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Abstract

Word embeddings are vectorial representation of words with the goal of preserving semantic
similarity. They are the state-of-the-art representations ofmachine learning algorithms applied
to natural language. They are the result of specific learning algorithms trained on usually large
corpora. Consequently, they inherit all biases of the corpora on which they have been trained
on. The goal of the project is to devise an efficient algorithm to compare two different word
embeddings in order to automatically highlight the biases they are subjected to. Specifically,
we look for an alignment between the two vector spaces, corresponding to the two word em-
beddings, that minimises the difference between the stable words, i.e. the ones that have not
changed in the two embeddings, thus highlighting the differences between the ones that did
changed. In this work, we provide an efficient implementation to run the alignment algorithm
over multiple cores in aHPC framework, specifically using SLURM and then we test our tech-
nique on a corpus of text taken from Italian newspapers in order to automatically identify
which words are more subject to change among the different pairs of corpora.
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Introduction

In the pursuit of harnessing the power of word embeddings for natural language processing,
this thesis has explored a critical and urgent concern: the pervasive biases that sometimes can
hide in the very foundations of these linguistic representations. It has become evident fromour
research thatwhileword embeddings stand as formidable tools, they are far from impervious to
the biases entrenched within the corpora upon which they are forged. Our primary objective
throughout this project has been to craft an effective algorithm capable of scrutinizing and un-
covering these biases by aligning the vector spaces of distinct word embeddings. As we navigate
through the outcomes of ourmethod, applied to real-world data sources like newspaper articles
in Italian. Our experiments are aimed at searching for gender, racial and political bias in Italian
newspapers. Various Italian newspaper sources were considered, including openly right-wing
or left-wing sources. The results do not alwaysmirror our initial expectations as experimenters,
leaving us to confront a complex interplay of factors. These factors span from the subjective
categorization of newspapers as either left or right-leaning, to the precise selection of words
under scrutiny. This intricacy underscores the multifaceted nature of bias in natural language,
demanding nuanced approaches for its detection and mitigation. Within the realm of the Ital-
ian language, our study offers a compelling glimpse into the differential susceptibility of certain
words to bias. Through the scrutiny of embeddings across various corpora, we identify words
like ’negro,’ ’africano,’ and ’schiavo’ as striking examples. In right-leaning newspapers, these
words exhibit pronounced discriminatory associations, while their left-leaning counterparts
showcase a conscious avoidance of such biased terminology. In our commitment to advancing
the field and fostering transparency, we have laid the foundation for future research endeavors.
We introduce the ‘Bias On Newspapers’ (BONs), a shared and open-source GitHub reposi-
tory. This repository serves as a valuable resource for the meticulous analysis of bias within
monolingual texts, the alignment of embeddings through the use of the MUSE library, and
the replication of similar experiments in diverse linguistic contexts. However, it is crucial to
acknowledge the intricate nature of our alignment algorithm, adapted from linear program-
ming. While we had anticipated more straightforward alignment results for words commonly
associated with bias, various factors have introduced complexity into the process. These in-
clude potential misclassifications of texts as left or right-leaning, the constraints imposed by
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the limited resulting vocabulary (comprising approximately 4300 words), and the underlying
intricacies inherent in bias detection. As we chart the course for future investigations, several
avenues beckon us. Expanding the scope of our inquiry to encompass a broader spectrum of
words promises a more comprehensive grasp of bias in diverse contexts. The exploration of al-
ternative similarity measures, such as CSLS, holds the potential to yieldmore nuanced insights
into bias detection, mitigating some of the limitations inherent in cosine similarity.

Moreover, it is imperative that we subject Italian embeddings to rigorous evaluation against
establishedbenchmarks and assess their performance across a spectrumof linguistic tasks. Such
a rigorous evaluation not only serves to validate the efficacy of our alignment algorithmbut also
extends its applicability to a multitude of languages and contexts.

In summation, this thesis stands as a contribution to the ongoing discourse surrounding bias
within word embeddings. While challenges persist in refining and enhancing the alignment
process, our research represents a critical stride towards the creation of fairer and more equi-
table AI systems. It is a testament to the enduring commitment to unraveling the intricacies of
bias in language and fostering a future where technology and language coexist harmoniously.
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1
Word Embeddings: A Deep Dive into

Semantic Representations

The term word embedding denotes the vectorial representation of words made up of particu-
larly dense vectors. This expression is widely used in the field of NLP. Mathematically [5], it
can be seen as a mapping e from a set ofN words also called a vocabularyD = {wi}i=i,...N , to
a d-dimensional vector space V = {w⃗i}i=i,...N .

e : D
w 7→e(w)=w⃗
−−−−−−→ V (1.1)

As a result,V ∼= R
d, whered can takedifferent values: themost commonare 50,100,200,300.

Usually,V ∼= R
300, since 300 is themost commonly used dimensionality in various studies [6].

Word embeddings are built on vector semantics create a bridge between two situations that
look different: words and vectors. It is worth mentioning that the idea of embedding words
into a vector space is not recent, as shown in the paper [7] of 1973 where a group of cognitive
psychologists proposed a theory of analogical reasoning in which the elements of a set of con-
cepts, e.g., animals, are represented as points in amultidimensional Euclidean space. They then
empirically tested it on human beings evaluating the validity of the model. In recent years, due
to the availability of data and the improvement of computational resources, an efficient algo-
rithm was proposed in order create this representation of word starting from digitally written
text.
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1.1 Text Representations and Lexical Ambiguity

Text Representations To understand text, the starting point is learning its representations.
Leveraging the existing text sequences from large corpora, self-supervised learning has been ex-
tensively used to pretrain text representations. One of the aimswas to predict some hidden part
of the text using some other part of their surrounding text. In this way, models learn through
supervision from massive text data without expensive labeling efforts. All this theoretical idea
has its roots in the distributional hypothesis which will be inquired in section 1.2. As we will
see, when treating each word or subword as an individual token, the representation of each
token can be pretrained using embedding algorithms such as: word2vec, GloVe, or subword
embeddingmodels (fastText). After pre-training, the representation of each token is encrypted
in a vector, however, it remains the same no matter what the context is. For example, the vec-
tor representation of ‘bank’ is the same in both ‘go to the bank to deposit some money’ and
‘go to the bank to sit down’ [8]. Thus, many more recent pre-training models adapt the rep-
resentation of the same token to different contexts. Among them there are GPT and BERT,
much deeper self-supervised models based on the Transformer encoder, however these models
will not be take into account in our work. In this chapter, we will focus on how to pre-train
such representations for text, as highlighted in figure 1.1. Before going on, it is important to
highlight some terminology.
Lexical Ambiguity refers to the property of aword or phrase havingmultiple possiblemean-

ings or interpretations. It encompasses the broader concept of words or phrases being associ-
ated with more than one distinct meaning, whether due to homonymy (same form, different
meaning), polysemy (relatedmeanings), homophony (same sound, differentmeaning), or homog-
raphy (same spelling, different meaning). These linguistic phenomena elucidate the inherent
complexity and multifaceted nature of language. Since all these language nuances are relevant
to our analysis, we recap briefly their linguistic definitions with the help of examples [9].
Homonyms are words which are either homographs or homophones, or both. Using this def-

inition, the words row (propel with oars), row (a linear arrangement) and row (an argument)
are homonyms because they are homographs (though only the first two are homophones): so
are the words see (vision) and sea (body of water), because they are homophones (though not
homographs). These homonymous instances underscore the importance of context in distin-
guishing between divergent meanings.
Polysemes are words with the same spelling and distinct but related meanings. The distinc-

tion between polysemy and homonymy is often subtle and subjective, and not all sources con-
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sider polysemous words to be homonyms. Words such as mouth, meaning either the orifice on
one’s face or the opening of a cave or river, are polysemous and may or may not be considered
homonyms. Polysemy and homonymy are traditionally described in the context of paradig-
matic lexical relations. Unlike monosemy, in which one meaning is associated with one form,
and unlike synonymy, in which one meaning is associated with several forms, in polysemy and
homonymy several meanings are associated with one form.

It is essential to acknowledge that certain lexical itemsmay exhibit an amalgamation of these
linguistic phenomena, as their usage and context interplay to confer distinct meanings.

1.2 The Distributional Hypothesis and

The distributional hypothesis is an idea coming from the research field of distributional se-
mantics which is a part of linguistic. Distributional semantics develops and studies theories
and methods for quantifying and categorizing semantic similarities between linguistic items
based on their distributional properties in large samples of language data. The distributional
hypothesis can be sum up to the fact that: ‘words that are used and occur in the same contexts
tend to purport similarmeanings’ [10]. J. R. Firth was one of the firsts drawing attention to the
context-dependent nature ofmeaningwith his notion of ‘context of situation’, and hiswork on
collocational meaning is widely acknowledged in the field of distributional semantics. In par-
ticular, he is known for the famous quotation: ‘You shall know aword by the company it keeps’
[11]. This hypothesis underlies the architectures of the models used to describe, classify and
generate ‘human language’. Oneof thefirstmodels taking inspiration from this hypothesis, but
usedwhen the embedding techniquewas not still spread, is theN-Grammodel which estimate
the probability of the last word of a phrase/expression given the previous words, and also to
assign probabilities to entire sequences. These models that assign probabilities to sequences of
words are called language models or LMs [12]. Another fundamental idea underpinningNLP
models that increases the scope of the distributional hypothesis is the monolingual invariance.
Monolingual Invariance, indeed, is the hypothesis that certain NLP models or techniques

shouldwork consistently and effectively across differentmonolingual languages. Inotherwords,
it’s the concept that the performance or behavior of anNLP system should remain relatively sta-
ble and reliable when applied to different languages individually, without requiring language-
specific tuning or customization. As we will see in 2, there are some constraints in order to
preserve monolingual invariance while stretching the embeddings during the translation.
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1.3 TheWord2vec Algorithm

Natural language is a complex systemused to expressmeanings. In this system,words are the ba-
sic unit of the meaning. As the name implies, word vectors are vectors used to represent words,
and can also be considered as feature vectors or representations of words. The technique of
mapping words to real vectors is called word embedding. In recent years, word embedding has
gradually become the basic knowledge of natural language processing. Now we focus specifi-
cally on the so-called pre-trained text representations, as shown in Figure 1.1 andwe analyze the
technical details of theword2vec algorithm. The resulting embeddings can be fed to a variety of
deep learning architectures for different downstream natural language processing applications.
In the big picture of NLP applications, we are now focusing on the pre-training part.

Figure 1.1: How pre‐trained text representations can be fed to various deep learning architectures for different downstream
natural language processing applications, taken from [8]

WhyOne-Hot Vectors Are a Bad Choice

The idea of encapsulating wordmeaning into vectors was initially proposed in the form of one-
hot encoding. A one-hot encoding is a vectorwhose length is given by the size of the vocabulary
N , where all entries are set to zero, except for the entry corresponding to our token, which is set
to one. In this way one-hot vectors represent words and characters are words. Tomake it more
concrete, suppose that the number of different words in the dictionary (the dictionary size) is
N , and each word corresponds to a different integer (index) from 0 toN − 1. To obtain the
one-hot vector representation for any word with index i, we create a lengthN vector with all
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zeros and set the element at position i to one. In this way, each word is represented as a vector
of lengthN .

Although one-hot word vectors are easy to construct, they are usually not a good choice. A
main reason is that one-hot word vectors cannot accurately express the similarity between dif-
ferent words, as the cosine similarity does. Since the cosine similarity between one-hot vectors
of any two different words is 0, one-hot vectors cannot encode similarities among words. This
fundamental property of the embeddings is further discussed in the next section 1.3.1.

1.3.1 Semantic and Syntactic Properties of Embeddings

Cosine SimilarityMeasure In a vector space, beyond the usual euclidean distance, it is possible
to define the measure of cosine similarity, which, based on the way we compute word embed-
dings (see Eq. 1.4), highlights both the distributional and the semantic similarity between two
vectors. Let wt, wc ∈ D be two words and let u, v ∈ V be the corresponding vectors. The
cosine similarity between u and v is the cosine of the angle between the vectors, and it can be
computed as:

cos(u, v) =
u · v

∥u∥2∥v∥2
∈ [−1, 1] (1.2)

When two words are similar, the cosine is larger, which implies that the angle between them
is smaller. For example, considering a pre-trained embedding given by 50-dimensional GloVe
word vectors taken from [4] we have that:

cos(
−−−→
father ,

−−−−−→
mother ) = 0.89

cos(
−−→
ball ,

−−−−−−→
crocodile ) = 0.27

Indeed, the words father and mother are semantically more similar than ball and crocodile.
Analogy is another semantic property of embeddings worth mentioning which is able to

capture relational meanings. In the seminal work ‘AModel for Analogical Reasoning’ [7], pre-
viously cited byRumelhart andAbrahamson, it is also shown that sets of concepts, represented
by points in a multidimensional Euclidean space, can be related by analogical relationships.
These analogies can be solved using the parallelogram model through simple vectorial opera-
tions. In more recent times, this model is applied to pretrained embeddings as word2vec [3]
or GloVe vectors [4] and turned out to be very effective in bringing out relations of different
nature among words.
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Definition If we consider three words a, b, c the analogy is defined as a : b = c : x ( a is to
b as c is to x ) where the analogy’s solution x is computed solving:

argminx d(x⃗, b⃗− a⃗+ c⃗) (1.3)

where d is a distance [12]. Given the optimal result for d, we can also write b⃗ − a⃗ + c⃗ ≈ x⃗.
Let us consider again the pretrained word embedding given by 50-dimensional GloVe word
vectors. We can observe:

−−−−−→woman −−−→man +−−→son ≈
−−−−−−→
daughter

The analogy in this case captures the semantic relation of the pair (man, woman) which is of
the type (male, female), and transposes it on new words.

−−−−→
China −

−−−−→
Beijing +

−−−−→
Tokyo ≈ −−−→Japan

Now, the semantic relation represented by this operation is of the type (country, capital).

−−−→worst −
−→
bad+

−→
big ≈

−−−−→
biggest

On the other hand, in this last example, it is possible to observe the interpolationof the syntactic
relation of the type (basic form, superlative).

This property is particularly useful in many applications related to text bias and debiasing
techniques. Bolukbasi et al. in [13] show that using word embeddings for simple analogies
surfaces many gender stereotypes. For example, the word embedding they use, word2vec em-
bedding trained on the Google News dataset, answer the analogy: ‘man is to computer pro-
grammer as woman is to x’ with ‘x = homemaker’. However, they also introduced a metric
(Eq. 3.1) to evaluate bias when identifying the gender subspace. Caliskan et al. further demon-
strate association between female/male names and groups of words stereotypically assigned to
females/males (e.g. arts vs. science).[14].

The scope of our word will be to analyse bias in language (c.f. 3), therefore debiasing tech-
niques will not be investigated.
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1.3.2 Self-Supervised word2vec

The word2vec tool was proposed to express the similarity among different words. This tech-
nique maps each word to a fixed length vector, and these vectors can better express the similar-
ity and analogy relationship among different words. The word2vec tool contains two models,
namely skip-gram and continuous bag of words (CBOW) [3]. For semantically meaningful
representations, their training relies on conditional probabilities that can be viewed as predict-
ing some words using some of their surrounding words in corpora following the intuition of
the distributional hypothesis. Since supervision comes from the data without labels, both skip-
gram and continuous bag of words are self-supervised models. This algorithm surpasses, in
terms of efficiency and semantic/syntactic accuracy, other previous methodologies such as the
neural network languagemodel (NNLM), the Latent Semantic Analysis (LSA) and the Latent
Dirichlet Allocation (LDA) [3]. From now on we will say that word vectors are a parametriza-
tion for text words.

In the following two models and their training methods are introduced.

1.3.3 The Skip-GramModel

The skip-gram model assumes that a word can be used to generate its surrounding words in a
text sequence. Take the text sequence ‘the’, ‘man’, ‘loves’, ‘his’, ‘son’ as an example. Choosing
‘loves’ as the center word and set the context window hyperparameter size to 2. As shown in
figure 1.2, given the center word ‘loves’, the skip-gram model considers the conditional prob-
ability for generating the context words: ‘the’, ‘man’, ‘his’, and ‘son’, which are no more than
two words away from the center word:

P ( ‘the’, ‘man’, ‘his’, ‘son’ | ‘loves’).

Assuming that the context words are independently generated given the center word (i.e.,
conditional independence). In this case, the above conditional probability can be rewritten as

P ( ‘the’ | ‘loves’ ) · P ( ‘man’ | ‘loves’) · P ( ‘his’ | ‘loves’ ) · P ( ‘son’ | ‘loves’).

In the skip-gram model, each word has two d-dimensional-vector representations for calcu-
lating conditional probabilities. More concretely, for any word with index i in the dictionary,
denote byvi ∈ R

d andui ∈ R
d its two vectors when used as a center word and a context word,

respectively. The conditional probability of generating any context word wo (with index o in

9



Figure 1.2: Graphical example of the skip‐gram model, taken from [8]

the dictionary) given the center word wc (with index c in the dictionary) can be modeled by a
softmax operation on vector dot products:

P (wo | wc) =
exp

(

u
⊤
o vc

)

∑

i∈V exp
(

u⊤
i vc

) (1.4)

where the vocabulary index set is V = {0, 1, . . . , |V| − 1}. Given a text sequence of length
T the word at time step t is denoted as w(t). For context window of size m, the likelihood
function of the skip-gram model is the probability of generating all context words given any
center word and assuming that context words are independently generated given any center
word we have:

T
∏

t=1

∏

−m≤j≤m,j 6=0

P
(

w(t+j) | w(t)
)

(1.5)

where any time step that is less than 1 or greater than T can be omitted.
Training The skip-gram model parameters are the center word vector and context word

vector for each word in the vocabulary. In training,the model parameters are learnt by max-
imizing the likelihood function (i.e., maximum likelihood estimation). This is equivalent to
minimizing the following loss function:

−

T
∑

t=1

∑

−m≤j≤m,j 6=0

logP
(

w(t+j) | w(t)
)

(1.6)

Optimization techniques like stochastic gradient descent can be used to minimize the loss
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and update the model parameters. The gradients of the log conditional probability with re-
spect to the center word vector and the context word vector are calculated according to 1.4 and
obtained:

logP (wo | wc) = u
⊤
o vc − log

(

∑

i∈V

exp
(

u
⊤
i vc

)

)

(1.7)

Through differentiation, the gradient with respect to the center word vector vC results in:

∂ logP (wo | wc)

∂vc

= uo −

∑

j∈V exp
(

u
⊤
j vc

)

uj
∑

i∈V exp
(

u⊤
i vc

)

= uo −
∑

j∈V

(

exp
(

u
⊤
j vc

)

∑

i∈V exp
(

u⊤
i vc

)

)

uj

= uo −
∑

j∈V

P (wj | wc)uj.

(1.8)

This calculations requires the conditional probabilities of all words in the dictionary with
wc as the center word. The gradients for the other word vectors can be obtained in the same
way.

After training, for any word with index i in the dictionary, we obtain both word vectors
vi (as the center word) and ui (as the context word). In NLP applications, the center word
vectors of the skip-gram model are typically used as the word representations. To sum up the
skip-gram model considers the conditional probability of generating the surrounding context
words given a center word.

1.3.4 The Continuous Bag ofWordsModel

The major difference between the skip-gram model and the CBOW is that the CBOWmodel
assumes that a center word is generated based on its surrounding context words in the text
sequence. For example, in the same text sequence ‘the’, ‘man’, ‘loves’, ‘his’, and ‘son’, with
‘loves’ as the center word and the context window size being two, the CBOWmodel considers
the conditional probability of generating the center word ‘loves’ based on the context words
‘the‘, ‘man’, ‘his’ and ‘son’ which is

P ( ‘loves’ | ‘the’, ‘man’, ‘his’, ‘son’).

11



Figure 1.3: Graphical example of CBOW model, taken from [8]

Since there are multiple context words in the CBOWmodel, these context word vectors are
averaged in the calculation of the conditional probability. Specifically, for any word with index
i in the dictionary, denote by vi ∈ R

d and ui ∈ R
d its two vectors when used as a context

word and a center word (meanings are switched in the skip-gram model), respectively. The
conditional probability of generating any center wordwc (with index c in the dictionary) given
its surrounding context words wo1 , . . . , wo2m (with index o1, . . . , o2m in the dictionary) can
be modelled by:

P (wc | wo1 , . . . , wo2m) =
exp

(

1
2m

u
⊤
c (vo1 + . . .+ vo2m)

)

∑

i∈V exp
(

1
2m

u⊤
i (vo1 + . . .+ vo2m)

) . (1.9)

For brevity, letWo = {wo1 , . . . , wo2m} and vo = (vo1 + . . .+ vo2m) /(2m) Then it re-
sults in:

P (wc | Wo) =
exp

(

u
⊤
c vo

)

∑

i∈V exp
(

u⊤
i vo

) (1.10)

Given a text sequence of length T , where the word at time step t is denoted as w(t). For
context window sizem, the likelihood function of the continuous bag of words model is the
probability of generating all center words given their context words:

T
∏

t=1

P
(

w(t) | w(t−m), . . . , w(t−1), w(t+1), . . . , w(t+m)
)

(1.11)

Training Training CBOW is almost the same as training skip-gram models. The maxi-
mum likelihood estimation of the continuous bag of words model is equivalent to minimizing
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the following loss function:

−

T
∑

t=1

logP
(

w(t) | w(t−m), . . . , w(t−1), w(t+1), . . . , w(t+m)
)

(1.12)

Notice that:

logP (wc | Wo) = u
⊤
c vo − log

(

∑

i∈V

exp
(

u
⊤
i vo

)

)

(1.13)

Through differentiation, we can obtain its gradient with respect to any context word vector
voi (i = 1, . . . , 2m) as:

∂ logP (wc | Wo)

∂voi

=
1

2m

(

uc −
∑

j∈V

exp
(

u
⊤
j vo

)

uj
∑

i∈V exp
(

u⊤
i vo

)

)

=
1

2m

(

uc −
∑

j∈V

P (wj | Wo)uj

)

.

(1.14)
The gradients for the other word vectors can be obtained in the same way. Unlike the skip-

gram model, the continuous bag of words model typically uses context word vectors as the
word representations.

1.3.5 Approximate Training

Themain idea of the skip-grammodel is using softmax operations to calculate the conditional
probability of generating a context wordwo based on the given center wordwc, Eq. (1.4). Due
to the nature of the softmax operation, since a context word may be anyone in the dictionary
V , the opposite of eq. 1.7 contains the summation of items as many as the entire size of the vo-
cabulary. Consequently, the gradient calculation for the skip-grammodel and that for the con-
tinuous bag-of-words model both contain the summation. Unfortunately, the computational
cost for such gradients that sum over a large dictionary (often with hundreds of thousands or
millions of words) is huge.

In order to reduce the aforementioned computational complexity, this sectionwill introduce
two approximate training methods: negative sampling and hierarchical softmax. Due to the
similarity between the skip-gram model and the CBOW, just the skip-gram model is taken as
an example to describe these two approximate training methods.
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Negative Sampling

Negative samplingmodifies the original objective function. Given the contextwindowof a cen-
ter wordwc, the fact that any (context) wordwo comes from this context window is considered
as an event with the probability modeled by

P (D = 1 | wc, wo) = σ
(

u
⊤
o vc

)

(1.15)

where σ uses the definition of the sigmoid:

σ(x) =
1

1 + exp(−x)
(1.16)

Let’s begin by maximizing the joint probability of all such events in text sequences to train
word embeddings. Specifically, given a text sequence of length T , denote by w(t) the word at
time step t and let the context window size be of sizem, consider maximizing the joint proba-
bility:

T
∏

t=1

∏

−m≤j≤m,j 6=0

P
(

D = 1 | w(t), w(t+j)
)

(1.17)

However, this formula only considers those events that involve positive examples. As a re-
sult, this joint probability is maximized to 1 only if all the word vectors are equal to infinity. Of
course, such results are meaningless. To make the objective function more meaningful, nega-
tive sampling adds negative examples sampled from a predefined distribution.

Denote by S the event that a context word wo comes from the context window of a cen-
ter word wc. For this event involving wo, from a predefined distribution P (w) sample K
noise words that are not from this context window. Denote byNk the event that a noise word
wk(k = 1, . . . , K) does not come from the context window of wc. If these events involving
both the positive example and negative examples S,N1, . . . , NK are mutually independent,
then negative sampling rewrites the joint probability (involving only positive examples) as:

T
∏

t=1

∏

−m≤j≤m,j 6=0

P
(

w(t+j) | w(t)
)

(1.18)

where the conditional probability is approximated through events S,N1, . . . , NK :
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P
(

w(t+j) | w(t)
)

= P
(

D = 1 | w(t), w(t+j)
)

K
∏

k=1,wk∼P (w)

P
(

D = 0 | w(t), wk

)

(1.19)

Denote by it and hk the indices of a word w(t) at time step t of a text sequence and a noise
wordwk, respectively. The logarithmic loss with respect to the previous conditional probabil-
ities is:

− logP
(

w(t+j) | w(t)
)

= − logP
(

D = 1 | w(t), w(t+j)
)

−
K
∑

k=1,wk∼P (w)

logP
(

D = 0 | w(t), wk

)

= − log σ
(

u
⊤
it+j

vit

)

−

K
∑

k=1,wk∼P (w)

log
(

1− σ
(

u
⊤
hk
vit

))

= − log σ
(

u
⊤
it+j

vit

)

−
K
∑

k=1,wk∼P (w)

log σ
(

−u⊤
hk
vit

)

.

(1.20)

We can see that now the computational cost for gradients at each training step has nothing
to do with the dictionary size, but linearly depends onK . When setting the hyperparameter
K to a smaller value, the computational cost for gradients at each training step with negative
sampling is smaller.

Hierarchical Softmax

As an alternative approximate trainingmethod, hierarchical softmaxuses the binary tree, where
each leaf node of the tree represents a word in dictionary V .

Denote byL(w) the number of nodes (including both ends) on the path from the root node
to the leaf node representingwordw in thebinary tree. Letn(w, j)be the jth nodeon this path,
with its context word vector being un(w,j). For example, L (w3) = 4 in Fig. 1.4. Hierarchical
softmax approximates the conditional probability in Eq. (1.4) as:
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Figure 1.4: Hierarchical softmax for approximate training, where each leaf node of the tree represents aword in the dictionary,
taken from [8]







P (wo | wc) =
∏L(wo)−1

j=1 σ
(

u
⊤
n(wo,j)

vc

)

if n (wo, j + 1) = leftChild [n (wo, j)]

P (wo | wc) =
∏L(wo)−1

j=1 σ
(

−u⊤
n(wo,j)

vc

)

otherwise
(1.21)

where σ is the sigmoid, and leftChild (n) is the left child node of node n.
For example calculating the conditional probability of generating word w3 given word wc

requires dot products between the word vectorvc ofwc and non-leaf node vectors on the path
(bold path in figure) from the root tow3, which is traversed left, right, then left:

P (w3 | wc) = σ
(

u
⊤
n(w3,1)

vc

)

· σ
(

−u⊤
n(w3,2)

vc

)

· σ
(

u
⊤
n(w3,3)

vc

)

(1.22)

Since σ(x) + σ(−x) = 1, it holds that the conditional probabilities of generating all the
words in dictionary V based on any word wc sum up to one:

∑

w∈V P (w | wc) = 1. Fortu-
nately, sinceL (wo)− 1 is on the order ofO (log2 |V|) due to the binary tree structure, when
the dictionary size V is huge, the computational cost for each training step using hierarchical
softmax is significantly reduced compared with that without approximate training.

1.3.6 Advantages andDisadvantages between CBOWand SG

In [6] these models are also been trained on Google News corpora. As a future reference here
are reported the results of the Skip-gram and CBOW trained descrasing linearly the learning
rate so that it approaches zero at the end of training. It is worth mentioning that training a
model on twice as much data using one epoch gives comparable or better results than iterating
over the same data for three epochs, as is shown in Table 1.1, and provides additional small
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speedup.

Model Vector
Dim.

Training
words Accuracy [%] Training

[days]
Semantic Syntactic Total

3 epoch CBOW 300 783M 15.5 53.1 36.1 1
3 epoch Skip-gram 300 783M 50.0 55.9 53.3 3
1 epoch CBOW 300 783M 13.8 49.9 33.6 0.3
1 epoch CBOW 300 1.6 B 16.1 52.6 36.1 0.6
1 epoch CBOW 600 783M 15.4 53.3 36.2 0.7
1 epoch Skip-gram 300 783M 45.6 52.2 49.2 1
1 epoch Skip-gram 300 1.6 B 52.2 55.1 53.8 2
1 epoch Skip-gram 600 783M 56.7 54.5 55.5 2.5

Table 1.1: Comparison of models trained for three epochs on the same data and models trained for one epoch. The CBOW
model was trained on subset of the Google News data. Results taken from [3]

As shown in Table 1.1 the Skip-gram produces a much higher accuracy on semantic level if
compared to the CBOW. In syntax this does not hold necessarily. Moreover Skipgram works
well with small amount of data and is found to represent rare words well. On the other hand,
CBOW is faster and has better representations for more frequent words. In every case a higher
leads to a bigger time consumption.

1.4 Word Embeddingwith Global Vectors (GloVe)

Word-word co-occurrences within context windowsmay carry rich semantic information. For
example, in a large corpus word ‘solid’ is more likely to co-occur with ‘ice’ than ‘steam’, but
word ‘gas’ probably co-occurs with ‘steam’ more frequently than ‘ice’. Besides, global corpus
statistics of such co-occurrences can be precomputed: this can lead to more efficient training.
To leverage statistical information in the entire corpus the SG model can be modified using
global corpus statistics such as co-occurrence counts.

1.4.1 Skip-Gramwith Global Corpus Statistics

Denoting by qij the conditional probabilityP (wj | wi) of wordwj given wordwi in the skip-
grammodel (Eq. 1.4) we have:
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qij =
exp

(

u
⊤
j vi

)

∑

k∈V exp
(

u⊤
k vi

) (1.23)

where for any index i vectors vi and ui represent word wi as the center word and context
word, respectively, and V is the index set of the vocabulary. Consider wordwi that may occur
multiple times in the corpus. In the entire corpus, all the context words whereverwi is taken as
their center word form a multiset Ci of word indices that allows for multiple instances of the
same element . For any element, its number of instances is called its multiplicity.

Now let’s denote the multiplicity of element j in multisetCi as xij . This is the global cooc-
currence count of wordwj (as the context word) and wordwi (as the center word) in the same
context window in the entire corpus. Using such global corpus statistics, the loss function of
the SGmodel is equivalent to:

−
∑

i∈V

∑

j∈V

xij log qij (1.24)

We further denote by xi the number of all the context words in the context windows where
wi occurs as their center word, which is equivalent to |Ci|. Letting pij be the conditional prob-
ability xij/xi for generating context word wj given center word the previous formula can be
rewritten as:

−
∑

i∈V

xi

∑

j∈V

pij log qij (1.25)

In (1.25),−
∑

j∈V pij log qij calculates the cross-entropy of the conditional distribution pij
of global corpus statistics and the conditional distribution qij ofmodel predictions. This loss is
also weighted by xi as explained above. Minimizing this loss function will allow the predicted
conditional distribution to get close to the conditional distribution from the global corpus
statistics.

1.4.2 The GloVeModel

With this in mind, the GloVe model makes three changes to the SG model based on squared
loss [4]:

1. Use variables p′ij = xij and q′ij = exp
(

u
⊤
j vi

)

that are not probability distributions
and take the logarithm of both, so the squared loss term is

(

u
⊤
j vi − log xij

)2.

18



2. Add two scalar model parameters for each word wi : the center word bias bi and the
context word bias ci.

3. Replace the weight of each loss term with the weight function h (xij), where h(x) is
increasing in the interval of [0, 1].

Putting all things together, training GloVe is to minimize the following loss function:

∑

i∈V

∑

j∈V

h (xij)
(

u
⊤
j vi + bi + cj − log xij

)2 (1.26)

For the weight function, a suggested choice is: h(x) = (x/c)α(e.g. α = 0.75) if x < c

(e.g. c = 100 ); otherwise h(x) = 1. When h(0) = 0, the squared loss term for any xij = 0

can be omitted for computational efficiency. For example, when using minibatch stochastic
gradient descent for training, at each iteration we randomly sample a minibatch of non-zero
xij to calculate gradients and update the model parameters.

It isworthmentioning thatxij = xji sinceword appearing in context is a symmetric relation.
Unlike word2vec that fits the asymmetric conditional probability pij , GloVe fits the symmetric
log xij . Therefore, the center word vector and the context word vector of any word are, in the
GloVemodel,mathematically equivalent. However in practice, owing todifferent initialization
values, the same word may still get different values in these two vectors after training: GloVe
sums them up as the output vector.

1.4.3 InterpretingGloVefromtheRatioofCo-occurrenceProb-
abilities

TheGloVemodel can also be interpreted from another perspective as shown in [4]. Let pij
def
=

P (wj | wi) be the conditional probability of generating the context word wj given wi as the
center word in the corpus. Table 1.2 lists several co-occurrence probabilities given words ‘ice’
and ‘steam’ and their ratios based on statistics from a large corpus.

wk = solid gas water fashion
p1 = P (wk | ice) 0.00019 0.000066 0.003 0.000017
p2 = P (wk | steam) 0.000022 0.00078 0.0022 0.000018
p1/p2 8.9 0.085 1.36 0.96

Table 1.2: Word‐word co‐occurrence probabilities and their ratios from a large corpus (adapted from Table 1 in [4])
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It can be seen that the ratio of co-occurrence probabilities can intuitively express the rela-
tionship between words. Thus, we can design a function of three word vectors to fit this ratio.
For the ratio of co-occurrence probabilities pij/pik withwi being the center word andwj and
wk being the context words, we want to fit this ratio using some function f :

f (uj,uk,vi) ≈
pij
pik

(1.27)

Since the ratio of co-occurrence probabilities is a scalar, it is required f to be a scalar function,
such as f (uj,uk,vi) = f

(

(uj − uk)
⊤
vi

)

. Switching word indices j and k in 1.27, it must
hold that f(x)f(−x) = 1, so one possibility is f(x) = exp(x), i.e.:

f (uj,uk,vi) =
exp

(

u
⊤
j vi

)

exp
(

u⊤
k vi

) ≈
pij
pik

(1.28)

Now we pick exp
(

u
⊤
j vi

)

≈ αpij , where α is a constant. Since pij = xij/xi, after taking
the logarithm on both sides we get u⊤

j vi ≈ logα + log xij − log xi. We may use additional
bias terms to fit− logα+ log xi, such as the center word bias bi and the context word bias cj :

u
⊤
j vi + bi + cj ≈ log xij (1.29)

Measuring the squared error of Eq. (1.29) with weights, the GloVe loss function in Eq.
(1.26) is obtained.

1.5 Subword Embedding

Morphology, an essential branch of linguistic analysis, scrutinizes the internal structure and
form of words. By exploring the manner in which words are constructed and modified via
affixation, such as prefixes and suffixes, morphology uncovers the intricacies of word forma-
tion. For instance, if we consider the word ‘unhappiness’, it comprises the morphemes ‘un-’ (a
prefix indicating negation), ‘happy’ (the base word), and ‘-ness’ (a suffix indicating a state or
quality) . The intricate interplay of these morphemes within the word construction sheds light
on themorphological intricacies of language. In this perspective the relationship between ‘dog’
and ‘dogs’ is the same as that between ‘cat’ and ‘cats’, and the relationship between ‘boy’ and
‘boyfriend’ is the same as that between ‘girl’ and ‘girlfriend’. In other languages such as French
and Spanish, many verbs have over 40 inflected forms, while in Finnish, a noun may have up
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to 15 cases [15]. In linguistics, morphology studies word formation and word relationships.
However, the internal structure of words was neither explored in word2vec nor in GloVe.

1.5.1 The FastTextModel

Recall how words are represented in word2vec. In both the skip-gram model and the contin-
uous bag-of-words model, different inflected forms of the same word are directly represented
by different vectors without shared parameters. To use morphological information, the fast-
Text model proposed a subword embedding approach, where a subword is a character n-gram
[15]. The number of n-gram to be extracted is a parameter of the model and usually a number
between 2 and 6 works well in many applications. Instead of learning word-level vector repre-
sentations, fastText can be considered as the subword level skip-gram, where each center word
is represented by the sum of its subword vectors.

Now we illustrate how to obtain subwords for each center word in fastText using , for ex-
ample, the word ‘where’. First, add special characters ‘<’ and ‘>’ at the beginning and end
of the word to distinguish prefixes and suffixes from other subwords. Then, extract character
n-grams from the word. For example, when n = 3, we obtain all subwords of length 3: ‘<wh’,
‘whe’, ‘her’, ‘ere’, ‘re>’, and the special void subword ‘’.

To describe the math behind fastText, for any wordw, we denote by Gw the union of all its
subwords of length between 2 and 6 and its special subword. The vocabulary is the union of
the subwords of all words. Notice that even a relatively small vocabulary can be blownupwhen
n is small. Letting zg be the vector of subword g in the dictionary, the vector vw for wordw as
a center word in the skip-grammodel is the sum of its subword vectors:

vw =
∑

g∈Gw

zg (1.30)

The rest of fastText is the same as the skip-grammodel. Comparedwith the skip-grammodel,
as mentioned the vocabulary in fastText is larger, resulting in more model parameters. Besides,
to calculate the representation of a word, all its subword vectors have to be summed, leading
to higher computational complexity. However, thanks to shared parameters from subwords
amongwordswith similar structures, rarewords and even out-of-vocabularywordsmay obtain
better vector representations in fastText.
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Byte Pair Encoding

In fastText, all the extracted subwords have to be of the specified lengths, such as 3 to 6 , thus
the vocabulary size cannot be predefined. To allow for variable-length subwords in a fixedsize
vocabulary, we can apply a compression algorithm called byte pair encoding (BPE) to extract
subwords [16].

Byte pair encoding performs a statistical analysis of the training dataset to discover common
symbols within a word, such as consecutive characters of arbitrary length. Starting from sym-
bols of length 1 , byte pair encoding iteratively merges the most frequent pair of consecutive
symbols to produce new longer symbols. Note that for efficiency, pairs crossing word bound-
aries are not considered. In the end, we can use such symbols as subwords to segment words.
Byte pair encoding and its variants has been used for input representations in popular natural
language processing pretraining models such as GPT-2 [17].
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2
Word-to-Word Alignment Techniques and

Algorithms

This chapter investigates the variousmethods and algorithms used for aligning the densewords’
representations. These techniques, as the name suggests, align word embeddings in order to es-
tablish correspondences betweenwords in different corpora andwas first designed formachine
translation. The aim of this work is to use this methods to search correspondences between
monolingual corpora and to test if this methodology is able to detect ‘bias’ at word level.

Mikolov et al. in [18] first observe that word embedding models trained on different cor-
pora (in their specific case, corpora of distinct languages) exhibite similar geometric patterns
and behaviors as shown in Figure 2.1. This intuition leads to the hypothesis for which word
embedding spaces can be transformed from one to another through linear operations. Starting
from embeddings e1 and e2 independently trained on different corpora, the goal is to construct
the linear mapA by finding the transformation matrixW :

A : V1
x⃗7→Wx⃗≈y⃗
−−−−−−→ V2 (2.1)

where x⃗ = e1(x) and y⃗ = e2(y) are representations of corresponding words x and y, and
W ∈ R

d×d is the so called translation matrix. If the alignment is used to build cross-lingual
embedding models x and y are each the translation of the other, while if the alignment acts on
embedding spaces of the same language, x and y should be, semantically, the same word with
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different representations.

Figure 2.1: Distributed word vector representations of animals in English (left) and Spanish (right). The five vectors in each
language were projected down to two dimensions using PCA, and then manually rotated to accentuate their similarity. It can
be seen that these concepts have similar geometric arrangements in both spaces, suggesting that it is possible to learn an
accurate linear mapping from one space to another. Source: [18].

In themachine translation framework, fixed points are typically established by using parallel
corpora, which are collections of texts inmultiple languages that have been translated sentence
by sentence or word by word. By aligning the embeddings of words appearing in the parallel
corpora, a mapping between the source and target language embeddings can be established.
However, a parallel corpora is not always required, as shown in [1] where a fully unsupervised
method is proposed in the adversarial learning framework. An intuition of the general align-
ment strategy is given in Figure 2.2.

Figure 2.2: Intuition of the alignment method, taken from [1]

In Figure 2.2 (A) there are two distributions of word embeddings, in particular English
words in reddenotedbyXand Italianwords inbluedenotedbyY,whichwewant to align/translate.
Each dot represents a word in that space. Then a rotation matrix W is learned by adversarial
learning and refined by Procrustes method. Finally, the translation is done using W mapping
and a distance metric, called CSLS (Cross domain Similarity Local Scaling), which expands
the space where there is a high density of points (such as the area around the word ‘cat’), so
that ‘hubs’ (like the word ‘cat’) become less close to other word vectors than they would oth-
erwise (compare to the same region in panel (A)). Clearly, this intuition does not give all the
mathematical details of the methodology which can be either supervised or unsupervised.
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Once the alignment is established, cross-lingual word translation becomes feasible. By lever-
aging aligned word embeddings, words from the source language can bemapped to their coun-
terparts in the target language. This enables the translation of words or even entire sentences,
facilitating cross-lingual communication, information retrieval, machine translation systems,
and, as we expect to discover during this work, also cultural bias.

Taking into account the embeddings e1 and e2 defined as:

e1 : D1 → V1 e2 : D2 → V2 (2.2)

D1 and D2 are different vocabularies and V1 ∼= R
d1 and V2 ∼= R

d2 are the vector spaces
where the words are embedded. Usually, the embedded spaces considered have the same di-
mensions, hence we denote d1 = d2 = d, and in our future experiments we will take this as
a core assumption. If there exists a correspondence between elements x ∈ D1 and y ∈ D2,
then the alignment between their respective embedding spaces seeks to find a mapA as in Eq.
(2.1). The scope of these methodology in the machine translation framework is the so called
bilingual lexicon induction.
Bilingual lexicon induction is the intrinsic task that is most commonly used to evaluate

current cross-lingual word embedding models. Briefly, given a list ofN language word forms
ws

1, . . . , w
s
N , the goal is to determine themost appropriate translationwt

i , for each query form
ws

i . This is commonly accomplished by finding a target language word whose embedding xt
i

is the nearest neighbour to the source word embedding xs
i in the shared semantic space, where

similarity is usually computed as the cosine similarity between their embeddings.
There exists seven types of alignment: Word-to-Word, Sentence-to-Sentence,Word-to-Sentence,

Sentence-to-Sentence,Knowledge-to-Knowledge,Word-to-Knowledge, Sentence-to-Knowledge,
as shown in [5].

For the scope of this work we will focus on Word-to-Word alignment and their paradigms.
Three methods that use parallel word-aligned data are distinguished as: mapping-based ap-
proaches, approaches based on pseudo-multilingual corpora, and joint methods. Tomake this
classification clearer the definitions are:

a Mapping-based approaches that first trainmonolingual word representations indepen-
dently on largemonolingual corpora and then seek to learn a transformationmatrix that
maps representations in one language to the representations of the other language.

b Pseudo-multi-lingual corpora-based approaches that use monolingual word embed-
ding methods on automatically constructed (or corrupted) corpora that contain words
from both the source and the target language.
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c Joint methods that take parallel text as input and minimize the source and target lan-
guage monolingual losses jointly with the cross-lingual regularization term.

It was shown that these approaches, modulo optimization strategies and hyper-parameters,
are nevertheless often equivalent [19]. For this reason our work will focus on the mapping-
based approaches.
Mapping-based approaches are by far the most prominent category of cross-lingual word

embedding models and, due to their conceptual simplicity and ease of use are currently the
most popular. Mapping-based approaches aim to learn a mapping from the monolingual em-
bedding spaces to a joint cross-lingual space. Approaches in this category differ along multiple
dimensions:

1. Themappingmethod that is used to transform themonolingual embedding spaces into
a cross-lingual embedding space.

2. The seed lexicon that is used to learn the mapping.

3. The refinement of the learned mapping.

4. The retrieval of the nearest neighbors.

Then there are four types of mapping methods that have been proposed:

1. Regressionmethodsmap the embeddings of the source language to the target language
space by maximizing their similarity.

2. Orthogonal methods map the embeddings in the source language to maximize their
similarity with the target language embeddings, but constrain the transformation to be
orthogonal.

3. Canonicalmethodsmap the embeddings ofboth languages to anew shared space,which
maximizes their similarity.

4. Margin methodsmap the embeddings of the source language to maximize the margin
between correct translations and other candidates.

However as we will prove in section 2.1.4, the first three methods, under some contraints,
can be reduced to the same framework.

Word-to-Word alignment techniques can be supervised and unsupervised depending on the
requirement of parallel data. Wewill further study this twomethods in the next sections. Note
that also, semi-supervised methods exist; for further reference, see [20].
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Moreover, two other cases are worthmentioning: Sentence (or Sentence to-Sentence) Align-
ment and Document Alignment models. Sentence Alignment models often serve as an entry
point to machine translation applications and rely on a parallel corpus of sentences in two lan-
guages [5]. Indeed, also sentences can be mapped to vectors of real numbers through sentence
embedding. Finally, Document Alignment Models require documents in different languages
that are translations of each other, which is very rare.

The main applications of alignment are crosslingual embedding models, which are cross-
lingual representations ofwords in a joint embedding space. They canbeused to facilitate cross-
lingual transfer, which consists ofmodelling on data fromone language and then applying it to
another relying on shared cross-lingual features, for someNLP tasks. An example among these
cross-lingual tasks is sentiment analysis, namely the task of determining the sentiment polarity
(e.g. positive and negative) of texts in different languages [19].

2.1 Mapping-based SupervisedMethods

Supervised learning methods are the most common and data intensive in machine learning
applications. In this section, we discuss supervised models that use unsupervised features (em-
beddings) as inputs with the goal of aligning these resources. Most of the alignment methods
are supervised anduse a bilingual dictionary of a few thousand entries to learn themapping. Ex-
isting approaches can be classified into four groups. Regression methods are the first adopted
[18] and map the embeddings in one language using a least-squares objective that learns the
linear transformation minimizing the sum of squared Euclidean distances for the dictionary
entries. Other authors incorporated also L2 regularization into this method [21]. Then there
are the orthogonal methods, which map the embeddings in one or both languages under the
constraint of the transformation being orthogonal [22]. Other techniques are called canoni-
cal methods, which map the embeddings in both languages to a shared space using canonical
correlation analysis and extensions of it. This is usually done through Canonical Correlation
Analysis (CCA) as first proposed by Faruqui and Dyer [23], who motivate their method as a
way to improve the quality of monolingual embeddings using bilingual data.

However, Artetxe et al. in[22] shown the equivalence of different objective functions under
orthogonality anddifferent normalizationprocedures, and clarified that regression, orthogonal
and canonical methods essentially differ on the constraints imposed on the mapping.

Margin methods, are the last of the four alignment techniques, which map the embeddings
in one language to maximize the margin between the correct translations and the rest of the
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candidates. This approach was proposed by Lazaridou et al. [24] as a way to address the hub-
ness problem, with the addition of intruder negative sampling to generate more informative
training examples.

2.1.1 RegressionMethod

Regression methods form the class of solutions first used to address the Word-to-Word em-
bedding alignment problem. Let us begin by defining two corpora: D1 and D2, our source
and target, respectively, and embedding functions e1 : D1 → R

d and e2 : D2 → R
d.

As shown in [18], using the n most frequent words x1, . . . , xn ∈ D1 and the correspond-
ing y1, . . . , yn ∈ D2 as seed words, it is possible to learn a transformation matrix W using
stochastic gradient descent by minimising the squared Euclidean distance (MSE) between the
embedding vectors e1(xi) and e2(yi) [19]. Namely, the function to minimize in this case to
findW ∈ R

d×d is defined as:

ΩREG(R) =
n
∑

i=1

∥Re1(xi)− e2(yi)∥
2 withR ∈ R

d×d (2.3)

Finally, it holds:

W = argmin
R∈Rd×d

ΩREG(R) (2.4)

Consequently, W will be the so-called leastsquares solution of the linear matrix equation
WX = Y . This is a well-known problem in linear algebra and can be solved by taking the
MoorePenrose pseudoinverseX+ =

(

XTX
)−1

XT asW = X+Y , which can be computed
using SVD. In these case the linear transformation is learned from the source language into the
target language, but Shigeto et al. in [21] argue that it is better to map the target language into
the source language as a way to address the hubness problem.
Hubness [25] is a phenomenon observed in high-dimensional spaces where some points

(known as hubs) are the nearest neighbours of many other points. As translations are assumed
to be nearest neighbours in cross-lingual embedding space, hubness has been reported to affect
cross-lingual word embedding models. This method was first proposed as a mean of captur-
ing geometric patterns between embeddings across embedding spaces. In the original paper,
no additional pre-processing is done on the input word vectors, which were generated using
the CBOWword2vec algorithm. The transformation matrixW can then be applied to a new
vector e1 (wN) tomap it into the target space where a cosine similarity search can rank all trans-

28



lation candidates. Subsequent papers suggested minor tweaks to the regression model having
significant impacts on the capacity to learn. These include the addition of L2 regularization
and adding pre-processing steps such as embedding vector unit normalization [26].

2.1.2 OrthogonalMethod

The original regression model utilized a euclidean distance in learning the transformation ma-
trix, yet relies on cosine similarity to carry out similarity searches in the target space. This ‘in-
consistency’, can be modified adding unit length normalization to the source and target vector
spaces and constrain thematrixW to be orthogonal, that isW⊤

W = Iwhere I is the identity
matrix [26]. The pre-processing step and orthogonal constraint then line up with the retrieval
method, where we are less concerned with distances between vectors andmore concerned with
the angles between them. This problem is equivalent to the orthogonal Procrustes Problem,
given by:

W = argmin
R∈Rd×d

∥RX−Y∥F subject toRT
R = I (2.5)

whereX,Y ∈ R
d×n are the embedding matrices of the seed words, whose columns of the

same indexXi andYiwith i = 1 . . . n are the embedding vectors of two correspondingwords
xi and yi.
Schönemann in [27] find out that the exact solution to this problem can be efficiently com-

puted in linear time with respect to the vocabulary size using SVD:

W = VU
T where Y

T
X = UΣVT (2.6)

where Σ is a diagonal matrix in the SVD, and its diagonal entries are the singular values of
the matrix being decomposed.

The orthogonal constraints have been motivated in different ways from various authors in
[19] is underlined that these constraints lead to the preservation of length normalization, while
Artetxe et al. in [22]motivate orthogonality as ameans to ensuremonolingual invariance. The
authors also show that combining normalization, feature whitening helped them achieve su-
perior performance when using CBOWword vectors and 5,000 supervised training examples.
The full framework has been packaged and released as open source code under the moniker
VecMap*.

*The source code can be found at https://github.com/artetxem/vecmap
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2.1.3 CanonicalMethod

This class of methods is based on the idea of mapping the embeddings in a shared space us-
ing Canonical Correlation Analysis (CCA). In [23] there is the first attempt to apply CCA to
projectwords from two languages into a shared embedding space. The innovative aspect of this
model is that, instead of finding only one transformation matrixW which projects the source
embedding space V1 into the target embedding space V2, it is able to learn two transformation
matricesWs→ andWt→ projecting respectively the embedding spaces V1 and V2 into a new
joint space which is neither the source nor the target. Relying on the same notation as before,
let e1(x) = x⃗ and e2(y) = y⃗ be the representations of two corresponding words x and y,
and letR1,R2 ∈ R

d×d be the possible transformation matrices candidates. The correlation
between the projectionsR1x⃗ andR2y⃗ can be defined as:

ρ
(

R
1x⃗,R2y⃗

)

=
cov (R1x⃗,R2y⃗)

√

var (R1x⃗) var (R2y⃗)
(2.7)

where cov(·, ·) is the covariance and var(·) is the variance. Then, the aim of CCA methos
is to to maximize the function:

ΩCCA

(

R
1,R2

)

= −
n
∑

i=1

ρ
(

R
1x⃗i,R

2y⃗i
)

(2.8)

which means that

W
s→,Wt→ = argmax

Ws→,Wt→∈Rd×d

ΩCCA

(

R
1,R2

)

(2.9)

where, as before, x⃗i and y⃗i are the columns ofX andY.
However, as we will see in section 2.1.4, Artetxe, Labaka, and Agirre, in [22], demonstrate

that various objective functions are equivalentwhenorthogonality anddifferent normalization
techniques are applied. They also explain that the distinction between regression, canonical,
and orthogonal methods lies in the restrictions imposed on the mapping.

2.1.4 Equivalence of TheMethods

Here we prove the equivalence of the regression, orthogonal and canonical methods under
specified constraints, as previously shown in [22]. LetX and Y denote the word embedding
matrices in two languages for a given bilingual dictionary so that their i th column Xi∗ and
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Yi∗ are the word embeddings of the i th entry in the dictionary. As shown in the regression
method our goal is to find a linear transformationmatrixW so thatWX best approximates Y .
We formalized it in Eq. (2.4) and know we can rewrite:

argmin
W

∑

i

∥WXi∗ − Yi∗∥
2 (2.10)

Alternatively, this is equivalent to minimizing the (squared) Frobenius norm of the residual
matrix:

argmin
W

∥WX − Y ∥2F (2.11)

Now we introduce the constraints under which the three methods previously mentioned
are equivalent.

Orthogonality for monolingual invariance

Monolingual invariance canbeobtained requiringW tobe anorthogonalmatrix
(

W TW = I
)

.
Indeed it is needed to preserve the dot products after mapping, avoiding performance degrada-
tion in monolingual tasks (e.g. analogy). The exact solution under such orthogonality con-
straint is given byW = V UT , where Y TX = UΣV T is the SVD factorization of Y TX (cf.
Appendix). Thanks to this, the optimal transformation can be efficiently computed in linear
time with respect to the vocabulary size. Note that orthogonality enforces an intuitive prop-
erty, and as such it could be useful to avoid degenerated solutions and learn better bilingual
mappings, as we empirically shown in [22].

Length normalization for maximum cosine

Normalizing word embeddings in both languages to be unit vectors guarantees that all train-
ing instances contribute equally to the optimization goal. As long as W is orthogonal, this
is equivalent to maximizing the sum of cosine similarities for the dictionary entries, which is
commonly used for similarity computations:

argmin
W

∑

i

∥

∥

∥

∥

W
Xi∗

∥Xi∗∥
−

Zi∗

∥Zi∗∥

∥

∥

∥

∥

2

= argmax
W

∑

i

cos (WXi∗, Zi∗)
(2.12)
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This last optimization objective coincides with the one of the ortogonal method proposed
by [26], but their work wasmotivated by an hypothetical inconsistency in [18], where the opti-
mization objective to learnword embeddings uses dot product, the objective to learnmappings
uses Euclidean distance and the similarity computations use cosine. However, the fact is that,
as long asW is orthogonal, optimizing the squared Euclidean distance of length-normalized
embeddings is equivalent to optimizing the cosine, and therefore, the mapping objective pro-
posed by [26] is equivalent to that used by [18] with orthogonality constraint and unit vectors.
In fact, the experiments of [22] show that orthogonality is more relevant than length normal-
ization.

Mean centering for maximum covariance

Dimension-wise mean centering captures the intuition that two randomly taken words would
not be expected to be semantically similar, ensuring that the expected product of two random
embeddings in any dimension and, consequently, their cosine similarity, is zero. As long asW
is orthogonal, this is equivalent to maximizing the sum of dimensionwise covariance for the
dictionary entries:

argmin
W

∥CmWX − CmY ∥
2
F

= argmax
W

∑

i

cov (W∗iX,Y∗i)
(2.13)

whereCm denotes the centering matrix.
This equivalence reveals that the canonical method proposed by Faruqui and Dyer [23] is

closely related to the regression method. More concretely, Faruqui and Dyer use Canonical
CorrelationAnalysis (CCA) to project the word embeddings in both languages to a shared vec-
tor space. CCAmaximizes the dimension-wise covariance of both projections (which is equiv-
alent tomaximizing the covariance of a single projection if the transformations are constrained
to be orthogonal, but adds an implicit restriction to the two mappings, making different di-
mensions have the same variance and be uncorrelated among themselves:

argmax
A,B

∑

i

cov (XAi∗, Y Bi∗)

s.t. ATXTCmXA = BTY TCmY B = I

(2.14)

Therefore, the only fundamental difference between bothmethods is that, while the orthog-
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onal model enforces monolingual invariance, the canonical method do change the monolin-
gual embeddings to meet this restriction. In this regard, as shown in [22] the added restriction
has a negative impact on the learning of the bilingual mapping, and it degrades the quality of
the monolingual embeddings.

2.1.5 MarginMethods

The methods of the previous two sections rely on variations of mean squared error to com-
pute and learn from the differences between the source and target space. An alternative model-
ing technique leverages a max-margin based loss function. These objectives seek to reward the
weights associated with positive pairs (in this case, words that are direct translations) while re-
ducing the signal from noise pairs generated either randomly or using a heuristic. This model,
introduced in [24] is built to reduce hubness. Turning back to the model, in the case ofWord-
to-Word translation, the association between pairs is defined by their cosine similarity, thus we
may define the max-margin loss as

k
∑

j 6=i

max
{

0, γ − dist
(

ŷi, w⃗t
i

)

+ dist
(

ŷi, w⃗t
j

)}

(2.15)

where ŷi = Ww⃗s
i , dist is a distancemeasure and γ and k are tunable hyperparameters denot-

ing the margin and the number of noise pairs (negative examples), respectively. The use of this
objective was first proposed by [24] to address issues of hubness seen in regression and orthogo-
nal techniques. The presence of hubs is driven by embeddings that dominate the space because
of their high cosine similarity with all other vectors in the source or target space. These hubs
can be caused by the overall frequencies of words in the underlying corpus [28], a common
mean vector present in all word vectors causing issues of anisotropy in the embedding spaces
[29], or issues derived from least-squares regression where low variance points are all grouped
together in the target space.

Intuitively, the goal of the max-margin objective is to rank the correct translation yi of w⃗i

higher than any other possible translation yj . In theory, the summation in the equation could
range over all possible labels, but in practice this is too expensive (e.g., in our experiments the
search space contains almost 200k candidate labels), and it is usually computed over just a por-
tion of the label space.

Margin-based models are also explored in [30], where the authors also aim to combat the
issue of hubs by introducing new retrieval criteria. The cross-domain similarity local scaling
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(CSLS), which is defined as

CSLS(x, y) = −2 cos(x, y) +
1

k

∑

y′∈NY (x)

cos (x, y′) +
1

k

∑

x′∈NX(y)

cos (x′, y) (2.16)

where NY (x) is the set of k nearest neighbors of x in the target space. The authors built
this retrieval criterion into their marginmodel by using unpaired words (those with no explicit
translation in the training set) as negative sampleswhen computing nearest neighbors. The full
objective function, called the relaxed CSLS (RCSLS) is then computed as

1

n

n
∑

i=1

−2 cos
(

ŷi, w⃗t
i

)

+
1

k

∑

wj∈NY (ŷi)

cos (ŷi, w⃗j) +
1

k

∑

ŷj∈NX(w⃗i)

cos (ŷj, w⃗i) (2.17)

As stated in [5]: ‘margin-basedmethods are studied less frequently; we conjecture this is due
to the difficulty in selecting informative negative samples and the preference formethods using
as little supervision as possible.’

2.2 UnsupervisedMethods

Under the goal of restricting the amount of parallel data needed to create alignment between
two word spaces, several approaches have been proposed that attempt to leverage the structure
of the embedding space itself, completely removing the need for parallel data. A key approach
was described in [1] where the authors propose leveraging an adversarial learning paradigm.
In this setup, the goal is still to learn a linear map W between the source embedding vectors
e1 (w

s
i ) and target space embeddings e2 (wt

i). In order to do that, a discriminatorD is trained
to recognize and separate themapped embeddingsWe1 (w

s
i ) from e2 (w

t
i), while an adversarial

generatorG is trained to foolD. The loss functions given for both models are:

L (θD | W ) = −
1

n

n
∑

i=1

logPθD ( source = 1 | Wxi)−
1

m

m
∑

i=1

logPθD ( source = 0 | yi)

(2.18)
for the discriminator model, and
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L (W | θD) = −
1

n

n
∑

i=1

logPθD ( source = 0 | Wxi)−
1

m

m
∑

i=1

logPθD ( source = 1 | yi)

(2.19)
for the generator model. With an initial linear map W learned thanks to this adversarial

learning approach, a refinement procedure is then then applied by identifying anchor points
as pairs that were frequently identified as translations in the previous step. Anchor points and
their corresponding word frequencies are used to solve the orthogonal Procrustes problem to
generate a refinedmappingmatrixW ∗. This finalmatrix is used in conjunctionwith theCSLS
objective described in Eq. (2.16) to mitigate hubness and areas of density in generating a final
translation from source to target. The adversarial method has been utilized to generate large
benchmark datasets under the name ofMultilingual Unsupervised or Supervised Embeddings
(MUSE) †, releasing parallel embedding spaces trained using FastText in 110 languages.

Aside from leveraging similarity distributions of the underlying embedding spaces, methods
are also available to treat these embedding spaces as metric spaces, adoptingmathematical tools
from measure theory and topology to describe their nature. One such metric is the Gromov-
Wasserstein distance used to compare two pairs of spaces, rather than the pairwise point-by-
point metrics such as similarities. Using this metric, [31] transform the alignment problem to
one of finding an optimal transport from sourceX to target Y . Due to computational costs,
the problem is split into two steps where the two spaces are first aligned using the explicit opti-
mization to find an optimal coupling followed by a refinement using an orthogonal Procrustes
procedure [5].

Different languages, different graphs

In [2] Søgaard et al. identify the limitations of unsupervised machine translation, finding out
that performances are generally worse when monolingual corpora from different domains or
different embedding algorithms are used. Regarding this, their critique is based on the idea
that: unsupervised approaches to learning crosslingual word embeddings are based on the as-
sumption that monolingual word embedding graphs are approximately isomorphic, that is,
after removing a small set of vertices (words). They use as a reference the state-of-the-art unsu-
pervised model of Conneau et al. [1], which relies on an orthogonal alignment, and attempt
to improve it. They first investigated the nearest-neighbor graphs of word embedding spaces

†The source code can be found at https://github.com/facebookresearch/MUSE
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in order to conclude that, in general, monolingual word embeddings are far from isomorphic.
This holds even if the two languages are closely related, such as English andGerman. In Figure
2.3 it is possible to see how different the nearest-neighbor graph of the embeddings of the 10
most frequent English words and the one of their translation in German. This could be due
both to the differences between the synctatic structures and the different meaning associations
between the two languages.

Figure 2.3: A representation provided by Søgaard et al. [2] of the nearest neighbor graphs of 10 most frequent words in
English Wikipedia and of their their automatic translation in German, by using the method of [1].

In our case this is not a problem since we are aligning twomonolingual word embeddings of
the same language: Italian.
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3
Bias Definition and Detection

It is well known that standard machine learning can acquire stereotyped biases from textual
data that reflect everyday human culture. Indeed it is now widely recognized that data-driven
decision making is not per se safe from producing unfair or biased decisions, either for ampli-
fications of biases already present in the data they learn from, or for algorithmic inaccuracies.
As it is often the case with moral and ethical issues, conflicts are present between different and
typically equally reasonable positions. Researches, in proposing definitions, have focused on
different intuitive notions of ‘unfair decisions’, often considered as the ones impacting people
in different ways on the basis of some personal characteristics, such as gender, ethnicity, age,
sexual or political or religious orientations, considered to be protected, or sensitive. The general
idea that text corpora capture semantics, including cultural stereotypes and empirical associa-
tions, has long been known in corpus linguistics. Usually the techniques adopted were word
embeddings which are able to extract associations captured in text corpora; amplifying the sig-
nal found in raw statistics [14]. Nowadays most advanced techniques based on transformers
are used, as shown in [32]. However, before moving on, it is important to focus on what we
mean with bias.

Terminology varies by discipline and the term bias can be used with different meanings. In
statistics, there is a narrow and specific definition of bias which can be summarized as lack of
internal validity or incorrect assessment of the association between an exposure and an effect in
the target population inwhich the estimated statistic has an expectation that does not equal the
true value [33]. In this framework, biases can be classified by the research stage in which they
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occur or by the direction of change in an estimate. As another example cognitive sciences has
another broader definition, defining bias as: a systematic pattern of deviation from norm or ra-
tionality in judgment. In its most general sense, the term bias means simply ‘slant’. Given this
undifferentiated usage, at times the term is applied with relatively neutral content. A grocery
shopper, for example, can be ‘biased’ by not buying damaged fruit. At other times, the term
bias is applied with significant moral meaning. An employer, for example, can be ‘biased’ by
refusing to hire minorities. In this work we focus on instances of the latter. In fact if one wants
to develop criteria for judging the quality of systems in use which we do then criteria must be
delineated in ways that speak robustly yet precisely to relevant social matters. Focusing on bias
of moral import does just that. Accordingly, we use the term bias to refer to computer systems
that systematically andunfairly discriminate against certain individuals or groups of individuals
in favor of others [34]. In AI andML systems, which are trained on real world data, bias refers
generally to prior information, a necessary prerequisite for intelligent action. As mentioned
above this kind of bias can be problematic when such information is derived from aspects of
human culture known to lead to harmful behavior. Here, we will call such biases ‘stereotyped’
and actions taken on their basis ‘prejudiced’ [35]. Moreover we are concerned with media bias
which refers to the bias produced when journalists report about an event in a prejudiced man-
ner or with a slanted viewpoint. It is often related to content favoring a particular view-point
or ideology (e.g., political). Media bias can have various negative impacts, e.g., the distribution
of false facts, affecting decision-making processes, endangering the readers’ trust in news and
also affect downsteam applications propagating cultural stereotypes to artificial intelligence
[36]. For example in another widely publicized study, Bertrand and Mullainathan [37] sent
nearly 5000 identical résumés in response to 1300 job advertisements, varying only the names
of the candidates. They found that European-American candidates were 50% more likely to
be offered an opportunity to be interviewed. Vectorial representation of words are also used
to train the LLM, but it was shown that a vectorial representation encapsulates any biases of
the text onwhich it is trained. A striking example that pinpoint sexism implicit in text is found
in [13] where the model complete the analogy ‘man is to computer programmer as woman is
to x’ with x being homemaker. For this reason deploying these word embedding algorithms in
practice, for example in automated translation systems or as hiring aids, runs the serious risk of
perpetuating problematic biases in important societal contexts [38]. The declinations of this
phenomenon, is also indicated with the term cultural semantic conditioning [39].

However ‘bias’ is not always so evident and there can be the risk to miss the point when
searching for ‘bias’ without a normative motivation. In fact the authors of [35] surveyed 146
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papers analyzing ‘bias’ in NLP systems. They found that in research papers focused on finding
textual bias: ‘the motivations are often vague, inconsistent, and lacking in normative reason-
ing’. They further find that these papers’ proposed quantitative techniques for measuring or
mitigating ‘bias’ which are poorly matched to their motivations and do not engage with the
relevant literature outside ofNLP. For this reason it is important to recognize the relationships
between language and social hierarchies, what kinds of system behaviors are harmful, in what
ways, to whom, andwhy, as well as the normative reasoning underlying these statements—and
to center work around the lived experiences of members of communities affected by NLP sys-
tems, while interrogating and re-imagining the power relations between technologists and such
communities. Regarding the definition of a measure and assess fairness in AI andML systems,
in the last few years an incredible number of definitions have been proposed, formalizing dif-
ferent perspectives fromwhich to assess andmonitor fairness in decisionmaking processes. As
reported in [40]: ‘popular tutorial presented at the Conference on Fairness, Accountability,
and Transparency in 2018 was titled 21 fairness definitions and their politics. The number has
grown since then.’ The proliferation of fairness definitions is not per se an issue: it reflects the
evidence that fairness is a multi-faceted concept, and concentrates on itself different meanings
and nuances, in turn depending in complex ways on the specific situation considered.

Fortunately in [32] a comprehensive benchmark that groups different types of media bias
(e.g., linguistic, cognitive, political) under a common framework is provided. A unified bench-
mark encourages the development ofmore robust systems and ensure a systematic examination
of a series of independent subcategories of media bias detection. These are the identified sub-
categories:
Linguistic bias comprehends all forms of bias induced by lexical features, such as word

choice and sentence structure, often subconsciously used. Generally, linguistic bias is expressed
through specificword choice that reflects the social-category cognition applied to any described
group or individual(s).
Text-level context bias refers to the expression of a text’s context, whereby words and state-

ments can shape the context of an article and sway the reader’s perspective. These biases can be
used to portray a particular opinion in a biased way by criticizing one side more than the other,
using inflammatory words, or omitting relevant information.
Reporting-level context bias refers to bias that arises through decisions made by editors

and journalists on what events to report and what sources to use. While text-level context bias
examines the bias present within an individual article, reporting-level bias focuses on system-
atic attention given to specific topics. Cognitive bias occurs when readers introduce bias by
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selecting which articles to read and which sources to trust, which can be amplified on social
media. These biases can lead to self-reinforcing cycles, echo chamber effect exposing readers to
only one side of an issue.
Hate speech refers to any language that manifests hatred towards a specific group or aims to

degrade, humiliate, or offend. Hate speech is usually induced by using linguistic bias. In partic-
ular, on social media, the impact of hate speech is significant and exacerbates tensions between
the parties involved. However, similar processes can also be observed within, e.g., comments
on news websites.
Racial bias is expressed through negative or positive portrayals of racial groups. Research

has shown that racial bias in news coverage can severely impact affected minorities, such as
strengthening stereotypes and discrimination [41].
Gender bias in media can manifest as discrimination against one gender through underrep-

resentation or negative portrayal. Gender bias in the media can severely impact perceptions of
professions and role models [13].
Political bias refers to a text’s political leaningor ideology, potentially influencing the reader’s

political opinion and, ultimately, their voting behavior [42]. There are several approaches to
detect political bias in the media, for example, counting the appearance of certain political par-
ties or ideology-associated words.

we would add to this list also the:
Religious biaswhich encompasses instances where language, media, or communication ex-

hibit favoritism, prejudice, or discrimination toward particular religious groups or beliefs. Re-
ligious bias can have significant societal consequences, including the promotion of religious
intolerance, the reinforcement of stereotypes, and the exacerbation of religious conflicts.

The exact overlap between media bias and fake news is yet unclear; therefore, we will not
consider it as a bias subcategory. We emphasize that these subcategories are not comprehen-
sive, but are intended to give a light in the immense sea of definitions. In [34] a framework
is proposed for analyzing algorithmic biases, splitting them into pre-existing, technical, and
emergent. Such subdivision is based on the phases of the learning system in which the bias
arises: while the preexisting bias is related exclusively on the input data onwhich the algorithm
is trained, technical bias is caused by technical constraints or technical considerations and emer-
gent bias arises in a context of use with real users. Although word embeddings might face all
three types of bias, we focus on the preexisting bias. The expression indicates the phenomenon
in which AI systems embody biases that exist independently, exemplifying them. It has roots
in social institutions, practices, and attitudes.
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3.0.1 Geometry of Bias inWord Embeddings

Defining a measure of bias is not a one-size-fits-all process. In the literature, the measurement
of bias is addressed individually for some of the previously illustrated subcategories and it is
not straightforward to generalize. In order to review some of the existing techniques adopted
inword embeddings biasmeasuring, we briefly review some notationwe are going to use in this
chapter. An embedding consists of a unit vector w⃗ ∈ R

d, with ∥w⃗∥ = 1, for each word (or
term)w ∈ W . Thenormalizationofword vectors is two scoped: improves alignment as shown
in [43] and simplifies calculations shown later. Since gender bias is one of themost studied type
of societal bias affectingNLP algorithms, due to implicit sexismpermeating the society, wewill
start with that. An example of gender bias measure in word embeddings is given in [13] where
they consider a set of gender neutral wordsN ⊂ W , such as fight attendant or shoes, and a set
of F-M gender pairs P ⊂ W ×W , such as she-he or mother-father. Note that the size of a set
S by |S|. In this way similarity between two vectors u and v can be measured by their cosine
similarity : cos(u, v) = u·v

‖u‖‖v‖
as shown in section 1.3.1. This normalized similarity between

vectors u and v is the cosine of the angle between the two vectors. Since words are normalized
cos (w⃗1, w⃗2) = w⃗1 · w⃗2 In this way they input into the analogy generator a seed pair of words
(a, b) determining a seed direction a⃗− b⃗ corresponding to the normalized difference between
the two seed words. Then all pairs of words x, y are scored by the following metric:

Sa,b(x, y) =







cos(⃗a− b⃗, x⃗− y⃗) if ∥x⃗− y⃗∥ ≤ δ

0 otherwise
(3.1)

where δ is a threshold for semantic similarity. The intuition of the scoring metric is that
good analogy pair should be close to parallel to the seed direction while the two words are
not too far apart in order to be semantically coherent. They found that δ = 1 often works
well in practice. Since all embeddings are normalized, this threshold corresponds to an angle
≤ π/3, indicating that the two words are closer to each other than they are to the origin. In
practice, it means that the twowords forming the analogy are significantly closer together than
two randomembedding vectors. Given the embedding and seedwords, the top analogous pairs
with the largest positive S(a,b) scores can be output. The results obtained in the w2vNEWS
dataset are shown in Figure 3.1.

Finally, the authors present a de-biasing algorithmwhich tries to correct the components of
biasedwords by finding a gender subspace, given by two binary extremes among an axes relying
on pairs of gender specific words.
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Figure 3.1: Left The most extreme occupations as projected on to the she‐he gender direction on w2vNEWS. Occupations
such as businesswoman, where gender is suggested by the orthography, were excluded. Right Automatically generated
analogies for the pair she‐he using the procedure described. Source: [13].

Racial bias is another important type of social discrimination which might emerge from
word embeddings. In Semantics derived automatically from language corpora contain human-
like biases [14] is shown that vectors representing African American names are closer to neg-
ative words than positive words, a trend which does not repeat among European American
names. In order to define such associations, the authors use analogy as well. Similarly, on [37]
are found occupational stereotypes related to embeddings of proper names depending on the
ethnicity. In their experiments, bias detection is achieved by measuring distance among the
elements a set of proper names and a set of occupations words [44].

Political bias is themost interesting part to deepen for our next analysis. In [45]Gordon et al.
prove that it is possible to apply the same approach of the gender bias, mentioned above [13],
in order to investigate the political bias contained in word embeddings. Their work models
political bias as a binary choice between the Democratic pole and the Republican pole, since
they refer to American politics. In order to apply the methodology of Bolukbasi et al. [13],
the authors find binary pairs by analyzing the most frequent words of a collection of tweets of
politicians of both parties. However, the pre-processing applied was heavy, as they removed
the 10,000most commonwords in English such as ‘the’, ‘and’, etc. Finally, they conclude that
modelling bias along multiple axes or as a range of points along a single axis could be necessary
to make a comprehensive analysis, since the politics, as many other fields, is much more com-
plicated than a binary choice. Indeed neither gender nor political bias is as simple in the real
world as two points on a single axis. The idea that we are going to apply follows this line; in
fact, we are using data from Italian newspapers to model and describe bias without debiasing.

The previous fine-grain bias analysis can be summarized into a single definition: social bias.
Social bias refers to systematic and often unconscious preferences, prejudices, or stereotypes
that people hold toward individuals or groups based on characteristics such as race, gender,
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age, religion, sexual orientation, disability, or other social identifiers. These biases can lead to
unfair or discriminatory treatment, both at an individual and societal levels, affecting people’s
opportunities, experiences, and outcomes. Social bias canmanifest in various forms, including
implicit bias (unconscious attitudes and stereotypes) and explicit bias (conscious and deliber-
ate prejudices), and it can impact decisions and behaviors in areas such as hiring, education,
healthcare, and law enforcement. Addressing social bias is important for promoting fairness,
equity, and social justice in society.

In our experiments, we are looking for social bias. Indeed, the presence of one or all of them
is unfair since it strengthens discrimination and social polarization. We remind the reader that
polarization is a process in which the normal multiplicity of differences in a society increas-
ingly aligns along a single dimension and people increasingly perceive and describe politics and
society in terms of ‘Us’ versus ‘Them’. The politics and discourse of opposition and the social–
psychological intergroup conflict dynamics produced by this alignment are a main source of
the risks polarization generates for democracy, although we recognize that it can also produce
opportunities for democracy [46].

For what concern our experiments, we report two lists of Italian words where testing our
methodology. The lists are divided in words that are likely to be unbiased (Table 3.2) which
can be used as parallel corpora during a supervised alignment, and biased words (Table 3.1)
which are usually carriers of social bias, being it political, racial or gender; we retrieved them
from [47], [39] [45] and our experience.

B
indiano, africano, straniero, alieno , zingara, nigeriano, immigrato, negro, nero, schiavo, tribù,

omosessuale, gay, lesbica, transessuale, diverso, uomo, donna
padrone, vecchio, nuovo, operaio, comunista, fascista, nord, sud

Table 3.1: Test set of the words subject to societal bias

The idea behind Table 3.2, is that words belonging to the categories of inanimate objects
and common animals and natural elements are less involved in cultural change over time.
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S
casa, albero, tavolo, lampada, libro, specchio, scatola, forchetta
sedia, telefono, bottiglia, fornello, motore, barca, matita, tazza

piatto, carta, stereo, foglia, bastone, nuvola, shampoo, cappello, finestra
cuscino, acqua, fuoco, libro, porta, strada, sentiero

gatto, cane, scuola, inchiostro, penna, osso, provviste, dizionario, ombrello, forbice

Table 3.2: Test set of the words likely to be stable
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4
Proposed Alignment Methods

4.1 IntroductiontoLinearandNonlinearOptimiza-
tion Problems

In this part, we will review some fundamental principles of linear and nonlinear programming
toprovide a foundation for the subsequent sections, whichwill present a series of results related
to nonlinear programming that will be beneficial in validating our alignment approach.

A linear program is a constrained optimization problem in which the function to be max-
imized (or minimized) is linear and the constraints are described by linear equations and/or
inequalities:

max (or min) c1x1 + · · ·+ cnxn

s.t. a11x1 + · · ·+ a1nxn ∼ b1
...

am1x1 + · · ·+ amnxn ∼ bm

(4.1)

where the symbol∼ can stand for one of the operators≤,≥, =, and aij, bi, cj ∈ R i ∈

[1,m], j ∈ [1, n]. The set of all the vectors x ∈ R
n satisfying all the constrains, namely the

feasible solutions, is called the feasible region. A vector x̄ ∈ R
n is an optimal solution of the

linear program if x̄ is feasible and cT x̄ ≥ cTx ∀x in the feasible region, and the corresponding
value cT x̄ is called optimal value.
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Given a linear program, one and only one of the following alternatives holds:

a) The problem has at least one optimal solution;

b) The problem is infeasible, i.e., it has no feasible solutions;

c) The problem is unbounded, i.e., for everyK ∈ R, there exists a feasible solution x such
that cTx > K (for minimization problems).

Every linear program of the form (4.1) is equivalent to a linear program in standard form,
that is, of the type:

max cTx

s.t. Ax = b

x ≥ 0

(4.2)

whereA ∈ R
m×n, and b ∈ R

m, c ∈ R
n and x is a vector of variable inRn

A problem which is not in one of the previous form is a nonlinear problem.
An optimization problem, in general, is defined as the minimization or maximization of a

real valued function on a specified set. Letting F be the feasible set and f : F → R be the
objective function, the problem can be represented as following:

min f(x) s.t. x ∈ F (4.3)

or

max f(x) s.t. x ∈ F (4.4)

However, it is important to notice that it is always possible to turn a minimization problem
into a maximization problem by changing the sign of f , and viceversa. In particular, it holds:

max
x∈F

f(x) = −min
x∈F

(−f(x)) (4.5)

For what concern nonlinear optimization problems, are now provided some results useful
to understand the tools we use in section 4.4.

46



4.2 Linearization of nonlinear problems

Sometimes, it is possible to linearize a nonlinear problem, that is, to transform it into a linear
one (of the form 4.1). Among all the examples of this useful operation, here we report just the
linearization of absolute value problems, which is necessary to understand the computationwe
do in section 4.4.

Let us consider a problem of the following form:

min
x,y

∑

j

cj |xj|+
∑

k

dkyk s.t. (x, y) ∈ C (4.6)

where C , the feasible region, is a polyhedron, and that cj ≥ 0. Now, we transform the
variables in the following way:

x = x+
j − x−

j , x
+
j ≥ 0, x−

j ≥ 0 (4.7)

Such transformation is not unique, indeed there are two possible cases:

• xj ≥ 0⇒ x+
j = xj + δ = |xj|+ δ and x−

j = δ

• xj < 0⇒ x+
j = δ and x−

j = −xj + δ = |xj|+ δ

with δ ≥ 0. When δ = 0, one componentmust be 0 and the other one is consequently |xj|.
Moreover, we notice that:

x+
j + x−

j = |xj|+ 2δ

Now, bymaking a replacement in the objective function of term |xj|with the sumofx+
j and

x−
j , we obtain that for the optimal solution x+

j = 0 or x−
j = 0 (or, equivalently, δ = 0 ). As a

result, it is possible to rewrite 4.6 as:

minx,y

∑

j cj
(

x+
j + x−

j

)

+
∑

k dkyk s.t.
(

x+
j − x−

j , y
)

∈ C

x+
j ≥ 0, x−

j ≥ 0 ∀j = 1, . . . , n
(4.8)

whereC is the feasible region.

It is possible to obtain a different formulation, by simply rewriting the absolut value as:
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|xj| = max {xj,−xj} (4.9)

Then by replacing it in Eq. (4.6), we have:

min
x,y

∑

j

cj max {xj,−xj}+
∑

k

dkyk s.t. (x, y) ∈ C (4.10)

which, by introducing a new variable zj , can be rewrite as following:

minx,y,z

∑

j cjzj +
∑

k dkyk s.t. zj = max {xj,−xj}

(x, y) ∈ C
(4.11)

Finally, we obtain:

min
x,y,z

∑

j

cjzj +
∑

k

dkyk s.t. − zj ≤ xj ≤ zj j = 1, . . . , n (4.12)

Example: Linearization of theMSE in Linear Regression

The linear model can be written as:

y = aTx+ b (4.13)

where x ∈ R
n is the input vector for the model, y ∈ R is the output, a ∈ R

n an b ∈ R are
the parameters related to themodel. Moreover, we assume to have a finite setT of input-output
samples, named training set:

T :=
{(

x1, y1
)

, . . . ,
(

xm, yl
)}

(4.14)

Then, let us define the error between real and model output:

Ei = yi −
(

aTxi + b
)

(4.15)

Since our goal is to minimize the errors over the training set Ei, i = 1, . . . , l, a classic ap-
proach for calculating model parameters is considering the square loss function and then min-
imize the MSE:
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min
a,b

l
∑

i=1

(

yi − aTxi − b
)2 (4.16)

The training of the model usually relies on the minimization of theMSE, but also the mini-
mization of another loss is allowed [48]. Indeed we can rewrite the loss function by relying on
the absolute value formulation as:

min
a,b

l
∑

i=1

∣

∣yi − aTxi − b
∣

∣ (4.17)

and then, by using the transformation shown in the section 4.2, we obtain:

min
a,b,z

l
∑

i=1

zi s.t.
∣

∣yi − aTxi − b
∣

∣ ≤ zi ∀i = 1, . . . , l (4.18)

that is:

min
a,b,z

l
∑

i=1

zi s.t. − zi ≤ yi − aTxi − b ≤ zi ∀i = 1, . . . , l (4.19)

This is thewell-knownLeastAbsoluteDeviation (LAD)model (also known as least absolute
residual, least absolute error or least absolute value model. ℓ1-norm is a good choice for two
reasons: first, themodelweget is very easy to solve (since it is equivalent to a linear programming
problem); second, ℓ1-norm is less sensitive to outliers. As a cons there is the fact that themodel
obtained after the minimization is not always unique, but can differ in a range depending on
the distribution of data.

4.3 Frank-Wolfe method

The Frank-Wolfe method also called conditional gradient method or reduced gradient method
is an optimization algorithmoriginally proposed by Frank andWolfe in 1956 to solve quadratic
programmingproblemswith linear constraints. In this sectionwedescribe the classicalmethod
and its properties. This theoretical part will find application in section 4.4.4 where an align-
ment method proposed in [39] will be discussed.
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4.3.1 Description of the algorithm

Let us consider a problem of the form

min f(x) s.t. x ∈ C (4.20)

where f : Rn → R
n is a continuously differentiable function and C ⊆ R

n is a convex
compact set.

We start with a feasible solution and, at each iteration, we define a descent direction in the
current iterate xk by solving the problem:

min
x∈C
∇f (xk)

T (x− xk) (4.21)

We notice that this is equivalent to minimize the linear approximation of f in xk :

min
x∈C

f (xk) +∇f (xk)
T (x− xk) (4.22)

By theWeierstrass theorem amd compactness ofC , we can deduce that there exists a solution
x̂k ∈ C for the linearized problem. Now, let us see a useful proposition:

Now, under the previous hypothesis,C ⊆ R
n being a convex set, and adding the condition

that f ∈ C1 (Rn) is a convex function, it can be proved that x∗ ∈ C is a global solution of the
following problem:

min f(x) s.t. x ∈ C (4.23)

if and only if

∇f (x∗)T (x− x∗) ≥ 0 ∀x ∈ C (4.24)

Therefore in Eq. (4.22), we have two cases. If∇f (xk)
T (x̂k − xk) = 0 then we have

0 = ∇f (xk)
T (x̂k − xk) ≤ ∇f (xk)

T (x− xk) ∀x ∈ C

and xk satisfies first order optimality conditions.
On the contrary, if∇f (xk)

T (x̂k − xk) < 0we have a new descent direction in xk given by
dk = x̂k − xk. Thus we can have a new iterate given by xk+1 = xk + αkdk with αk ∈ (0, 1]

calculated by means of a line search.
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Finally, we report the pseudocode:

Algorithm 4.1 General FWAlgorithm
1: Choose a point x1 ∈ C
2: for k = 1, 2, . . .
3: Compute x̂k = argminx∈C ∇f (xk)

T (x− xk)
4: if x̂k satisfies a specific condition
5: STOP
6: end if
7: Choose αk ∈ (0, 1] as a suitable step size
8: Update xk+1 = xk + αk (x̂k − xk)
9: end for

4.4 Contributions

Let us recap the notation adopted. It is important to precise that the present work is based on
the comparison of two different monolingual word embeddings in the same language. We will
refer to them as e1 and e2 :

e1 : D1 → V2 e2 : D2 → V2 (4.25)

where D1 and D2 are the vocabularies and V1 and V2 are the corresponding embedding
spaces of dimensions d. We consider D1 = D2 = D and we denote |D| = N . All the
word vectors−→xi and−→yi with i = 1, . . . , N are put one after the other as the columns of the
matricesX,Y ∈ R

d×N respectively.

Figure 4.1: Representation of the embedding maps e1 : D → V1, e2 : D → V2 and the alignment mapA : V1 → V2
acting in turn on a wordw of a vocabularyD.
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4.4.1 HowAlignment ShouldHighlight Biases

The underlying concept of this study posits that the utilization of an alignment algorithm, con-
ventionally employed in the domain of machine language translation, may serve as a valuable
toolwhen applied to twodistinct embedding spaces housing text characterized by inherent bias.
The central premise of this research is that the employment of such an alignment algorithm,
followed by the mapping of these two embeddings onto each other, facilitates the elucidation
of bias within the text. This elucidation is achieved through the examination of word prox-
imity using techniques such as k-nearest neighbors or CSLS. As explained in chapter 3, every
word embedding contains cultural peculiarities inherited by data, which can be then propa-
gated through the alignment.

Let us suppose to have two word embeddings e1 and e2 trained on two different corpora
of data of the same language reflecting different cultural traits. The goal of a classic alignment
A : V1 → V2 should be minimizing the error among all the words w ∈ D, namely between
the imageA(x⃗) and y⃗, such that e1(w) = x⃗ and e2(w) = y⃗, as represented in figure 4.1.

Now, we make an hypothesis: we suppose that some words would be changed more by the
alignment A due to the semantic cultural conditioning, while other more stable, less likely to
change semantic meaning depending on societal biases or historic characteristics of the data,
would change less. Consequently the approach proposed in [39] is to change the classic Pro-
crustes alignment, by starting froma simple idea: instead of looking for a transformationwhich
tries to minimize the error on all w ∈ D, they want to obtain a map A and a corresponding
matrixW which minimizes the error only on words which would not drastically change after
applying A. In other words, the ideal alignment would leave the images A(x⃗) = Wx⃗ of rep-
resentations of words more likely to be subject to cultural semantic conditioning farther from
the corresponding y⃗ than the words more likely to be stable.

4.4.2 EmbeddingAlignment: ANonlinearProgrammingApproach

In this section alignments A1 and A2 are described. These alignment methods first proposed
in [39] are here described and the first one of them is also been written in python language and
tested in our dataset.

For all the alignments described, the desiredAi is a map of the type:

Ai : V1 −→
x⃗ 7→Wiy⃗

V2 (4.26)
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As explained in chapter 2, in order to find the mapA it is necessary to find a transformation
matrixWi ∈ R

d×d.

Figure 4.2: Representation of the alignment maps Ai : V1 → V2, i = 1, 2, 3 acting on a word vector x⃗ of the first
embedding space V1.

4.4.3 A1 : An Alignment Optimized by a Linear Decomposition

In order to obtain the first alignment matrixW1, thanks to this new method, we consider the
following optimization problem:

W1 = argmin
W∈Rd×d

∥WX−Y∥1 (4.27)

which differs from the ortogonal method of section 2.1.2 and equation 2.5 only because
now, instead of a Frobenius norm, a norm-1 is taken. Under this formulation, the problem
coincides with:

W1 = argmin
W∈Rd×d

N
∑

i=1

∥W−→xi −
−→yi ∥1 (4.28)

where−→xi and−→yi are the i-th columns of the matricesX andY.
Let −→xi := xi, −→yi := yi, the j-th element of −→yi be yji , and the j-th column of W be wj .

Then the formulation above becomes:

W1 = argmin
W∈Rd×d

N
∑

i=1

300
∑

j=1

∣

∣

∣

(

wj
)T

xi − yji

∣

∣

∣
= argmin

W∈Rd×d

300
∑

j=1

N
∑

i=1

∣

∣

∣

(

wj
)T

xi − yji

∣

∣

∣
(4.29)
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Consequently, by the nature of the problem, it is possible to solve the latter formulation by
combining the solutions of 300 subproblems of the type:

min
wj∈Rd

N
∑

i=1

∣

∣

∣

(

wj
)T

xi − yji

∣

∣

∣
∀j = 1 . . . 300 (4.30)

Each of these non-linear problems behaves like the linear regression model explained in sec-
tion 4.2, and consequently it can be replaced by the following equivalent linear problem:

min
wj∈Rd,z∈RN

N
∑

i=1

zi s.t. − zi ≤
(

wj
)T

xi − yji ≤ zi ∀j = 1 . . . 300 (4.31)

where z ∈ R
N is a new variable.

The subdivision into smaller problems is the key to the solution of the problem.
We than produced an amplpy script for linear optimization and we worked to parallelize it

into multiple GPU’s provided by the HPC framework of the department. However as we will
see in the last chapeter we did not achieve this result.

4.4.4 A2 : improvingthealignmentthroughFrank-Wolfemethod

For the computation of the second alignmentmatrixW2 using the FWmethod, we start from
the following formulation, based on the 0-norm [39], which, by the way, is not a proper norm.

Taking into accountW ∈ R
d×d,A ∈Rd×N , z ∈ R

N we can write:

W2 = argmin
W,A,z

∥z∥0 s.t. − ai ≤Wxi − yi ≤ ai, eTai = zi (4.32)

where ai is the i-th column ofA as usual, and e is a vector of 1 s. In our case the 0-norm
should lead to a better solution for our purposes, since it minimize the error function z by
distributing less its components between 0 and the maximal value.
It is possible then to rely on the following approximation of the objective function:

∥z∥0 ≈

N
∑

i=1

(

1− e−αzi
)

= f(z) (4.33)

whereα is a fixed positive integer. Therefore, we obtain a concave function, given by a finite
sum of concave functions, depending only on the variable z.
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∇f (xk) · x = ∇f (zk) · z (4.34)

since ∂f

∂wl
j

= ∂f

∂a
j
i

= 0 ∀ j = 1, .., d, l = 1, . . . , d, i = 1, . . . , N . As a result, the
minimization problem on which the computation ofW2 relies becomes:

min
A,W,z

∇f (zk) · z s.t. − ai ≤Wxi − yi ≤ ai, eTai = zi (4.35)

Let us call Ω the feasible set containing all the possibleW ∈ R
d×d,A ∈ R

d×N , z ∈ R
N

satisfying the constraints above. Now, let us see the pseudocode of the version of the FW al-
gorithm we use. We recall that zk ∈ R

N , gk := ∇f (zk) ∈ R
N and it are parameters which

change value throughout the iterations of the algorithm,while ϵ, used for the cut-off condition,
is fixed. At the beginning of the algorithm, (gk)i is initialized as (g0)i

Algorithm 4.2Norm-0 FWAlgorithm
1: Initialize iteration counter it to 0.
2: Initialize vector (gk)i for each i = 1 toN using (g0) · i.
3: Perform optimization to findA,W, and z that minimize∇f(zk) · z subject toZ ∈ Ω.
4: Increment iteration counter it to 1.
5: repeat
6: Copy values of vector z into (zk)i for each i = 1 toN .
7: Calculate (gk)i for each i = 1 toN using αe−α(zk)i .
8: Perform optimization to findA,W, and z that minimize∇f(zk) · z subject to z ∈ Ω.

9: Increment iteration counter it by 1.
10: until

∑N

i=1(gk)i(zi − (zk)i) ≥ −ϵ

However, the processing of such an algorithmwould again require the resolution of a prob-
lem containing almost 5 millions of constraints at each iteration (in line 3 and then in line 8).
It is possible to realize a subdivision of the problem into smaller problems in order to make the
computation lighter, by the following substitutions:
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eTai =
300
∑

j=1

aji = zi ⇒

⇒ ∇f (zk) · z =
N
∑

i=1

(gk)i zi =
N
∑

i=1

(gk)i

300
∑

j=1

aji =
N
∑

i=1

300
∑

j=1

(gk)i a
j
i =

300
∑

j=1

N
∑

i=1

(gk)i a
j
i

(4.36)
Consequently, the optimization problem becomes:

min
A,W

300
∑

j=1

N
∑

i=1

(gk)i a
j
i s.t. − ai ≤Wxi − yi ≤ ai (4.37)

Since f(z) is a concave function, (gk)i > 0 ∀i = 1, . . . , N , this means that the previous
problem can be solved by combining the solutions of 300 subproblems of the type:

min
aj ,wj

N
∑

i=1

(gk)i a
j
i s.t. − aji ≤

(

wj
)T

xi − yi ≤ aji ∀j = 1, . . . , 300 (4.38)

wherewj ∈ R
d and aj ∈ R

N are the j-th rows ofW andA. Similarly as before, let us call
Ωj the feasible set containing all the possiblewj ∈ R

d and aj ∈ R
N respecting the constraints

above, for each j. In this case, the pseudocode becomes:

Algorithm 4.3 FWOptimization Algorithm Rewritten
1: Initialize iteration counter it to 0.
2: Initialize vector (gk)i for each i = 1 toN using (g0)i.
3: Find aj andwj that minimize

∑N

i=1(gk)ia
j
i subject to aj, wj ∈ Ωj for j = 1 to 300.

4: Increment iteration counter it to 1.
5: repeat
6: Compute (zk)i as

∑300
j=1 a

j
i for each i = 1 toN .

7: Update (gk)i as αe−α(zk)i for each i = 1 toN .
8: Find aj andwj that minimize

∑N

i=1(gk)ia
j
i subject to aj, wj ∈ Ωj for j = 1 to 300.

9: Increment iteration counter it by 1.
10: until

∑N

i=1(gk)i

(

∑300
j=1 a

j
i − (zk)i

)

≥ −ϵ

We are certain that the algorithm converges in a finite number of steps because, it can be
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proved, that the problem:

min f(x) s.t. x ∈ C (4.39)

with f ∈ C1 (Rn) concave function lower bounded on C , and C ⊆ R
n polyhedron, can

be optimized via a Frank-Wolfe algorithm with unit stepsize (as in our case). The algortihm,
indeed, converges to a stationary point in a finite number of steps.

In our case, the function f to minimize is concave, and the feasible setsΩj are polyhedrons,
since they are intersections of linear constraints, thus we can apply this technique. Moreover, it
is possible to obtain a further reduction of the dimension of the problem by applying the idea
proposed by Rinaldi et al. ((2008)), which is based on the following consideration:

if (zk)i = 0⇒
300
∑

i=1

aji = 0⇒ aji = 0 ∀j = 1, . . . , 300⇒

⇒ 0 ≤
(

wj
)T

xi − yi ≤ 0⇒
(

wj
)T

xi − yi = 0

Consequently, let us define the set of indices I0 = {i = 1, . . . , N s.t. (zk)i ̸= 0}, and the
j-th minimization subproblem becomes:

minaj ,wj

∑

i∈I0
(gk)i a

j
i

s.t. (wj)
T
xi − yi = 0 ∀i /∈ I0

−aji ≤ (wj)
T
xi − yi ≤ aji ∀i ∈ I0

Let us call Ω̄j the space containing all the possible wj ∈ R
d and aj ∈ R

N respecting the
new constraints above, for each j. Finally, the pseudocode can be modified by replacing the
lines 3 and 8 with:

aj, wj ← arg min
aj ,wj

∑

i∈I0

(gk)i a
j
i such that a

j, wj ∈ Ω̄j∀j = 1 . . . 300

Again, through the modeling language AMPL and CPLEX algorithms it is possible to find
the optimal solution forW3

25
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4.4.5 Notionsof ‘Distance’ inEmbeddingSpacesPreservingWords’
Similarity

Cosine similarity

One of the fundamental measures for our experiments is the cosine similarity which is often
used in NLP as we showed in section 1.3.1. In particular we define it as:

si(w) := cos (Wix⃗, y⃗) (4.40)

This formula is used in our experiments as a measure of distance both for our nearest neigh-
bours computation between the target space and the the mapped space, but also to find the
nearest neighbours of the target space itself.

where x⃗ ∈ V1 and y⃗ ∈ V2 are the representations ofw in the two embedding spaces.

CSLS (Cross-Domain Similarity Local Scaling)

TheCSLS (Cross-Domain Similarity Local Scaling) is anotherway tomeasure distances among
words in embedding spaces and it has been proved to work better onmachine translation tasks
[1]. This score is not necessarily a number between 0 and 1 if the vectros are not normalized.

The CSLS score is calculated using the formula proposed in [30]:

CSLS(x, y) = −2 cos(x, y) +
1

k

∑

y′∈NY (x)

cos (x, y′) +
1

k

∑

x′∈NX(y)

cos (x′, y) (4.41)

where NY (x) is the set of k nearest neighbors of x in the target space. The authors built
this retrieval criterion into their marginmodel by using unpaired words (those with no explicit
translation in the training set) as negative samples when computing nearest neighbors

The CSLS score depends on the difference between the cosine similarity and the norms of
the target and source words. This means that CSLS scores can be positive, negative, or close to
zero, depending on the specific vectors and their relationships.

Typically, when using CSLS for nearest neighbor search or other tasks words of the target
space with an high CSLS score are considered as more similar to the source word. However,
there is no specific range restriction for CSLS scores, and their interpretation should depend
on the specific context and application.
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5
Experiments

5.1 OurNewspapers Dataset

The data we are provided with are from the JRC (Joint Research Center Data Catalog) under
the EMM (European Media Monitor). The Europe Media Monitor (EMM)* family of appli-
cations has been analysing up to 220.000 news reports per day since 2004. EMM recognizes
names mentioned in the news in more than twenty languages and decides automatically for
each newly found name whether it belongs to a new entity or whether it is a spelling variant
of a previously known entity. This resource allows EMM users to display news about people
or organisations even if their names are spelt differently or if the news articles are written in
different languages and scripts.

We requested two datasets of all their Italian news articles concerning politics from Decem-
ber 2017 to April 2018 and from June 2022 to October 2022. We received 331k articles for
the period 2017− 2018 and 591k for 2022. As it can be seen in Figure 5.3 the sources are het-
erogeneous. For the first period we counted 510 sources of newspapers articles. In the second
period this number doubled, rising to 1018 sources. For this reason, we restricted ourselves to
the journals active in both periods. From this intersection, we obtained a list of 431newspapers
that we classified in left and right to test the methodology and search for social bias.

This choice was made because of the Italian elections, which have always been a period of

*For more informations see http://emm.newsbrief.eu/overview.html
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great polarization of opinions in newspapers among the different parties. In particular, for
what concern the first period, the elections took place Sunday 4March 2018, the results saw
the centre-right establish itself as themost voted coalition, with around 37% of the votes, while
the single most voted list, the Five StarMovement (M5S), garnered over 32% of the votes [49].
It is important to remember that the Five Star Movement and the League are considered anti-
establishment parties thus their view or belief is one which stands in opposition to the con-
ventional social, political, and economic principles of a society. For what concern the second
period data, in the elections of Sunday 25 September 2022 the results saw the center-right led
by Giorgia Meloni with the Fratelli d’Italia party establish itself as the coalition with the most
votes, with around 44% of the preferences, winning an absolute majority in both chambers.
These data represent a good testing ground for our alignment algorithm since we expect a great
deal of polarization and political bias due to the political situation.

Figure 5.1: Distribution of votes in the Chamber
of Deputies by party list for 2018 elections, source
Wikipedia

Figure 5.2: Distribution of votes in the Chamber
of Deputies by party list for 2022 elections, source
Wikipedia

The classification of these 431 newspapers as left and right, in order to create the two em-
bedding spaces, was done referring to [50]. The categorical classification is:
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• Right party: 2

• Center party: 1

• Left party: 0

• Unclear: un

For the sake of space, we do not report the full list with all the journals common to the two
periods, but just the names of the sources classified as right or left party.

LEFT PARTY RIGHT PARTY
avanti, liberta, mattinopadova, ilmattino 247libero, ilsussidiario, libero-news

repubblica, corriere, la7, ilrestodelcarlino, ilmanifesto LaNazione, ilmiogiornale, ilgiornale
lastampa, ilmessaggero, redattoresociale, espressorepubblica iltempo, panorama, avvenire

nextquotidiano, flcgil, radiopopolare secoloditalia, loccidentale

Table 5.1: Set of classified newspapers in left and right party

As demonstrated in Figure 5.3, there is a disproportionate number of articles published by
247libero, which is classified as right wing, compared to left wing newspapers.

Figure 5.3: Distribution of Italian newspapers sources composing the dataset. Percentage number of articles for every source.

As we can see there are many newpapers inside our list. Classifying newspapers based on
their political affiliation can be a challenging task, and it often involves analyzing their content,
editorial stance, and historical context. Sincewe have to classify each one of them as left or right
party the classification could be personal and dictated to our current knowledge and could lead
to unexpected results during the experiments.
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Italian elections andtheChameleon-LikeCharacteristicsof the ItalianPo-
litical Scene

As we mentioned in the previous chapter we are searching for social bias in Italian newspapers
published after the elections. Tobetter understand the contextweprovide a brief descriptionof
the Italian electoral setting in order to understand how subtle and complex is the whole topic.

National-level elections in Italy are periodically called to form a parliament consisting of two
houses: the Chamber of Deputies (Camera dei Deputati) with 400members; and the Senate
of the Republic (Senato della Repubblica) with 200 elected members, plus a few appointed
senators for life. Italy is a parliamentary republic, and the President of the Republic is elected
for a seven-year term. Italy’s electoral system has been constantly reformed since the 1980s in
an attempt to adapt to the country’s parliamentary system, but not without complexity†. It
is currently governed by the Rosatellum bis law of 2017, which enshrines direct universal suf-
frage through a so-called mixed electoral system, that is, one that combines the use of majority
and proportional representation. Elections for the lower house of parliament and the Senate
are held in one round. While general elections are normally held every five years in Italy, early
elections can be called by the president after dissolution of parliament, as happened in 2022.
The Italian electoral system has an additional specificity due to its mixed voting system. It al-
lows ItalianMPs and senators to have multiple candidacies. Each candidate can be the leading
candidate in a constituency (called a single-member constituency) and, at the same time, be
present on up to five other regional lists. In addition to this complexity, it should be noted that
government policies are often not well-defined when it comes to major issues such as combat-
ing tax evasion, managing immigration flows, and handlingwelfare. This is due to the so-called
‘Chameleon-Like’ or ‘Transformism’ effect adopted by political parties to secure as many votes
as possible during elections [51].

5.2 Preprocessing

In the context of our research, we conducted a series of preprocessing steps on the textual data.
For the design of the preprocessing we took inspiration from [52]. These steps were aimed
at standardizing and cleaning the text, ensuring that it is ready for subsequent analysis. It is
important to note that these preprocessing steps were specifically designed for Italian text data,
and they may vary for other languages or specific tasks.

†For further informations visit https://temi.camera.it/leg18/temi/tl18_riforma_elettorale.html
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1. Exclusion of Title: To streamline our analysis, we excluded the titles of articles from
our text data. This choice is due to the fact that in the 80% of cases the title is a simple
repetition of the first line of the article.

2. Removal of Non-Alphanumeric Tokens: All non-alphanumeric tokens, such as spe-
cial characters and symbols, were removed from the text. This step helped eliminate
noise and ensured that our analysis focused on meaningful content.

3. Lowercasing: To maintain consistency and reduce the dimensionality of the text data,
all characters were converted to lowercase.

4. Removal of Direct Quotes: Any text enclosed within quotation marks was removed
from the corpus. This step aimed to exclude quoted content that might not be relevant
to our analysis.

5. Handling Non-ASCII Characters: Non-ASCII characters were replaced with their
closest ASCII equivalents. This transformation ensured that the text was consistently
encoded.

6. Period Handling: Periods (full stops) were removed, except in cases where they did not
indicate the end of a sentence. Additionally, end-of-sentence periods were replacedwith
the token ‘PERIOD’.

7. Numerals Handling: Numerals were removed from the text, except in cases where they
represented ordinal numbers (e.g., ‘first’, ‘second’).

Another preprocessing step could be remove all proper names (words starting with a capital
letter).

In some applications there is also a subsampling or minimum count parameter in order to
mitigated the influence of rare and infrequent words, but we did not apply this technique to
preprocessing. The previous preprocessing steps were crucial to prepare the text data for the
subsequent analysis. By standardizing the text and removing noise, we aimed to enhance the
quality and consistency of our data, allowing for more robust and meaningful results in our
research. It is often considered good practice to evaluate embeddings using analogy or syntax
tests. However, in our case, since we are working with Italian word embeddings rather than
English ones, we encountered challenges in finding suitable tests tailored to our context. The
lack of appropriate evaluation benchmarks for Italian embeddings posed a significant obstacle;
thus, we do not have an evaluation of our embeddings.

As a disclaimer for the mathematical notation used refer to 2.
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5.3 MUSE Framework

5.3.1 Embedding Space CreationWith FastText

MUSE library provide an alignment technique based on FastText embeddings. These embed-
dings guarantees more flexibility because they take into account subword informations as men-
tioned in section 1.5.1. In this way we can test bias of words less worried about making an out
of vocabulary (OOV) mistake because of plurals or word variations.

The corpus of text considered for the experiments are all 331k articles of the first period (p1)
divided into left and right respectively according to the criterion of Table 5.1

The software is optimised to work using CUDA and was adapted and run on the cluster of
GPUs provided by the university.

In all experiments the source space corresponds to the right-party articles while the target
space corresponds to the left-party articles.

5.3.2 Supervised Results

We should remember that theMUSEmethod, in its supervised form, employs Procrustes align-
ment, as described in the orthogonal methodology of section 2.1.2. This methodology is su-
pervised because it requires the presence of parallel data, which means having a dictionary of
source words and their respective translations in the target space. In our case we used as par-
allel data the words itemized in 3.2. This is essential for aligning the two spaces through SVD
decomposition. This alignment algorithm enables the calculation of the translationmatrix for
a substantial dictionary. In the case at hand, the dictionary for both spaces comprises approxi-
mately 200k words.

Since the words more likely to be affected by societal bias (Table 3.1) are too many to be
plotted in the same space, we divided the analysis into substeps. In particular we further di-
vided our list of words into sub-lists containing the gender/sexual related, political and racial
connotation words.

WordsWith Racial Discriminative Connotation

Words with racial connotations are terms associated with specific racial or ethnic groups and
can be offensive, derogatory, or perpetuate stereotypes. It is important to note that using such
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words can be hurtful, disrespectful, and perpetuate discrimination and prejudice. The words
we selected for our experiments correspond to the first row of Table 3.1.

Figure 5.4: Distribution of racial related words in Italian using supervised MUSE. Source in blue (right party), target in red.
Reduction to 2D space via PCA.

As we can see in Figure 5.4, where we plot the distribution of words in a two dimensional
space, the words belonging to the parallel dictionary are almost perfectly superimposed and
thus aligned, see words: ‘foglia’, ‘fuoco’ and ‘casa’. The Variance explained by the PCA is 0.07.
The otherwords corresponding to racial relatedwords are however still not aligned between the
two right party (blue) and left party (red) embedding spaces, showing that either stable words
are not such good pinpoints or that these words are used differently by the two parties.

After this preliminary analysis, we moved on to the next step of computing the 5 nearest
neighbours using as metric distance the cosine similarity as explained in section 4.4.5. The
complete results can be seen in the BONs repository. Here, for the sake of space we report just
themore interesting results. On the left sidewe have right partywords and on the left side there
are right party words.
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Nearest neighbors of ‘africano’:

1. 1.0000 - africano

2. 0.8861 - nordafricano

Nearest neighbors of ‘negro’:

1. 1.0000 - negro

2. 0.7185 - bianco

Nearest neighbors of ‘schiavo’:

1. 1.0000 - schiavo

2. 0.8541 - schiavotto

Nearest neighbors of ‘africano’:

1. 0.3901 - ritrosiadiffidenza

2. 0.3834 - sombrero

Nearest neighbors of ‘negro’:

1. 0.4047 - marigold

2. 0.3920 - marlboro

Nearest neighbors of ‘schiavo’:

1. 0.4228 - malocchio

As expected right newspapers use highly discriminative words such as ‘negro’ and usually
also other terms as ‘africano’ and ‘schiavo’. On the contrary left side journals never used that
words directly sincewe never have a cosine similarity of one. All cosine similarity in this case are
very low meaning that in the left party dictionary is difficult to find words analogically related
to racial biased ones.

WordsWith Gender Discriminative Connotation

The same analysis is applied to words with a gender discriminative connotation. An example
of themost interesting results is given by the following list. On the left silde we have right party
words and on the left side there are right party words.
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Nearest neighbors of ‘omosessuale’:

1. 1.0000 - omosessuale

2. 0.9218 - omosessualita

Nearest neighbors of ‘gay’:

1. 1.0000 - gay

2. 0.7185 - gaypride

3. 0.6803 - lesbichegaybisessualitrans

Nearest neighbors of ‘lesbica’:

1. 1.0000 - lesbica

2. 0.8451 - arcilesbica

Nearest neighbors of ‘omosessuale’:

1. 1.0000 - omosessuale

2. 0.8654 - omosessualita

Nearest neighbors of ‘gay’:

1. 1.0000 - gay

2. 0.6786 - gaypride

Nearest neighbors of ‘lesbica’:

1. 1.0000 - lesbica

2. 0.7696 - arcilesbica

In Figure 5.5 we can see the result after applying PCA reduction.

Figure 5.5: Distribution of gender related words in Italian using supervised MUSE. Source in blue (right party), target in red
(left party). Reduction to 2D space via PCA.
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Words Carrying Political Bias

As in the previous experiments we report a list of themost impressive results obtained applying
cosine similarity distance to find the nearest neighbor of a word. On the left side we have right
party words and on the left side there are right party words.

Nearest neighbors of ‘padrone’:

1. 1.0000 - padrone

2. 0.8331 - padrepadrone

Nearest neighbors of ‘nuovo’:

1. 1.0000 - nuovo

2. 0.7158 - nuovoinizio

Nearest neighbors of ‘operaio’:

1. 1.0000 - operaio

2. 0.8482 - preteoperaio

Nearest neighbors of ‘comunista’:

1. 1.0000 - comunista

2. 0.9330 - excomunista

Nearest neighbors of ‘fascista’:

1. 1.0000 - fascista

2. 0.9246 - afascista

3. 0.8922 - parafascista

Nearest neighbors of ‘padrone’:

1. 1.0000 - padrone

2. 0.8465 - canepadrone

Nearest neighbors of ‘nuovo’:

1. 1.0000 - nuovo

2. 0.6551 - nuova

Nearest neighbors of ‘operaio’:

1. 1.0000 - operaio

2. 0.8979 - operaiodi

Nearest neighbors of ‘comunista’:

1. 1.0000 - comunista

2. 0.9633 - excomunista

3. 0.9394 - neocomunista

Nearest neighbors of ‘fascista’:

1. 1.0000 - fascista

2. 0.9399 - sfascista

3. 0.9375 - postfascista

As we can see in Figure 5.6 we have that the two sub spaces of words of the right and left side
appear divided into two sub spaces when represented via PCA reduction. This implies that the
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wordswe choose are used differently by the two parties. We can notice that the supervised align-
ment is done respecting the parallel data we have given since the word ‘foglia’ is superimposed
at itself.

Figure 5.6: Distribution of political related words in Italian using supervised MUSE. Source in blue (right party), target in red.
Reduction to 2D space via PCA.

The first consideration to do is that the two parties used the word ‘padrone’ in two different
ways. For the left wing the second nearest neighbor was ‘canepadrone’ which is an Italian of-
fense. In Italian, indeed, the word ‘cane’ means dog and it is used as an offense in some cases
such this one. On the contrary the right party second nearest neighbor is ‘padrepadrone’ which
is used when one imposes its dominion over others.

5.3.3 Unsupervised Results

In this section, we apply the same methodology to the case where the alignment is carried out
using unsupervised methods and adversarial training, as proposed in [1]. In this scenario, the
model is not provided with any parallel data dictionary that defines fixed points around which
to perform the alignment.
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WordsWith Racial Discriminative Connotation

In the following list we can compare words of right party on the left side of the list and on the
left party on the other side. As usual cosine similarity is computed to find the nearest words in
both the mapped spaceWX and compared with the ones of the target space Y . We focus on
words with racial discriminative connotation.

Nearest neighbors of ‘africano’:

1. 1.0000 - africano

2. 0.8861 - nordafricano

Nearest neighbors of ‘indiano’:

1. 1.0000 - indiano

2. 0.7681 - francoindiano

Nearest neighbors of ‘schiavo’:

1. 1.0000 - schiavo

2. 0.8541 - schiavotto

Nearest neighbors of ‘africano’:

1. 0.6686 - africano

2. 0.6666 - nordafricano

Nearest neighbors of ‘indiano’:

1. 0.5835 - indiavolato

2. 0.5460 - kawasaki

Nearest neighbors of ‘schiavo’:

1. 0.5957 - schiavo

2. 0.5861 - schiavoni

In Figure 5.7 we can see a plot of the result after applying PCA and superimposing mapped
source and target space. Variance explained by PCA in this case is 0.09.

Surprisingly the results are similar to the ones obtained with the supervised method.

WordsWith Gender Discriminative Connotation

In this case the results obtained on the words that should be subject to social bias are similar
to the results obtained with the unsupervised method. For this reason we just report the PCA
reduction plot in Figure 5.8.

Words Carrying Political Bias

Also in this case the results of the method are similar and in some cases equal to the results
obtained using the supervised approach. For this reason er report only the PCA plot of the
alignment in Figure 5.9. It is important to notice that, since themethod is unsupervised it does
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Figure 5.7: Distribution of racial related words in Italian using unsupervised MUSE. Source in blue (right party), target in red.
Reduction to 2D space via PCA.

Figure 5.8: Distribution of gender related words in Italian using unsupervised MUSE. Source in blue (right party), target in
red. Reduction to 2D space via PCA.
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not has in input parallel data. This fact can be noticed looking, for example, at the word ‘foglia’
which in this case is not superimposed in itself.

Figure 5.9: Distribution of political related words in Italian using unsupervised MUSE. Source in blue (right party), target in
red. Reduction to 2D space via PCA.

From the previous analysis we can highlight the fact that MUSE unsupervised and super-
vised method produce the comparable results in terms of bias highlighting via nearest neigh-
bours. The same result in the framework of machine translation is also mentioned in [1].

5.4 NormOne approach

Here we present the results of the application of the norm-1 algorithm to our dataset. This
approach is different form the once adopted inMUSE since, all embeddings used were trained
using the Gensim library. The training model used is the Skip-Gram, the words’ window con-
sidered is 5words long and the vector size isd = 300 and trained for five epochs. The algorithm
is tested on the dataset using the amplpymodule and the linear optimization programCPLEX,
for more information on the scripts used please refer to the BONs repository‡. The algorithm
was tested on a dataset of the first period (p1). In particular, we just analysed approximately
the first 10k articles belonging to the left and right newspapers respectively. This choice was

‡For additional informations see: https://github.com/Pietrosanguin/BONs
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made because of the compuational bottleneck imposed by the amplpy algorithm implemen-
tation. After applying preprocessing (refer to 5.2), the words common to both text corpora
were taken. Clearly, the constraint of having to take the intersection of the two vocabularies
presents a not insignificant restriction in itself. This intersection resulted in 4367 words com-
mon to both corpora, i.e. common to the left and right articles. The present algorithm was
thus launched to optimise, by means of linear programming, a relatively small problem. We
are in fact talking about two source and target embedding matricesX,Y ∈ R

4367×300, thus
relatively small when compared to the matrices optimised by MUSE which can have as many
as 200k rows.

However, the use of amplpy and CMPLEX takes quite a long time to solve this kind of
problem. We are talking about 150min. However there is a sequence of mini-goals that is to
nearly every programming problem: make it run, make it right andmake it fast. Note that this
list does not start with make it fast. For the moment, we have therefore limited ourselves to
make it run and make it right. It is important to remember that this type of algorithm does
not require parallel data and should be able to reveal any bias within the text. The algorithm
implemented is still not parallelized to work onmultiple GPUs since it makes use of the library
pulse which is not still optimized to support CUDA. Furthermore the algorithm requires the
two dictionaries to have the same number of wordsD1 = D2 since it aims to extract the words
which changemore. For these reasons we took the intersection of the dictionaries. ThemapA
and the corresponding translation matrixW minimizes the error only on words which would
not drastically change after applyingA. Because of this limitations the vocabulary considered
in the experiments is given by the words that belong to both the source and the target space
D1 ∩ D2. This operation is a further reduction in vocabulary dimension. In the experiment
source is in blue, which in this case represents left wing words and target is in red representing
right party words, the result is shown in Figure 5.10.

Because of the limitation on the number of words imposed by the algorithm (we are consid-
ering just 4367words some of the biased words reported in Table 3.1 are OOV. For this reason
we tested just the following words that were part of the vocabulary and subject to social bias.
The words are: ’vecchio’, ’ragazza’, ’ragazzo’, ’uomo’, ’donna’, ’comunista’, ’fascista’, ’fuoco’.

FromFigure 5.10we can see that the result is not properlywhat expected. The alignedwords
are indeed the once thatwe expected to bemore farwhen represented in this joint space. Indeed
words like ’comunista’ and ’fascista’ are strongly politically biasedwords. What results from this
analysis is that words ’vecchio’, ’ragazzo’ and ’uomo’ are strongly biased in our text corpora.
The tests done with the FW norm-0 methodology gave really similar results, thus we decided
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Figure 5.10: Distribution of political related words in Italian. Source in blue (left party), target in red (right party). Reduction
to 2D space via PCA.

to not report them.
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6
Conclusion and Future Works

It is clear from the research conducted in this thesis that word embeddings, while powerful
tools for natural language processing, are not immune to the biases present in the corpora on
which they are trained. The main objective of this project was to examine how embedding
spaces change following an alignment. Specifically, we aimed to determine whether the same
identical words in the same language are mapped to the same vector after an alignment. The
outcomes obtained when applying this method to real-world data, such as newspaper articles,
do not necessarily validate the effectiveness of this technique as theymay not align with our ini-
tial expectations as experimenters and this result can be caused by many different causes. The
results obtained in this study demonstrate that certain words in the Italian language are more
prone to bias than others, as evidenced by the differences in their embeddings across different
corpora. Notably, words like ’negro,’ ’africano,’ and ’schiavo’ were found to be highly discrim-
inative in right-leaning newspapers, while left-leaning newspapers showed significantly lower
cosine similarities for thesewords, suggesting a conscious avoidance of such biased terminology.
To facilitate further research and the replication of our experiments, we have created a shared
and open-source GitHub repository named BONs. This repository contains the necessary re-
sources for analyzing bias in monolingual texts, aligning embeddings using the MUSE library,
and conducting similar experiments in other linguistic contexts. However, it is important to ac-
knowledge that our proposed alignment algorithm, adapted from unsupervised methods and
linear programming, did not yield the expected alignment results for words that are commonly
associated with bias. This discrepancy may be attributed to factors such as potential misclassi-
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fication of texts as left or right-leaning, limited text data used (approximately 4300 words), and
other underlying complexities in bias detection.

In terms of future work, there are several avenues to explore. One potential direction is
to conduct additional tests using a broader range of words to gain a more comprehensive un-
derstanding of bias in different contexts. Additionally, considering the limitations of cosine
similarity, using alternative similarity measures such as CSLS (Cross-Domain Similarity Local
Scaling) could provide more nuanced insights into bias detection.

Furthermore, evaluating Italian embeddings using established benchmarks and testing their
performance against other linguistic tasks would be beneficial. This evaluation could help val-
idate the effectiveness of the alignment algorithm and its applicability to different languages.

In conclusion, this thesis has shed light on the intricacies of bias within word embeddings
and introduced an alignment algorithm as a tool for bias detection. While challenges remain in
refining and improving the alignment process, this research aims at addressing bias in natural
language processing and contributes to the ongoing efforts to create fairer and more equitable
AI systems.
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A
Appendix

A.1 Proof of solution under orthogonality

Constraining W to be orthogonal
(

W TW = I
)

, the original minimization problem can be
reformulated as follows (see 2.1.4):

argmin
W

∑

i

∥Xi∗W − Yi∗∥
2

= argmin
W

∑

i

(

∥Xi∗W∥
2 + ∥Yi∗∥

2 − 2Xi∗WY T
i∗

)

= argmax
W

∑

i

Xi∗WY T
i∗

= argmax
W

Tr
(

XWY T
)

= argmax
W

Tr
(

Y TXW
)

In the above expression,Tr(·) denotes the trace operator (the sum of all the elements in the
main diagonal), and the last equality is given by its cyclic property. At this point, we can take
the SVDofY TX asY TX = UΣV T , soTr

(

Y TXW
)

=Tr
(

UΣV TW
)

= Tr
(

ΣV TWU
)

.
Since V T ,W andU are orthogonal matrices, their product V TWU will also be an orthogonal
matrix. In addition to that, given that Σ is a diagonal matrix, its trace after an orthogonal
transformation will be maximal when the values in its main diagonal are preserved after the
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mapping, that is, when the orthogonal transformation matrix is the identity matrix. This will
happen when V TWU = I in our case, so the optimal solution will beW = V UT .
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