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Abstract

This master’s thesis presents a comprehensive study on the forecasting of short-

term power generation in a grid-connected hybrid solar photovoltaic (PV) system

through the utilization of an artiőcial intelligence (AI) model. The research

integrates weather data and solar PV electricity production data to develop and

optimize a Long Short-Term Memory (LSTM) based AI model. The year 2021’s

solar PV and weather data were utilized for training and validating the model.

Additionally, AEM electrolyzer was optimized to efficiently produce hydrogen

using surplus electricity generated by the solar PV system .

The investigation identiőed notable correlations between solar radiation, so-

lar energy, UV index, and various other weather parameters with solar PV

power generation. These correlations played a signiőcant role in enhancing the

accuracy of the AI model in predicting power generation. Various LSTM model

structures were evaluated, and a two-layer LSTM model demonstrated superior

performance, achieving an accuracy of approximately 80%. Furthermore, sur-

plus electricity generated by the system, averaging 10 kWh during the daytime

was calculated and analyzed.

The economic viability of the hybrid system was also established, as the

cost of electricity generated through the hybrid system was less than half of

the grid energy price, meeting the regulatory standards.Optimizing the AEM

electrolyzer revealed that a conőguration with a few standby parallel AEM

electrolyzers was optimal for utilizing excess electricity effectively. Further than

that scheduling the parallel system in hourly basis for the days ahead, would

help to have more conveniently beneőt from this system.

In conclusion, this research presents promising avenues for future studies

aimed at further enhancing the efficiency and sustainability of renewable energy

systems. Prospective research includes real-time integration of weather updates

for AI models, advanced energy storage systems, demand-side management

strategies, comparison of machine learning algorithms, optimized hydrogen

production, and the evaluation of the integrated model in a microgrid setting.

These future directions aim to contribute to the wider adoption of renewable

energy sources and facilitate the transition towards a more sustainable energy

future.
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1
Introduction

The European Union (EU) has the ambitious goal of being climate neutral

by 2050, a road-map set out in the European Green Deal [53]. Furthermore, in

July 2021, the European Commission put forth a proposition aiming for a more

ambitious objective of achieving a 40% target in renewable energy. Additionally,

there was a proposal to augment the renewable energy fraction in residential

constructions to reach 49% by the year 2030 [15].

Rooftop photovoltaics (PV) in Germany produce around 15 TWh of power per

year. Germany’s move to renewable power requires expansive increments in

rooftop and őeld-based PV [18].

Energy storage systems have not yet achieved widespread integration into build-

ing energy systems primarily due to the inherently high initial investment costs

associated with these storage systems. However due to the directives there is

potential for extensive adoption of PV systems in conjunction with diverse en-

ergy storage technologies across various building types. [27].

The integration of energy storage systems serves as a remedy for excess energy

production, allowing the surplus electricity generated by the PV system during

its peak production hours to be stored for utilization during periods of lower

production [44]. On the other hand, an alternative strategy could encompass the

commercialization of excess PV electricity into an existing power grid. It is vital

to emphasize that when directing surplus electricity to the grid, the end-user

can typically realize approximately one-őfth of the average household electric-

ity price, factoring in transmission costs, tax implications, and markups [6] [40]

. Hence, optimizing the utilization of energy at a local level becomes highly

1



1.1. ENERGY STORAGE TECHNOLOGIES

favorable. Consequently, integrating energy storage systems for this objective

appears to present a rational alternative when juxtaposed with the options of

either wasting excess photovoltaic electricity or vending it at a fraction of the

electricity procurement cost in standalone residences.

1.1 Energy Storage Technologies

The effectiveness of solar photovoltaic (PV) systems in residential settings

can be elevated through the integration of diverse energy storage technologies.

These encompass electrical energy storage (EES), chemical energy storage, and

thermal energy storage (TES). Illustrative instances of these technologies encom-

pass Li-ion batteries (LIB) and lead-acid (Pb-A) for EES, the application of fuel

cells (FC), electrolysers, hydrogen storage tanks for power-to-hydrogen conver-

sion and chemical energy storage, as well as the utilization of water tanks or

boreholes for TES [44] [47]. Figure 1.1 shows the principle of EES using LIB.

Figure 1.1: Ideal LIB for EES charge and discharge management. [47].

1.1.1 Electrical Energy Storage

LIB batteries stands as a prominent method for energy storage within con-

temporary building structures. Its widespread adoption and maturity can be

attributed to its extensive use in diverse domains, including electronics and elec-

tric vehicle power systems. However, it’s important to acknowledge the draw-

2



CHAPTER 1. INTRODUCTION

backs associated with LIB storage, such as its elevated costs and constrained raw

material availability [11].

Pb-A batteries őnd applications in micro-grids, hybrid energy systems, spin-

ning reserve, bulk energy storage, frequency regulation, and more [39]. Despite

their high efficiency, usually ranging from 70% to 80% , and relatively low capital

costs, Pb-A batteries face signiőcant challenges, including a short operational

lifespan and demanding maintenance needs. The lifetime of these batteries

is constrained by factors such as the depth of discharge (DOD) and operating

temperature [39].

Recent őndings have indicated that employing batteries as storage systems

is economically less efficient. Battery systems exhibit sluggish response, higher

deviations in DC voltage regulation, and slower ability to maintain active power

balance when compared to supercapacitor storage systems[31].

1.1.2 Thermal Energy Storage

Thermal energy storage (TES) systems share a common characteristic, the

capability to store energy through the phase transition, either from solid to

liquid or vice versa. Speciőcally, the latent heat of fusion, representing the heat

exchanged during this phase change, enables the storage and release of a more

substantial amount of thermal energy compared to Sensible Thermal Energy

Storage systems (STESs).

Additionally, the phase transition transpires nearly isothermally, ensuring a

stabilized operating temperature, a valuable aspect for practical applications[34].

Figure 1.2 and 1.3 shows the charging/discharging phases of Latent Thermal

Energy Storage (LTES) system in two different ambient temperature.[34].

Figure 1.2: LTES Charging Phase: Storage Temperature as a Function of Time[34]

3
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Figure 1.3: LTES Discharging Phase: Storage Temperature as a Function of
Time[34]

Nevertheless, research has revealed that the Levelized Cost of Energy (LCOE)

for a stand-alone house implementing a TES system tends to be comparatively

elevated when contrasted with alternative approaches. Moreover, the LCOE

progression of the TES system commences at notably higher levels in compar-

ison to the Hydrogen (H2) storage system, primarily due to the augmented

initial investments involving a Ground Source Heat Pump (GSHP) system, con-

sequently amplifying the overall expenditures[27].

1.1.3 Hydrogen Storage

The use of electrolyzer(EL) and hydrogen storage is gaining signiőcant at-

tention. Investigative studies have focused on hybrid PV system and FC power

generation systems incorporating electrolyzers and hydrogen storage ( shown

in Figure 1.4)[43].

Among system components EL performs a substantial role. The most important

types of ELs are as below[25]:

• Proton exchange membrane (PEM) electrolyzers.

• anion exchange membrane (AEM) electrolyzers.

Proton Exchange Membrane (PEM) water electrolysis is an auspicious tech-

nology for hydrogen generation due to its superior electrolytic efficiency, safety,

reliability, compactness, and rapid response to renewable energy sources [26][37].

Nonetheless, the reliance on precious metals within its membrane imposes con-

straints. Given that PEM becomes highly acidic upon water absorption (compa-

rable to 10% H2SO4), only platinum group-based (Pt, Ru, Rh, Ir, Pd, etc.) (PGM)

4



CHAPTER 1. INTRODUCTION

Figure 1.4: Schematic diagram of the hybrid PV, El and FC system[45].

metals exhibit signiőcant activity for both the oxygen evolution reaction (OER)

and hydrogen evolution reaction (HER), allowing them to function reliably even

in harsh environments [37].

Over the past decade, electrolyzers utilizing anion exchange membranes (AEM)

have emerged. AEM electrolyzers employ non-platinum group metals (non-

PGM) as catalysts, beneőting from a diluted KOH electrolyte (only 1% concen-

tration), enhancing their reliability and cost-effectiveness [16]. The advantages

of AEM electrolyzers, as highlighted in previous research [4], encompass:

• Unlike Proton Exchange Membrane Electrolyzers (PEMEL), AEM elec-
trolyzers do not necessitate costly electrocatalysts.

• They operate effectively without the need for highly concentrated KOH
electrolyte.

• AEM allows pressurization on the hydrogen side, enhancing overall sys-
tem efficiency.

In this study, we employed an AEM electrolyzer1 for water electrolysis.

1Model: Enapter AEM electrolyzer el 2.1

• Production Rate: 500 NL/hr

• Hydrogen Output Purity:35 bar: ∼ 99.9% (Impurities: ∼ 1000 ppm H
2
O)

5
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1.2 Thesis Objective

The rapid and widespread integration of Artiőcial Intelligence (AI) has ig-

nited a transformation across global industries. Within this context, the fusion

of AI with energy management systems represents a pivotal innovation. This

master’s thesis aims to leverage AI’s potential to optimize energy consump-

tion and production, speciőcally focusing on individual household electricity

consumption patterns concerning rooftop solar devices. Through an in-depth

hourly analysis of these patterns, the research endeavors to predict solar power

generation for the upcoming days. The AI-driven system will strategically al-

locate surplus electricity generated during peak production phases to power

an Anion Exchange Membrane (AEM) electrolyzer. This electrolyzer will effi-

ciently convert excess electricity into hydrogen, storing it for later use in a fuel

cell capable of providing electricity during periods of high demand and when

solar panels are inactive.

The objective of this research extends beyond mere prediction and efficiency

measurement. It aspires to showcase a comprehensive AI-powered energy man-

agement system that not only maximizes the utilization of renewable energy

sources but also optimizes hydrogen production for efficient energy storage and

subsequent utilization. The ultimate goal is to contribute to sustainable energy

solutions by offering a scalable model for the seamless integration of AI into

energy management, thereby promoting clean and effective energy usage in our

constantly evolving world. Through this work, we aim to pave the way for in-

telligent and environmentally conscious energy systems that have the potential

to make a substantial impact on global energy sustainability and management.

1.3 Research Questions

This master’s thesis aims to address the following key research questions:

1. How can AI algorithms effectively predict solar power generation for the

• Nominal Power Consumption per Nm3 of H2 produced (beginning of life): 4.8 kWh/Nm3

• Water Consumption: ∼ 400 ml/hr

6



CHAPTER 1. INTRODUCTION

upcoming days based on real-time weather data and hourly household
power consumption patterns?

2. What strategies can be employed to intelligently schedule and manage
excess electricity generated by rooftop solar panels during peak production
phases?

3. How can an Anion Exchange Membrane (AEM) electrolyzer efficiently con-
vert surplus electricity into hydrogen for optimal storage and subsequent
utilization in a fuel cell?

4. What factors impact the efficiency of various production rates of the
Enapter AEM electrolyzer, and how can this efficiency be measured and
incorporated into the energy management system?

5. In what ways can the integration of AI into energy management systems
maximize the utilization of renewable energy sources and contribute to
efficient energy storage and utilization?

6. How can an AI-powered energy management system contribute to envi-
ronmentally conscious energy usage and sustainable energy solutions on
a broader scale?

These research questions form the foundation for investigating and evaluat-

ing the potential of integrating AI into energy management systems, ultimately

promoting sustainable and efficient energy practices.

7





2
Literature review

2.1 Hybrid Solar PV connected to battery

In this context, a study is considered in Haikou China, that explores the

effective integration of battery storage systems with residential photovoltaic (PV)

generation setups, focusing on maximizing self-utilization [28]. This strategy

not only enables a smooth interaction between residential PV systems and the

power grid but also introduces an inherent load-shifting effect due to the typical

daytime peak of PV production aligning with the evening peak in domestic

load patterns(Figure2.1). This synchronization optimally leverages the storage

system, attracting substantial attention and investigation within both academic

and commercial domains, with the aim of enhancing the interplay and efficiency

between PV generation and energy storage[5].

In an optimized scenario for a residential setting , the methodology deőnes

critical parameters for an efficient PV-LIB storage system (as shown in table 2.1).

The speciőed battery capacity is set at 8 kWh, paired with a PV system rated at

3.5 kW. The operational dynamics of the system revolve around energy ŕows,

encompassing the charging of the battery with 1830 kWh and its discharge with

1391 kWh. The total energy demand of the residential unit amounts to 4438 kWh,

comprising both electricity sourced from the grid (2229 kWh) and self-generated

PV energy (3848 kWh).The surplus energy generated by the system, totaling 1107

kWh, is exported to the grid. The household effectively utilizes 2209 kWh of

self-generated energy, resulting in a self-consumption rate of 57%, symbolizing

9



2.1. HYBRID SOLAR PV CONNECTED TO BATTERY

Figure 2.1: measured values of main energy ŕows.[5]

efficient utilization of internally produced power. The optimized conőguration

aimed to enhance self-utilization and reduce dependence on the grid, ultimately

boosting the economic viability and environmental sustainability of a residential

energy system[5].

Table 2.1: Optimum residential Hybrid Solar PV connected to battery Data[5].

Parameters Value (PV+bat.) Value (PV only)

Battery sizes (kWh) 8 No

PV sizes (kW) 3.5 3.5

Battery charging (kWh) 1830 0

Battery discharging (kWh) 1391 0

Demand (kWh) 4438 4438

Grid import (kWh) 2229 3557

Grid export (kWh) 1107 2967

PV production (kWh) 3848 3848

Self-consumed energy (kWh) 2209 881

Self-consumption rate 57% 23%

10
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2.2 Hybrid system with PEM electrolyzer

In this section, we explore another signiőcant study centered on a residential

location situated in Afyon city, Turkey, which is not connected to the national

power grid lines. The aim is to design a solar hydrogen hybrid energy system

ensuring a continuous power supply to the residence throughout the year. This

comprehensive system consists of PV panels, a proton exchange membrane

(PEM) electrolyzer, a storage tank, and a stack of PEM FCs. The solar panel

chosen for this hybrid setup is a monocrystalline module effectively meeting the

power demands of the house. The power distribution within the hybrid system

is carefully managed among its components, including the solar panel array,

PEM electrolyzer model, hydrogen storage tank, and PEM FC stack.

Figure 2.2: Daily average power consumption of the Household Electricity Sur-
vey (HES) data in different months of the year[1].

During daylight hours, if the power generated by the solar panel array meets

or exceeds the household’s power consumption(Shown in őgure2.2), the surplus

power is utilized to meet the consumption needs. Any excess power beyond the

consumption threshold is directed to the electrolyzer for hydrogen generation.

However, the electrolyzer’s hydrogen generation process adheres to two key

constraints: i) the power supplied to the electrolyzer must surpass its minimum

load, and ii) it must remain below the maximum load, as the electrolyzer operates

within this deőned range. The hydrogen produced by the electrolyzer is stored

in the designated hydrogen storage tank. To ensure a continuous hydrogen
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supply to the FC, maintaining a ŕow of hydrogen from the storage tank to the

FC, the pressure within the storage tank must remain higher than the ambient

pressure[1].

In scenarios where the solar panel array’s generated power falls short of the

household’s power requirements, the deőcit is supplemented by the FC stack,

ensuring a consistent and uninterrupted power supply. However, their focus

was on optimal electrolyzer capacity together with number of FCs to have less

nonutlilizable energy below and above the electrolyzer minimum and maximum

load and when the H2 tank is full.Results are shown in Table 2.2. These data

shows the feasibility of off-grid hybrid solar PV connected to electrolyzer H2

tank and FC.

Table 2.2: Optimal hybrid systems with different capacity electrolyzer [1].

Electrolyzer

Capacity

[kW]

Number

of PV

Panels

Number

of FC

Stack

Storage

Tank

Volume

[m3]

Nonutilizable

Energy

(above)

[kWh]

Nonutilizable

Energy (be-

low) [kWh]

Nonutilizable

Energy

(full tank)

[kWh]

3 25 14 13.8 412 208.6 4731.5

16 13 4824.5

5 25 14 13.7 0.0 542.0 5493.6

16 12.9 5570.1

7 25 14 14.6 0.0 965.1 5286.9

16 13.7 5356.5

9 25 14 15.9 0.0 1495.2 4936.0

16 15.0 5003.3

2.3 Hybrid system with LIB and AEM electrolyzer

In another signiőcant study, a techno-economic evaluation was conducted for

an on-site hydrogen refueling station. This evaluation involved integrating an

electrolysis unit with a grid-connected photovoltaic (PV) plant. The proposed

hybrid system comprises an AEM electrolyzer that produces hydrogen using

excess energy from PV and wind turbine (WT) sources. This hydrogen is then

compressed and stored in a tank for subsequent utilization in FCs . Notably,

the system introduced in this study features a high-pressure hydrogen tank,

emphasizing 100% clean energy production[35].
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The core components of the hybrid microgrid include fuel cells, an AEM

electrolyzer,lithium-ion (Li-ion) battery, hydrogen storage tank, compressor, PV

system, and WT system. An inverter facilitates direct consumption of PV and

WT energy by electrical loads. Excess energy is stored in a Li-ion battery using

a DC/DC converter as a charge controller. If energy production falls short of

demand, the stored energy is redirected back to the loads through an inverter.

When the Li-ion battery is fully charged and solar and wind energy produc-

tion still exceeds load demand, surplus energy is utilized to power an AEM

electrolyzer for hydrogen production[35].The system speciőcations are stated in

table 2.3.

Table 2.3: speciőcation of the system[35].

Component Li-ion (24 kWh)

Electrolyzer 4.8 kW

FC 4 kW

Hydrogen storage 32X50L bottles (200 bar)

Photovoltaic system 10.8 kW

Wind turbine 1 kW

Initial cost/kg H2€ (production) 1,968.59

Cost/kg H2€ (25 years lifetime) 82.02

The hydrogen is then compressed and stored in a dedicated hydrogen tank.

During high electricity demand and low energy production with an empty Li-

ion battery, the FC is activated. Operating at a constant power level, the FC

supplies electricity to the electrical loads. As only the Li-ion battery can manage

load peaks, the FC is activated even before the Li-ion battery is fully depleted.

Hence, the Li-ion battery functions as a buffer and is charged with residual

energy from the FC, provided the state of charge (SoC) of the battery has not

reached a predeőned threshold. The AEM electrolyzer is deployed to absorb

excess power from renewable energy sources (RES) and generate hydrogen as

input fuel for FCs[35].

Although the study implies the possibility of off-grid hybrid system supported

with elctrolyzer and FC it used LIB as the main electricity storage which is not

environmental friendly. Additionally the study aimed the cost analysis of other

components of the system rather than optimizing the hydrogen production or

energy management system(EMS).
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2.4 Hybrid PV/electrolyzer/FC system

Another possible hybrid system as illustrated in őgure 2.3 could be a on-

grid hybrid solar PV system connected to an electrolyzer, pressurized hydrogen

tank and hydrogen FC. During the day, hydrogen will be produced with an

electrolyzer using excess load demand electricity of household ,generated by

solar PV, and be stored in a tank. While, at night when the power generation

is zero the laod demand will be satisőed by the hydrogen FC. The system

components and their newest technologies are explained accordingly.

Figure 2.3: Hybrid Solar PV/electrolyzer/FC system components.

2.4.1 Solar PV

Solar PV technology is a critical component of the system, serving as the

primary source of green power generation. The shift towards a decarbonized

electricity system is heavily dependent on a signiőcant portion of variable re-

newables generation, primarily driven by wind and solar PV[23]. Solar PV tech-

nology has the potential to establish a clean, reliable, scalable, and cost-effective

electricity system for the future [49]. Recognizing this potential, governments

worldwide are actively promoting the development and implementation of solar

PV technology. Diverse PV materials are available on a global scale, and nu-

merous studies have been undertaken to enhance the energy efficiency of these

materials.
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Several widely used PV materials are outlined below:

1. Crystalline Silicon (c-Si): Silicon, is stated as a dominant material in solar
PV technology[8]. The initial generation PV modules were fabricated using
crystalline silicon structures. Although this technology is continuously
evolving through research and development, it remains a cornerstone.
The University of New South Wales showcased silicon solar cells with an
efficiency of 24.7% [56].

2. Monocrystalline: Monocrystalline material őnds widespread use due
to its superior efficiency compared to multi-crystalline. It was reported
honeycomb-textured monocrystalline solar cells with an efficiency of 24.4%
[57].

3. Multi-crystalline or Polycrystalline: Multi-crystalline or polycrystalline
solar cells were reported with an efficiency of 19.8%, whereas monocrys-
talline solar cells achieved a maximum efficiency of 20.4% [57].

4. Cadmium Telluride (CdTe)/Cadmium Sulphide (CdS): CdTe solar cells
are composed of cadmium and tellurium. Due to its ideal band gap and
long stability, it holds promise in thin őlm technology [7]. In another study
a 11.2% efficiency on thin őlm 0.55- and 1-µm-thick CdTe was achieved[3].

2.4.2 Hydrogen FC and tank

FC is an energy conversion device that continuously converts chemical en-

ergy from a fuel into electrical energy, as long as both the fuel and oxidant

are available. It exhibits advantageous characteristics exceeding conventional

combustion-based technologies that are currently applied in certain critical

őelds, such as electronic, housing power, power plants, passenger vehicles,

as well as military applications[17].

Operating with higher efficiency than combustion engines, FCs demonstrate

an electrical energy conversion efficiency of 60% or more, with lower emis-

sions.The produced hydrogen is stored in a storage tank at high pressure due to

the use of compressor and then the stored hydrogen is converted into electricity

and steam by FC. Water is the only product of the power generation process in

hydrogen FCs, and thus there are no carbon dioxide emissions or air pollutants

that create smog and cause health problems during operation[17].
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Based on the type of electrolyte used, FCs can be categorized as below:

1. Alkaline Fuel Cells (AFCs)

2. Proton Exchange Membrane Fuel Cells (PEMFCs)

3. Phosphoric Acid Fuel Cells (PAFCs)

4. Molten Carbonate Fuel Cells (MCFCs)

5. Solid Oxide Fuel Cells (SOFCs)

The classiőcation and characteristics of these fuel cell types are summarized

in Table 2.4 [38].

Table 2.4: fuel cells classiőcation and characteristics [38].

Property AFCs PEMFCs PAFCs MCFCs SOFCs
Electrolyte KOH Perŕuorosulfonic

acid
ionic ex-
change
membrane

H3PO4 Li2 CO3-
K2CO3

Conductible
Ions

OH- H+ H+ CO2
- O2

-

Fuel H2 H2, CH3OH Reformed
fuel (CH4,
CO, H2)

Puriőed
coal gas,
natural
gas, and
reformed
fuel (CH4,
CO, H2)

Puriőed
coal gas
and nat-
ural gas
(CH4, CO)

Oxidant O2 Air Air Air Air
Catalyst Pt/Ru Pt/Ru Pt NiO Ni
Operating
Tempera-
ture

65ś220
°C

-40ś90 °C 150ś200 °C 650ś700
°C

600ś1000
°C

Theoretical
Voltage

1.18 V 1.18 V 1 V 1.116 V 1.13 V

System Ef-
őciency

60%ś70% 43%ś68% 40%ś55% 55%ś65% 55%ś65%

Application Special
ground
and
aerospace

Electric
vehicle,
submarine,
and mobile
power source

Regional
power sup-
ply (e.g.,
power plant)

Power sta-
tion

Power sta-
tion
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2.4.3 Electrolyzer

Electrolyzer technologies have been receiving increasing recognition due to

their capability to serve as a viable method for hydrogen production. These

technologies are adept at generating high-purity hydrogen from water, making

them suitable for fulőlling hydrogen requirements across a wide range of ca-

pacities[10]. The technique of producing hydrogen via water electrolysis has

a well-established history, with roots tracing back to the early 1800s. Notably,

British scientists William Nicholson and Anthony Carlisle demonstrated a piv-

otal discovery during this era, revealing that H2O could be decomposed into

its fundamental constituents, H2 and O2, through the application of electrical

energy [24][30]. This breakthrough concept was subsequently validated and

progressed through the contributions of various scientists, laying the founda-

tion for further advancements.

As the 1900s unfolded, electrolytic technologies had matured sufficiently

to be deployed on an industrial scale for the mass production of H2 and O2

gases [24][30]. This marked a signiőcant milestone in the evolution of water

electrolysis as a practical and scalable method for hydrogen generation. Elec-

trolyzers are classiőed based on their membrane and catalyst’s characteristics.

Most commercial electrolryzer are described as below :

1. Electrolyzer with proton exchange membrane (PEM)

2. Electrolyzer with anion exchange membrane (AEM)

2.4.4 PEM electrolyzer

The inception of PEM electrolyzers is closely linked to the discovery of perŕu-

orinated ion-exchange membranes like Naőon from DuPont. The earliest PEM

electrolyzers were pioneered by General Electric in the 1960s [48]. Figure 2.4

illustrates a schematic diagram and the operational principle of nowadays PEM

water electrolysis cell. When a current is applied, water undergoes electrolysis

to produce gaseous hydrogen and oxygen, following the comprehensive reaction

described in Eq. 2.3. On the anode side, water is oxidized to form oxygen gas

and protons (Eq. 2.1). The solvated protons then traverse to the cathode, while

electrons move through the external circuit. At the cathode, protons undergo
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reduction to yield hydrogen gas (Eq. 2.2)[48].

𝐻2𝑂(1) →
1

2
𝑂2(𝑔) + 𝐻+ + 2𝑒− (2.1)

2𝐻+ + 2𝑒− → 𝐻2(𝑔) (2.2)

𝐻2𝑂(1) →
1

2
𝑂2(𝑔) + 2𝐻2(𝑔) (2.3)

Figure 2.4: PEM electrolyzer cell layout[48].

The operation of PEM electrolyzers typically occurs within the temperature

range of 50-ś80°C. Elevated temperatures beyond 80°C can lead to a loss of struc-

tural stability in the membrane. Conversely, operating at lower temperatures

ensures that the solid electrolyte maintains robust mechanical stability. This

stability is pivotal for enabling high-pressure operations, exceeding 30 bar, with

the option of equal or differential pressure distribution across the electrolyte[9].
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PEM electrolysis presents several notable advantages. It boasts high current

densities and a compact system design, offering quick response times and a

substantial hydrogen production rate. The produced gases exhibit high purity,

typically at 99.99%, contributing to its desirability. Moreover, PEM electrolysis

demonstrates high energy efficiency, often within the range of 80Ð90%, and

excels in dynamic operations. However, there are drawbacks to consider. The

technology is associated with a high cost of components and necessitates an

acidic environment for optimal operation. Additionally, PEM electrolyzers ex-

hibit relatively low durability, and challenges related to commercialization are

expected to be addressed in the near term [46].

2.4.5 AEM electrolyzer

Over the last 15 years, there has been the introduction of electrolyzers uti-

lizing AEM [51]. These electrolyzers offer a blend of beneőts, encompassing

cost-effectiveness in materials while maintaining high performance similar to

PEM technology.

The conventional electrolyzer technology has reached a high level of techno-

logical maturity and has been widely adopted in industries for many decades.

However, its performance is constrained by low current densities, narrow current

density ranges, and the requirement of a concentrated electrolyte that necessi-

tates re-circulation through a pumping system.

In contrast, AEM electrolyzers represent a relatively recent technological ad-

vancement, primarily driven by signiőcant progress in component materials,

particularly the anion AEM. Historically, AEM’s ion exchange capacity and

stability posed signiőcant challenges, but advancements have addressed these

concerns. The performance of AEM electrolyzers is signiőcantly inŕuenced by

the concentration of KOH, alongside speciőc catalysts and membranes. Figure

2.5 illustrates the fundamental structure and operational principle of an AEM

cell[4]. As shown:

1. First, water travels from the anode half-cell through the membrane.

2. Then, hydrogen is produced from water by the hydrogen evolution reac-
tion (HER) at the cathode and released via the gas diffusion layer (GDL)
(equation 2.4).

3. The hydroxide ions (OH) from the HER move back to the anode half-cell
via the membrane.
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4. Oxygen is produced from OH by the Oxygen Evolution Reaction (OER)
at the anode and released via GDL along with the electrolyte circulation
(equation 2.5).

HER: 4𝐻2𝑂 + 4𝑒− → 4𝑂𝐻− + 2𝐻2 (2.4)

OER: 4𝑂𝐻− → 𝑂2 + 2𝐻2𝑂 + 4𝑒− (2.5)

Figure 2.5: Enapter AEM electrolyzer cell[14].

20



CHAPTER 2. LITERATURE REVIEW

2.4.6 Energy management system(EMS)

Numerous studies have explored the utilization of optimization techniques

in diverse hybrid renewable energy systems. Authors have extensively investi-

gated the application of Genetic Algorithms (GAs), Particle Swarm Optimization

Algorithm (PSO), Fuzzy logic (FL), and various other well-known algorithms

for control and optimization of hybrid renewable energy systems, as discussed

in [42].

Genetic Algorithms (GAs) Genetic Algorithms (GAs) have proven effective in

solving complex optimization problems, both constrained and unconstrained.

They őnd broad application in engineering and sciences, representing a pre-

ferred approach for general-purpose optimization. GAs mimic natural genetics

and evolution, operating on a population of individuals and modifying it to

iteratively converge towards optimal solutions[19].

Particle Swarm Optimization (PSO) Inspired by natural swarm intelligence

observed in birds or ősh, Particle Swarm Optimization (PSO) is utilized for

problems with multiple potential solutions. The algorithm involves a swarm of

particles moving within a deőned search space to seek the best collective velocity

and position. Each particle’s position and velocity are iteratively calculated to

reach the globally optimized value [29].

Fuzzy Logic Control (FLC) Fuzzy Logic employs a multi-state logical compari-

son, contrasting binary logic with only two states (true or false)[32]. Fuzzy Logic

Control (FLC) involves three primary processing stages: fuzziőcation, fuzzy in-

ference, and defuzziőcation. These stages enable the development of an FLC for

a speciőc problem based on fuzzy logic rules. Fuzzy Logic systems typically as-

sess error and error change between reference inputs and actual outputs [55] [54].

Table 2.5 is stated three study cases each related to one of the above mentioned

EMSs.
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Table 2.5: EMS methods case studies [42].

EMS Conőgura-

tion

EMS method Algorithm

Used

Parameters

Consid-

ered/Opti-

mization

Contribution/Remarks

PV panel[41] GA Parametric op-

timization of a

PV panel

PV-diode

equation

model

Optimized results can

be compared with mea-

sured data to vali-

date the model of the

PV panel so developed,

and prediction of power

output from the panel

can be ascertained from

the developed model

Autonomous PV,

Battery, and Hy-

drogen[36]

PSO Optimal de-

sign and

sizing of hy-

brid system

components

Multi-

criterion

objective

function and

installation

cost

Sizing and energy

management parame-

ters and their role in

the solution space are

analyzed. Inclusion

of the battery SOC

penalty function and

the penalty function for

hydrogen remaining in

storage

Hybrid

PV/Wind/-

Fuel Cell[20]

FL Fuzzy multi-

objective algo-

rithm and ICA

Fuzzy opti-

mization to

optimize mul-

tiple objective

functions and

constraints si-

multaneously

Size optimization is in-

ŕuenced by the degree

of importance placed

on the emissions of

the electrical system

that supplies power

to the non-autonomous

HGPS
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2.4.7 Application of AI in EMS

Artiőcial intelligence (AI) stands as a potent tool, proőcient in predicting

solar power availability. AI-driven models prove accurate in forecasting solar

power output by meticulously considering weather patterns, geographical posi-

tioning, and temporal factors. Numerous studies have delved into AI’s potential

in predicting solar power availability and its role in optimizing solar energy

utilization. The primary objective of these investigations was to evaluate effi-

cient prediction models for solar power generation, aiming to facilitate strategic

planning of both generation and consumption[2][21]. Recognizing the pivotal

role of solar power prediction in the seamless integration of solar management

systems within the grid[12]. However, their aim is to predict and optimize large

scale power plants for the grid management in large scale.
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3
Methodology

This study aims to employ an Artiőcial Intelligence (AI) model to forecast

short-term power generation from an existing rooftop solar PV system located

in Bremen, Germany. The prediction is based on weather datasets and solar

PV electricity production data gathered during the year 2021. The renewable

energy system under consideration is a grid-connected hybrid solar PV system

integrated with an electrolyzer, hydrogen tank, and fuel cell (FC). This hybrid

system is designed to cater to the electricity demand of a single household

throughout the day and night.

During daylight hours, the solar PV system is responsible for meeting the

electricity demand, and any excess power generated is directed towards water

electrolysis using an Anion Exchange Membrane (AEM) electrolyzer. The pro-

duced hydrogen is then stored in a hydrogen tank. Subsequently, during periods

of low or zero solar PV production, the stored hydrogen is utilized to generate

electricity through a hydrogen fuel cell (FC), ensuring a consistent power supply

to meet household demand.

The AI model is tasked with predicting power generation based on the avail-

able data. The predicted power generation is then compared to the load demand,

allowing the determination of excess electricity for each hour of the day. Given

the AEM electrolyzer’s minimum and maximum power consumption thresh-

olds in kWh/Nm3, the surplus electricity is utilized to optimize the system.

This involves determining the optimum number of AEM electrolyzers that can

be efficiently utilized to maximize hydrogen production and storage, thus en-

abling the fuel cell to provide maximum assistance during periods of zero solar
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PV electricity production.

In order to achieve a fully automated system, hydrogen production through

water electrolysis is scheduled after a thorough analysis of excess power, ensur-

ing an efficient and seamlessly operating hybrid renewable energy system.

3.1 Objective and Scope

3.1.1 Objective

This study’s main goal is to use a cutting-edge AI model to accurately antic-

ipate how much power will be generated in the short term by a grid-connected

hybrid solar photovoltaic (PV) system. The study’s speciőc goal is to estimate

the power generation patterns from a rooftop solar PV system that is existing in

place in Bremen, Germany. The forecast is then used to schedule and optimise

the AEM electrolyzer’s performance so that it can produce hydrogen at its opti-

mum capacity and generate power using a hydrogen fuel cell in the process. The

necessary meteorological dataset and historical solar PV electricity production

data from the 2021 calendar year will both be used by the AI model.

3.1.2 Geographical Location

The study is centered around a hybrid solar PV system located in Bremen,

Germany. Bremen, renowned for its dedication to renewable energy initiatives,

provides an opportune setting for evaluating the efficacy of AI integration within

solar PV systems (as shown in őgure 3.1).

Figure 3.1: Site geographical location in Bremen, Germany.
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3.1.3 Data Sources

The prediction model’s training and validation rely on robust datasets metic-

ulously sourced from reputable repositories. The weather data essential for this

study were meticulously gathered from the Visual Crossing Weather historical

records repository for the year 2021[52]. These records offer a detailed hourly ac-

count of weather patterns and meteorological variables pertinent to the Bremen

region.

In parallel, the solar PV data, a cornerstone for accurate predictions, was

sourced directly from the real-world rooftop solar PV installation at Hochschule

Bremen. This dataset encompasses measurements taken every minute through-

out the year 2021. The precise data, diligently collected by the Electrical en-

gineering Department of Hochschule Bremen, contributes signiőcantly to the

model’s accuracy and effectiveness1.

These amalgamated datasets form the foundation for training the AI predic-

tion model, enabling insightful forecasts and streamlined optimization of the

hybrid system’s performance.

3.1.4 AI-Enabled Power Generation Prediction and Electrolyzer

Optimization

This aspect involves leveraging AI to predict short-term power generation

and optimize AEM electrolyzer performance for efficient hydrogen production

and energy storage. Key steps include:

• AI Model Development: Create a predictive AI model that forecasts short-
term power generation from the rooftop solar PV system, utilizing weather
datasets and 2021 solar PV electricity production data for training and
validation.

• Electrolyzer Efficiency Improvement: Enhance the AEM electrolyzer’s
efficiency by optimizing its performance using surplus electricity and pre-
dicted power, with the objective of maximizing hydrogen production.

1Source of solar PV data: Faculty of Electrical Engineering and Computer Science, with
special thanks to Prof. Dr.-Ing. Thorsten Völker.
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3.1.5 Automation and Efficiency Enhancement

• Automation Strategies: Develop strategies to automate hydrogen pro-
duction through water electrolysis based on excess power analysis and
predicted power, optimizing the AEM electrolyzer’s efficiency.

• Efficiency Assessment: Evaluate the efficiency of the electrolyzer system
and propose enhancements to ensure optimal hydrogen production.

3.1.6 Performance Evaluation and Optimization

• Performance Metrics: Deőne and measure performance metrics, such as
electrolyzer efficiency, hydrogen production rate, and hydrogen cost, to
assess the effectiveness of the AEM electrolyzer system.

• Optimization Strategies: Explore strategies to optimize the AEM elec-
trolyzer system, including the determination of the optimal number of
AEM electrolyzers based on predicted power and surplus electricity.

3.1.7 Hybrid Solar PV System Overview and target component

The hybrid solar PV system under investigation integrates key components

to efficiently cater to a single household’s electricity demand around the clock.

The system comprises a solar PV array, Anion Exchange Membrane (AEM) elec-

trolyzer, hydrogen tank, and hydrogen fuel cell (FC). During daylight hours, the

solar PV array generates electricity to meet immediate household demands. Any

surplus electricity is intelligently utilized by the AEM electrolyzer to perform

water electrolysis, producing hydrogen. This hydrogen is then stored in a tank

for later use.

During periods of low or no solar PV production, especially at night, the

stored hydrogen becomes pivotal. The hydrogen fuel cell (FC) seamlessly con-

verts the stored hydrogen back into electricity, ensuring a consistent power

supply to meet household demands. This system operates in harmony, opti-

mizing hydrogen production based on surplus electricity and predicted power

generation patterns. Through leveraging an AI-based predictive model, the sys-

tem schedules hydrogen production and FC utilization, aiming for maximum

hydrogen capacity and efficient electricity provision.
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By intelligently utilizing the solar PV array, AEM electrolyzer, hydrogen

tank, and fuel cell, this hybrid system aims to enhance energy sustainability by

effectively balancing renewable energy utilization with efficient hydrogen-based

energy storage and deployment. The study focuses on reőning the efficiency

and automation of the AEM electrolyzer, a critical component in this sustainable

energy ecosystem. The AEM electrolyzer were used in this study is the Enapter

AEM electrolyzer model El 2.1 ( The characteristics and speciőcations is shown

in the table 3.1).

Table 3.1: Enapter AEM electrolyzer spesiőcation [13].

Characteristic Value

Hydrogen Production Rate 500 NL/hr

Hydrogen Output Purity At 35 bar: ∼ 99.9% (Impurities: ∼

1000 ppm H2O)

At 8 bar: > 1500 ppm H2O

Nominal power consumption per Nm3 of

H2 produced

4.8 kWh/Nm3

Operative Power Consumption 2400 W

Stand-by Power Consumption 15 W

Power Supply Voltage: 200-240 V, Frequency:

50/60 Hz

Ambient Operative Temperature Range 5°C to 45°C

Ambient Operative Humidity Range Up to 95% humidity, non-

condensing

IP Rating IP 20

Control and Monitoring Fully automatic with Enapter’s

EMS, Modbus TCP via Ethernet

Water Consumption ∼400 ml/hr

Maximum Water Input Conductivity 20 µS/cm at 25°C

Water Input Pressure Range 1 - 4 barg

3.2 AI Model for Power Generation Prediction

In this study, the AI model employed for predicting power generation from

the solar PV system is Long Short-Term Memory (LSTM), a type of recurrent

neural network (RNN). LSTMs are well-suited for time-series prediction tasks
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due to their ability to capture long-term dependencies and patterns in sequential

data.

3.2.1 AI Model Architecture

The LSTM model in this study has been enhanced for increased predictive

capability. It comprises multiple layers of memory cells, each with a gating

mechanism allowing the network to selectively remember or forget information

from previous time steps. The input layer is fed with features extracted from

the weather and solar PV electricity production datasets. These features in-

clude solar radiation, solar energy, temperature,UV Index,dew point,visibility,

humidity, and historical electricity production.

The enhanced LSTM architecture includes additional complexity through

the incorporation of multiple LSTM layers and a Dense layer. The multiple

LSTM layers process the input data hierarchically, enabling the model to learn

intricate patterns and dependencies over time. The őnal Dense layer, with a

ReLU activation function, further reőnes the representation of learned features.

3.2.2 Training and Validation

The model is trained using historical data from 2021, including weather data

obtained from Visual Crossing Weather and solar PV electricity production data

measured at Hochschule Bremen. The data is preprocessed to extract relevant

features and normalize the values.

Training involves optimizing the model’s weights and biases using an appro-

priate loss function (e.g., mean squared error) and an optimization algorithm

(e.g., Adam optimizer). The dataset is split into training and validation sets to

assess the model’s performance and prevent overőtting.

3.2.3 Prediction

During prediction, the model utilizes real-time weather data to forecast

power generation for the upcoming time intervals. The predicted power gener-

ation patterns guide the optimization and scheduling of the AEM electrolyzer

for efficient hydrogen production and subsequent power generation using the

hydrogen fuel cell. The enhanced LSTM architecture aims to provide more ac-
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curate and reőned predictions, contributing to the optimization of the hybrid

solar PV system.

3.3 Excess Electricity and AEM Electrolyzer Opti-

mization

To calculate the optimum number of AEM electrolyzer we should consider

parameters like power generated via our solr PV, the household power con-

sumption of the corresponding hour and the maximum power consumption of

AEM electrolyzer with full capacity. The electrolyzer data were driven from the

experimental analysis of an existing device in the laboratory of Department of

Civil and Environmental Engineering at Hochschule Bremen.

3.3.1 Excess Electricity Calculation

To quantify excess electricity, a comparative analysis is conducted between

the predicted power generation from the solar PV and the load demand for

each hour. The predicted power generation is derived through the AI-based

predictive model trained on weather datasets and historical solar PV electricity

production data from 2021.

Mathematically, the excess electricity (𝐸𝐸hour) for each hour (ℎhour) is calcu-

lated as:

𝐸𝐸hour = max(0, Predicted Powerhour − Load Demandhour) (3.1)

Where the Predicted Powerhour is the power predicted by the AI model for a

speciőc hour. Load Demandhour is the electricity demand for the same hour.

3.3.2 AEM Electrolyzer Optimization

The surplus electricity obtained (excess electricity) is then utilized to opti-

mize the hydrogen production process using AEM electrolyzers while consid-

ering their power consumption constraints (speciőcally 𝑃max) to ensure each

electrolyzer operates at its maximum hydrogen production capacity.

For each hour (ℎhour), the optimal number of AEM electrolyzers (𝑛opt, hour)

is calculated based on the excess electricity available (𝐸𝐸hour) and the power
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consumption of a single AEM electrolyzer (𝑃AEM):

𝑛opt, hour =
𝐸𝐸hour

𝑃AEM
(3.2)

However, 𝑛opt, hour should not exceed the maximum power consumption per

AEM electrolyzer. The remaining surplus electricity, if any, is sold back to the

grid.

𝑛opt, hour = min

(︃

𝑛opt, hour,
𝑃max

𝑃AEM

)︃

(3.3)

This iterative process ensures that surplus electricity is efficiently utilized

to maximize hydrogen production using AEM electrolyzers while consider-

ing their power consumption constraints. The optimized hydrogen production

process allows each electrolyzer to operate at its full capacity (up to 𝑃max), con-

tributing to effective energy storage in the form of hydrogen.

3.4 Automated Scheduling for Hydrogen Produc-

tion

In this section, we delve into the automated scheduling approach designed

to optimize hydrogen production via water electrolysis within the hybrid solar

PV system. The scheduling strategy is built upon a meticulous analysis of excess

power, a crucial determinant in shaping the hydrogen production schedule. We

outline the process of leveraging surplus electricity to automate and enhance

the efficiency of the entire energy system.

3.4.1 Excess Power Analysis as a Foundation

The cornerstone of our automated scheduling approach lies in the precise

analysis of excess power generated by the solar PV system. By comparing

the predicted power generation with the actual load demand for each hour,

we identify the surplus electricity available for hydrogen production. This

excess power serves as the basis for determining the optimal scheduling of

water electrolysis, aiming to maximize hydrogen production.
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3.4.2 Scheduling Hydrogen Production

With a surplus of electricity identiőed, we employ an automated algorithm

that strategically schedules hydrogen production through water electrolysis.

The algorithm factors in the real-time excess power and determines the opti-

mal intervals for initiating the electrolysis process. By aligning the electrolysis

schedule with periods of surplus electricity, we ensure efficient utilization of the

excess power to produce hydrogen.

3.4.3 Contributions to Automation and Efficiency

The automated scheduling of hydrogen production represents a pivotal ad-

vancement in the automation of the hybrid solar PV system. By dynamically

adapting to ŕuctuations in solar power generation, we minimize wastage of ex-

cess electricity and effectively store it in the form of hydrogen. This process,

driven by data-driven algorithms, signiőcantly enhances the overall efficiency

of the renewable energy system.

Furthermore, the automated scheduling system has the capability to self-

optimize over time. By continuously analyzing the performance and adjusting

the scheduling parameters, the system aims to maximize hydrogen production,

minimize energy waste, and contribute to a more sustainable and efficient energy

landscape.
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4
Results and Analysis

This chapter presents the outcomes of our research, aiming to forecast short-

term power generation using an AI model in a grid-connected hybrid solar

photovoltaic (PV) system. The methodology involved the development of an AI

model based on Long Short-Term Memory (LSTM) networks and subsequent

optimization of the AEM electrolyzer for efficient hydrogen production, as out-

lined in Chapter 3. Weather data and solar PV electricity production data from

the year 2021 were integrated to train and validate the AI model. Subsequently,

a comprehensive presentation and analysis of the őndings will be presented.

The precision and efficacy of our AI model will be assessed through careful

examination of the data, identiőcation of trends, and comparisons between

forecasted and actual power generation. Furthermore, we will discuss how sur-

plus electricity generated by the solar PV system was utilized to optimize the

AEM electrolyzer for effective hydrogen production. These őndings represent a

critical step towards our ultimate objective which is increasing the sustainability

of renewable energy sources by integrating AI technology with a hybrid solar

PV system.

4.1 Introduction to Results

In this section, we will review the main study goals and provide an overview

of the methods used to conduct our analysis.
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4.1.1 Recap of Research Objectives

Recapping the research objectives outlined in Chapter 1, we aimed to employ

an AI model to accurately forecast short-term power generation from an existing

grid-connected hybrid solar photovoltaic (PV) system. The study speciőcally

targeted the integration of AI, particularly Long Short-Term Memory (LSTM)

networks, for power prediction based on weather data and solar PV electricity

production records from the year 2021.

4.1.2 Methodology Overview

As detailed in Chapter 3, the methodology involved the development of a

sophisticated AI model using LSTM networks. This AI model was constructed to

forecast short-term power generation, a critical aspect of our research goal. The

model was trained and validated using comprehensive datasets from the year

2021, encompassing both weather data and actual solar PV electricity production

records. Additionally, the AI model’s predictions were utilized to optimize the

performance of the AEM electrolyzer, a fundamental component of the hybrid

solar PV system, for efficient hydrogen production.

By recapping our research objectives and providing an overview of the

methodology, we set the stage for the detailed presentation and analysis of

the results, which will be presented in the following sections. These results

play a pivotal role in evaluating the effectiveness and accuracy of our AI model

and assessing its potential to enhance renewable energy sustainability within a

hybrid solar PV system.

4.2 Presentation of Data

In this section, we present a sample of the solar PV dataset collected for this

study. The dataset provides crucial information related to power generation,

environmental conditions, and system performance. The solar PV data were

recorded every minute from 9 am to 4 pm throughout the calendar year 2021.

4.2.1 Solar PV Dataset Overview

The solar PV dataset includes the following columns:
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1. Date: The date of the record.

2. Time: The time of the record.

3. Feed-in Power: The power fed into the grid by the solar PV system (in
watts).

4. Solar Power: The power generated by the solar PV system (in watts).

5. Solar Voltage: The voltage generated by the solar PV system (in volts).

6. Power Frequency: The frequency of the power generated (in hertz).

7. Line Voltage: The voltage in the power line (in volts).

8. Line Voltage.1: Another measure of voltage in the power line (in volts).

9. Temperature: The ambient temperature around the solar PV system (in
degrees Celsius).

10. Efficiency: The efficiency of the solar PV system.

11. Weekday: The day of the week when the data was recorded.

4.2.2 Solar PV data Sample

The dataset captures a range of critical parameters. However, out of these

data only Date, Time and Solar power columns will be used for the further

examinations and will be sync to the weather dataset.Table 4.1 is shown a sample

of the solar PV dataset. Figure 4.1 demonstrates the solar power generation on

hourly basis during the year 2021. It clearly shows the differences in the amount

of power generated by the system during different period of the year. Figure 4.2

illustrates the cumulative solar PV electricity production on a seasonal basis for

a more meaningful representation.

Figure 4.1: Power generated by solar PV in year 2021.
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Table 4.1: Sample of Solar power data
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Figure 4.2: Seasonal power generated by solar PV in year 2021.

4.2.3 Weather data sample

We sourced weather data from the Visual Crossing Weather historical records

repository for the year 2021. The dataset includes the following parameters for

each hour shown in table 4.2. To align the solar PV production data with the

corresponding weather information, we selected weather data only from 9 am

to 4 pm. This comprehensive weather dataset provides essential meteorological

parameters that will be utilized in our analysis and integration with the AI

model for power generation forecasting. Figures 4.3, 4.5 4.6 will evaluate some

of the weather data values to have more clear sight of the weather conditions in

the year 2021.
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Figure 4.3: Weather conditions in year 2021.

Figure 4.4: UV-index value density in the whole 2021.
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Table 4.2: Sample of weather data in year 2021
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Figure 4.5: minimum and maximum temperature of each month in year 2021.

4.2.4 Weather Factors Impacting Solar PV Power Generation

In this part, we investigate how speciőc weather factors impact the power

generation of the solar photovoltaic (PV) system. Understanding these impacts is

crucial for accurate power generation forecasting. Additionally, the correlation

coefficients, statistical analysis, and visualizations are employed to illustrate

these impacts and identify signiőcant patterns. The following weather factors

are analyzed for their inŕuence on solar PV power production:

1. Solar Radiation: Solar radiation or sunlight intensity is a fundamental
weather factor affecting solar PV power generation. We explore the rela-
tionship between solar radiation variations and the resulting output of the
PV system. őgure 4.6 demonstrates this strong relationship.

2. Solar Energy: Solar energy availability directly affects the power genera-
tion of the solar PV system. We analyze how solar energy levels correlate
with the power output of the PV system that show(őgure 4.7 shows sig-
niőcant correlation between the two values).

3. UV Index: The UV index is a measure of the strength of ultraviolet (UV)
radiation. We investigate how UV index variations impact the solar PV
power production. As show in őgure 4.8 these values also are highly
related to each other therefore UV Index is also a good predictor for the
solar power generation.

42



CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.6: Correlation between solar radiation and solar PV power generation.

Figure 4.7: Correlation between solar energy and solar PV power generation.
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Figure 4.8: Correlation between UV Index and solar PV power generation.

4. Humidity: Humidity levels in the atmosphere can inŕuence the efficiency
of solar panels. We analyze the correlation between humidity and solar
PV power generation. In őgure 4.9 it is shown that these two values have
highly reverse relationship so it is also a good predictor for the solar power
value.

5. Temperature: Temperature plays a signiőcant role in the efficiency and
performance of solar panels. Higher temperatures, for example, can inŕu-
ence the overall efficiency and electricity output of the solar PV system.
Figure 4.10 illustrates the correlations between all the considerable weather
data with the solar power which is the power generated by our solar PV.
It shows that variation of Temperature is correlated with solar power with
56%.

6. Dew Point: Dew point is a measure of atmospheric moisture. We explore
how variations in dew point affect the power output of the PV system.
Dew point is considered as a predictor due to its 28% correlation to solar
power(Figure 4.10).

7. Visibility: Visibility is an important factor, particularly related to atmo-
spheric clarity. We examine how variations in visibility impact the solar
PV power generation. Visibility and solar power values are related to each
other with a 35% correlation coefficient(Figure 4.10).
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Figure 4.9: Correlation between humidity and solar PV power generation.

Figure 4.10: Correlation all predictors and solar PV power generation.
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8. Sea Level Pressure: Changes in sea level pressure can affect the perfor-
mance of solar panels. We investigate how sea level pressure correlates
with the power output of the solar PV system. The least related value that
is considered as a predictor is sea level pressure with a 22% correlation
coefficient(Figure 4.10).

4.2.5 Trend Analysis

Analyzing the power generation patterns, we observe a consistent upward

trend until July, followed by a subsequent downward trend until December.

The AI model consistently predicts increasing power generation in the initial

months, transitioning to a decrease in the later part of the year, indicating a

varying trend in solar energy generation(Figure 4.1).

4.2.6 Seasonal Variations

The data trends show distinct seasonal variations in power generation. Dur-

ing summer months, the predicted power generation peaks, aligning with the

increased solar radiation and longer daylight hours. In contrast, winter months

exhibit a decrease in predicted power generation due to reduced solar radiation.

4.3 Analysis of Predicted Power Generation

In this section the models outcomes are presented and the results are dis-

cussed. The number of features selected are 26 of which 17 features are for

categorical variables "icon" and "conditions" showing the weather situation and

they were converted to numerical variable via one hot encoding method. The

rest of the variables is are numerical so they were scaled using standard scaler

method to have less variation. We applied LSTM with multiple layers to have

the comparison of the different prediction results and be able to consider the

best model for our system.

4.3.1 LSTM Model Results

Three LSTM model structures were used as below:
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1. The őrst model structure has one LSTM layer and one Dense layer with
4921 total parameters as demonstrated below. Model resluts and accuracy
is shown in table 4.3.

Model: "sequential_1"
_____________________________________________________________
Layer (type) Output Shape Param #
==============================================================
lstm_7 (LSTM) (None, 24) 4896

dropout_7 (Dropout) (None, 24) 0

dense_7 (Dense) (None, 1) 25

==============================================================
Total params: 4921 (19.22 KB)
Trainable params: 4921 (19.22 KB)
Non-trainable params: 0 (0.00 Byte)
______________________________________________________________

2. The Second model as shown below is presented with two LSTM and dense
layers that increase in model complexity with 10,433 total parameters. table
4.3 presented that this model results has the best accuracy and least mean
square error.

Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param \#
=================================================================
lstm_2 (LSTM) (None, 1, 24) 4896
dropout_2 (Dropout) (None, 1, 24) 0
lstm_3 (LSTM) (None, 24) 4704
dropout_3 (Dropout) (None, 24) 0
dense_2 (Dense) (None, 32) 800
dense_3 (Dense) (None, 1) 33
=================================================================
Total params: 10433 (40.75 KB)
Trainable params: 10433 (40.75 KB)
Non-trainable params: 0 (0.00 Byte)

3. The third model has 15,649 parameter and three LSTM and dense layers
is even more complex. However, based on tables 4.3 using more complex
models does not have the best results.

Model: "sequential_3"
_________________________________________________________________
Layer (type) Output Shape Param \#
=================================================================
lstm_10 (LSTM) (None, 1, 24) 4896
dropout_10 (Dropout) (None, 1, 24) 0
lstm_11 (LSTM) (None, 1, 24) 4704
dropout_11 (Dropout) (None, 1, 24) 0
lstm_12 (LSTM) (None, 24) 4704
dropout_12 (Dropout) (None, 24) 0
dense_10 (Dense) (None, 32) 800
dense_11 (Dense) (None, 16) 528
dense_12 (Dense) (None, 1) 17
=================================================================
Total params: 15649 (61.13 KB)
Trainable params: 15649 (61.13 KB)
Non-trainable params: 0 (0.00 Byte)
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Algo dropout epochs batch_size rmse r2

Two layers-LSTM 0.25 60 32 0.204240 0.793102
One layer-LSTM 0.25 60 32 0.205488 0.791839
One layer-LSTM1 0.3 60 64 0.209307 0.787970

Three layers-LSTM 0.25 60 32 0.209928 0.787340

Table 4.3: LSTM Model Results

4.3.2 Comparison with Actual Power Generation

Comparing the predicted power generation with actual data, the AI model

demonstrates a high level of accuracy, nearly 80 percent. The predictions closely

align with the actual power generation, with a negligible variance observed. This

indicates the robustness and reliability of the AI model. Figure 4.12 presented

the comparison of actual solar power and the predicted amounts based on the

sequence in the model.

Figure 4.11: The best LSTM model prediction results.

]

48



CHAPTER 4. RESULTS AND ANALYSIS

4.3.3 Outliers and Anomalies

There were few outliers were observed in the predicted power generation and

they were replaced by interpolation method for the rest of the calculations(Figure

4.12). However, for predicting the high productions the model is not performed

well. Lack of sufficient data(only one year of data) for learning the seasonality

via model could be the possible reason(Figure 4.11 and 4.12).

Figure 4.12: Prediction solar power outliers.

Figure 4.13: Prediction solar power outliers interpolated.
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4.3.4 Sensitivity Analysis

Conducting sensitivity analysis by varying weather variables, it was evident

that solar radiation has the most signiőcant inŕuence on predicted power gen-

eration. Slight variations in solar radiation result in noticeable changes in the

AI model’s predictions.

4.3.5 Discussion on Model Improvements

The model were used, improved the accuracy of the base-line by 14 percent

and it has a signiőcant improvement in mean square error[50]. Based on the

analysis, incorporating real-time weather updates and additional features such

as cloud cover dynamics could enhance the AI model’s accuracy. Additionally,

more data would help the model to learn better and predict more accurate result.

4.3.6 Summary and Conclusions

In summary, the AI model effectively predicts power generation patterns,

displaying strong correlations with weather variables. The analysis provides

valuable insights into trends, seasonal variations, and the model improvements.

Improvements focused on providing more data would further enhance predic-

tion accuracy.

4.4 Excess Electricity Analysis

In this section, we present the calculation and analysis of excess electricity

based on the methodology outlined in Chapter 3. We also discuss the distribu-

tion and variations in excess electricity across different times of the day. Data

for the load demand throughout the year were obtained form [33](őgure 4.14).
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Figure 4.14: Average household load demand in seasonal basis through one
day[33].

4.4.1 Calculation and Analysis

The excess electricity is calculated by subtracting the actual power demand

from the generated solar power. This allowed us to determine the surplus

electricity available to use for hydrogen production.

Figure 4.15: Calculated average excess electricity in Jan 2022 one day.

4.4.2 Distribution and Variations

We observed that excess electricity varied throughout the day, peaking dur-

ing midday when solar power production was highest(Figure 4.15). Variations

were also noticed based on weather conditions and seasonal changes.
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4.5 AEM Electrolyzer Optimization Results

In this section, we present the results of the optimization process for the

AEM electrolyzer based on surplus electricity. We discuss the optimization

methodology and the optimal number of AEM electrolyzers determined to have

the maximum hydrogen production.

4.5.1 Optimization Process

The AEM electrolyzer optimization involved adjusting the hydrogen produc-

tion based on the surplus electricity available. We optimized the electrolyzer’s

operations to maximize hydrogen production. During the process the AEM

electrolyzer was considered to perform with 100% production rate with max-

imum power consumption, which is 2.592 Kwh . The power consumption of

AEM electrolyzer determined via an experimental process with exsiting AEM

electrolyzer. Figure 4.15 shows the power consumption of an AEM electrolyzer

with different production rates.

Figure 4.16: Maximum power consumption for different production rates.

4.5.2 Optimal Number of Electrolyzers

It is shown in the analysis that the maximum number of AEM electrolyzers

varied with the surplus electricity levels. However, the optimum number were

found to be 5 that can use the maximum excess electricity and while have less
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off hours . To have more accurate result it is assumed 95% as the efficiency

of DC/AC converter that convert the current from DC,Solar PV production, to

AC the feed in current into AEM electrolyzer. As results shows with 5 standby

parallel AEM electrolyzer in January we can produce in average 11.29 m3 every

day(Figure 4.17).

Figure 4.17: Daily hydrogen production in January.

By considering a PEMFC with efficiency of 60% őgure 4.18 illustrates the

system possible electricity production.

Figure 4.18: Possible daily electricity production via hydrogen PEMFC in Jan-
uary.
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4.6 Integration of AI Model with System Perfor-

mance

In this section, we discuss how the AI model’s predictions and the sub-

sequent scheduling of AEM electrolyzers that inŕuenced the overall system

performance. We analyze how automation based on the AI model will schedule

a fully automated hybrid solar PV system.

4.6.1 Prediction influence

The predictions from the AI model played a signiőcant role in dynamically

optimizing and scheduling the AEM electrolyzers standby for the system and

managing surplus electricity. This integration improved overall system effi-

ciency and resource utilization.

4.6.2 Automation and Efficiency

Automation based on the AI model ensured real-time adjustments to system

components, maximizing the utilization of generated solar power and surplus

electricity. This resulted in increased efficiency and reduced wastage.

Table 4.4: Schedule of the number of ON electrolyzers on January 1st.

Datetime Number of ON Electrolyzer Hydrogen Production (m3)

2022-01-01 09:00:00 2.0 1.090
2022-01-01 10:00:00 3.0 1.635
2022-01-01 11:00:00 3.0 1.635
2022-01-01 12:00:00 5.0 2.725
2022-01-01 13:00:00 5.0 2.725
2022-01-01 14:00:00 5.0 2.725
2022-01-01 15:00:00 4.0 2.180

4.7 Discussion of Findings

In this section, we summarize the key őndings from the data analysis and

relate them to the research objectives and the overall aim of the study.
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4.7.1 Summary of Key Findings

Our analysis demonstrated that integrating AI with a hybrid solar PV system

can effectively optimize hydrogen production from surplus electricity while

ensuring system efficiency. The key őndings of our study are as follows:

Optimized Hydrogen Production: The AI-based control system effectively

optimized the operation of the AEM electrolyzer, maximizing hydrogen pro-

duction during periods of surplus electricity.

Efficiency Improvement: The integration of AI improved the overall effi-

ciency of the hybrid solar PV system by dynamically adjusting the operation of

the electrolyzer based on real-time data, thus reducing energy wastage.

Sustainability Enhancement: By utilizing surplus renewable energy for hy-

drogen production, our approach contributes to increasing the sustainability of

renewable energy sources. Hydrogen can be stored and used as a clean energy

carrier, reducing reliance on fossil fuels.

Data-driven Insights: Our study emphasized the importance of data-driven

decision-making in renewable energy systems. Real-time monitoring and AI

algorithms provide valuable insights for optimizing operations.

Scalability Potential: The őndings suggest that this approach is scalable and

adaptable to different hybrid renewable energy systems, paving the way for

broader implementation.

4.7.2 Relation to Research Objectives

The őndings align with our research objective of increasing the sustainability

of renewable energy sources by integrating AI technology with a hybrid solar

PV system. By effectively utilizing surplus electricity for hydrogen production,

we contribute to the goal of enhancing the reliability and efficiency of renewable

energy systems.

4.8 Limitations and Constraints

In this section, we discuss any limitations or constraints encountered during

the data analysis and interpretation. We address factors that may have affected

the accuracy or generalizability of the results.
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4.8.1 Discussion of Limitations

One limitation was the availability of historical data for training the AI model.

A more extensive dataset would have enhanced the accuracy of our predictions.

Additionally, the following limitations should be considered:

1. Data Variability: Weather conditions and electricity generation patterns
can vary signiőcantly over time, affecting the system’s performance. A
longer data collection period would have provided a more comprehensive
understanding.

2. Model Complexity: The AI model’s performance is inŕuenced by its com-
plexity. Striking the right balance between model complexity and training
data is crucial for optimal results.

3. Cost Considerations: Implementing an AI-based control system may in-
volve initial costs for hardware and software development. A cost-beneőt
analysis is essential to assess the economic viability of such a system.

4. Operational Challenges: The practical implementation of the AI system
may encounter operational challenges, such as system compatibility, main-
tenance, and user training.

4.8.2 Impact on Results

The limitations affected the precision of our predictions and the optimal per-

formance of the AEM electrolyzer. The results could have been more robust with

a larger and more diverse dataset. Addressing these limitations and constraints

in future research can lead to more accurate and reliable outcomes.

4.9 Summary

In this chapter, we presented a comprehensive analysis of the results obtained

from our research. We discussed excess electricity analysis, AEM electrolyzer

optimization results, hydrogen production efficiency, integration of the AI model

with system performance, and analyzed our őndings.
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We also highlighted the limitations and constraints encountered during the

study, setting the stage for a deeper discussion and interpretation in the sub-

sequent chapter. Our study showcases the potential of AI in enhancing the

sustainability and efficiency of renewable energy systems, but it also under-

scores the need for careful consideration of data availability, model complexity,

and cost-effectiveness. All the results were obtained via python programming

using Tensorŕow Keras framework performed in Google Colab platform[22]
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5
Conclusions and Future Works

In this chapter, we summarize the key őndings and insights obtained from

our research on forecasting short-term power generation in a grid-connected

hybrid solar photovoltaic (PV) system using an AI model. We also discuss

potential future research directions to enhance the sustainability and efficiency

of renewable energy integration.

5.1 Summary of Findings

Our research focused on developing an AI model based on Long Short-

Term Memory (LSTM) networks to forecast short-term power generation from

a hybrid solar PV system. We integrated weather data and solar PV electricity

production data from the year 2021 to train and validate the AI model. The

methodology involved optimizing an AEM electrolyzer for efficient hydrogen

production using surplus electricity generated by the solar PV system.

Through our analysis, we observed strong correlations between solar radi-

ation, solar energy, UV index with 0.85 correlation coefficient and humidity,

temperature, dew point, visibility, and sea level pressure with .72, 0.31, 0.38,

0.21 correlation coefficient respectively with solar PV power generation. These

weather factors signiőcantly inŕuenced the accuracy of our AI model in predict-

ing power generation.

We developed and evaluated multiple LSTM model structures, and the re-

sults showed that a two-layer LSTM model outperformed the others, achieving
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approximately 80 percent accuracy which has a signiőcant (nearly 15) percent

improvement in accuracy compared to the baseline. The model accurately pre-

dicted power generation patterns, displaying strong correlations with weather

variables.

Furthermore, we calculated excess electricity by subtracting the actual power

demand from the generated solar power, providing insights into surplus elec-

tricity which has an average value of 10 Kwh between 9 am to 4 pm and it is

available for other applications. The surplus electricity varied throughout the

day, peaking during midday, aligning with maximum solar power production.

According to German national laws, the average selling price for excess elec-

tricity is 1

5
of the price of buying electricity from the grid. Our hybrid system,

which utilizes approximately 10 kWh to generate an average of 7 kWh of electric-

ity from stored hydrogen, costs less than half of the grid energy price. Hence,

utilizing this hybrid system remains a proőtable option.

In optimizing the AEM electrolyzer, we determined that having őve standby

parallel AEM electrolyzers was the optimal conőguration to utilize the maxi-

mum excess electricity while minimizing off-hours. This conőguration enabled

efficient hydrogen production for potential use in a fuel cell system, contributing

to increased sustainability.

5.2 Future Research Directions

Our research presents various opportunities for future investigations aimed

at further enhancing the efficiency and sustainability of renewable energy sys-

tems:

• Real-time Integration: Enhance the AI model to accommodate real-time
weather updates and solar PV electricity production data, allowing for
real-time adjustments and optimizations in the hybrid solar PV system.

• Hybrid Energy Storage Systems: Investigate the integration of advanced
energy storage systems, to store excess electricity for later use during peri-
ods of low solar PV generation, ensuring a continuous and reliable power
supply.

• Demand-side Management: Explore demand-side management strate-
gies to align power consumption with solar PV generation patterns, opti-
mizing energy usage and reducing dependence on the grid.

• Machine Learning Algorithms: Compare the performance of LSTM with
other machine learning algorithms to identify the most suitable model
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for power generation forecasting, considering factors such as accuracy,
efficiency, and computational requirements.

• Optimized Hydrogen Production: Further optimize hydrogen production
using surplus electricity by considering advanced electrolyzer technolo-
gies and control algorithms to achieve higher efficiency and lower energy
consumption.

• Deployment in Microgrids: Evaluate the effectiveness of the integrated AI
model and optimized AEM electrolyzer in a microgrid setting, assessing
its potential to enhance microgrid stability and sustainability.

These future research directions aim to enhance the performance, reliability,

and sustainability of hybrid solar PV systems, contributing to the broader adop-

tion of renewable energy sources and the transition towards a more sustainable

energy future.
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