
University of Padua

Department ofMathematics Tullio Levi-Civita

Master Thesis in Data Science

Direct SearchMethods for Influence

Maximization problems

Supervisor Master Candidate
Prof. Francesco Rinaldi Matteo Bergamaschi
University of Padua

Co-supervisor Student ID
Phd Sara Venturini 2041591
University of Padua

Academic Year
2022-2023

ii

“Philosophy iswritten inthis grandbook - Imeantheuniverse -which stands
continually open to our gaze, but it cannot be understood unless one first
learns to comprehend the language in which it is written. It is written in
the language of mathematics, and its characters are triangles, circles, and
other geometric figures, without which it is humanly impossible to under-
stand a single word of it; without these, one is wandering about in a dark
labyrinth.”
—Galileo Galilei

iv

Abstract

Networks serve as powerful tools for capturing interdependencies, resource flows, and the dynamics of influence
within systems. Analyzing network properties such as connectivity and centrality provides insights into how in-
formation, resources, or influence propagate. Networks aid in uncovering patterns, identifying key nodes, and
predicting the spread of information, diseases, or innovation. Among the many network analysis challenges,
the Influence Maximization problem stands out. The Influence Maximization problem focuses on identifying
a subset of individuals within a network. Targeting this subset with specific actions or information is expected
to maximize the overall influence or reach of these actions throughout the network. This problem holds signif-
icant implications for domains like marketing, public health, social media, and viral marketing campaigns. By
addressing the InfluenceMaximization problem, organizations gain the ability to strategically identify and engage
with influential individuals or nodes. This facilitates the promotion of products, ideas, or initiatives effectively,
requiring a deep understanding of information diffusion dynamics and leveraging the underlying network struc-
tures. In this thesis, wepresent twonovel direct searchmethods: Neighbors Search andNonmonotoneNeighbors
Search. These methods are designed to harness network structures, significantly improving influence maximiza-
tion efficiency. We conduct comprehensive evaluations on diverse network types, providing valuable insights and
practical solutions for organizations seeking to strategically identify and engage influential nodes for targeted ini-
tiatives. Our work not only advances the understanding of information diffusion dynamics within networks but
also enhances the optimization of influence spread, offering actionable solutions for real-world applications.

v

vi

Contents

Abstract v

Listing of acronyms viii

1 Introduction 1

2 Relatedworks 3
2.1 Information propagation models . 3

2.1.1 The classic models . 3
2.1.2 Extending the classic models . 5
2.1.3 General class of information propagation model 6
2.1.4 Unifying Features of the GIPModel . 7

2.2 Influence Maximization . 8
2.2.1 Introduction . 8
2.2.2 General solution methods . 9
2.2.3 Special Cases . 11
2.2.4 Problem Formulation . 12

3 Methods 13
3.1 Customized Direct Search . 13
3.2 Neighbors Search . 14
3.3 Nonmonotone Neighbors Search . 16
3.4 Other Methods . 17

4 Implementation 19
4.1 PropagationModel . 19
4.2 Methods . 22

4.2.1 Customized Direct Search . 22
4.2.2 Neighbors Search . 26
4.2.3 Nonmonotone Neighbors Search . 32
4.2.4 Other Methods . 40

5 Results 43
5.1 GIPModel Function . 44
5.2 Generated Networks . 45
5.3 Data Profiling . 47
5.4 Numerical Experiments . 48

6 Conclusion 59

References 61

vii

viii

Listing of acronyms

IC Information Cascade

LT Linear Threshold

IM Influence Maximization

EIC Extended Independent Cascade

ELT Extended Linear Threshold

MLT Multivalued Linear Threshold

GIP General Information Propagation

MINLP Mixed-integer Nonlinear Programming

DFM Derivative-free Method

MV Mixed Variables

CDS Customized Direct Search

NS Neighbors Search

NMNS Nonmonotone Neighbors Search

RS Random Search

ix

x

1
Introduction

The InfluenceMaximization (IM)problem is a challengingoptimization task focusedonmaximizing the influence
function within a network structure. Due to its inherently combinatorial nature, this problem has yet to find a
fully satisfying solution. Currently, direct search methods represent the state-of-the-art approach, although they
are still considered too slow for large-scale networks. In this thesis, we propose innovative direct search methods
that incorporate the network’s structure into their operation. These methods are rigorously compared through
experiments conducted on a variety of artificial networks.

Networks are integral to understanding the intricate interdependencies and interactions among entities. They
offer insights into information flow, resource allocation, and influence propagation within complex systems. An-
alyzing network properties, such as connectivity and centrality, aids in identifying key nodes and predicting the
spread of information, diseases, or innovations. This is particularly relevant to the IM problem.

The IM problem revolves around identifying a subset of individuals within a network. Targeting this subset
with specific actions or information aims to maximize the overall influence or spread of these actions or infor-
mation throughout the entire network. This problem holds immense significance in various domains, including
marketing, public health, social media, and viral marketing campaigns.

By effectively solving the IM problem, organizations can strategically pinpoint influential nodes to promote
their products, ideas, or initiatives. It involves a deep understanding of information diffusion dynamics and the
strategic leveraging of network structures to optimize influence spread.

At the present time, the leadingmethods for tackling the IM problem are direct searchmethods. In this thesis,
we begin by introducing and implementing the Customized Direct Search (CDS) method, which stands as one
of the most established direct search methods specially designed for addressing the IM problem. However, it is
worth noting that the field of direct searchmethods in this context still holds vast unexplored potential, withmany
avenues for improvement, as evidenced by recent developments in the literature.

The primary contribution of this thesis lies in the creation and implementation of two entirely novel direct
search methods, both built upon the foundation of the CDS method. These new algorithms are engineered to

1

significantly enhance their capability to account for the structural characteristics of the network. This ability
is notably absent in the earlier mentioned algorithm, and it represents a crucial advancement in our pursuit of
solving the IM problemmore efficiently.

Chapter 2 serves as the theoretical foundation of our work. We delve into crucial theoretical concepts essential
for IM problem-solving. Drawing insights from prior research [1], we introduce the Independent Cascade (IC)
model and the Linear Threshold (LT) model. Building upon these foundational models, we present the Gen-
eral Information Propagation (GIP) model, which unifies elements from IC and LT. Throughout this thesis, the
GIP model becomes our primary information propagation model. We then introduce an initial formulation of
the IM problem, the algorithm for calculating influence propagation, and lay the groundwork for exploring IM
problems. Pertinent theoretical results are established, including an alternative formulation valuable for practical
optimization methods.

Chapter 3 transitions into methodological development. Here, we detail the structure of three key methods
essential to this thesis: theCDSmethod, previously implemented in [1], and two novelmethods, NS andNMNS,
developed by us for the first time.

In Chapter 4, we introduce comprehensive implementations essential for the rigorous evaluation of the meth-
ods within the context of the IM problem. Our focus narrows on graph structures, and all implementations are
conducted using the Python programming language. The choice of Google Colab as the testing environment is
made due to the substantial computational demands inherent to such problems.

Chapter 5 is dedicated to empirical experimentation. We begin by conducting a concise numerical analysis of
the computational cost associated with the GIP model function call, a critical aspect as this function underpins
the operation of eachmethod. Subsequently, we introduce a set of artificially generated graphs that form the basis
of our experiments. Before diving into empirical evaluations, we explore the concept of data profiles, a pivotal
metric for comparing various derivative-free optimization methods. Finally, we present the empirical results of
our experiments, including a comparative assessment of the methods under varying budget parameters, a critical
determinant of IM problem complexity.

2

2
Related works

In this chapter, we embark on an exploration of the theoretical concepts crucial to the development ofmethods for
solving the InfluenceMaximization problem. Many of these theoretical foundations are drawn from the insights
provided in [1], and we refer to that for more comprehensive explanations of these theoretical foundations.

Section 2.1 serves as our starting point, where we introduce the two classical models: the Independent Cas-
cade model and the Linear Threshold model. Extending upon these foundational models, we introduce a novel
framework known as the General Information Propagation model in the subsequent section. The GIP model
incorporates elements of both the IC and LT models, and we elucidate its unifying properties. Throughout this
thesis, we adopt the GIP model as the primary information propagation model.

In Section 2.2, we present an initial formulation of the IM problem. This section not only introduces the
algorithm for calculating influence propagation, a pivotal concept for the entirety of our subsequentwork but also
lays the groundwork for our exploration of the IM problem. Subsequently, after establishing a set of pertinent
theoretical results, we unveil an equivalent formulation of the IM problem. This alternative formulation proves
highly valuable in the practical implementation of optimization methods.

2.1 Information propagation models

2.1.1 The classic models
We first describe two classic information propagation models, the IC model and the LT model, in more detail in
[2] [3].

Throughout our study, we focus on a social network, denoted as G(V,E), which is directed, connected, and
weighted. Here,V = v1, v2, ..., vn represents the set of nodes, and E = {(vi, vj) : there exists a directed edge from
node vi to node vj} represents the set of edges. Each edge (vi, vj) acts as a conduit for information flow between

3

nodes, with a corresponding weightWij > 0 signifying the strength or level of trust between these agents. When
an edge (vi, vj) does not exist in E, its weight is set to 0. In this context, we employ the notation xi(t) ∈ {0, 1}
to denote the state of node vi at discrete time step t, where 0 represents inactivity and 1 signifies activity. It is
important to note that in both the IC and LTmodels, nodes can transition from an inactive state to an active one
(0→ 1), but not the other way around, establishing a progressive propagation process. As a result, feedback loops
are absent; a node cannot be influenced by others it has previously influenced.

In the case of the LTmodel, further specifications are required. Specifically, it is mandated thatWij ≤ 1 holds
true for all vj ∈ V. Additionally, each node vj randomly selects a threshold θj from the uniform distribution
within the range [0, 1]. This threshold θj delineates the minimum cumulative influence weight required from
active neighbors for node vj to activate. Given these randomly chosen thresholds and an initial set of active nodes
denoted as A0, the propagation process unfolds in a deterministic manner through discrete time steps. At each
time step t > 0, all nodes that were active in the previous step (t−1) remain active. An inactive node vj transitions
to an active state if the sum of influence weights from its active neighbors surpasses its threshold θj, expressed as:

∑
vi∈At−1

Wij ≥ θj. (2.1)

In contrast, in the ICmodel, each value ofWij represents the probability that an active node vi can influence an
inactive neighbor vj within a single step. Moreover, each node possesses only one opportunity to influence others
when it initially becomes active. Should node vj be successfully activated, it assumes a value of 1 in the subsequent
time step. However, whether or not node vi succeeds in influencing others, it cannot make further attempts to
activate additional nodes in the following rounds. Variants of both cascade and thresholdmodels, including those
incorporating feedback, have been investigated [2] [4].

In these classic models, the spread of influence is defined as the count of active nodes when the process con-
cludes, formally expressed as limt→∞

∑n
i=1 xi(t). Consequently, the IM problem aims to maximize this spread

while adhering to a constraint on the initial number of nodes that can be activated, denoted as |A0|. Solving the
IM problem under both the IC and LT models is known to be NP-hard. Notably, the field witnessed a pivotal
algorithmic advancement with the introduction of approximation guarantees for the greedy hill-climbing algo-
rithms. Numerous subsequent methods have been proposed to enhance the efficiency of these greedy algorithms
while preserving the same approximation guarantees [5] [6], albeit not always exactly [7] [8].

It is worth noting that althoughmodels incorporating continuous variables and feedback between nodes exist
within the realm of opinion dynamics, the associated IM problem is not a central focus in that context. Addition-
ally, while continuous models such as the fully linear models have been analyzed within the scope of IM, their
well-established connections with classic models and their underlying mechanisms remain less defined. Further-
more, variants of the constraint in the IM problem emerge when nodes assume continuous values [9], such as
constraints based on the sum of initial state values rather than the count of activated nodes. Nevertheless, our
primary interest in this paper lies in scenarios where, for instance, companies possess finite resources to persuade
individuals to adopt products, thereby retaining the original constraint.

4

2.1.2 Extending the classic models
We commence by extending the two classic models, namely the IC model and the LT model, to operate within a
continuous state space and a deterministic context. In this extension, we employ a continuous variable xj(t) ∈ R
to denote the state value of node vj at eachdiscrete time step t ≥ 0. This variable canbeunderstood as representing
the influence on node vj at time t. By incorporating continuous variables, we assume that influence is additive;
for instance, people may become more persuaded by news if more friends believe it, or they may purchase more
products if more friends make purchases, either at each time step or over time. Consequently, a node vj is deemed
influenced or active at time step twhen xj(t) > 0. We characterize the overall influence on each node vj as:

sj =
∞∑
t=1

(1− γ)txj(t), (2.2)

where γ ∈ [0, 1) is a time-discounting factor ensuring convergence. The vector x(t) = (xj(t)) represents the
state values.

Starting with the IC model, we make two key assumptions: (i) the expected value equals the actual influence
on each node at each time step, and (ii) the state values exhibit the no-memory property. This property implies
that a node’s ability to either be influenced or influence others in the current time step t is independent of its
previous states. Consequently, xj(t) =

∑
i Wijxi(t− 1) holds for all vj ∈ V and t > 0. As a result, we introduce

the Extended Independent Cascade (EIC) model, characterized by the updating function:

x(t) = WTx(t− 1), for all t > 0, (2.3)

whereW is the weighted adjacency matrix of the network. It is worth noting that this model falls under the
category of linear dynamics on networks. To ensure the convergence of overall influence, the following condition
on the time-discounting factor γ and the spectral radius ρ(W) is needed:

γ > 1− 1
ρ(W)

. (2.4)

Moving on to the LTmodel extension, wemaintain the linear activation strategy akin to equation (2.1), where
the linear product of the state values of each node’s neighbors and the edge weights is computed. With the intro-
duction of continuous variables, we set the activated state value to be the threshold value, effectively controlling
the source of nonlinearity as activation. Importantly, the state values can vary in magnitude over time, allowing
us to impose time-dependent thresholds {θj,t}. Additionally, we continue to assume the no-memory property.
Consequently, the Extended Linear Threshold (ELT) model takes the form:

xj(t) =

θj,t,
∑

i Wijxi(t− 1) ≥ θj,t,

0, otherwise.
(2.5)

for all t > 0 and vj ∈ V.
From another perspective in extending the LT model, we can retain the magnitude of the state value at each

time step. However, instead of a single binary value (1 for active), each node vj can adopt values within a range
[1,mj] based on the strength of influence attempts from its neighbors,

∑
i Wijxi(t − 1). To elaborate, akin to

5

Equation (2.1), a node vj commences adopting a positive state value if the cumulative sum surpasses a threshold l′j .
Furthermore, the state value escalates from 1 to themaximum state valuemj as the sum increases from l′j to a higher
threshold h′j . This augmentation constitutes a more direct extension of the LT model, termed the Multivalued
Linear Threshold (MLT) model. Specifically, it features the updating function:

xj(t) = fj

[∑
i
Wijxi(t− 1)

]
, ∀t > 0, vj ∈ V, (2.6)

where the function fj(x) is defined as follows:

fj(x) =

0, if x < l′j ,
mj−1
h′j−l′j

(x− l′j) + 1, if l′j ≤ x < h′j ,

mj, if x ≥ h′j .

(2.7)

Here, the time-independent bound function fj(x)models the rangewithinwhich vj can take values. Moreover,
xj(0) ∈ {0}∪ [1, h′j,0], with h′j,0 signifying the upper bound of the initial state value for node vj. It is worth noting
that wewill later demonstrate the equivalence of these two extensions to the LTmodel through their relationships
with the model we will subsequently introduce.

2.1.3 General class of information propagation model

In this section, we introduce a comprehensive model called the GIPmodel, which unifies the fundamental mech-
anisms underlying the two classic propagation models. This model encompasses two primary aspects:

(i) Each node vi independently attempts to influence its neighbors, proportional to the edge weight and its
current state value xi(t). This characteristic aligns with the principles of the IC model.

(ii) The actual impact on each node vj stems from the collective behavior of its entire neighborhood. This effect
is achieved by applying a nonlinear transformation to

yj(t) =
∑
i
Wijxi(t− 1), (2.8)

enabling us to capture how the cumulative influence attempts from all neighbors translate into a state change
for node vj. This concept draws parallels not only with the LT model but also with nonlinear models applied
to opinion dynamics. Specifically, at each time step t > 0, we introduce a lower bound lj,t representing the
threshold required to initiate propagation. This implies that xj(t) = 0 if yj(t) < lj,t. Additionally, an upper
bound hj,t accounts for the saturation effect, signifying that xj(t) = hj,t if yj(t) ≥ hj,t . In essence, the GIPmodel
can be described as a bounded-linear dynamic system:

xj(t) = fj,t

[∑
i
Wijxi(t− 1)

]
, for all t > 0, vj ∈ V, (2.9)

6

where fj,t(x) takes the form:

fj,t(x) =

0, x < lj,t,

x, lj,t ≤ x < hj,t,

hj,t, x ≥ hj,t,

(2.10)

representing the time-dependent bounds for each node vj. The matrix W = (Wij) with Wij ≥ 0 is the
weighted adjacency matrix of the network, and {lj,t} and {hj,t} denote the time-dependent lower and upper
bounds for each node vj respectively, where 0 ≤ lj,t ≤ hj,t. These bound values offer flexibility in character-
izing the underlying population. Furthermore, it is worth noting that the GIP model can replicate the classic
models by setting specific bound values. The initial states x(0) are predefined, with xj(0) ∈ {0} ∪ [lj,0, hj,0] and
lj,0 > 0.

In conclusion, these extensions establish a continuous state space and deterministic foundation for the IC and
LTmodels, enriching the representation and examination of influence dynamics within networks.

2.1.4 Unifying Features of the GIPModel
In this section, we elucidate the unifying aspect of the GIP model, which encompasses the EIC and ELTmodels
as distinctive limiting scenarios. At one end of the spectrum, the GIP model aligns with the EIC model when all
upper bounds are adequately large, while simultaneously ensuring that all lower bounds are sufficiently small.

Lemma 1 If lj,t = lmin,0wt ≤ hj,t, ∀t > 0, vj ∈ V, where lmin,0 = minj lj,0 and w = mini,j:Wij>0 Wi,j, in the
GIP model, then there is no threshold effect from the lower bounds, ∀t > 0, vj ∈ V, s.t.

∑
i Wijxi(t− 1) > 0,

∑
i
Wijxi(t− 1) > lj,t. (2.11)

Theorem 1 If lj,t ≤ lmin,0wt ≤ ht0Wt
:,j ≤ hj,t, ∀t > 0, vj ∈ V, where h0 = (hj,0),Wt

:,j is the j-th column of
Wt, and lmin,0, w are the same as in Lemma 1, the GIP model is equivalent to the EICmodel.

Conversely, at the other end of the spectrum, the GIP model aligns with the ELTmodel when upper bounds
are set equal to their corresponding lower bounds, i.e., lj,t = hj,t = θj,t for all t > 0 and vj ∈ V. To delineate
this relationshipmore explicitly, we introduce the notion of time-independent upper and lower bound thresholds,
θl,j and θh,j, similar to those found in the classic LT model. We propose the following threshold-type bounds for
t > 0 and vj ∈ V:

lj,t = (θl,jα)tlj,0hj,t = θh,jθt−1
l,j α

thj,0 (2.12)

The evolution of these bounds hinges on varying powers of the mean weight α = 1
|E|

∑
(vi,vj)∈E Wij and θl,j.

Consequently, under this condition, theGIPmodel closelymirrors the ELTmodelwhen lj,0 = hj,0 and θl,j = θh,j
for all vj ∈ V.

Furthermore, leveraging these threshold-type bounds, the GIP model can also exhibit equivalence with the
MLT model. Specifically, if uniform thresholds are assigned to the threshold-type bounds for all vj ∈ V, such

7

as θl,j = θl and θh,j = θh, the GIP model (with lj,0 = 1 for all vj ∈ V) aligns with the MLT model. This
correspondence is marked by lj = θlα, hj = θhαhj,0,mj =

θhhj,0
θl , and hj,0 = hj,0 in terms of the overall influence.

The relationship between time-discounting factors for the GIP model and the MLT model can be expressed as
γ′ = 1− (1− γ)θlα. Consequently, if we denote the state values from the GIP model as xj(t) and those from the
MLTmodel as x′j(t), then xj(t) = (θlα)tx′j(t) for all t > 0 and vj ∈ V.

Moreover, when the network possesses a uniform weight α, setting hj = lj = θlα in the MLT model is tan-
tamount to stipulating that θl neighbors must exhibit positive state values for activations. This resembles the
concept of the constant threshold model . This equivalence extends to both the GIP model and the ELT model.
Notably, when θl = θh = 1, it signifies simple contagion, wherein a single active neighbor can influence a node.
Conversely, when θl = θh > 1, it characterizes complex contagion, necessitating collective effort from the neigh-
borhood to influence a node. Given the elucidation of these relationships, we will exclusively focus on threshold-
type bounds in our subsequent discussions.

2.2 InfluenceMaximization

2.2.1 Introduction

Now we transition into a crucial algorithmic challenge closely tied to information propagation: the Influence
Maximization problem. This problem revolves around the objective of maximizing the collective impact on net-
work nodes at the culmination of the propagation process. Our particular focus lies on an essential constraint: the
initiation of a finite number of nodes, determined by a budget size. This constraint echoes the notion of allocating
limited resources to influence a wider audience.

Given a defined information propagation process and an associated function sj(·) gauging the overall influence
on each node vj, the cumulative influence across the network emerges naturally as:

s(x(0)) =
∑
j
sj(x(0)), (2.13)

where x(0) represents the initial state vector. This function sj(·) can encapsulate various elements, including
nodes’ states at the process’s culmination (limt→∞ xj(t)), thus encompassing both classic models and our pro-
posed GIP model from previous section. Consequently, the IM problem revolves around maximizing s(x(0)),
while ensuring adherence to the constraint of activating a limited number of nodes:

|{vj : xj(0) > 0}| ≤ k, (2.14)

where k ∈ Z+ represents the budget size.

Based on the objective function (2.13) and constraint (2.14), we formulate the IM problem as a mixed-integer

8

nonlinear programming (MINLP) task:

max
x,z

s(x)

s.t. xj ≤ hj,0zj
xj ≥ lj,0zj∑

j
zj ≤ k

xj ∈ R, zj ∈ {0, 1}, ∀j,

(2.15)

where 0 < lj,0 ≤ hj,0 define the initial influence level of node vj, and k ∈ Z+ represents the budget size. The
objective function s(·)measures the aggregate influence across the network, as illustrated in (2.13). The vector x
comprises initial state values, while vector z, of the same dimensions, signifies the decision to set positive initial
state values (zj = 1) or not (zj = 0), thus enforcing the constraint (2.14).

The intricacy of this optimization problem arises from the nature of the objective function s(x). For instance,
in the case of the GIP model along with function (2.2) for individual influence:

(i) s(x)might lack smoothness or even be discontinuous due to potential nonsmoothness of fj,t(x) in (2.9) at
hj,t and discontinuity at lj,t.

(ii) In general, a closed-form expression for s(x) is elusive, except when fj,t(x) = x for all t > 0 and vj ∈ V in
(2.9).

(iii) Derivative information is often unhelpful in locating the maximum point. Nonetheless, even in the lat-
ter scenario, evaluating the objective function can be efficiently solved, as shown in Theorem 2. This efficiency
becomes especially beneficial in the deterministic setting.

Thus, it becomes imperative to treat theobjective function as ablack-box system, prompting theuse ofDerivative-
Free Methods (DFMs) for general solutions, an aspect we delve into in Chapter 3.

Theorem 2 Given a network G(V,E) with weight matrixW and initial state x(0), along with the GIP model
governing the information propagation process and Equation (2.2) as the function for individual influence, com-
puting the objective function s(x(0)) in the MINLP (2.15) can be achieved in O(|E|t) time. Here, t denotes the
number of time steps needed for convergence with a specified tolerance ε > 0, ensuring |(1− γ)tx(t)| < ε for all
t ≥ t.

Proof. The time complexity follows from Algorithm 2.1. In each iteration t, each nonzero element of weight
matrix W has only one opportunity to be used to potentially adjust state value x(t). There exist O(|E|) such
elements in total. Thus, the time complexity of each iteration is O(|E|), resulting in an overall evaluation time
complexity ofO(|E|t), contingent on the number of steps towards convergence, t.

2.2.2 General solution methods
There are two main classes of methods in DFMs: model-based methods and direct-search methods. Since we
cannot assume that the objective function falls into a simple family, such as polynomials, model-based methods
are not appropriate for this problem. Among the direct-search algorithms, the Mesh Adaptive Direct Search

9

Algorithm 2.1 Propagation Algorithm for the GIPModel
Require: AnetworkG(V,E)withweightmatrixWwhereWij > 0 if (vi, vj) ∈ E, parameters
{lj,t, hj,t} in the GIP model, time-discounting factor γ, initial state x(0) where xj(0) ∈
[lj,0, hj,0] if and only if vj ∈ A0 (0 otherwise), and the tolerance ε.

Ensure: The value of the objective function in the MINLP, s.
1: Set t← 0, x(0)← x(0), and s← 0.
2: Mark all out-neighbors of A0 as potentially activated nodes,N0 ←

∪
vj∈A0

Nout(vj).
3: while |(1− γ)txt| > ε
4: At+1,Nt+1 ← ∅, and x(t+ 1)← 0.
5: for each potentially activated node vj ∈ Nt
6: xt+1

j ← fj,t
(∑

vi∈At
Wijx(t)i

)
.

7: if x(t+ 1)j > 0
8: At+1 ← At+1 ∪ {vj}.
9: Nt+1 ← Nt+1 ∪Nout(vj).
10: s← s+ (1− γ)t+1xt+1

j .
11: end if
12: end for
13: t← t+ 1.
14: end while

(MADS) [10]method is one of the few that has local convergence analysis evenwhen the objective function is not
necessarily Lipschitz continuous. Therefore, we consider MADS for Mixed Variables (MV) as a general solution
to the IM problem, which can be implemented using software like NOMAD [11] [12].

To understand local convergence, we introduce the crucial notion of local optimality for mixed variables, and
subsequently, the concept of the local neighborhood. We partition each vector into its continuous and discrete
components, denoted as y = (yc, yd) ∈ Rn, where n is the dimension of the domain. For the MINLP (2.15),
yc = x and yd = z. For the continuous variables with maximum dimension nc, the neighborhood is well-defined
as the open ball Bε(yc) = {yc1 ∈ Rnc : ∥yc1 − yc∥ < ε}with ε > 0. However, there are different ways to define the
discrete neighborhood.

A common choice for integer variables isN(y) = {y1 ∈ Ω : yc1 = yc, ∥yd1 − yd∥ ≤ 1}. With a user-defined
discrete neighborhood, the classical definition of local optimality can be extended to mixed variable domains as
follows.

Definition 1 A point y = (yc; yd) ∈ Ω is considered a local maximizer of a function f on Ω with respect to the
set of neighborsN(y) ⊂ Ω if there exists ε > 0 such that f(y) ≥ f(y2) for all y2 in the set

Ω ∩

 ∪
y1∈N(y)

Bε(yd1)× (yd1)

 , (2.16)

were Bε(yc) = {yc1 ∈ Rnc : ∥yc1 − yc∥ < ε} is an open ball, andN(y) is a user-defined discrete neighborhood.

10

As mentioned earlier, MADS is one of the algorithms that can relax the assumptions for convergence analysis
to include discontinuous functions. To conclude the overview of applicable DFMs, it is worth noting that there
are also many heuristic algorithms [13], but they lack theoretical performance guarantees.

2.2.3 Special Cases
In the preceding sections, we extensively analyzed the general features of the IM problem and provided corre-
sponding general solution methods. Now, we shift our focus to the IM problem with the GIP model governing
the information propagation process and Equation (2.2) serving as the function for individual influence. In this
section, we explore two distinct special cases of the GIP model to illuminate potential insights for even more
general scenarios.

The first special case arises when the lower bounds {lj,t} are significantly small in the GIP model. In this
situation, we demonstrate that the objective function becomes both continuous and concave concerning the con-
tinuous variables x, as stated in Theorem 3. Consequently, any local maximum attained also becomes a global
maximum. As a result, the MADS method exhibits global convergence in this case, although it pertains solely to
the continuous variables, considering that the optimality of the integer part remains local, as per Definition 1.

Theorem 3 If {lj,t} and {hj,t} are in accordance with Lemma 1, then the objective function s(·) in the MINLP
2.15 is continuous and concave with respect to the continuous variables x.

The other distinctive scenario emerges when not only {lj,t} but also {hj,t} are sufficiently large in the GIP
model, essentially representing the extreme of the EICmodel. In this context, x(t) = WTx(t− 1) = (WT)tx(0).
Consequently, the objective function takes the form:

s(x(0)) =
∞∑
t=1

(1− γ)txj(t) =
∞∑
t=1

(1− γ)t(WT)tx(0) = cTx(0), (2.17)

where c = {[I − (1 − γ)W]−1 − I}1 embodies the Katz centrality with a factor of (1 − γ), I denotes the
identitymatrix, and thepenultimate equation is establishedunder the condition (2.4)within this extreme scenario.
Therefore, the objective function becomes linear, thus Lipschitz continuous, concave, and smooth. The exact
solution(s) for this case, as elucidated in Theorem 4, can be achieved.

Theorem 4 If {lj,t} and {hj,t} follow the conditions outlined in Theorem 1, then the exact solution(s) to the
MINLP (2.15) is given by:

x∗j =

hj,0, if j ∈ A,

0, otherwise,
z∗j =

1, if j ∈ A,

0, otherwise,
(2.18)

where A = {j1, . . . , jk} such that hi,0ci ≥ hj,0cj for all i /∈ A and j ∈ A, c = {[I− (1− γ)W]−1 − I}1 is the
Katz centrality with factor (1− γ), and the uniqueness of the solution relies on the uniqueness of set A.

Hence, in the scenario where theGIPmodel resides at the extreme of the EICmodel (i.e., linear dynamics), the
exact solution(s) entails activating k nodes with the highest product of their Katz centrality and their maximum

11

initial value. This connection aligns the IM problem with a widely studied network centrality measure, the Katz
centrality. Additionally, this solution can serve as a promising starting point for the ensuing search algorithm for
the MINLP (2.15). The search depth could potentially be proportional to the distance between the underlying
propagation and linear dynamics.

2.2.4 Problem Formulation
Here we leverage a specific property of the objective function, namely the non-decreasing nature of s(x), which
is established in the proof of Theorem 4. Building upon this property, we introduce a customized direct search
method tailored for the MINLP (2.15).

Due to this characteristic, the task of maximizing the objective s(x) concerning both x and z in the MINLP
(2.15) can be simplified to the task of maximizing s(x) while x and z are set to their highest attainable values.
Specifically, we set xj = hj,0zj and

∑
j zj = k, effectively reducing the problem to the following formwith respect

to the binary vector z:

max
z

s(h0 ⊙ z)

s.t.
∑
j
zj = k,

zj ∈ {0, 1}, ∀j,

(2.19)

where h0 = (hj,0) and⊙ denotes the element-wise Hadamard product. As a result, the domain Ωd becomes
a natural mesh for searching at each iteration r:

Mr = ΩD = {z ∈ {0, 1}n :
∑
j
zj = k}. (2.20)

The constraints are inherently embedded within the domain, and they are managed using the extreme barrier
approach sΩd , where sΩd(z) = s(h0⊙ z) if z ∈ Ωd and−∞ otherwise. We define the neighborhood function for
binary variables z as:

N(z) = {y ∈ {0, 1}n : ∥y− z∥1 ≤ d}, (2.21)

where d ∈ Z+ \ {1}, as the L1 distance between y and z can reach a minimum of 2 when y ̸= z and y, z ∈ Ωd.
This minimal distance of 2 is achieved when only one element of value 1 is exchanged with an element of value 0.

12

3
Methods

3.1 Customized Direct Search

In this section we present the Customized Direct Search [1] algorithm tailored for the revised problem (2.19).
The algorithm starts from an exact solution (as given in Theorem 4) when the GIP model is at the extreme of the
EIC model. At each iteration r in the poll step, we explore the local neighborhood of the current candidate z(r)
until a point with a sufficient improvement in the objective value is found or all points have been examined. In the
termination check, if an improved point is identified, the algorithmwill revert to the optional search step, but will
decrease the required improvement if a sufficiently improved point has not been discovered. If no improvement
is found, the algorithm outputs the current iterate and terminates. Refer to Algorithm 3.1 for detailed steps.

Hence, the termination step directly guarantees local convergence by Definition 1. While global convergence
could be achieved through a carefully developed search step and a better understanding of the objective function’s
landscape to avoid poor local optima, the drawback of globalmethods is their time complexity. Thus, wemaintain
the search step as an optional component. The CDSmethod takes advantage of the problem’s characteristics and
mitigates worst-case complexity by initializing with an exact solution when the GIPmodel reaches the extreme of
the EICmodel. It is conjectured that the local optima near this specific solution are sufficiently favorable.

From the current CDSmethod, two avenues for enhancing output quality emerge. The problem is equivalent
to selecting a set of nodes with values 1 (and others with 0). Hence, two known methods for global convergence
can be applied: (i) brute force, where all node sets of size k are evaluated to select the optimal one, and (ii) random
sampling, which exhibits asymptotic global convergence if it samples densely enough. The two improvement
dimensions are inspired by these methods. Firstly, by expanding the neighborhood definition, more points are
searched within the domain. If the neighborhood encompasses the entire domain, it resembles the brute-force
method. Secondly, the search process (steps 2, 3, and 4 in Algorithm 3.1) can be restarted from other unexplored
points randomly,mirroring the logic of the search step. This strategy achieves asymptotic global convergence, akin

13

to the random sampling approach.

Algorithm 3.1 Customized Direct Search (CDS)

1: Initialization: Set 0 < ζ, δ < 1, d > 1. Let z(0) ∈ Ωd such that z(0)j = 1 if node
j ∈ A = {j1, . . . , jk}where hi,0ci = hj,0cj, ∀i /∈ A, j ∈ A, and c = {[I−(1−γ)W]−1−I}1
is the Katz centrality. Set iteration r = 0.

2: SEARCH step (optional): Evaluate sΩd on a finite subset of trial points on the meshMr,
until a sufficiently improvedmesh point z is found, where sΩd(z) > (1+ ζ)sΩd(z(r)), or all
points have been exhausted. If an improved point is found, then the SEARCH step may
terminate, skip the next POLL step and go directly to step 4.

3: POLL step: Evaluate sΩd on the set Ωd ∩N(z(r)) ⊂Mr as in 2.21, with distance d, until a
sufficiently improved mesh point z is found, where s(Ωd)(z) > (1 + ζ)s(Ωd)(z(r)), or all
points have been exhausted.

4: Termination check: If an improvement is found, set z(r+1) as the improved solution, while
decreasing ζ ← δζ if a sufficient improvement has not been found, increment r ← r + 1,
and go to step 2. Otherwise, output the solution z(r).

3.2 Neighbors Search
In the realm of direct search methods, a central challenge revolves around the selection of an appropriate mesh, a
pivotal factor that significantly influences how the solution space is explored. In the preceding section, we delved
into the CDS method, which employs a rather straightforward mesh strategy. Specifically, it populates the mesh
with all points located at a specified L1 distance, commonly set at 2. Moreover, the CDS method incorporates
the graph structure by utilizing the Katz centrality to guide the initial point selection. However, from our stand-
point, these measures seemed insufficient. Hence, in this section, we introduce our first alternative approach: the
Neighbor Search (NS) method.

Distinguishing itself from the CDS method, the NS method deviates primarily in its mesh formulation. This
new methodology aims to better leverage the underlying graph structure during mesh construction. The core
notion is centered around a more judicious selection of mesh points, emphasizing connections within the graph.

The fundamental premise of the NSmethod is to exclusively consider points that are interconnected through
graph edges. Unlike theCDSmethod’s inclusive approachof all points at a setL1 distance, theNSmethodnarrows
down its focus to only those points that are directly linked through edges in the graph.

In summary, the NS method seeks to enhance the mesh construction process by incorporating the graph’s
topological structure more effectively. Unlike the CDS method, which indiscriminately covers a designated L1
distance, the NS method opts for a more graph-aware approach by exclusively considering neighboring points
connected through edges. This approach aims to provide a refined exploration of the solution space, accounting
for the inherent relationships within the underlying graph structure.

14

Specifically, theNSmethod operates within amore constrainedmesh, leading to a reduction in the number of
function evaluations required at each iteration. Importantly, this reduction inmesh size does not compromise the
quality of the search in our view. This is due to the fact that theNSmethod hones in solely on themost significant
and meaningful points within the solution space.

This approach ensures a more focused exploration by considering points that are directly linked in the graph,
rather than exhaustively covering a broaderL1 distance as done by theCDSmethod. By deliberately selecting only
interconnected points, the NS method strikes a balance between efficiency and search.

Given that this novel approach doesn’t inherently ensure local convergence due to the unique nature of the
refinedmesh, we’ve taken this into careful consideration. In circumstanceswhere a searchwithin the smallermesh
fails, an additional search is conducted across the entire neighborhood, a procedure analogous to the one employed
by the CDSmethod. This ensures a guarantee of local convergence, a critical aspect that we’ve incorporated.

It is conjectured that this supplementary stepwill be infrequently invoked throughout the entire searchprocess.
As a result, it is anticipated that this occasional occurrence won’t significantly impact the overall speed of the
algorithm. We’ll delve into this hypothesis further in Chapter 5, where we’ll see that initial observations align
with this line of thinking.

In Algorithm 3.2, we delve into the inner workings of theNSmethod, highlighting its distinct SEARCH step,
which sets it apart from the CDS method. It is worth noting that the remaining steps in this algorithm remain
consistent with those found in the CDSmethod.

Algorithm 3.2Neighbors Search (NS)

1: Initialization: Set 0 < ζ, δ < 1, d > 1. Let z(0) ∈ Ωd such that z(0)j = 1 if node
j ∈ A = {j1, . . . , jk}where hi,0ci = hj,0cj, ∀i /∈ A, j ∈ A, and c = {[I−(1−γ)W]−1−I}1
is the Katz centrality. Set iteration r = 0.

2: SEARCH step: Evaluate sΩd on the set Ωd ∩ N(z(r)) ∩ C(z(r)) ⊂ Mr as in 2.21
with distance d, until a sufficiently improved mesh point z is found, where s(Ωd)(z) >

(1 + ζ)s(Ωd)(z(r)), or all points have been exhausted. C(z(r)) is the set of points that are
connected by an arc with z(r). If an improved point is found, then the SEARCH stepmay
terminate, skip the next Additional SEARCH step and go directly to step 4.

3: Additional SEARCH step: Evaluate sΩd on the set Ωd ∩ N(z(r)) ⊂ Mr as in 2.21 with
distance d, until a sufficiently improved mesh point z is found, where s(Ωd)(z) > (1 +
ζ)s(Ωd)(z(r)), or all points have been exhausted.

4: Termination check: If an improvement is found, set z(r+1) as the improved solution, while
decreasing ζ ← δζ if a sufficient improvement has not been found, increment r ← r + 1,
and go to step 2. Otherwise, output the solution z(r).

15

3.3 NonmonotoneNeighbors Search

The inclusion of a nonmonotone acceptance rule holds significant importance within the realm of optimization
problems [14]. It represents as a valuable tool for enhancing algorithm performance. In contrast to monotone
direct search methods, which exclusively seek new points that consistently reduce the objective function, non-
monotone approaches offer distinct advantages.

In scenarios where a monotone approach might fall short, nonmonotone methods come to the rescue. For
instance, when dealing with an objective function characterized by steep-sided valleys, monotone searches may
yield only small movements along the search directions. Similarly, when the objective function exhibits local
”flatness”, monotone searches might necessitate generating an excessive number of primitive directions to break
away from a specific point.

Nonmonotone acceptance rules circumvent these limitations by allowing for more flexible exploration of the
search space. Rather than rigidly adhering to strict reductions in the objective function, nonmonotone methods
offer the versatility to consider a broader range of possibilities. This adaptability is particularly advantageouswhen
dealing with complex landscapes and can significantly enhance the efficiency and effectiveness of optimization
algorithms.

In this section, we introduce a novel method that builds upon the NSmethod approach, incorporating a non-
monotone acceptance rule, the Nonmonotone Neighbors Search (NMNS) method. Refer to Algorithm 3.3 for
a comprehensive algorithm description. Here, we provide a concise overview of the method’s functioning.

The initialization, SEARCH, and additional SEARCH steps closely resemble their counterparts in the NS
method. However, a key distinction lies in the point acceptance rule. Instead of exclusively accepting points
that exhibit improvement by a fixed margin, our method considers every point that surpasses a certain reference
value fref. The reference value, denoted as fref, represents theminimum among the last n objective function values
accepted by the algorithm. These values are stored in a set, which is managed using a first-in-first-out policy.

To further harness the potential of nonmonotonicity, we introduce an additional phase, known as the enriched
SEARCH, positioned between the SEARCH and additional SEARCH steps. During this phase, the algorithm
explores points within the neighborhood at a distance of d+ 2. Notably, this neighborhood encompasses a sub-
stantially larger cardinality of points compared to other phases. To manage computational resources efficiently,
we randomly select a limited number of points from this expanded set. Specifically, the number of points sampled
during the enriched SEARCH phase is ndim times the number of points selected in the previous phase.

During this phase, it is important to highlight that we include points that may also be candidates for the ad-
ditional SEARCH step. There are two primary reasons for not excluding these points. Firstly, iterating through
each of these points and verifying their membership in a stricter neighborhood imposes a significant computa-
tional burden. Secondly, given the difference in cardinality between the two neighborhoods, randomly selecting
points inherently increases the likelihood of including points from the desired set. Moreover, when choosing
points that will be considered by the additional SEARCH step, the buffer system effectively manages any addi-
tional function calls, making this approach more efficient overall.

16

Algorithm 3.3Nonmonotone Neighbors Search (NMNS)

1: Initialization: Set d > 1, n > 1, ndim > 0. Let z(0) ∈ Ωd such that z(0)j = 1 if node
j ∈ A = {j1, . . . , jk}where hi,0ci = hj,0cj, ∀i /∈ A, j ∈ A, and c = {[I−(1−γ)W]−1−I}1
is the Katz centrality. Set iteration r = 0.

2: SEARCH step: Evaluate sΩd on the set Ωd ∩ N(z(r)) ∩ C(z(r)) ⊂ Mr as in 2.21, until
a sufficiently improved mesh point z is found, where s(Ωd)(z) > min

t=r,..,r−n+1
s(Ωd)(z(t)),

or all points have been exhausted. C(z(r)) is the set of points that are connected by an arc
with z(r). If an improved point is found, then the SEARCH step may terminate, and go
directly to step 5.

3: Enriched SEARCH step: Evaluate sΩd on n · |Ωd ∩ N(z(r)) ∩ C(z(r)| random points of
the set Ωd ∩ N′(z(r)) ⊂ Mr as in 2.21 with distance d + 2, until a sufficiently improved
mesh point z is found, where s(Ωd)(z) > min

t=t=r,..,r−n+1
s(Ωd)(z(t)), or all points have been

exhausted. If an improvedpoint is found, then the enriched SEARCHstepmay terminate,
and go directly to step 5.

4: ADDITIONALSEARCHstep: Evaluate sΩd on the setΩd∩N(z(r)) ⊂Mr as in 2.21, un-
til a sufficiently improvedmesh point z is found, where s(Ωd)(z) > min

t=r,..,r−n+1
s(Ωd)(z(t)),

or all points have been exhausted.
5: Termination check: If an improvement is found, set z(r+1) as the improved solution, incre-

ment r← r+ 1, and go to step 2. Otherwise, output the solution z(r).

3.4 OtherMethods
In this section, we introduce additional methodologies for experimentation and testing purposes.

These techniques encompass the Brute Force Solver, involving a meticulous exploration of every conceivable
combinationwithin the influencemaximizationproblem. Although it is notably constrained in termsof efficiency
and only suitable for small-scale scenarios, its utilization in preliminary testing provides valuablemetrics regarding
the quality of solutions generated by alternative direct search methods.

The second technique, the Random Search (RS) Solver (see, e.g., [15] and references therein) revolves around
the random selection of points within the solution space. Subsequently, it identifies the best solution encoun-
tered after a predetermined number of function evaluations. This technique serves as a fundamental reference
point throughout all tests, helping us identify instances where our direct search methodologies exhibit inferior
performance compared to this random search. Such occurrences may indicate potential implementation issues or
algorithmic errors requiring further investigation.

17

18

4
Implementation

In this chapter, we introduce the comprehensive implementations that have been developed to rigorously eval-
uate the previously presented methods in the context of the IM problem, with a specific focus on graph struc-
tures. All these implementations are conducted using the Python programming language. Moreover, owing to
the substantial computational demands inherent to such problems, a deliberate choice was made to leverage the
computational resources provided by Google Colab as the testing environment.

4.1 PropagationModel
We developed a function that computes the propagation algorithm as in 2.1. A snippet of the code is presented
in Listing 4.2, offering a glimpse into the detailed implementation.

The Influence_evaluation function serves the purpose of estimating node influence in a graph iteratively.
The core of the computation lies within the GIP_function call, where the bulk of influence calculations takes
place. To enhance efficiency, a significant portion of the operations has been vectorized, optimizing the code for
computational speed.

By iteratively updating influence estimates based on graph structure and predefined parameters, the function
provides a comprehensive way to evaluate node influence over a series of iterations. The iterative nature ensures
that influence accumulates through graph interactions, making it a valuable tool in studying and solving problems
like the IM problem.

The Influence_evaluation function takes the following inputs:

• g: The input graph.

• W: A weight matrix.

• x0: The initial influence estimates.

19

• params: A tuple of parameters containing l0, h0, θl, θh, γ, and ε.

• max_t: Maximum number of iterations (default value is 999).

The function outputs three values:

• The total influence estimate s.

• A list st containing influence estimates at each iteration.

• A list x containing nodes’ state at each iteration.

A pivotal aspect of this function lies within the subroutine GIP_function, responsible for implementing the
GIP model as described in Eqaution 2.9. A glimpse into the code implementation can be found in Listing 4.1.
In the course of our research endeavors, we further extended our work by incorporating the classical IC and LT
models. This deliberate exploration aimed todiscern and analyze the nuancedbehavioral distinctions among these
models.

1 def GIP_function(x,h,l):
2

3 r = np.multiply(x >= l, x)
4

5 return np.minimum(r, h)

Listing 4.1: GIP Function

20

1 def Influence_evaluation(g, W, x0, params, max_t = 999):
2

3 l0, h0, theta_l, theta_h, gamma, eps = params
4

5 s = 0
6

7 st = [0]
8

9 x = [x0]
10

11 alpha = 0
12

13 for u, v, d in g.edges(data=True):
14 alpha += d["weight"]
15

16 alpha = alpha/len(g.edges)
17

18 t = 1
19

20 while np.linalg.norm(x[-1]*((1-gamma)**t)) > eps and t <= max_t:
21 l = ((theta_l*alpha)**t)*l0
22 h = (theta_h*(theta_l**(t-1))*(alpha**t))*h0
23

24 xt = GIP_function(np.sum(np.multiply(W,x[-1]), axis = 1), h, l)
25 s += np.sum(xt)
26

27 x.append(xt)
28

29 st.append(s)
30 t += 1
31

32 return s, st, x

Listing 4.2: Influence Evaluation Function

21

4.2 Methods

4.2.1 Customized Direct Search
Here, we present a Python implementation of the CDS method, as introduced in Section 3.1. This implementa-
tion directly corresponds to the algorithm outlined in Algorithm 3.1. Additionally, we have introduced a buffer
mechanism to enhance efficiency by avoiding redundant propagation calls on the same points.

The CDS_solver function accepts the following inputs:

• g: The input graph.

• W: A weight matrix.

• x0: The starting point of the algorithm.

• params: A tuple of parameters containing l0, h0, θl, θh, γ, and ε.

• delta, xi, d: Additional parameters specific to the CDSmethod.

• max_calls: The maximum number of propagation function calls allowed.

• buffer_dim: The dimension of the buffer used for optimization.

The function provides three output values:

• s: A list containing the influence scores at each iteration.

• X: A list of every iteration point.

• history: A history of the best value found along with the number of function calls required to find it.

In the listings below, we illustrate the distinct phases of the algorithm. In Listing 4.3, we showcase the CDS
initialization step, where all parameters and variables are appropriately initialized. It is in this phase that the buffer
is created. Subsequently, in Listing 4.4, we delve into the CDS POLL step, which constitutes the core of the
computation. Lastly, in Listing 4.5, we present the termination check. Notably, if no improvements are made
(lines 53-56), the algorithm concludes. Additionally, throughout each step of the method, we include lines that
provide real-time updates on the algorithm’s progress, estimating the time remaining based on the maximum
number of allowed function calls.

22

1 def CDS_solver(g, W, x0, params, delta, xi, d, max_calls, buffer_dim):
2 N = len(x0)
3 K = np.count_nonzero(x0)
4 X = [x0]
5 s = [Influence_evaluation(g, W, x0, params)[0]]
6 r = 0
7 xi_t = xi
8

9 stop = False
10 buffer = collections.deque(maxlen=buffer_dim)
11 calls = 1
12 start = time.time()
13 history = [[s[-1], calls]]
14

15 print("\r" + "Custom direct search... {}/{}. ETA: {} s.".format(calls,
max_calls, round((time.time()-start)*((max_calls-calls)/calls))),
end = "")

Listing 4.3: CDS_solver Function Inizialization

23

17 while (stop == False) and (r < 1000):
18 idx = set(np.nonzero(X[-1])[0])
19 neighbors = []
20 idx_temp = set(range(N)) - set(idx)
21 for i in range(d // 2):
22 for elem1 in itertools.combinations(idx, len(idx) - 1 - i):
23 for elem2 in itertools.combinations(idx_temp, i + 1):
24 neighbors.append(list(set(elem1) | set(elem2)))
25

26 s_temp = s[-1]
27 x_temp = X[-1]
28

29 for elem in neighbors:
30 x_elem = np.zeros(N)
31 x_elem[list(elem)] = theta_l
32 if list(x_elem) in buffer:
33 continue
34 if calls >= max_calls:
35 stop = True
36 break
37

38 s_elem = Influence_evaluation(g, W, x_elem, params)[0]
39 calls += 1
40 print("\r" + "Custom direct search... {}/{}. ETA: {}

s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))), end =
"")

41

42 if s_elem > s_temp:
43 history.append([s_elem, calls])
44 x_temp = x_elem
45 s_temp = s_elem
46 if s_temp > (1 + xi_t) * s[-1]:
47 break

Listing 4.4: CDS_solver Function POLL step

24

49 X.append(x_temp)
50 s.append(s_temp)
51 r += 1
52

53 if s[-1] == s[-2]:
54 X.pop()
55 s.pop()
56 stop = True
57 elif s[-1] > (1 + xi_t) * s[-2]:
58 continue
59 else:
60 xi_t = xi_t * delta
61

62 history.append([s[-1], calls])
63

64 print("\r" + "Custom direct search... {}/{} Done!".format(calls,
max_calls))

65 print("s: {}".format(s[-1]))
66

67 return s, X, history

Listing 4.5: CDS_solver Function Termination check and Output

25

4.2.2 Neighbors Search
Now, we present the implementation of the NS method, as introduced in Section 3.2. This marks the introduc-
tionof the first completely new algorithm in this paper. Similar to the previousCDSmethod,wehave implemented
a buffer system to enhance the method’s efficiency.

The NS_solver function takes the following inputs:

• g: The input graph.

• W: A weight matrix.

• x0: The starting point of the algorithm.

• params: A tuple of parameters containing l0, h0, θl, θh, γ, and ε.

• delta, xi, d: Additional parameters specific to the NS method.

• max_calls: The maximum number of propagation function calls allowed.

• buffer_dim: The dimension of the buffer used for optimization.

The function provides three output values:

• s: A list containing the influence scores at each iteration.

• X: A list of every iteration point.

• history: A history of the best value found along with the number of function calls required to find it.

In the code listings provided below, we illustrate the distinct phases of the algorithm. In Listing 4.6, you can
observe the initialization step of the NS method. During this phase, all parameters and variables are set to their
appropriate initial values. It is noteworthy that this phase is identical to the corresponding one in the CDS_solver
function. Next, in Listing 4.7, we delve into the NS SEARCH step. This part closely resembles the CDS POLL
step, except for the neighborhood selection process, which is evident in lines 21-26. Moving forward, Listing
4.8 presents the additional SEARCH step. It bears a strong resemblance to the POLL step in the CDS_solver
function. Finally, in Listing 4.9, you’ll find the termination check. Similar to the CDS_solver function, real-time
updates on the algorithm’s progress are displayed.

26

1 def NS_solver(g, W, x0, params, delta, xi,d, max_calls, buffer_dim):
2 N = len(x0)
3 K = np.count_nonzero(x0)
4 X = [x0]
5 s = [Influence_evaluation(g, W, x0, params)[0]]
6 r = 0
7 xi_t = xi
8

9 stop = False
10 buffer = collections.deque(maxlen=buffer_dim)
11 calls = 1
12 start = time.time()
13 history = [[s[-1],calls]]
14

15 print("\r" + "Neighbors search... {}/{}. ETA: {} s.".format(calls,
max_calls, round((time.time()-start)*((max_calls-calls)/calls))),
end = "")

Listing 4.6: NS_solver Function Inizialization

27

17 while (stop == False) and (r < 1000):
18 idx = set(np.nonzero(X[-1])[0])
19 neighbors = []
20

21 for elem1 in idx:
22 for elem2 in g.neighbors(elem1):
23 temp = idx.copy()
24 temp.add(elem2)
25 temp.remove(elem1)
26 neighbors.append(temp)
27

28 s_temp = s[-1]
29 x_temp = X[-1]
30

31 for elem in neighbors:
32 x_elem = np.zeros(N)
33 x_elem[list(elem)] = theta_l
34 if list(x_elem) in buffer:
35 continue
36 if calls >= max_calls:
37 stop = True
38 break
39

40 s_elem = Influence_evaluation(g, W, x_elem, params)[0]
41 buffer.append(list(x_elem))
42 calls +=1
43 print("\r" + "Neighbors search... {}/{}. ETA: {}

s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))), end =
"")

44

45 if s_elem > s_temp:
46 history.append([s_elem,calls])
47 x_temp = x_elem
48 s_temp = s_elem

28

49 if s_temp > (1+xi_t)*s[-1]:
50 break
51

52 X.append(x_temp)
53 s.append(s_temp)
54 r += 1
55

56 if s[-1] > (1+xi_t)*s[-2]:
57 continue
58

59 elif s[-1] > s[-2]:
60 xi_t = xi_t * delta
61

62 else:
63 X.pop()
64 s.pop()
65 idx = set(np.nonzero(X[-1])[0])
66 neighbors = []
67 idx_temp = set(range(N))-set(idx)

Listing 4.7: NS_solver Function SEARCH step

29

69 for i in range(d//2):
70 for elem1 in itertools.combinations(idx, len(idx)-1-i):
71 for elem2 in itertools.combinations(idx_temp, i+1):
72 neighbors.append(list(set(elem1) | set(elem2)))
73

74 s_temp = s[-1]
75 x_temp = X[-1]
76 for elem in neighbors:
77 x_elem = np.zeros(N)
78 x_elem[list(elem)] = theta_l
79 if list(x_elem) in buffer:
80 continue
81 if calls >= max_calls:
82 stop = True
83 break
84

85 s_elem = Influence_evaluation(g, W, x_elem, params)[0]
86 buffer.append(list(x_elem))
87 calls += 1
88 print("\r" + "Neighbors search... {}/{}. ETA: {}

s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))),
end = "")

89

90 if s_elem > s_temp:
91 history.append([s_elem,calls])
92 x_temp = x_elem
93 s_temp = s_elem
94 if s_temp > (1+xi_t)*s[-1]:
95 break
96

97 X.append(x_temp)
98 s.append(s_temp)
99 r += 1

Listing 4.8: NS_solver Function Additional SEARCH step

30

101 if s[-1] == s[-2]:
102 X.pop()
103 s.pop()
104 stop = True
105

106 elif s[-1] > (1+xi_t)*s[-2]:
107 continue
108

109 else:
110 xi_t = xi_t * delta
111

112 history.append([s[-1], calls])
113

114 print("\r" + "Neighbors search... {}/{} Done!".format(calls, max_calls))
115 print("s: {}".format(s[-1]))
116

117 return s, X, history

Listing 4.9: NS_solver Function Termination Check and Output

31

4.2.3 NonmonotoneNeighbors Search
Now, we present the implementation of the NMNSmethod, as introduced in Section 3.3. This marks the intro-
duction of the second completely new algorithm in this paper. Similar to the previous methods, we have imple-
mented a buffer system to enhance the method’s efficiency.

The NMNS_solver function takes the following inputs:

• g: The input graph.

• W: A weight matrix.

• x0: The starting point of the algorithm.

• params: A tuple of parameters containing l0, h0, θl, θh, γ, and ε.

• d, n, n_d: Additional parameters specific to the NMNSmethod.

• max_calls: The maximum number of propagation function calls allowed.

• buffer_dim: The dimension of the buffer used for optimization.

The function provides three output values:

• s: A list containing the influence scores at each iteration.

• X: A list of every iteration point.

• history: A history of the best value found along with the number of function calls required to find it.

In the subsequent listings, we delve into the distinct phases of the algorithm. In Listing 4.10, we embark on
the initialization step, where all parameters and variables are meticulously configured. Notably, in line 8, we ini-
tialize the queue that plays a pivotal role in implementing the nonmonotone acceptance rule. Despite this nuance,
the code largely mirrors its counterpart in the NS_solver function. Moving forward, Listing 4.11 captures the
SEARCH step, while Listing 4.13 elucidates the additional SEARCH step. This section of the code closely par-
allels the corresponding segments in the NS_solver function, with minor differentiations primarily stemming
from alterations in the acceptance rule. Listing 4.12, on the other hand, offers a glimpse into the distinctive en-
riched SEARCH step. While akin to the additional SEARCH step, this phase stands apart due to its approach
to generating the set of points for exploration, as highlighted in lines 63-69. To terminate the algorithm, Listing
4.14 presents the termination check. As with all other algorithms, real-time progress updates are thoughtfully
incorporated.

32

1 def NM_NS_solver(g, W, x0, params,d, max_calls, buffer_dim, n = 4, n_dim =
4):

2 N = len(x0)
3 K = np.count_nonzero(x0)
4 X = [x0]
5 s = [Influence_evaluation(g, W, x0, params)[0]]
6 r = 0
7 xi_t = xi
8 queue = [s[-1]]
9 s_out = s[-1]
10

11 stop = False
12 buffer = collections.deque(maxlen=buffer_dim)
13 calls = 1
14 start = time.time()
15 history = [[s[-1], calls]]
16

17 print("\r" + "Nonmonotone Neighbors search... {}/{}. ETA: {}
s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))), end = "")

Listing 4.10: NM_NS_solver Function Inizialization

33

19 while (stop == False):
20 idx = set(np.nonzero(X[-1])[0])
21 neighbors = []
22 found = False
23

24 for elem1 in idx:
25 for elem2 in g.neighbors(elem1):
26 temp = idx.copy()
27 temp.add(elem2)
28 temp.remove(elem1)
29 neighbors.append(temp)
30

31 s_ref = min(queue)
32

33 for elem in neighbors:
34 x_elem = np.zeros(N)
35 x_elem[list(elem)] = theta_l
36 if list(x_elem) in buffer:
37 continue
38 if calls >= max_calls:
39 stop = True
40 break
41

42 s_elem = Influence_evaluation(g, W, x_elem, params)[0]
43 buffer.append(list(x_elem))
44 calls +=1
45 print("\r" + "Nonmonotone Neighbors search... {}/{}. ETA: {}

s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))), end =
"")

46

47 if s_elem > s_ref:
48 queue = insert(queue, n, s_elem)
49 X.append(x_elem)
50 s.append(s_elem)

34

51 if s_elem > s_out:
52 s_out = s_elem
53 history.append([s_elem,calls])
54 found = True
55 break

Listing 4.11: NM_NS_solver Function SEARCH STEP

35

57 if found == False:
58 idx = set(np.nonzero(X[-1])[0])
59 n_neighbors = len(neighbors)
60 neighbors = []
61 idx_temp = set(range(N)) - set(idx)
62

63 for i in range((d // 2) + 1):
64 for elem1 in itertools.combinations(idx, len(idx) - 1 - i):
65 for elem2 in itertools.combinations(idx_temp, i + 1):
66 temp = list(set(elem1) | set(elem2))
67 neighbors.append(temp)
68

69 neighbors = random.sample(neighbors, min(len(neighbors), n_dim *
n_neighbors))

70

71 for elem in neighbors:
72 x_elem = np.zeros(N)
73 x_elem[list(elem)] = theta_l
74 if list(x_elem) in buffer:
75 continue
76 if calls >= max_calls:
77 stop = True
78 break
79

80 s_elem = Influence_evaluation(g, W, x_elem, params)[0]
81 buffer.append(list(x_elem))
82 calls += 1
83 print("\r" + "Nonmonotone Neighbors search... {}/{}. ETA: {}

s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))),
end = "")

84

85 if s_elem > s_ref:
86 queue = insert(queue, n, s_elem)
87 X.append(x_elem)

36

88 s.append(s_elem)
89 if s_elem > s_out:
90 s_out = s_elem
91 history.append([s_elem,calls])
92 found = True
93 break

Listing 4.12: NM_NS_solver Function Enriched SEARCH STEP

37

95 if found == False:
96 idx = set(np.nonzero(X[-1])[0])
97 neighbors = []
98 idx_temp = set(range(N)) - set(idx)
99

100 for i in range(d // 2):
101 for elem1 in itertools.combinations(idx, len(idx) - 1 - i):
102 for elem2 in itertools.combinations(idx_temp, i + 1):
103 neighbors.append(list(set(elem1) | set(elem2)))
104

105 for elem in neighbors:
106 x_elem = np.zeros(N)
107 x_elem[list(elem)] = theta_l
108 if list(x_elem) in buffer:
109 continue
110 if calls >= max_calls:
111 stop = True
112 break
113

114 s_elem = Influence_evaluation(g, W, x_elem, params)[0]
115 buffer.append(list(x_elem))
116 calls += 1
117 print("\r" + "Nonmonotone Neighbors search... {}/{}. ETA: {}

s.".format(calls, max_calls,
round((time.time()-start)*((max_calls-calls)/calls))),
end = "")

Listing 4.13: NM_NS_solver Function additional SEARCH STEP

38

119 if s_elem > s_ref:
120 queue = insert(queue, n, s_elem)
121 X.append(x_elem)
122 s.append(s_elem)
123 if s_elem > s_out:
124 s_out = s_elem
125 history.append([s_elem,calls])
126 found = True
127 break
128

129 stop = True
130

131 x_out = X[s.index(s_out)]
132 history.append([s_out, calls])
133

134 s.append(s_out)
135 X.append(x_out)
136

137 print("\r" + "Nonmonotone Neighbors search... {}/{} Done!".format(calls,
max_calls))

138 print("s: {}".format(s[-1]))
139

140 return s, X, history

Listing 4.14: NM_NS_solver Function Termination Check and Output

39

4.2.4 OtherMethods
In this section, we introduce the implementation of two additional algorithms employed as utility tools during
our testing procedures.

Listing 4.15 showcases the code for the Brute Force algorithm designed for the Influence Maximization (IM)
problem. Notably, the brute_force_ranker function not only executes the aforementioned method but also
generates a list containing the ranking of all points. This feature proved invaluable, particularly for smaller-scale
problems, as it offered insights into the quality of solutions produced by our direct search methods.

On theother hand, Listing 4.16presents the code for theRS solver. TheRS_solver function closely resembles
a simplified SEARCHstep of theCDSmethod,with the primary distinctionbeing the random selection of points
for evaluation.

1 def brute_force_ranker(g, W, params, K):
2 N = len(g.nodes)
3 combinations = itertools.combinations(range(N), K)
4 s = []
5 X = []
6 for elem in combinations:
7 x_temp = np.zeros(N)
8 x_temp[list(elem)] = params[2]
9 s.append(Influence_evaluation(g, W, x_temp, params)[0])
10

11 indices = list(range(len(s)))
12 indices.sort(key=lambda x: s[x], reverse=True)
13 rankings = [0] * len(indices)
14 for i, x in enumerate(indices):
15 rankings[x] = i+1
16

17 return s, rankings

Listing 4.15: brute_force_ranker Function

40

1 def RS_solver(g, W, params, K, max_calls):
2 N = len(g.nodes)
3 calls = 0
4 s = 0
5 history = []
6 start = time.time()
7

8 while calls < max_calls:
9 x_temp = rand_bin_array(K, N, params[2])
10 s_temp = Influence_evaluation(g, W, x_temp, params)[0]
11 calls += 1
12 print("\r" + "Random search... {}/{}. ETA: {} s.".format(calls,

max_calls,
round((time.time()-start)*((max_calls-calls)/calls))), end = "")

13

14 if s_temp > s:
15 s = s_temp
16 X = x_temp
17 history.append([s, calls])
18

19 history.append([s, calls])
20

21 print("\r" + "Random search... {}/{} Done!".format(calls, max_calls))
22 print("s: {}".format(s))
23

24 return s, X, history

Listing 4.16: RS_solver Function

41

42

5
Results

In this chapter, we delve into a series of numerical experiments to assess the methods examined in the preceding
chapter.

We start in Section 5.1 with a concise numerical analysis of the computational cost associated with the GIP
model function call. This analysis holds great importance as the GIP function is the central subroutine for each
of the methods under consideration.

Subsequently, in Section 5.2, we introduce a collection of artificially generated graphs thatwill serve as the basis
for our experiments.

Preceding the actual numerical experiments, we explore the concept of data profiles in Section 5.3, a pivotal
metric for comparing various derivative-free optimization methods.

Finally, Section 5.4 presents the empirical results of our experiments, including a comparative assessment of
the methods across different values of the budget parameterK, a critical determinant of the complexity of the IM
problem.

Throughout this chapter, we consistently employ the following parameters for the GIP propagation model:

• l0 = 1

• h0 = 1

• θl = 1

• θh = 1000

• γ = 0

• ε = 0.1

43

While for the Direct SearchMethods we used the following parameters:

• ζ = 0.1

• δ = 0.5

• d = 2

• n = 4

• n_dim = 4

• max_calls = 5000

• buffer_dim = 500

5.1 GIPModel Function
In this section, we analyze the complexity analysis of the GIP model function. This analysis is of paramount
significance for our experiments, given that, as we will demonstrate, a substantial portion of the computational
burden within our direct search methods is attributed to this function call.

As previously discussed in Chapter 2, the time complexity for calculating the total influence generated is
O(|E|t). Notably, for the scale of our experiments and due to our fixed parameter ε, we treat the value of t as
constant. Consequently, we can approximate the computational complexity of calculating the total influence for
a solution point as quadratic in relation to the total number of nodes. This hypothesis is empirically confirmed
by the observations presented in Figure 5.1.As we can see, the blue line representing the observed data can be well
approximated by a quadratic formula, as highlighted by the dotted orange line.

This plot was generated by calculating the average time consumed by the influence_evaluation function
across numerous random points. For each step of 100 nodes increment in graph dimension, we employed 4 dif-
ferent graphs and considered 40 points for every graph, ensuring more robust and reliable statistical insights.

44

Figure 5.1: The blue line represents the observed cost of GIP calls, while the dotted orange line represents a fitted
quadratic function.

5.2 GeneratedNetworks

In this section, we present a collection of artificially generated networks utilized for conducting numerical ex-
periments on the three direct search methods outlined in this thesis. These networks were generated using the
Stochastic Block Model (SBM), a model specifically designed to capture the inherent structure of complex net-
works. The SBM partitions nodes into distinct groups or ”blocks” and defines connection probabilities between
nodes based on their block assignments. This model assumes that nodes within the same block exhibit similar
connectivity patterns, while nodes from different blocks have varying connection probabilities. Key parameters
include the number of blocks, block sizes, and edge probabilities conditioned on block assignments.

For our numerical experiments, we aimed to maintain consistent characteristics across the generated network
dataset, as we later vary the budget value, significantly impacting problem scale. Consequently, we focused on
networks composed of two distinct blocks or communities. To construct these networks, we initially selected five
different sizes for the first block. Subsequently, for each of these chosen first block sizes, we selected second block
sizes that spanned four distinct scales relative to their corresponding first block sizes. This approach enables the
creation of networks with diverse block structures, facilitating comprehensive analysis. For each pair of size values,
we randomly generated a symmetric probabilitymatrix. Additionally, we imposed the constraint that the diagonal
elements of these probability matrices have higher values than the off-diagonal elements. This constraint mirrors

45

real social graphs where individuals within the same community tend to have stronger connections compared to
those in different communities. Additionally, it is worth mentioning that we standardized the connection weight
to a uniform value of 0.1.

The complete list of generated graphs is detailed in Table 5.1. We selected dimensions for the first block as 50,
100, 150, 200, and 250. For the ratio between the two block sizes, we used values of 1, 5/6, 2/3, and 1/2. To
ensure the total number of nodes is an integer, we rounded the second block sizes to the nearest whole number.
Therefore, in the table, we provide only approximate ratios. Moreover, in Figure 5.2, we can see an example of a
network used in our test. In particular, it represents Problem 16, which has the smallest number of total nodes.

Table 5.1: List of Problems

Probem ID First Block Size Second Block Size Approximate Ratio

1 50 50 1
2 100 100 1
3 150 150 1
4 200 200 1
5 250 250 1
6 50 41 0.83
7 100 83 0.83
8 150 125 0.83
9 200 166 0.83
10 250 208 0.83
11 50 33 0.67
12 100 66 0.67
13 150 100 0.67
14 200 133 0.67
15 250 166 0.67
16 50 25 0.5
17 100 50 0.5
18 150 75 0.5
19 200 100 0.5
20 250 125 0.5

46

Figure 5.2: Representation of the problem 16 network using the NetworkX library

5.3 Data Profiling

In this section, we introduce the crucial data profile metric, which holds significant importance when working
with derivative-free methods like the ones presented in this thesis. For a more comprehensive explanation, please
refer to [16].

Users conducting costly function evaluations often require a convergence test that quantifies the increase in
function value. We propose the following convergence test:

f(x)− f(x0) ≥ (1− τ)(fL − f(x0)) (5.1)

In this test, τ > 0 represents a user-defined tolerance, x0 denotes the initial starting point for the problem, and
fL is calculated individually for eachproblem. fL corresponds to the highest value of f achieved by any solverwithin
a specified number μf of function evaluations. This convergence test is particularly well-suited for derivative-free
optimizationmethods due to its scale-invariant nature. It evaluates the increase in the function value f(x)− f(x0)

47

achieved by the point x relative to the best possible increase fL − f(x0).
We define the data profile of a solver s ∈ S as follows:

ds(α) =
1
|P|

size
{
p ∈ P :

tp,s
np + 1

≤ α
}

(5.2)

In this definition, |P| represents the number of problems, np is the number of variables in problem p ∈ P,
and tp,s is the number of function evaluations required to satisfy equation (5.1) for a given tolerance τ. With this
scaling, the unit of cost is np + 1 function evaluations. This unit is convenient and can be readily converted into
function evaluations. Furthermore, it allows us to interpret ds(α) as the percentage of problems that can be solved
with the equivalent of α function estimates.

5.4 Numerical Experiments
In this section, we present the results of our numerical experiments comparing the three direct search methods
implemented in this thesis: the Custom Direct Search method, the Neighbors Search method, and the Non-
monotone Neighbors Search method. We also include the results of the Random Search method as a baseline for
comparison.

It is essential to emphasize the pivotal role of the budget parameter, denoted as K, in the scalability of the
problem. The number of possible points to be evaluated, given a budget K, grows exponentially with both the
number of nodes n and the budget itself. In practical applications, n is typically fixed by the nature of the real
network under observation, whileK allows some flexibility.

Our experiments encompass three different budget values: 2, 3, and 4. For each budget value, we conducted
tests following a standardized pipeline:

1. We selected a commonmaximum number of function calls.

2. We evaluated the performance of each method on every problem in the dataset.

3. For each problem, we recorded the history of improvements concerning the number of function calls for
each method, storing this information in a matrix.

4. We aggregated the results from all problems into a single tensor.

5. We computed the data profile on the aggregated results using various gate values.

In the following pages, we present the results of our tests, beginning with an examination of the problem set
withbudgetK = 2. This set is the simplest among all the sets considered. FromImages 5.3,5.4 and5.5, it is evident
that both theNS andNMNSmethods outperformed the CDSmethod, albeit in different ways. Notably, theNS
method consistently exhibits quicker convergence to a good solution, typically aligningwith the solution obtained
by the CDS method. Conversely, the NMNS method, owing to its nonmonotone nature, initially progresses
more slowly. However, with sufficient function calls, it tends to uncover better solutions. A specific instance
of this behavior is evident in Image 5.3, where the NS and CDS methods converge to the same point, with the
NS method demonstrating faster convergence than the CDS. On the other hand, the NMNS method, after an
initially slower start, surpasses both of the previous methods. It is important to emphasize that this first set of

48

problems is relatively simple for all the methods. This observation becomes apparent when we consider Image
5.5, where, with a low tolerance setting, even the straightforward RSmethod demonstrates results comparable to
the other direct search methods.

However, the situation changes when considering a budget of k = 3, as evident from Images 5.6,5.7 and 5.8.
While theNSmethod continues to outperform theCDSmethod, this difference becomes evenmore pronounced
in this more complex set of problems. Conversely, the NMNSmethod struggles to maintain performance similar
to the CDSmethod but still achieves comparable results.

This trend is further confirmed in the last andmost challenging set of problems, those with a budget ofK = 4.
As seen in Images 5.9,5.10 and 5.11, the NS method clearly outperforms the CDS method. Specifically, Image
5.9 demonstrates that the NSmethod consistently finds solutions that are generally superior to those of the CDS
method. This can be attributed to the fact that both methods do not completely converge on all problems using
only 5000 function calls, highlighting the NS method’s faster convergence. However, the NMNS method per-
forms poorly and, as shown in Image 5.11, almost as bad as theRSmethod in finding average solutions. This could
be due to two primary reasons: first, the method may not have enough function calls to effectively exploit non-
monotonicity, and second, when increasing the value of the budget K, the enriched search step may not explore
sufficiently meaningful points.

49

Figure 5.3: Data Profile for k = 2 and tolerance τ = 0.99

50

Figure 5.4: Data Profile for k = 2 and tolerance τ = 0.95

51

Figure 5.5: Data Profile for k = 2 and tolerance τ = 0.90

52

Figure 5.6: Data Profile for k = 3 and tolerance τ = 0.99

53

Figure 5.7: Data Profile for k = 3 and tolerance τ = 0.95

54

Figure 5.8: Data Profile for k = 3 and tolerance τ = 0.90

55

Figure 5.9: Data Profile for k = 4 and tolerance τ = 0.99

56

Figure 5.10: Data Profile for k = 4 and tolerance τ = 0.95

57

Figure 5.11: Data Profile for k = 4 and tolerance τ = 0.90

58

6
Conclusion

In conclusion, this thesis explored the challenging domain of InfluenceMaximization, a problem centered around
optimizing influence functions within network structures. Networks serve as invaluable tools for comprehend-
ing complex systems, making the IM problem highly pertinent across various domains, ranging from marketing
strategies to public health interventions.

The primary objective of this thesis was to introduce and implement novel direct search methods tailored to
the IM problem, building upon the well-established CDSmethod. These new algorithms, NS and NMNS, were
designed to address the inherent limitations of existingmethods by incorporating network structure into the opti-
mization process. This marks a significant departure from traditional approaches, where network characteristics
are often disregarded.

Our empirical experiments, providedvaluable insights into theperformanceof thesemethods. TheNSmethod
demonstrated consistent superiority over theCDSmethod in terms of convergence speed, showcasing its potential
for solving IM problems more efficiently. Moreover, the NMNS method, with its nonmonotone nature, exhib-
ited a unique ability to uncover superior solutions with increased computational resources, although it struggled
to match the CDSmethod in some cases.

It is crucial to note that these initial findings indicate promising directions for future research. The field of
direct search methods for IM problems remains relatively uncharted, and our work opens doors for further ex-
ploration, particularly in handling larger budgets and more complex network structures. Moreover, the NMNS
method, in particular, has revealed substantial untapped potential. Its performance, especially on larger budgets,
presents a compelling area for further enhancement. One focal point for future research should concentrate on
refining the Enriched SEARCHstep, as it holds the key to unleashing themethod’s full capabilities. Furthermore,
it is imperative to extend the scope of numerical experiments by incorporating more intricate network structures,
aswell as transitioning into real-world network scenarios. This expansionwill not only validate the applicability of
the proposedmethods in practical settings but also shed light on their performance in the face of the complexities
inherent in real-world data.

59

In summary, this thesis represents a significant advancement in the realm of IM problem-solving by introduc-
ingnovelmethods that account fornetwork structure. While the results are promising, they are only thebeginning
of a broader journey to enhance the efficiency and effectiveness of IM problem solutions. Future research should
build upon these foundations, ultimately contributing to more impactful decision-making in various real-world
applications.

60

References

[1] Y. Tian and R. Lambiotte, “Unifying diffusion models on networks and their influence maximisation,”
CoRR, vol. abs/2112.01465, 2021. [Online]. Available: https://arxiv.org/abs/2112.01465

[2] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence through a social network,”
in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’03. New York, NY, USA: Association for ComputingMachinery, 2003, p. 137–146.
[Online]. Available: https://doi.org/10.1145/956750.956769

[3] P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo, “The independent cascade and linear
threshold models,” 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:123320083

[4] E.Mossel and S. Roch, “On the submodularity of influence in social networks,” 2006. [Online]. Available:
https://api.semanticscholar.org/CorpusID:401879

[5] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. Vanbriesen, and N. S. Glance, “Cost-effective
outbreak detection in networks,” in Knowledge Discovery and Data Mining, 2007. [Online]. Available:
https://api.semanticscholar.org/CorpusID:850930

[6] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “Celf++: optimizing the greedy algorithm for influence
maximization in social networks,” Proceedings of the 20th international conference companion on World
wide web, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:3460004

[7] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social influence in nearly optimal time,”
2016.

[8] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in social networks under the linear
threshold model,” 2010 IEEE International Conference on Data Mining, pp. 88–97, 2010. [Online].
Available: https://api.semanticscholar.org/CorpusID:14294472

[9] E. D. Demaine, M. Hajiaghayi, H.Mahini, D. L. Malec, S. Raghavan, A. Sawant, andM. Zadimoghadam,
“How to influence people with partial incentives,” in Proceedings of the 23rd International Conference on
WorldWideWeb, ser. WWW ’14. New York, NY, USA: Association for Computing Machinery, 2014,
p. 937–948. [Online]. Available: https://doi.org/10.1145/2566486.2568039

[10] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, “Mesh adaptive direct search algorithms
for mixed variable optimization,” Optimization Letters, vol. 3, pp. 35–47, 2007. [Online]. Available:
https://api.semanticscholar.org/CorpusID:18400572

[11] C. Audet, S. L. Digabel, V. R. Montplaisir, and C. Tribes, “Nomad version 4: Nonlinear optimization
with the mads algorithm,” 2021.

61

https://arxiv.org/abs/2112.01465
https://doi.org/10.1145/956750.956769
https://api.semanticscholar.org/CorpusID:123320083
https://api.semanticscholar.org/CorpusID:401879
https://api.semanticscholar.org/CorpusID:850930
https://api.semanticscholar.org/CorpusID:3460004
https://api.semanticscholar.org/CorpusID:14294472
https://doi.org/10.1145/2566486.2568039
https://api.semanticscholar.org/CorpusID:18400572

[12] S. Le Digabel, “Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm,” ACMTrans.
Math. Softw., vol. 37, no. 4, feb 2011. [Online]. Available: https://doi.org/10.1145/1916461.1916468

[13] M. Laguna, F. Gortázar,M.Gallego, A.Duarte, andR.Martí, “A black-box scatter search for optimization
problems with integer variables,” Journal of Global Optimization, vol. 58, pp. 497–516, 2014. [Online].
Available: https://api.semanticscholar.org/CorpusID:17421991

[14] G. Liuzzi, S. Lucidi, and F. Rinaldi, “An algorithmic framework based on primitive directions and non-
monotone line searches for black-box optimization problems with integer variables,”Mathematical Pro-
gramming Computation, vol. 12, pp. 1–30, 02 2020.

[15] M. Locatelli and F. Schoen,Global optimization: theory, algorithms, and applications. SIAM, 2013.

[16] J.Moré andS.Wild, “Benchmarkingderivative-free optimization algorithms,” SIAMJournal onOptimiza-
tion, vol. 20, pp. 172–191, 01 2009.

62

https://doi.org/10.1145/1916461.1916468
https://api.semanticscholar.org/CorpusID:17421991

	Abstract
	Listing of acronyms
	Introduction
	Related works
	Information propagation models
	The classic models
	Extending the classic models
	General class of information propagation model
	Unifying Features of the GIP Model

	Influence Maximization
	Introduction
	General solution methods
	Special Cases
	Problem Formulation

	Methods
	Customized Direct Search
	Neighbors Search
	Nonmonotone Neighbors Search
	Other Methods

	Implementation
	Propagation Model
	Methods
	Customized Direct Search
	Neighbors Search
	Nonmonotone Neighbors Search
	Other Methods

	Results
	GIP Model Function
	Generated Networks
	Data Profiling
	Numerical Experiments

	Conclusion
	References

