=1

⎛⎝⎛⎝sWb∏︂
c=1

(︄
+i
(︂
kWπ(b)

)︂jW,b
c

)︄⎞⎠(︂(−i(kWπ(b))0)(tWb )
)︂
δIW{π(b)}J

W
{b}

⎞⎠⎞⎠⎤⎦ .
(A.64)

In the Feynman rule we added the usual i factor, we denoted with
∑︁

i ki =
∑︁

W=ϕ,A,σ

∑︁NW
b=1 k

W
b

the sum over all the momenta of the fields, which we choose to be all incoming; furthermore we
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denoted with π(·) ∈ SNW
the permutations of the numbers 1, . . . , NW . Finally we introduced the

tensor δIW{π(b)}J
W
{b}

, with the function of enforcing the corresponding spatial indices to be the same,

that is

δIW{b′}J
W
{b}

=

⎧⎪⎪⎨⎪⎪⎩
1 if W = ϕ

δib′jb if W = A
1
2

(︂
δi(2b′−1)j(2b−1)

δi(2b′)j(2b) + δi(2b′)j(2b−1)
δi(2b′−1)j(2b)

)︂
if W = σ .

(A.65)

The symmetry factor associated to the vertex (A.64) is given by

SF =
∏︂

W=ϕ,A,σ

(NW !) = Nϕ!NA!Nσ! , (A.66)

as we’re dealing with bosonic indistinguishable fields.

Potential ϕ2A interaction vertex

We can now employ the result (A.64) derived above to evaluate the Feynman rules which we will
need. One of them is the ϕ2A self-interaction vertex. The relevant term in the bulk action (3.35)
reads:

Sbulk ⊃ −
2cd
Λ

∫︂
dd+1x

[︂
ϕ̇Ai∂

iϕ
]︂

(A.67)

We can the cast this expression into the form (A.63) by rewriting (A.67) as:

Sbulk ⊃
(︃
−2cd

Λ
δj

ϕ,2
1 jA1

)︃
⏞ ⏟⏟ ⏞

=T j
ϕ,2
1 jA1

∫︂
dd+1x

[︂
(∂0ϕ)

(︂
∂
jϕ,21

ϕ
)︂]︂ [︂

AjA1

]︂
,

(A.68)

that is, we recognize that Nϕ = 2, NA = 1, Nσ = 0, that the only temporal derivative results in

tϕ1 = 1, and that the only spatial derivative results in sϕ2 = 1, while all other tWb and sWb coefficients
are vanishing.

Then from formula (A.64) we can directly read off the corresponding Feynman rule, which reads

R =
(︂
i (2π)d+1δ(d+1)

(︂
kϕ1 + kϕ2 + kA1

)︂)︂ (︃
−2cd

Λ
δ
jϕ,21

jA1

)︃
×
[︄(︄

+i
(︂
kϕ2

)︂jϕ,21

)︄(︂
−i(kϕ1 )0

)︂
+

(︄
+i
(︂
kϕ1

)︂jϕ,21

)︄(︂
−i(kϕ2 )0

)︂]︄ [︂
δiA1 jA1

]︂
,

(A.69)

and after a relabeling of the momenta and spatial indices:

i

k1

A

k3

ϕ

k2

ϕ

= −i (2π)d+1δ(d+1)(k1 + k2 + k3)
2 cd
Λ

(︁
k02k

i
3 + k03k

i
2

)︁
. (A.70)
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Potential ϕA2 interaction vertex

We can proceed similarly to we have just done also to derive the Feynman rule also for the ϕA2

self-interaction vertex. The relevant term in the bulk action is (3.35):

Sbulk ⊃
cd
Λ

∫︂
dd+1x

[︂(︂(︁
∂iA

i
)︁2 − (︁∂iAj∂jAi)︁+ (︁∂jAi∂jAi)︁)︂ϕ]︂ ; (A.71)

and proceeding as presented above we find:

j

i

k2

A
k1

A
k3

ϕ
= −i (2π)d+1δ(d+1)(k1 + k2 + k3)

2 cd
Λ

(︂
δij(k1 · k2) + ki1k

j
2 − kj1ki2

)︂
. (A.72)

Let us point out that in reference [65] the Feynman rule for the ϕA2 vertex reports a prefactor
of 2 in front of the Kronecker delta δij with respect to the result we found (A.72). However in
this thesis work we have employed the expression (A.72), for example in the evaluation (4.55h) of
diagram A(2h), obtaining the correct result according to the literature [235].

A.3 Far zone Feynman rules for the dissipative sector

In this section we’ll explicitly derive the Feynman rules relevant for the far zone effective theory,
proceeding as discussed in section 3.2.4. In particular these results will be employed in chapter 5
to evaluate the leading order dissipative contributions.

A.3.1 Feynman rules for bulk vertices involving radiation vertex

The derivation of the Feynman rules for the bulk vertices, so involving only gravitons, is similar to
what has been presented so far: in practice up until now we’ve only considered potential gravitons
Wa entering in the vertices, nonetheless the actual expression for the bulk action is written as a
function of the generic Ŵ a fields, which are then separated into potential and radiation modes
Ŵ a =Wa + W̄ a, as already discussed in section 3.2.4.

Then we can directly derive the momentum space Feynman rules simply taking care of performing
the aforementioned expansion, taking care of considering the potential and radiation modes as
different when performing the functional derivations, and therefore selecting only the relevant
contributions. Below we’ll explicitly derive two mixed potential-radiation bulk vertices.

Example: ϕ2ϕ̄ interaction vertex

To obtain this interaction vertex we have to consider the term in the bulk action (3.35) which
contains exactly ϕ̂ fields, as it will be the only one which is going to remain after the application
of the relevant functional derivatives and setting the fields to zero. This term reads:

Sbulk = −
c2d
Λ

∫︂
dd+1x

̇
ϕ̂
2
ϕ̂+O(σϕ̂

3
) . (A.73)
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We can then Fourier transform the ϕ̂ fields and split them into potential and radiation modes, as
ϕ̂ = ϕ+ ϕ̄.

Sbulk ⊃ −
c2d
Λ

∫︂
q1,q2,q3

∫︂
dd+1x e−i(q1+q2+q3)xϕ̂(q1)(−iq02)ϕ̂(q2)(−iq03)ϕ̂(q3)

= +
c2d
Λ

∫︂
q1,q2,q3

q02 q
0
3

∫︂
dd+1x e−i(q1+q2+q3)x(ϕ(q1) + ϕ̄(q1))(ϕ(q2) + ϕ̄(q2))(ϕ(q3) + ϕ̄(q3))

(A.74)

To proceed then we can take the functional derivatives, using the generalization of the rule (A.2b)
for the functional derivative of the product of fields; in particular, as we’re interested in finding the
Feynman rule for the ϕ2ϕ̄ bulk vertex, in formula (A.74) we can keep only the terms containing
two ϕ and only one ϕ̄.

δSbulk
δϕ̄(k)

⊃ (2π)d+1 c
2
d

Λ

∫︂
q1,q2,q3

∫︂
dd+1x e−i(q1+q2+q3)xq02q

0
3

(︂
δ(d+1)(q1 − k)ϕ(q2)ϕ(q3)

+ϕ(q1)δ
(d+1)(q2 − k)ϕ(q3) + ϕ(q1)ϕ(q2)δ

(d+1)(q3 − k)
)︂

δ2Sbulk
δϕ(k1)δϕ̄(k)

⊃ (2π)2(d+1) c
2
d

Λ

∫︂
q1,q2,q3

∫︂
dd+1x

[︂
e−i(q1+q2+q3)xq02q

0
3(︂

δ(d+1)(q1 − k)δ(d+1)(q2 − k1)ϕ(q3) + δ(d+1)(q1 − k)ϕ(q2)δ(d+1)(q3 − k1)

+ δ(d+1)(q1 − k1)δ(d+1)(q2 − k)ϕ(q3) + ϕ(q1)δ
(d+1)(q2 − k)δ(d+1)(q3 − k1)

+δ(d+1)(q1 − k1)ϕ(q2)δ(d+1)(q3 − k) + ϕ(q1)δ
(d+1)(q2 − k1)δ(d+1)(q3 − k)

)︂]︂
δ3Sbulk

δϕ(k2)δϕ(k1)δϕ̄(k)
⊃ (2π)3(d+1) c

2
d

Λ

∫︂
q1,q2,q3

∫︂
dd+1x

[︂
e−i(q1+q2+q3)xq02q

0
3·

·
(︂
δ(d+1)(q1 − k)δ(d+1)(q2 − k1)δ(d+1)(q3 − k2) + δ(d+1)(q1 − k)δ(d+1)(q2 − k2)δ(d+1)(q3 − k1)

+ δ(d+1)(q1 − k1)δ(d+1)(q2 − k)δ(d+1)(q3 − k2) + δ(d+1)(q1 − k2)δ(d+1)(q2 − k)δ(d+1)(q3 − k1)
+δ(d+1)(q1 − k1)δ(d+1)(q2 − k2)δ(d+1)(q3 − k) + δ(d+1)(q1 − k2)δ(d+1)(q2 − k1)δ(d+1)(q3 − k)

)︂]︂
.

(A.75)
Performing the integration over the momenta we obtain:

δ3Sbulk
δϕ(k2)δϕ(k1)δϕ̄(k)

=
c2d
Λ

∫︂
dd+1x e−i(k+k1+k2)x

(︁
k01k

0
2 + k02k

0
1 + k0k02 + k0k01 + k02k

0 + k01k
0
)︁
;

(A.76)
and performing then the integration over the spatial variable:

δ3Sbulk
δϕ(k2)δϕ(k1)δϕ̄(k)

=
2c2d
Λ

(︁
k01k

0
2 + k0k01 + k0k02

)︁ ∫︂
dd+1x e−i(k+k1+k2)x⏞ ⏟⏟ ⏞

=(2π)d+1δ(d+1)(−k−k1−k2)

.
(A.77)

Finally, adding the i factor, we have that the Feynman rule for the ϕ2ϕ̄ self-interaction vertex, with
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all momenta incoming, reads:

ϕ̄

k

k2

ϕ

k1

ϕ

= i (2π)d+1δ(d+1)(k + k1 + k2)
2c2d
Λ

(︁
k01k

0
2 + k0k01 + k0k02

)︁
. (A.78)

ϕ2σ̄ interaction vertex

In the following we’ll need the Feynman rule for the ϕ2σ̄ interaction. Its expression can be read off
directly from equation (A.58), because the derivation goes through analogously once one considers
σ̄ instead of σ as the field with respect to which take the functional derivative: then the Feynman
rule for the ϕ2σ̄ vertex reads

ij

k3

ϕ

k2

ϕ

σ̄

k

= i (2π)d+1δ(d+1)(k+k1+k2)
cd
Λ

(︂
δij(k1 · k2)−

(︂
ki1k

j
2 + kj1k

i
2

)︂)︂
. (A.79)

A.3.2 Worldline-radiation vertex

We’re now interested in computing the Feynman rules for the coupling between W̄ a radiations
field and a worldline vertex in the far zone effective theory: we recall from section 3.2 that in our
notation the square in the diagrams represents the worldline in the far zone effective theory. From
that section we also recall that in order to obtain these Feynman rules (or the associated terms
in the action) we have to perform a kind of matching procedure: in fact we’ll have to evaluate
the corresponding diagrams in the near zone effective theory, by considering the relevant radiation
fields W̄ a as external particles with fixed momentum.

Doing so then the evaluation of the diagram still goes through similarly to the evaluation of con-
servative diagrams that we performed in chapter 4, yet we have to apply the methods presented
in section 3.2.4 in order to correctly recover a definite post-Newtonian scaling behavior. On the
other hand we recall the definition of the multipole moments from equation (3.67), but also that,
for the precision we’re aiming for, we may neglect the terms in the final far zone Feynman rule
which are proportional to conserved quantities, as they will give a vanishing contribution to the
final diagram: we’ll exemplify this point below here.

Worldline-ϕ̄ vertex

In order to evaluate diagrams (R1) and (R2) in chapter 5, see figure 5.1, we need the Feynman rule
for the Worldline-ϕ̄ in the far zone effective theory. The expression for such a vertex can then be
obtained by performing a kind-of matching procedure with the near zone effective theory, which
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amounts to evaluating in such theory the following diagrams:

ϕ̄

k

=

a

ϕ̄

k
+

a

b

ϕ̄

k
ϕ +

a

b

ϕ̄

k

A

+

a

b c

ϕ̄

kϕ

ϕ
+

a

b
ϕ̄

k

ϕ

ϕ
+

a

b
ϕ̄

k

ϕ

A

+

a

b
ϕ̄

k

ϕ

σ
+

a

b
ϕ̄

k

A

A
+ O

(︂
L

1
2 v

11
2

)︂
.

(A.80)

In particular, recalling the discussion about the radiation scaling rules we carried out in section

3.2.4, we find that the first diagram after the equal sign contributes at leading order as O
(︂
L

1
2 v

1
2

)︂
,

the second as O
(︂
L

1
2 v

5
2

)︂
, all the others as O

(︂
L

1
2 v

9
2

)︂
. In theory then we’d need all of the above

diagrams in order to evaluate the radiation effective action, i.e. diagrams 5.1, up to order O
(︂
Lv

10
2

)︂
.

In practice, once we’ll evaluate the first diagram below here in formula (A.82), we’ll find that its
first terms will be proportional to conserved quantities (in particular the mass m and position
of the center of mass xCM ), and the first non-conserved quantity will be the mass quadrupole
moment Mij : therefore, for the precision we’re aiming for, the first diagrams effectively scales like

O
(︂
L

1
2 v

5
2

)︂
. In fact, when in chapter 5 we’ll construct the diagram expression starting from the

Feynman rules (e.g. in the simplest case by taking the square of the same Feynman rule), we’ll have
that even if in the final results the temporal derivatives are applied to a non conserved quantity,
which we’ll denote with g(t), then we can always integrate by parts at least once to move the time
derivative to the other quantity, which we’ll denote f(t):∫︂

dt f(t)
dαg

dtα
(t) ∼ −

∫︂
dt

df

dt
(t)

dα−1g

dtα−1
(t) ; (A.81)

to obtain a vanishing result; it is then clear that if either f(t) or g(t) are conserved quantities, they
won’t contribute to the diagram we’ll compute in chapter 5.

Therefore, once we choose the reference frame of the center of mass, we’ll find that the first diagram

actually first contributes at order O
(︂
L

1
2 v

5
2

)︂
, hence we’ll need to consider only the first and the

second diagram to obtain the needed Feynman rule at order O
(︂
L

1
2 v

5
2

)︂
; we evaluate them in the

following, in a similar way to what is done in references [43, 206].

Worldline-ϕ̄ vertex – First diagram

We now explicitly evaluate the first diagram from expression (A.80): we need the expression for
the worldline-ϕ̄ vertex, which nonetheless in practice is identical to the one for the worldline-ϕ
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potential vertex. In fact in equation (A.37) we actually had found the expression for the generic
worldline-ϕ̂ vertex, and there we could have considered the radiation ϕ̄ field instead of the potential
ϕ field after performing the ϕ̂ = ϕ+ ϕ̄ splitting, obtaining in practice the same expression (A.39).
Using then that near zone Feynman rule, and considering the ϕ̄ field as an external particle with
momentum k, we find:

a

ϕ̄ k = −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︄
2 + (−2 + cd) v

2
a

2
√︁

1− v2a

)︄

= −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ik

0t ei(k·xa(t))

(︃
1 +

(cd − 1)

2
v2a +

2cd − 1

8
v4a +O

(︁
v6
)︁)︃

= −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ik

0t

(︃
1 + i(k · xa)−

1

2
(k · xa)2 +O

(︁
v3
)︁)︃

×
(︃
1 +

(cd − 1)

2
v2a +O

(︁
v4
)︁)︃

= −i 1
Λ

∫︂
dt e−ik

0t

(︄
2∑︂

a=1

ma + i

(︄
k ·
(︄

2∑︂
a=1

maxa

)︄)︄
− 1

2

2∑︂
a=1

ma(k · xa(t))2

+
(cd − 1)

2

2∑︂
a=1

mav
2
a +O

(︁
v3
)︁)︄

= −i 1
Λ

∫︂
dt e−ik

0t

(︄
m+ imki x

i
CM −

1

2
kikjMij +

(cd − 1)

2

2∑︂
a=1

mav
2
a +O

(︁
v3
)︁)︄

(A.82)
where we recall the definitions (3.67) for the multipole moments. As explained before, according
to the choices we made in section 3.2.4, we can set xiCM = 0; on top of this also the first term can
be neglected, as it is proportional to the total mass m, which at this order is a conserved quantity.

Worldline-ϕϕ̄ vertex – Second diagram

To evaluate explicitly the second diagram from expression (A.80) we need the worldline-ϕϕ̄ vertex;
it can be derived as previously explained, by performing the splitting ϕ̂ = ϕ+ϕ̄ in the corresponding

worldline-ϕ̂
2
expression from the action, and selecting the ϕϕ̄ by performing the relevant functional

derivatives. Then we find:

a

b

ϕ̄

k

k1

ϕ

=

∫︂
k1

(︄
−i

2∑︂
a=1

ma

Λ2

∫︂
dt1 e

−i(k−k1)xa(t1)
[︃

1

4 (1− v2a) 3/2

×
(︁
4 + v2a

(︁
−8− 2 (−2 + cd) cd + (−2 + cd)

2v2a
)︁)︁]︁)︁

×
(︃
− i

2cd

1

|k1|2
)︃⎛⎝−i 2∑︂

b=1

mb

Λ

∫︂
dt2 e

−ik1xb(t2)

⎛⎝2 + (−2 + cd) v
2
b

2
√︂
1− v2b

⎞⎠⎞⎠ .

(A.83)
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At leading order we can evaluate it as follows:

= i
1

2 cd

2∑︂
a,b=1

mamb

Λ3

∫︂
dt1dt2 e

−ik0t1eik·xa(t1)
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ddk01
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e−ik
0
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(︁
1 +O

(︁
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1
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= i
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dt e−ik
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2
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1 +O
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+ (1↔ 2)

= i
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d
2

8 cd
Γ

(︃
d

2
− 1
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.

(A.84)
Here the first integral in the third line vanishes because it’s scaleless. Finally we can perform the
multipole expansion by Taylor expanding both Fourier exponentials as explained in section 3.2.4;
nonetheless we only need the leading order result which is equal to 1, hence:

= i
π−

d
2

8 cd
Γ

(︃
d

2
− 1

)︃
m1m2

Λ3

∫︂
dt e−ik

0t (1 + 1) |x1 − x2|2−d
(︁
1 +O

(︁
v2
)︁)︁

. (A.85)

Feynman rule for the worldline-ϕ̄ vertex

We can now obtain the expression corresponding to the diagram (A.80) for the worldline-ϕ̄ Feynman

rule, at order O
(︂
L

1
2 v

5
2

)︂
:

ϕ̄

k

=

a

ϕ̄

k

+

a

b

ϕ̄

k
ϕ + O

(︂
L

1
2 v

7
2

)︂
. (A.86)
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By summing the (A.82) and (A.85) results we obtain, enforcing the condition of xCM = 0 due to
our frame choice:

ϕ̄ k =

(︄
−i 1

Λ

∫︂
dt e−ik

0t

(︄
m+ imki x
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2
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(A.87)

Let us point out that O
(︂
G

1
2 Lv

)︂
scaling in the above (A.87) expression is different with respect to

the O
(︂
L

1
2 v

7
2

)︂
we reported in the corresponding diagrammatic expression (A.86): this is because

the O
(︂
G

1
2 Lv

)︂
scaling in the former is the real scaling of next order term in the expression,

evaluated using the scaling rules of table 3.1; whereas the O
(︂
L

1
2 v

7
2

)︂
scaling in expression (A.86)

includes the G− 1
2L− 1

2 v
5
2 factor which we add for each radiation legs, as explained in section 3.2.4,

see formula (3.70).

As explained in section 3.2.4, we can now employ the equation of motion in order to recast the last
line of expression (A.87) into the usual multipole expansion. For the precision which we’re aiming
for it suffices to employ the leading order (so Newtonian) equation of motions, which we evaluated
in equation (3.99); furthermore we can directly work in d = 3 dimension. These equations of motion

explicitly read Gm2
ri

|r|3 = −ai1 +O
(︂
G− 1

2 L− 1
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11
2

)︂
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, hence it
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)︃ (A.88)

and therefore, adding the (1↔ 2) term:
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r
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(A.89)
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This result let us cast expression (A.87), expanded at leading order around d = 3, into:
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(A.90)
where we integrated by parts the last term, recalling from definitions (3.67) both the Newtonian
energy EN of the system, which is a conserved quantity at this order, and the trace of the mass
quadrupole moment M .

To summarize, the expression for the worldline-ϕ̄ Feynman rule, corresponding to the diagram
(A.80), reads:

ϕ̄ k = i
1

Λ

∫︂
dt e−ik

0t

(︃
−m+

1

2
kikjMij − EN +

1

2
(k0)2M

)︃
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(︂
G

1
2 Lv

)︂
+O(d− 3) .

(A.91)

Worldline-ϕ̄2 vertex

To evaluate diagrams (R2) in chapter 5, see figure 5.1, we’ll need the worldline-ϕ̄
2
vertex, given by:

ϕ̄

k1

ϕ̄

k2

=

a

ϕ̄

k1

ϕ̄

k2
+O

(︂
v

10
2

)︂
. (A.92)

In fact we’ll need to evaluate only its leading order expression, which amounts to evaluating the
diagram (A.93).

Worldline-ϕ̄2 vertex – First diagram

To evaluate such diagram we need the worldline-ϕ̄
2
Feynman rule in the near zone theory: it has

the same expression as the one with two potential fields instead of two radiation fields, and is given
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by (A.49d). Then we find:
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(A.93)
where in the last line we used again the fact that, according to our choice of frame of reference, it
holds xCM = 0.

Feynman rule for the worldline-ϕ̄2 vertex

Summarizing, the expression for the worldline-ϕ̄
2
vertex in the far zone is given by:

ϕ̄

k1

ϕ̄

k2

= −i 1
Λ2

∫︂
dt e−i(k

0
1+k

0
2)tm+O

(︁
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)︁
. (A.94)

Worldline-Ā vertex

To evaluate diagram (R3) in chapter 5, see figure 5.1, we’ll need the Feynman rule for the worldline-
Ā vertex in the far zone; it can be obtained by evaluating:

i

Ā

k

=

a

i

Ā
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+

a

b i
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b i
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.

(A.95)

According to the discussion about the radiation scaling rules which we carried out in section 3.2.4,

the first diagram contributes at leading order at O
(︂
L

1
2 v

3
2

)︂
, while all the others at order O

(︂
L

1
2 v

7
2

)︂
.

Nonetheless, similarly to what we found previously, once we put ourselves in the reference frame of
the center of mass, we’ll find that the first diagram gives a non vanishing contribution only since

order O
(︂
L

1
2 v

5
2

)︂
, hence it will be the only diagram we’ll have to consider.
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Worldline-Ā vertex – First diagram

This is the only diagram we’ll have to evaluate; evaluating the expression for the Feynman rule
in the near zone EFT we find that it is analogous to expression (A.49b) for the potential modes.
Therefore:

a

i

Ā k = −i
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ma
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(A.96)

To proceed further we recall the identity involving the three dimensional Levi-Civita tensor ϵijkϵilm =
δj lδ

k
m − δjmδkl, and that ϵkij = ϵijk, and proceeding similarly to [206], we obtain:

ϵlmkLk =

2∑︂
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maϵ
lmk ϵijkx

ivj =
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m vl (A.97)

and therefore∫︂
dt e−ik

0txja v
i
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since the total derivative produces a surface term. Then, thanks to the time integral present in
equation (A.96), we can recast the last term of that last line as:
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and therefore, recalling the quantities defined in equations (3.67), the diagram (A.96) is equivalent
to:

= −i 1
Λ

∫︂
dt e−ik

0t

(︃
piCM −

i

2
ϵijkkjLk −

1

2
k0M ijkj

)︃
+O

(︂
G

1
2 Lv

)︂
= −i 1

Λ

∫︂
dt e−ik

0t

(︃
− i
2
ϵijkkjLk −

1

2
k0M ijkj

)︃
+O

(︂
G

1
2 Lv

)︂
,

(A.100)

where we explicitly made use of the fact that with our choice of coordinate frame piCM = 0 since
ẋCM = 0.

Feynman rule for the worldline-Ā vertex

To summarize the expression for the worldline-Ā vertex in the far zone is given by:

i
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Λ
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2
ϵijkkjLk +

1

2
k0M ijkj

)︃
+O

(︂
G

1
2 Lv

)︂
. (A.101)
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Worldline-σ̄ vertex

In order to evaluate diagrams (R4) in section 5.1, see figure 5.1, and also the gravitational field far
away from the source in section 5.2, we’ll need the worldline-σ̄ vertex evaluated in the far zone,
which is given by:

ij

σ̄

k

=

a

ij

σ̄

k

+

a

b ij
σ̄

k

ϕ

ϕ
+ O

(︂
L

1
2 v

7
2

)︂
. (A.102)

In this case we find that both diagrams contribute at leading order at O
(︂
L

1
2 v

5
2

)︂
, and therefore

will be the only ones we’ll have to consider.

Worldline-σ̄ vertex – First diagram

We want to evaluate the first near zone diagram comprising expression (A.102). Then we need
the worldine-σ̄ vertex in the near zone EFT, nonetheless its expression is identical to the potential
vertex (A.49c). Therefore:

a

ij

σ̄ k = −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ikxa(t)

(︄
− 1

2
√︁

1− v2a

)︄
viav

j
a

= −i
2∑︂

a=1

ma

Λ

∫︂
dt e−ik

0t (1 +O(v))
(︃
−1

2
viav

j
a +O

(︁
v4
)︁)︃

= i
1

2Λ

∫︂
dt e−ik

0t
2∑︂

a=1

ma v
i
av
j
a +O

(︂
G

1
2 Lv

)︂
.

(A.103)

Worldline-σ̄ vertex – Second diagram

To evaluate the second diagram instead we need the ϕ2σ̄ bulk vertex in the near zone; luckily we
have already evaluated its expression before, and the result is given in equation (A.79). Let us
recall that, as pointed out in section 3.2.4, this bulk vertex encodes the non-linear interactions due
to the non-Abelian structure of general relativity.

a

b ij
σ̄

k
k1

ϕ

k2

=
2

2! 2!

∫︂
k1,k2

(︄
−i

2∑︂
a=1

ma

Λ

∫︂
dt1 e

ik1xa(t1)

(︄
2 + (−2 + cd) v

2
a

2
√︁
1− v2a

)︄)︄

×

⎛⎝−i 2∑︂
b=1

mb

Λ

∫︂
dt2 e

−ik2xb(t2)

⎛⎝2 + (−2 + cd) v
2
b

2
√︂

1− v2b

⎞⎠⎞⎠
×
(︂
i (2π)d+1δ(d+1)(k + k1 − k2)

cd
Λ

(︂
−δij(k1 · k2) +

(︂
ki1k

j
2 + kj1k

i
2

)︂)︂)︂
×
(︃
− i

2cd

1

|k1|2
)︃(︃
− i

2cd

1

|k2|2
)︃
.

(A.104)
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Since we only need the leading order of this diagram, we can simplify the above expression to:

=
i

8 cd

1

Λ3

2∑︂
a,b=1

mamb

∫︂
dt1

∫︂
dt2 e

−ikxb(t2)
∫︂

dk01
2π

e−ik
0
1(t2−t1)⏞ ⏟⏟ ⏞

=δ(t1−t2)

×
∫︂

ddk1

(2π)d

(︂
−δij(k1 · k+ |k1|2) + 2ki1k

j
1 + ki1k

j + kikj1

)︂ eik1·(xb(t2)−xa(t1))

|k1|2 |k+ k1|2
(︁
1 +O

(︁
v2
)︁)︁

=
i

8 cd

1

Λ3

2∑︂
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mamb

∫︂
dt e−ik

0t

×
∫︂

ddk1

(2π)d

(︂
−δij(k1 · k+ |k1|2) + 2ki1k

j
1 + ki1k

j + kikj1

)︂ eik1·(xb(t)−xa(t))

|k1|2 |k+ k1|2
(1 +O(v))

=
i

8 cd

m1

Λ3

∫︂
dt e−ik

0t

∫︂
ddk1

(2π)d

(︃
m1

(︂
−δij(k1 · k+ |k1|2) + 2ki1k

j
1 + ki1k

j + kikj1

)︂ 1

|k1|2 |k+ k1|2

+m2

(︂
−δij(k1 · k+ |k1|2) + 2ki1k

j
1 + ki1k

j + kikj1

)︂ e−ip·r(t)

|k1|2 |k+ k1|2

)︄
(1 +O(v)) + (1↔ 2) .

(A.105)

When then recall the expansion (3.66) of the potential propagator which receives correction from
the external radiation momentum k, i.e. 1

|k+k1|2 , and so at leading order:

=
i

8 cd

m1

Λ3

∫︂
dt e−ik

0t

∫︂
ddk1

(2π)d

(︃
m1

(︂
−δij(k1 · k+ |k1|2) + 2ki1k

j
1 + ki1k

j + kikj1

)︂ 1

|k1|4

+m2

(︂
−δij(k1 · k+ |k1|2) + 2ki1k

j
1 + ki1k

j + kikj1

)︂ e−ik1·r(t)

|k1|4

)︄
(1 +O(v)) + (1↔ 2)

=
i

8 cd

1

Λ3
m1m2

∫︂
dt e−ik

0t

(︄
−δij

(︄
kl

∫︂
ddp

(2π)d
pl
e−ip·r(t)

|p|4 +

∫︂
ddp
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ddp
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ddp

(2π)d
pi
e−ip·r(t)
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ddp
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(A.106)
where we dropped scaleless integrals and we recognized the integrals given in formulae (C.31),
(C.32) and (C.33). Nonetheless, since k

p ∝ v, the leading order contribution is given only by:

=
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8 cd
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Λ3
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irj
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2 Lv

)︂
;

(A.107)
which is the final result corresponding to diagram (A.104).
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Feynman rule for the worldline-Ā vertex

To summarize, the expression for the worldline-σ̄ vertex in the far zone, represented in (A.102), is
given by the sum of results (A.103) and (A.107).

ij

σ̄

k

= i
1

2Λ

∫︂
dt e−ik

0t
2∑︂

a=1

ma v
i
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Λ3

∫︂
dt e−ik
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irj

|r|d +O
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1
2 Lv

)︂
.

(A.108)

To further simplify the above expression, and to recognize the relevant multipole moments of the
source, we can proceed as explained in section 3.2.4 and as done previously: we first expand around
d = 3, obtaining

= i
1

2Λ

∫︂
dt e−ik

0t

(︄
2∑︂

a=1

ma v
i
av
j
a −Gm1m2

rirj

r3

)︄
+O

(︂
G

1
2 Lv

)︂
+O(d− 3) . (A.109)

We then use the leading order (Newtonian) equations of motion (3.99), so Gm2
ri

|r|3 = −ai1 +

O
(︂
G− 1

2 L− 1
2 v

11
2

)︂
and Gm1
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2

)︂
, to manipulate the second term in the

above expression:
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(A.110)

Upon symmetrization of this identity with respect to i and j, and recalling the quantities defined
in equations (3.67), we can recast (A.109) as:

= i
1

4Λ
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2ẋiaẋ
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(A.111)

where we integrated by parts and neglected boundary terms, while considering the mass ma of each
compact object as time-independent, which is the case for the precision we’re aiming for.
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The final expression for the worldline-σ̄ vertex in the far zone is then given by:

ij

σ̄

k

= i
1

4Λ

∫︂
dt e−ik

0t d
2M ij

dt2
(t) +O

(︂
G

1
2 Lv

)︂
+O(d− 3) . (A.112)



APPENDIX

B COMMON MATHEMATICAL
FUNCTIONS

B.1 Gamma function Γ(z)

The gamma function can be defined, for a real and positive z argument, as:

Γ(z) ≡
∫︂ +∞

0
dt tz−1e−t (B.1)

which, defining x =
√
t, can be recast as:

Γ(z) = 2

∫︂ +∞

0
dxx2z−1e−x

2
. (B.2)

The gamma function can be seen as a generalization of the factorial to real (and also complex)
numbers, in fact integrating by parts it holds:

Γ(z) =
[︁
−tz−1e−t

]︁+∞
0

+ (z − 1)

∫︂ +∞

0
dt tz−2e−t = (z − 1)Γ(z − 1) , (B.3)

therefore for integer n values it holds:

Γ(n) = (n− 1)! . (B.4)

The value of the gamma function for integer z arguments can be obtained by employing repeatedly
property (B.3) starting from Γ(1), which can be evaluated recalling definition (B.1):

Γ(1) =

∫︂ +∞

0
dt e−t =

[︁
−e−t

]︁+∞
0

= 1 ; (B.5)

while the value of Γ(z) for half-integer z arguments can be evaluated analogously starting from the
value of Γ(12), which can be computed using the alternative definition (B.2):

Γ

(︃
1

2

)︃
= 2

∫︂ +∞

0
dx e−x

2
=

∫︂ +∞

−∞
dx e−x

2
=
√
π , (B.6)

where we employed the known result for the Gaussian integral.

Γ (1) = 1 Γ (2) = 1 Γ (3) = 2 Γ (4) = 6

Γ
(︁
1
2

)︁
=
√
π Γ

(︁
3
2

)︁
=

√
π
2 Γ

(︁
5
2

)︁
= 3

√
π

4 Γ
(︁
7
2

)︁
= 15

√
π

8

Table B.1 Values of the gamma function Γ(z) for some common arguments z.
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Properties of the gamma function

Some useful identities involving the gamma functions, with x ∈ R and z ∈ C, are:

Γ(−z) = − π

z sin(πz) Γ(z)
; (B.7a)

Γ(2z) = 22z−1π−
1
2 Γ(z) Γ

(︃
z +

1

2

)︃
; (B.7b)

Γ(x) =
√
2π xx−

1
2 e−x +O

(︃
1

x

)︃
=

√︃
2π

x
ex(log(x)−1) +O

(︃
1

x

)︃
(x −→ +∞) ; (B.7c)

where relation (B.7b) is the Legendre duplication formula, whereas the asymptotic expansion (B.7c)
for x −→ +∞ is the Stirling’s approximation of the gamma function.

Series expansion of the gamma function

The expansion of the gamma function around z = 0 + ϵ and z = 1
2 + ϵ, for ϵ −→ 0, is given by:

Γ(ϵ) =
1

ϵ
− γ +

1

12

(︁
6γ2 + π2

)︁
ϵ+O

(︁
ϵ2
)︁
; (B.8a)

Γ

(︃
1

2
+ ϵ

)︃
=
√
π −√π(γ + log(4)) ϵ+O

(︁
ϵ2
)︁
; (B.8b)

where
γ = 0.5772156649... (B.9)

is the Euler-Mascheroni constant ; let us notice that the expansion of the gamma function around
others integer or half integer arguments can be obtained by applying repeatedly the property (B.3).

B.2 Beta function B(a, b)

The beta function is defined as

B(a, b) ≡ Γ(a) Γ(b)

Γ(a+ b)
. (B.10)

It can also be expressed in an integral representation, by recalling the definition (B.1) of the gamma
function and manipulating the integrals; in particular it can be proved that:

B(a, b) =

∫︂ 1

0
duua−1(1− u)b−1 , (B.11)

and by letting v = u
1−u , with du = (1 + v)2 dv, it also holds

B(a, b) =

∫︂ +∞

0
dv

va−1

(1 + v)a+b
. (B.12)



APPENDIX

C EVALUATION OF RECURRING
SCALAR INTEGRALS

In this appendix we explictly evaluate the integrals which have been needed to perform the compu-
tation reported in this thesis. In particular we recall the multi-loop quantum field theory techniques
which we presented in section 2.2, and for example we will employ dimensional regularization, eval-
uating the integrals in d generic spatial dimensions.

In particular in section C.1 and C.2 we evaluate 1-loop and 2-loop integral which appear when
evaluating conservative diagrams; evaluating as well the needed Fourier integrals in section C.3.
In section C.4 we compute the integral needed to evaluate radiation diagrams. Finally in section
C.5 we show an explicit application of the multi-loop quantum field theory techniques which we
presented in section 2.2.

C.1 Evaluation of the scalar integral IS(d, a, b)

We’re interested in the computation of the following integral:

IS(d, a, b)[∆] ≡
∫︂

ddk

(2π)d
1

|k|2a (|k|2 +∆)b
(C.1)

where we’re employing the euclidean metric for the d-dimensional spatial components, |k|2 =
δijk

ikj .

To evaluate such an integral we can proceed as in references [205, 225], first by performing a
change of variables, from the cartesian k system to the hyperspherical d-dimensional coordinates,
in practice parameterizing the d components {k1, . . . , kd} as a function of the radius K ≡ |k|,
K ∈ [0,+∞), of d− 2 angles ϕ1, . . . , ϕd−2 with domain [0, π] radians, and of a last angle ϕd−1 with
domain [0, 2π) radians; the integration measure hence becomes:

ddk = Kd−1 dKdΩd−1 (C.2)

Performing the aforementioned operations on the IS scalar integral defined in (C.1), and recalling
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equation (2.20) to evaluate the hypersurface area Ωd−1 =
∫︁
dΩd−1, we obtain:

IS(d, a, b)[∆] =
1

(2π)d

∫︂
dΩd−1⏞ ⏟⏟ ⏞

=Ωd−1

∫︂ +∞

0
dK
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K2a (K2 +∆)b
=

21−d

(π)
d
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(︁
d
2

)︁ ∫︂ +∞

0
dK
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K2a (K2 +∆)b
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(π)
d
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(︁
d
2

)︁ ∫︂ +∞
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(︃
1

2

√
∆u−

1
2

)︃
du∆

d−1
2

−a−b u
d−1
2

ua (u+ 1)b

=
2−d

(π)
d
2Γ
(︁
d
2

)︁∆ d
2
−a−b

∫︂ +∞

0
du

u
d
2
−1−a

(u+ 1)b⏞ ⏟⏟ ⏞
=B( d

2
−a, a+b− d

2 )

=
2−d∆

d
2
−a−b

(π)
d
2Γ
(︁
d
2

)︁ Γ
(︁
d
2 − a

)︁
Γ
(︁
a+ b− d

2

)︁
Γ (b)

(C.3)

where in the second line we performed the rescaling of the K coordinate u = K2

∆ , with measure

dK = 1
2

√
∆u−

1
2 du, and in the third line we recognized the integral representation (B.12) of the

beta function, which is briefly presented in appendix B.2.

Therefore the final result reads:

IS(d, a, b)[∆] ≡
∫︂

ddk

(2π)d
1

|k|2a (|k|2 +∆)b

=
∆

d
2
−a−b

(4π)
d
2

Γ
(︁
d
2 − a

)︁
Γ
(︁
a+ b− d

2

)︁
Γ
(︁
d
2

)︁
Γ (b)

.

(C.4)

C.2 Evaluation of 1-loop and 2-loop scalar integrals IS,1L

C.2.1 Evaluation of the 1-loop master integral IS,1L(d, a, b)

Some conservative diagrams will yield scalar integrals of the following kind, with p an external
momentum:

IS,1L(d, a, b)[p] ≡
∫︂

ddk

(2π)d
1

|k|2a |k− p|2b =

p

k − p

k

p

. (C.5)

which may be associated to the massless 2-point bubble diagram with external momentum p.

To solve them we can employ the Feynman parameters presented in section 2.2.5, in particular
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imposing A = |k− p|2 and B = |k|2 in formula (2.37):

IS,1L(d, a, b)[p] =
Γ(a+ b)

Γ(a) Γ(b)

∫︂ 1

0
dx

∫︂
ddk

(2π)d
xa−1 (1− x)b−1

(|k− xp|2 + x(1− x)|p|2)a+b

=
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∫︂ 1

0
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∫︂
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(2π)d
1
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=
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Γ(a) Γ(b)

∫︂ 1

0
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2
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d
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)︁
Γ (a+ b)

)︄
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2
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(4π)

d
2 Γ(a) Γ(b)

|p|d−2a−2b

∫︂ 1

0
dx x

d
2
−b−1 (1− x) d

2
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=B( d
2
−b, d

2
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=
Γ
(︁
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)︁
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d
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(C.6)

where in the second line we denoted ∆(p) = x(1− x)|p|2 and we performed the shift k′ = k− xp,
which leaves the integration measure invariant, ddk′ = ddk; in the third line we employed the
previous result (C.4) we obtained for the scalar integral IS(d, a, b); while in the fourth line we
recognized the integral representation (B.11) of the beta function (B.10).

Therefore finally we obtain the result:

IS,1L(d, a, b)[p] ≡
∫︂

ddk

(2π)d
1

|k|2a |k− p|2b

=
1

(4π)
d
2

Γ
(︁
a+ b− d

2

)︁
Γ
(︁
d
2 − a

)︁
Γ
(︁
d
2 − b

)︁
Γ (d− a− b) Γ(a) Γ(b) |p|d−2a−2b .

(C.7)

C.2.2 Evaluation of the 2-loop master integral IS,2La

This 2-loop master integral is needed to evaluate diagrams first appearing at 2PN:

IS,2La(d, a, b, c)[p] ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
1

|k1|2a
1

|k2|2b
1

|k1 + k2 − p|2c =

p

k1 + k2 − p

k2

k1 p

(C.8)
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and we can see that we regard this expression as coming from a the 2-point massless sunrise diagram.
We can then solve it by recognizing that this expression is equivalent to nested 1-loop integrals:

IS,2La(d, a, b, c)[p] =

∫︂
ddk1

(2π)d
1

|k1|2a
∫︂

ddk2

(2π)d
1

|k2|2b
1

|k2 − (p− k1)|2c⏞ ⏟⏟ ⏞
=IS,1L(d,b,c)[p−k1]

=
Γ
(︁
b+ c− d

2

)︁
Γ
(︁
d
2 − c

)︁
Γ
(︁
d
2 − b

)︁
(4π)

d
2 Γ (d− b− c) Γ(b) Γ(c)

∫︂
ddk1

(2π)d
1

|k1|2a
1

|k1 − p|2b+2c−d⏞ ⏟⏟ ⏞
=IS,1L(d,a,b+c− d

2
)[p]

=
1

(4π)d
Γ (a+ b+ c− d)
Γ
(︁
3
2d− a− b− c

)︁ Γ (︁d2 − a)︁ Γ (︁d2 − b)︁ Γ (︁d2 − c)︁
Γ(a) Γ(b) Γ(c)

|p|2(d−a−b−c) .

(C.9)

The expression for this master integral therefore is given by:

IS,2La(d, a, b, c)[p] ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
1

|k1|2a
1

|k2|2b
1

|k1 + k2 − p|2c

=
1

(4π)d
Γ (a+ b+ c− d)
Γ
(︁
3
2d− a− b− c

)︁ Γ (︁d2 − a)︁ Γ (︁d2 − b)︁ Γ (︁d2 − c)︁
Γ(a) Γ(b) Γ(c)

|p|2(d−a−b−c) .

(C.10)

C.2.3 Evaluation of the 2-loop master integral IS,2Lb

Also this 2-loop master integral is needed for the evaluation of diagrams first appearing at 2PN:

IS,2Lb(d, a, b, c, e)[p] ≡
∫︂

ddk1

(2π)d
ddk2

(2π)d
1

|k1|2a
1

|k2|2b
1

|k1 − p|2c
1

|k2 − p|2e

=

p

k1 − p

k1

k2 − p

k2

p

=

∫︂
ddk1

(2π)d
1

|k1|2a
1

|k1 − p|2c⏞ ⏟⏟ ⏞
=IS,1L(d,a,c)[p]

∫︂
ddk2

(2π)d
1

|k2|2b
1

|k2 − p|2e⏞ ⏟⏟ ⏞
=IS,1L(d,b,e)[p]

=
Γ
(︁
a+ c− d

2

)︁
Γ
(︁
b+ e− d

2

)︁
Γ
(︁
d
2 − a

)︁
Γ
(︁
d
2 − b

)︁
Γ
(︁
d
2 − c

)︁
Γ
(︁
d
2 − e

)︁
(4π)d Γ (d− c− a) Γ (d− e− b) Γ(a) Γ(b) Γ(c) Γ(e) |p|2(d−a−b−c−e) .

(C.11)

This master integral is equivalent to the integral arising from the computation of a massless double-
bubble diagram, and is factorizable into the product of the 1-loop master integral IS,1L.

C.3 Evaluation of the scalar Fourier integral IF (d, a)

While evaluating diagrams throughout this thesis work, a class of Fourier transform scalar integral,
which we’ll denote IF (d, a), often appears while evaluating the vacuum diagrams: assuming to be
working in d-dimensional Euclidean space, so restricting ourselves to spatial components only with
a metric given by +δij , these integrals generically have the following structure:

IF (d, a)[x] =

∫︂
ddk

(2π)d
eik·x

1

|k|2a . (C.12)
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To evaluate them we can initially retrace what has been done as done in references [205, 225].
Let us notice that, once we have parameterized the momentum space with a cartesian coordinate
system, it is always possible to find a rotation which acts on the k variable such that it will make
the last kd axis parallel to the x vector, i.e. k · x = kd|x|. Furthermore, the integration measure
ddk and the |k| term are invariant under generic rotations, and because we’re integrating over all
possible momentum components, the integration domain is mapped into itself. Therefore only the
dot product in the exponential will be affected by such a rotation, yielding exactly eik

d|x|, and as
a consequence of this the result of the scalar integral will only depend on the modulus |x| of the x
vector.

The symmetry of the system then suggest a change of coordinate system: that is, we can parame-
terize the momenta space with a d-dimensional hypercylindrical coordinate system, aligned along
the kd variable. In practice we can reparameterize the d− 1 coordinates {k1, . . . , kd−1} employing
an hyperspherical coordinate system, with radius K ≡

√︁
(k1)2 + · · ·+ (kd−1)2 ≥ 0, d − 3 angles

ϕ1, . . . , ϕd−3 with domain [0, π] radians, and another angle ϕd−2 with domain [0, 2π) radians; the
integration measure then will read

ddk = d(kd)Kd−2 dKdΩd−1 (C.13)

and the scalar integral

IF (d, a)[x] =
1

(2π)d

∫︂
dΩd−1d(k

d) dK Kd−2 ei|x|k
d 1

((kd)2 +K2)a
. (C.14)

Below we proceed with the evaluation of the scalar integral: first, in equation (C.14), we consider
as integration variables K2 instead of K, which can be formally interpreted as a change of variable
from K to K2, which nonetheless doesn’t change the integration domain, as it was K ∈ [0,+∞).
Then, in the second line of formula (C.15), we perform an additional change of variable from

(kd,K2) ∈ R × R+ to (y, z) via kd = y
|x| and K2 = y2

z|x|2 , with the domain restricted to K2 > 0.

The Jacobian of the transformation is y2

z2|x|3 , while the new integration domain is (y, z) ∈ R× R+.

These manipulations explicitly yield:

IF (d, a)[x] =
Ωd−1

(2π)d

∫︂ +∞

−∞
d(kd)

∫︂ +∞

0

d(K2)

2
(K2)

d−3
2 ei|x|k

d 1

((kd)2 + (K2))a

=
Ωd−1

(2π)d
1

2

∫︂ (︃
y2

z2|x|3
)︃
dydz

(︃
y2

z|x|2
)︃ d−3

2

eiy
za

(1 + z)a

(︃
y

|x|

)︃−2a

=
2−dπ−

d+1
2

Γ
(︁
d−1
2

)︁ |x|2a−d ∫︂ +∞

0
dz

za−
d
2
− 1

2

(1 + z)a⏞ ⏟⏟ ⏞
=B(a+ 1−d

2
, d−1

2 )

∫︂ +∞

−∞
dy yd−2a−1 eiy

=
2−dπ−

d+1
2

Γ
(︁
d−1
2

)︁ |x|2a−d(︄Γ
(︁
a+ 1−d

2

)︁
Γ
(︁
d−1
2

)︁
Γ (a)

)︄∫︂ +∞

−∞
dy yd−2a−1 eiy

= 2−dπ−
d+1
2

Γ
(︁
a+ 1−d

2

)︁
Γ (a)

|x|2a−d
∫︂ +∞

−∞
dy yd−2a−1 eiy⏞ ⏟⏟ ⏞

≡L(d−2a−1)

(C.15)

where in the third line we recalled formula (2.20) for the hypersurface area of a (d− 1)-sphere, and
in the penultimate equality we recognized the integral representation (B.12) of the beta function
(B.10).
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Now we have to evaluate the remaining integral, which we define as:

L(α) ≡
∫︂ +∞

−∞
dy yα eiy . (C.16)

To proceed let us first evaluate the following integral, which is reminiscent of the Schwinger trick
shown in section 2.2.5:∫︂ +∞

0
dxx−(1+α)e−t

2x2 =

∫︂ +∞

0

d(x2)

2
(x2)−

(2+α)
2 e−t

2x2 =

∫︂ +∞

0

1

t2
d(x̄2)

2
(t2)

(2+α)
2 (x̄2)−

(2+α)
2 e−x̄

2

=
tα

2

(︃
2

∫︂ +∞

0
dx̄ x̄2(−

α
2 )−1 e−x̄

2

)︃
=
tα

2
Γ
(︂
−α
2

)︂
;

(C.17)
where we used the change of variables x̄2 = t2x2 which is defined for t ∈ R∖ {0}, and where in the
last equality we recalled the alternative definition (B.2) of the gamma function. Doing so we can
recognize the relation:

yα =
2

Γ
(︁
−α

2

)︁ ∫︂ +∞

0
dξ ξ−(1+α)e−y

2ξ2 , (C.18)

which we can substitute in formula (C.16) to obtain:

L(α) =
2

Γ
(︁
−α

2

)︁ ∫︂ +∞

0
dξ ξ−(1+α)

∫︂ +∞

−∞
dy e−y

2ξ2+iy . (C.19)

We can complete the squares in the exponential with respect to y, such that:

L(α) =
2

Γ
(︁
−α

2

)︁ ∫︂ +∞

0
dξ ξ−(1+α)

∫︂ +∞

−∞
dy e

−ξ2
(︂
y− i

2ξ2

)︂2
− 1

4ξ2

=
2

Γ
(︁
−α

2

)︁ ∫︂ +∞

0
dξ ξ−(2+α)e

− 1
4ξ2

∫︂ +∞− i
2ξ

−∞− i
2ξ

dȳ e−ȳ
2

(C.20)

where we performed the change of variable ȳ = ξ
(︂
y − i

2ξ2

)︂
, with ξ > 0, under which the integration

measure becomes dξdy = ξ−1dξdȳ; nonetheless such change of variable shifted the ȳ integration in
the complex plane, along a path which doesn’t lie anymore on the real ȳ axis.

So let us now focus our attention on this second integral, which we denote as:

J(ξ) ≡
∫︂ +∞− i

2ξ

−∞− i
2ξ

dȳ e−ȳ
2
= lim

R−→+∞

∫︂
γ1

dȳ e−ȳ
2
, (C.21)

where we defined the integration path γ1 as shown in figure C.1, so γ1(s) = Rs − i 1
2ξ , with s ∈

[−1,+1] and with R > 0 real constant; at the end the limit R −→ +∞ yields the initial integral.

We can notice that the integrand e−ȳ
2
is an holomorphic function over the whole complex plane C,

i.e. it has no poles nor singularities. Therefore Cauchy’s integral theorem implies that the contour
integral of such a function over any simply closed contour γ̃ will be vanishing, that is:∮︂

γ̃
dȳ e−ȳ

2
= 0 . (C.22)

For such a closed path we can consider the counterclockwise contour γ̃ = γ1 + γ2 + γ3 + γ4 shown
in figure C.1; in particular we can parameterize them as γ2(s) = R − i 1

2ξ (1 − s) with s ∈ [0, 1],

γ3(s) = −Rs with s ∈ [−1,+1] and γ4(s) = R− i 1
2ξs with s ∈ [0, 1].
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Re(ȳ)

Im(ȳ)

γ1 − 1
2ξ

γ2

Rγ3−R 0

γ4

Figure C.1 Complex integration contour employed for the evaluation of the integral J(ξ).

We can recognize that the contour integration along the γ3 path is equivalent to the integration
along the real axis, from +R to −R, in fact:∫︂

γ3

dȳ e−ȳ
2
=

∫︂ +1

−1
(−R)ds e−(−Rs)2 =

∫︂ −R

+R
du e−u

2
; (C.23)

and once we take the limit R −→ +∞ it holds:

lim
R−→+∞

∫︂
γ3

dȳ e−ȳ
2
= −

∫︂ +∞

−∞
du e−u

2
= −√π , (C.24)

where we employed the Gaussian integral result in the last equality.

Recalling the Darboux inequality
⃓⃓⃓∫︁
γ dz f(z)

⃓⃓⃓
≤
∫︁
γ |dz| |f(z)| ≤ sup

z∈γ
|f(z)|

∫︁
γ |dz| we can evaluate

the contribution of the γ2 and γ4 paths to the contour integral:⃓⃓⃓⃓∫︂
γ2

dȳ e−ȳ
2

⃓⃓⃓⃓
≤ sup

s∈[0,1]

⃓⃓⃓
e
−(R− i

2ξ
(1−s))2

⃓⃓⃓ ∫︂ 1

0

⃓⃓⃓⃓
i

2ξ
ds

⃓⃓⃓⃓
= sup

s∈[0,1]

⃓⃓⃓⃓
e
−R2+

(1−s)2

4ξ2
+ iR

ξ
(1−s)

⃓⃓⃓⃓
1

2ξ
=
e

1
4ξ2

2ξ
e−R

2

(C.25a)⃓⃓⃓⃓∫︂
γ4

dȳ e−ȳ
2

⃓⃓⃓⃓
≤ sup

s∈[0,1]

⃓⃓⃓
e
−(R− i

2ξ
s)2
⃓⃓⃓ ∫︂ 1

0

⃓⃓⃓⃓−i
2ξ

ds

⃓⃓⃓⃓
= sup

s∈[0,1]

⃓⃓⃓⃓
e
−R2+ s2

4ξ2
+ iR

ξ
s
⃓⃓⃓⃓
1

2ξ
=
e

1
4ξ2

2ξ
e−R

2
; (C.25b)

in particular we can notice that for any fixed ξ > 0 both integrals vanish in the limit R −→ +∞.

Hence taking the R −→ +∞ limit in formula (C.22) we obtain:

0 = lim
R−→+∞

(︃∫︂
γ1

dȳ e−ȳ
2
+

∫︂
γ2

dȳ e−ȳ
2
+

∫︂
γ3

dȳ e−ȳ
2
+

∫︂
γ4

dȳ e−ȳ
2

)︃
= J(ξ)+0+(−√π)+0 (C.26)

where we recalled the definition (C.21) and equation (C.24). Therefore we obtain the result we
where looking for, that is:

J(ξ) ≡
∫︂ +∞− i

2ξ

−∞− i
2ξ

dȳ e−ȳ
2
=
√
π . (C.27)

We can now return to the main computation, so substituting formula (C.27) in equation (C.20) we
obtain:

L(α) =
2

Γ
(︁
−α

2

)︁ ∫︂ +∞

0
dξ ξ−(2+α)e

− 1
4ξ2 J(ξ) =

2
√
π

Γ
(︁
−α

2

)︁ ∫︂ +∞

0
dξ ξ−(2+α)e

− 1
4ξ2

=
2
√
π

Γ
(︁
−α

2

)︁ ∫︂ 0

+∞

(︃
− 1

2η2

)︃
dη 22+αη2+αe−η

2
=

22+α
√
π

Γ
(︁
−α

2

)︁ 1
2

(︃
2

∫︂ +∞

0
dη η2(

α
2
+ 1

2)−1e−η
2

)︃
⏞ ⏟⏟ ⏞

=Γ(α
2
+ 1

2)

(C.28)
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where in the second line we performed the change of variables η = 1
2ξ , and in the last equality we

recalled again the alternative definition (B.2) of the gamma function. Therefore we obtain:

L(α) = 2α+1√π Γ
(︁
α
2 + 1

2

)︁
Γ
(︁
−α

2

)︁ = −2 sin
(︂
α
π

2

)︂
Γ(α+ 1) (C.29)

Returning to the main computation of the scalar integral IF (d, a)[x], we can resume from formula
(C.15), substituting the result (C.29) we just obtained:

IF (d, a)[x] = 2−dπ−
d+1
2

Γ
(︁
a+ 1−d

2

)︁
Γ (a)

|x|2a−d L(d− 2a− 1)

= 2−dπ−
d+1
2

Γ
(︁
a+ 1−d

2

)︁
Γ (a)

|x|2a−d
(︄
2d−2a√π Γ

(︁
d
2 − a

)︁
Γ
(︁
a+ 1−d

2

)︁)︄

= 2−2aπ−
d
2
Γ
(︁
d
2 − a

)︁
Γ (a)

|x|2a−d = Γ
(︁
d
2 − a

)︁
(4π)

d
2 Γ (a)

(︃ |x|
2

)︃2a−d
.

(C.30)

Therefore the analytic result of the IF (d, a)[x] scalar integral reads:

IF (d, a)[x] ≡
∫︂

ddk

(2π)d
eik·x

1

|k|2a

= 2−2a π−
d
2
Γ
(︁
d
2 − a

)︁
Γ(a)

|x|2a−d .

(C.31)

C.3.1 Tensorial generalization of the integral IF (d, a)

We can generalize the result (C.31) to the class of integrals with also tensorial quantities in the
numerator, by taking derivatives with respect to the position x, as suggested by references [224,
225]: in particular such calculations formally hold only as long as 2a ̸= d, nonetheless we can
recover also this case via analytic continuation of the result.

Recalling that ∂(|x|)α
∂xi

=
∂(δjkxjxk)

α
2

∂xi
= α

2 (|x|)α−2δjk
(︁
δj ix

k + xjδki
)︁
= α |x|α−2 xi, we obtain:

IF (d, a)
i[x] ≡

∫︂
ddk

(2π)d
eik·x

ki

|k|2a

=

∫︂
ddk

(2π)d
1

|k|2a
(︃
1

i

∂

∂xi

)︃
eik·x = −i∂(IF (d, a)[x])

∂xi

= i (d− 2a) 2−2a π−
d
2
Γ
(︁
d
2 − a

)︁
Γ(a)

|x|2a−d−2 xi

= i 21−2a π−
d
2
Γ
(︁
d
2 − a+ 1

)︁
Γ(a)

|x|2a−d−2 xi ,

(C.32)

and also

IF (d, a)
ij [x] ≡

∫︂
ddk

(2π)d
eik·x

kikj

|k|2a

=

∫︂
ddk

(2π)d
1

|k|2a
(︃
− ∂2

∂xi∂xj

)︃
eik·x = −∂

2 (IF (d, a)[x])

∂xi∂xj

= 21−2a π−
d
2
Γ
(︁
d
2 − a+ 1

)︁
Γ(a)

|x|2a−d−2

(︃
δij + (2a− d− 2)

xixj

|x|2
)︃
.

(C.33)
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Yet to systematically evaluate Fourier integrals with a tensorial structure, and to implement it into
a code, we found it more useful to perform a tensor decomposition of the integral, in order to reduce
ourselves to work with a class of scalar integrals, which we present hereafter in section C.3.2.

C.3.2 Generalization IF,sp(d, a, b) of the integral IF (d, a) with scalar products

Let us consider a generalization of the scalar integral (C.12), such that:

IF,sp(d, a, b)[x] ≡
∫︂

ddk

(2π)d
eik·x

(k · x)b
|k|2a ; (C.34)

in particular this class of integrals appears when we apply the tensor decomposition procedure in
order to solve a Fourier integral with a tensorial structure at the numerator.

Let us define j(a, b) ≡ IF,sp(d, a, b)[x] for convenience: in order to solve the integral above we’ll
apply the integration-by-parts identities to it. In particular, with wi = αki + βxi, we obtain:

0 =

∫︂
ddk

(2π)d
∂

∂ki

(︃
(αki + βxi)eik·x

(k · x)b
|k|2a

)︃
= dα

∫︂
ddk

(2π)d
eik·x

(k · x)b
|k|2a +

∫︂
ddk

(2π)d
(αki + βxi)

∂

∂ki

(︃
eik·x

(k · x)b
|k|2a

)︃
= dα j(a, b) +

∫︂
ddk

(2π)d
eik·x

(k · x)b
|k|2a

(︃
(b− 2a)α+ i|x|2β + bβ|x|2 1

(k · x) + iα(k · x)− 2aβ
(k · x)
|k|2

)︃
=
(︁
(d+ b− 2a)α+ i|x|2β

)︁
j(a, b) + bβ|x|2 j(a, b− 1) + i α j(a, b+ 1)− 2aβ j(a+ 1, b+ 1) ;

(C.35)
and imposing α = 1, β = 0 before and then α = 0, β = 1 we obtain the two independent conditions:

(d+ b− 2a) j(a, b) + i j(a, b+ 1) = 0 ; (C.36a)

i |x|2j(a, b) + b|x|2 j(a, b− 1)− 2a j(a+ 1, b+ 1) = 0 . (C.36b)

From formula (C.36a) follows directly

j(a, b+ 1) = i (d+ b− 2a) j(a, b) (C.37)

and therefore, as long as b ∈ Z, using formula (C.65) we obtain:

j(a, b) =
b−1∏︂
q=0

(i (d+ q − 2a)) j(a, 0) =
b∏︂

q=1

(i (q + d− 1− 2a)) j(a, 0)

= ib
Γ (b+ d− 2a)

Γ (d− 2a)
j(a, 0) .

(C.38)

We may then impose b = 0 in relation (C.36b) and use equation (C.37) to reduce the integral
j(a, 0) down to j(1, 0), nonetheless such a formula would hold only for a ∈ N. However, during the
evaluation of PN diagrams, some integrals will present a ∈ R− N, so we’ll evaluate j(a, 0) employ
directly the result (C.31), which is valid for a ∈ R. Doing so we obtain the full, exact result:

IF,sp(d, a, b)[x] ≡
∫︂

ddk

(2π)d
eik·x

(k · x)b
|k|2a

= ib 2−2a π−
d
2
Γ (b+ d− 2a) Γ

(︁
d
2 − a

)︁
Γ (d− 2a) Γ(a)

|x|2a−d .

(C.39)
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Discordant alternative evaluation of the integral

In order to evaluate the integral (C.34), we could have proceeded analogously to what we’ve done
in section C.3, as the only difference is that we would have picked up a (|x|kd)b factor in formula
(C.14), which then would have resulted in an additional yb factor at the numerator of result (C.15),
therefore yielding

IF,sp(d, a, b)[x] = 2−dπ−
d+1
2

Γ
(︁
a+ 1−d

2

)︁
Γ (a)

|x|2a−d
∫︂ +∞

−∞
dy yd−2a+b−1 eiy⏞ ⏟⏟ ⏞

≡L(d−2a+b−1)

= 2b−2aπ−
d
2

Γ
(︁
a+ 1−d

2

)︁
Γ
(︂
(d+b)

2 − a
)︂

Γ (a) Γ
(︂
a− (d+b−1)

2

)︂ |x|2a−d .

(C.40)

where we used the result (C.29). Nonetheless we can notice that the result above does not agree with
result (C.39), and we have checked that only the latter equation yields the correct PN diagram
evaluation, while formula (C.40) gives inconsistent results already for the tensor decomposition
(C.32) with a single free index. Actually we have checked that, for the tensor decomposition with
up to 4 free indices, formula (C.40) gives the correct result when the number of free spatial indices
is even, like in (C.33), and instead is wrong by a factor i

tan(π
2
(2a−d)) when the number of indices is

odd; however we couldn’t trace back the reason for this inconsistency.

C.4 Evaluation of the IR(d, a, b) scalar integral

We want to evaluate the scalar integral defined as

IR(d, a, b)[f ](t) =

∫︂
ds f(t+ s)

∫︂
dk0

2π
eik

0s

∫︂
ddk

(2π)d
1

k2 + iϵ

(k0)b

|k|2a , (C.41)

where the function f is a generic function of time that could eventually carry spatial indices.

First of all let us recall our notations, see (N12) and (N13), according to which the temporal Fourier
transform g(k) of a g(t) function, and its inverse Fourier transform, are given respectively by:

g(k0) =

∫︂
dt g(t) eik

0t , g(t) =

∫︂
dk0

2π
g(k0) e−ik

0t ; (C.42)

where we could denote k0 also as ω. Hence, by performing the change of variable u = t+ s, which
amounts to a shift of s with t fixed, since it’s an external parameter, we can recognize the Fourier
transform f(k0) of the function f(t) in equation (C.41), i.e.

IR(d, a, b)[f ](t) =

∫︂
dk0

2π
e−ik

0t (k0)b
∫︂
du f(u) eik

0u⏞ ⏟⏟ ⏞
f(k0)

∫︂
ddk

(2π)d
1

k2 + iϵ

1

|k|2a . (C.43)

Afterwards we have to take care of the +iϵ prescription due to the propagator (k2 + iϵ)−1 =
((k0)2−|k|2+ iϵ)−1; in order to do so we can employ the Plemelj-Sokhotski functional identity [206,
312, 313]:

lim
ϵ−→0

∫︂
dk0

g(k0)

(k0)2 − |k|2 ± iϵ = P

∫︂
dk0

g(k0)

(k0)2 − |k|2 ∓ iπ
∫︂
dk0 g(k0)δ((k0)2 − |k|2) ; (C.44)
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where the Cauchy principal value of an integral with a pole of order one in x = a is defined as

P

∫︂ +∞

−∞
dx

g(x)

x− a ≡ lim
δ−→0

(︃∫︂ a−δ

−∞
dx

g(x)

x− a +

∫︂ +∞

a+δ
dx

g(x)

x− a

)︃
(C.45)

for a function g(x) smooth and non-singular near x = a which vanishes sufficiently fast on the
boundaries.

Using this identities we can rewrite equation (C.41) as

IR(d, a, b)[f ](t) = P

∫︂
dk0

2π
e−ik

0t (k0)b f(k0)

∫︂
ddk

(2π)d
1

(k0)2 − |k|2
1

|k|2a⏞ ⏟⏟ ⏞
≡IR,1

− iπ
∫︂

dk0

2π
e−ik

0t (k0)b f(k0)

∫︂
ddk

(2π)d
1

|k|2a δ((k
0)2 − |k|2)⏞ ⏟⏟ ⏞

≡IR,2

.

(C.46)

Let us start by evaluating the first integral IR,1 in (C.46), by recalling the result (C.4) for the scalar
integral IS(d, a, b)[∆] :

IR,1 =P

∫︂
dk0

2π
e−ik

0t (k0)b f(k0)

⎛⎜⎜⎜⎝−
∫︂

ddk

(2π)d
1

|k|2 − (k0)2
1

|k|2a⏞ ⏟⏟ ⏞
=IS(d,a,1)[−(k0)2]

⎞⎟⎟⎟⎠
=

id−2a

(4π)
d
2

Γ
(︁
d
2 − a

)︁
Γ
(︁
a+ 1− d

2

)︁
Γ
(︁
d
2

)︁ P

∫︂
dk0

2π
e−ik

0t (k0)b+d−2a−2 f(k0)

= − i
b+2d−4a

(4π)
d
2

Γ
(︁
d
2 − a

)︁
Γ
(︁
a+ 1− d

2

)︁
Γ
(︁
d
2

)︁ db+d−2a−2

dtb+d−2a−2

(︃
P

∫︂
dk0

2π
e−ik

0t f(k0)

)︃
⏞ ⏟⏟ ⏞

=f(t)

=
ib+2d−4a 2−d π1−

d
2

sin
(︁
(2a− d)π2

)︁
Γ
(︁
d
2

)︁ db+d−2a−2 f(t)

dtb+d−2a−2
.

(C.47)

To proceed with the evaluation of the second integral IR,2 in equation (C.46), we first recall the

identity δ(g(x)) =
∑︁

k(| dgdx (xk)|)−1δ(x−xk), where xk are the zeroes of the function g, i.e. g(xk) = 0,
from which follows:

δ((k0)2 − |k|2) = δ
(︁(︁
k0 − |k|

)︁ (︁
k0 + |k|

)︁)︁
=

1

2 |k|
(︁
δ(k0 + |k|) + δ(k0 − |k|)

)︁
. (C.48)

Afterwards, to regularize the integral, we employ the fact that for what concerns our calculations
(see chapter 5), the integral (C.41) is always integrated over

∫︁
dt g(t) (IR(d, a, b)[f ](t)), with both

f(t) and g(t) real functions, hence f(−|k|) = f∗(|k|). Therefore we obtain:

IR,2 =
1

2

∫︂
dk0

2π
e−ik

0t (k0)b f(k0)

∫︂
ddk

(2π)d
1

|k|2a+1

(︁
δ(k0 + |k|) + δ(k0 − |k|)

)︁
=

1

4π

∫︂
ddk

(2π)d
1

|k|2a+1

(︂
ei|k|t (−|k|)b f(−|k|) + e−i|k|t |k|b f(|k|)

)︂
=

1

4π

∫︂
ddk

(2π)d
|k|b−2a−1

(︂
e−i|k|t f(|k|) + (−1)bei|k|t f∗(|k|)

)︂ (C.49)
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Inserting the results (C.47) and (C.49) into (C.46), we obtain the final result:

IR(d, a, b)[f ](t) =

∫︂
ds f(t+ s)

∫︂
dk0

2π
eik

0s

∫︂
ddk

(2π)d
1

k2 + iϵ

(k0)b

|k|2a

=
2−d π1−

d
2

Γ
(︁
d
2

)︁ ib+2d−4a

sin
(︁
(2a− d)π2

)︁ db+d−2a−2 f(t)

dtb+d−2a−2

− i

4

∫︂
ddk

(2π)d
|k|b−2a−1

(︂
e−i|k|t f(|k|) + (−1)bei|k|t f∗(|k|)

)︂
.

(C.50)

C.5 Example of scalar integral evaluation using multi-loop tech-
niques

In this section we show explicitly the application of same of the multi-loop quantum field theory
techniques which we have presented in section 2.2.

In particular as an example we’ll show how these techniques could have been employed to evaluate
an integral of the kind

Iij(p) ≡
∫︂

ddk

(2π)d
ki kj

|k|2 |k− p|2 , (C.51)

which we encountered in section 4.3, see equation (4.37). In that section we already applied the
first step in the evaluation procedure, which is the tensor decomposition of the integrand, to find
in equation (4.38)

Iij(p) = F1(p) δ
ij + F2(p) p

ipj (C.52)

with form factors given in equations (4.39):

F1(p) =
1

(d− 1)

1

|p|2
∫︂

ddk

(2π)d

(︁
|k|2|p|2 − (k · p)2

)︁
|k|2 |k− p|2 , (C.53a)

F2(p) =
1

(d− 1)

1

|p|4
∫︂

ddk

(2π)d

(︁
d (k · p)2 − |k|2|p|2

)︁
|k|2 |k− p|2 . (C.53b)

Therefore in the following we will be concerned with the evaluation of the class of scalar integrals
of the kind ∫︂

ddk

(2π)d
1

Dα1
1 Dα2

2

(C.54)

where we introduced the same basis given by the denominators (4.40a) and (4.40b):

D1 ≡ |k|2 , (C.55a)

D2 ≡ |k− p|2 ; (C.55b)

In fact evaluating by this class of integrals we will be able to evaluate the aforementioned form
factors, since they can be opportunely recast in this basis, see equations (4.42).

C.5.1 Reduction to master integrals using integration-by-parts identities

In fact in practice one does not evaluate each integral in equations (4.42) as we did there, but
instead employs relations between such integrals, called integration-by-parts identities, which allows
to simplify the problem to the evaluation of fewer integrals, known as master integrals; we already
covered this topic in section 2.2.4.
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In the following then we will denote this specific class of integrals (C.54) which we’re interested in
as

j(α1, α2) ≡
∫︂

ddk

(2π)d
1

Dα1
1 Dα2

2

(C.56)

For the case of this example, we can consider then generic vector given by wi = a ki + b pi, then
formula (2.32) reads:

d a j(α1, α2) = d a

∫︂
ddk

(2π)d
1

Dα1
1 Dα2

2

= −
∫︂

ddk

(2π)d
(aki + bpi)

∂

∂ki

(︃
1

Dα1
1 Dα2

2

)︃
= +2

∫︂
ddk

(2π)d

(︄
α1

(︁
a|k|2 + b(k · p)

)︁
Dα1+1

1 Dα2
2

+
α2

(︁
a(|k|2 − k · p) + b(k · p− |p|2)

)︁
Dα1

1 Dα2+1
2

)︄

= +2

∫︂
ddk

(2π)d

(︄
α1

(︁
aD1 +

b
2

(︁
D1 −D2 + |p|2

)︁)︁
Dα1+1

1 Dα2
2

+
α2

(︂
aD1 +

(b−a)
2

(︁
D1 −D2 + |p|2

)︁
− b|p|2

)︂
Dα1

1 Dα2+1
2

⎞⎠

(C.57)

which using the notation (C.56) also reads:

(α1 (2a+ b) + α2(a− b)− d a) j(α1, α2) + α1b|p|2 j(α1 + 1, α2)

− α2(a+ b)|p|2 j(α1, α2 + 1)− α1b j(α1 + 1, α2 − 1) + α2(a+ b) j(α1 − 1, α2 + 1) = 0 .
(C.58)

Now we may choose arbitrary values of a and b, to obtain up to two independent relations; in
particular, considering first a = 1, b = 0 and then a = −b = 1:

(2α1 + α2 − d) j(α1, α2)− α2|p|2 j(α1, α2 + 1) + α2 j(α1 − 1, α2 + 1) = 0 , (C.59a)

(α1 + 2α2 − d) j(α1, α2)− α1|p|2 j(α1 + 1, α2) + α1 j(α1 + 1, α2 − 1) = 0 . (C.59b)

In this case we could also look for the Euclidean version of the Lorentz invariance identities, which
follows from the fact that the scalar integrals are invariant under a generic rotation R ∈ SO(d) of
each of the external momenta; so we could consider the action of an infinitesimal rotation, proceed-
ing analogously to what was done in section 2.2.4: we would then obtain that the antisymmetric
tensor ωµν which parametrizes the infinitesimal Lorentz transformation would be substituted by
the antisymmetric matrix Ωij = Rij − δij + O(Ω2) which describes the action of the infinitesimal
rotation, thereby in the end obtaining a relation similar to equation (2.35). Nonetheless in this
particular example, because we have only a single vector, we can only produce a symmetric matrix
pipj to contract the antisymmetric pj

∂
∂pi
− pi ∂

∂pj
operator: the contraction then is identically zero,

thereby giving no identity.

Instead we can find one more equality by employing the symmetry relations, which have been
outlined in section 2.2.4. In particular in formula (C.56) we may perform the change of variables
k −→ k′ = p− k, which has a trivial Jacobian, to obtain:

j(α1, α2) =

∫︂
ddk

(2π)d
1

|k|2α1 |k− p|2α2
=

∫︂
ddk′

(2π)d
1

|k′ − p|2α1 |k′|2α2
= j(α2, α1) . (C.60)

These relations already tell us that the j(α1, α2) function vanishes if any of its two arguments is
zero: in fact choosing α2 = 0 and α1 = α in (C.59a) we (2α − d)j(α, 0) = 0, which recalling also
(C.60) yields

j(α, 0) = j(0, α) = 0 (α ̸= d

2
) ; (C.61a)



236 Appendix C — Evaluation of recurring scalar integrals

j(0, 0) = 0 . (C.61b)

By manipulating the three identities (C.59a), (C.59b) and (C.60), we can find a recurrence relation
between j(α1, α2) functions whose arguments are a single integer apart. To do so we start by
shifting α1 −→ α1 + 1 and α2 −→ α2 − 1 in equation (C.59a), and then substituting the result into
equation (C.59b) multiplied by (2α1 + α2 + 1− d), we obtain:

(α1 + α2 + 1− d) (2α1 + 2α2 − d) j(α1, α2)− α1 (2α1 + 2− d) |p|2 j(α1 + 1, α2) = 0 (C.62a)

j(α1 + 1, α2) =
(α1 + α2 + 1− d) (2α1 + 2α2 − d)

α1 (2α1 + 2− d)
1

|p|2⏞ ⏟⏟ ⏞
≡cα1

j(α1, α2) (α1 ̸= 0, α1 ̸=
d

2
− 1) (C.62b)

We may then choose α1 = −1 and α2 = α, to obtain

j(α,−1) = j(−1, α) = d

(d− α)(d+ 2− 2α)
|p|2j(0, α) = 0 (α ̸= d

2
, α ̸= d, α ̸= 1 +

d

2
) ; (C.63)

where we recalled (C.60) and (C.61a).

We are now interested in integer values of α1, α2; we can then recall iteratively formula (C.62b)
assuming α1 ≥ 1 to obtain:

j(α1, α2) =

⎛⎝α1−1∏︂
q=1

cq

⎞⎠ j(1, α2) =

⎛⎝
(︂∏︁α1−1

q=1 (q + α2 + 1− d)
)︂(︂∏︁α1−1

q=1 (2q + 2α2 − d)
)︂

(︂∏︁α1−1
q=1 q

)︂(︂∏︁α1−1
q=1 (2q + 2− d)

)︂(︂∏︁α1−1
q=1 |p|2

)︂
⎞⎠ j(1, α2)

=
Γ (α1 + α2 + 1− d)

Γ (α2 + 2− d)
Γ
(︁
α1 + α2 − d

2

)︁
Γ
(︁
α2 + 1− d

2

)︁ 1

Γ (α1)

Γ
(︁
2− d

2

)︁
Γ
(︁
α1 + 1− d

2

)︁ |p|−2(α1−1) j(1, α2) .

(C.64)
In fact, assuming b

a ∈ N, we have that:

n∏︂
q=1

(a q + b) = an
n∏︂
q=1

(︃
q +

b

a

)︃
= an

n+ b
a∏︂

q=1+ b
a

q = an
(︁
n+ b

a

)︁
!(︁

b
a

)︁
!

= an
Γ
(︁
n+ b

a + 1
)︁

Γ
(︁
b
a + 1

)︁ , (C.65)

where we recalled the gamma function relation (B.4): using this generalization of the factorial, also

called Pochhammer symbol (x)n ≡ Γ(x+n)
Γ(x) , the aforementioned identity then holds also for b

a ̸∈ N.

We can then use the relation (C.60) in (C.64) to obtain

j(1, α2) = j(α2, 1) =
Γ (α2 + 2− d)
Γ (α2) Γ (3− d) |p|

−2(α2−1) j(1, 1) ; (C.66)

and finally, from (C.64) and (C.66) follows

j(α1, α2) =
Γ (α1 + α2 + 1− d)

Γ
(︁
α1 + 1− d

2

)︁
Γ
(︁
α2 + 1− d

2

)︁ Γ (︁α1 + α2 − d
2

)︁
Γ (α1) Γ (α2)

Γ
(︁
2− d

2

)︁
Γ (3− d) |p|

−2(α1+α2−2) j(1, 1)

(C.67)
for α1, α2 ≥ 1 and α1, α2 ̸= d

2 − 1.
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C.5.2 Master integral evaluation using the differential equations method

To evaluate the master integral j(1, 1), we may employ the method of differential equations, pre-
sented in section 2.2.5. In particular we may derive the master integral with respect to the only
external kinematic quantity, which is |p|2, obtaining:

∂

∂|p|2 (j(1, 1)) =

∫︂
ddk

(2π)d
1

|k|2
∂

∂|p|2
(︃

1

|k− p|2
)︃

= −
∫︂

ddk

(2π)d
1

|k|2|k− p|4
∂

∂|p|2
(︁
|k|2 − 2(k · p) + |p|2

)︁
=

∫︂
ddk

(2π)d
1

D1D2
2

(︃
(D1 −D2 + |p|2)

2|p|2 − 1

)︃
=

1

2|p|2 j(0, 2)−
1

2|p|2 j(1, 1)−
1

2
j(1, 2) =

(d− 4)

2
|p|−2 j(1, 1) .

(C.68)

where we used the fact that it holds ∂
∂|p|2 (k · p) = 1

2|p|
∂
∂|p| (|k||p| cos(θk,p)) =

|k||p| cos(θk,p)
2|p|2 = k·p

2|p|2 ,
and we used the we used the relations previously obtained with integration-by-parts identities which
imply for j(0, 2) = 0.

We may then solve the differential equation (C.68) by using the method of the separation of
variables, i.e. denoting |p|2 = x and j(1, 1) = y:

dy

dx
=

(d− 4)

2

y

x
=⇒

∫︂ yf

yi

dy

y
=

(d− 4)

2

∫︂ xf

xi

dx

x
=⇒ log

(︃
yf
yi

)︃
= log

⎛⎜⎝x
(d−4)

2
f

x
(d−4)

2
i

⎞⎟⎠
(C.69)

which once exponentiated and chosen xf = |p|2, yf = j(1, 1)[p], with initial values xi = |pi|2 and
yi = j(1, 1)[pi], yields

j(1, 1)[p] = C(d) |p|(d−4) , C(d) =
j(1, 1)[pi]

|pi|(d−4)
; (C.70)

in particular let us notice that C(d) is the integration constant, which doesn’t depend on the
arbitrary value pi we may choose, and neither depends on α1 nor α2; hence it may depend only on
the dimension of the space d. Let us point out that actually we already know the exact results of
C(d), as it is proportional to the scalar integral (C.7) which we previously computed. However we
will proceed with the evaluation, in order to show alternative strategies to compute such quantity.

If we only need the result of our scalar integral at leading order in the dimension of the space(-time)
d, we may then evaluate C(d) for that specific value, e.g. d = 3, which possibly results in a simpler
evaluation: for the example at hand, using the Feynman parametrization result (2.38) in formula
(C.70), we obtain

C(d = 3) = |pi|
∫︂

d3k

(2π)3
1

|k|2|k− pi|2
=
|pi|
(2π)3

∫︂ 1

0
dx

∫︂
d3k

1

(|k|2 + (x(1− x)|pi|2))2

=
1

(2π)3
(4π)

∫︂ +∞

0
dK

K2

(K2 + 1)2⏞ ⏟⏟ ⏞
= 1

2

(︂
arctan(K)− K

K2+1

)︂⃓⃓+∞

0

∫︂ 1

0
dx (x(1− x))− 1

2⏞ ⏟⏟ ⏞
=B( 1

2
, 1
2)

=
1

2π2
π

4

√
π
√
π

1
=

1

8
; (C.71)

where B(a, b) is the beta function (B.10).
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Complementary approach based on asymptotic behavior

There is still another complementary approach one could employ to evaluate such C(d) constant,
possibly in arbitrary d dimensions, as long as one knows the asymptotic behavior of the scalar
integral for some of its parameters; this approach then is particularly useful when it’s not possible
to exactly evaluate the corresponding integral. This method, pointed out by reference [55], is based
on the fact that the constant C(d) is independent on the other parameters, e.g. |pi|, α1 or α2;
therefore, if we know the asymptotic behavior of the scalar integral for particular values of these
parameters, and we have a formula which relates such scalar integral to the C(d) constant, then we
may be able to determine the value of the latter unknown quantity by relating the two expression
for the scalar integral: finally, by taking an appropriate limit, the expression involving only an
asymptotic behavior will yield an exact result for the value of C(d).

Let us show the application of this approach to the evaluation of the j(1, 1) scalar integral we were
considering, assuming for example to know the asymptotic behavior of the scalar integral j(α1, 1)
as α1 −→ +∞. Noticing that equation (C.70) relates C(d) with j(1, 1) and that formula (C.67)
establishes a relation, exact in d and α1, between j(1, 1) and j(α1, α2); choosing α1 = α − 1 ∈ N
and α2 = 1 it holds

j(α− 1, 1) =
1

Γ (α− 1)

Γ (α+ 1− d)
Γ (3− d) |p|d−2αC(d) . (C.72)

We may then study the asymptotic behavior of the scalar integral j(α1, 1), starting from its
definition (C.56), and employing the Feynman parameters presented in section 2.2.5: imposing
A = |k− p|2 and B = |k|2 in formula (2.37) we obtain

j(α− 1, 1) =

∫︂
ddk

(2π)d
1

|k|2α−2|k− p|2

=
Γ(α)

Γ(α− 1) Γ(1)

∫︂ 1

0
dxxα−2

∫︂
ddk

(2π)d
1

(|k− xp|2 + x(1− x)|p|2)α

= (α− 1) |p|d−2α

∫︂ 1

0
dxx

d
2
−2 (1− x) d

2
−α⏞ ⏟⏟ ⏞

=B( d
2
−1, d

2
−α+1)

∫︂
ddk′

(2π)d
1

(|k′|2 + 1)α⏞ ⏟⏟ ⏞
≡Y (d,α)

= (α− 1)
Γ
(︁
d
2 − α+ 1

)︁
Γ
(︁
d
2 − 1

)︁
Γ (d− α) |p|d−2α Y (d, α)

(C.73)

where in the third line we performed the change of variables k′ =
(︁
x(1− x)|p|2

)︁− 1
2 (k − xp)

with ddk =
(︁
x(1− x)|p|2

)︁ d
2 ddk′ and we recognized the integral representation (B.11) of the beta

function (B.10).

Let us now assume to not know the exact value of the Y (d, α) integral, but only its asymptotic
behavior as α −→ +∞, which in fact is given by:

Y (d, α) = (4πα)−
d
2 +O

(︃
1

α

)︃
; (C.74)

then, equating the relations (C.72) and (C.73) we obtain

C(d) = Γ(α)
Γ
(︁
d
2 − α+ 1

)︁
Γ (d− α) Γ (α+ 1− d) Γ

(︃
d

2
− 1

)︃
Γ (3− d)Y (d, α) , (C.75)
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where the dependence on the external |p| momenta dropped out as expected, and so should also
the α-dependency on the right-hand side, for α ∈ N. Applying twice the identity (B.7a) of the
gamma function, we can rewrite equation (C.75) as

C(d) = − sin((α− d)π)
sin
(︁(︁
α− d

2

)︁
π
)︁ Γ(︃d

2
− 1

)︃
Γ (3− d) Γ(α)

Γ(α− d
2)
Y (d, α) . (C.76)

Under our assumption of α ∈ N, it holds sin(απ − x) = (−1)α+1 sin(x), therefore sin((α−d)π)
sin((α− d

2
)π)

=

sin(dπ)

sin( d
2
π)

= 2 cos
(︁
d
2π
)︁
. Then we may employ Stirling’s approximations (B.7c) to evaluate the asymp-

totic behavior of the gamma functions, as α −→ +∞, noticing also that it holds Γ(α + c) =
Γ(α) e(c log(α)) +O

(︁
1
α

)︁
:

C(d) = −2 cos
(︃
d

2
π

)︃
Γ

(︃
d

2
− 1

)︃
Γ (3− d) e d

2
log(α) Y (d, α) +O

(︃
1

α

)︃
; (C.77)

and furthermore we may use the information (C.74) about the asymptotic behavior of the Y (d, α)
function, which results in:

C(d) = −2 cos
(︃
d

2
π

)︃
Γ

(︃
d

2
− 1

)︃
Γ (3− d) e d

2
log(α)

(︂
(4π)−

d
2 e−

d
2
log(α)

)︂
+O

(︃
1

α

)︃
= −2 (4π)− d

2 cos

(︃
d

2
π

)︃
Γ

(︃
d

2
− 1

)︃
Γ (3− d) +O

(︃
1

α

)︃ (C.78)

Finally we may take the limit α −→ +∞ to obtain the exact result of the C(d) integration constant,
which now doesn’t depend on α anymore, as expected; in fact we obtain

C(d) = − 2

(4π)
d
2

cos

(︃
d

2
π

)︃
Γ

(︃
d

2
− 1

)︃
Γ (3− d) = − 23−2d π

3−d
2

sin
(︁
d
2π
)︁
Γ
(︁
d−1
2

)︁ ; (C.79a)

C(d ≈ 3) =
1

8
+

1

16
(γ − log(16π)) ϵ+

1

384

(︁
5π2 + 6(γ − log(16π))2

)︁
ϵ2 +O

(︁
ϵ3
)︁
; (C.79b)

where in formula (C.79b) we expanded the exact result (C.79a) around d ≡ 3 + ϵ using the series
expansion (B.8) of the gamma function, with γ the Euler-Mascheroni constant (B.9): we can notice
that this result is consistent with the independent calculation (C.71) of C(d = 3) we performed
before.

We can also compare result (C.79a) to the other exact value of C(d) we could have obtained by
directly computing it from formula (C.70), in fact recalling the exact result (C.7) and applying the
gamma function properties (B.7a) and (B.7b) we would have obtained

C(d) = IS,1L(d, 1, 1)[pi]p
4−d
i =

1

(4π)
d
2

Γ

(︃
2− d

2

)︃ (︁
Γ
(︁
d
2 − 1

)︁)︁2
Γ (d− 2)

= − 23−2d π
3−d
2

sin
(︁
d
2π
)︁
Γ
(︁
d−1
2

)︁ (C.80)

which exactly agrees with formula (C.79a).

We can then compare also the full result (C.67) for j(α1, α2) with the corresponding result IS,1L
which we evaluated in equation (C.7): in this case we find them to agree only for integer values of
α1 and α2: this is however to be expected, since we evaluated the integration by parts identities
(which relate exponents separated by integer values) only starting from the master integral j(α1 =
1, α2 = 1).

In practice this multi-loop techniques are extremely useful, if not necessary, when evaluating inte-
grals with multiple loops: in fact there the direct evaluation of the integral may not be possible at
all.
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C.5.3 Fourier integrals evaluation using tensor decomposition

We argue that it is possible to evaluate in full generality the tensorial generalizations of the scalar
integral (C.31), like formula (C.33) derived in section C.3.1, using the tensor decomposition proce-
dure presented in section 2.2.2: for any number of tensorial indices we may perform such a tensor
decomposition procedure, the only difference being that we have to consider {xi} instead of {pi}
as the external vectors from which we’ll build the ansatz tensors to which the form factor will be
proportional to.

In fact in the Mathematica code we used for the evaluation of conservative diagrams we employed
this method to programmatically evaluate any needed tensorial generalization of the IF integral
(C.31).



APPENDIX

D EXTRACTS FROM THE MATHE-
MATICA CODE

In the following we present a few extracts from the code which we developed in Mathematica to
evaluate generic conservative diagrams, and which we outlined in section 4.4.

The high level function which can be called to evaluate a diagram , and which implements the
procedure outlined in section 4.3, as presented also in section 4.4, reads as follows:

automaticEvaluateDiagramlistOfFeynmanRules_,positiveMultiplicitySymmetryFactor_,showOutputDynamically _:False:=Module
listDiagramExpression,tempListOfDiagrams,resultListOfDiagrams,DynamicalOutputInitialText,
DynamicalOutputInitialText="============================== ";

Monitor
automaticEvaluateDiagramProgressIndicator=0.;

PrintTemporaryDynamicalOutputInitialText, "Constructing Diagram";
listDiagramExpression=multiplyDiagramByPositiveSymmetryFactorjoinFeynmanRulesInternallistOfFeynmanRules,positiveMultiplicitySymmetryFactor;
automaticEvaluateDiagramProgressIndicator=0.05;

IfshowOutputDynamically===True,PrintTemporarylistDiagramExpression;Input"Initial diagram, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Evaluating diagram temporal sector";
tempListOfDiagrams=automaticSolveTemporalSectorlistDiagramExpression;
automaticEvaluateDiagramProgressIndicator=0.20;

IfshowOutputDynamically===True,PrintTemporarytempListOfDiagrams;Input"Solved temporal sector, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Summing over worldline indices in diagrams and simplifying expressions";
tempListOfDiagrams=automaticDiagramOperationsOnTimeAndWorldlinesVariablestempListOfDiagrams;
automaticEvaluateDiagramProgressIndicator=0.30;

IfshowOutputDynamically===True,PrintTemporarytempListOfDiagrams;Input"Summed over worldline indices and simplified diagrams expressions, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Enforcing Dirac deltas of the spatial components of the bulk momenta";
tempListOfDiagrams=TableautomaticEnforceBulkSpatialMomentaDiracSingleDiagramtableTempDiagram,tableTempDiagram,tempListOfDiagrams;
automaticEvaluateDiagramProgressIndicator=0.31;

IfshowOutputDynamically===True,PrintTemporarytempListOfDiagrams;Input"Enforced Dirac deltas of the spatial components of the bulk momenta, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Preparing evaluation IBP loop and Fourier integrals";
tempListOfDiagrams=separateSpatialMomentaAndOtherQuantitiesListOfDiagramstempListOfDiagrams;

tempListOfDiagrams=separateLoopMomentaAndFourierMomentaListOfDiagramstempListOfDiagrams;
automaticEvaluateDiagramProgressIndicator=0.35;

IfshowOutputDynamically===True,PrintTemporarytempListOfDiagrams;Input"Prepared IBP and Loop integrations, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Evaluating IBP loop integrals";
tempListOfDiagrams=AutomaticEvaluationIBPsLoopIntegralstempListOfDiagrams;
automaticEvaluateDiagramProgressIndicator=0.75;

IfshowOutputDynamically===True,PrintTemporarytempListOfDiagrams;Input"Evaluated IBP loop integration, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Evaluating Fourier integrals in diagrams";
tempListOfDiagrams=AutomaticEvaluationFourierIntegralsNewertempListOfDiagrams;
automaticEvaluateDiagramProgressIndicator=0.95;

IfshowOutputDynamically===True,PrintTemporarytempListOfDiagrams;Input"Evaluated Fourier integrals, press enter to continue", ;

PrintTemporaryDynamicalOutputInitialText, "Finishing diagrams evaluation";
tempListOfDiagrams=listOfDiagramsFinishCalculationsInternaltempListOfDiagrams,False;

PrintTemporaryDynamicalOutputInitialText, "Finished diagrams evaluation!";
automaticEvaluateDiagramProgressIndicator=1.0;

resultListOfDiagrams=tempListOfDiagrams;

,ProgressIndicatorautomaticEvaluateDiagramProgressIndicator;
resultListOfDiagrams
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In particular we report also the code corresponding to one of the functions called therein, which
evaluates the temporal sectors (as explained in sections 4.3 and 4.4). That is, it performs the needed
manipulations of the expressions by exchanging temporal Fourier momenta k0 for time derivatives
∂t, by applying these time derivatives to the expressions, by performing the integrals over the
temporal Fourier components k0 to obtain time Dirac deltas δ(t′ − t), and finally by performing
the integral over the relevant time variables in order to enforce these Dirac delta. The code reads:

automaticSolveTemporalSectorSingleDiagramInternal[diagram _] :=

ModulenBulkTemporalMomentaDiracInitialTemp, numberOfVarInBulkMomentaTemporalDiracsTemp, indexOfBulkTemporalDiracDeltaTemp,

tempDiagramBulk, expandedDiagram, listHomogeneousTemporalDiagrams, tempDiagram, scalingTemp, forTempIndex, forTempIndexInner, byPartsTemporalListTemp,

listOfTemporalMomentaTemp, listOfReturnDiagrams, numberOfVarInTemporalDiracsTemp, nTemporalDiracInitialTemp, indexOfDiracDeltaTemp,
tempDiagramBulk = diagram;

PrintTemporary"Enforcing Dirac deltas of the temporal components of the bulk momenta";

nBulkTemporalMomentaDiracInitialTemp = Lengthdiagram"integrations", "temporalBulkDiracDelta";

ForforTempIndexInner = 1, forTempIndexInner ≤ nBulkTemporalMomentaDiracInitialTemp, forTempIndexInner++,

numberOfVarInBulkMomentaTemporalDiracsTemp = TabletableTempIndex,

LengthSelecttempDiagramBulk"integrations", "temporalBulkDiracDelta", NotFreeQ#, tempDiagramBulk"integrations", "momentaTemporalIntegrationsVars", tableTempIndex &,

tableTempIndex, LengthtempDiagramBulk"integrations", "momentaTemporalIntegrationsVars";

numberOfVarInBulkMomentaTemporalDiracsTemp = SortBynumberOfVarInBulkMomentaTemporalDiracsTemp, Last;

numberOfVarInBulkMomentaTemporalDiracsTemp = SelectnumberOfVarInBulkMomentaTemporalDiracsTemp, Not#〚2〛 === 0 &;

indexOfBulkTemporalDiracDeltaTemp = FirstPositiontempDiagramBulk"integrations", "temporalBulkDiracDelta", SelectFirsttempDiagramBulk"integrations", "temporalBulkDiracDelta",

NotFreeQ#, tempDiagramBulk"integrations", "momentaTemporalIntegrationsVars", numberOfVarInBulkMomentaTemporalDiracsTemp1, 1 &;

IfindexOfBulkTemporalDiracDeltaTemp === Missing["NotFound"], Print"Error automaticSolveTemporalSectorSingleDiagramInternal: momenta temporal Dirac delta not found", ;

tempDiagramBulk = EnforceBulkTemporalMomentaDiracDeltaSingleDiractempDiagramBulk, numberOfVarInBulkMomentaTemporalDiracsTemp1, 1, indexOfBulkTemporalDiracDeltaTemp〚1〛;

;

expandedDiagram = diagramExpandSumInExpressionsKeytempDiagramBulk, "momentaTemporalCoeff";
listOfReturnDiagrams = {};

listHomogeneousTemporalDiagrams = groupIntoSeparateListOfDiagramsHomogeneousScalingInIntegrationVariablesexpandedDiagram, "momentaTemporalIntegrationsVars", "momentaTemporalCoeff";
(* Now each diagram should scale homogeneously wrt temporalmomentacomponents, so I can integrate by parts! *);

ForforTempIndex = 1, forTempIndex ≤ Length[listHomogeneousTemporalDiagrams], forTempIndex++,

PrintTemporary"Expression ", ToString[forTempIndex], " / ", ToString[Length[listHomogeneousTemporalDiagrams]], ": integrating by parts temporal momenta component";
tempDiagram = listHomogeneousTemporalDiagrams〚forTempIndex〛;
scalingTemp = TableExponenttempDiagram"expressions", 1, "momentaTemporalCoeff", 1, tableTempVar, tableTempVar, tempDiagram"integrations", "momentaTemporalIntegrationsVars";
(* Better to perform double integration by parts at once if applicable, as it automatically produces v^2 terms instead of x*a *)

byPartsTemporalListTemp = Flatten

TableConstantArraytempDiagram"integrations", "momentaTemporalIntegrationsVars", tableTempIndex, Floor[scalingTemp〚tableTempIndex〛 / 2], tableTempIndex, Length[scalingTemp];

TabletempDiagram = transformTwoMomentaTemporalIntoTimeDoubleDerivativetempDiagram, tableTempVar, tableTempVar, byPartsTemporalListTemp;

byPartsTemporalListTemp = FlattenTableConstantArraytempDiagram"integrations", "momentaTemporalIntegrationsVars", tableTempIndex,

scalingTemp〚tableTempIndex〛 - 2 * Floor[scalingTemp〚tableTempIndex〛 / 2], tableTempIndex, Length[scalingTemp];

TabletempDiagram = transformOneMomentaTemporalIntoTimeSingleDerivativetempDiagram, tableTempVar, tableTempVar, byPartsTemporalListTemp;

tempDiagram = diagramSimplifyExpressionsInternaltempDiagram, True;

PrintTemporary"Expression ", ToString[forTempIndex], " / ",

ToString[Length[listHomogeneousTemporalDiagrams]], ": converting temporal momenta components in exponential into temporal Dirac deltas";

listOfTemporalMomentaTemp = tempDiagram"integrations", "momentaTemporalIntegrationsVars";

TabletempDiagram = convertExponentialArgTemporalToDiracDeltaSingletempDiagram, 1, tableTempVar, Length[listOfTemporalMomentaTemp];

PrintTemporary"Expression ", ToString[forTempIndex], " / ", ToString[Length[listHomogeneousTemporalDiagrams]], ": enforcing temporal Dirac deltas";
(* May be better to select Dirac delta which appear only once first*);

nTemporalDiracInitialTemp = LengthtempDiagram"integrations", "temporalDiracDelta";

ForforTempIndexInner = 1, forTempIndexInner ≤ nTemporalDiracInitialTemp, forTempIndexInner++,

numberOfVarInTemporalDiracsTemp =

TabletableTempIndex, LengthSelecttempDiagram"integrations", "temporalDiracDelta", NotFreeQ#, tempDiagram"integrations", "timeIntegrationsVars", tableTempIndex &,

tableTempIndex, LengthtempDiagram"integrations", "timeIntegrationsVars";

numberOfVarInTemporalDiracsTemp = SortBynumberOfVarInTemporalDiracsTemp, Last;

numberOfVarInTemporalDiracsTemp = SelectnumberOfVarInTemporalDiracsTemp, Not#〚2〛 === 0 &;

indexOfDiracDeltaTemp = FirstPositiontempDiagram"integrations", "temporalDiracDelta",

SelectFirsttempDiagram"integrations", "temporalDiracDelta", NotFreeQ#, tempDiagram"integrations", "timeIntegrationsVars", numberOfVarInTemporalDiracsTemp1, 1 &;

IfindexOfDiracDeltaTemp === Missing["NotFound"], Print"Error automaticSolveTemporalSectorSingleDiagramInternal: Dirac delta not found", ;

tempDiagram = EnforceTimeDiracDeltaSingleDiractempDiagram, numberOfVarInTemporalDiracsTemp1, 1, indexOfDiracDeltaTemp〚1〛;

;

AppendTolistOfReturnDiagrams, tempDiagram;

;
listOfReturnDiagrams



As an example, the evaluation of diagram A(2g), which is a diagram first contributing at 2PN, and
which we evaluated explicitly in 4.3, can be performed with the following code:

In [ ] := ruleWorldPhi = precomputeWorldlineGravityVertex[{1, 0, 0}, {kt1}, {kt01}, "ruleWorldPhi"];

In [ ] := ruleWorldA = precomputeWorldlineGravityVertex{0, 1, 0}, {kt1}, {kt01}, "ruleWorldA";

In [ ] := SetDirectory[NotebookDirectory[]];

listOfNeededScalingsEvalNonZero = Get["listOfNeededScalingsEvalNonZero.dat.m"];

listOfNeededScalingsEvalNonZero = listOfNeededScalingsEvalNonZero //. {i → i3, A → Α};

In [ ] := ruleBulkPhi2A = precomputeBulkFeynmanRulelistOfNeededScalingsEvalNonZero〚7, 6, 1〛,

{{kt2, kt3}, {kt1}, {}}, {{kt02, kt03}, {kt01}, {}}, {}, {{ti1}},  {}  , "ruleBulkPhi2A";

In [ ] := loadAllPrecomputedIBPs

In [ ] := loadPrecomputedTensorDecompositions
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The above lines of code have to be computed just once (along with other initialization lines) in
order to load the relevant Feynman rules and the precomputed integration-by-parts basis and tensor
decompositions. Then the actual computation of the diagram is performed by simply specifying the
relevant Feynman rules and the propagators, obtaining an expression exact in d and in v, which can
then be expanded also to obtain the relevant contributions to the potential at any post-Newtonian
order.

In [ ] := diagram2gRules = {specializePrecomputedBulkFeynmanRule[ruleBulkPhi2A, {k2, k3, k1}, {k02, k03, k01}, {{}, {{i1}}, {{}}}],

specializePrecomputedWorldlineFeynmanRule[ruleWorldA, a, 1, {-k1}, {-k01}, {i2}], specializePrecomputedWorldlineFeynmanRule[ruleWorldPhi, b, 2, {-k2}, {-k02}, {}],

specializePrecomputedWorldlineFeynmanRule[ruleWorldPhi, c, 3, {-k3}, {-k03}, {}], APropagator[k1, k01, -i1, -i2, 0], phiPropagator[k2, k02, 0], phiPropagator[k3, k03, 0]}

Out[ ]=

ruleBulkPhi2A, integrations → timeIntegrationsVars → {}, momentaSpatialIntegrationsVars → {},

momentaTemporalIntegrationsVars → {}, temporalDiracDelta → {}, spatialBulkDiracDelta → {k1 + k2 + k3}, temporalBulkDiracDelta → {k01 + k02 + k03},

informations → worldlineIndices → {}, temporalIndices → {}, symmetryFactor → 1
2
, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff → - 2 ⅈ cdd
Λ , vectorCoeff →  δ i1

ei1
, momentaSpatialCoeff →  k2ei1 , momentaTemporalCoeff → {k03}, exponentialArgSpatial → {0}, exponentialArgTemporal → {0},

scalarCoeff → - 2 ⅈ cdd
Λ , vectorCoeff →  δ i1

ei1
, momentaSpatialCoeff →  k3ei1 , momentaTemporalCoeff → {k02}, exponentialArgSpatial → {0}, exponentialArgTemporal → {0},

ruleWorldA, integrations → timeIntegrationsVars → {t1}, momentaSpatialIntegrationsVars → {}, momentaTemporalIntegrationsVars → {},

temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {a}, temporalIndices → {1}, symmetryFactor → {1}, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff →  ⅈ ma

Λ 1 - va1i2 va1
i2 

, vectorCoeff →  va1i2 , momentaSpatialCoeff → {1},

momentaTemporalCoeff → {1}, exponentialArgSpatial → - ⅈ k1i2 xa1i2 , exponentialArgTemporal → ⅈ k01 t1,

ruleWorldPhi, integrations → timeIntegrationsVars → {t2}, momentaSpatialIntegrationsVars → {}, momentaTemporalIntegrationsVars → {},

temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {b}, temporalIndices → {2}, symmetryFactor → {1}, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff → -
ⅈ mb 2 + (-2 + cdd) vb2i1 vb2

i1 

2 Λ 1 - vb2i1 vb2
i1 

, vectorCoeff → {1}, momentaSpatialCoeff → {1},

momentaTemporalCoeff → {1}, exponentialArgSpatial → - ⅈ k2i1 xb2i1 , exponentialArgTemporal → ⅈ k02 t2,

ruleWorldPhi, integrations → timeIntegrationsVars → {t3}, momentaSpatialIntegrationsVars → {}, momentaTemporalIntegrationsVars → {},

temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {c}, temporalIndices → {3}, symmetryFactor → {1}, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff → -
ⅈ mc 2 + (-2 + cdd) vc3i1 vc3

i1 

2 Λ 1 - vc3i1 vc3
i1 

, vectorCoeff → {1}, momentaSpatialCoeff → {1},

momentaTemporalCoeff → {1}, exponentialArgSpatial → - ⅈ k3i1 xc3i1 , exponentialArgTemporal → ⅈ k03 t3,

propagator, integrations → timeIntegrationsVars → {}, momentaSpatialIntegrationsVars → {k1}, momentaTemporalIntegrationsVars → {k01},

temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {}, temporalIndices → {}, symmetryFactor → {1}, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff →  ⅈ
2
, vectorCoeff →  δi1i2 , momentaSpatialCoeff →  1

k1i1 k1
i1 

, momentaTemporalCoeff → {1}, exponentialArgSpatial → {0}, exponentialArgTemporal → {0},

propagator, integrations → timeIntegrationsVars → {}, momentaSpatialIntegrationsVars → {k2}, momentaTemporalIntegrationsVars → {k02},

temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {}, temporalIndices → {}, symmetryFactor → {1}, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff → - ⅈ
2 cdd

, vectorCoeff → {1}, momentaSpatialCoeff →  1

k2i1 k2
i1 

, momentaTemporalCoeff → {1}, exponentialArgSpatial → {0}, exponentialArgTemporal → {0},

propagator, integrations → timeIntegrationsVars → {}, momentaSpatialIntegrationsVars → {k3}, momentaTemporalIntegrationsVars → {k03},

temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {}, temporalIndices → {}, symmetryFactor → {1}, positiveSymmetryFactorImposed → {False}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff → - ⅈ
2 cdd

, vectorCoeff → {1}, momentaSpatialCoeff →  1

k3i1 k3
i1 

, momentaTemporalCoeff → {1}, exponentialArgSpatial → {0}, exponentialArgTemporal → {0}

In [ ] := diagram2gResult = automaticEvaluateDiagram[diagram2gRules, 2]

Out[ ]=

integrations →
timeIntegrationsVars → {t}, momentaSpatialIntegrationsVars → {}, momentaTemporalIntegrationsVars → {}, temporalDiracDelta → {}, spatialBulkDiracDelta → {}, temporalBulkDiracDelta → {},

informations → worldlineIndices → {}, temporalIndices → {}, symmetryFactor → 1
2
, positiveSymmetryFactorImposed → {True}, IBPLoopMomenta → {}, FourierLoopMomenta → {},

expressions → scalarCoeff →

- ⅈ 2-7-d m1 m2 π 3

2
-d
Cscd π

2
 Gamma[-2 + d] spr[r, r]1-d -spr[r, r] (1 - spr[v1, v1]) (1 - spr[v2, v2]) 2 + (-2 + cdd) spr[v2, v2] 5 - 2 d Gamma2 -

d

2
 2 (1 - d) m1 2 + (-2 + cdd) spr[v1, v1] (spr[v1, v1] + spr[v1, v2])

1 - spr[v2, v2] + (-2 + d) m2 1 - spr[v1, v1] spr[v1, v2] 2 + (-2 + cdd) spr[v2, v2] - 2 Gamma3 -
d

2
 2 (1 - d) m1 2 + (-2 + cdd) spr[v1, v1] (spr[v1, v1] + spr[v1, v2]) 1 - spr[v2, v2] +

(-2 + d) m2 1 - spr[v1, v1] spr[v1, v2] 2 + (-2 + cdd) spr[v2, v2] + (-1 + d) m2 1 - spr[v1, v1] spr[v1, v2] 2 + (-2 + cdd) spr[v2, v2] + spr[r, v1] 5 - 2 d d Gamma2 -
d

2
 (1 - spr[v1, v1])

(1 - spr[v2, v2]) 2 + (-2 + cdd) spr[v2, v2] 2 (1 - d) m1 (spr[r, v1] + spr[r, v2]) 2 + (-2 + cdd) spr[v1, v1] 1 - spr[v2, v2] + (-2 + d) m2 spr[r, v2] 1 - spr[v1, v1] 2 + (-2 + cdd) spr[v2, v2] -

2 Gamma3 -
d

2
 (1 - spr[v1, v1]) (1 - spr[v2, v2]) 2 + (-2 + cdd) spr[v2, v2] 2 (1 - d) m1 (spr[r, v1] + spr[r, v2]) 2 + (-2 + cdd) spr[v1, v1] 1 - spr[v2, v2] + (-2 + d) m2 spr[r, v2] 1 - spr[v1, v1]

2 + (-2 + cdd) spr[v2, v2] + (-1 + d)2 Gamma2 -
d

2
 spr[r, r] 2 m1 spr[a1, v1] 2 - 2 cdd + (-2 + cdd) spr[v1, v1] (1 - spr[v2, v2])32 2 + (-2 + cdd) spr[v2, v2] - m1 spr[a2, v2] (1 - spr[v1, v1])

2 + (-2 + cdd) spr[v1, v1] 1 - spr[v2, v2] 2 - 2 cdd + (-2 + cdd) spr[v2, v2] + 2 m2 spr[a2, v2] (1 - spr[v1, v1])32 2 + (-2 + cdd) spr[v2, v2] 2 - 2 cdd + (-2 + cdd) spr[v2, v2] + m1 1 - spr[v2, v2]

2 spr[a1, v1] 2 - 2 cdd + (-2 + cdd) spr[v1, v1] (1 - spr[v2, v2]) 2 + (-2 + cdd) spr[v2, v2] + spr[a2, v2] (-1 + spr[v1, v1]) 2 + (-2 + cdd) spr[v1, v1] 2 - 2 cdd + (-2 + cdd) spr[v2, v2] 

cdd (-1 + d)2 Λ4 Gamma2 -
d

2
 Gamma3 -

d

2
 Gamma1

2
(-1 + d) (-1 + spr[v1, v1])2 (-1 + spr[v2, v2])2 , vectorCoeff → {1}, momentaSpatialCoeff → {1},

momentaTemporalCoeff → {1}, exponentialArgSpatial → {0}, exponentialArgTemporal →
{0}

In [ ] := saveListOfDiagrams[diagram2gResult, "Diagram2g"]

In [ ] := diagram2gPotential = automaticObtainPotentialFromEvaluatedListOfDiagrams[diagram2gResult, 2]

Out[ ]=

G2 m1 m2 (m1 + m2) spr[v1, v2] - 4 m1 sprv1, r2 - 3 (m1 + m2) sprv1, r × sprv2, r + 2 m1 v12 + m2 v22 - 2 m2 sprv2, r2
r2

In [ ] := obtainLatexPotentialEvaluatedDiagram[loadListOfDiagrams["Diagram2g"], 2, 2, True]

Out[ ]=

\frac{G^2 m_1 m_2 \left((m_1+m_2) (\vv_1 \cdot \vv_2)-4 m_1 (\vv_1\cdot \hat{\vr})^2-3

(m_1+m_2) (\vv_1\cdot \hat{\vr}) (\vv_2\cdot \hat{\vr})+2 \left(m_1 v_1^2+m_2 v_2^2-2 m_2 (\vv_2\cdot \hat{\vr})^2\right)\right)}{r^2}
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[72] G. Kälin and R. A. Porto, From boundary data to bound states. Part II. Scattering angle
to dynamical invariants (with twist), Journal of High Energy Physics 2020.2 (2020), doi:
10.1007/jhep02(2020)120.
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